CHAPTER II

SKEW SEMIFIELDS AND SKEW RATIO SEMIRINGS OF RIGHT [LEFT] QUOTIENTS OF SEMIRINGS

In this chapter, we shall generalize the concept of the semifield and the ratio semiring of quotients of a commutative semiring to the skew semifield and the skew ratio semiring of right [left] quotients of a semiring whioh/gives P. Sinutoke's construction when the semiring is commutatiye.

Definition 2.1. Let S be a semaring with a multiplicative zero 0 such that $|S|>1$. Then a skew semifield \mathbb{K} is said to be a skew semifield of right [left] quotients of S iff there exists a monomorphism i : $\mathrm{S} \rightarrow \mathrm{K}$ such that for all $X \in \mathbb{K}$ there exist $a \varepsilon S, b \in \mathcal{S}\{\{0\}$ such that $x=i(a) i(b)^{-1}\left[x=i(b)^{-1} i(a)\right]$. A monomorphism i satisfying the above property is said to be a right [left] quotient embedding of S into K . Note that it is easily proyed that for a night [1eft] quotient embedding $i(a)=0$ iff afo.
 $K=\left\{\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] / x, z \in \mathbb{Q}^{+}\right.$and $\left.y \in \mathbb{Q}\right\} \cup\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$. Then S and K with the usual addition and multiplication are a semiring with multiplicative zero and a skew semifield, respectively. To show that K is a skew semifield of right quotients of S, let $X \in K$. If $X=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ then

Let $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $B \in S \backslash\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right\}$ so $X=A B^{-1}$. Suppose that $x=\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] \neq\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. Then $x=\frac{p}{q}, y=\frac{m}{n}$ and $z=\frac{u}{v}$ where $p, q, n, u, v \quad \varepsilon z^{+}$ and $m \in \mathbb{Z}$. Let $A=\left[\begin{array}{cc}p & m v+p \\ 0 & u n\end{array}\right]$ and $B=\left[\begin{array}{ll}q & q \\ 0 & v n\end{array}\right]$. Then $A, B \in S \backslash\left\{\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right.$, and $A B^{-1}=\left[\begin{array}{cc}p & m v+p \\ 0 & \text { un }\end{array}\right]\left[\begin{array}{cc}1 / q & -1 / v m \\ 0 & 1 / \mathrm{mq}\end{array}\right]=x$. . Hence K is a skew semifield of right quotients of S

Remark 2.3. In this chapter, fhe shall prove some theorems for skew semifields of right quotfents $\mathrm{of}^{\text {a }}$ semiring S. The theorems are true for skew semifields of left quotients of S and the proofs are similar so we shall not give the proofsilion skew semifields of left quotients.

Theorem 2.4. Let S be a semining with a multiplicative zero 0 such that $|S|>1$. Thena skew-semificid of right [left] quotients of S exists iff
(i) S is miplicatively cancellative
and (ii) ($\mathrm{S}, \cdot)$ satisfies the right [left] Ore condition.

- 9 Assume that $\left(\frac{8)}{9}\right.$ and (ii) hold. Consider $s \times(s \backslash\{0\})$.
 $(a, b) \sim(c, d)$ iff there exist $x, y \in S \backslash\{0\}$ such that $a x=c y$ and $b x=d y$. Clearly \sim is reflexive and symmetric. Let $(a, b),(c, d),(e, f) \in S \times(S \backslash\{0\})$ be such that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$. Then there exist $x, y, z, w \in s \backslash\{0\}$ such that $a x=c y, b x=d y, c z=e w$ and $d z=f w$. Since $y, z \varepsilon S \backslash\{0\}$, there exist $u, v \in S \backslash\{0\}$ such that $y u=z v$. Let $p=x u$ and $q=w v$. Then $p, q \in S \backslash\{0\}$. Since $a p=a x u=c y u=c z v=e w v=e q$
and $b p=b x u=d y u=d z v=f w v=f q,(a, b) \sim(e, f)$, so \sim is transitive. Hence \sim is an equivalence relation on $S \times(S \backslash\{0\})$. Let $K=\frac{S \times(S \backslash\{0\})}{\sim}$. Let $\alpha, \beta \in \mathrm{K}$. Define \cdot on K in the following way : Choose $(a, b) \varepsilon \alpha$ and $(c, d) \varepsilon \beta$. Since $b \varepsilon S \backslash\{0\}$ and $c \varepsilon S$, there exist $x \varepsilon S$ and $y \varepsilon S \backslash\{0\}$ such that $b x=c y$. Define $\alpha \cdot \beta=[(a x, d y)]$. We must show that - is well-defined. We shall show this in three steps.

1) We shall show that is incependent of the choice of x, y. Suppose that there exist $x^{\prime} \varepsilon S$ and $\varepsilon S \backslash\{0\}$ such that $b x^{\prime}=c y^{\prime}$. We must show that $(a x, d y) \sim\left(a x^{\prime}, d y{ }^{\prime}\right)$. Since $y, y^{\prime} \varepsilon S \backslash\{0\}$, there exist $z, w \in S \backslash\{0\}$ such that $y z=y / w$. Since $b x z=c y z=c y^{\prime} w=b x^{\prime} w$ and $b \neq 0, x z=x w$. Thus $a y z=a x-w$ and $d y z=d y w$. Hence (ax,dy) ~ (ax ,dy).
2) Fix (a, b). Supposecthat $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$. Since $b \in S \backslash\{0\}$ and $c^{\prime} \varepsilon S$, there exist $z \varepsilon$ grand. F © $\backslash\{0\}$ such that $b z=c^{\prime} w$. We must show that $(a x, d y) \sim(a z, d w)$. Since $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, there exist $u, v \in S \backslash\{0\}$ such that $c u=c \quad v$ and $d u=d^{\prime} v$. Sfince $d y, d ' w \in S \backslash\{0\}$, there exist $p, q \varepsilon s \backslash\{0\}$ such that $d y p=d$ wq. Since wq,v $\varepsilon S \backslash\{0\}$, there exist $g, h \in S \backslash\{0\}$ such that $w q g=v h$. Since $d w h=d^{\prime} v h=d^{\prime} w q g=$ dypg
 $\mathrm{b}, \mathrm{g} \neq 0, \mathrm{xp}=\mathrm{zq}$. Whus axp $=\mathrm{azq}$ and $\mathrm{dyp}=\mathrm{d}^{\prime} \mathrm{wq}$. Hence
 and $c \varepsilon S$, there exist $z \varepsilon S$ and $w \in S \backslash\{0\}$ such that $b^{\prime} z=c w$. We must show that $(a x, d y) \sim\left(a^{\prime} z, d w\right)$. Since $(a, b) \sim\left(a^{\prime}, b^{\prime}\right)$, there exist $u, v \in S \backslash\{0\}$ such that $a u=a^{\prime} v$ and $b u=b^{\prime} v$. Since $y, w \in S \backslash\{0\}$, there exist $p, q \varepsilon . S \backslash\{0\}$ such that $y p=w q$. Since $z q \in S$ and $v \varepsilon S \backslash\{0\}$, there exist $g \varepsilon S \backslash\{0\}$ and $h \in S$ such that $z q g=v h$. Since buh $=b^{\prime} v h=b^{\prime} z q g=$ cwqg $=$ cypg $=b x p g$ and $b \neq 0$, uh $=x p g$. Since axpg $=a u h=a^{\prime} v h=a^{\prime} z q g$
and $g \neq 0$, $\operatorname{axp}=a^{\prime} z q$. Hence $(a x, d y) \sim\left(a^{\prime} z, d w\right)$. Therefore \cdot is well-defined.

To show that is associative, let $\alpha, \beta, \gamma \varepsilon K$. Choose (a,b) $\varepsilon \alpha$, $(c, d) \varepsilon \beta$ and $(e, f) \varepsilon \gamma$. There exist $x \varepsilon S$ and $y \varepsilon S \backslash\{0\}$ such that $b x=c y$, so $\alpha \beta=[(a x, d y)]$. There exist $z \varepsilon S$ and $w \varepsilon S \backslash\{0\}$ such that $d y z=e w$, so $(\alpha \beta) \gamma=[(a x z, f w)]$. Since $d y z=e w, \beta \gamma=[(c y z, f w)]$. There exist $p \in S$ and $q \varepsilon S \backslash\{0\}$ such that $b p=c y z q$, so $\alpha(\beta \gamma)=[(a p, f w q)]$. Let $h \in S \backslash\{0\}$ and $g=g h$. Since $b p h=c y z q h=b x z g$ and $b \neq 0, p h=x z g$. Thus $\mathrm{aph}=\mathrm{axzg}$ and fwqh $=$ fwg. $\mathrm{so}(\mathrm{ap}, \mathrm{fwq}){ }^{2}(\mathrm{axz} ; \mathrm{fw})$. Hence $\alpha(\beta \gamma)=(\alpha \beta) \gamma$. Therefore $/$ is associative.

Since $(a, a) \sim(b, b)$ foid all a, b \& S\{\{0\}, denote $[(a, a)]$ by 1 where $a \varepsilon s \backslash\{0\}$. To show that $\overline{1(i s}$ a multiplicative identity, let $\alpha \varepsilon K$. Choose $(a, b) \varepsilon \alpha$. There exist $x \in S \backslash\{0\}$ and $y \varepsilon s$ such that $a x=b y$, so $1 \alpha=[(b, b)][(a, b)] \Rightarrow[(b y, b x)]$. Let $z \varepsilon S \backslash\{0\}$ and $w=x z$. then $a w=a x z=b y z$ and $b w=b x z$. Hence $(a, b) \sim(b y, b x)$, so $\alpha=1 \alpha$. Also, $\alpha 1=[(a, b)][(b, b)]=[(a b, b b)]=[(a, b)]=\alpha$. Hence 1 is a multiplicative identity of K .

Since $(0, a) y(0, b)$ for all $a, b \in S \backslash\{a\}$, denote $[(0, a)]$ by 0 where $a \varepsilon S \backslash\{0\}$, To show that 0 is a@multiplicative zero, let $\alpha \varepsilon K$. Choose (a, b) ed. Nsincedbo $=0 b, \alpha_{0}=[[(a, b)][(a, b)]=[(a 0, b b)]=$ $[(0, b b)]=0$ There exist $x \varepsilon^{6} S^{\prime}\{0\}$ and $y \varepsilon s$ such that ax $=b y$, so $0 \alpha=[(0, b)][(a, b)]=[(0 y, b x)]=[(0, b x)]=0$. Hencel o d is 2 a multiplicative zero of K .

Let $\alpha \in K \backslash\{0\}$. Choose $(a, b) \varepsilon \alpha$. Then $a \neq 0$. Let $\beta=[(b, a)]$. Let $c \in S \backslash\{0\}$ be arbitary. Then $\alpha \beta=[(a c, a c)]=1=[(b c, b c)]=\beta \alpha$, so $\beta=\alpha^{-1}$. Hence $(K \backslash\{0\}, \cdot)$ is a group.

Let $\alpha, \beta \in \mathrm{K}$. Define + on K in the following way : Choose $(a, b) \varepsilon \alpha$ and $(c, d) \varepsilon \beta$. There exist $x, y \in S \backslash\{0\}$ such that $b x=d y$.

Define $\alpha+\beta=[(a x+c y, b x)]$. We must show that + is well-defined. We shall show this in three steps.

