CHAPTER III

SKEW RINGS OF RIGHT [LEFT] DIFFERENCES OF SEMIRINGS

Abstract

In this chapter, we shall generalize the concept of the ring of differences of a commutative semiring to the skew ring of right [left] differences of a semiring which gives P.Sinutoke's construction when the semiring is commutatifye.

Definition 3.1. Let S be semiring. A skew ring R is said to be a skew ring of right [Ieft] aifferences of S iff there exists a monomorphism i : $S \rightarrow R$ such that for all $\times \in R$ there exist $a, b \varepsilon S$ such that $x=i(a)-i(b)[x=-i(b)+i(a)]$. A monomorphism i satisfying the above property is said to be a right [left] difference embedding of S into R.

Example 3.2. Let $S=\left\{\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] / x, z \in \mathbb{Z}^{+}\right.$and $\left.y \in \mathbb{Z}\right\}$ and $A, B \in S$. Define $A \oplus B=A B$ and A \& $B=I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1\end{array}\right] \cdot \operatorname{Then}^{2}(S, \Theta, 0)$ is a semiring. Let $X \circ Y=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Then $(R, \oplus, 0)$ is a skew ring of right $[1 \mathrm{eft}]$ differences of S.

Remark 3.3. In this chapter, we shall prove some theorems for skew rings of right differences of a semiring S. The theorems are true for skew rings of left differences of S and the proofs are similar so we shall not give the proofs for skew rings of left differences.

Remark 3.4. Let S be a semiring with an additive zero a. If a skew ring R of right [left] differences of S exists then $S=\{a\}$.

Proof. Let 0 be an additive identity of R and $i=S \rightarrow R$ a right difference embedding. Then $i(a)=i(a)+0=i(a)+i(a)-i(a)=$ $i(a+a)-i(a)=i(a)-i(a)=0$. Let $x \varepsilon S$ be arbitary. Then $i(x)=i(a)+i(x)=i(a+x)=i(a)$, so $x=a$ and hence $s=\{a\}$.

From now on, in this chapter the word "semiring"means a semiring without an additive zero.

Theorem 3.5. Let S be semiring. Then a skew ring of right [left] differences of S exists iff
(i) S is additively cancellative
and
(ii) $(S,+)$ satisfies the right [left] Ore condition.

Proof. Assume that (i) and (ii) hold. Consider $S \times S$. Let $(a, b),(c, d) \varepsilon S \times S$ Define a relation \sim on $S \times S$ by $(a, b) \sim(c, d)$ iff there exist x, y g such that $a+x=c+y$ and $b+x=d+y$. A proof similar to the one given in Theorem 2.4 shows that \sim is an
 A proof similar to the one given in Theorem 2.4 for $\left(K_{,}\right)$shows that $(R,+)$ is a group which having $[(z, z)]$, where $z \varepsilon S$, as an additive identity which we denote by 0 and $[(b, a)]=-[(a, b)]$ i.e. $[(b, a)]$ is the additive inverse of $[(a, b)]$.

Define $\alpha \cdot \beta=[(a c+b d, a d+b c)]$. We must show that \cdot is well-defined. 1) Fix (a, b). Suppose that ($c ; d) \sim\left(c^{\prime}, d^{\prime}\right)$. Then there
exist $\mathrm{x}, \mathrm{y} \in \mathrm{S}$ such that $c+\mathrm{x}=c^{\prime}+\mathrm{y}$ and $\mathrm{d}+\mathrm{x}=\mathrm{d}^{\prime}+\mathrm{y}$.
Since S is A.C.,

$$
\begin{aligned}
(a c+b d)+(a x+b x) & =(a c+a x)+(b d+b x) \\
& =\left(a c^{\prime}+a y\right)+\left(b d^{\prime}+b y\right) \\
& =\left(a c^{\prime}+b d^{\prime}\right)+(a y+b y) .
\end{aligned}
$$

Similarly, $(a d+b c)+(a x+b x)=\left(a d^{\prime}+b c^{\prime}\right)+(a y+b y)$. Thus $(a c+b d, a d+b c) \sim\left(a c^{\prime}+b d^{\prime}, a d^{\prime}+b c^{\prime}\right)$. 2) Fix (c, d). Suppose that $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$. A proof similan to the one just given shows that $(a c+b d, a d+b c) \sim\left(a^{\prime} c+b^{\prime} d, a^{\prime} d+b^{\prime} c\right)$. Hence \cdot is well-defined.

