

POLYNOMIAL EXTENSIONS OF SEMIRINGS

In this chapter, the word "semiring" means an additively commutative semiring which contains an element 0 such that $x \cdot 0 = 0 \cdot x = 0$ and x + 0 = 0 + x = x for all $x \in S$. We shall study polynomials with coefficients in a semiring. Before the study, we shall give some notation.

Notation Let S be a semiring. Then $(a_n)_{n \in \mathbb{Z}_0^+}$ denotes the infinite sequence in S whose $n^{\frac{th}{t}}$ term is a_n .

In [3] P. Cohn studied skew polynomial rings. We shall now study skew polynomial semirings.

Definition 4.1. Let S be a semiring and $\alpha: S \to S$ a monomorphism such that $\alpha(0) = 0$. Let $S[X,\alpha] = \{(a_n)_{n \in \mathbb{Z}_0^+} | a_n \in S \text{ for all } n \in \mathbb{Z}_0^+ \text{ and } a_n \neq 0 \}$ for only finitely many n}. Denote $(a_n)_{n \in \mathbb{Z}_0^+} \in S[X,\alpha]$ by $\sum_{i=0}^{\infty} a_i X^i$. Let $f = \sum_{i=0}^{\infty} a_i X^i$, $g = \sum_{i=0}^{\infty} b_i X^i \in S[X,\alpha]$. Define $f + g = \sum_{i=0}^{\infty} (a_i + b_i) X^i$ and $f \cdot g = \sum_{i=0}^{\infty} (\sum_{i=i}^{\infty} a_i \alpha^i(b_i)) X^i$.

The proof that $(S[X,\alpha],+,\cdot)$ is a semiring is similar to the proof given in Example 2.15. The semiring $S[X,\alpha]$ is called the skew polynomial semiring.

We shall now give an example to show that a monomorphism $\alpha:S\to S$ may not have the property that $\alpha(0)=0$ so the assumption above that $\alpha(0)=0$ is necessary.

Example 4.2. Let \mathbb{Z}_{O}^{\dagger} have the usual multiplication and define addition by $m + n = \max\{m,n\}$ for all $m,n \in \mathbb{Z}_{O}^{\dagger}$. Then $(\mathbb{Z}_{O}^{\dagger},+,\cdot)$ is a semiring. Let $S = \{(a_n)_{n \in \mathbb{Z}}^{\dagger} | a_n \in \mathbb{Z}_{O}^{\dagger}\}$. Define the addition and multiplication on S by

$$(a_n)_{n\in\mathbb{Z}^+} + (b_n)_{n\in\mathbb{Z}^+} = (a_n + b_n)_{n\in\mathbb{Z}^+}$$

and
$$(a_n)_{n \in \mathbb{Z}^+} \cdot (b_n)_{n \in \mathbb{Z}^+} = (a_n \cdot b_n)_{n \in \mathbb{Z}^+}$$
.

Then $(S,+,\cdot)$ is a semiring. Define $\alpha:S\to S$ by $\alpha((a_n)_{n\in\mathbb{Z}^+})=(1,a_1,a_2,\ldots)$. Then α is a monomorphism such that $\alpha((0,0,0,\ldots))=(1,0,0,\ldots)\neq(0,0,0,\ldots)$.

Theorem 4.3. Let S be a semiring. If S is additively cancellative then $S[X,\alpha]$ is additively cancellative.

Proof. Assume that S is additively cancellative. Let

$$f = \sum_{i=0}^{\infty} a_i x^i, g = \sum_{i=0}^{\infty} b_i x^i \text{ and } h = \sum_{i=0}^{\infty} c_i x^i \in S[X,\alpha] \text{ be such that}$$

$$f + g = f + h. \text{ Then } \sum_{i=0}^{\infty} (a_i + b_i) x^i = \sum_{i=0}^{\infty} (a_i + c_i) x^i. \text{ Let } i \in \mathbb{Z}_0^+$$

be arbitary. Since $a_i + b_i = a_i + c_i$ and S is A.C., $b_i = c_i$. Hence g = h. Therefore $S[X,\alpha]$ is additively cancellative.