1) We shall show that + is independent of the choice of x, y. Suppose that there exist $\mathrm{x}^{\prime}, \mathrm{y}^{\prime} \varepsilon \mathrm{S} \backslash\{0\}$ such that $\mathrm{bx}{ }^{\prime}=\mathrm{dy}{ }^{\prime}$. We must show that $(a x+c y, b x) \sim\left(a x^{\prime}+c y^{\prime}, b x^{\prime}\right)$. There exist $z, w \varepsilon S \backslash\{0\}$ such that $x z=x^{\prime} w$. Since $d y z=b x z=b x^{\prime} w=d y^{\prime} w$ and $d \neq 0, y z=y^{\prime} w$. Thus $(a x+c y) z=a x z+c y z=a x^{\prime} w+c y^{\prime} w=\left(a x^{\prime}+c y^{\prime}\right) w$ and $b x z=b^{\prime} x w$. Hence $(a x+c y, b x) \sim\left(a x+c y, b x^{\prime}\right)$.
2) Fix (a, b). Suppose that $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$. There exist $z, w \in S \backslash\{0\}$ such that $b z=d /$ We must show that
$(a x+c y, b x) \sim(a z+c \neq b z)$. Since $(c, d) \sim\left(c^{\prime}, d^{\prime}\right)$, there exist $u, v . \varepsilon S \backslash\{0\}$ such that $c u=c^{\prime} v$ and $d u=d^{\prime} v$. There exist $p, q \in S \backslash\{0\}$ such that $x p=z q$. There exist gh \& $S \backslash\{0\}$ such that $v g=$ wh. Since $d u g=d^{\prime} v g=d^{\prime}$ wqh $=\mathrm{bzqh}=\mathrm{bxph}$ E. $2 y \mathrm{ph}$ and $\mathrm{d} \neq 0$, ug $=\mathrm{yph}$. Since cyph $=$ cug $=c^{\prime}$ vg $=c^{\prime}$ wqh and $\neq 0, c y p=c^{\prime}$ wq. Thus $(a x+c y)_{p}=a x p+c y p=a z q+c w q=\left(a z+c^{\prime} w\right) q$ and $b x p=b z q$. Hence $(a x+c y, b x) \sim(a z+c w, b z)$.
3) Fix (c, d). Suppose that $(a, b) \sim(a, b ')$. There exist $z, w \in S \backslash\{0\}$ such that $b^{1} z=d w$. We must show that $(a x+c y, b x) \sim(a \mid z+c w, b)$. 2 since $(a, b) \subset h(a), b$), there exist $u, v \in S \backslash\{0\}$ such that $a u=a^{\prime} v$ and $b u=b^{\prime} v$. There exist $p, q \in S \backslash\{0\}$ such that $\mathrm{bxp}=\mathrm{bozq}$. Since dayp $\mathrm{maxp}=\mathrm{bozq}=$ dwq and $\mathrm{d} \neq 0, \mathrm{yp}=\mathrm{wq}$. There exist $g, \mathrm{~h} \varepsilon S \backslash\{0\}$ such that $\mathrm{vg}=\mathrm{zqh}$. Since $b u g=b^{\prime} v g=b^{\prime} z q h=b x p h$ and $b \neq 0$, $u g=x p h$. Since $\operatorname{axph}=\operatorname{aug}=a^{\prime} v g=a^{\prime} z q h$ and $h \neq 0, \operatorname{axp}=a^{\prime} z q$. Thus $(a x+c y) p=a x p+c y p=a^{\prime} z q+c w q=\left(a^{\prime} z+c w\right) q$ and $b x p=b^{\prime} z q$. Hence $(a x+c y, b x) \sim\left(a^{\prime} z+c w, b^{\prime} z\right)$. Therefore + is well-defined. To show that + is associative, let $\alpha, \beta, \gamma \varepsilon K$. Choose (a,b) $\varepsilon \alpha$,
$(c, d) \varepsilon \beta$ and $(e, f) \varepsilon \gamma$. There exist $x, y \in S \backslash\{0\}$ such that $b x=d y$, so $\alpha+\beta=[(a x+c y, b x)]$. There exist $z, w \in S \backslash\{0\}$ such that $b x z=f w$, so $(\alpha+\beta)+\gamma=[((a x+c y) z+e w, b x z)]$. There exist $u, v \in S \backslash\{0\}$ such that $d u=f v$, so $\beta+\gamma=[(c u+e v, d u)]$. There exist $p, q \in S \backslash\{0\}$ such that $b p=d u q$, so $\alpha+(\beta+\gamma)=[(a p+(c u+e v) q, b p)]$. We must show that $((a x+c y) z+e w, b x z) \sim(a p+(c u+e v) q, b p)$. There exist $g, h \in S \backslash\{0\}$ such that $x z g=$ ph. Since $d y z g=b x z g=b p h=$ duqh and $d \neq 0, y z g=u q h$. Since fwg $=$ bxzg $=d u q h=$ fvgh and $f \neq 0$, $w g=v q h$. Thus $((a x+c y) z \quad e w) g=a x z g+c y z g+e w g=$ $a p h+c u q h+e v q h=(a p+(c y / f / e y) q) \quad h$ and $b x z g=b p h$, so $((a x+c y) z+e w, b x z) \sim(a p+(c \bar{u}+e v) q, b p)$. Hence $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$. Thexefore + is associative.

We shall show that multiplication distributes over addition. Let $\alpha, \beta, \gamma \in K$. Choose (a, b) $\varepsilon \in, 0,(c, d) \in \beta$ and $(e, f) \in \gamma$. First, we shall show that $\alpha(\beta+\gamma)$ There exist $x, y \in S \backslash\{0\}$ such that $d x=f y$, so $\beta+\gamma=[(\operatorname{cx}+\operatorname{dy}, d x)]$. There exist $z \in S$ and w $\varepsilon S \backslash\{0\}$ such that $b z=(c x+e y) w, s o \alpha(\beta+\gamma)=[(a z, d x w)]$. There exist $u \in S$ and $v \varepsilon S \backslash\{0\}$ such that $b u=c v$, so $\alpha \beta=[(a u, d v)]$. There exist $p \in S$ and $q \in s \backslash\{0\}$ such that $b p=e q$, so $\alpha \gamma=[(a p, f q)]$. There
 We must show, that $(\mathrm{az}, \mathrm{dxw}) \sim$ (aug $+\mathrm{aph}, \mathrm{dvg})$. There exist $\mathrm{m}, \mathrm{n} \in \mathrm{S} \backslash\{0\}$ such that $x w m=$ ogn. Tsincee fywm $=18$ xwh $\#$ dvgn $=$ fato and $f \neq 0$, $y w m=q h n$. Since $b z m=(c x+e y) w m=c x w m+e y w m=c v g n+e q h n=$ $b u g n+b p h n=b(u g+p h) n$ and $b \neq 0, z m=(u g+p h) n$. Thus $a z m=(a u g+a p h) n$ and $d x w m=d v g n$, so $(a z, d x w) \sim(a u g+a p h, d v g)$. Hence $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$.

Next, we shall show that $(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$. There exist $x, y \in S \backslash\{0\}$ such that $b x=d y$, so $\alpha+\beta=[(a x+c y, b x)]$.

There exist $z \in S$ and $w \in s \cdot\{0\}$ such that $b x z=e w$, so $(\alpha+\beta) \gamma=[((a x+c y) z, f w)]$. Since $b x z=e w$, $\alpha \gamma=[(a x z, f w)]$. There exist $p \varepsilon S$ and $q \varepsilon S \backslash\{0\}$ such that $d p=e q$, so $\beta \gamma=[(c p, f q)]$. There exist $g, h \in S \backslash\{0\}$ such that $w g=q h$, so $\alpha \gamma+\beta \gamma=[(a x z p+c p h, f w g)]$. We must show that $((a x+c y) z, f w) \sim(a x z g+c p h, f W g)$. Let $n \varepsilon S \backslash\{0\}$ and $m=g n$. Since dyzm $=$ bxzm $=$ ewm $=$ ewgn $=$ eqhn $=$ dphn and $d \neq 0, y z m=p h n . \quad$ Thus $(a x+c y) z m=a x z m+c y z m=a x z g n)+c p h n=(a x z g+c p h) n$ and $f_{w m}=f w g n$, so $((a x+c y) z, f w) \sim(a x z g+c p h$, fwg $)$. Hence $(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$. Therefore $\left(K_{3}+, \cdot\right)$ is a skew semifield. Fix $c \in s \backslash\{0\}$. Define $i=s+k$ by $i(x)=[(x c, c)]$ for all $x \in S$. Note that $i(x)=0$ iff $x=0$. To show that i is a homomorphism, let $a, b \in S$. Then there exist $\mathbb{Z} \varepsilon$ S and y \& $S \backslash\{0\}$ such that $c x=b c y$, so $i(a) i(b)=[(a c, c)][(b c, c)]\{\mathbb{A}(a c x, c y)]$. Let $z \in S \backslash\{0\}$ and $w=y z$. Since $a b c w=a b c y z=a c x z a c k=c y z,(a b c, c) \sim(a c x, c y)$, hence $i(a b)=i(a) i(b)$. Also, $i(a)+i(b)=[(a c c+b c c, c c)]=[((a+b) c, c)]=$ $i(a+b)$. Hence i is a homomorphism. Let $a, b \in s$ be such that $i(a)=i(b)$. Then $[(a c, c)]=[(b c, c)]$, so there exist $x, y \in S \backslash\{0\}$ such that $a c x=b c y$ and $c x=c y$, hence $a=b$. Thus i is $a l$ monomorphism. Let $\alpha \in K$. Choose $(a, b) \varepsilon \alpha$. Then $\alpha=\left[[(a, b)] \mid=[(a c c, b c a)]=[(a c, c)][(c, b c)]=i(a) i(b)^{-1}\right.$. Therefore ($\mathrm{K}, \mathrm{o}^{+},{ }^{-}$) is a skew semifield of right quotients of S .

Conversely, assumedthat a skew semifield-of right quotients of S exists. Let i be a right quotient embedding of S into K. To show that S is multiplicatively cancellative, let $a, b, c \in S$ be such that $a b=a c$ and $a \neq 0$. Then $i(a) i(b)=i(a) i(c)$, so $i(b)=i(a)^{-1} i(a) i(b)=$ $i(a)^{-1} i(a) i(c)=i(c)$, hence $b=c$. To show that (s, \cdot) satisfies the right Ore condition, let $a, b \in S \backslash\{0\}$. Then $i(a)^{-1} i(b) \varepsilon K$, so there exist $x \in S$ and $y \in S \backslash\{0\}$ such that $i(a)^{-1} i(b)=i(x) i(y)^{-1}$. Thus
$i(a) i(x)=i(b) i(y)$, hence $a x=b y$. Since $a x=b y \neq 0$ and $a \neq 0, x \neq 0$, hence we have the theorem. \#

Remark 2.5. Let S be a semiring having K as a skew semifield of right [left] quotients. In the proof of Theorem 2.4 we can see that

1) if S is additively commutative then K is additively commutative.
2) if S is multiplicatively commutative then K is multiplicatively commutative.
3) if S is commutative then the construction of K is the same as the construction of the semifield of quotients of S given by P. Sinutoke in [1].
4) In [4] it was shown that if 0 is a multiplicative zero of a skew semifield K then either 0 is a left or right additive identity of K and either 0 is a left or right additive zero of K. Clearly, 0 is an additive identity of K iff 0 is an additive identity of S and 0 is an additive zero of K iff O is an additive zeno of S. So we get as a corollary of the preceding theorem that if S is a semiring with a multiplicative zero 0 satisfying both the multiplicative cancellativity condition and the right [left] Ore condition then 0 must be either a left or right additive identity of S and either a left or right additive zero of S .
Remark 2.6, Let S be a semiring having k as a skew semifield of right [left] quotients, $i: S \rightarrow K$ right [left] quotient embedding and $x \in K$. If $x=i(a) i(b)^{-1}=i(c) i(d)^{-1}$ where $a, c \in S$ and $b, d \varepsilon S \backslash\{0\}$ then there exist $p, q \in S \backslash\{0\}$ such that $a p=c q$ and $b p=d q$.

