

CHAPTER II

SKEW SEMIFIELDS AND SKEW RATIO SEMIRINGS OF RIGHT [LEFT] QUOTIENTS OF SEMIRINGS

In this chapter, we shall generalize the concept of the semifield and the ratio semiring of quotients of a commutative semiring to the skew semifield and the skew ratio semiring of right [left] quotients of a semiring which gives P. Sinutoke's construction when the semiring is commutative.

Definition 2.1. Let S be a semiring with a multiplicative zero 0 such that |S| > 1. Then a skew semifield K is said to be a skew semifield of right [left] quotients of S iff there exists a monomorphism $i : S \to K$ such that for all $x \in K$ there exist a $E \subseteq S$, b $E \subseteq S \setminus \{0\}$ such that $ext{that} = ext{that} = e$

Example 2.2. Let $S = \{\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} / x, z \in \mathbb{Z}^+ \text{ and } y \in \mathbb{Z} \} \cup \{\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$ and $K = \{\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} / x, z \in \mathbb{Q}^+ \text{ and } y \in \mathbb{Q} \} \cup \{\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$. Then S and K with the usual addition and multiplication are a semiring with multiplicative zero and a skew semifield, respectively. To show that K is a skew semifield of right quotients of S, let $X \in K$. If $X = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then

let $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $B \in S \setminus \{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$ so $X = AB^{-1}$. Suppose that $X = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$ Then $x = \frac{p}{q}$, $y = \frac{m}{n}$ and $z = \frac{u}{v}$ where $p,q,n,u,v \in Z^+$ and $m \in Z$. Let $A = \begin{bmatrix} p & mv + p \\ 0 & um \end{bmatrix}$ and $B = \begin{bmatrix} q & q \\ 0 & vn \end{bmatrix}$. Then $A,B \in S \setminus \{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$ and $AB^{-1} = \begin{bmatrix} p & mv + p \\ 0 & um \end{bmatrix} \begin{bmatrix} 1/q & -1/vn \\ 0 & 1/vn \end{bmatrix} = X$. Hence K is a skew semifield of right quotients of S.

Remark 2.3. In this chapter, we shall prove some theorems for skew semifields of right quotients of a semiring S. The theorems are true for skew semifields of left quotients of S and the proofs are similar so we shall not give the proofs for skew semifields of left quotients.

Theorem 2.4. Let S be a semiring with a multiplicative zero 0 such that |S| > 1. Then a skew semifield of right [left] quotients of S exists iff

- (i) S is multiplicatively cancellative
- and (ii) (S,.) satisfies the right [left] Ore condition.

Proof. Assume that (i) and (ii) hold. Consider $S \times (S\setminus\{0\})$. Let $(a,b),(c,d) \in S \times (S\setminus\{0\})$. Define a relation \circ on $S \times (S\setminus\{0\})$ by $(a,b) \circ (c,d)$ iff there exist $x,y \in S\setminus\{0\}$ such that ax = cy and bx = dy. Clearly \circ is reflexive and symmetric. Let $(a,b),(c,d),(e,f) \in S \times (S\setminus\{0\})$ be such that $(a,b) \circ (c,d)$ and $(c,d) \circ (e,f)$. Then there exist $x,y,z,w \in S\setminus\{0\}$ such that ax = cy, bx = dy, cz = ew and dz = fw. Since $y,z \in S\setminus\{0\}$, there exist $u,v \in S\setminus\{0\}$ such that yu = zv. Let y = xu and y = wv. Then $y,y \in S\setminus\{0\}$. Since y = axu = cyu = czv = ewv = eq

and bp = bxu = dyu = dzv = fwv = fq, (a,b) $^{\circ}$ (e,f), so $^{\circ}$ is transitive. Hence $^{\circ}$ is an equivalence relation on S \times (S\{0}). Let K = $\frac{S \times (S \setminus \{0\})}{^{\circ}}$.

Let $\alpha, \beta \in K$. Define \cdot on K in the following way : Choose $(a,b) \in \alpha$ and $(c,d) \in \beta$. Since $b \in S\setminus\{0\}$ and $c \in S$, there exist $x \in S$ and $y \in S\setminus\{0\}$ such that bx = cy. Define $\alpha \cdot \beta = [(ax,dy)]$. We must show that \cdot is well-defined. We shall show this in three steps.

- 1) We shall show that is independent of the choice of x,y. Suppose that there exist $x' \in S$ and $y' \in S\setminus\{0\}$ such that bx' = cy'. We must show that $(ax,dy) \land (ax',dy')$. Since $y,y' \in S\setminus\{0\}$, there exist $z,w \in S\setminus\{0\}$ such that yz = y'w. Since bxz = cyz = cy'w = bx'w and $b \neq 0$, xz = x'w. Thus axz = ax'w and dyz = dy'w. Hence $(ax,dy) \land (ax',dy')$.
- 2) Fix (a,b). Suppose that (c,d) ∿ (c',d'). Since b ε S\{0} and c' ε S, there exist z ε S and w ε S\{0} such that bz = c'w. We must show that (ax,dy) ∿ (az,d'w). Since (c,d) ∿ (c',d'), there exist u,v ε S\{0} such that cu = c'v and du = d'v. Since dy,d'w ε S\{0}, there exist p,q ε S\{0} such that dyp = d'wq. Since wq,v ε S\{0}, there exist g,h ε S\{0} such that wqg = vh. Since duh = d'vh = d'wqg = dypg and d ≠ 0, uh = ypg. Since bxpg = cypg = cuh = c'vh = c'wqg = bzqg and b,g ≠ 0, xp = zq. Thus axp = azq and dyp = d'wq. Hence (ax,dy) ∿ (az,d'w).
- 3) Fix (c,d). Suppose that (a,b) \sim (a',b'). Since b' \in S\{0} and c \in S, there exist z \in S and w \in S\{0} such that b'z = cw. We must show that (ax,dy) \sim (a'z,dw). Since (a,b) \sim (a',b'), there exist u,v \in S\{0} such that au = a'v and bu = b'v. Since y,w \in S\{0}, there exist p,q \in S\{0} such that yp = wq. Since zq \in S and v \in S\{0}, there exist g \in S\{0} and h \in S such that zqg = vh. Since buh = b'vh = b'zqg = cwqg = cypg = bxpg and b \neq 0, uh = xpg. Since axpg = auh = a'vh = a'zqg

and $g \neq 0$, axp = a'zq. Hence $(ax,dy) \sim (a'z,dw)$. Therefore · is well-defined.

To show that • is associative, let $\alpha, \beta, \gamma \in K$. Choose $(a,b) \in \alpha$, $(c,d) \in \beta$ and $(e,f) \in \gamma$. There exist $x \in S$ and $y \in S\setminus\{0\}$ such that bx = cy, so $\alpha\beta = [(ax,dy)]$. There exist $z \in S$ and $w \in S\setminus\{0\}$ such that dyz = ew, so $(\alpha\beta)\gamma = [(axz,fw)]$. Since $dyz = ew,\beta\gamma = [(cyz,fw)]$. There exist $p \in S$ and $q \in S\setminus\{0\}$ such that bp = cyzq, so $\alpha(\beta\gamma) = [(ap,fwq)]$. Let $h \in S\setminus\{0\}$ and g = qh. Since bph = cyzqh = bxzg and $b \neq 0$, ph = xzg. Thus aph = axzg and fwqh = fwg, so $(ap,fwq) \sim (axz,fw)$. Hence $\alpha(\beta\gamma) = (\alpha\beta)\gamma$. Therefore • is associative.

Since $(a,a) \sim (b,b)$ for all $a,b \in S\setminus\{0\}$, denote [(a,a)] by 1 where $a \in S\setminus\{0\}$. To show that 1 is a multiplicative identity, let $\alpha \in K$. Choose $(a,b) \in \alpha$. There exist $x \in S\setminus\{0\}$ and $y \in S$ such that ax = by, so $1\alpha = [(b,b)][(a,b)] = [(by,bx)]$. Let $z \in S\setminus\{0\}$ and w = xz. then aw = axz = byz and bw = bxz. Hence $(a,b) \sim (by,bx)$, so $\alpha = 1\alpha$. Also, $\alpha = [(a,b)][(b,b)] = [(ab,bb)] = [(a,b)] = \alpha$. Hence 1 is a multiplicative identity of K.

Since $(0,a) \sim (0,b)$ for all a,b ϵ S\{0}, denote [(0,a)] by 0 where a ϵ S\{0}. To show that 0 is a multiplicative zero, let $\alpha \epsilon$ K. Choose $(a,b) \epsilon \alpha$. Since b0 = 0b, $\alpha 0 = [(a,b)][(0,b)] = [(a0,bb)] = [(0,bb)] = 0$. There exist $x \epsilon$ S\{0} and $y \epsilon$ S such that ax = by, so $0\alpha = [(0,b)][(a,b)] = [(0y,bx)] = [(0,bx)] = 0$. Hence 0 is a multiplicative zero of K.

Let $\alpha \in K\setminus\{0\}$. Choose $(a,b) \in \alpha$. Then $a \neq 0$. Let $\beta = [(b,a)]$. Let $c \in S\setminus\{0\}$ be arbitary. Then $\alpha\beta = [(ac,ac)] = 1 = [(bc,bc)] = \beta\alpha$, so $\beta = \alpha^{-1}$. Hence $(K\setminus\{0\},\cdot)$ is a group.

Let $\alpha, \beta \in K$. Define + on K in the following way : Choose (a,b) $\epsilon \alpha$ and (c,d) $\epsilon \beta$. There exist x,y ϵ S\{0} such that bx = dy.

Define $\alpha + \beta = [(ax + cy,bx)]$. We must show that + is well-defined. We shall show this in three steps.

