MICROSCOPIC, MOLECULAR AND SCOPOLAMINE CONTENT EVALUATIONS

 OF DATURA METEL L. VAR. METEL AND DATURA METEL L. VAR. FASTUOSA

Mr. Somchai Issaravanich

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Public Health Sciences College of Public Health Sciences Chulalongkorn University

Academic Year 2012

Copyright of Chulalongkorn University

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR)
เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

การประเมินลักษณะทางจุลทรรศน์ อญูโมเลกุล และ ปริมาณสารสโคโปลามีน ของลำโพงขาว และ ลำโพงกาสลัก

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาวิทยาศาสตร์สาธารณสุข วิทยาลัยวิทยาศาสตร์สาธารณสุข จุพาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2555
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	MICROSCOPIC, MOLECULAR AND SCOPOLAMINE
	CONTENT EVALUATIONS OF DATURA METEL L. VAR.
	METEL AND DATURA METEL L. VAR. FASTUOSA
By	Mr. Somchai Issaravanich
Field of Study	Public Health Sciences
Thesis Advisor	Kanchana Rungsihirunrat, Ph.D.
Thesis Co-advisor	Associate Professor Nijsiri Ruangrungsi, Ph.D.

Accepted by the College of Public Health Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of the College of Public Health Sciences
(Professor Surasak Taneepanichskul, M.D.)

THESIS COMMITTEE

(Associate Professor Sathirakorn Pongpanich, Ph.D.)
\qquad
(Kanchana Rungsihirunrat, Ph.D.)
\qquad
(Associate Professor Nijsiri Ruangrungsi, Ph.D.)

External Examiner
(Assistant Professor Worapan Sitthithaworn, Ph.D.)

สมชาย อิสระวาณิชย์ : การประเมินลักษณะทางจุลทรรศน์ อญูโมเลกุล และ ปริมาณสารสโคโปลามีนของ ลำโพงขาว และ ำโพงกาสลัก (MICROSCOPIC, MOLECULAR AND SCOPOLAMINE CONTENT Evaluations of datura metel L. Var. metel and datura metel l. var. FASTUOSA) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : อ. ดร. กาญจนา รังษีหิรัญรัตน์, อ. ที่ปรึกษาวิทยานิพนธ์ร์วม : รศ. ตร. นิจศิริร เรืองรังษี, 180 หน้า.

ลำโพงขาว และ ลำโพงกาสลักเป็นพืชสมุนไพรในจีนัส Datura ที่พบได้ในเอเชียตะวันออกเฉียงใต้รวมทั้ง ประเทศไทย การแพทย์แผนโบราณมีการใช้ลำโพงเป็นยาขยายม่านตา และใช้ต้านระบบประสาทพาราซิมพาเธติค มานาน ฤทธิ์ทางเภสัชวิทยาของสารอัลคาลอยด์โทรเปนในต้นลำโพงที่พบในส่วนต่างๆ ของพืชทั้งสอง ได้แก่ ไฮออสซีน (สโคโปลามีน) และ ไฮออสไซยามีน หรืออะโทรปีน เนื่องจากข้อมูลเกี่ยวกับพืชทั้งสองชนิดมี ค่อนข้างจำกัดดังนั้นวัตถุประสงค์ของการศึกษยวิจัยนี้เพื่อประเมินคุณลักษณะของลำโพงขาว และ ลำโพงกาสลัก โดยอาศัยเทคนิคทางจุลทรรศน์ และอณูโมเลกุล รวมทั้งปริมาณสารสโคโปลามีนในพืชทั้งสอง. ผลการประเมิน ทางมหทรรศน์พบว่าพืชทั้งสองมีสัณฐานวิทยาที่แตกต่างกัน แต่มีคุณลักษณะทางจุลทรรศน์ของภาคตัดขวางลำ ต้นและเส้นกลางใบที่คล้ายคลึงกัน ค่าคงที่ของใบ (ค่าจำนวนปากใบ ค่าดัชนีปากใบ และค่าอัตราส่วนเซลล์รั้ว) ซึ่งเป็นคุณสมบัติที่สำคัญในการจำแนกชนิดของพืช พบว่ามีความแตกต่างของค่าคงที่ดังกล่าว การเพิ่มปริมาณ สารพันธุกรรมในบริเวณ ITS โดยวิธี PCR ได้ผลผลิต PCR ขนาดประมาณ 670 คู่เบส ซึ่งมีความใกล้เคียง 99-100 เปอร์เซ็นต์ โดยพบความแตกต่างของนิวคลีโอไทด์โพลีมอร์ฟิซึม 2 ตำแหน่งในบริเวณ 5.8 S และ 4 ตำแหน่งใน บริเวณ ITS2 ตำแหน่ง 512 และ 614 ในบริเวณ ITS2 สามารถใช้จำแนกพืชทั้งสองได้ ส่วนการเพิ่มปริมาณสาร พันธุกรรมในบริเวณยีน $r b c \mathrm{~L}$ และ atpB ซึ่งมีขนาด 1.5 กิโลเบส พบว่านิวคลีโอไทด์มีความใกล้เคียง $95-100$ และ 94-99 เปอร์เซ็นต์ ตามลำดับ ปริมาณสารสโคโปลามีนในพืชลำโพงทั้งสอง จากการเปรียบเทียบผลระหว่าง วิธี TLC image และ HPLC พบว่ามีความสัมพันธ์ของปริมาณสารจากการวิเคราะห์ในทิศทางเดียวกันโดยพบ ปริมาณสารสโคโปลามีนมากในส่วนดอกในลำโพงขาว และพบมากในส่วนผลของลำโพงกาสลัก. จากข้อมูล ดังกล่าว คุณลักษณะทางมหทรรศน์ ค่าคงที่ของใบ และเทคนิคทางอณูโมเลกุลสามารถใช้จำแนกลำโพงทั้งสองที่ มีความใกล้เคียงกัน และพืชทั้งสองดังกล่าวมีศักยภาพในการใช้เป็นแหล่งผลิตสารสโคโปลามีน

สาขาวิชาวิทยาศาสตร์สาธารณสุข...ลายมือชื่อนิสิต.
ปีการศึกษา. \qquad 2555. \qquad ลายมือชื่อ อ. ที่ปรึกษาวิทยานิพนธ์หลัก. \qquad ลายมือชื่อ อ. ที่ปรึกษาวิทยานิพนธ์ร่วม. \qquad
\# \# 5379310353 : MAJOR PUBLIC HEALTH SCIENCES
KEYWORDS : DATURA METEL L. VAR. METEL/ DATURA METEL L. VAR.
FASTUOSA/ MICROSCOPIC/ MOLECULAR/ SCOPOLAMINE
SOMCHAI ISSARAVANICH : MICROSCOPIC, MOLECULAR AND
SCOPOLAMINE CONTENT EVALUATIONS OF DATURA METEL L. VAR.
METEL AND DATURA METEL L. VAR. FASTUOSA.
THESIS ADVISOR : KANCHANA RUNGSIHIRUNRAT, Ph.D., THESIS COADVISOR: ASSOC PROF NIJSIRI RUANGRUNGSI, Ph.D., 180 pp.

Datura metel L. var. metel and Datura metel L. var. fastuosa (Thai name Lamphong- Khaao and Lam-Phong-Ka-Sa-Lak, respectively) are indigenous herb in genus Datura, that can be found in Southeast Asia, including Thailand. They have a long history of usage in folkloric medicine as parasympatholytic and mydriatic agents. Their pharmacological actions are due to tropane alkaloids, namely hyoscine (scopolamine) and hyoscyamine/atropine, presented in all parts of the plant. Due to the limited data in these medicinal plants, the purpose of this study is to evaluate the characteristics of D. metel L . var. metel and D. metel L. yar. fastuosa by microscropic and molecular technique, including their scopolamine contents. According to the results, macroscopic and microscopic analysis of these plants revealed the different morphology and almost similar of stem and midrib cross section. The constant values of leaves (stomatal number, stomata index and palisade ratio), which are the important property for species identification showed different constant numbers. The PCR amplification of ITS region generated the PCR product approximately 670 bp in size, which indicated 99-100\% homology. There are two polymorphisms within the 5.8 S region, four polymorphisms within the ITS2. The two positions of single nucleotide polymorphism (SNP) were shown at positions 512 and 614 of ITS2 region could be classified these closely related plants.The PCR amplification of $r b c \mathrm{~L}$, and $a t p \mathrm{~B}$ region generated the PCR product approximately 1.5 kp in size, which indicated $95-100 \%$ and $94-99 \%$ homology, respectively. In this study, the scopolamine contents of two varieties of D. metel L . were compared by TLC image and HPLC method. The comparison of two methods showed good correlation. The results of this study showed the most of scopolamine content in flower part of D. metel L. var. metel, while D. metel L.var. fastuosa showed the most of scopolamine content in fruit part, respectively. According to these evidences, the combinations of macroscopic, constant values of leaves and molecular method are able to authenticate these closely related plants and both of them have a potency to be a source of scopolamine production.

Field of Study : Public Health Sciences.....Student's Signature.
/Academic Year :2012...................Advisor's Signature.
Co-advisor's Signature.

ACKNOWLEDGEMENTS

This work wouldn't have been successfully completed without the invaluable supervision I received from Dr. Kanchana Rungsihirunrat, my thesis advisor and Associate Professor Dr. Nijsiri Ruangrungsi, my thesis co-advisor. I am very grateful to them for their times, advices, guidances, valuable suggestions, encouragements and patience throughout this study.

I would like to thank Mr. Niran Vipunngern, Faculty of Pharmacy, Rungsit University for the suggestion and kind assistance in part macroscopic and microscopic and drawing techniques. Dr. Chanida Palanuvej, College of Public Health Sciences, Chulalongkorn University for her kindness and valuable suggestion throughout this study.

I also wish to express my profound gratitude to Professor Dr. Surasak Taneepanichskul, M.D., Dean of College of Public Health Sciences, Chulalongkorn University for granting me throughout this study.

I would like to thank Research Fund; $90^{\text {th }}$ Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) and the Herbal Remedies and Alternative Medicine Task Force of STAR: Special Task Force for Activating Research under 100 Years Chulalongkorn University Fund for financial support.