Proof. Assume that $x=i(a) i(b)^{-1}=i(c) i(d)^{-1}$ where $a, c \varepsilon S$ and $b, d \varepsilon S \backslash\{0\}$. Then there exist $p, q \varepsilon S \backslash\{0\}$ such that $b p=d q$. Thus
$i(a) i(p) i(q)^{-1} i(d)^{-1}=i(a) i(b)^{-1}=i(c) i(d)^{-1}$, so $i(a p)=i(c q)$. Hence $a p=c q$.

\#

Corollary 2.7. Let S be a semiring having K as a skew semifield of right [left] quotients, i : S \rightarrow K a right [left] quotient embedding, L a skew semifield and $f: S \rightarrow$ L a homomorphism such that $f(x)=0$ iff $x=0$. Then there exists a unique homomorphism $g: K \rightarrow L$ such that $g \circ i=f$. Furthermore, if f is a monomorphism then g is a monomorphism.

Proof. Define g $k \mathrm{~K} / \mathrm{L}$ in the following way : Let $\mathrm{x} \varepsilon \mathrm{K}$. Then $x=i(a) i(b)^{-1}$ where $a, b \varepsilon S$ and $b \neq 0$. Define $g(x)=f(a) f(b)^{-1}$.

We must show that g is well-defined. Suppose that there exist $a^{\prime} \varepsilon S$ and $b^{\prime} \varepsilon S \backslash\{0\}$ such that $X=i\left(a^{\prime}\right) i\left(b^{\prime}\right)^{-1}$. By Remark 2.6, there exist $p, q \in S \backslash\{0\}$ such that $a p=a q$ and $b p=b^{\prime} q$. Then $f(a) f(b)^{-1}=f\left(a^{\prime}\right) f(q) f(p)^{-1} I(p) f(q)^{-1} f\left(b^{\prime}\right)^{-1}=f\left(a^{\prime}\right) f\left(b^{\prime}\right)^{-1}$. Hence g is well-defined.

To show that $g \circ i=f$, let a εS. If $a=0$ then $i(a)=0$ and $g(i(a))=0=f(a)$ so we are done. Assume that $a \neq 0$. Then $g \circ i(a)=g\left(i(a) q \| g\left(i(a a) i(a)^{-1}\right) \cong f(\mu a) f(a)^{-1}\right)=f(a)$, so $g \circ i=f$.

To show that g is a homomorphism, let $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{K}$. Then
 exist $m \varepsilon$ © and $n \varepsilon S \backslash\{0\}$ such that $b m=c n$. Thus $g(x y)=$ $g\left(i(a) i(b)^{-1} i(c) i(d)^{-1}\right)=g\left(i(a) i(m) i(n)^{-1} i(d)^{-1}\right)=g\left(i(a m) i(d n)^{-1}\right)=$ $f(a m) f(d n)^{-1}=f(a) f(m) f(n)^{-1} f(d)^{-1}=f(a) f(b)^{-1} f(c) f(d)^{-1}=g(x) g(y)$. There exist $p, q \in S \backslash\{0\}$ such that $b p=d q$. Thus $g(x+y)=$ $g\left(i(a) i(b)^{-1}+i(c) i(d)^{-1}\right)=g\left(i(a) i(p) i(b p)^{-1}+i(c) i(q) i(d q)^{-1}\right)=$ $g\left(i(a p+c q) i(b p)^{-1}\right)=f(a p+c q) f(b p)^{-1}=f(a p) f(b p)^{-1}+f(c q) f(d q)^{-1}=$
$f(a) f(b)^{-1}+f(c) f(d)^{-1}=g(x)+g(y)$. Hence g is a homomorphism.
To show that g is unique, suppose that there exists a
homomorphism $h: K \rightarrow L$ such that $h \circ i=f$. Let $x \in K$. Then $x=i(a) i(b)^{-1}$ where $a, b \in S$ and $b \neq 0$. Then $g(x)=f(a) f(b)^{-1}=$ $(h \circ i(a))(h \circ i(b))^{-1}=h\left(i(a) i(b)^{-1}\right)=h(x)$, so $g=h$. Hence g is unique.

Suppose that f is an injection. To show that g is an injection, let $x, y \in K$ be such that $g(x)=g(y)$ There exist $a, c \in S$ and $b, d \in S \backslash\{0\}$ such that $x=i(a) i(b)^{-1}$ and $y=i(c) i(d)^{-1}$. There exist $p, q \in S \backslash\{0\}$ such that $b p=d q$. Then $f(a) f(p) f(q)^{-1} f(d)^{-1}=f(a) f(b)^{-1}=g(x)=$ $g(y)=f(c) f(d)^{-1}$, thus $f(a p)(\underline{f}(c q)$, so $a p=c q$ because f is an injection. Hence $x=i(a) i(b)^{-1}=i(q) i(q) i(p)^{-1} i(p) i(q)^{-1} i(d)^{-1}=i(c) i(d)^{-1}=y$. Therefore g is an injection.

Corollary 2.8. Let S be a semiring having K as a skew semifield of right [left] quotients. If L is a skew semifield and L contiains an isomorphic copy of S then L contains an isomonphic copy of K.

Corollary 2.9. If S is a semiring having K and K as skew semifields

Probfl There exist fight paqeft quottient embedding i : $\mathrm{S} \rightarrow \mathrm{k}$ and
$j: S \rightarrow K$. By Corollary 2.7, there exists a unique monomorphism $f: K \rightarrow K^{\prime}$ and $g: K^{\prime} \rightarrow K$ such that $f \circ i=j$ and $g \circ j=i$. Then $(g \circ f) \circ i=i$. By Corollary 2.7 and $I d_{K} \circ i=i$ we get that $g \circ f=I d_{K}$. Similarly, $f \circ g=I d_{K}$. Thus $f=g^{-1}$, hence f is an isomorphism.

Remark 2.10. Let S be a semiring having K as a skew semifield of right [left] quotients. If S is additively cancellative then K is additively commutative and additively cancellative.

Proof. Let i be a right quotient embedding of S into K. Assume that S is additively cancellative. To show that K is additively commutative, let $\alpha, \beta \in \mathrm{K}$. Then $\alpha=i(x) i(y)^{-1}$ and $\beta=i(z) i(w)^{-1}$ where $x, z \in S$ and $y, w \in S \backslash\{0\}$. There exist $\mathrm{x}, \mathrm{b} \in \mathrm{S} \backslash\{0\}$ such that ya $=\mathrm{wb}$. Then $\alpha+\beta=i(x a+z b) i(y a)^{-1}=i(z b+x a) i(w b)^{-1}=\beta+\alpha$. To show that K is additively cancellatfye, let $\alpha, \beta, \gamma \quad \varepsilon K$ be such that $\alpha+\beta=\alpha+\gamma$. There exist $x, z, u \varepsilon S$ and $y, w, v \varepsilon S \backslash\{0\}$ such that $\alpha=i(x) i(y)^{-1}, \beta=i(z) i(w)^{-1}$ and $\gamma=i(u) i(v)^{-1}$. There exist $a, b, c, d \in S \backslash\{0\}$ such that $y a=W b$ and $y c=v d$. Then $i(x a+z b) i(y a)^{-1}=\alpha+\beta=\alpha+\gamma=i(x c+u d) i(y c)^{-1}$. Hence there exist $e, f \in S \backslash\{0\}$ such that $\mathcal{y a e}=y c f$ and $(x a+z b) e=(x c+u d) f$. Thus wbe $=$ yae $=y c f=\operatorname{vde}$ and ade $=c f$. Since $x a e+z b e=x c f+u d f$ and S is additively cancellative, zbe =ucfe $S 0 \beta=i(z b e) i(\text { wbe })^{-1}=$ $i($ udf $) i(v d f)^{-1}=\gamma \cdot$ Hence we have the remark. \#
Corollary 2.110 fets be a/seminhpgof/order >1 with a multiplicative zero which is additively cancellative and which satisfies properties
(i), (ii)oof/theorem 2.4. Thens is addtively commutive.

Corollary 2.12. Let R be a skew ring such that $|R|>1$. Then a skew semifield K of right [left] quotients of R exists iff
(i) R has no left zero divisors and no right zero disvisors and (ii) (R, \cdot) satisfies the right [left] Ore condition. Furthermore, K is a skew field.

Proof. We need only prove that K is a skew field. We must show that an additive inverse of x belongs to K for all $\mathrm{x} \varepsilon \mathrm{K}$. Let $x \in K$. Then $x=i(a) i(b)^{-1}$ where $a \varepsilon R, b \varepsilon R \backslash\{0\}$ and i is a right quotient embedding of R into K. Let $y=i(-a) i(b)^{-1}$. Then $y \varepsilon K$ and $x+y=i(a-a) i(b)^{-1}=0=i(-a+a) i(b)^{-1}=y+x$. Thus y is an additive inverse of x and hence K is a skew field.

Remark 2.13. In this case, we shall call K the skew field of right [left] quotients of R.

Remark 2.14.

1) Let R be a skew ping of order >1 satisfying properties (i) and (ii) of Corollary 2.12., Then R is a ring.
2) Let R be a ring having K as a skew field of right [left] quotients. If R is commutative then K is a field of quotients of R.

We shall now give an example of a skew field of right quotients of a noncommutative ring.