- 1) We shall show that + is independent of the choice of x,y. Suppose that there exist x', y' \in S\{0} such that bx' = dy'. We must show that $(ax + cy,bx) \land (ax' + cy',bx')$. There exist z,w \in S\{0} such that xz = x'w. Since dyz = bxz = bx'w = dy'w and $d \neq 0$, yz = y'w. Thus (ax + cy)z = axz + cyz = ax'w + cy'w = (ax' + cy')w and bxz = b'xw. Hence $(ax + cy,bx) \land (ax' + cy',bx')$.
- 2) Fix (a,b). Suppose that (c,d) $^{\circ}$ (c',d'). There exist $z,w \in S\setminus\{0\}$ such that bz = d'w. We must show that $(ax + cy,bx) ^{\circ}$ (az + c'w,bz). Since $(c,d) ^{\circ}$ (c',d'), there exist $u,v \in S\setminus\{0\}$ such that cu = c'v and du = d'v. There exist $p,q \in S\setminus\{0\}$ such that xp = zq. There exist $g,h \in S\setminus\{0\}$ such that vg = wqh. Since dug = d'vg = d'wqh = bzqh = bxph = dyph and $d \neq 0$, ug = yph. Since cyph = cug = c'vg = c'wqh and $h \neq 0$, cyp = c'wq. Thus (ax + cy)p = axp + cyp = azq + c'wq = (az + c'w)q and bxp = bzq. Hence $(ax + cy,bx) ^{\circ}$ (az + c'w,bz).
- 3) Fix (c,d). Suppose that (a,b) ~ (a',b'). There exist z,w ∈ S\{0}such that b'z = dw. We must show that (ax + cy,bx) ~ (a'z + cw,b'z). Since (a,b) ~ (a',b'), there exist u,v ∈ S\{0} such that au = a'v and bu = b'v. There exist p,q ∈ S\{0} such that bxp = b'zq. Since dyp = bxp = b'zq = dwq and d ≠ 0, yp = wq. There exist g,h ∈ S\{0} such that vg = zqh. Since bug = b'vg = b'zqh = bxph and b ≠ 0, ug = xph. Since axph = aug = a'vg = a'zqh and h ≠ 0, axp = a'zq. Thus (ax + cy)p = axp + cyp = a'zq + cwq = (a'z + cw)q and bxp = b'zq. Hence (ax + cy,bx) ~ (a'z + cw,b'z). Therefore + is well-defined.

To show that + is associative, let $\alpha, \beta, \gamma \in K$. Choose (a,b) $\epsilon \alpha$,

(c,d) ε β and (e,f) ε γ . There exist x,y ε S\{0} such that bx = dy, so $\alpha + \beta = [(ax + cy,bx)]$. There exist z,w ε S\{0} such that bxz = fw, so $(\alpha + \beta) + \gamma = [((ax + cy)z + ew,bxz)]$. There exist u,v ε S\{0} such that du = fv, so $\beta + \gamma = [(cu + ev,du)]$. There exist p,q ε S\{0} such that bp = duq, so $\alpha + (\beta + \gamma) = [(ap + (cu + ev)q,bp)]$. We must show that $((ax + cy)z + ew,bxz) \sim (ap + (cu + ev)q,bp)$. There exist g,h ε S\{0} such that xzg = ph. Since dyzg = bxzg = bph = duqh and d \neq 0, yzg = uqh. Since fwg = bxzg = duqh = fvqh and f \neq 0, wg = vqh. Thus $((ax + cy)z + ew)g = axzg + cyzg + ewg = aph + cuqh + evqh = (ap + (cu + ev)q) h and bxzg = bph, so <math>((ax + cy)z + ew,bxz) \sim (ap + (cu + ev)q,bp)$. Hence $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$. Therefore + is associative.

We shall show that multiplication distributes over addition. Let $\alpha,\beta,\gamma\in K$. Choose $(a,b)\in\alpha$, $(c,d)\in\beta$ and $(e,f)\in\gamma$. First, we shall show that $\alpha(\beta+\gamma)=\alpha\beta+\alpha\gamma$. There exist $x,y\in S\setminus\{0\}$ such that dx=fy, so $\beta+\gamma=[(cx+ey,dx)]$. There exist $z\in S$ and $w\in S\setminus\{0\}$ such that bz=(cx+ey)w, so $\alpha(\beta+\gamma)=[(az,dxw)]$. There exist $u\in S$ and $v\in S\setminus\{0\}$ such that bu=cv, so $\alpha\beta=[(au,dv)]$. There exist $p\in S$ and $q\in S\setminus\{0\}$ such that bp=eq, so $\alpha\gamma=[(ap,fq)]$. There exist $g,h\in S\setminus\{0\}$ such that dvg=fqh, so $\alpha\beta+\alpha\gamma=[(aug+aph,dvg)]$. We must show that $(az,dxw)^{-1}$ (aug+aph,dvg). There exist $m,n\in S\setminus\{0\}$ such that xwm=vgn. Since fywm=dxwm=dvgn=fqhn and $f\neq 0$, ywm=qhn. Since bzm=(cx+ey)wm=cxwm+eywm=cvgn+eqhn=bugn+bphn=b(ug+ph)n and $b\neq 0$, zm=(ug+ph)n. Thus azm=(aug+aph)n and dxwm=dvgn, so $(az,dxw)^{-1}$ (aug+aph,dvg). Hence $\alpha(\beta+\gamma)=\alpha\beta+\alpha\gamma$.

Next, we shall show that $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$. There exist x,y ϵ S\{0} such that bx = dy, so $\alpha + \beta = [(ax + cy,bx)]$.

There exist $z \in S$ and $w \in S\setminus \{0\}$ such that bxz = ew, so $(\alpha + \beta)\gamma = [((ax + cy)z, fw)]$. Since bxz = ew, $\alpha\gamma = [(axz, fw)]$. There exist $p \in S$ and $q \in S\setminus \{0\}$ such that dp = eq, so $\beta\gamma = [(cp,fq)]$. There exist $g,h \in S\setminus \{0\}$ such that wg = qh, so $\alpha\gamma + \beta\gamma = [(axzp + cph,fwg)]$. We must show that $((ax + cy)z, fw) \sim (axzg + cph, fwg)$. Let $n \in S\setminus \{0\}$ and m = gn. Since $dyzm = bxzm = ewm = ewgn = eqhn = dphn and <math>d \neq 0$, yzm = phn. Thus (ax + cy)zm = axzm + cyzm = axzm + cphn = (axzg + cph)n and fwm = fwgn, so $((ax + cy)z, fw) \sim (axzg + cph$, fwg). Hence $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$. Therefore $(K, +, \cdot)$ is a skew semifield.

Fix c ϵ S\{0}. Define i : S + K by i(x) = [(xc,c)] for all x ϵ S. Note that i(x) = 0 iff x = 0. To show that i is a homomorphism, let a,b ϵ S. Then there exist x ϵ S and y ϵ S\{0} such that cx = bcy, so i(a)i(b) = [(ac,c)][(bc,c)] = [(acx,cy)]. Let z ϵ S\{0} and w = yz. Since abcw = abcyz = acxz and cw = cyz, (abc,c) \(^1\) (acx,cy), hence i(ab) = i(a)i(b). Also, i(a) + i(b) = [(acc + bcc,cc)] = [((a + b)c,c)] = i(a + b). Hence i is a homomorphism. Let a,b ϵ S be such that i(a) = i(b). Then [(ac,c)] = [(bc,c)], so there exist x,y ϵ S\{0} such that acx = bcy and cx = cy, hence a = b. Thus i is a monomorphism. Let α ϵ K. Choose (a,b) ϵ α . Then α = [(a,b)] = [(acc,bcc)] = [(ac,c)][(c,bc)] = i(a)i(b)^{-1}. Therefore (K,+,\(^1\)) is a skew semifield of right quotients of S.

Conversely, assume that a skew semifield of right quotients of S exists. Let i be a right quotient embedding of S into K. To show that S is multiplicatively cancellative, let a,b,c ε S be such that ab = ac and a \neq 0. Then i(a)i(b) = i(a)i(c), so i(b) = i(a)^{-1}i(a)i(b) = i(a)^{-1}i(a)i(c) = i(c), hence b = c. To show that (S,·) satisfies the right Ore condition, let a,b ε S\{0}. Then i(a)^{-1}i(b) ε K, so there exist x ε S and y ε S\{0} such that i(a)^{-1}i(b) = i(x)i(y)^{-1}. Thus

i(a)i(x) = i(b)i(y), hence ax = by. Since $ax = by \neq 0$ and $a \neq 0$, $x \neq 0$, hence we have the theorem.

#

- Remark 2.5. Let S be a semiring having K as a skew semifield of right [left] quotients. In the proof of Theorem 2.4 we can see that
 - 1) if S is additively commutative then K is additively commutative.
- 2) if S is multiplicatively commutative then K is multiplicatively commutative.
- 3) if S is commutative then the construction of K is the same as the construction of the semifield of quotients of S given by P. Sinutoke in [1].
- 4) In [4] it was shown that if 0 is a multiplicative zero of a skew semifield K then either 0 is a left or right additive identity of K and either 0 is a left or right additive zero of K. Clearly, 0 is an additive identity of K iff 0 is an additive identity of S and 0 is an additive zero of K iff 0 is an additive zero of S. So we get as a corollary of the preceding theorem that if S is a semiring with a multiplicative zero 0 satisfying both the multiplicative cancellativity condition and the right [left] Ore condition then 0 must be either a left or right additive identity of S and either a left or right additive zero of S.
- Remark 2.6. Let S be a semiring having K as a skew semifield of right [left] quotients, $i: S \to K$ a right [left] quotient embedding and $x \in K$. If $x = i(a)i(b)^{-1} = i(c)i(d)^{-1}$ where a,c $\in S$ and b,d $\in S\setminus\{0\}$ then there exist p,q $\in S\setminus\{0\}$ such that ap = cq and bp = dq.