I would like to thank to all of my friends, staffs of College of Public Health Sciences, Chulalongkorn University, and other persons whose names have not been mentioned here for their help and advice throughout this study.

Gratitude is grateful to the thesis committee members, Associate Professor Dr. Sathirakorn Pongpanich, and Assistant Professor Dr. Worapan Sitthithaworn for their important and constructive suggestion in finalizing this thesis.

Most of all, my extreme grateful is to my parents and Issaravanich family for their love, supporting, understanding and encouragements. This success is dedicated to them.

CONTENTS

Page
ABSTRACT (Thai) iv
ABSTRACT (English) V
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES xii
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xix
CHAPTER
I INTRODUCTION 1
Background and significance of the study 1
Research questions 2
Objectives of the study 2
Contributions of the study 3
Conceptual framework 4
II REVIEW OF RELATED LITERATURE 5
Botanical aspect of Datura metel L 5
Taxonomy of the genus Datura 8
Datura metel L 8
Plant description 9
Distribution 10
Chemical constituents studies from D.metel L 10
Traditional use 11
Medicinal and pharmacological activities 12
Method in plant authentication 13
Macroscopic evaluation 13
Microscopic evaluation 14
Determination of stomatal number and stomatal index 14
Stomatal number. 15
Stomatal index 16
Palisade ratio 16
CHAPTER Page
Molecular evaluation 17
Nuclear genome 18
Ribosomal DNA (rDNA) 19
Internal Transcribed Spacers (ITS) 19
Chloroplast genome 20
The atpB gene 21
The $r b c \mathrm{~L}$ gene 21
The matK gene and trnK gene 22
Mitochondrial genome 22
The polymerase chain reaction 23
Hybridization-based method 25
PCR-based method 25
DNA sequencing-based method 26
Scopolamine evaluation 28
Tropane alkaloids 28
Biosynthesis of tropane alkaloids 30
Determination of tropane alkaloids 33
Extraction of tropane alkaloids 33
Methods of tropane alkaloids analysis. 34
III MATERIALS AND METHODS 37
Part I. Macroscopic and microscopic evaluation 37
Macroscopic evaluation 37
Plant sample 37
Microscopic evaluation. 37
Plant sample. 37
Stomatal number and stomatal index 39
Palisade ratio 41
Stem and midrib cross section 42
Statistic analysis 43
Part ll.Molecular evaluation 44
Plant sample 44
CHAPTER Page
DNA extraction 46
DNA qualification and DNA amplification by PCR 47
DNA qualification 48
DNA amplification 49
The ITS region 49
The $r b c \mathrm{~L}$ gene 50
The $a t p B$ gene 51
Detection of PCR product 51
Purification of PCR product. 52
DNA sequencing analysis. 52
Part III. Scopolamine content evaluation 53
Determination of scopolamine content. 54
Plant sample. 54
Sample preparation 54
Sample extraction. 55
Thin layer chromatography (TLC) image analysis. 57
Method validation for TLC image analysis 57
Standard calibration curve, linearity, and detection range. 57
Accuracy 58
Precision 58
Limit of detection and limit of quantification (LOD and LOQ) 59
High performance liquid chromatography (HPLC) analysis. 59
Method validation for HPLC analysis. 61
Standard calibration curve, linearity, and detection range 61
Accuracy 62
Precision 62
Limit of detection and limit of quantification (LOD and LOQ) 63
Statistic analysis 63
IV RESULTS 64
CHAPTER Page
Part I. Macroscopic and microscopic evaluation of D.metel L. var. metel and D.metel L. var. fastuosa 64
Macroscopic evaluation 64
Microscopic evaluation. 68
Stomatal number, stomatal index, and palisade ratio 70
Stem and midrib cross section 76
Part II. Molecular evaluation of D.metel L. var. metel and D.metel L.var. fastuosa.81
ITS amplification. 81
$r b c \mathrm{~L}$ amplification 82
atpB amplification. 83
Part III. Scopolamine evaluation of D.metel L. var. metel and D.metel L. 86
var. fastuosa. 86
Preparation of crude extract for scopolamine determination. 88
Determination of scopolamine content by TLC image method 89
Method validation 89
Linearity and detection range 89
Accuracy 90
Precision 91
Limit of detection (LOD) and limit of quantitation (LOQ). 93
Determination of scopolamine content by HPLC method 94
Method validation 95
Linearity and detection range 95
Accuracy 96
Precision 96
Limit of detection (LOD) and limit of quantitation (LOQ). 98
Method comparison between TLC image analysis and HPLC analysis 99
V DICUSSION AND CONCLUSION 102
REFFERENCES. 107
APPENDICES 120
CHAPTER Page
APPENDIX A 121
APPENDIX B 140
APPENDIX C. 177
VITA 180

LIST OF TABLES

Table Page
1 The dichotomous key of classifying the different of Datura species. 6
2 Alkaloids found in D.metel L 11
3 D. metel L., plant in traditional medicine 12
4 The universal primers have been designed for ITS amplification 20
5 Fresh aerial part authentic samples 44
6 Primers used for genomic sequence amplification and sequencing. 49
7 HPLC conditions for determination of scopolamine content 60
8 The comparison of macroscopic character of D. metel L 65
9 The average leaf measurement values of D. metel L. var. metel from three locations (mean $\pm \mathrm{SD}, \mathrm{n}=90$) 70
10 The average leaf measurement values of D. metel L. var. fastuosa from three locations (mean $\pm \mathrm{SD}, \mathrm{n}=90$) 70
11 The independent samples test of upper stomatal number of D. metel L. var. metel and D. metel L. var. fastuosa. 71
12 The independent samples test of lower stomatal number of D. metel L . var. metel and D. metel L. var. fastuosa 72
13 The independent samples test of upper stomatal index of D. metel L. var. metel and D. metel L. var. fastuosa 73
14 The independent samples test of lower stomatal index of D. metel L. var. metel and D.metel L. var. fastuosa. 74
15 The independent samples test of palisade ratio of D. metel L. var. metel and D. metel L. var. fastuosa 75
Table Page
16 The alignments of ITS sequences of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L 84
17 Yield of crude extract of D. metel L. var. metel and D. metel L.var. fastuosa from six locations ($\% \mathrm{w} / \mathrm{w}$ of dry weight) 86
18 Scopolamine content of each sample of D. metel L. var. metel and D. metel L.var. fastuosa from six different locations by TLC image method. 88
19 The polynomial data of scopolamine by TLC image analysis $(\mathrm{n}=7)$. 89
20 The recovery of scopolamine by TLCimage analysis ($\mathrm{n}=3$) 90
21 The repeatability (within day) of scopolamine by TLC image analysis ($\mathrm{n}=3$) 91
22 The intermediate precision (between days) of scopolamine by TLC image analysis ($\mathrm{n}=3$). 92
23 Scopolamine contents of each sample of D. metel L. var. metel and D. metel L. var. fastuosa from six different locations by HPLC method. 94
24 The linear data of scopolamine by HPLC analysis ($\mathrm{n}=3$) 95
25 The recovery of scopolamine by HPLC analysis ($\mathrm{n}=3$) 96
26 The repeatability (within day) of scopolamine by HPLC analysis ($n=3$).. 97
27 The intermediate precision (between days) of scopolamine by HPLC analysis ($\mathrm{n}=3$). 97
28 Comparison of scopolamine contents of D. metel L. var. metel and D. metel L. var. fastuosa from six different locations by TLC image method and HPLC method. 99
29 Paired samples t-test of TLC image method and HPLC method. 100
30 Stomatal number and stomatal index of D. metel L. var. metel (upper epidermis), Location: The Somdej Phra Thep Raratanarajsuda Medicinal Plants Garden, Petroleum Authority of Thailand, Rayong province. 122

Table

31 Stomatal number and stomatal index of D. metel L. var. metel (lower epidermis), Location: The Somdej Phra Thep Raratanarajsuda Medicinal Plants Garden, Petroleum Authority of Thailand, Rayong province.

32 Stomatal number and stomatal index of D. metel L. var. metel (upper
epidermis), Location: Sirirukkachat garden, Faculty of Pharmacy,
Mahidol University, Salaya, Nakhonpathom province.

33 Stomatal number and stomatal index of D. metel L. var. metel (lower epidermis), Location: Sirirukkachat garden, Faculty of Pharmacy, Mahidol University, Salaya, Nakhonpathom province.

34 Stomatal number and stomatal index of D. metel L. var. metel (upper
epidermis), Location: Bang Ra Jan district, Singburi province

35 Stomatal number and stomatal index of D. metel L. var. metel (lower
epidermis), Location: Bang Ra Jan district, Singburi province.

36 Palisade ratio of D. metel L. var. metel, Location: The Somdej Phra Thep Raratanarajsuda Medicinal Plants Garden, Petroleum Authority of Thailand, Rayong province.