Theorem 4.4. Let S be a semiring. If S is cancellative then $S[X,\alpha]$ is cancellative.

Proof. Assume that S is cancellative. By Theorem 4.3, $S[X,\alpha]$ is additively cancellative. To show that $S[X,\alpha]$ is multiplicatively

cancellative, let $f = \sum_{i=0}^{\infty} a_i X^i \in S[X,\alpha] \setminus \{0\}$ and $g = \sum_{i=0}^{\infty} b_i X^i$,

 $h = \sum_{i=0}^{\infty} c_i X^i \in S[X,\alpha]$ be such that fg = fh. Then

$$\sum_{k=0}^{\infty} (\sum_{i+j=k} a_{i}\alpha^{i}(b_{j}))X^{k} = \sum_{k=0}^{\infty} (\sum_{i+j=k} a_{i}\alpha^{i}(c_{j}))X^{k}.$$

Since $f \neq 0$, there exists a smallest integer k such that $a_k \neq 0$. For $\ell = k$, we get that $a_k \alpha^k(b_0) = a_k \alpha^k(c_0)$. Since k is M.C. and k is k is k. Since k is k is k is k. Since k is k is k is k. Since k is k is k is k is k. Suppose that for all k is k is k is k is k is k. We must show that k is k is k in k is k in k is k in k in

 $\begin{aligned} & \mathbf{a_k}^{k}(\mathbf{b_n}) + \mathbf{a_{k+1}}^{k+1}(\mathbf{b_{n-1}}) + \dots + \mathbf{a_{n+k}}^{n+k}(\mathbf{b_o}) \\ & = \mathbf{a_k}^{k}(\mathbf{c_n}) + \mathbf{a_{k+1}}^{k+1}(\mathbf{c_{n-1}}) + \dots + \mathbf{a_{n+k}}^{n+k}(\mathbf{c_o}). \end{aligned}$ Since

 $a_{k+1}\alpha^{k+1}(b_{n-1}) + \dots + a_{n+k}\alpha^{n+k}(b_0) = a_{k+1}\alpha^{k+1}(c_{n-1}) + \dots + a_{n+k}\alpha^{n+k}(c_0)$

and S is A.C., $a_k \alpha^k(b_n) = a_k \alpha^k(c_n)$. Since S is M.C. and $a_k \neq 0$, $\alpha^k(b_n) = \alpha^k(c_n)$, so $b_n = c_n$. Hence g = h. Suppose that gf = hf. The

 $\sum_{\ell=0}^{\infty} \left(\sum_{j+i=\ell}^{\infty} b_j \alpha^{j}(a_i) \right) x^{\ell} = \sum_{\ell=0}^{\infty} \left(\sum_{j+i=\ell}^{\infty} c_j \alpha^{j}(a_i) \right) x^{\ell}.$

For $\ell=k$, we get that $b_0a_k=c_0a_k$. Since S is M.C. and $a_k\neq 0$, $b_0=c_0$. Suppose that for all $j< n, b_j=c_j$. We must show that $b_n=c_n$. For $\ell=n+k$, we get that

$$b_{n}\alpha^{n}(a_{k}) + b_{n-1}\alpha^{n-1}(a_{k+1}) + \dots + b_{o}a_{n+k}$$

$$= c_{n}\alpha^{n}(a_{k}) + c_{n-1}\alpha^{n-1}(a_{k+1}) + \dots + c_{o}a_{n+k}.$$

Since $b_{n-1}\alpha^{n-1}(a_{k+1}) + \dots + b_0 a_{n+k} = c_{n-1}\alpha^{n-1}(a_{k+1}) + \dots + c_0 a_{n+k}$ and S is A.C., $b_n\alpha^n(a_k) = c_n\alpha^n(a_k)$. Since S is M.C. and $a_k \neq 0$, $b_n = c_n$. Hence g = h. Therefore $S[X,\alpha]$ is cancellative.