To show that is associative, let $\alpha, \beta, \gamma \varepsilon R$. Choose
$(a, b) \varepsilon \alpha,(c, d) \varepsilon \beta$ and $(e, f) \varepsilon \gamma$. Since $\alpha \beta=[(a c+b d, a d+b c)]$ and $\beta \gamma=[(c e+d f, c f+c e)]$, (ρ)
$(\alpha \beta) \gamma=\left[\left((a c+b d) e+(a d+b c) e^{3}(a c+b d) f+(a d+b c) e\right)\right]$
$=[(a c e+b d e+a d f+b c f l a c f+b d f+a d e+b c e)]$
$=[(a c e+a d f+b c f+b d e, a c f+a d e+b c e+b d f)]$
$=[(a(c e+d f)+b(c f+d e), a(c f+d e)+b(c e+d f))]$
$=\alpha(\beta \gamma)$.
Hence - is associatiye.
To show that muftiplication Gistributes over addition, let $\alpha, \beta, \gamma \in R$. Choose $(a, b) \varepsilon d,(c, d) \varepsilon \beta$ and (e, f) \& γ. First, we shall show that $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$. There exist $x, y \varepsilon$ s sueh that $d+x=e+y, s 0) \beta+\gamma_{\gamma}=d[(00+(x, f+y)]$, thus 61 d
$\alpha(\beta+\gamma)=[(a(c+x)+b(f+y), a(f+y)+b(c+x))]$

$$
=[(a c+a x+b f+b y, a f+a y+b c+b x)] .
$$

There exist $z, w \in S$ such that $a d+b c+z=a e+b f+w$, so

$$
\begin{aligned}
\alpha \beta+\alpha \gamma & =[(a c+b d, a d+b c)]+[(a e+b f, a f+b e)] \\
& =[(a c+b d+z, a f+b e+w)] .
\end{aligned}
$$

There exist $u, v \varepsilon S$ such that $a x+b f+b y+u=b d+z+v$. Then

$$
\begin{aligned}
& a d+a x+b f+b y+a y+b c+b x+u \\
= & a d+a y+b c+b x+a x+b f+b y+u \\
= & a d+a y+b c+b x+b c y+z+v \\
= & a d+a y+b c+b e+b y+z+v \\
= & a y+b e+b y+a d+b g+z+v \\
= & a y+b e+b y+a c+b f+w+v \\
= & a e+a y+b f+b y+b e+w+v \\
= & a d+a x+b f+b y+b e+w+v,
\end{aligned}
$$

so $a y+b c+b x+u=b e+w+y$. Hence
$(a c+a x+b f+b y, a f+a y+b c+b x) \sim(a c+b d+z, a f+b e+w)$.
Thus $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$. Siminarny, we can show that $(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$ so $\left(R,+,^{\cdot}\right)$ is distributive and hence $\left(R_{2}+,^{\circ}\right)$ is a skew ring.

Define $i: S \rightarrow R$ by $i(x)=[(x+x, x)]$ for all $x \varepsilon S$. To show that i is a homomorphism, let $a, b \varepsilon S$. Then
$i(a b)=[(a b+a b, a b)]$
$=[(a b+a b 4 a b+a b+a b, a b+a b+a b+a b)]$
$=[(9, q)(b+b)+(a b)(a+a) b+a(b)+\infty))]$

There exist $\mathrm{x}, \mathrm{y} \in S$ such that $\mathrm{a}+\mathrm{x}=\mathrm{b}+\mathrm{b}+\mathrm{y}$, so $i(\mathrm{a})+i(\mathrm{~b})=$ $[(a+a, a)]+[(b+b, b)]=[(a+a+x, b+y)]$. There exist $z, w \in s$ such that $a+b+a+b+z=a+a+x+w$, so $a+b+a+b+z=a+b+b+y+w$, thus $a+b+z=b+y+w$. Hence $(a+b+a+b, a+b) \sim(a+a+x, b+y)$, so $i(a+b)=i(a)+i(b)$. Thus i is a homomorphism. Let $a, b \varepsilon S$ be such that $i(a)=i(b)$. Then
$[(a+a, a)]=[(b+b, b)]$, so there exist $x, y \in S$ such that $a+a+x=b+b+y$ and $a+x=b+y$, thus $a=b$. Hence i is a monomorphism. Let $\alpha \in R$. Choose (a,b) $\varepsilon \alpha$. There exist $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{S}$ such that $a+x=b+y$, so $[(a+a, a)]+[(b, b+b)]=$ $[(a+a+x, b+b+y)]$. Let $z \varepsilon S$ and $w=a+x+z$. Then $a+w=a+a+x+z$ and $b+w=b+b+y+z$, so $[(a, b)]=$ $[(a+a+x, b+b+y)]$. Hence $\alpha-[(a, b)]=[(a+a, a)]+[(b, b+b)]=$ $i(a)-i(b)$. Therefore $\left(R_{2}+\right.$,) is a skew ring of right differences of S. A proof similar to the one given in Theorem 2.4 shows that the converse is true.