<u>Proof.</u> Assume that $x = i(a)i(b)^{-1} = i(c)i(d)^{-1}$ where a,c ϵ S and b,d ϵ S\{0}. Then there exist p,q ϵ S\{0} such that bp = dq. Thus

 $i(a)i(p)i(q)^{-1}i(d)^{-1} = i(a)i(b)^{-1} = i(c)i(d)^{-1}$, so i(ap) = i(cq). Hence ap = cq.

Corollary 2.7. Let S be a semiring having K as a skew semifield of right [left] quotients, $i: S \to K$ a right [left] quotient embedding, L a skew semifield and $f: S \to L$ a homomorphism such that f(x) = 0 iff x = 0. Then there exists a unique homomorphism $g: K \to L$ such that $g \circ i = f$. Furthermore, if f is a monomorphism then g is a monomorphism.

Proof. Define $g: K \to L$ in the following way: Let $x \in K$. Then $x = i(a)i(b)^{-1}$ where $a,b \in S$ and $b \ne 0$. Define $g(x) = f(a)f(b)^{-1}$.

We must show that g is well-defined. Suppose that there exist a' ϵ S and b' ϵ S\{0} such that $x = i(a')i(b')^{-1}$. By Remark 2.6, there exist p,q ϵ S\{0} such that ap = a'q and bp = b'q. Then $f(a)f(b)^{-1} = f(a')f(q)f(p)^{-1}f(p)f(q)^{-1}f(b')^{-1} = f(a')f(b')^{-1}$. Hence g is well-defined.

To show that $g \circ i = f$, let $a \in S$. If a = 0 then i(a) = 0 and g(i(a)) = 0 = f(a) so we are done. Assume that $a \neq 0$. Then $g \circ i(a) = g(i(a)) = g(i(aa)i(a)^{-1}) = f(aa)f(a)^{-1} = f(a)$, so $g \circ i = f$.

To show that g is a homomorphism, let x,y ε K. Then $x = i(a)i(b)^{-1} \text{ and } y = i(c)i(d)^{-1} \text{ where a,c} \varepsilon \text{ S and b,d} \varepsilon \text{ S}\setminus\{0\}. \text{ There exist m} \varepsilon \text{ S and n} \varepsilon \text{ S}\setminus\{0\} \text{ such that bm} = \text{cn. Thus } g(xy) = g(i(a)i(b)^{-1}i(c)i(d)^{-1}) = g(i(a)i(m)i(n)^{-1}i(d)^{-1}) = g(i(am)i(dn)^{-1}) = f(am)f(dn)^{-1} = f(a)f(m)f(n)^{-1}f(d)^{-1} = f(a)f(b)^{-1}f(c)f(d)^{-1} = g(x)g(y).$ There exist p,q ε S\\\ 0\\ \text{ such that bp} = dq. Thus g(x + y) = g(x)g(x) = g(x)g(x)

 $g(i(a)i(b)^{-1} + i(c)i(d)^{-1}) = g(i(a)i(p)i(bp)^{-1} + i(c)i(q)i(dq)^{-1}) =$ $g(i(ap + cq)i(bp)^{-1}) = f(ap + cq)f(bp)^{-1} = f(ap)f(bp)^{-1} + f(cq)f(dq)^{-1} =$

 $f(a)f(b)^{-1} + f(c)f(d)^{-1} = g(x) + g(y)$. Hence g is a homomorphism.

To show that g is unique, suppose that there exists a homomorphism h: $K \to L$ such that h \circ i = f. Let $x \in K$. Then $x = i(a)i(b)^{-1}$ where a,b $\in S$ and b $\neq 0$. Then $g(x) = f(a)f(b)^{-1} = (h <math>\circ$ i(a))(h \circ i(b))⁻¹ = h(i(a)i(b)⁻¹) = h(x), so g = h. Hence g is unique.

Suppose that f is an injection. To show that g is an injection, let x,y \in K be such that g(x) = g(y). There exist a,c \in S and b,d \in S\{0} such that $x = i(a)i(b)^{-1}$ and $y = i(c)i(d)^{-1}$. There exist p,q \in S\{0} such that bp = dq. Then $f(a)f(p)f(q)^{-1}f(d)^{-1} = f(a)f(b)^{-1} = g(x) = g(y) = f(c)f(d)^{-1}$, thus f(ap) = f(cq), so ap = cq because f is an injection. Hence $x = i(a)i(b)^{-1} = i(c)i(q)i(p)^{-1}i(p)i(q)^{-1}i(d)^{-1} = i(c)i(d)^{-1} = y$. Therefore g is an injection.

Corollary 2.8. Let S be a semiring having K as a skew semifield of right [left] quotients. If L is a skew semifield and L contiains an isomorphic copy of S then L contains an isomorphic copy of K.

Corollary 2.9. If S is a semiring having K and K as skew semifields of right or left quotients then K = K'.

Proof. There exist right or left quotient embedding $i: S \to K$ and $j: S \to K'$. By Corollary 2.7, there exists a unique monomorphism $f: K \to K'$ and $g: K' \to K$ such that $f \circ i = j$ and $g \circ j = i$. Then $(g \circ f) \circ i = i$. By Corollary 2.7 and $\mathrm{Id}_K \circ i = i$ we get that $g \circ f = \mathrm{Id}_K$. Similarly, $f \circ g = \mathrm{Id}_{K'}$. Thus $f = g^{-1}$, hence f is an isomorphism.

Remark 2.10. Let S be a semiring having K as a skew semifield of right [left] quotients. If S is additively cancellative then K is additively commutative and additively cancellative.

Proof. Let i be a right quotient embedding of S into K. Assume that S is additively cancellative. To show that K is additively commutative, let $\alpha, \beta \in K$. Then $\alpha = i(x)i(y)^{-1}$ and $\beta = i(z)i(w)^{-1}$ where $x,z \in S$ and $y,w \in S\setminus\{0\}$. There exist $a,b \in S\setminus\{0\}$ such that ya = wb. Then $\alpha + \beta = i(xa + zb)i(ya)^{-1} = i(zb + xa)i(wb)^{-1} = \beta + \alpha$. To show that K is additively cancellative, let $\alpha,\beta,\gamma \in K$ be such that $\alpha + \beta = \alpha + \gamma$. There exist $x,z,u \in S$ and $y,w,v \in S\setminus\{0\}$ such that $\alpha = i(x)i(y)^{-1}$, $\beta = i(z)i(w)^{-1}$ and $\gamma = i(u)i(v)^{-1}$. There exist $a,b,c,d \in S\setminus\{0\}$ such that ya = wb and yc = vd. Then $i(xa + zb)i(ya)^{-1} = \alpha + \beta = \alpha + \gamma = i(xc + ud)i(yc)^{-1}$. Hence there exist $e,f \in S\setminus\{0\}$ such that ya = ycf and (xa + zb)e = (xc + ud)f. Thus wbe = yae = ycf = vdf and ae = cf. Since xae + zbe = xcf + udf and S is additively cancellative, zbe = udf. So $\beta = i(zbe)i(wbe)^{-1} = i(udf)i(vdf)^{-1} = \gamma$. Hence we have the remark.

Corollary 2.11. Let S be a semiring of order > 1 with a multiplicative zero which is additively cancellative and which satisfies properties

(i),(ii) of Theorem 2.4. Then S is additively commutative.

Corollary 2.12. Let R be a skew ring such that |R| > 1. Then a skew semifield K of right [left] quotients of R exists iff

(i) R has no left zero divisors and no right zero disvisors and (ii) (R,•) satisfies the right [left] Ore condition.
Furthermore, K is a skew field. <u>Proof.</u> We need only prove that K is a skew field. We must show that an additive inverse of x belongs to K for all $x \in K$. Let $x \in K$. Then $x = i(a)i(b)^{-1}$ where $a \in R$, $b \in R\setminus\{0\}$ and i is a right quotient embedding of R into K. Let $y = i(-a)i(b)^{-1}$. Then $y \in K$ and $x + y = i(a - a)i(b)^{-1} = 0 = i(-a + a)i(b)^{-1} = y + x$. Thus y is an additive inverse of x and hence K is a skew field.

Remark 2.13. In this case, we shall call K the skew field of right [left] quotients of R.

Remark 2.14.

- Let R be a skew ring of order > 1 satisfying properties (i)
 and (ii) of Corollary 2.12. Then R is a ring.
- 2) Let R be a ring having K as a skew field of right [left] quotients. If R is commutative then K is a field of quotients of R.

We shall now give an example of a skew field of right quotients of a noncommutative ring.

Example 2.15. Let K be a field and $\sigma: K \to K$ an automorphism of K such that $\sigma \neq \mathrm{Id}_K$. Let $(a_i)_{i \in \mathbf{Z}_0^+}$ denote an infinite sequence in K whose ith term is a_i .

Let
$$K[[X]] = \{(a_i)_{i \in \mathbb{Z}_0^+} | a_i \in K \text{ for all } i \in \mathbb{Z}_0^+\}$$
.

Denote $(a_i)_{i \in \mathbb{Z}_0^+} \in K[[X]]$ by $\sum_{i=0}^{\infty} a_i X^i$. Let $f = \sum_{i=0}^{\infty} a_i X^i$, $g = \sum_{i=0}^{\infty} b_i X^i$ and $h = \sum_{i=0}^{\infty} c_i X^i \in K[[X]]$. Define
$$f + g = \sum_{i=0}^{\infty} (a_i + b_i) X^i$$

and
$$f \cdot g = \sum_{\ell=0}^{\infty} d_{\ell} x^{\ell}$$
 where $d_{\ell} = \sum_{i+j=\ell} a_{i} \sigma^{i}(b_{j})$.