Theorem 4.5. Let S be a semiring. .If(S,+) satisfies the right [left] Ore condition then $(S[X,\alpha],+)$ satisfies the right [left] Ore condition.

Proof. Assume that (S,+) satisfies the right Ore condition.

Let $\sum_{i=0}^{\infty} a_i x^i$, $\sum_{i=0}^{\infty} c_i x^i \in S[X,\alpha]$. Let $n \in \mathbb{Z}_0^+$ be such that $a_i = c_i = 0$

for all i > n. Let $i \in \mathbb{Z}_0^+$ be such that $i \le n$. There exist $b_i, d_i \in S$ such that $a_i + b_i = c_i + d_i$. For $i \in \mathbb{Z}_0^+$ such that i > n, let

$$b_{i} = d_{i} = 0. \text{ Thus } \sum_{i=0}^{\infty} b_{i} X^{i}, \sum_{i=0}^{\infty} d_{i} X^{i} \in S[X,\alpha] \text{ and}$$

$$\sum_{i=0}^{\infty} a_{i} X^{i} + \sum_{i=0}^{\infty} b_{i} X^{i} = \sum_{i=0}^{\infty} c_{i} X^{i} + \sum_{i=0}^{\infty} d_{i} X^{i}.$$

Hence $S[X,\alpha]$ satisfies the right Ore condition.

Next, we shall study polynomials with noncommutative variables such that the elements of the semiring commute with the variables.

Definition 4.6. Let S be a semiring, $n \in \mathbf{Z}^{+}$, A the set of all finite sequences in $\{1,2,\ldots,n\}$. Let $\alpha=(m_1,\ldots,m_M)$ ϵ A. Define $|\alpha|=M$ and M is called the degree of α . Let $\alpha = (m_1, ..., m_M)$ and $\beta = (\ell_1, ..., \ell_L) \in A$. Define $\alpha + \beta = (m_1, \dots, m_M, \ell_1, \dots, \ell_L)$, so $\alpha + \beta \in A$. Let 0 be a symbol not representing any element in A. Let B = A U {0}. Extend + from A to B by $0 + \alpha = \alpha + 0 = \alpha$ for all $\alpha \in B$. Define |0| = 0.

Let $S[X_1,...,X_n] = \{f : B \rightarrow S | f(\alpha) \neq 0 \text{ for only finitely many}\}$ $\alpha \in B$. Let $\alpha \in B$. If $f(\alpha) = a_{\alpha}$ then we denote f by

 $a_0 + \sum_{i=1}^{n} a_i x^i + \sum_{i,j=1}^{n} a_{ij} x_j x_j + \dots$ To simplify notation we write this as $\sum_{|\alpha|=0}^{\Sigma} a_{\alpha} x^{\alpha}$ where if $\alpha = (m_1, ..., m_M)$ then $x^{\alpha} = x_{m_1} x_{m_2} ... x_{m_M}$

and $a_0 X^0 = a_0$ for all $a_0 \in S$.

Let
$$F = \sum_{\alpha=0}^{\infty} a_{\alpha} X^{\alpha}$$
, $G = \sum_{\beta=0}^{\infty} b_{\beta} X^{\beta}$ and $H = \sum_{\gamma=0}^{\infty} c_{\gamma} X^{\gamma}$

$$\text{ES}\left[X_{1},\ldots,X_{n}\right]. \quad \text{Define}$$

$$F+G = \sum_{\alpha=0}^{\infty} (a_{\alpha}+b_{\alpha})X^{\alpha}$$

$$|\alpha|=0$$

$$\sum_{\alpha=0}^{\infty} (\sum_{\alpha+\beta=\gamma} a_{\alpha}b_{\beta})X^{\gamma}.$$