Remark 3.6. Let S be semiring having R as a skew ring of right [left] differences. In the pnoof of Theorem 3.5 we can see that

1) if S is multiplicatively commutative then R is multiplicatively commutative.
2) if S is additively commutative then R is a ring and we shall call it the ring of differences of S.
3) if S is commutative then R is the ring of differences of S given by P.Sinutoke in [1].

คูนน้อว่ทยทรัพยากร
ข
Corollary 3.7. Let S be a semiring having R as a skewring of right [left] differendes, il a righe [1ent] differende-embedaing of S into R, T a skew ring and $f: S \rightarrow T$ a homomorphism. Then there exists a unique homomorphism $g: R \rightarrow T$ such that $g \circ i=f$. Furthermore, if f is a monomorphism then g is a monomorphism.

Proof. Define $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{T}$ in the following way : Let $\mathrm{x} \in \mathrm{R}$. Then there exist $a, b \in S$ such that $x=i(a)-i(b)$. Define $g(x)=f(a)-f(b)$.

A proof similar to the one given in Corollary 2.7 shows that g is well-defined and $g(x+y)=g(x)+g(y)$ for all $x, y \varepsilon R$. Let $x, y \in R$. Then $x=i(a)-i(b)$ and $y=i(c)-i(d)$ for some $a, b, c, d \varepsilon S$. Thus

$$
\begin{aligned}
g(x y) & =g((i(a)-i(b))(i(c)-i(d))) \\
& =g(i(a) i(c)-i(a) i(d)-i(b) i(c)+i(b) i(d)) \\
& =g(i(a) i(c)+i(b) i(d)-i(a) i(d)-i(b) i(c)) \\
& =g(i(a c+b d)-i(b c+a d)) \\
& =f(a c+b d)-f(b c+a d) \\
& =f(a) f(c)+f(b) f(d)-f(a) f(d)-f(b) f(c) \\
& =f(a) f(c)-f(a) f(a)-f(b) f(c)+f(b) f(d) \\
& =(f(a)-f(b)(f(c)-f(d)) \\
& =g(x) g(y)
\end{aligned}
$$

Hence g is a homomorphism. Alproof similar to the one given in Corollary 2.7 shows that $g o i=f, g$ is unique and if f is a monomorphism then g is a monomorphism. Hence we have the corollary.

Corollary 3.8. Let S be a semiring having R as a skew ring of right [left] differences. If is a skew ping and T contains an isomorphic copy of S then T contains an isomorphic copy of R. corollary 3.9. Afs is a semiring having R and R as skew rings of right or left differences then $R \cong R^{\prime}$.

Proof. The proof of this theorem is similar to the proof of Corollary 2.9.

Theorem 3.10. Let (S, S) be a partially ordered semiring having R as a skew ring of right [left] differences and $i: S \rightarrow R$ a right [left] difference embedding. Then there exists a unique partial order $\leqslant *$ on R such that $\left(R, \leqslant^{*}\right)$ is a partially ordered skew ring and i is an increasing map iff
(i) \leqslant is additively regular
and
(ii) $y \leqslant x$ and $w \leqslant z$ imply that $(x w+y z) \leqslant(x z+y w)$ for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{W} \in \mathrm{S}$.

Furthermore, if \leqslant is total then \leqslant^{*} is total.