> \#
ll
 that $\sigma \neq$ Id ${ }^{\text {Let }}\left(a_{i}\right)$ ie rt denote an infinite sequenced in K whose $i{ }^{\text {th }}$ term is

$$
\text { Let } K[[X]]=\left\{\left.\left(a_{i}\right)_{i \varepsilon \mathbb{Z}_{0}^{+}}\right|_{i} \varepsilon K \text { for all } i \varepsilon \mathbb{Z}_{0}^{+}\right\}
$$

$\operatorname{Denote}\left(a_{i}\right)_{i \varepsilon Z_{0}}^{+} \varepsilon K[[X]]$ by $\sum_{i=0}^{\infty} a_{i} x^{i}$. Let $f=\sum_{i=0}^{\infty} a_{i} x^{i}, g=\sum_{i=0}^{\infty} b_{i} x^{i}$
and $h=\sum_{i=0}^{\infty} c_{i} x^{i} \varepsilon K[[X]]$. Define

$$
f+g=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i}
$$

and

$$
f \cdot g=\sum_{\ell=0}^{\infty} d_{\ell} x^{\ell} \text { where } d_{\ell}=\sum_{i+j=\ell} a_{i} \sigma^{i}\left(b_{j}\right) .
$$

Then $(K[[x]],+)$ is an abelian group. To show that $(K[[x]],+, \cdot)$ is a ring, note that

$$
(f g) h=\left(\sum_{p=0}^{\infty}\left(\sum_{i+j=p} a_{i} \sigma^{i}\left(b_{j}\right)\right) x^{p}\right)\left(\sum_{\ell=0}^{\infty} c_{\ell} x^{\ell}\right)
$$

$$
=\sum_{q=0}^{\infty}\left(\sum_{p+l=q}\left(\sum_{i+j=p} a_{i} \sigma^{i}\left(b_{j}\right)\right) \sigma^{p}\left(c_{l}\right)\right) x^{q}
$$

$$
\left.=\sum_{q=0}^{\infty} \sum_{i+j+\ell=q} d_{i} \sigma^{i}\left(b_{j}\right) \sigma^{i+j}\left(c_{l}\right)\right) x^{q}
$$

and

$$
f(g h)=\left(\sum_{i=0} a_{i} x^{i}\right)\left(\sum_{p=0}\left(\sum_{j+l=p} b_{j} \sigma^{j}\left(c_{l}\right)\right) x^{p}\right)
$$

$$
\left.=\sum_{q=0}^{\infty} \sum_{i+p=q} a_{i} \sigma^{i}\left(\sum j+l=p, b_{j} j\left(c_{l}\right)\right)\right) x^{q}
$$

$$
=\sum_{q=0}^{\infty}\left(\sum_{i+p=q} \operatorname{aic}^{2}\left(\sum_{i=2}^{i} \sigma^{i}\left(b_{j}\right) \sigma^{i+j}\left(c_{\ell}\right)\right)\right) x^{q}
$$

$$
=\sum_{q=0}^{\infty}\left(\sum_{i+j+\ell=q} a \sigma^{i}\left(b_{j}\right) \sigma^{i+j}\left(c_{l}\right)\right) x^{q},
$$

so

$$
(f g) h=f(g h) \text {, thus is associative, J Also, }
$$

$$
(f+g) h=\left(\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i}\right)\left(\sum_{j \neq d}^{\infty} c_{j} x^{j}\right)
$$

$$
=\mathrm{fh}+\mathrm{gh}
$$

$$
\text { and } f(g+h)=\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{j=0}^{\infty}\left(b_{j}+c_{j}\right) x^{j}\right)
$$

$$
=\sum_{\ell=0}^{\infty}\left(\sum_{i+j=\ell} a_{i} \sigma^{i}\left(b_{j}+c_{j}\right)\right) x^{\ell}
$$

$$
\begin{aligned}
& =\sum_{\ell=0}^{\infty}\left(\sum_{i+j=\ell} a_{i} \sigma^{i}\left(b_{j}\right)\right) x^{\ell}+\sum_{\ell=0}^{\infty}\left(\sum_{i+j=\ell} a_{i} \sigma^{i}\left(c_{j}\right)\right) x^{\ell} \\
& =f g+f h,
\end{aligned}
$$

so multiplication distributes over addition. To show that . is noncommutative, note that since $\sigma \neq I_{K}$, there exists a $\mathrm{d} \varepsilon \mathrm{K}$ such that $\sigma(d) \neq d$. Then $(x)(d x)=\sigma(d) x^{2}$ and $(d x)(X)=d x^{2}$, so $(x)(d x) \neq(d x)(x)$. Hence $(K[[X]],+, \cdot)$ is a noncommutative ring.

Let $\left(a_{i}\right)_{i \varepsilon \mathbb{Z}}$ denote an infinite sequence in K whose $i^{\text {th }}$ term is a_{i}. Let $K((X))=\left\{\left(a_{i}\right)_{i \varepsilon \mathbb{Z}^{\prime}}^{a_{i}} \varepsilon K\right.$ for $a l l i \varepsilon \mathbb{Z}$ and the number of $i \varepsilon \mathbf{Z}^{-}$ such that $a_{i} \neq 0$ is finite . Denote $\left(a_{i}\right)_{i \varepsilon Z} \varepsilon K((x))$ by $\sum_{i=-\infty}^{\infty} a_{i} x^{i}$. Let $f=\sum_{i=-\infty}^{\infty} a_{i} x^{i}$ and $g=\sum_{i=-\infty}^{\infty} b_{i} x^{i} \varepsilon k((x))$. Define

$$
f+g=\sum_{i=-\infty}^{\infty}\left(a_{i}+b_{i}\right) \frac{i}{\chi}
$$

and

$$
f \cdot g=\sum_{l=-\infty}^{\infty} c_{l} x^{l} \frac{\text { where }_{l}}{l+j=\ell} a_{i} \sigma^{i}\left(b_{j}\right)
$$

Then $(K((X)),+)$ is an abelian group. To show that is well-defined, let $n, m \in Z$ be such that $a_{p}=b_{q}=0$ for all $p<n$ and $q<m$. Let $k=n+m$. Let $r \varepsilon \mathbb{Z}$ be such that $r<k$. Then $c_{r}=\sum_{i+j=r} a_{i} \sigma^{i}\left(b_{j}\right)$.

 hence $a_{i} \sigma\left(b_{j}\right)=0$.
Therefore $c_{r}=0$. Hence is well-defined. A proof similar to the one just given shows that is associative and distributive. Since $K[[X]]$ is a subring of $K((X)), K((X))$ is noncommutative. Let 1 be the multiplicative identity of K. Then 1 is the multiplicative identity of $K(X)$) if we identify 1 with $\sum_{i=-\infty}^{\infty} a_{i} x^{i}$ where $a_{o}=1$ and $a_{i}=0$ for
$i \neq 0$. Let $f \varepsilon K(X)) \backslash\{0\}$. Then there exists an $n \varepsilon Z$ such that $a_{m}=0$ for all $m<n$ and $a_{n} \neq 0$, so $f=a_{n} x^{n}+a_{n+1} x^{n+1}+\ldots$. Thus $f^{-1}=\frac{1}{a_{n} x^{n}+a_{n+1} x^{n+1}+\ldots}=\frac{1}{a_{n} x^{n}\left(1+\frac{a_{n+1}}{a_{n}} x+\ldots\right)}=$ $\frac{1}{a_{n}} x^{-n}\left(1-A+A^{2}-A^{3}+\ldots\right)$, where $A=\frac{a_{n+1}}{a_{n}} x+\frac{a_{n+2}}{a_{n}} x^{2}+\ldots$, so $f^{-1} \varepsilon K((X)) \backslash\{0\}$. Hence $(K((X)),+, \forall)$ is a skew field and $K[[x]] \subseteq K((X))$. Let $f \in K((X))$. We must show that there exist $g \varepsilon K[[X]]$ and $h \varepsilon K[[X]] \backslash\{0\}$ such that $f=\operatorname{gh}^{-1}$. If $f \varepsilon K[[x]]$ then let $g=f$ and $h=1$. Suppose that $f=\sum_{i=-\infty}^{\infty} z_{i} X^{i} \varepsilon K((X)) \backslash K[[X]]$. Let $m \in \mathbb{Z}^{-}$be such that $z_{i}=0$ for a]I $i<m$ and $z_{m} \neq 0$. Let $h=\sum_{i=0}^{\infty} b_{i} x^{i} \varepsilon K[[x]] \backslash\{0\}$ be such that $b_{-m} \neq 0$ and $b_{i}=0$ for all $i<-m$. Then h^{-1} exists in $k((X))$ and $c_{i} x^{i}$ where $c_{m} \neq 0$ and $c_{i}=0$ for all $i<m$. Let $\left.g=\sum_{i=0}^{\infty} x_{i} \varepsilon k[x]\right]$ where $a_{0}=\frac{z_{m}}{c_{m}}$ and $a_{i}=\frac{1}{\sigma^{i}\left(c_{m}\right)}\left(z_{m+i}-a_{0} c_{m+i}-a_{1} \sigma\left(c_{m+i-1}\right)-\ldots-a \sigma_{1} \sigma^{i-1}\left(c_{m+1}\right)\right)$ for all $i>0$. Then $g=\sum_{i=-\infty} a_{i} X^{i} \varepsilon K((X))$ where $a_{i}=0$ for all $i<0$. Let
 consider terms of degree $\ell<m .6$ Let i, j $\ell \not Z$ be such that $i+j=\ell$. case 1 Q < O Thus $a_{i}=0,0$ so $a_{i} \sigma^{i}\left(c_{j}\right)=00.0^{\circ}$ 6) Case $20 \leqslant i$. Thus $j=\ell-i<m$, so $c_{j}=0$, hence $a_{i} \sigma^{i}\left(c_{j}\right)=0$. Then $d_{\ell}=0=z_{\ell}$. Consider the term of degree m. Thus

$$
\begin{aligned}
d_{m} & =\sum_{i \leqslant-1} a_{i} \sigma^{i}\left(c_{m-i}\right)+a_{0} c_{m}+\sum_{i \geqslant 1} a_{i} \sigma^{i}\left(c_{m-i}\right) \\
& =a_{0} c_{m}=\frac{z_{m}}{c_{m}} c_{m}=z_{m}
\end{aligned}
$$

Consider terms of degree $m+n$ where $n>1$. Thus

$$
\begin{aligned}
d_{m+n}= & \sum_{i \leqslant-1} a_{i} \sigma^{i}\left(c_{m+n-i}\right)+a_{0} c_{m+n}+a_{1} \sigma\left(c_{m+n-1}\right)+\ldots+a_{n} \sigma^{n}\left(c_{m}\right)+ \\
= & \sum_{i>n} a_{i} \sigma^{i}\left(c_{m+n-i}\right) \\
= & a_{0} c_{m+n}+a_{1} \sigma\left(c_{m+n-1}\right)+\ldots+a_{1} \sigma\left(c_{m+n-1}\right)+\ldots+a_{n-1} \sigma^{n}\left(c_{m}\right) \\
& \left.\frac{1}{\sigma^{n}\left(c_{m}\right)}\left[z_{m+n}-a_{0} c_{m+n}\right)+a_{1} \sigma\left(c_{m+n-1}\right)-\ldots-a_{n-1} \sigma^{n-1}\left(c_{m+1}\right)\right] \sigma^{n}\left(c_{m}\right) \\
= & z_{m+n} .
\end{aligned}
$$

Hence $f=\mathrm{gh}^{-1}$. Therefore $(\mathrm{Kg}(\mathrm{X})),+\frac{\cdot) \text { is a skew field of right }}{}$ quotients of $\mathrm{K}[[\mathrm{x}]]$.

Corollary 2.16. Let R be a ringhaving K as a skew field of right [left] quotients, $i: R \rightarrow K$ a night qubtient embedding, L a skew field and f : $R \rightarrow L$ a monomorphism. Them there exists a monomorphism $g: K \rightarrow L$ such that $g \circ i=f$.

Corollary 2.17. Let R be a ring having K as a syew field of right [left] quotients. If L is a skew field and L contains an isomorphic copy of R then L contains an isomorphic copy of K.

ศนยวทยทรพยากร
 9

 Corollary 2.18. If R is a ring having K and K ' as skew fields of right or left quotients then k そk'6.Definition 2.19. Let S be a semiring without a multiplicative zero. Then a skew ratio semiring D is said to be a skew ratio semiring of right [left] quotients of S iff there exists a monomorphism $i: S \rightarrow D$ such that for $a l l \times \varepsilon D$ there exist $a, b \varepsilon S$ such that $x=i(a) i(b)^{-1}\left[x=i(b)^{-1} i(a)\right]$. A monomorphism i satisfying the above
property is said to be a right [left] quotient embedding of S into D.