Then (K[[X]],+) is an abelian group. To show that $(K[[X]],+,\cdot)$ is a ring, note that

$$(fg)h = (\sum_{p=0}^{\infty} (\sum_{i+j=p} a_i \sigma^i(b_j)) x^p) (\sum_{\ell=0}^{\infty} c_{\ell} x^{\ell})$$

$$= \sum_{q=0}^{\infty} (\sum_{p+\ell=q} (\sum_{i+j=p} a_i \sigma^i(b_j)) \sigma^p(c_{\ell})) x^q$$

$$= \sum_{q=0}^{\infty} (\sum_{i+j+\ell=q} a_i \sigma^i(b_j) \sigma^{i+j}(c_{\ell})) x^q$$

$$= \sum_{q=0}^{\infty} (\sum_{i+j+\ell=q} a_i \sigma^i(b_j) \sigma^{i+j}(c_{\ell})) x^q$$
and
$$f(gh) = (\sum_{i=0}^{\infty} a_i x^i) (\sum_{p=0}^{\infty} (\sum_{j+\ell=p} b_j \sigma^j(c_{\ell})) x^p)$$

$$= \sum_{q=0}^{\infty} (\sum_{i+p=q} a_i \sigma^i(\sum_{j+\ell=p} b_j \sigma^j(c_{\ell})) x^q$$

$$= \sum_{q=0}^{\infty} (\sum_{i+p=q} a_i \sigma^i(b_j) \sigma^{i+j}(c_{\ell})) x^q$$

$$= \sum_{q=0}^{\infty} (\sum_{i+j+\ell=q} a_i \sigma^i(b_j) \sigma^{i+j}(c_{\ell})) x^q,$$
so
$$(fg)h = f(gh), thus \cdot is associative. Also,$$

$$(f+g)h = (\sum_{i=0}^{\infty} (a_{i+} b_i) x^i) (\sum_{j=0}^{\infty} c_j x^j)$$

$$= \sum_{\ell=0}^{\infty} (\sum_{i+j=\ell} (a_{i+} b_i) \sigma^i(c_j)) x^{\ell}$$

$$= \sum_{\ell=0}^{\infty} (\sum_{i+j=\ell} a_i \sigma^i(c_j)) x^{\ell} + \sum_{\ell=0}^{\infty} (\sum_{i+j=\ell} b_i \sigma^i(c_j)) x^{\ell}$$

$$= fh + gh$$
and
$$f(g+h) = (\sum_{i=0}^{\infty} a_i x^i) (\sum_{j=0}^{\infty} (b_j + c_j) x^j)$$

 $= \sum_{\ell=0}^{\infty} (\sum_{i+j=\ell}^{\ell} a_i \sigma^i (b_j + c_j)) x^{\ell}$

$$= \sum_{l=0}^{\infty} (\sum_{i+j=l} a_i \sigma^i(b_j)) x^l + \sum_{l=0}^{\infty} (\sum_{i+j=l} a_i \sigma^i(c_j)) x^l$$

$$= fg + fh,$$

so multiplication distributes over addition. To show that \cdot is noncommutative, note that since $\sigma \neq \mathrm{Id}_K$, there exists a d ε K such that $\sigma(d) \neq d$. Then $(X)(dX) = \sigma(d)X^2$ and $(dX)(X) = dX^2$, so $(X)(dX) \neq (dX)(X)$. Hence $(K[[X]],+,\cdot)$ is a noncommutative ring.

Let $(a_i)_{i \in \mathbb{Z}}$ denote an infinite sequence in K whose i^{th} term is a_i . Let $K((X)) = \{(a_i)_{i \in \mathbb{Z}} | a_i \in K \text{ for all } i \in \mathbb{Z} \text{ and the number of } i \in \mathbb{Z}^-$

such that $a_i \neq 0$ is finite}. Denote $(a_i)_{i \in \mathbb{Z}} \in K((X))$ by $\sum_{i=-\infty}^{\infty} a_i X^i$.

Let
$$f = \sum_{i=-\infty}^{\infty} a_i X^i$$
 and $g = \sum_{i=-\infty}^{\infty} b_i X^i \in K((X))$. Define
$$f + g = \sum_{i=-\infty}^{\infty} (a_i + b_i) X^i$$

and
$$f \cdot g = \sum_{\ell=-\infty}^{\infty} c_{\ell} x^{\ell}$$
 where $c_{\ell} = \sum_{i+j=\ell} a_{i} \sigma^{i}(b_{j})$.

Then (K((X)),+) is an abelian group. To show that \cdot is well-defined, let $n,m \in \mathbf{Z}$ be such that $\mathbf{a}_p = \mathbf{b}_q = 0$ for all p < n and q < m. Let k = n + m. Let $r \in \mathbf{Z}$ be such that r < k. Then $\mathbf{c}_r = \sum_{i+j=r} \mathbf{a}_i \sigma^i(\mathbf{b}_j)$. Let $i,j \in \mathbf{Z}$ be such that i+j=r.

 $\underline{\text{Case 1}}$ i < n. Thus $a_i = 0$, so $a_i \sigma^i(b_j) = 0$.

Case 2 $n \le i$. Thus $j = r - i \le k - i \le n + m - n = m$, so $b_j = 0$, hence $a_i \sigma^i(b_j) = 0$.

Therefore $c_r = 0$. Hence • is well-defined. A proof similar to the one just given shows that • is associative and distributive. Since K[[X]] is a subring of K((X)), K((X)) is noncommutative. Let 1 be the multiplicative identity of K. Then 1 is the multiplicative identity of K((X)) if we identify 1 with $\sum_{i=-\infty}^{\infty} a_i X^i$ where $a_i = 1$ and $a_i = 0$ for $a_i = 0$

i \neq 0. Let f ϵ K((X))\{0}. Then there exists an n ϵ Z such that a_m = 0 for all m < n and $a_n \neq 0$, so $f = a_n x^n + a_{n+1} x^{n+1} + \dots$ Thus $f^{-1} = \frac{1}{a_n X^n + a_{n+1} X^{n+1} + \dots} = \frac{1}{a_n X^n (1 + \frac{a_{n+1}}{a} X + \dots)} =$ $\frac{1}{a} X^{-n} (1 - A + A^2 - A^3 + ...)$, where $A = \frac{a_{n+1}}{a} X + \frac{a_{n+2}}{a} X^2 + ...$, so $f^{-1} \in K((X))\setminus\{0\}$. Hence $(K((X)),+,\cdot)$ is a skew field and $K[[X]] \subseteq K((X))$. Let $f \in K((X))$. We must show that there exist $g \in K[[X]]$ and $h \in K[[X]] \setminus \{0\}$ such that $f = gh^{-1}$. If $f \in K[[X]]$ then let g = f and h = 1. Suppose that $f = \sum_{i=-\infty}^{\infty} z_i X^i \in K((X)) \setminus K[[X]]$. Let $m \in \mathbb{Z}$ be such that $z_i = 0$ for all i < m and $z_m \neq 0$. Let $h = \sum_{i=0}^{\infty} b_i X^i \in K[[X]] \setminus \{0\}$ be such that $b_{-m} \neq 0$ and $b_i = 0$ for all i < -m. Then h^{-1} exists in K((X)) and $h^{-1} = \sum_{i=-\infty}^{\infty} c_i X^i$ where $c_m \neq 0$ and $c_i = 0$ for all i < m. Let $g = \sum_{i=0}^{\infty} a_i x^i \in K[[X]]$ where $a_0 = \frac{z}{c}$ and $a_i = \frac{1}{\sigma^i(c_i)} (z_{m+i} - a_0 c_{m+i} - a_1 \sigma(c_{m+i-1}) - \dots - a_{i-1} \sigma^{i-1}(c_{m+1}))$ for all i > 0. Then $g = \sum_{i=-\infty}^{\infty} a_i X^i \in K((X))$ where $a_i = 0$ for all i < 0. Let $gh^{-1} = \sum_{\ell=-\infty}^{\infty} d_{\ell} X^{\ell}$ where $d_{\ell} = \sum_{i+j=\ell} a_{i} \sigma^{i}(c_{j})$. To show that $f = gh^{-1}$, consider terms of degree ℓ < m. Let i,j ϵ Z be such that i + j = ℓ .

Case 1 i < 0. Thus $a_i = 0$, so $a_i \sigma^i(c_i) = 0$.

Case 2 $0 \le i$. Thus $j = l - i \le m$, so $c_j = 0$, hence $a_j \sigma^i(c_j) = 0$.

Then $d_{\ell} = 0 = z_{\ell}$. Consider the term of degree m. Thus

$$d_{m} = \sum_{i \leqslant -1} a_{i} \sigma^{i}(c_{m-i}) + a_{o} c_{m} + \sum_{i \geqslant 1} a_{i} \sigma^{i}(c_{m-i})$$

$$= a_0 c_m = \frac{z_m}{c_m} c_m = z_m.$$

Consider terms of degree m + n where n > 1. Thus

$$\begin{array}{lll} d_{m+n} & = & \sum\limits_{i \leqslant -1} a_{i}\sigma^{i}(c_{m+n-i}) + a_{o}c_{m+n} + a_{1}\sigma(c_{m+n-1}) + \ldots + a_{n}\sigma^{n}(c_{m}) + \\ & \sum\limits_{i \geqslant n} a_{i}\sigma^{i}(c_{m+n-i}) \\ & = & a_{o}c_{m+n} + a_{1}\sigma(c_{m+n-1}) + \ldots + a_{n}\sigma^{n}(c_{m}) \\ & = & a_{o}c_{m+n} + a_{1}\sigma(c_{m+n-1}) + \ldots + a_{n-1}\sigma^{n-1}(c_{m+1}) + \\ & & \frac{1}{\sigma^{n}(c_{m})} \left[z_{m+n} - a_{o}c_{m+n} - a_{1}\sigma(c_{m+n-1}) - \ldots - a_{n-1}\sigma^{n-1}(c_{m+1}) \right] \sigma^{n}(c_{m}) \\ & = & z_{m+n}. \end{array}$$

Hence $f = gh^{-1}$. Therefore $(K((X)),+,\cdot)$ is a skew field of right quotients of K[[X]].