Proof. Assume that (i) and (ii) hold. Let
$E=\{\alpha \varepsilon R \mid \alpha=i(x)-i(y)$ for some $x, y \in S$ such that $y \leqslant x\}$. Define a relation \leqslant on R by $\alpha \leqslant \beta$ iff $\beta-\alpha \in E$ for all $\alpha, \beta \in$ R. A proof similar to the one given in Theorem 2.30 shows that \leqslant * is a partial order on $R, \alpha \leqslant{ }^{*} \beta$ implies that $(\alpha+\gamma) \leqslant(\beta+\gamma)$ and $(\gamma+\alpha) \leqslant(\gamma+\beta)$ for all $\alpha, \beta, \gamma \varepsilon R$ and i is an increasing map. We shall now show that $\alpha \leqslant \beta$ and $0 \leqslant *^{*} \gamma$ imply $\alpha \gamma \leqslant \beta \gamma$ and $\gamma \alpha \leqslant \gamma \beta$ for all $\alpha, \beta, \gamma \in R$. Claim that if $\alpha, \beta \varepsilon E$ then $\alpha \beta \in E$. To prove this, let $\alpha, \beta \in E$. Then $\alpha=i(x)-i\left(y^{\prime}\right)$ and $\beta=i(z)-i(w)$ for some $x, y, z, w \in S$ such that
 $\alpha \beta=i(x z+y w)-i(x w+y z) \varepsilon E$, hence we have the claim. Let $\alpha, \beta, \gamma \in R$
 $\beta \gamma-\alpha \gamma=(\beta-\alpha) \gamma \varepsilon E$ and $\gamma \beta-\gamma \alpha=\gamma(\beta-\alpha) \varepsilon E$, so $\alpha \gamma \leqslant \beta \gamma$ and $\gamma \alpha \leqslant \gamma \beta$. Hence $\left(R, \leqslant^{*}\right)$ is a partially ordered skew ring.

Conversely, assume that there exists a unique partial order $\leqslant *$ on R such that $\left(R, \leqslant^{*}\right)$ is a partially ordered skew ring and i is an increasing map. To show (ii), let $x, y, z, w \in S$ be such that $y \leqslant x$ and $w \leqslant z$. Then $i(y) \leqslant{ }^{*} i(x)$ and $i(w) \leqslant{ }^{*} i(z)$, so $0 \leqslant{ }^{*}(i(x)-i(y))(i(z)-i(w))=$

```
\(i(x z+y w)-i(x w+y z)\), thus \(i(x w+y z) \leqslant i(x z+y w)\), hence
\((x w+y z) \leqslant(x z+y w)\). Thus (ii) holds. A proof similar to the one given in Theorem 2.30 shows that (i) holds and if \(\leqslant\) is total then \(\leqslant *\) is total.
\#
```

A partial order on a semiring S satisfying condition (ii) in Theoremr 3.10 will be called normal.

Corollary 3.11. Let (S, \leqslant) be a partially ordered additively commutative semiring having R as a ring of/differences and $i: S \rightarrow R$ a difference embedding. Then there exists a unique partial order \leqslant * on R such that $\left(R, \leqslant^{*}\right)$ is a partially ondered ring and i is an increasing map iff \leqslant is additively regular and normal. Furthermore, if \leqslant is total then \leqslant is total.

Theorem 3.12. Let S be a semiring having R as a skew ring of right [left] differences of $S, i: S \rightarrow R$ a right [left] difference embedding, A the lower semilattice of additively regular, normal partial orders \leqslant on S such that (S, \leqslant) is a partially ordered semiring and B the lower semilattice of Partial orders \leqslant on R such that $\left(R, \xi^{*}\right)$ is a partially ordered skew ring and i is an increasing map. Then there exists an order isomorphismbetween A and 8.610 g. 9 ? ? 9 ?

Proof. Define a map $f: A \rightarrow B$ in the following way : Let $\leqslant \varepsilon A$. Then Theorem 3.10 determines a unique $\leqslant * \varepsilon B$. Define $f(\leqslant)=\leqslant$. To show that f is a surjection, let $\leqslant^{\prime} \varepsilon B$. Define a relation \leqslant on S by $x \leqslant y$ iff $i(x) \leqslant{ }^{\prime} i(y)$ for all $x, y \in S$. Clearly \leqslant is an additively regular partial order on S such that (S, \leqslant) is a partially ordered semiring.

A proof similar to the one given in Theorem 3.9 shows that \leqslant is normal. Hence $\leqslant \varepsilon$ A. By Theorem $3.10, \leqslant^{\prime}=\leqslant^{*}$, so $f(\leqslant)=\leqslant^{\prime}$. Therefore f is a surjection. A proof similar to the one given in Theorem 2.32 shows that the remainder of this theorem is true.