37 Palisade ratio of D. metel L. var. metel, Location: Sirirukkachat garden,
Faculty of Pharmacy, Mahidol University, Salaya, Nakhonpathom
province
38 Palisade ratio of D. metel L. var. metel, Location: Bang Ra Jan district, Singburi province. 130

39 Stomatal number and stomatal index of D. metel L. var. fastuosa (upper
epidermis), Location: Chatuchak Plant Market, Bangkaen district,
Bangkok province. 131

40 Stomatal number and stomatal index of D. metel L. var. fastuosa (lower
epidermis), Location: Chatuchak Plant Market, Bangkaen district,
Bangkok province 132

41 Stomatal number and stomatal index of D. metel L. var. fastuosa (upper
epidermis), Location: Bang Nam Priao district, Chachoengsao province...
Table Page
42 Stomatal number and stomatal index of D. metel L. var. fastuosa (lower epidermis), Location: Bang Nam Priao district, Chachoengsao province.. 134
43 Stomatal number and stomatal index of D. metel L. var. fastuosa (upper epidermis), Location: Muang district, Chonburi province 135
44 Stomatal number and stomatal index of D. metel L. var. fastuosa (lower epidermis), Location: Muang district, Chonburi province 136
45 Palisade ratio of D. metel L. var. fastuosa, Location: Chatuchak Plant Market, Bangkaen district, Bangkok province 137
46 Palisade ratio of D. metel L. yar. fastuosa, Location: Bang Nam Priao district, Chachoengsao province. 138
47 Palisade ratio of D. metel L. var. fastuosa, Location: Muang district, Chonburi province. 139

LIST OF FIGURES

Figure Page
1 Comparison the visible parts between D. metel L. var. metel (A: flower, C: fruit) and D. metel L. var. fastuosa (B: flower, D: fruit) 9
2 Surface view of epidermis illustrates four patterns of stomata type. a: anomocytic; b: anisocytic; c: diacytic; d: paracytic (WHO, 1998). 15
3 Four upper contiguous epidermal cells with underlying palisade cells in surface view. 17
4 The ITS region which separated by intergenic spacer (IGS) 19
5 Structure of $r b c \mathrm{~L}$ gene and $a t p \mathrm{~B}$ gene including the DNA (intergenic region) flanking between $a t p \mathrm{~B}$ and $r b c \mathrm{~L}$ gene 21
6 Structure of matK gene which flanking between trnK gene. 22
7 Illustration of the polymerase chain reaction (PCR) 24
8 Automated DNA sequencing 28
9 Structural formular of tropane, tropic acid, tropanol, scopine, hyoscine (scopolamine) and hyoscyamine. 30
10 Biosynthesis of scopolamine from ornithine. 32
11 Route for the formation of hyoscine from hyoscyamine (partial formulae).. 33
12 Zeiss compound microscope model Axioskop attached with digital camera 39
13 The upper epidermal layer of D.metel L. leaf in the area of $0.5 \mathrm{~mm}^{2}$ (20X magnification) 40
14 The lower epidermal layer of D.metel L. leaf in the area of $0.5 \mathrm{~mm}^{2}$ (20X magnification) 41
15 The round, closely packed palisade cells in the boundary of four clear continuous epidermal cells of D.metel L. leaf (40X magnification). 42
16 D.metel L. stem cross section (10X magnification) 43
Figure Page
17 D.metel L. midrib cross section (10X magnification) 43
18 Diagram of the ITS region showing the position of primers and the predicted 750 bp PCR product. 50
19 Diagram of the $r b c \mathrm{~L}$ region showing the position of $r b c \mathrm{~L}$ _F (5 'end of gene) and $r b c \mathrm{~L}$ _ R primers (100 bp downstream of the termination codon), and the predicted 1.5 kb PCR product. 50
20 Diagram of the $a t p B$ region showing the predicted 1.5 kb PCR product. 51
21 Schematic of alkaloids extraction from D.metel L 56
22 High performance liquid chromatography (HPLC) Model LC-20A series with LC solution workstation software (Shimadzu, Japan) 61
23 Whole plant of D. metel L. yar. metel with flower (a), fruiting branch (b), and seed (c). 66
24 Whole plant of D. metel L. var. fastuosa with flower (a), fruiting branch (b), and seed (c) 67
25 Epidermis of the leaf of D. metel L. var. metel with 20x magnification 68
26 Epidermis of the leaf of D. metel L. var. fastuosa with 20x magnification.. 69
27 Stem cross section of Datura metel L. var. metel. 77
28 Stem cross section of Datura metel L. var. fastuosa 78
29 Midrib cross section of Datura metel L. var. metel 79
30 Midrib cross section of Datura metel L. var. fastuosa 80
31 The ITS amplification products in 1.5\% agarose gel electrophoresis. 81
32 The $r b c \mathrm{~L}$ amplification products in 1.5\% agarose gel electrophoresis 82
33 The atpB amplification products in 1.5\% agarose gel electrophoresis. 83
34 Phylogenetic relationship of nucleotide sequences of ITS region of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L., (TNF111001 D. arborea L. was used as out group). 85
Figure35 TLC fingerprint of alkaloid extracted of D.metel L. var. metel............... 87
36 The calibration curve of scopolamine by TLC image analysis 90
37 Calibration curve of standard scopolamine by HPLC analysis 9638 Comparison of nucleotide sequence of ITS (ITS1-5.8S- ITS2) region ofrDNA gene of D.metel L. var. metel, D.metel L. var. fastuosa, and hybridD.metel L. Highlight indicate 5.8S region, * indicate clustal consensus,- indicate indels, (TNF111001 was assigned as outgroup sample)............149
39 Comparison of nucleotide sequence of rbcL gene of D.metel L. var. metel,D.metel L. var. fastuosa, and hybrid D.metel L., (TNF111001 wasassigned as outgroup sample) * indicate clustal consensus, - indicateindels.162
40 Comparison of nucleotide sequence of $a t p \mathrm{~B}$ gene of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L., (TNF111001 was assigned as outgroup sample) * indicate clustal consensus, - indicate indels. 175
41 Processing of TLC image analysis by image J software: (a) TLC chromatogram; (b) converting the image to greyscale; (c) chromatogram profiles obtained from the converting image. (From left to right lanes: standard scopolamines $5-50 \mu \mathrm{~g} /$ spot and triplicate of two samples.) TLC chromatogram showed the spot of scopolamine at the retention factor $\left(\mathrm{R}_{\mathrm{f}}\right)$ of 0.37 , which developed in toluene: ethyl acetate: diethylamine (7:2:1 v / v) 178
42 HPLC chromatogram pattern of standard scopolamine hydrocloride (a) and crude extracted of D.metel L. (b) HPLC chromatogram showedscopolamine peak at the retention time $\left(\mathrm{R}_{\mathrm{t}}\right)$ of 5.34 min .179

LIST OF ABRIVIATIONS

${ }^{0} \mathrm{C}$	$=$ degree Celsius
$\mu \mathrm{g}$	$=$ microgram
$\mu \mathrm{g} / \mu \mathrm{l}$	$=$ microgram per microliter
$\mu \mathrm{g} / \mathrm{spot}$	$=$ microgram per spot
$\mu \mathrm{l}$	$=$ microliter
$\mu \mathrm{m}$	$=$ micrometer
$\mu \mathrm{M}$	$=$ micromolarity
ACN	$=$ acetonitrile
adh	$=$ alcohol dehydrogenase
AFLP	$=$ Amplified Fragment Length Polymorphism
AOAC	$=$ Association of Official Agricultural Chemists
AP-PCR	$=$ Arbitrarily Primed PCR
AR	$=$ analytical reagent grade
ArgD	$=$ arginine decarboxylase
ARMS	$=$ amplification refractory mutation system
ATP	$=$ adenosine triphosphate
$a t p B$	$=$ ATP synthase beta subunit
BKF	$=$ Forrest Herbarium Thailand ${ }^{\text {a }}$ (\%
bp	$=$ base pair
CE	$=$ Capillary Electrophoresis
CHCl_{3}	$=$ chloroform
cm	$=$ centimeter
cpDNA	$=$ chloroplast DNA
CTAB	$=$ cetyltrimethylammonium (cetrimonium) bromide
DAF	$=$ DNA Amplification Fingerprinting
DALP	$=$ Direct Amplification of Length Polymorphism
DAMD	$=$ Direct Amplification of Minisatellite-region DNA
dATP	$=$ deoxyadenosine triphosphate
dCTP	$=$ deoxycytidine triphosphate
ddNTPs	$=$ dideoxy nucleoside triphosphates

dGTP	$=$ deoxyguanosine triphosphate
DNA	$=$ deoxyribonucleic acid
dNTPs	$=$ deoxyribonucleotide triphosphate
dsDNA	$=$ double stranded DNA
dTTP	$=$ deoxythymidine triphosphate
EDTA	$=$ ethylenediaminetetraacetic acid
ETS	$=$ external transcribed region
g	$=$ gram
gapA	$=$ glyceraldehydes-3-phosphate dehydrogenase
GC	$=$ Gas Chromatography
GC-MS	$=$ Gas Chromatography-Mass Spectrometry
H6H	$=$ hyoscyamine 6 β-hydroxylase
HCl	$=$ hydrochloric acid
HPLC	$=$ High Performance Liquid Chromatography
HPTLC	$=$ High Performance Thin Layer Chromatography
ICH	$=$ International Conference on Harmonisation
IGS	$=$ intergenic spacer
ISSR	$=$ Inter-Simple Sequence Repeat
ITIS	$=$ Integrated Taxonomic Information System
ITS	$=$ intergenic transcribed spacer
KCl	$=$ potassium chloride
$\mathrm{KH}_{2} \mathrm{PO}_{4}$	$=$ potassium dihydrogen orthophosphate
kp	$=$ kilobase
LC-MS	$=$ Liquid Chromatography-Mass Spectrometry
LOD	$=$ limit of detection
LOQ	$=$ limit of quantification
m	$=$ meter
M	$=$ molarity
matK	$=$ maturase K
mg	$=$ milligram
mg / g	$=$ milligram per gram
$\mathrm{mg} / \mathrm{ml}$	$=$ milligram per milliliter

MgCl	$=$ magnesium chloride
min	$=$ minute
ml	$=$ milliliter
$\mathrm{ml} / \mathrm{min}$	$=$ milliliter per minute
mm	$=$ millimeter
mM	$=$ milimolarity
mm^{2}	$=$ square millimeter
mtDNA	$=$ mitochondrial DNA
N	$=$ normality
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$=$ sodium sulphate
NCBI	$=$ National Center for Biotechnology Information
nDNA	$=$ nuclear DNA
$\mathrm{NH}_{4} \mathrm{OH}$	$=$ ammonium hydroxide
nm	$=$ nanometer
NTS	$=$ non-transcribed spacer
ODS	$=\text { octa decyl silane }$
OrnDC	$=$ ornithine decarboxylase
PCR	$=$ Polymerase Chain Reaction
PCR-RFLP	$=$ Polymerase Chain Reaction-Restriction Fragment Length
	Polymorphism ณัมหาวิทยาลัย
PDA	$=$ photodiode array detector
pgi	$=$ phosphoglucose isomerase
PMT	$=$ putrescine N -methyltransferase
PTFE	$=$ polytetrafluoroethylene
r^{2}	$=$ correlation coefficient
RAPD	$=$ Random Amplified Polymorphic DNA
$r b c \mathrm{~L}$	$=$ ribulose 1, 5 bisphosphate carboxylase/oxygenase
rDNA	$=$ ribosomal DNA
$\mathrm{R} f$	$=$ retention factor
RNA	$=$ ribonucleic acid
rpm	$=$ round per minute
RSD	$=$ relative standard deviation