Corollary 2.16. Let R be a ring having K as a skew field of right [left] quotients, i: R + K a right quotient embedding, L a skew field and f: R + L a monomorphism. Then there exists a monomorphism g: K + L such that g o i = f.

Corollary 2.17. Let R be a ring having K as a skew field of right [left] quotients. If L is a skew field and L contains an isomorphic copy of R then L contains an isomorphic copy of K.

Corollary 2.18. If R is a ring having K and K as skew fields of right or left quotients then $K \cong K'$.

Definition 2.19. Let S be a semiring without a multiplicative zero. Then a skew ratio semiring D is said to be a skew ratio semiring of right [left] quotients of S iff there exists a monomorphism $i: S \to D$ such that for all $x \in D$ there exist a,b $\in S$ such that $x = i(a)i(b)^{-1}[x = i(b)^{-1}i(a)]$. A monomorphism i satisfying the above

property is said to be a right [left] quotient embedding of S into D.

Example 2.20. Let $S = \{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} / x, z \in \mathbb{Z}^+ \text{ and } y \in \mathbb{Z} \}$ and $D = \{ \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} / x, z \in \mathbb{Q}^+ \text{ and } y \in \mathbb{Q} \}$. Then S and D with the usual addition and multiplication are a semiring and its skew ratio semiring of right quotients, respectively.

Remark 2.21. In this chapter, we shall prove some theorems for skew ratio semirings of right quotients of a semiring S. The theorems are true for skew ratio semirings of left quotients of S and the proofs are similar so we shall not give the proofs for skew ratio semirings of left quotients.

The construction of a skew ratio semiring of right [left] quotients of a semiring S is the same as the construction of a skew semifield of right [left] quotients of S, so we have the following theorem.

- Theorem 2.22. Let S be a semiring without a multiplicative zero.

 Then a skew ratio semiring of right [left] quotients of S exists iff
 - (i) S is multiplicatively cancellative
- and (ii) (S,·) satisfies the right [left] Ore condition.
- Remark 2.23. Let S be a semiring having D as a skew ratio semiring of right [left] quotients. Then
- 1) if S is additively commutative the D is additively commutative.

- 2) if S is multiplicatively commutative then D is multiplicatively commutative.
- 3) if S is commutative then the construction of D is the same as the construction of the ratio semiring of quotients of S given by P.Sinutoke in [1].
- 4) if S is additively cancellative then D is additively commutative and additively cancellative.

Corollary 2.24. Let S be a semiring having D as a skew ratio semiring of right [left] quotients, $i: S \rightarrow D$ a right [left] quotient embedding, E a skew ratio semiring and $f: S \rightarrow E$ a homomorphism. Then there exists a unique homomorphism $g: D \rightarrow E$ such that $g \circ i = f$. Furthermore, if f is a monomorphism then g is a monomorphism.

Corollary 2.25. Let S be a semiring having D as a skew ratio semiring of right [left] quotients. If E is a skew ratio semiring and E contains an isomorphic copy of S then E contains an isomorphic copy of D.

Corollary 2.26. If S is a semiring having D and D as skew ratio semirings of right or left quotients then D = D'.

Remark 2.27. Let S be a semiring having D as a skew ratio semiring of right [left] quotients. Then S is strongly multiplicatively cancellative iff D is precise.

Proof. Let $i : S \rightarrow D$ be a right quotient embedding.

Assume that S is strongly multiplicatively cancellative. To show that D is precise, let $\alpha,\beta\in D$ be such that $1+\alpha\beta=\alpha+\beta$.

There exist x,y,z,w \in S such that $\alpha = i(x)i(y)^{-1}$ and $\beta = i(z)i(w)^{-1}$. There exist a,b,c,d \in S such that ya = zb and yc = wd. Then $\alpha\beta = i(xa)i(wb)^{-1}$ and $\alpha + \beta = i(xc + zd)i(wd)^{-1}$. Thus $i(wb + xa)i(wb)^{-1} = 1 + \alpha\beta = \alpha + \beta = i(xc + zd)i(wd)^{-1}$. Hence there exist e,f \in S such that (wb + xa)e = (xc + zd)f and wbe = wdf, so be = df. Since xcf + yae = xcf + zbe = xcf + zdf = wbe + xae = wdf + xae = ycf + xae and S is S.M.C., x = y or ae = cf. If x = y then $\alpha = 1$. Suppose that ae = cf. Then zbe = yae = ycf = wdf, thus z = w, hence $\beta = 1$. Similarly, if $1 + \alpha\beta = \beta + \alpha$ then $\alpha = 1$ or $\beta = 1$.

Conversely, assume that D is precise. To show that S is strongly multiplicatively cancellative it suffices to show that D is strongly multiplicatively cancellative. Let $\alpha, \beta, \gamma, \delta \in D$ be such that $\alpha\gamma + \beta\delta = \alpha\delta + \beta\gamma$. Then $1 + \alpha^{-1}\beta\delta\gamma^{-1} = \delta\gamma^{-1} + \alpha^{-1}\beta$, thus $\alpha^{-1}\beta = 1$ or $\delta\gamma^{-1} = 1$, so $\alpha = \beta$ or $\gamma = \delta$. Similarly, if $\alpha\gamma + \beta\delta = \beta\gamma + \alpha\delta$ then $\alpha = \beta$ or $\gamma = \delta$. Thus D is strongly multiplicatively cancellative and hence S is also.

Theorem 2.28. Let (R,\leqslant) be a partially ordered ring having K as a skew field of right [left] quotients such that for all x,y ϵ R with x > 0 and y > 0 there exist a,b ϵ R with a > 0 and b > 0 such that xa = yb and i : R + K a right [left] quotient embedding. Then there exists a partial order \leqslant on K such that (K,\leqslant) is a partially ordered skew field and i is an increasing map iff \leqslant is multiplicatively regular. Furthermore, if \leqslant is total then \leqslant is total.

<u>Proof.</u> Assume that \leq is multiplicatively regular. Let $E = \{\alpha \in K | \alpha = i(x)i(y)^{-1} \text{ for some } x,y \in R \text{ such that } x \geq 0 \text{ and } y \geq 0\}.$ Define $\alpha \leq^* \beta$ iff $\beta - \alpha \in E$ for all $\alpha, \beta \in K$.

From now on, in the proof of this theorem, we shall denote α and $\beta \in K$ by $i(x)i(y)^{-1}$ and $i(z)i(w)^{-1}$, respectively, where $x,z \in R$ and $y,w \in R\setminus\{0\}$.

We must show that \leq is a partial order on K. Clearly \leq is reflexive. Let $\alpha, \beta \in K$ be such that $\alpha \leq$ β and $\beta \leq$ α . Then $\beta - \alpha$ and $\alpha - \beta \in E$. Let $\beta - \alpha = i(a)i(b)^{-1}$ and $\alpha - \beta = i(c)i(d)^{-1}$ where a,c > 0 and b,d > 0 in R. Since $i(c)i(d)^{-1} = i(-a)i(b)^{-1}$, by Remark 2.6 and the hypothesis, there exist e,f > 0 in R such that -ae = cf and be = df. Since -ae > 0 and $\leq is$ M.R., -a > 0, so a < 0. Then a = 0 because a > 0 and a < 0. Thus $\alpha = \beta$. Hence \leq is anti-symmetric. Claim that $\alpha + \beta \in E$ for all $\alpha,\beta \in E$. To prove this, let $\alpha,\beta \in E$. Then x,z > 0 and y,w > 0. There exist a,b > 0 in R such that y = wb. Thus (xa + zb) > 0 and y > 0, so $\alpha + \beta = i(xa + zb)i(ya)^{-1} \in E$, hence we have the claim. Let $\alpha,\beta,\gamma \in K$ be such that $\alpha \leq$ β and $\beta \leq$ γ . Then $\beta - \alpha$ and $\gamma - \beta \in E$. Thus $\gamma - \alpha = (\gamma - \beta) + (\beta - \alpha) \in E$, so $\alpha \leq$ γ . Hence \leq is transitive. Therefore \leq is a partial order on K.

Let $\alpha, \beta, \gamma \in K$ be such that $\alpha \leqslant^* \beta$. Then $(\beta + \gamma) - (\alpha + \gamma) = \beta - \alpha \in E$, so $(\alpha + \gamma) \leqslant^* (\beta + \gamma)$. Claim that $\alpha\beta \in E$ for all $\alpha, \beta \in E$. To prove this, let $\alpha, \beta \in E$. Then x, z > 0 and y, w > 0. There exist a > 0 and b > 0 in R such that ya = zb. Thus xa > 0 and wb > 0, so $\alpha\beta = i(xa)i(wb)^{-1} \in E$. Hence we have the claim. Let $\alpha, \beta \in K$ be such that $\alpha \leqslant^* \beta$. Then $\beta - \alpha \in E$. Let $\gamma \in E$. Then $\beta\gamma - \alpha\gamma = (\beta - \alpha)\gamma \in E$ and $\gamma\beta - \gamma\alpha = \gamma(\beta - \alpha) \in E$, so $\alpha\gamma \leqslant^* \beta\gamma$ and $\gamma\alpha \leqslant^* \gamma\beta$. Hence (K, \leqslant^*) is a partially ordered skew field.