\#

Corollary 3.13. Let S be a semiring having R as a ring of differences, $i: S \rightarrow R$ a difference embedding, A the lower semilattice of additively regular, normal partial orders \leqslant on S such that (S, \leqslant) is a partially ordered semiring and B the lowen semilattice of partial orders $\leqslant *$ on R such that $\left(R, \leqslant^{*}\right)$ is a partially ordered ring and i is an increasing map. Then there exists an order isomorphism between A and B.

Theorem 3.14. Let S be a semjning having R as a skew ring of right [left] differences, $i: S \rightarrow R$ alright-[left] difference embedding and ρ a congruence on S. Then there exists a unique congruence ρ^{*} on R such that $\left(i(x) \rho^{*} i(y)\right.$ iff $x \rho y$ for all $x, y \in S$) iff ρ is additively regular.

Proof. The proof of this theorem is similar to the proof of Theorem 3.10 byflefining a refation ρ^{*} on R in the following way : Let $E=\left\{\alpha \varepsilon R \mid \alpha=i(x)-i(y)\right.$ for some $x, y \varepsilon S$ such that $\left.y_{0} \rho x\right\}$. Let $\alpha, \beta \in$ R. Define $\alpha \rho^{*} \beta$ iff $\beta 6-\alpha \varepsilon \in \cap$ From the definfिion it is clear that ρ^{*} is symmetric. Thus it remains to show that $\alpha \rho^{*} \beta$ implies $\alpha \gamma \rho^{*} \beta \gamma$ and $\gamma \alpha \rho^{*} \gamma \beta$ for all $\alpha, \beta, \gamma \in$ R. Claim that $\alpha \beta, \beta \alpha \varepsilon E$ for all $\alpha \varepsilon E, \beta \in R$. To prove this, let $\alpha \in E$ and $\beta \in R$. Then $\alpha=i(x)-i(y)$ and $\beta=i(z)-i(w)$ for some $x, y, z, w \in S$ such that $y \rho x$. Thus $y z \rho x z$, yw $\rho x w, z y \rho z x$ and wy $\rho w x$. So $(x z+y w) \rho(x w+y z)$ and $(z x+w y) \rho(z y+w x)$. Hence $\alpha \beta=i(x z+y w)-i(x w+y z)$ and $\beta \alpha=i(z y+w x)-i(z x+w y) \varepsilon E$. So we have the claim. Let $\alpha, \beta, \gamma \varepsilon R$
be such that $\alpha \rho^{*} \beta$. Then $\beta-\alpha \varepsilon E$. Thus $\beta \gamma-\alpha \gamma=(\beta-\alpha) \gamma \varepsilon E$ and $\gamma \beta-\gamma \alpha=\gamma(\beta-\alpha) \varepsilon E$. Therefore we have the theorem.

Corollary 3.15. Let S be an additively commutative semiring having R as a ring of differences of $S, i: S \rightarrow R$ a difference embedding and ρ a congruence on S. Then there exists a unique congruence ρ^{*} on R such that (i(x) $\rho^{*} i(y)$ iff $x \rho y$ for all $x, y \varepsilon S$) iff ρ is additively regular.

Theorem 3.15. Let S be a semiring having R as a skew ring of right [left] differences, $i: S \rightarrow R$ right [left] difference embedding, A the lattice of additively negular congruences on S and B the lattice of congruences on R. Then therefexists an order isomorphism between A and B.

Proof. The proof of this theorem is similar to the proof of Theorem 2.38.

Corollary 3.17. Let S be an additively commutative semiring having R as a ring of diffefences, $i=S \rightarrow\{$ R a difference embedding, A the lattice of additively regular congruences on S and B the lattice of congruences on R. Then there exists anorden isomorphism between A and B.

Theorem 3.18. Let S be a semiring having R as a skew ring of right [left] differences. Then R is multiplicatively cancellative iff S is strongly multiplicatively cancellative.

Proof. Let $i: S \rightarrow R$ be a right difference embedding.