Rt	$=$ retention time
SCAR	$=$ Sequence Characterized Amplified Polymorphic
SD	$=$ standard deviation
sec	$=$ second
SNP	$=$ statistical package for the social sciences
SPSS	$=$ Single Strand Conformation Polymorphism
SSCP	$=$ Single Sequence Repeat
SSR	$=$ tris-boric EDTA buffer
Taq	$=$ tris-EDTA buffer
TBE buffer	
TE buffer	$=$ Thin Layer Chromatography
TIF	$=$ temperature for annealing
TLC	$=$ traditional Chinese medicine
Tm	$=$ tropane alkaloids
TMC	$=$ tropinone reductase I
TPAs	$=$ ultraviolet
TR-I	$=$ volt
TR-II	$=$ volume
UV	$=$ volume by volume
V	$=$ weight by weight
v	World Health Organization volume
v/v	mean
w/w	WHO
\bar{X}	

CHAPTER I
 INTRODUCTION

1 Background and Significance of the Study

Lamphong (Thorn Apples) is a general name for Datura metel L. in Thailand. It is an annual herb or perennial undershrub belonging to the family Solanaceae or Nightshade family and has a long history usage in Thai traditional medicine. The Wat Pho texts mention Datura as a remedy for many ailments. Powder from the dried seeds of the Datura plant is used in small doses to treat fever and as a cerebral tonic. The flower is dried and smoked by asthmatics as a bronchodilator and also curbs nausea. Decoction of the root is also used to treat asthma, as well as bronchitis and cough. Decoction of the leaves is used traditionally to treat mucous or blood in the stool and the juice of the fruit is administered in drops to treat infections of the ear (Punyarajun and Tipduangta, 1981; Salguero, 2003).

All part of this plant contains chiefly tropane alkaloids, hyoscine (also known as scopolamine), hyoscyamine, datumetine and atropine. According to these tropane alkaloids, scopolamine is the main constituents and used worldwide in medicine as mydriatic, anticholinergic and parasympatholytic agents that act on the parasympathetic nervous system (Alexander et al., 2008). Because of its widespread occurrence throughout Thailand, it may be considered as an attractive source for the production of medicinally useful tropane alkaloids, particularly scopolamine (Dechatiwongse et al., 1993). These are several methods for analysis of tropane alkaloids including thin layer chromatography (TLC), gas chromatography (GC), high performance liquid chromatography (HPLC), and capillary electrophoresis (CE). Each method has their advantage and disadvantage aspect. Thus development of rapid and simple analytical methods is interested (Tantivatana et al., 1978; 7. Benslimani et al., 2011; Kursinszki et al., 2005; Cherkaoui et al., 1997).

There are two varieties of D. metel L., the white variety called Datura metel L. var. metel (or Lamphong Khaao) and the purple variety called Datura metel L. var. fastuosa (or Lamphong Kaa-sa-lak) (Smitinand, 1980). They are widely distributed in

South America, tropical area especially Asia and also in Thailand (Avery et al., 1959). Although these two varieties of D. metel L. commonly have highly variable morphological characteristics, identification based on morphology is not always conclusive in process material. The use of DNA technology is considered because of the uniqueness of genetic information within the species. The identification using molecular marker has been widely application in medicinal plant variation. It may be necessary to employ more than one DNA region to attain species or variety level discrimination. Combination of two or more candidate DNA regions to yield variety level unique identification is now needed (Houghton and Mukherjee, 2009; สุชาดา, 2553).

In order to clarify whether there are any different between these two varieties of Datura metel L. collected in Thailand, microscopic evaluation of transverse section and leaf measurements, molecular evaluation of three candidate DNA markers (ITS, $r b c \mathrm{~L}$ and $a t p \mathrm{~B}$) and scopolamine content evaluation by TLC image method and HPLC method were evaluated and compared.

2. Research Question

2.1 Do the differences of leaf measurement (stomatal number, stomatal index and palisade ratio) between two varieties D. metel L. can be distinguished by microscopic evaluation method?
2.2 Do the differences of Internal Transcribe Spacer (ITS), rbcL and atpB sequences of the two varieties plant can be discriminated by molecular evaluation?
2.3 Do the differences of scopolamine content of the two varieties D. metel L . can be distinguished by phytochemical evaluation?

3. Objectives of the Study

3.1 To study of leaf constant value of stomatal number, stomatal index and palisade ratio between D. metel L. var. metel and D. metel L. var. fastuosa
3.2 To study the ITS, rbcL and atpB sequence between D. metel L. var. metel and D. metel L. var. fastuosa
3.3 To study the scopolamine content by thin layer chromatography (TLC) image and high performance liquid chromatography (HPLC) method between D. metel L. var. metel and D. metel L. var. fastuosa

4. Contributions of the study

4.1 Evaluate of leaf measurements value which are composed of stomatal number, stomatal index and palisade ratio can be used for discriminating and comparing the differences between D. metel L. var. metel and D. metel L. var. fastuosa.
4.2 Sequence variation of ITS, rbcL and $a t p B$ can be developed for further study such as PCR-RFLP, DNA fingerprinting, DNA barcode and submitted to GenBank for public nucleotide data searching.
4.3 The scopolamine content of the two varieties of D. metel L . using thin layer chromatography (TLC) image and high performance liquid chromatography (HPLC) analysis can be used as phytochemical fingerpringting.

5. Conceptual framework

Samples collection

D. metel L.var. metel and D. metel L.var. fastuosa from different sources of Thailand.

Macroscopic and Microscopic evaluation	Molecular evaluation	Scopolamine content evaluation
1.Macroscopic characterization 2.Microscopic characterization 2.1 Transverse section of plant 2.2 Leaf measurements	DNA sequencing 1. ITS regions 2. rbcL gene 3.atpB gene	1. Thin Layer Chromatography (TLC) Image Analysis 2. High Performance Liquid Chromatography (HPLC) Analysis
\downarrow	\downarrow	\downarrow
Analyzing and interpreting the obtained data		

CHAPTER II

REVIEW OF RELATED LITERATURE

1. Botanical aspect of Datura metel L.

The genus Datura belongs to the tribe Datureae and the family Solanaceae. This family is also extremely important as a source of drugs in medicine, pharmacology but many are poisonous when used in excess. The generic name of Datura was first used by Linnaeus (1737). This genus comprises of $10-12$ species occurring the tropical and warm temperature regions of the world (Avery et al., 1959). Of these, several are found in warmer part of the globe and several others are occasionally cultivated for their great trumpet-like odorous flowers but some are widespread weeds. Datura metel L . is the most common garden Datura, also run wild and naturalized. The plant is found in open waste land throughout Thailand. It occurs in all parts of Thailand even in the waste land and roadside (Ratana Teeyapant, 1987).

In 1753, Linnaeus wrote his first description about Datura metel L and validly published.in his first edition of Species Plantarum. It is based on the Hortus Cliffortianus name. He stated that it came from Asia and Africa and has spread to all other parts of the world (Avery et al., 1959).

According to Safford (1921) the member of genus Datura were divided into four sections; I. Stramonium II. Dutra III. Ceratocaulis and IV. Brugmansia (Safford, 1921).

Section I. Stramonium (Tournefort) Bernhardi.
The species belonging to this section were
D. stramonium L.

- D. stramonium L. var. tatula
- D. stramonium L. var. inermis
- D. stramonium L. var. laevis
- D. stramonium L. var. bertolonii
D. ferox L. (synonym : D. Stramonium ferox Boccone.)
D. quercifolia H.B.K.

Section II. Dutra Bernhardi
Six species belong to this section were
D. pruinosa Greenm.
D. leichhardtii Muell.
D. meteloides DC. in Dunal.
D. metel L.

- D. metel L. var. fastuosa
- D. metel L. var. metel (synonym : D. alba Numph. Ex. Nees.)
D. discolor Bernh.
D. innoxia Mill .

Section III. Ceratocsulis (Spach.) Bernhardi.
There is only the single species in this section

D. Ceratocaulis Ort.

Section IV. Brugmansia (Persoon) Bernhardi.

The species forming the section Brugmansia were first placed in a distinct genus by Persoon (1805). The taxonomy of the Brugmansia is rather complicated. They are widely cultivated as ornamentals. Its range of distribution is widely spread in tropical and subtropical regions. They produce large, white or colored trumpet-shaped flowers.

In 1983, Hammer, Romeike, and Titel worked out a dichotomous key. This key also enables the plant enthusiast to classify the different species with relative certainty. The properties used for classification are explained briefly below:

Table 1. The dichotomous key of classifying the different of Datura species.

If this statement is true	Then, go to	
1	Plants are like trees, flowers pendulous or nodding	Brugmansia
1	Plants are wood-like, partly woody flowers are upright	2
2	Fruits hang downwards	3
2	Fruits are upright sec. Datura	8
3	Fruits are bald, when ripe fall apart irregularly sec. Ceratocaulis	D.ceratocaula
3	Fruits are spiny or have conical humps sec. Datura	4
4	Fruits open regularly, four flaps	D.discolor
4	Fruits, when ripe, fall apart irregularly; rarely fall as a whole	5
5	Fruits have conical humps	D.metel
	Flowers are white or yellow	a
	Flowers are violet to red (at least partly)	c
	a Flowers are simple, white	var. metel
	a' Flowers are double	b
	b Flowers are white	var. muricata
	b' Flowers are yellow	var. chlorantha

c Flowers are single violet var. rubra
violetred
f. rubra
f. sanguinea
c' Flowers are double
d Flowers are single color, violet or red var. obscura violet f. obscura red
f. atropurpurea
d' Flowers (outer) are violet or red,
(inner) whitevar. fastuosa
(outer) violet f. fastuosa(outer) red
f. malabarica
5' Fruits usually have sharp piercing spines6
6 Flowers are relatively small, up to 3 in (7 cm) long, usually few D. leichhardtii opening
Plants are usually taller than 18 in (0.5 m), leayes and shoots are lightly furry ssp. leichhardtii
Plants are not usually taller than 18 in $(0.5 \mathrm{~m})$, leaves and shoots
aressp. pruinosalightly furry
6. Flowers are relatively large, more than 4 in $(10 \mathrm{~cm})$ long7
7 Interacuminal peak is extremely short, flower edge is evenlyrounded,flowers in upper section are usually violet or pale violet, seeds areD. wrightii
yellowish
7' Interacuminal peak is longer, flowers edge is wavy, seeds aremedium brownD. inoxia
8 Fruits is either bald or covered with spines, all of which are almost the same length D. stramonium
a Plants are green, flowers are white b
a' Plants are anthocyanin colored, flower are violet c
b Fruits is spiny (sometimes bald and spiny fruit on one plant) var. stramonium
Fruits is all spinyBald and spiny fruit on one plant
f. stramoniumf.
labilis
b' Fruit without spinesvar. inermis
c Fruit spinvar. tatula
Anthocyanin coloring is less noticeable f. tatula
Anthocyanin coloring is very noticeable f. bernhardii
c' Fruit does not have spines var. godronii
8' Spines are very strong, longer in upper part of the fruit 9
9 Upper spines are almost as long as the fruit capsule, leaves are toothed irregularly, undulated D. ferox
${ }^{9}$ ' Upper spines are about a third of the length of the fruit, leaves deeply D. quercifolia undulated, lobed

[^0]
Taxonomy of the genus Datura

The taxonomic hierarchy of the genus Datura can be classified as follow: (Integrated Taxonomic Information System, ITIS; The NCBI taxonomy database; [Online] Available from http://www.itis.gov/servlet/SingleRpt/SingleRpt?search topic=TSN\&search value=30513 [2012, July 26].