To show that i is an increasing map, let a,b,c ϵ R be such that a < b and c > 0. Then (b - a)c > 0, so $i(b) - i(a) = i((b - a)c)i(c)^{-1} \epsilon$ E. Hence i(a) < i(b). Claim that if $\alpha = i(p)i(q)^{-1}$ where p,q ϵ R such that q > 0 and $\alpha \epsilon$ E then p > 0. Since $\alpha \epsilon$ E, x > 0 and y > 0.

There exist g,h > 0 in R such that xg = ph and yg = qh, so ph > 0.

Thus p > 0 because \leq is M.R.. Hence we have the claim. Let a,b,c ϵ R be such that i(a) < i(b) and c > 0. Then $i((b-a)c)i(c)^{-1} = i(b) - i(a) \epsilon$ E, so (b-a)c > 0, hence b-a > 0, thus a < b. Hence i is an increasing map.

Conversely, assume that there exists a partial order $\stackrel{*}{\leqslant}$ on K such that $(K,\stackrel{*}{\leqslant})$ is a partially ordered skew field and i is an increasing map. Let $a,b,c \in R$ be such that ac $\stackrel{*}{\leqslant}$ bc and c>0. Then i $i(a)i(c) \stackrel{*}{\leqslant} i(b)i(c)$, so $0 \stackrel{*}{\leqslant} (i(b)-i(a))i(c)$ and $0 \stackrel{*}{\leqslant} i(c)$. Thus $0 \stackrel{*}{\leqslant} i(b)-i(a)$, so $i(a) \stackrel{*}{\leqslant} i(b)$. Hence $a \stackrel{*}{\leqslant} b$. Similarly, if $ca \stackrel{*}{\leqslant} cb$ and c>0 then $a \stackrel{*}{\leqslant} b$. Therefore $\stackrel{*}{\leqslant}$ is multiplicatively regular.

Furthermore, assume that \leq is total. Let $\alpha, \beta \in K$. There exist a,b $\in \mathbb{R} \setminus \{0\}$ such that ya = wb. Then $((zb - xa) \leq 0 \text{ or } (zb - xa) \geq 0)$ and (ya < 0 or ya > 0).

Case 1 (zb - xa) \leq 0 and ya < 0. Thus (xa - zb) \geq 0 and -ya > 0, so $\beta - \alpha = i(zb - xa)i(ya)^{-1} = i(xa - zb)i(-ya)^{-1} \epsilon E$. Hence $\alpha \leq^* \beta$.

Case 2 (zb - xa) \leq 0 and ya > 0. Thus (xa - zb) \geq 0, so $\alpha - \beta = i(xa - zb)i(ya)^{-1} \epsilon E$. Hence $\beta \leq^* \alpha$.

Case 3 $(zb - xa) \ge 0$ and ya < 0. Thus -ya > 0, so $\alpha - \beta = i(xa - zb)i(ya)^{-1} = i(zb - xa)i(-ya)^{-1} \in E$. Hence $\beta \le \alpha$.

Case 4 $(zb - xa) \ge 0$ and ya > 0. Thus $\beta - \alpha = i(zb - xa)i(ya)^{-1} \in E$, so $\alpha \le \beta$. Hence $\alpha \le \beta$ or $\beta \le \alpha$. Therefore $\beta \le \beta$ is total.

Corollary 2.29. Let (R,\leqslant) be a partially ordered ring having K as a field of quotients and $i:R \to K$ a quotient embedding. Then there exists a partial order \leqslant on K such that (K,\leqslant) is a partially ordered field and i is an increasing map iff \leqslant is multiplicatively regular. Furthermore, if \leqslant is total then \leqslant is total.

Theorem 2.30. Let (S, \leqslant) be a partially ordered semiring having D as a skew ratio semiring of right [left] quotients and i : $S \to D$ a right [left] quotient embedding. Then there exists a unique partial order \leqslant on D such that $(D, \leqslant$) is a partially ordered skew ratio semiring and i is an increasing map iff \leqslant is multiplicatively regular. Furthermore, if \leqslant is total then \leqslant is total.

<u>Proof.</u> Assume that \leq is multiplicatively regular. Let $E = \{\alpha \in D \mid \alpha = i(x)i(y)^{-1} \text{ for some } x,y \in S \text{ such that } y \leq x\}$. It follows from the fact that \leq is multiplicatively regular that if $\alpha = i(p)i(q)^{-1}$ where $p,q \in S$ and $\alpha \in E$ then $q \leq p$. Define a relation \leq on D by $\alpha \leq$ \leq iff $\beta \alpha^{-1} \in E$ for all $\alpha,\beta \in D$.

From now on, in the proof of this theorem, we shall denote α, β and $\gamma \in D$ by $i(x)i(y)^{-1}, i(z)i(w)^{-1}$ and $i(u)i(v)^{-1}$, respectively, where $x,y,z,w,u,v \in S$.

We must show that \leq is a partial order on D. Clearly \leq is reflexive. Let $\alpha, \beta \in D$ be such that $\alpha \leq$ β and $\beta \leq$ α . Let $\beta \alpha^{-1} = i(p)i(q)^{-1}$ and $\alpha \beta^{-1} = i(m)i(n)^{-1}$ where $p,q,m,n \in S$. Thus $q \leq p$, $n \leq m$ and $i(p)i(q)^{-1} = i(n)i(m)^{-1}$. There exist $a,b \in S$ such that pa = nb and qa = mb. Suppose that q < p. Then mb = qa < pa = nb, so m < n because \leq is M.R, we have a contradiction. Thus p = q, so $\beta \alpha^{-1} = 1$. Hence $\alpha = \beta$, so \leq is anti-symmetric. Claim that if $\alpha,\beta \in E$ then $\alpha\beta \in E$. To prove this, let $\alpha,\beta \in E$. Then $y \leq x$ and $y \leq x$. There exist $a,b \in S$ such that ya = x. Since $ya \leq x$ and ya = x and ya = x

Claim that $\beta\alpha\beta^{-1}$ ϵ E for all α ϵ E, β ϵ D. To prove this, let α ϵ E and β ϵ D. Then there exist a,b ϵ S such that wa = xb, so $\beta\alpha = i(za)i(yb)^{-1}$. There exist c,d ϵ S such that ybc = wd, so $\beta\alpha\beta^{-1} = i(zac)i(zd)^{-1}$. It follows from α ϵ E that wd = ybc ϵ xbc = wac, so d ϵ ac. Thus zd ϵ zac, hence $\beta\alpha\beta^{-1}$ ϵ E, so we have the claim.

Let α, β and $\gamma \in D$ be such that $\alpha \leqslant \beta$. Then $\beta \alpha^{-1} \in E$. We must show that $\alpha \gamma \leqslant \beta \gamma$ and $\gamma \alpha \leqslant \gamma \beta$. Since $(\beta \gamma)(\alpha \gamma)^{-1} = \beta \alpha^{-1} \in E$, $\alpha \gamma \leqslant \beta \gamma$. Since $(\gamma \beta)(\gamma \alpha)^{-1} = \gamma \beta \alpha^{-1} \gamma^{-1} \in E$, $\gamma \alpha \leqslant \gamma \beta$. Hence $(D, \leqslant \gamma)$ is a partially ordered skew ratio semiring

To show that i is an increasing map, let a,b ϵ S. Then a ϵ b iff $i(b)i(a)^{-1}$ ϵ E and i(a) < i(b) iff $i(b)i(a)^{-1}$ ϵ E, so a ϵ b iff i(a) < i(b). Hence a ϵ b iff i(a) < i(b).

To show that \leq is unique, suppose that there exists a partial order \leq on D such that (D, \leq) is a partially ordered skew ratio semiring and i is an increasing map. Let $\alpha, \beta \in D$ be such that $\alpha \leq$ β . There exist a,b \in S such that ya = wb, so $\beta \alpha^{-1} = i(zb)i(xa)^{-1} \in E$. Thus xa \leq zb, so $i(xa) \leq$ ** i(zb). Then $\alpha = i(xa)i(ya)^{-1} \leq$ ** $i(zb)i(wb)^{-1} = \beta$. Suppose that $\alpha \leq$ ** β . Then $i(xa) = i(x)i(y)^{-1}i(ya) \leq$ ** $i(z)i(w)^{-1}i(wb) = i(zb)$, so xa \leq zb. Thus $\beta \alpha^{-1} = i(zb)i(xa)^{-1} \in E$, so $\alpha \leq$ β . Hence ** ** \leq ** \leq **.

Conversely, assume that there exists a unique partial order \leq^* on D such that (D,\leq^*) is a partially ordered skew ratio semiring and i is an increasing map. Let $x,y,z \in S$ be such that $xz \leq yz$. Then $i(xz) \leq^* i(yz)$, thus $i(x) = i(xz)i(z)^{-1} \leq^* i(yz)i(z)^{-1} = i(y)$ which implies that $x \leq y$. Similarly, if $zx \leq zy$ then $x \leq y$. Therefore \leq is multiplicatively regular.

Furthermore, assume that \leqslant is total. To show that \leqslant is total, let $\alpha, \beta \in D$. Then there exist a,b ϵ S such that ya = wb. Since \leqslant is total, xa \leqslant zb or zb \leqslant xa, hence $\beta \alpha^{-1} = i(zb)i(xa)^{-1} \epsilon E$ or $\alpha \beta^{-1} = i(xa)i(zb)^{-1} \epsilon E$. Thus $\alpha \leqslant$ β or $\beta \leqslant$ α , so \leqslant is total.

Corollary 2.31. Let (S,\leqslant) be a partially ordered semiring having D as a ratio semiring of quotients and $i:S\to D$ a quotient embedding. Then there exists a unique partial order \leqslant on D such that (D,\leqslant) is a partially ordered ratio semiring and i is an increasing map iff \leqslant is multiplicatively regular. Furthermore, if \leqslant is total then \leqslant is total.