Example 2.20. Let $S=\left\{\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] / x, z \in \mathbb{Z}^{+}\right.$and $\left.y \in \mathbb{Z}\right\}$ and $D=\left\{\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right] / x, z \in \mathbb{Q}^{+}\right.$and $\left.y \in \mathbb{Q}\right\}$. Then S and D with the usual addition and multiplication are a semiring and its skew ratio semiring of right quotients, respectively.

Remark 2.21. In this chapter, we shall prove some theorems for skew ratio semirings of right quotients of a semiring S. The theorems are true for skew ratio semirings of left quotients of S and the proofs are similar so we shall not give the proofs for skew ratio semirings of left quotients.

The construction of a skew ratio semiring of right [1eft] quotients of a semiring S is the same as the construction of a skew semifield of right [left] quotients of S, so we have the following theorem.
\qquad

6 -

Theorem 2.22. Piet sbedalsemiring without a mitiplicative zero. Then a skew ratio semiring of lright [left] quotients of S exists iff (i) s as multiplicatively cancellative ?64 and (ii) (S, \cdot) satisfies the right [left] Ore condition.

Remark 2.23. Let S be a semiring having D as a skew ratio semiring of right [left] quotients. Then

1) if S is additively commutative the D is additively commutative.
2) if S is multiplicatively commutative then D is multiplicatively commutative.
3) if S is commutative then the construction of D is the same as the construction of the ratio semiring of quotients of S given by P. Sinutoke in [1].
4) if S is additively cancellative then D is additively commutative and additively cancellative.

Corollary 2.24. Let S be a semiring having D as a skew ratio semiring of right [left] quotients, $i / / \mathrm{S} \rightarrow \mathrm{D}$ a right [left] quotient embedding, E a skew ratio semiring and $f ; S \rightarrow E$ a homomorphism. Then there exists a unique homomorphism $g: D+E$ such that $g o i=f$. Furthermore, if f is a monomorphism then g is a monomorphism.

Corollary 2.25. Let S be semiring having D as a skew ratio semiring of right [left] quotients. 愋 is a skew ratio semiring and E contains an isomorphic copy of S then E contains an isomorphic copy of D.

Corollary 2.26. If S is a semiring having D and D^{\prime} as skew ratio semirings of rightor heft quotients then $D^{\prime}=D^{\prime} ?$ Remark 2.27. Lets be a semiring having as a skew oratio semiring of right [left] quotients. Then S is strongly multiplicatively cancellative iff D is precise.

Proof. Let $i: S \rightarrow D$ be a right quotient embedding. Assume that S is strongly multiplicatively cancellative. To show that D is precise, let $\alpha, \beta \in D$ be such that $1+\alpha \beta=\alpha+\beta$.

There exist $x, y, z, w \in S$ such that $\alpha=i(x) i(y)^{-1}$ and $\beta=i(z) i(w)^{-1}$. There exist $a, b, c, d \in S$ such that $y a=z b$ and $y c=w d$. Then $\alpha \beta=i(x a) i(w b)^{-1}$ and $\alpha+\beta=i(x c+z d) i(w d)^{-1}$. Thus $i(w b+x a) i(w b)^{-1}=1+\alpha \beta=\alpha+\beta=i(x c+z d) i(w d)^{-1}$. Hence there exist $e, f \varepsilon S$ such that $(w b+x a) e=(x c+z d) f$ and $w b==w d f$, so be $=\mathrm{df}$. Since $\mathrm{xcf}+\mathrm{yae}=\mathrm{xcff} \mid \mathrm{ybe}=\mathrm{xcf}+\mathrm{zdf}=\mathrm{wbe}+\mathrm{xae}=$ $w d f+x a e=y c f+x a e$ and S is $S . M . C, x=y$ or $a e=c f$. If $x=y$ then $\alpha=1$. Suppose that $a e=c f l$. Then $z b e=y a e=y c f=w d f$, thus $z=w$, hence $\beta=1$. Similably $/$ if $1+\alpha \beta=\beta+\alpha$ then $\alpha=1$ or $\beta=1$.

Conversely, assume thet D is precise. To show that S is strongly multiplicatiyely cancellative it suffices to show that D is strongly multiplicatively caricellative. Let $\alpha, \beta, \gamma, \delta \varepsilon D$ be such that $\alpha \gamma+\beta \delta=\alpha \delta+\beta \gamma$. Then $1+\alpha=\beta \delta \gamma^{-1}=\delta \gamma^{-1}+\alpha^{-1} \beta$, thus $\alpha^{-1} \beta=1$ or $\delta \gamma^{-1}=1$, so $\alpha=\beta$ or $\gamma=\delta$. Similamy, if or $+\beta \delta=\beta \gamma+\alpha \delta$ then $\alpha=\beta$ or $\gamma=\delta$. Thus D is strongly multiplicatively cancellative and hence S is also.

Theorem 2.28. Let (\mathbb{R}, \leqslant) be a partially ordered ring having K as a skew field of right [left] quotients, suchethat for all $x, y \in R$ with $x>0$ and $y>0$ there exist $a, b \varepsilon R$ with $a>0$ and $b>0$ such that $x a=y b$ and i : R \rightarrow K a right [left] quotient embeading. Then there exists a partial order \leqslant on k such that $(K, \leqslant$) is a partially ordered skew field and i is an increasing map iff \leqslant is multiplicatively regular. Furthermore, if \leqslant is total then $\leqslant *$ is total.

Proof. Assume that \leqslant is multiplicatively regular. Let $E=\left\{\alpha \in K \mid \alpha=i(x) i(y)^{-1}\right.$ for some $x, y \varepsilon R$ such that $x \geqslant 0$ and $\left.y>0\right\}$. Define $\alpha \leqslant{ }^{*} \beta$ iff $\beta-\alpha \varepsilon E$ for all $\alpha, \beta \varepsilon$ K.

From now on, in the proof of this theorem, we shall denote α and $\beta \in K$ by $i(x) i(y)^{-1}$ and $i(z) i(w)^{-1}$, respectively, where $x, z \in R$ and $\mathrm{y}, \mathrm{w} \in \mathrm{R} \backslash\{0\}$.

We must show that \leqslant^{*} is a partial order on K. Clearly \leqslant is reflexive. Let $\alpha, \beta \in K$ be such that $\alpha \leqslant \beta$ and $\beta \leqslant \alpha$. Then $\beta-\alpha$ and $\alpha-\beta \in E$. Let $\beta-\alpha=i(a) i(b)^{-1}$ and $\alpha-\beta=i(c) i(d)^{-1}$ where $a, c \geqslant 0$ and $b, d>0$ in R. Since $i(c) d(d)^{-1}=i(-a) i(b)^{-1}$, by Remark 2.6 and the hypothesis, there exist $e, f \geqslant 0$ in R such that $-a e=c f$ and $b e=d f$. Since $-a e \geqslant 0$ anc is M.R. $-a \geqslant 0$, so $a \leqslant 0$. Then $a=0$ because $a \geqslant 0$ and $a \leqslant 0$, Thus $/ \alpha=\beta$. Hence \leqslant is anti-symmetric. Claim that $\alpha+\beta \varepsilon$ efor all $\alpha, \beta \in E$. To prove this, let $\alpha, \beta \in E$. Then $x, z \geqslant 0$ and $y, w>0$. There exist $a, b>0$ in R such that $y a=w b$. Thus $(x a+z b) \geqslant 0$ and $y a>0$, so $\alpha+\beta=i(x a+z b) i(y a)^{-1} \varepsilon E$, hence we have the claim. Let $\alpha, \beta, \gamma, E \%$ be such that $\alpha \leqslant{ }^{*} \beta$ and $\beta \leqslant{ }^{*} \gamma$. Then $\beta-\alpha$ and $\gamma-\beta \varepsilon E$. Thus $\alpha=(\gamma-\beta)+(\beta-\alpha) \varepsilon E$, so $\alpha \leqslant \gamma$. Hence \leqslant^{*} is transitive. therefore \leqslant^{*} is a partial order on K.
 $\beta-\alpha \in E$, so $(\alpha+\bar{\gamma}) \leqslant(\beta+\gamma)$. Claim that $\alpha \beta \in E$ for all $\alpha, \beta \in E$. To prove this, let $\alpha, \beta \in E$. Then $x, z \geqslant 0$ and $y, w>0$. There exist $a \geqslant 0$ and $b>$ in, R such that yaf $=2 b$, Thus $\times a \geqslant 8$ and $w b 0$, so $\alpha \beta=i(x a) i(w b)^{-1} \varepsilon E$. Hence we have the claim. Let $\alpha, \beta \in K$ be such
 and $\gamma \beta-\gamma \alpha=\gamma(\beta-\alpha) \varepsilon E$, so $\alpha \gamma \leqslant{ }^{*} \beta \gamma$ and $\gamma \alpha \leqslant \gamma \beta$. Hence $\left(K, \leqslant^{*}\right)$ is a partially ordered skew field.

To show that i is an increasing map, let $a, b, c \in R$ be such that $a<b$ and $c>0$. Then $(b-a) c>0$, so $i(b)-i(a)=i((b-a) c) i(c)^{-1} \varepsilon E$. Hence $i(a)<{ }^{*} i(b)$. Claim that if $\alpha=i(p) i(q)^{-1}$ where $p, q \in R$ such that $q>0$ and $\alpha \varepsilon E$ then $p \geqslant 0$. Since $\alpha \varepsilon E, x \geqslant 0$ and $y>0$.

There exist $g, h>0$ in R such that $x g=p h$ and $y g=q h$, so $p h \geqslant 0$. Thus $p \geqslant 0$ because \leqslant is M.R. Hence we have the claim. Let $a, b, c \in R$ be such that $i(a)<{ }^{*} i(b)$ and $c>0$. Then
$i((b-a) c) i(c)^{-1}=i(b)-i(a) \varepsilon E$, so $(b-a) c \geqslant 0$, hence $b-a>0$, thus $a<b$. Hence i is an increasing map.

Conversely, assume that there exists a partial order \leqslant on K such that $(K, \leqslant$) is a partially ofdered skew field and i is an increasing map. Let $a, b, c \in R$ be, such that $a c \leqslant b c$ and $c>0$. Then i $i(a) i(c) \leqslant i(b) i(c)$, so $0 \leqslant i(b)-i(a)) i(c)$ and $0<^{*} i(c)$. Thus $0 \leqslant i(b)-i(a)$, so $i(a) \leqslant i(b)$. Hence $a \leqslant b$. Similarly, if $c a^{*} \leqslant c b$ and $c>0$ then $a \leqslant b$. Therefore \leqslant is multiplicatively regular.

Furthermore, assume that \leqslant is total. Let $\alpha, \beta \in K$. There exist $a, b \in R \backslash\{0\}$ such that $y a=w b$ Then $((z b-x a) \leqslant 0$ or $(z b-x a) \geqslant 0)$ and (ya < or ya >0).