Kingdom Plantae
Subkingdom Viridaeplantae
Infrakingdom Streptophyta
Division Tracheophyta
Subdivision $\underbrace{\text { Spermatophytina }}_{\text {Infradivision Angiospermae }}$

Genus
Datura L.

Datura metel L.

D. metel L. have two varieties, the white variety called Datura metel L. var. metel or Datura alba Nees and the purple variety called Datura metel L. var. fastuosa (Bernh.) Danert are known as "white" and "black" Datura respectively. The former of two varieties can be distinguished from each other by the number of corolla of a flower, main vein, and the color of the stem and flower (Safford, 1921; Haegi, 1976).
D. metel L. is the only one species of genus Datura naturally found in Thailand. Datura metel L. var. metel ,Thai name is called "Lamphong Khaao" while, Datura metel L. var. fastuosa (Bernh.) Danert, Thai name is called "Lumphong Kaasalak".
D. metel L. var. metel (synonym: Datura alba Nees)

Vernacular names: Ma-Khuea-Ba or Mad Egg-plant (Northern, Northeastern), Mang-ToLo (Chinese-Bangkok), La-Ang-Ka (Suai-Surin), Lam-Phong-Khao (Central), Liak (Khmer-Surin), Thorn Apple (Smitinand, 1980).
D. metel L. var. fastuosa (Bernh) Danert (synonym: Datura fastuosa L.) Vernacular names: Ka-Salak (Lampang), Lam-Phong-Ka-Lak (Chumphon, Surat Thani), Lam-Phong-Ka-Sa-Lak (Central, Sukhothai), Ma-Khuea-Ba-Dok-Dam (Lampang) (Smitinand, 1980).

Figure 1. Comparison the visible parts between D. metel L. var. metel (A: flower, C: fruit) and D. metel L. var. fastuosa (B: flower, D: fruit)

Plant description

" Datura metel L. is an annual herb. It is an erect, branched, short shrub and reaches its mature size of $1.5-3 \mathrm{ft}(0.5-1 \mathrm{~m})$ tall after a few months. The plants are slightly furry and the shoots are usually dark violet in color. The oval to broad oval, undulate or coarsely toothed leaves often have the same coloring. The flower, which are immensely varied, are most conspicuous and most interesting characteristic (Figure 1). During the day they emit a pleasant scent. According to variety and shape they can be single or double, five to nine peaks and can be colored pure white, cream, yellow, purple or purple outside and white inside. Its large, funnel-shaped flower come in a wealth of colors and
shapes. Danert (1954) differentiated into 11 different groups. Corolla trumplet-shaped, simple, double, or triple by the irregular petaloid outgrowth of the stamens and inner corolla surface; about 14 to 15 cm long. Calyx regular, 5 to 7 cm long, evenly five-lobed, less than half as long as the corolla. Style 11 to 13 cm long. Capsule globose, inclined, 4 to 6 cm in diameter, covered with very short spines or tubercles. Leaves ovate, nearly entire or with a few teeth. Stems green in forms with white or yellow flowers and purple in those with purple flowers. Leaf scars conspicuous on the stems. Stem erect, about 0.3 meter in some varieties, reaching to 1.5 meters in others. Stem and leaves glabrous. The very short spines or tubercles on the capsules and the glabrous condition of the stem and leaves are the main characters that distinguish this species from the other large species of the Dutra section. D. metel L. has conspicuous, heart-shape cuts in place of the interacuminal peaks. These make decorative dividers on the large flowers that are 6-8 in $(14-20 \mathrm{~cm})$ in size. The upright, ovate- to round-shaped fruit capsule develops after successful pollination. Its surface is lightly furry and it covered with numerous conical humps and a few spines. After the ripening period, the capsule falls apart irregularly and releases between 200-300 seeds. They are colored dark to brownish yellow and have a conspicuous elaiosome. The mass of a thousand seeds weighs nearly 15-20 g" (Preissel, 2002).

Distribution

The type locality of D. metel L . is Asia. The range of distribution includes tropical and subtropical Asia, Africa, and America. The plant is often cultivated throughout warm regions of the world (Avery, 1959).

Chemical constituents studies from D. metel \mathbf{L}.

The major isolated compounds of D. metel L. were tropane alkaloids such as scopolamine (hyoscine), hyoscyamine, and atopine. The alkaloids found in this entire plant are present in Table 2.

Table 2. Alkaloids found in D. metel L.

Plant part	Alkaloids
Stem	Scopolamine, Hyoscyamine, Meteloidine, Atropine
Seed	Hyoscyamine, Scopolamine, Isoquinoline alkaloid, 7-hydroxy-3,6- Flower Leave Anisodamine,Aatropine, Isoquinoline alkaloid, Hyoscyamine, Tropine RootScopolamine, Atropine, Datumitine, Isoquinoline alkaloid, Hyoscyamine Hyoscyamine, Littorine, Dopamine, Scopolamine, Tropine, Pseudotropine, Tigloidine, Cuskhygrine, 3,6-Ditigloyloxytropane

Beside tropane alkaloids, steroids and flavonoids were also isolated from the arial parts of D. metel L. such as: Datumetelin, Daturametelin A-F, Daturametelin G-Ac, Daturiline, Daturilinol, Physalindicanol A, Quercetine, Stigmastero, β-Sitosterol, Withametelin, WithametelinB, Withametelin B-Ac, Withastramonolide, and 12Deoxywithastramonolide (Sirichan Pattanapongsirikul, 2002).

In many other species of Datura (e,g. D. ferox; D. metel; D. meteoides), scopolamine is the principle alkalid of the leaves at all time and these species are used to isolate scopolamine (Muhtadi, 1990). In Thailand, Scopolamine is the one of main constituents which found in D. metel L. (Tantivatana et al., 1978; Dechatiwongse et al., 1993).

Traditional Use

The D. metel L. plant has been well known for its use in traditional Chinese and Indian systems of medicine for centuries as a narcotic, anodyne and antispasmodic (Rajesh-Sharma, 2002). In South and Central America where the greatest concentration of solanaceous plants exists, a wide range of species is used, although Datura species and Solanum species are particularly important (Ayensu, 1981). D.metel L. is different importance in different societies as can be shown on Table 3.

Table 3. Traditional used of D. metel L.

Country/Continent	Species	Uses
South/Central America	Datura metel L.	Anaesthetic, wounds, and bruises, arthritis, ulcers, prolapse haemorrhoids,
		neuralgia, fever, asthma, flu, headache and tumours
Africa		Abortifacient China India
	Datura fastuosa L.	
	Datura metel L.	Cough, asthma, analgesic Headache, asthma, leprosy, sores, epilepsy, convulsion, veneral
disease, mumps.		

(Source: James, 1991)

Medicinal and Pharmacological activities

All parts of Datura plants contain dangerous levels of tropane alkaloids (highly poisonous) and may be fatal if ingested by humans or other animals, including livestock and pets. D. metel L. may be toxic if ingested in a tiny quantity, symptomatically expressed as flushed skin, headaches, hallucinations, and possibly convulsions or even a coma. The principal toxic elements are tropane alkaloids. Accidentally (or intentionally) ingesting even a single leaf could lead to severe side effects (Quisumbing, 1951; Alexander et al., 2008; Phua et al., 2008).

All parts of D. metel L. (leaves, flowers, seeds and roots) have a long history of usage in folkloric medicine. These parts possess narcotic, anodyne, antispasmodic properties and are useful in neuralgia and antispasmodic (Hahn, 2003).

Datura possesses properties analogous to those of Belladonna which due to their similar active constituents. Juice of Datura's leaves and causes dilution of pupil. Leaves and flowers are cut into small pieces and smoked to relieve the attack of bronchial asthma. Many usages are also claimed in folkloric medicine (Sezik et al., 1992).

Datura acts chiefly by virtue of its tropane alkaloids presented, hyoscine and hyoscyamine/atropine. Both are of considerable pharmaceutical interests because of their parasympatholytic, anticholinergic, antiemetic and sedative actions are antispasmodic and antisecretory which make uses of Datura and / or its constituents in many pharmaceutical
preparations. Atropine sulfate is antidote for poisoning caused by cholinesterase inhibitors such as organophosphate insecticides (Bliss, 2001).

Hyoscine, like hyoscyamine, is a potent mydriatic. Its action resembles hyoscyamine in peripheral actions but differs greatly in its central effects. Hyoscine is a central depressant with sedative and tranquilizing properties (Shutt and Bowes, 1979). Hyoscine or scopolamine has been used with morphine in acute mania and delirium, including delirium tremens. It has been tried for the relief of withdrawal symptoms in various treatments of morphine dependence (Bowler et al., 1944). It has also been used in the symptomatic treatment of idiopathic and post-encephalitic parkinsonism (Reynolds, 1982).
D. metel L . is popular all over the world for its medicinal uses. It is known for its use in fever with catarrh, cerebral complications, diarrhea, skin diseases, antiseptic, animal bites, anti helmenthic and in herpetic diseases and also has healing potential on burn wounds (Phiya et al., 2002). It is also known for its antibacterial activity against burn pathogens (Gnanamani et al., 2003), antifungal activity against phytopathogens (Dabur et al., 2004) and herbicidal activity against Phalaris minor Retz., one of the most problematic weeds of wheat (Javaid et al., 2008).