Assume that S is strongly multiplicatively cancellative. Let $\alpha, \beta, \gamma \in R$ be such that $\alpha \beta=\alpha \gamma$ and $\alpha \neq 0$. Then $\alpha=i(x)-i(y)$, $\beta=i(z)-i(w)$ and $\gamma=i(u)-i(v)$ for some $x, y, z, w, u, v \varepsilon S$ such that $x \neq y$. There exist $a, b \in S$ such that $w+a=v+b$, so $\beta-\gamma=i(z+a)-i(u+b)$. Thus

$$
\begin{aligned}
& i(x(z+a)+y(u+b))-i(x(u+b)+y(z+a)) \\
= & (i(x)-i(y))(i(z+a)-i(u+b)) \\
= & \alpha(\beta-\gamma) \\
= & \alpha \beta-\alpha \gamma \\
= & 0
\end{aligned}
$$

hence $x(z+a)+y(u+b)=x(u+b)+y(z+a)$. Since S is strongly multiplicatively cancellative and $x \neq y, z+a=u+b$, so $\beta=\gamma$. Similarly, if $\beta \alpha=\gamma \alpha$ and $\alpha \neq \alpha$ then $\beta=\gamma$. Hence R is multiplicatively cancellative.

Conversely, assume that R is multiplicatively cancellative. It suffices to show that R is strongly multiplicatively cancellative. Let $\alpha, \beta, \gamma, \delta \in \mathrm{R}$ be such that $\alpha \gamma+\beta \delta=\alpha \delta+\beta \gamma$. Then $\beta \delta-\beta \gamma=\alpha \delta-\alpha \gamma$, so $\beta(\delta-\gamma)=\alpha(\delta-\gamma)$. Suppose that $\delta \neq \gamma$, so $\beta=\alpha$. Thus R is strongly multiplicatively gancellative hence s is also.

Remark 3.19. elearly R is multiplicatively cancellative iff R has no left zerodivisors and no right zero divisors.

Corollary 3.20. Let S be an additively commutative semiring having R as a ring of differences. Then R is multiplicatively cancellative iff S is strongly multiplicatively cancellative.

Theorem 3.21. Let S be a semiring having R as a skew ring of right [left] differences. Then the skew field of right [left] quotients of R exists iff
(i) S is strongly multiplicatively cancellative and (ii) for all $x, y, z, w \in S$ with $x \neq y$ and $z \neq w$ there exist $a, b, c, d \in S$ with $a \neq b$ and $c \neq d$ such that $x c+y d+z b+w a=$ $z a+w b+x d+y c$.

Proof. Let $i: S \rightarrow R$ be a right difference embedding.
Assume that (i) and (ii) hold. By Theorem 3.18, R has no left zero divisorsand no right zero divisors. Let $\alpha, \beta \in R \backslash\{0\}$. Then $\alpha=i(x)-i(y)$ and $\beta=i(z)-i(w)$ for some $x, y, z, w \in S$ such that $x \neq y$ and $z \neq w$. By (ii), thepe exist a, b, c, d, S with $a \neq b$ and $c \neq d$ such that $x c+y d+z b+w a=z a+w b+x d+y c$. Let $\gamma=i(a)-i(b)$ and $\delta=i(c)-i(d)$. Then $(x, \delta \varepsilon R \backslash\{0\}$ and $\alpha \delta=i(x c+y d)-i(x d+y c)=$ $i(z a+w b)-i(z b+w a)=\beta y$ Hence (R, \cdot) satisfies the right Ore condition. By Theorem 2.12, the skew field of right quotients of R exists.

Conversely, assume that the skew field K of right quotients of R exists. It follows from Theorem 3.18 that S is strongly multiplicatively cancellative. Ao show Fi9\%, let x, y, z, W es besuch that $x \neq y$ and $z \neq w$. Then $i(X)-i(y)$ and $i(z)-i(w) \varepsilon R \backslash\{0\}$. By Theorem 2.12, (R, \cdot) satisfies the right ore condition, SQ there exist a,b,c, $\alpha \in S$ with $a \neq b$ and $c \neq d$ such that $(i(x)-i(y))(i(c)-i(d))=(i(z)-i(w))(i(a)-i(b))$.

Thus $i(x c+y d)-i(x d+y c)=i(z a+w b)-i(z b+w a)$. Hence
$i(x c+y d+z b+w a)=i(z a+w b+x d+y c)$, so $x c+y d+z b+w a=$ $z a+w b+x d+y c$.

Corollary 3.22. Let S be a semiring which is additively cancellative, strongly multiplicatively cancellative and satisfies property ii) of Theorem 3.21. Then S is additively commutative.

Proof. We can embed S into a skew field by Theorem 3.21 and every skew field is additively commutative therefore S is additively commutative.

\#

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