Case $1(z b-x a) \leqslant 0$ and $y a<0$. Thus $(x a-z b) \geqslant 0$ and $-y a>0$, so $\beta-\alpha=i(z b-x a) i(y a)^{-1}=i(x a-z b) i(-y a)^{-1} \& E$. Hence $\alpha \leqslant^{*} \beta$. Case $2(z b-x a) \leqslant \theta$ and $y a>0$. Thus $(x a-z b) \geqslant 0$, so $\alpha-\beta=$ $i(x a-z b) i(y a)^{-1} \varepsilon \bar{E}$. Hence $\beta \leqslant \alpha$.
Case $3(z b-x a) \geqslant 0$ and ya <0. Thus $-y a>0$, so $\alpha-\beta=$
 Case $4 \quad(z b-x a) \geqslant 0$ and ya >0. Thus $\beta=\alpha=i(z b-x a) i(y a)^{-1} \varepsilon E$, so $\alpha \leqslant *$. Henceo $\alpha \leqslant$ * β or $\beta * \sigma^{\circ}$. Therefore ${ }^{*}$ is total.

Corollary 2.29. Let (R, \leqslant) be a partially ordered ring having K as a field of quotients and $i: R \rightarrow K$ a quotient embedding. Then there exists a partial order \leqslant^{*} on K such that $\left(K, \leqslant^{*}\right)$ is a partially ordered field and i is an increasing map iff \leqslant is multiplicatively regular. Furthermore, if \leqslant is total then \leqslant is total.

Theorem 2.30. Let (S, \leqslant) be a partially ordered semiring having D as a skew ratio semiring of right [left] quotients and $i: S \rightarrow D$ a right [left] quotient embedding. Then there exists a unique partial order \leqslant * on D such that (D, \leqslant^{*}) is a partially ordered skew ratio semiring and i is an increasing map iff \leqslant is multiplicatively regular. Furthermore, if \leqslant is total then \leqslant^{*} is total.

Proof. Assume that \leqslant is mustiplicatively regular. Let $E=\left\{\alpha \in D \mid \alpha=i(x) i(y)^{-1}\right.$ for some $x, y \in S$ such that $\left.y \leqslant x\right\}$. It follows from the fact that s is multfpijcatively regular that if $\alpha=i(p) i(q)^{-1}$ where $p, q \in S$ and $\alpha \in E$ then $g \leqslant p$. Define a relation $\leqslant *$ on D by $\alpha \leqslant \beta$ iff $\beta \alpha^{-1} \varepsilon E$ for all $\alpha, \beta \in D$.

From now on, in the proof of this theorem, we shall denote α, β and $\gamma \in D$ by $i(x) i(y)^{-1}, i(z) i(v)$ and $i(u) i(v)^{-1}$, respectively, where $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w}, \mathrm{u}, \mathrm{v} \in \mathrm{S}$.

We must show that is a partial order on D. Clearly \leqslant is reflexive. Let $\alpha, \beta \in D$ be such that $\alpha \leqslant{ }^{*} \beta$ and $\beta \leqslant{ }^{*} \alpha$. Let $\beta \alpha^{-1}=i(p) i(q)^{-1}$ and $\alpha \beta^{-1}=i(m) i(n)^{-1}$ where $p, q, m, n \varepsilon$. Thus $q \leqslant p$, $n \leqslant m$ and $i(p) i(q)^{-1}=i(n) i(m)^{-1}$. There exist $a, b \varepsilon S$ such that
 $m<n$ because \leqslant is $M . R$, we have, a contradiction. Thus $p=q$, so $B \alpha^{-1}=1$ qence $\alpha=9 \beta ;$ sog ${ }^{*}$ is antis-symmetric. Clain that if $\alpha, \beta \in E$ then $\alpha \beta \in E$. To prove this, let $\alpha, \beta \in E$. Then $y \leqslant x$ and $w \leqslant z$. There exist $a, b \varepsilon S$ such that $y a=z b$. Since $w b \leqslant z=y a \leqslant x a$, $\alpha \beta=i(x a) i(w b)^{-1} \varepsilon E$, so we have the claim. Let α, β and $\gamma \varepsilon D$ be such that $\alpha \leqslant{ }^{*} \beta$ and $\beta \leqslant{ }^{*} \gamma$. So $\beta \alpha^{-1}, \gamma \beta^{-1} \varepsilon E$. Thus $\gamma \alpha^{-1}=\gamma \beta^{-1} \beta \alpha^{-1} \varepsilon E$, so $\alpha \leqslant \%$. Hence $\leqslant *$ is transitive. Therefore $\leqslant *$ is a partial order on D.

Let α, β and $\gamma \in D$ be such that $\alpha \leqslant \beta$. We must show that $(\alpha+\gamma) \leqslant{ }^{*}(\beta+\gamma)$ and $(\gamma+\alpha) \leqslant(\gamma+\beta)$. There exist $a, b \varepsilon$ s such that $y a=v b$, so $\alpha+\gamma=i(x a+u b) i(y a)^{-1}$. There exist $c, d \varepsilon S$ such that $w c=v d$, so $\beta+\gamma=i(z c+u d) i(w c)^{-1}$. There exist $e, f \varepsilon S$ such that wce $=y a f$, so $(\beta+\gamma)(\alpha+\gamma)^{-1}=i((z c+u d) e) i((x a+u b) f)^{-1}$. We must show that $(\beta+\gamma)(\alpha+\gamma)^{-1} \varepsilon E$. Since $v b f=y a f=w c e=v d e$, $b f=d e$. Since $\alpha \leqslant * \beta$ and $\beta \alpha^{-1}=j($ zce $) i(x a f)^{-1},(x a+u b) f=$ $(x a f+u b f) \leqslant(z c e+u d e)=(z c+u d) e$ so $(\beta+\gamma)(\alpha+\gamma)^{-1} \varepsilon E$. Hence $(\alpha+\gamma) \leqslant(\beta+\gamma)$. Similanty, $(\gamma+\alpha) \leqslant(\gamma+\beta)$.

Claim that $\beta \alpha \beta^{-1} \varepsilon E$ for all $\alpha \in E, \beta \in D$. To prove this, let $\alpha \varepsilon E$ and $\beta \varepsilon D$. Then there exist $a, b \in S$ such that $w a=x b$, so $\beta \alpha=i(z a) i(y b)^{-1}$. There exist $c, d \in$ such that $y b c=w d$, so $\beta \alpha \beta^{-1}=i(z a c) i(z d)^{-1}$. It follows from $\alpha \varepsilon E$ that $w d=y b c \leqslant x b c=w a c$, so $d \leqslant a c$. Thus $z d \leqslant z a c$, hence $\beta \alpha \beta^{-1} \varepsilon E$, so we have the claim.

Let α, β and $\gamma \in D$ besuoh that $\alpha \leqslant \beta$. Then $\beta \alpha^{-1} \varepsilon E$. We must show that $\alpha \gamma \leqslant \beta \gamma$ and $\gamma \alpha \leqslant^{*} \gamma \beta$. Since $(\beta \gamma)(\alpha \gamma)^{-1}=\beta \alpha^{-1} \varepsilon E$, $\alpha \gamma \leqslant{ }^{*} \beta \gamma$. Since $(\gamma \beta)(\gamma \alpha)^{-1}=\gamma \gamma \beta \alpha^{-1} \gamma^{-1} \varepsilon E, \gamma \alpha \leqslant^{*} \gamma \beta$. Hence (D, \leqslant^{*}) is a partially ordered skew ratio semiring

To show that \dot{j} is an increasing map, let $a, b \in S$. Then $a \leqslant b$
 $i(a) \leqslant i(b)$. Hence $a<b$ iff. $i(a)<{ }^{*} i(b)$.

Oo show that ${ }^{*}$ is unidued 98 suppose that theme exists a partial
order $\leqslant{ }^{*: \%}$ on D such that ($D, \leqslant^{* *}$) is a partially ordered skew ratio semiring and i is an increasing map. Let $\alpha, \beta \in D$ be such that $\alpha \leqslant \beta$. There exist $a, b \in S$ such that $y a=w b$, so $\beta \alpha^{-1}=i(z b) i(x a)^{-1} \varepsilon E$. Thus $x a \leqslant z b$, so $i(x a) \leqslant{ }^{* *} i(z b)$. Then $\alpha=i(x a) i(y a)^{-1} \leqslant{ }^{* *} i(z b) i(w b)^{-1}=\beta$. Suppose that $\alpha \leqslant \leqslant^{* *} \beta$. Then $i(x a)=i(x) i(y)^{-1} i(y a) \leqslant^{* *} i(z) i(w)^{-1} i(w b)=$ $i(z b)$, so $x a \leqslant z b$. Thus $\beta \alpha^{-1}=i(z b) i(x a)^{-1} \varepsilon E$, so $\alpha \leqslant{ }^{*} \beta$. Hence $<^{*}=e^{* *}$.

Conversely, assume that there exists a unique partial order \leqslant^{*} on D such that $\left(D, \leqslant^{*}\right)$ is a partially ordered skew ratio semiring and i is an increasing map. Let $x, y, z \in S$ be such that $x z \leqslant y z$. Then $i(x z) \leqslant{ }^{*} i(y z)$, thus $i(x)=i(x z) i(z)^{-1} \leqslant{ }^{*} i(y z) i(z)^{-1}=i(y)$ which implies that $x \leqslant y$. Similarly, if $z x \leqslant z y$ then $x \leqslant y$. Therefore \leqslant is multiplicatively regular.

Furthermore, assume that $\&$ is total. To show that \leqslant^{*} is total, let $\alpha, \beta \in D$. Then there exist $a b$ \&S such that ya $=w b$. Since \leqslant is total, $x a \leqslant z b$ or $z b \leqslant$ xa, hetfee $\beta \alpha^{-1}=i(z b) i(x a)^{-1} \varepsilon E$ or $\alpha \beta^{-1}=i(x a) i(z b)^{-1} \varepsilon E$. Thus $\alpha \leqslant \beta$ or $\beta \leqslant \alpha$, so \leqslant^{*} is total.

Corollary 2.31. Let (S, \lessgtr) be a partially ordered semiring having D as a ratio semiring of quot ients and $i: S \rightarrow D$ a quotient embedding. Then there exists a unique pertial order \leqslant^{*} on D such that (D, \leqslant^{*}) is a partially ordered ratio semiring and i is an increasing map iff \leqslant is multiplicatively regular. Furthermore, if $\$$ is total then \leqslant^{*} is total.

Theorem 2.32. Let s, bea semiring having D as a skew ratio semiring of right [left] quotients, $i, S \rightarrow D$ aright [left] quotient embedding, A the lower semilatfice of multiplicatively regular partial orders \leqslant on S such that (S, \leqslant) is a partially ordered semiring and B the lower semilattice of partial orders \leqslant^{*} on D such that $\left(D_{0} \leqslant^{*}\right)$ is a partially ordered skew ratio semiring and i is an increasing map. Then there exists an order isomorphism between A and B.

Proof. Define a map $f: A \rightarrow B$ in the following way : Let $\leqslant \varepsilon A$. Then Theorem 2.30 determines a unique $\leqslant^{*} \varepsilon B$. Define $f(\leqslant)=\leqslant^{*}$.