2. Method in plant authentication

The major methods employed in the authentication of herbal materials are macroscopic and microscopic examination, and chromatography. These methods are rapid and inexpensive. The chemical analysis is one of the best methods for the detection of active ingredients or contaminants that can be used for plant identification. Nowadays, the authentication of plant using bio-molecular methods is widely useful for assortment of medicinal plants (Zhao et al., 2006).

2.1 Macroscopic evaluation

Macroscopic evaluation method is an assessment of plant material, either with the naked eye or with a hand lens or stereo-microscope. It typically includes gross morphological characteristic or organoleptic sensation is used to determine the color, odor, taste, form, size, shape, etc. of plant material, so the similar species of plant can share similar morphological characteristics and appropriate training is needed to acquire the macroscopic identification skills.

2.2 Microscopic evaluation

Microscopic evaluation method of medicinal plant is based on the observation of the cellular structure, and their content of plant material by use of a microscope. It reveals plant histological characteristics (Trease and Evans, 2009). A number of leaf measurements are used to distinguish between some closely related species not easily characterized by general microscopy.

Determination of stomatal number and stomatal index

Stomata are openings (the stomata pores or apertures) epidermis bounded by two specialized epidermal cells, the guard cells, which by changes in shape bring about the opening and closure of the aperture. It is convenient to apply the term stoma to the entire unit, the pore and the two guard cells. The structure of the epidermis and stomata are of first importance in the microscopical identification of leaves. The stomata may be surrounded by cells resembling the other epidermal cells that differ in shape and sometimes also in content from the ordinary epidermal cells. These distinct cells are called subsidiary cell of the stoma. The subsidiary cells may or may not be closely relate onto genetically to the guard cells (Eames and MacDaniels, 1974).

The stomatal number and the stomatal index are the very specific criteria for identification and characterization of leafy crude drugs. In the mature leaves, four significant types of stomata are distinguished by their form and the arrangement of the surrounding cells, especially the subsidiary cells (WHO, 1998).

- The anomocytic or ranunculaceous (irregular-celled) type; the stoma is surrounded by a varying number of cells, generally not different from those of the epidermis (Figure 2a).
- The anisocytic or cruciferous (unequal-celled) type; the stomata is usually surrounded by three or four subsidiary cells, one of which markedly small than the other (Figure 2b).
- The diacytic or caryophyllaceous (cross-celled) type; the stomata is accompanied by two subsidiary cells, the common wall of which is at right angle to the stoma (Figure 2c).
- The paracytic or rubiaceous (parallel-celled) type; the stomata has two subsidiary cells, of which the long axis of the stomata (Figure 2d).

Figure 2. Surface view of epidermis illustrates four patterns of stomata type. a: anomocytic; b: anisocytic; c: diacytic; d: paracytic (WHO, 1998)

- Stomatal number

Stoma is another type of epidermal structure processing great diagnostic value. A stoma consists of two similar cells, the guard cells, placed with their long axis parallel and having a small cellular space, the porous between them. By variations of the turgidity of the guard cells, the size of porous is altered. In surface view the guard cell often appear crescent shaped, their concave faces being adjacent to one another. During the formation of stomata, the cell cuts off from the mother cell often acquire a shape and size differing from those of the other epidermal cells and are therefore termed the subsidiary cells. The two guard cells and the porous counted as 1 cell stoma. The average number of stomata per square millimeter of epidermis is termed the stomata number. In recording results the range as well as the average value should be recorded or each surface of the leaf and the ratio of values for the two surfaces. The actual number of stomata per square millimeter is variable for the same plant, this being especially noticeable if records are made for different years. In certain cases this
ratio may be of diagnostic importance (Wallis, 1960; Eames and MacDaniels, 1974; Trease and Evans, 2009).

Stomatal number is the number of stomata per unit area of leaves. It was designed by Timmerman, (1927) (Youngken, 1948).

$$
\text { Stomatal number }=\frac{\text { Number of stomata }}{\text { Area of epidermal cell }\left(\mathrm{mm}^{2}\right)}
$$

- Stomatal index

The significance of the number of stomata per unit area of leaf was investigated by Timmerman in 1927. Salisbury showed that a high correlation coefficient exists between the number of stomata and the number of epidermal cell per unit area of leaf surface of a given species. Stomatal index is the percentage proportion of the ultimate divisions of the epidermis of a leaf which have been converted into stomata (Youngken, 1948).

In other words, stomatal index is defined as the percentage of stomata from the total number of epidermal cells, which can be explained as:

$$
\text { Stomatal index }=\frac{S}{E+S} \times 100
$$

Where; $\mathrm{S}=$ the number of stomata per unit area.
$\mathrm{E}=$ the number of ordinary epidermal cells in the same unit area.
Stomatal number varies considerably with the age of the leaf, stomatal index is highly constant for a given species and many be determined on either or powdered samples (Trease and Evans, 2009).

- Palisade ratio

Palisade cells are a type of photosynthetic cells of the mesophyll of leaf occurring mostly just beneath the upper epidermal surface layer (Figure 3) (Wallis, 1960). The cells are elongated and more cylindrical and arranged in one or more rather regular, relatively compact layer near the ventral, or upper side of the leaf with
the long axis of the cells perpendicular to the leaf surface (Eames and MacDaniels, 1974).

The term "palisade ratio" was introduced by two British pharmacognosists, T.E. Wallis and T. Dewar, in 1933. It represents a figure obtained by counting the total number of palisade cells beneath four upper epidermal cells and dividing the number by four (Youngken, 1948). The average number of palisade cells beneath each upper epidermal cell is termed the palisade ratio. Fine powders can be used for the determination (Trease and Evans, 2009). This value remains constant within a range a range for a given plant species and is of diagnostic value in differentiating the species. This value does not alter based on geographical variation and differs from species to species and that is why it is a very useful diagnostic feature for characterization and identification of different plant species (Mukherjee, 2007).

Figure 3. Four upper contiguous epidermal cells with underlying palisade cells in surface view

2.3 Molecular evaluation

The molecular marker is used as a marker for analysis of genetic diversity and relatedness between or within different populations, species, and individuals (Weising et al., 2005). Benefiting from molecular cloning and polymerase chain reaction (PCR) techniques, DNA technique has now become a popular mean for identification and authentication of plant and animal species. Not only for generating the diversity of plants, it can be also applied for detecting of the adulteration in herbal drugs by the advantages of plants DNA identification. DNA technology provides a useful and independent tool to complement chemical analyses for the authentication and quality assurance of medicinal materials. DNA-based markers are less affected by age, physiological condition of
samples and environmental factors. They are not tissue-specific and thus can be detected at any phase of organism development. Only a small amount of sample is sufficient for analysis and the physical form of the sample does not restrict detection (Shaw et al., 2002).

Prior to investigate the plants by molecular method, the genomic DNA is needed to isolate from the plants' cells. Accordingly, an enormous number of plant DNA isolation protocols (and modifications of existing procedures) have been published. The majority of methods aim at isolating total cellular DNA, which is a suitable substrate for almost all PCR-based marker methods. However, there are also numerous protocols that are specifically designed for the isolation of nuclear DNA (nDNA), chloroplast DNA (cpDNA), and mitochondrial DNA (mtDNA), respectively. Plant DNA isolation methods differ in many respects, including the disruption of tissues and cells, the composition of extraction and lysis buffers, and in the way that DNA is purified from other cell ingredients (such as protein, RNA, membranes, polysaccharides, and polyphenols) (Weising et al., 2005). Besides the commercial instant DNA extraction kit, isolation DNA by standard CTAB procedure is considered to be a widely isolation method for DNA preparation, that is sufficiently pure for PCR analyses in many plant species (Sahoo, 2003). There are several regions in the DNA from various origins, which were used for studying the divergence or identity of plants.

Plant genome is all the genetic material in the plant cells, which contain the nuclear genome and organelle genome. Organelle genome can be divided into two parts: the chloroplast genome or chloroplast DNA, and mitochondria genome or mitochondria DNA. Plant genome covers the genic DNA, which act as proteins synthesis for the cell, and the non-genic DNA, which is mainly found in the genome and it's not clear what its role (สุชาคา สุขหร่อง, 2553). The obtained genomic DNA is then used as a DNA template for amplification. There are several regions in the plant genome can be used for studying the divergence or identity of plants, such as;

Nuclear genome

Nuclear genome (nDNA) is a linear DNA packed closely on the chromosome. It is the largest components in the nucleus. Nuclear genome is composed of information
inherited equally from both parents (heterozygous) and mostly used in taxonomic studies (Chase et al., 2005).

Ribosomal DNA (rDNA)

ribosomal DNA has several properties that make it useful for studying genetic variability and divergence within and between species: tandemly repeated genes, secary structure of transcribed regions, differential rates of evolution between spacers and coding regions, and concerted evolution. rDNA consists of a tandem repeat of a unit segment, an operon, composed of non-transcribed spacer (NTS), external transcribed region (ETS), 18S, ITS1, 5.8S, ITS2, and 28S tracts (Richard et al., 2008).

- Internal Transcribed Spacers (ITS)

Internal transcribed spacers (ITS) are sequences located in angiosperm 18S26 S ribosomal DNA genes, including ITS1 (between 18 S and 5.8 S rRNA coding regions), 5.8 S , and ITS2 (between 5.8 S and 26 S rRNA coding regions) of the nuclear ribosomal DNA (Figure 4). The ITS region is highly repeated in the plant nuclear genome which is present in the form of up to many thousands of copies arranged in tandem repeats (Souframanien et al., 2003).

The studies of restriction site variation in the ribosomal DNA (rDNA) in populations of animals and plants by Gerbi (1985) indicated that the spacer regions are high variable while the coding regions are conserved (Gerbi, 1985). In angiosperm systematics, sequences from the rapidly evolving ITS region have had similar impact on the understanding of interspecific and intergeneric relationships, while also yielding insights on speciation and biogeography. Moreover, the divergent ITS sequences have been widely used for plant phylogenetics (Alejandro et al., 2005).