Theorem 2.32. Let S be a semiring having D as a skew ratio semiring of right [left] quotients, $i:S \rightarrow D$ a right [left] quotient embedding, A the lower semilattice of multiplicatively regular partial orders \leqslant on S such that (S,\leqslant) is a partially ordered semiring and B the lower semilattice of partial orders \leqslant on D such that (D,\leqslant) is a partially ordered skew ratio semiring and i is an increasing map. Then there exists an order isomorphism between A and B.

<u>Proof.</u> Define a map $f: A \to B$ in the following way: Let $\leq \epsilon$ A. Then Theorem 2.30 determines a unique $\leq \epsilon$ B. Define $f(\leq) = \leq^*$.

To show that f is an injection, let \leqslant_1 , \leqslant_2 ϵ A be such that $f(\leqslant_1) = f(\leqslant_2)$. Then $\leqslant_1^* = \leqslant_2^*$. Let x,y ϵ S. Then $x \leqslant_1$ y iff $i(x) \leqslant_1^* i(y)$ and $x \leqslant_2$ y iff $i(x) \leqslant_2^* i(y)$, so $x \leqslant_1$ y iff $x \leqslant_2$ y. Hence $\leqslant_1 = \leqslant_2$. To show that f is a surjection, let \leqslant' ϵ B. Define a relation \leqslant on S by $x \leqslant$ y iff $i(x) \leqslant'$ i(y) for all x,y ϵ S. Clearly $\leqslant \epsilon$ A. By the uniqueness, $\leqslant' = \leqslant^*$, so $f(\leqslant) = \leqslant'$. Hence f is a bijection.

Let \leqslant_1 , \leqslant_2 ϵ A be such that $\leqslant_1 \subseteq \leqslant_2$. To show that $f(\leqslant_1) \subseteq f(\leqslant_2)$, let $\alpha, \beta \in D$ be such that $\alpha \leqslant_1^* \beta$. Then $\alpha = i(x)i(y)^{-1}$ and $\beta = i(z)i(w)^{-1}$ where $x,y,z,w \in S$. There exist a,b ϵ S such that wa = yb. Thus $xb \leqslant_1 za$, so $xb \leqslant_2 za$, hence $\alpha \leqslant_2^* \beta$. Therefore $f(\leqslant_1) = \leqslant_1^* \subseteq \leqslant_2^* = f(\leqslant_2)$.

Let $\leq_1^*, \leq_2^* \in B$ be such that $\leq_1^* \subseteq \leq_2^*$. To show that $f^{-1}(\leq_1^*) \subseteq f^{-1}(\leq_2^*)$, let x,y $\in S$ be such that $x \leq_1 y$. Then $i(x) \leq_1^* i(y)$, so $i(x) \leq_2^* i(y)$, hence $x \leq_2 y$. Therefore $f^{-1}(\leq_1^*) = \leq_1 \subseteq \leq_2 = f^{-1}(\leq_2^*)$. Hence f is an order isomorphism.

#

Corollary 2.33. Let (S, \leq) be a semiring having D as a ratio semiring of quotients, $i: S \rightarrow D$ a quotient embedding, A the lower semilattice of multiplicatively regular partial orders \leq on S such that (S, \leq) is a partially ordered semiring and B the lower semilattice of partial orders \leq on D such that (D, \leq) is a partially ordered ratio semiring and i is an increasing map. Then there exists an order isomorphism between A and B.

Theorem 2.34. Let S be a semiring having K as a skew semifield of right [left] quotients, i : S \rightarrow K a right [left] quotient embedding and ρ a congruence on S. Then there exists a unique congruence ρ^* on K such that (i(x) ρ^* i(y) iff x ρ y for all x,y ϵ S) iff ρ is multiplicatively regular.

<u>Proof.</u> Assume that ρ is multiplicatively regular. Define a relation ρ^* on K in the following way: Let $\alpha, \beta \in K$. Then $\alpha = i(x)i(y)^{-1} \text{ and } \beta = i(z)i(w)^{-1} \text{ where } x,z \in S \text{ and } y,w \in S\setminus\{0\}. \text{ Define } \alpha \rho^* \beta \text{ iff there exist a,b } \in S\setminus\{0\} \text{ such that } xa \rho \text{ zb and } ya \rho \text{ wb.}$

To show that ρ^* is well-defined, suppose that there exist $x',z' \in S$ and $y',w' \in S\setminus\{0\}$ such that $\alpha=i(x')i(y')^{-1}$ and $\beta=i(z')i(w')^{-1}$. There existp,q,m,n $\in S\setminus\{0\}$ such that xp=x'q, yp=y'q, zm=z'n and wm=w'n. There exist c,d,e,f $\in S\setminus\{0\}$ such that pc=ad and pc=ad and

From now on, in the proof of this theorem, we shall denote α, β and $\gamma \in K$ by $i(x)i(y)^{-1}$, $i(z)i(w)^{-1}$ and $i(u)i(v)^{-1}$, respectively, where $x, z, u \in S$ and $y, w, v \in S \setminus \{0\}$.

We must show that ρ^* is an equivalence relation on K. Clearly ρ^* is reflexive and symmetric. Let α, β and $\gamma \in K$ be such that $\alpha \rho^* \beta$ and $\beta \rho^* \gamma$. Then there exist a,b,c,d ϵ S\{0} be such that xa ρ zb, ya ρ wb, zc ρ ud and wc ρ vd. There exist e,f ϵ S\{0} such that be = cf. Since xae ρ zbe and zcf ρ udf, xae ρ udf. Similarly, yae ρ vdf. Thus $\alpha \rho^* \gamma$, so ρ^* is transitive. Hence ρ^* is an equivalence relation on K.

To show that ρ is a congruence on K, let α, β and $\gamma \in K$ be such that $\alpha \rho$ β . Then there exist a,b ϵ S\{0} such that xa ρ zb and ya ρ wb. First, we shall show that $(\alpha + \gamma) \rho$ $(\beta + \gamma)$ and $(\gamma + \alpha) \rho$ $(\gamma + \beta)$. There exist c,d ϵ S\{0} such that yc = vd, so $\alpha + \gamma = i(xc + ud)i(yc)^{-1}$. There exist e,f ϵ S\{0} such that we = vf, so $\beta + \gamma = i(ze + uf)i(we)^{-1}$. There exist g,h ϵ S\{0} such that ag = ch. There exist p,q ϵ S\{0} such that bgp = eq. Thus xchp = xagp,

zeq = zbgp and xagp ρ zbgp, so xchp ρ zeq. Similarly, ychp ρ weq. Since vdhp = ychp and vfq = weq, vdhp ρ vfq. Since ρ is M.R., dhp ρ fq, so udhp ρ ufq. Then (xc + ud)hp = (xchp + udhp) ρ (zeq + ufq) = (ze + uf)q and ychp ρ weq, so (α + γ) ρ * (β + γ). Similarly, (γ + α) ρ * (γ + β).

Next, we shall show that $\alpha\gamma$ ρ^* $\beta\gamma$. This is clear if $\gamma=0$. Suppose that $\gamma\neq 0$, so $u\neq 0$. There exist c,d,e,f ϵ S\{0} such that yc=ud and we=uf, so $\alpha\gamma=i(xc)i(vd)^{-1}$ and $\beta\gamma=i(ze)i(vf)^{-1}$. There exist g,h,p,q ϵ S\{0} such that cg=ah and bhp=eq. Since xcgp=xahp, zeq=zbhp and xahp ρ zbhp, xcgp ρ zeq. Since udgp=ycgp=yahp, ufq=weq=wbhp and yahp ρ wbhp, udgp ρ ufq. Since ρ is M.R., dgp ρ fq, so vdgp ρ vfq. Hence $\alpha\gamma$ ρ^* $\beta\gamma$. Similarly, $\gamma\alpha$ ρ^* $\gamma\beta$. Thus ρ^* is a congruence on K.

Let a,b ϵ S be arbitary and c ϵ S\{0}. Suppose that $i(a) \ \rho^* \ i(b)$. Then $i(ac)i(c)^{-1} \ \rho^* \ i(bc)i(c)^{-1}$. Thus there exist p,q ϵ S\{0} such that acp ρ bcq and cp ρ cq. There exist m,n ϵ S\{0} such that pm = qn, so cpm ρ cpn, hence m ρ n. Then acpm ρ bcqn, so a ρ b. Suppose that a ρ b. Then acc ρ ycc and cc ρ cc, so $i(ac)i(c)^{-1} \ \rho^* \ i(bc)i(c)^{-1}$, hence $i(a) \ \rho^* \ i(b)$. Therefore $i(a) \ \rho^* \ i(b)$ iff a ρ b for all a,b ϵ S.

 $i(xc) \rho^* i(zd)$, so $xc \rho zd$. Hence $\alpha \rho^* \beta$. Hence $\rho^* = \rho^*$.

Conversely, assume that there exists a unique congruence ρ^* on K such that i(x) ρ^* i(y) iff $x \rho y$ for all $x,y \in S$. To show that ρ is multiplicatively regular, let $x,y,z \in S$ be such that $xz \rho yz$ and $z \neq 0$. Then i(xz) ρ^* i(yz), so $i(x) = i(xz)i(z)^{-1}$ ρ^* $i(yz)i(z)^{-1} = i(y)$, thus $x \rho y$. Similarly, if $zx \rho zy$ and $z \neq 0$ then $x \rho y$. Hence we have the theorem.

#

Corollary 2.35. Let S be a semiring having K as a semifield of quotients, i : S \rightarrow K a quotient embedding and ρ a congruence on S. Then there exists a unique congruence ρ^* on K such that (i(x) ρ^* i(y) iff x ρ y for all x,y ϵ S) iff ρ is multiplicatively regular.