$$|\gamma|=0 \quad \alpha+\beta=\gamma$$

To show that $(S[X_1,...,X_n],+,\cdot)$ is a semiring, note that

$$(F + G) + H = (\sum_{|\alpha|=0}^{\infty} (a_{\alpha} + b_{\alpha})X^{\alpha}) + (\sum_{|\alpha|=0}^{\infty} c_{\alpha}X^{\alpha})$$

$$= \sum_{|\alpha|=0}^{\infty} (a_{\alpha} + b_{\alpha} + c_{\alpha})X^{\alpha}$$

$$= (\sum_{|\alpha|=0}^{\infty} a_{\alpha}X^{\alpha}) + (\sum_{|\alpha|=0}^{\infty} (b_{\alpha} + c_{\alpha})X^{\alpha})$$

$$= F + (G + H),$$

so + is associative. Also,

$$(FG)H = (\sum_{\delta} (\sum_{\alpha + \beta = \delta} a_{\alpha}b_{\beta})x^{\delta})(\sum_{\gamma = 0}^{\infty} c_{\gamma}x^{\gamma})$$

$$= \sum_{\alpha = 0}^{\infty} (\sum_{\beta = 0} (\sum_{\alpha + \beta = \delta} a_{\alpha}b_{\beta})c_{\gamma})x^{\sigma}$$

$$= \sum_{\beta = 0}^{\infty} (\sum_{\alpha + \beta + \gamma = \sigma} a_{\alpha}b_{\beta}c_{\gamma})x^{\sigma}$$

$$= \sum_{\alpha = 0}^{\infty} (\sum_{\alpha + \beta + \gamma = \sigma} a_{\alpha}b_{\beta}c_{\gamma})x^{\sigma}$$
and
$$F(GH) = (\sum_{\alpha = \alpha} a_{\alpha}x^{\alpha})(\sum_{\beta = 0} (\sum_{\beta + \gamma = \delta} b_{\beta}c_{\gamma})x^{\delta})$$

$$= \sum_{\alpha = 0}^{\infty} (\sum_{\alpha + \delta = \sigma} a_{\alpha}(\sum_{\beta + \gamma = \delta} b_{\beta}c_{\gamma}))x^{\sigma}$$

$$= \sum_{\alpha = 0}^{\infty} (\sum_{\alpha + \delta = \sigma} a_{\alpha}b_{\beta}c_{\gamma})x^{\sigma},$$

$$= \sum_{\alpha = 0}^{\infty} (\sum_{\alpha + \beta + \gamma = \sigma} a_{\alpha}b_{\beta}c_{\gamma})x^{\sigma},$$

therefore (FG)H = F(GH), so · is associative. Since

$$F(G + H) = (\sum_{\substack{\alpha | \alpha | = 0}}^{\infty} a_{\alpha} X^{\alpha}) (\sum_{\substack{\beta | \beta | = 0}}^{\infty} (b_{\beta} + c_{\beta}) X^{\beta})$$
$$= \sum_{\substack{\alpha | \delta | = 0}}^{\infty} (\sum_{\alpha + \beta = \delta}^{\alpha} a_{\alpha} (b_{\beta} + c_{\beta})) X^{\delta}$$

and FG + FH = $(\sum_{\beta=0}^{\infty} (\sum_{\alpha+\beta=\delta} a_{\alpha}b_{\beta})X^{\delta}) + (\sum_{\beta=0}^{\infty} (\sum_{\alpha+\beta=\delta} a_{\alpha}c_{\beta})X^{\delta})$ = $\sum_{\beta=0}^{\infty} (\sum_{\alpha+\beta=\delta} (a_{\alpha}b_{\beta} + a_{\alpha}c_{\beta}))X^{\delta},$

F(G + H) = FG + FH. Similarly, (F + G)H = FH + GH. Hence · distributes over +. Therefore $(S[X_1, ..., X_n], +, \cdot)$ is a semiring.