Figure 4. The ITS region which separated by intergenic spacer (IGS)

The ITS region is now the most widely sequenced DNA region. It has typically been most useful for molecular systematics at the species level and even within species. Because of its higher degree of variation than other genic regions of rDNA, variation among individual rDNA repeats can sometimes be observed within both the ITS and IGS regions (White et al., 1990).

Table 4. The universal primers have been designed for ITS amplification

primer name	Direction	sequence (5'->3')	Tm $\left({ }^{\circ} \mathbf{C}\right)$
ITS1	Forward	TCCGTAGGTGAACCTGCGG	65
ITS2	Reverse	GCTGCGTTCTTCATCGATGC	62
ITS3	Forward	GCATCGATGAAGAACGCAGC	62
ITS4	Reverse	TCCTCCGCTTATTGATATGC	58
ITS5	Forward	GGAAGTAAAAGTCGTAACAAGG	63

(Source: White et al., 1990)
Other regions in nuclear genome that are used in evolution analysis of plants but are not generally used in DNA fingerprint in herbal drug such as phy gene (phytochrome), gapA gene (glyceraldehydes-3-phosphate dehydrogenase), adh gene (alcohol dehydrogenase) and pgi gene (phosphoglucose isomerase) (สุชาดา สุขหร่อง, 2553).

Chloroplast genome

The chloroplast genomes (cpDNA) of several plants have been completely sequenced, leading to the identification of many of the genes contained in the organelle DNAs. These chloroplast genes encode both RNAs and proteins involved in gene expression, as well as a variety of proteins that function in photosynthesis. The genomes of chloroplasts consist of circular DNA molecules present in multiple copies per organelle, ranging from 120 to 170 kb , and there is a relatively high degree of conservation in size, structure, gene content, and linear order of the genes in land plants (Downie and Palmer, 1992). The regions of chloroplast genome that commonly used in DNA fingerprint of herbal drug such as;

- The atpB gene

The $a t p \mathrm{~B}$ gene is located in the large single-copy region of the chloroplast genome contiguous with $a t p E$ gene and downstream from the $r b c \mathrm{~L}$ gene, from which it is separated by an approximately 900 bp intergenic spacer region (Figure 5). The atpB gene encodes the β subunit of ATP synthase (other subunits are encoded in either the chloroplast or the nuclear genomes). ATP synthase has a highly conserved structure that couples proton translocation across membranes with the synthesis of ATP (Zurawski et al., 1982; Gatenby et al., 1989). Many features of the atpB gene suggest that it may be valuable for comparative sequence studies at higher taxonomic levels. It is short enough (1497 bp) for ease of sequencing but long enough to be potentially phylogenetically information, given broadly comparable rates of evolution to rbcL (Wolfe, 1991; Hoot et al., 1995).

- The rbcL gene

The rbcL gene (a single copy gene is approximately 1430 base pairs in length) is free from length mutations except at the far 3^{\prime} end, and has a fairly conservative rate of evolution. The function of the $r b c \mathrm{~L}$ gene is to code for the large subunit of ribulose 1, 5 bisphosphate carboxylase/oxygenase (RUBISCO or RuBPCase). The sequence data of the $r b c \mathrm{~L}$ gene are widely used in the reconstruction of phylogenies throughout the seed plants. It's a gene involved in catalyzing the primary chemical reaction by which inorganic carbon enters the biosphere which is first major step of carbon fixation. This gene has slow substitution rate and extensive database of sequences make $r b c \mathrm{~L}$ sequence data well suited for phylogenetic studies at a variety of higher taxonomic levels, from interfamilial to subclass (Donoghue et al., 1993; Frascaria et al., 1993).

Figure 5. Structure of $r b c \mathrm{~L}$ gene and $a t p \mathrm{~B}$ gene including the DNA (intergenic region) flanking between $a t p \mathrm{~B}$ and $r b c \mathrm{~L}$ gene

- The matK gene and trnK gene

The matK gene (Maturase K , approximately 1550 base pairs), is located within the intron of the chloroplast gene trnK (Figure 6). This gene can encode to enzyme maturase which presumably helps fold the intron RNA into the catalytically-active structure (Hilu and Liang, 1997; Muller et al., 2006). In plant molecular systematics and evolution, the matK gene is emerging as another valuable gene to study because of its reasonable size, high substitution rate, evenly distributed codon position variation, low transition and transversion ratio, and the easiness of amplification due to its two flanking coding trnK gene. The matK gene has fast evolution that, it's not possible to be used as the universal primer (Johnson et al., 1996).

Figure 6. Structure of matK gene which flanking between trnK gene

Other chloroplast genomes are also used for investigating the herbal plants such as; gene $n d h \mathrm{~F}$, the region in the area of gene $\operatorname{trn} \mathrm{T}, \operatorname{trnL}, \operatorname{trnF}$, and intergenic region of $t r n H-p s b \mathrm{~A}$ gene (สุชาดา สุขหร่อง, 2553).

Mitochondrial genome

Mitochondrial genome (mtDNA) in plants is normally depicted as a circular molecule and located in mitochondria which is involves in converting the chemical energy from food into a form that cells can use, adenosine triphosphate (ATP). The plant mitochondrial genome is very large and highly variable in size between species, moreover, substitute rate of the nucleotide in plants mitochondrial genome is slower than those of animals approximately 40-100 times and slower than those of nuclear genome and chloroplast genome around 12 and 3-4 times, respectively. Thus this mitochondrial genome for comparative sequencing is rather limited or rarely used in authentication of herbal plants (Palmer, 1992).

To amplify the desire region, polymerase chain reaction (PCR) is commonly used.

The polymerase Chain Reaction

The polymerase chain reaction (PCR) is an in vitro technique, which was invented by Kary B. Mullis in 1983. The PCR technique allows the amplification of a specific deoxyribonucleic acid (DNA) region that lies between two regions of know DNA sequence by the simultaneous primer extension of complementary strands of DNA. Million copies of the target DNA sequence can be synthesized from a low amount of starting DNA template within a few hours. The PCR reaction component consist of genomic DNA used as DNA template for copies, a pair of primers for amplified in target sequences, dNTPs (dATP, dCTP, dGTP and dTTP), buffer and Taq DNA polymerase. The amplification reaction consists of three steps; (1) denaturation of dsDNA at high temperature, (2) annealing to allow primers to form hybrid molecules at the optimal temperature, and (3) extension of the anneal primers by heat-stable Taq DNA polymerase (Figure 7). The cycle is repeated for 20-40 times. Finally, the amplification products are examined by electrophoresis (Mullis and Faloona, 1987). The essential step in each cycle is thermal denaturation of double stranded target molecules, primer annealing to both DNA strands and enzymatic synthesis of DNA (Vosberg, 1985). Primers are short, single stranded DNA molecules between $20-30$ nucleotides in length, which are complementary to the ends of a defined sequence of DNA template. A DNA polymerase in the presence of deoxynucleoside triphosphate (dNTPs) extends the bond primers on single-stranded denatured DNA template under suiTable reaction conditions (Erlich, 1989; Newton and Graham, 1994). This results in the synthesis of new DNA strands complementary to the template strands. These strands exist at this stage as double stranded DNA, annealing of primers by cooling the mixture and primer extension by DNA polymerase at a temperature suiTable for enzyme reaction. Each repetition of strand synthesized becomes a template for any further cycle of amplification and so the amplified target DNA sequence is selectively amplified cycle after cycle (Figure 7). This technique is capable of synthesis over a million copies of a specific target DNA sequence in a few hours. The products of a successful first round of amplification are heterogeneously sized DNA molecules, whose lengths may exceed the distance between the binding sites of the two primers. In the sec round, these molecules generate DNAs of defined length that will accumulate in an exponential fashion in later rounds of amplification and will form the dominant products of the reaction. Although longer
molecules continue to be produced from the original template DNAs in every round, they accumulate only at a linear rate and therefore do not contribute significantly to the final mass of target sequence (Sambrook et al., 1989). This results in the exponential accumulation of the specific target fragment at approximately 2^{n}, where n is the number of cycles.

Figure 7. Illustration of the polymerase chain reaction (PCR). Step 1: Solution is heated to $95^{\circ} \mathrm{C}$ to denature the two strands of the target DNA (A). Step 2: Solution is cooled to $\sim 55^{\circ} \mathrm{C}$ to allow the primers to anneal (bind) to the ends of the DNA strands (B). Step 3: Solution is reheated to $\sim 72^{\circ} \mathrm{C}$ to allow Taq polymerase to synthesize complementary copies of each strand (C).

Image from http://oceanexplorer.noaa.gov/explorations/04etta/background/dna/media/dna_1.html [30/04/2012].

Various types of DNA-based molecular techniques are utilized to evaluate DNA polymorphism. The DNA-based molecular methods can be divided into three major techniques namely hybridization-based method, PCR-based method, and DNA sequencing-based method.

Hybridization-based method

Hybridization-based method or non PCR-based method including Restriction Fragment Length Polymorphism (RFLP), DNA is digested and hybridized by restriction enzymes that reveal a pattern difference between DNA fragment sizes and labeled probes in individual organisms, respectively. On an agarose gel, RFLP can be visualized using radiolabeled complementary DNA sequence. Polymorphism is analyzed after hybridization by observing present or absent bands (Joshi et al., 2004). In present, the popularity of using RFLP fingerprint technique was diminished due to the complicated procedures, and the safety in working with radioactive materials. In addition, there are other ways to access and easier, including PCR based method.

PCR-based method

PCR-based method are the amplification of DNA fragments or loci in vitro with the oligonucleotide primers and the thermosTable DNA polymerase enzymes (Shaw et al., 2002). For examples, random amplified polymorphic DNA (RAPD), arbitrarily primed PCR (AP-PCR), DNA amplification fingerprinting (DAF), amplified fragment length polymorphism (AFLP), polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP), single strand conformation polymorphism (SSCP), sequence characterized amplified polymorphic (SCAR), amplification refractory mutation system (ARMS), single sequence repeat (SSR) analysis, direct amplification of length polymorphism (DALP), inter-simple sequence repeat (IISR) and direct amplification of minisatellite-region DNA (DAMD) (Yip et al., 2007). For example, Mace et al. (1999) used AFLP technique to evaluate and assess species relationships within the tribe Datureae (Mace et al., 1999).