To show that f is an injection, let $\leqslant_{1}, \leqslant_{2} \varepsilon A$ be such that $f\left(\leqslant_{1}\right)=f\left(\leqslant_{2}\right)$. Then $\leqslant_{1}^{*}=\leqslant_{2}^{*}$. Let $x, y \in S$. Then $x \leqslant_{1} y$ iff $i(x) \leqslant_{1}^{*} i(y)$ and $x \leqslant_{2} y$ iff $i(x) \leqslant_{2}^{*} i(y)$, so $x \leqslant_{1} y$ iff $x \leqslant_{2} y$. Hence $\leqslant_{1}=\leqslant_{2}$. To show that f is a surjection, let $\leqslant^{\prime} \varepsilon B$. Define a relation \leqslant on S by $x \leqslant y$ iff $i(x) \leqslant i(y)$ for all $x, y \varepsilon S$. Clearly $\leqslant \varepsilon$ A. By the uniqueness, $\leqslant^{\prime}=\leqslant^{*}$, so $f(\leqslant)=\leqslant^{\prime}$. Hence f is a bijection. Let $\leqslant_{1}, \leqslant_{2} \varepsilon$ A be such that $\leqslant_{1} \subseteq \leqslant_{2}$. To show that $f\left(\leqslant_{1}\right) \subseteq f\left(\leqslant_{2}\right)$, let $\alpha, \beta \in D$ be such that $\alpha \leqslant 1 \beta$. Then $\alpha=i(x) i(y)^{-1}$ and $\beta=i(z) i(w)^{-1}$ where $x, y, z, w \in S$. There exist $a, b \in S$ such that wa $=y b$. Thus $x b \leqslant 1 z a$, so $\mathrm{xb} \leqslant_{2} \mathrm{za}$, hence $a \leqslant_{2}^{*} \beta$. Therefore $f\left(\leqslant_{1}\right)=\leqslant_{1}^{*} \leqslant_{2}^{*}=f\left(\leqslant_{2}\right)$.

Let $\leqslant_{1}^{*}, \leqslant{ }_{2}^{*}$ \& B be such that $\leqslant_{1}^{*} \subseteq \leqslant_{2}^{*}$. To show that
$f^{-1}\left(\leqslant_{1}^{*}\right) \subseteq f^{-1}\left(\leqslant_{2}^{*}\right)$, let x, y \& S be such that $x \leqslant_{1} y$. Then $i(x) \leqslant_{1}^{*} i(y)$, so $i(x) \leqslant_{2}^{*} i(y)$, hence $x \leqslant_{2} y$.aimerefore $f^{-1}\left(\leqslant_{1}^{*}\right)=\leqslant_{1} \subseteq \leqslant_{2}=f^{-1}\left(\leqslant_{2}^{*}\right)$. Hence f is an order isomorphism.

Corollary 2.33. Let (S, \leqslant) bea semining having D as a ratio semiring of quotients, i : \rightarrow D quotient embedding, A the lower semilattice of multiplicatively regular partial orders \leqslant on S such that (S, \leqslant) is a partially ordered semiring and B the lower semilattice of partial orders $s *$ on P such that (p, s) is a partially ordered ratio semiring and i is an increasing map. Then there exists an order isomorphism

Theorem 2.34. Let S be a semiring having K as a skew semifield of right [left] quotients, $i: S \rightarrow K$ a right [left] quotient embedding and ρ a congruence on S. Then there exists a unique congruence ρ^{*} on K such that $\left(i(x) \rho^{*} i(y)\right.$ iff $x \rho y$ for all $x, y \varepsilon S$) iff ρ is multiplicatively regular.

Proof. Assume that ρ is multiplicatively regular. Define a relation ρ^{*} on K in the following way : Let $\alpha, \beta \in \mathrm{K}$. Then $\alpha=i(x) i(y)^{-1}$ and $\beta=i(z) i(w)^{-1}$ where $x, z \varepsilon S$ and $y, w \varepsilon S \backslash\{0\}$. Define $\alpha \rho^{*} \beta$ iff there exist $a, b \varepsilon S \backslash\{0\}$ such that $x a \rho z b$ and ya ρ wb.

To show that ρ^{*} is well-defined, suppose that there exist $x^{\prime}, z^{\prime} \varepsilon S$ and $y^{\prime}, w^{\prime} \varepsilon S \backslash\{0\}$ such that $\alpha=i\left(x^{\prime}\right) i\left(y^{\prime}\right)^{-1}$ and $\beta=i\left(z^{\prime}\right) i\left(w^{\prime}\right)^{-1}$. There exist p, q, m, $q / S \backslash\{0\}$ such that $x p=x^{\prime} q$, $y p=y^{\prime} q, z m=z^{\prime} n$ and $w m=w^{\prime} n$. There exist $c, d, e, f \varepsilon S \backslash\{0\}$ such that $\mathrm{pc}=\mathrm{ad}$ and $\mathrm{bde}=\mathrm{mf}$. Thus, $\mathrm{qce}=\mathrm{xpce}=$ xade and $\mathrm{z} \mathrm{nf}=\mathrm{zmf}=\mathrm{zbde}$. Since xa $\rho \mathrm{zb}$, xade ρ zbde, $s 0 / \mathrm{x}$ 'qce $\rho \mathrm{z}^{\prime} \mathrm{nf}$ 。 Similarly, y'qce $\rho \mathrm{w}^{\prime} \mathrm{nf}$. Hence ρ^{*} is well-defined.

From now on, in the proof of this theorem, we shall denote α, β and $\gamma \varepsilon K$ by $i(x) i(y)^{-1}, i(-z) i(w)^{-1}$ and $i(u) i(v)^{-1}$, respectively, where $x, z, u \in S$ and $y, w, v \in S \backslash\{0$.

We must show that phis an equivalence relation on K. Clearly ρ^{*} is reflexive and symmetric. Let α, β and $\gamma \in K$ be such that $\alpha \rho^{*} \beta$ and $\beta \rho^{*} \gamma$. Then there exist $a, b, c, d \varepsilon S\{\{0\} b$ such that xa $\rho \mathrm{zb}$, ya $\rho \mathrm{wb}, \mathrm{zc} \rho$ ud and wc ρ vd. There exist $\mathrm{e}, \mathrm{f} \in \mathrm{S} \backslash\{0\}$ such that be $=c f$. Since xae ρ zbe and zcf ρ ydf, xae ρ udf. Similarly, yae ρ vdf. Thûs $\alpha \rho^{*} \gamma, \mathrm{so} \rho^{*}$ is transitive. Hence $\rho *$ is an equivalence relation on K.

To show that in is acongruence on k let α, ßिand $\gamma \varepsilon K$ be such that $\alpha \rho^{*} \beta$. Then there exist $a, b \varepsilon S \backslash\{0\}$ such that $x a \rho \mathrm{zb}$ and ya ρ wb. First, we shall show that $(\alpha+\gamma) \rho^{*}(\beta+\gamma)$ and $(\gamma+\alpha) \rho^{*}(\gamma+\beta)$. There exist $c, d \varepsilon S \backslash\{0\}$ such that $y c=v d$, so $\alpha+\gamma=i(x c+u d) i(y c)^{-1}$. There exist e,f $\varepsilon S \backslash\{0\}$ such that we $=v f$, so $\beta+\gamma=i(z e+u f) i(w e)^{-1}$. There exist $g, h \varepsilon S \backslash\{0\}$ such that $a g=c h$. There exist $p, q \varepsilon S \backslash\{0\}$ such that $b g p=e q$. Thus $x c h p=x a g p$,
zeq $=z b g p$ and $\operatorname{xagp} \rho \mathrm{zb} g \mathrm{p}$, so $\mathrm{xch} \rho \rho$ zeq. Similarly, ychp ρ weq. Since $v d h p=y c h p$ and $v f q=w e q$, vdhp ρ vfq. Since ρ is M.R., dhp $\rho \mathrm{fq}$, so udhp ρ ufq. Then $(x c+u d) h p=(x c h p+u d h p) \rho$ $(z e q+u f q)=(z e+u f) q$ and ychp ρ weq, so $(\alpha+\gamma) \rho^{*}(\beta+\gamma)$. Similarly, $(\gamma+\alpha) \rho^{*}(\gamma+\beta)$.

Next, we shall show that $\alpha \gamma \rho^{*} \beta \gamma$. This is clear if $\gamma=0$. Suppose that $\gamma \neq 0$, so $u \neq 0$. There exist $c, d, e, f \in S \backslash\{0\}$ such that $y c=u d$ and $w e=u f$, so $a \gamma=i(x 0) i(v d)^{-1}$ and $\beta \gamma=i(z e) i(v f)^{-1}$. There exist $g, h, p, q \varepsilon S \backslash\{0\}$ such that $c g=a h$ and $b h p=e q$. Since $x c g p=x a h p, z e q=z b h p$ and xahp $\rho \mathrm{zbhp}, \operatorname{xcgp} \rho$ zeq. Since $u d g p=y c g p=y a h p, u f q=w e q=$ whhp and yahp ρ wbhp, udgp ρ ufq. Since ρ is M.R., dgp $\rho \mathrm{fq}$, so vdgp ρ vfq. Hence $\alpha \gamma \rho^{*}$ Br. Similarly, $\gamma \alpha \rho^{*} \gamma \beta$. Thus ρ^{*} is a congruence on k.

Let $a, b \in S$ be ambitanysand $d \in \varepsilon S \backslash\{0\}$. Suppose that $i(a) \rho^{*} i(b)$. Then $i(a c) i(c)^{-1} \rho ; i(b c) i(c)^{-1}$. Thus there exist $p, q \in S \backslash\{0\}$ such that $a c p \rho b c q$ and $c p \rho c q$. There exist $m, n \in S \backslash\{0\}$ such that $p m=q n$, so cpm $\rho \mathrm{cpn}$, hence $m \rho \mathrm{n}$. Then acpm ρ bcqn, so a ρ b. Suppose that a $\rho \mathrm{b}$. Then acc ρ ycc and $\mathrm{cc} \rho \mathrm{cc}$, so $i(a c) i(c)^{-1} \rho^{*} i(b c) i(c)^{-1}$ hence $i(a) \rho^{*} \rho^{i(b)}$. Therefore $i(a) \rho^{*} i(b)$
iff $a \rho b$ for $a \neq a, b \varepsilon s$.
 $\alpha, \beta \in K$ be arbitary. Suppose that $\alpha \rho^{*} \beta$. Then there exist $a, b \varepsilon S \backslash\{0\}$ such that $x a \rho z b$ and ya ρ wb. Thus $i(x a) \rho^{* *} i(z b)$ and $i(y a) \rho^{* *} i(w b)$, so $i(y a)^{-1}=i(y a)^{-1} i(w b) i(w b)^{-1} \rho^{* *} i(y a)^{-1} i(y a) i(w b)^{-1}=i(w b)^{-1}$. Hence $\alpha=i(x a) i(y a)^{-1} \rho^{* *} i(z b) i(w b)^{-1}=\beta$. Suppose that $\alpha \rho^{* *} \beta$. There exist $c, d \varepsilon S \backslash\{0\}$ such that $y c=w d$, so $i(y c)=i(w d)$. Since $i(x c)=i(x) i(y)^{-1} i(y c), i(z d)=i(z) i(w)^{-1} i(w d)$ and $\alpha i(y c) \rho^{* *} \beta i(w d)$,
$i(x c) \rho^{* *} i(z d)$, so $x c \rho z d$. Hence $\alpha \rho^{*} \beta$. Hence $\rho^{*}=\rho^{* *}$. Conversely, assume that there exists a unique congruence ρ^{*} on K such that $i(x) \rho^{*} i(y)$ iff $x \rho y$ for all $x, y \in S$. To show that ρ is multiplicatively regular, let $x, y, z \in S$ be such that $x z \rho y z$ and $z \neq 0$. Then $i(x z) \rho^{*} i(y z)$, so $i(x)=i(x z) i(z)^{-1} \rho^{*} i(y z) i(z)^{-1}=i(y)$, thus $x \rho y$. Similarly, if $z x \rho z y$ and $z \neq 0$ then $x \rho y$. Hence we have the theorem.
\#

Corollary 2.35. Let S be a semiring having K as a semifield of quotients, $i: S \rightarrow K$ a quotient embedding and ρ a congruence on S. Then there exists a unique congnuence ρ^{*} on K such that ($i(x) \rho^{*} i(y)$ iff $x \rho y$ for all $x, y \in S$, iff p is multiplicatively regular.