Corollary 2.36. Let R be a ring having K as a skew field of right [left] quotients. Then R has only two multiplicatively regular congruences (since a skew field has only two ideals).

Corollary 2.37. Let R be a ring having K as a field of quotients.

Then R has only two multiplicatively regular congruences.

Theorem 2.38. Let S be a semiring having K as a skew semifield of right [left] quotients, $i: S \to K$ a right [left] quotient embedding, A the lattice of multiplicatively regular congruences on S and B the lattice of congruences on K. Then there exists an order isomorphism between A and B.

Proof. Define a map $f: A \to B$ in the following way: Let $\rho \in A$. Then Theorem 2.34 determines a unique $\rho \in B$. Define $f(\rho) = \rho$

Let $\rho_1, \rho_2 \in A$ be such that $\rho_1 \subseteq \rho_2$. Let $\alpha, \beta \in K$ be such that $\alpha \rho_1^* \beta$. Then $\alpha = i(x)i(y)^{-1}$ and $\beta = i(z)i(w)^{-1}$ where $x, z \in S$ and $y, w \in S\setminus\{0\}$ and there exist a,b $\in S\setminus\{0\}$ such that $xa \rho_1$ zb and $ya \rho_1$ wb. Thus $xa \rho_2$ zb and $ya \rho_2$ wb, hence $\alpha \rho_2^* \beta$. Therefore $f(\rho_1) = \rho_1^* \subseteq \rho_2^* = f(\rho_2)$. A proof similar to the one given in Theorem 2.31 shows that the remainder of this theorem is true.

Corollary 2.39. Let S be a semiring having K as a semifield of quotients, $i: S \rightarrow K$ a quotient embedding, A the lattice of multiplicatively regular congruences on S and B the lattice of congruences on K. Then there exists an order isomorphism between A and B.

Theorem 2.40. Let S be a semiring having D as a skew ratio semiring of right [left] quotients, $i: S \rightarrow D$ a right [left] quotient embedding and ρ a congruence on S. Then there exists a unique congruence ρ on D such that $(i(x) \ \rho^* \ i(y) \ iff \ x \ \rho \ y$ for all $x,y \in S$) iff ρ is multiplicatively regular.

Proof. The proof of this theorem is similar to the proof of Theorem 2.34.

Corollary 2.41. Let S be a semiring having D as a ratio semiring of quotients, $i: S \to D$ a quotient embedding and ρ a congruence on S. Then there exists a unique congruence ρ^* on D such that $(i(x) \rho^* i(y))$ iff $x \rho y$ for all $x,y \in S$ iff ρ is multiplicatively regular.

Theorem 2.42. Let S be a semiring having D as a skew ratio semiring of right [left] quotients, $i: S \rightarrow D$ a right [left] quotient embedding,

A the lattice of multiplicatively regular congruences on S and B the lattice of congruences on D. Then there exists an order isomorphism between A and B.

Proof. The proof of this theorem is similar to the proof of Theorem 2.38.

Corollary 2.43. Let S be a semiring having D as a ratio semiring of quotients, i : S -> D a quotient embedding, A the lattice of multiplicatively regular congruences on S and B the lattice of congruences on D. Then there exists an order isomorphism between A and B.

The skew semifield K in Example 2.2 is not a skew field and the skew semifield K[[X]] in Example 2.15 is a skew field. This shows that the skew semifield K of right [left] quotients of a semiring may or may not be a skew field. We shall now give a necessary and sufficient condition on a semiring which quarantees that the skew semifield K of right [left] quotients is a skew field.

In [2] the concept of extensive was defined for commutative semirings with a multiplicative zero. We shall extend this concept to the noncommutative case.

<u>Definition 2.44.</u> Let S be a semiring with multiplicative zero 0. Then S is said to be <u>right</u> [left] <u>extensive</u> iff for all $x \in S$ there exist $a \in S, b \in S\setminus\{0\}$ such that xb + a = 0[a + bx = 0].

Example 2.45. Z with the usual addition and multiplication is a right and left extensive semiring.

Theorem 2.46. Let S be an additively commutative semiring with a multiplicative zero 0 which is also an additive identity and K a skew semifield of right [left] quotients of S. Then K is a skew field iff S is right [left] extensive.

Proof. Let i : S → K be a right quotient embedding.

Assume that S is right extensive. To show that K is a skew field, it suffices to show that an additive inverse of α belongs to K for all $\alpha \in K$. Let $\alpha \in K$. Then $\alpha = i(x)i(y)^{-1}$ where $x \in S$ and $y \in S\setminus\{0\}$. Since S is right extensive, there exist a $\in S$ and b $\in S\setminus\{0\}$ such that xb + a = 0. Since $i(y)^{-1}$ and $i(b)^{-1}$ exist in K, $\alpha + i(a)i(yb)^{-1} = i(xb)i(yb)^{-1} + i(a)i(yb)^{-1} = i(xb + a)i(yb)^{-1} = i(0)i(yb)^{-1} = 0$, hence $i(a)i(yb)^{-1}$ is an additive identity of α in K.

Conversely, assume that K is a skew field. To show that S is right extensive, let $x \in S$. Then $i(x) \in K$. There exist a E S and b $E S \setminus \{0\}$ such that $i(x) + i(a)i(b)^{-1} = 0$. Thus $i(xb + a) = (i(x) + i(a)i(b)^{-1})i(b) = i(0)$, so xb + a = 0.

Remark 2.47. In the case that K is a skew field we will call K a skew field of right [left] quotients of S.

Corollary 2.48. Let S be an additively commutative semiring of order

> 1 with a multiplicative zero which is also an additive identity.

Then a skew field of right [left] quotients of S exists iff

- (i) S is multiplicatively cancellative,
- (ii) (S,:) satisfies the right [left] Ore condition
 and (iii) S is right [left] extensive.

Proof. It follows from Theorem 2.4 and Theorem 2.46.

Corollary 2.49. Let S be an additively commutative semiring of order > 1 with a multiplicative zero which is also an additive identity satisfying properties (i) - (iii) of Corollary 2.48. Then S is additively cancellative.

Theorem 2.50. Every skew ratio semiring can be embedded into a skew semifield such that the multiplicative zero is an additive identity [zero].

Proof. Let D be a skew ratio semiring. Let 0 be a symbol not representing any element of D. Extend + and \cdot from D to D U {0} by $x \cdot 0 = 0 \cdot x = 0$ and x + 0 = 0 + x = x [x + 0 = 0 + x = 0] for all $x \in D$ U {0}. It can be easily shown that (D U {0},+, \cdot) is a skew semifield. Define $f: D \to D$ U {0} by f(x) = x for all $x \in D$. Then f is a monomorphism. Hence we have the theorem.

#

Corollary 2.51. Let S be a multiplicatively cancellative semiring without a multiplicative zero such that (S,·) satisfies the right [left] Ore condition. Then S can be embedded into a skew semifield such that the multiplicative zero is an additive identity [zero].

Proof. It follows from Theorem 2.22 and Theorem 2.50.

Lemma 2.52. Let D be an additively cancellative skew ratio semiring and |D| > 1. Then $x + y \neq x$ and $y + x \neq x$ for all $x,y \in D$.

<u>Proof.</u> Without loss of generality, suppose that there exist $x,y \in D$ such that x+y=x. Then x+y+x=x+x, so y+x=x. Let $z \in D$ be arbitary. Then z+y+x=z+x, so z+y=z. Let

Let $w \in D$ be arbitary. Then yw + yw = (y + y)w = yw = yw + y, so yw = y. Similarly, wy = y for all $w \in D$. Hence y is a multiplicative zero of D, a contradiction.

Theorem 2.53. Let D be an additively cancellative skew ratio semiring. Then the skew semifield D \cup {0} such that 0 is an additive identity is also additively cancellative.

<u>Proof.</u> Let $x,y,z \in D \cup \{0\}$ be such that x + y = x + z. We must show that y = z. If $x,y,z \in D$ then y = z. If one of x,y,z is 0 then we will consider the following cases:

Case 1 x = 0. Then y = z.

Case 2 y = 0 or z = 0. Without loss of generality, suppose that y = 0. Then x = x + z. By Lemma 2.52, z = 0.

Similarly, if y + x = z + x then y = z for all $x,y,z \in D \cup \{0\}$. Hence $D \cup \{0\}$ is additively cancellative.

Proposition 2.54. Let K be an additively commutative skew semifield such that the multiplicative zero 0 is an additive identity. If there exists an $x \in K\setminus\{0\}$ such that x has an additive inverse, then every element in K has an additive inverse and K is a skew field.

Proof. Let $y \in K$. We must show that y has an additive inverse. If y = 0 then we are done because 0 + 0 = 0. So assume that $y \neq 0$. Let z be an additive inverse of x. Thus x + z = 0, so $y + yx^{-1}z = yx^{-1}$ (x + z) = 0. Hence $yx^{-1}z$ is an additive inverse of y.

Proposition 2.55. Let K be an additively commutative skew semifield such that the multiplicative zero is an additive identity. If K is

not a skew field then $(K\setminus\{0\},+,\cdot)$ is a skew ratio semiring.

<u>Proof.</u> It suffices to show that $x + y \in K\setminus\{0\}$ for all $x,y \in K\setminus\{0\}$. Let $x,y \in K\setminus\{0\}$. Suppose that x + y = 0. Then x is a nonzero element which has an additive inverse. By Proposition 2.54, K is a skew field, a contradiction. Hence $x + y \in K\setminus\{0\}$. Thus $(K\setminus\{0\},+,\cdot)$ is a skew ratio semiring.

ศูนย์วิทยทรัพยากร สาลสารณ์มหาวิทยาลัย