Remark 4.7. If n = 1 then $S[X_1]$ is the polynomial semiring where the elements of the semiring commute with the variable.

Theorem 4.8. Let S be a semiring. If S is additively cancellative then $S[X_1, ..., X_n]$ is additively cancellative.

Proof. The proof of this theorem is similar to the proof of
Theorem 4.3.

Theorem 4.9. Let S be a semiring. If S is cancellative then $S[X_1,...,X_n]$ is cancellative.

Proof. Assume that S is cancellative. By Theorem 4.8, $S[X_1,\ldots,X_n] \text{ is additively cancellative. To show that } S[X_1,\ldots,X_n]$ is multiplicatively cancellative, let $F = \sum_{\alpha=0}^{\infty} a_{\alpha} X^{\alpha} \in S[X_1,\ldots,X_n] \setminus \{0\}$ and $G = \sum_{\beta=0}^{\infty} b_{\beta} X^{\beta}, \ H = \sum_{\beta=0}^{\infty} c_{\beta} X^{\beta} \in S[X_1,\ldots,X_n] \text{ be such that } FG = FH.$ Then $\sum_{\alpha=0}^{\infty} (\sum_{\alpha+\beta=\gamma} a_{\alpha}b_{\beta}) X^{\gamma} = \sum_{\alpha=0}^{\infty} (\sum_{\alpha+\beta=\gamma} a_{\alpha}c_{\beta}) X^{\gamma}. \qquad (*)$

Let β ϵ B be arbitary. We must show that $b_{\beta} = c_{\beta}$. Since $F \neq 0$, there exist an α_0 ϵ B such that $a_{\alpha_0} \neq 0$. Let $\alpha_0 = (m_1, \ldots, m_M)$ for some M ϵ Z_0^+ (M = 0 means that α_0 = 0). We shall prove that $b_{\beta} = c_{\beta}$ by induction on the degree of β . For $|\beta| = 0$, we get that $a_{\alpha_0} b_0 = a_{\alpha_0} c_0$,

so $b_0 = c_0$. For $|\beta| = 1$, let $\beta = (l)$. Consider the term in (*) with index $\gamma = (m_1, \ldots, m_M, l)$. We get that $a_{\alpha_0}b_{\beta} + a_{\gamma}b_0 = a_{\alpha_0}c_{\beta} + a_{\gamma}c_0$, so $a_{\alpha_0}b_{\beta} = a_{\alpha_0}c_{\beta}$, hence $b_{\beta} = c_{\beta}$. Assume by induction that it is true for $|\beta| = L - 1 \geqslant 1$. Let $\beta = (l_1, \ldots, l_L)$. Consider the term in (*) with index $\gamma = (m_1, \ldots, m_M, l_1, \ldots, l_L)$. We get that $a_{\alpha_0}b_{\beta} + a_{\alpha_0}+(l_1)^b(l_2, \ldots, l_L) + a_{\alpha_0}+(l_1, l_2)^b(l_3, \ldots, l_L) + \cdots + a_{\gamma}b_0 = a_{\alpha_0}c_{\beta} + a_{\alpha_0}+(l_1)^c(l_2, \ldots, l_L) + a_{\alpha_0}+(l_1, l_2)^c(l_3, \ldots, l_L) + \cdots + a_{\gamma}c_0$, so $a_{\alpha_0}b_{\beta} = a_{\alpha_0}c_{\beta}$, hence $b_{\beta} = c_{\beta}$. Therefore G = H. Similarly, if GF = HF then G = H. Thus $S[X_1, \ldots, X_n]$ is cancellative.

Theorem 4.13. Let S be a semiring. If (S,+) satisfies the right [left] Ore condition then $(S[X_1,...,X_n],+)$ satisfies the right [left] Ore condition.

Proof. The proof of this theorem is similar to the proof
of Theorem 4.5.

ิศูนยวิทยทรีพยากร หาลงกรณ์มหาวิทยาลัย