Corollary 2.36. Let R be a ring having K as a skew field of right [left] quotients. Then R hes only two multiplicatively regular congruences (since a skew eield has only two ideals).

Corollary 2.37. Let R be a ring having K as field of quotients. Then R has only two myltiplicatively regular congruences.

Theorem 2.38. Let S be a semiring having K as a skew semifield of right [Ieft] quotients, i $\%$: $\$$ ok a night d left] quofient embedding, A the lattice of multiplicatively regular congruences on S and B the lattice of congruences on K. Then there exists an order isomorphism between A and B.

Proof. Define a map $f: A \rightarrow B$ in the following way : Let $\rho \varepsilon$ A. Then Theorem 2.34 determines a unique $\rho^{*} \varepsilon B$. Define $f(\rho)=\rho^{*}$.

Let $\rho_{1}, \rho_{2} \varepsilon$ A be such that $\rho_{1} \subseteq \rho_{2}$. Let $\alpha, \beta \varepsilon K$ be such that $\alpha \rho_{1}^{*} \beta$. Then $\alpha=i(x) i(y)^{-1}$ and $\beta=i(z) i(w)^{-1}$ where $x, z \varepsilon S$ and $y, w \in S \backslash\{0\}$ and there exist $a, b \varepsilon S \backslash\{0\}$ such that $x a \rho_{1} z b$ and ya $\rho_{1} w b$. Thus xa ρ_{2} zb and ya ρ_{2} wb, hence $\alpha \rho_{2}^{*} \beta$. Therefore $f\left(\rho_{1}\right)=\rho_{1}^{*} \subseteq \rho_{2}^{*}=f\left(\rho_{2}\right)$. A proof similar to the one given in Theorem 2.31 shows that the remainder of this theorem is true.

Corollary 2.39. Let S be a semiring having K as a semifield of quotients, $i: S \rightarrow K$ a quotient embeddings A the lattice of multiplicatively regular congruences on S and B the lattice of congruences on K. Then there exists an order isomorphism between A and B.

Theorem 2.40. Let S be a semiring havingD as a skew ratio semiring of right [left] quotients, if: S riabiánight [left] quotient embedding and ρ a congruence on S. Then there exists a unique congruence ρ^{*} on D such that $\left(i(x) \rho^{*} i(y)\right.$ iff $x p y$ for all $x, y \in S$) iff ρ is multiplicatively regular.

Proof. The proof of this theorem is similar to the proof of

Corollary 2.41 Retosbe semining having m as a fatiosemiring of quotients, $i: S \rightarrow D$ a quotient embedding and ρ a congruence on S. Then there exists a unique congruence ρ^{*} on D such that ($i(x) \rho^{*} i(y)$ iff $x \rho y$ for all $x, y \in S$) iff ρ is multiplicatively regular.

Theorem 2.42. Let S be a semiring having D as a skew ratio semiring of right [left] quotients, i : S \rightarrow D a right [left] quotient embedding,

A the lattice of multiplicatively regular congruences on S and B the lattice of congruences on D. Then there exists an order isomorphism between A and B.

Proof. The proof of this theorem is similar to the proof of Theorem 2.38. \#

Corollary 2.43. Let S be a semiring having D as a ratio semiring of quotients, i : S \rightarrow D quotient embedding, A the lattice of multiplicatively regular congryences on S and B the lattice of congruences on D. Then there exists an orden isomorphism between A and B.

The skew semifield K in Example 2.2 is not a skew field and the skew semifield $K[[x]]$ in Example 2.15 is a skew field. This shows that the skew semifield K orright [left] quotients of a semiring may or may not be a skew fielde whell now give a necessary and sufficient condition on a semining which quarantees that the skew semifield K of right [left] quotients is a skew field.

In [2] the concept of extensiye was defined for commutative semirings witha multiplacative zerod We shallextend this concept to the noncommutative case.

จุหาลงกรณ์มหาวิทยาลัย

Definition 2.44. Let S be a semiring with multiplicative zero 0 . Then S is said to be right [left] extensive iff for all $x \in S$ there exist $\mathrm{a} \varepsilon \mathrm{S}, \mathrm{b} \in S \backslash\{0\}$ such that $\mathrm{xb}+\mathrm{a}=0[\mathrm{a}+\mathrm{bx}=0]$.

Example 2.45. \mathbb{Z} with the usual addition and multiplication is a right and left extensive semiring.

Theorem 2.46. Let S be an additively commutative semiring with a multiplicative zero 0 which is also an additive identity and K a skew semifield of right [left] quotients of S. Then K is a skew field iff S is right [left] extensive.

Proof. Let $i: S \rightarrow K$ be a right quotient embedding. Assume that S is right extensive. To show that K is a skew field, it suffices to show that an additive inverse of α belongs to k for all $\alpha \in$ K. Let $\alpha \in K$. Then $\alpha=i(x) i(y)^{-1}$ where $x \varepsilon S$ and $y \in S \backslash\{0\}$. Since S is night/extensive, there exist a εS and $b \varepsilon S \backslash\{0\}$ such that $x b+a=0$. Since $i(y)^{-1}$ and $i(b)^{-1}$ exist in K, $\alpha+i(a) i(y b)^{-1}=i(x b) i(y b)^{-1+i(a) i(y b)^{-1}=i(x b+a) i(y b)^{-1}=, ~=~}=$ $i(0) i(y b)^{-1}=0$, hence $i(a) i(y b)^{-1}$ is an additive identity of α in k. Conversely, assume that K is a skew field. To show that S is right extensive, let $x \in S$. Then $i(x) \varepsilon K$. There exist a εS and $b \in S \backslash\{0\}$ such that $i(x)+i(a) i(b)^{-1}=0$. Thus $i(x b+a)=\left(i(x)+i(a) i(b)^{-1}\right) i(b)=i(0), s \rho x b+a=0$.

\#

Remark 2.47. In the case that K is a skew field we will call K a skew field of right [left] quotients ofs.9N $\}$
Corollary 2.48 . Let S be an additively comnutative semifing of order > 1 with a multiplicative zero which is also an additive identity. Then a skew field of right [left] quotients of S exists iff
(i) S is multiplicatively cancellative,
(ii) (S, \cdot) satisfies the right [left] Ore condition
and (iii) S is right [left] extensive.

Proof. It follows from Theorem 2.4 and Theorem 2.46.

Corollary 2.49. Let S be an additively commutative semiring of order > 1 with a multiplicative zero which is also an additive identity satisfying properties (i) - (iii) of Corollary 2.48. Then S is additively cancellative.

Theorem 2.50. Every skew ratio semiring can be embedded into a skew semifield such that the multiplicative zero is an additive identity [zero].

Proof. Let D be a skew/ratio semining, Let 0 be a symbol not representing any element of D. Extend + and from D to $D \cup\{0\}$ by $x \cdot 0=0 \cdot x=0$ and $x+0=0+x=x[x+0=0+x=0$ for all $x \in D \cup\{0\}$.
 $f: D \rightarrow D \cup\{0\}$ by $f(x)=x$ for $1, x \in D$. Then f is a monomorphism. Hence we have the theorem.

Corollary 2.51. Let S be a multiplicatively cancellative semiring without a multiplicative zero such that (S, \cdot) satisfies the right [left] Ore condition. Then S can be embedded into a skew semifield such that the multiplicativenzerofs am additive identity [zero].

Proof. It follows from Theorem 2,22 and Theorem 2.50.

Lemma 2.52. Let D be an additively cancellative skew ratio semiring and $|D|>1$. Then $x+y \neq x$ and $y+x \neq x$ for all $x, y \in D$.

Proof. Without loss of generality, suppose that there exist $\mathrm{x}, \mathrm{y} \in \mathrm{D}$ such that $\mathrm{x}+\mathrm{y}=\mathrm{x}$. Then $\mathrm{x}+\mathrm{y}+\mathrm{x}=\mathrm{x}+\mathrm{x}$, so $\mathrm{y}+\mathrm{x}=\mathrm{x}$. Let $z \in D$ be arbitary. Then $z+y+x=z+x$, so $z+y=z$. Let

Let $w \in D$ be arbitary. Then $y w+y w=(y+y) w=y w=y w+y$, so $y w=y . \quad$ Similarly, $w y=y$ for all $w \in D$. Hence y is a multiplicative zero of D, a contradiction.

Theorem 2.53. Let D be an additively cancellative skew ratio semiring. Then the skew semifield $D \cup\{0\}$ such that 0 is an additive identity is also additively cancellative.

Proof. Let $x, y, z \in D \cup\{0\}$ be such that $x+y=x+z$. We must show that $y=z$. If $x, y, z / \varepsilon D$ then $y=z$. If one of x, y, z is 0 then we will considen the following cases :

Case $1 \quad \mathrm{x}=0$. Then
Case $2 \mathrm{y}=0$ or $\mathrm{z}=0$. Without, loss of generality, suppose that $\mathrm{y}=0$.
Then $x=x+z$. By Lemma 2.52,,$z=0$.
Similarly, if $y+x=z+x$ then $y=z$ for all $x, y, z \in D \cup\{0\}$.
Hence $D \cup\{0\}$ is additively cancetlative.

Proposition 2.54 . Let K be an additively commutative skew semifield such that the multiplicative zero 0 is an additive identity. If there exists an $x \in K_{0}\{0\}$ such that $x \|$ has an addahtive fnverse, then every element in K has an additive inverse and K is a skew field.

Proof. Let 9 \& K. Wedmust show that y has an additive inverse.
If $\mathrm{y}=0$ then we are done because $0+0=0$. So assume that $\mathrm{y} \neq 0$.
Let z be an additive inverse of x. Thus $x+z=0$, so
$y+y x^{-1} z=y x^{-1}(x+z)=0$. Hence $y x^{-1} z$ is an additive inverse of y.

Proposition 2.55. Let K be an additively commutative skew semifield such that the multiplicative zero is an additive identity. If K is
not a skew field then ($K \backslash\{0\},+, \cdot)$ is a skew ratio semiring.

Proof. It suffices to show that $\mathrm{x}+\mathrm{y} \varepsilon \mathrm{K} \backslash\{0\}$ for all $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{K} \backslash\{0\}$. Let $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{K} \backslash\{0\}$. Suppose that $\mathrm{x}+\mathrm{y}=0$. Then x is a nonzero element which has an additive inverse. By Proposition 2.54, K is a skew field, a contradiction. Hence $x+y \in K \backslash\{0\}$. Thus ($K \backslash\{0\},+, \cdot$) is a skew ratio semining.
 จุหาลงกรณ์มหาวิทยาลัย