DNA sequencing-based method

Polymorphism at the DNA level can be studied by several methods but the direct strategy is determination of nucleotide sequences of a defined region. For this technique, the primer is specifically designed based on a defined region of gene sequences. Variation due to transitions, transversion, insertion or deletion can be assessed directly and information on a defined locus can be obtained (Joshi et al., 2004). The nucleotide sequencing is one of the most techniques to utilize the phylogenetic history. DNA sequence data are the power of informative tool for molecular systematics and comparative analysis of DNA sequences is becoming increasingly importance in plant systematics and evolution (Zhang et al., 2007). From previous studied of DNA sequencing-based method, Carles M., et al. (2005) designed a silicon-based DNA microarray for the authentication of toxic traditional Chinese medicine (TMC). Genomic DNA was extracted from fresh leaves of D.metel L. The spacer region of the 5S-RNA gene was amplified by PCR and subsequently sequenced. Oligonucleotide probes were spotted on to silicon-based chip. DNA corresponding to the 5S-rRNA gene of the toxic TCM plants was amplified by asymmetric PCR and hybridized to the microarrays. D.metel L. was discriminated based on the difference on the hybridization patterns (Carles et al., 2005).

The nuclear (nDNA) and chloroplast genome (cpDNA) are commonly able to investigate in the molecular systematics and taxonomy of plants. The nDNA is more complexity and repetitive properties. On the other hand, the cpDNA is well suiTable for evolutionary and phylogenetics studies above the species level because cpDNA; 1) is a relative abundant component of total DNA, 2) contains primarily single copy gene, 3) has a conservative rate of nucleotide substation. The most common genes in nuclear ribosomal gene consists of a transcribed region that comprises an external transcribed spacer (ETS), followed by 18s rDNA, an internal transcribed spacer (ITS1), the 5.8 s rDNA, a second internal transcribed spacer (ITS-2), and finally the 26 s rDNA. Each repeat is separated from the next repeat by an intergenic spacer (IGS) (Soltis et al., 1998).

In 1970's, two DNA sequencing techniques for longer DNA molecules were invented. These were the Sanger (chain termination) method and the Maxam-Gilbert (chemical cleavage) method. The Maxam-Gilbert method is based on nucleotide-
specfic cleavage by chemicals and is best used to sequence oligonucleotides (short nucleotide polymers, usually smaller than 50 base-pairs in length) (Maxam and Gilbert, 1977). The Sanger method is more commonly used because it has been proven technically easier to apply, and, with the advent of PCR and automation of the technique, is easily applied to long strands of DNA including some entire genes. This technique is based on chain termination by dideoxy nucleotides during PCR elongation reactions (Sanger et al., 1977).

In the Sanger method, the DNA strand to be analyzed is used as a template and DNA polymerase is used in a PCR reaction to generate complimentary strands using primers. Four different PCR reaction mixtures are prepared, each containing a certain percentage of dideoxy nucleoside triphosphate (ddNTPs) analogs to one of the four nucleotides (dATP, dCTP, dGTP or dTTP). Synthesis of the new DNA strand continues until one of these analogs is incorporated, at which time the strand is prematurely truncated. Each PCR reaction will end up containing a mixture of different lengths of DNA strands, all ending with the nucleotide that was dideoxy labeled for that reaction. Gel electrophoresis is then used to separate the strands of the four reactions, in four separate lanes, and determine the sequence of the original template based on what lengths of strands end with what nucleotide.

In the automated Sanger reaction, primers are used that are labeled with four different colored fluorescent tags (Figure 8). PCR reactions, in the presence of the different dideoxy nucleotides, are performed as described above. However, next, the four reaction mixtures are then combined and applied to a single lane of a gel. The color of each fragment is detected using a laser beam and the information is collected by a computer which generates chromatograms showing peaks for each color from which the template DNA sequence can be determined (Weising et al., 2005).

Figure 8. Automated DNA sequencing
Image from http://dnasequencing-humandnasequence.blogspot.com/2011_04_01_archive. html [30/04/2012]

2.4 Scopolamine content evaluation

Tropane alkaloids

Tropane alkaloids mainly occur in Solanaceae, Erythroxylaceae, and Convolvulaceae plant families. They were found in the following plant genera: e.g., Atropa. Datura, Hyoscyamus, Brugmansia, Duboisia, Mandragora, Solanum, Scopolia, Withania, Anisodus from Solanaceae family, Erythroxylum from Erythroxylaceae, and Convolvulus and Calystegia from Convolvulaceae (Griffin and Lin, 2000). The alkaloids are localized both in underground (roots) and aerial parts (especially leaves and seeds) of the plants (Bruneton, 1999). The principle alkaloids of this group are (-) hyoscyamine, atropine [(\pm)-hyoscyamine], and scopolamine (also known as hyoscine) (Figure 9). Atropine is an antidote in cases of poisoning caused by cholinesterase inhibitors such as physostigmine and organophosphate insecticides. Scopolamine has a depressant activity on the central nervous system and is used to treat motion sickness. It is also employed for preanaesthetic sedative and for obstetric amnesia in conjunction with analgesics, and to calm delirium (Brown and Taylor, 2001).

Tropane alkaloids are also found in D. metel L. which is widely distributed in Thailand. Scopolamine, hyoscyamine and its racemic form, atropine, are the
important tropane alkaloids present in the plant. They are of high therapeutic value and are frequently used as sedatives, antispasmodics and mydriatics (Palazon et al., 2008).

Tropane is a dicyclic compound formed by the condensation of a pyrrolidine precursor (ornithine) with three acetate-derived carbon atoms. Both pyrrolidine and piperidine ring systems can be discerned in the molecule. The 3-hydroxy derivatives or tropane is known as tropine. Its esterification with (-) tropic acid yields hyoscyamine, which may be racemized to form atropine (Mukherjee, 2007).

The main tropane alkaloid of D. metel L . is hyoscine (scopolamine), while $l-$ hyoscyamine is also presented in trace amount. Hyoscine is an ester of 6,7- epoxy- 3hydroxytropane or scopoline and l-tropic acid. l-Hyoscyamine is an ester of 3hydroxytropane or tropine and l-tropic acid. It naturally exits in plants but during extraction and purification process it usually isomerizes to $\mathrm{d} l$-form which is known as atropine [Siddigui et al., 1986].

Tropane

Tropanol

Scopine

Hyoscyamine

Figure 9. Structural formular of tropane, tropic acid, tropanol, scopine, hyoscine (scopolamine) and hyoscyamine
Image from http://en.wikipedia.org/wiki/ [20/07/2012]

Biosynthesis of tropane alkaloids

The characteristic of tropane alkaloids (TPAs) is ester of hydroxytropane (the alkaline part) and various acids (the acidic part). Most investigations of their biosynthesis have been performed extensively on various species of Datura but all the evidences have shown the similar pathways operate in other tropane alkaloids producing plants (Trease and Evans, 2009).

Tropane alkaloids occur mainly in the Solanaceae and include the anti-cholinergic drugs atropine, hyoscyamine, and scopolamine, and the narcotic tropical anesthetic cocaine. Although nicotine is not a member of the tropane class, the N-methyl- 1^{1} pyrrolinium cation involved in TPA biosynthesis is also an intermediate in the nicotine pathway. N-Methyl-1 ${ }^{1}$-pyrrolinium cation formation begins with the decarboxylation of ornithine and/or arginine by ornithine decarboxylase (OrnDC) and arginine decarboxylase (ArgD), respectively. These enzymes are involved in the formation of putrescine either directly by OrnDC, or via agmatine and N -carbamoylputrescine in the case of ArgD; thus, the early steps of TPA and nicotine biosynthesis are also common to polyamine metabolism. The first committed step in TPA and nicotine biosynthesis is catalyzed by a SAM-dependent putrescine N-methyltransferase (PMT). Subsequently, N -methylputrescine is oxidatively deaminated by a diamine oxidase to 4 -aminobutanol, which undergoes spontaneous cyclization to form the reactive N -methyl-11-pyrrolinium cation. The N-methyl-1 ${ }^{1}$-pyrrolinium cation is thought to condense with acetoacetic acid to yield hygrine as a precursor of the tropane ring, or with nicotinic acid to form nicotine,
although the enzymology of these steps is not known. Tropinone is located at a branch point in the TPA pathway and is the first intermediate with a tropane ring. Two related dehydrogenases, tropinone reductase I (TR-I) and tropinone reductase II (TR-II), reduce the 3 -keto group of tropinone to the 3α - and 3β - groups of the stereospecific alkamines tropine and 9 -tropine, respectively. Hyoscyamine is produced by the condensation of tropine and the phenylalanine-derived intermediate tropic acid (Figure 10) (Facchini, 2001; Facchini, 2006).

Hyoscyamine can be converted to its epoxide scopolamine by Hyoscyamine 6 β hydroxylase $(\mathrm{H} 6 \mathrm{H})$ of the tropane ring followed by intramolecular epoxide formation via removal of the 7β-hydrogen (Figure 11) (Robbers et al., 1996; Trease and Evans, 2009; บุญชู ศรีตุลารักษ์, 2553).

In 2010, Pramod KK, et al. have founded that the H6H protein and its transcript were found only in roots but not in the aerial parts via. stems and leaves. The immunolocalization studies performed on leaf, stem, root as well as hairy root tissues showed that H 6 H was present only in the pericycle cells of young lateral and hairy roots. These studies suggest that the conversion of hyoscyamine to scopolamine takes place in the root pericycle cells, and the alkaloid biosynthesized in the roots gets translocated to the aerial parts in D. metel L. (Pramod et al., 2010).

Figure 10. Biosynthesis of scopolamine from ornithine
Image from http://www.pnas.org/content/101/17/6786/F1.large.jpg [20/07/2012]

Figure 11. Route for the formation of hyoscine from hyoscyamine (partial formulae) (Trease and Evans, 2009)

Determination of tropane alkaloids

1. Extraction of tropane alkaloids

Extraction methods vary with the scale and purpose of the operation, and with the raw material. Tropane alkaloids are isolated from the powder sample of Solanaceous plants by one of this procedure (Trease and Evans, 2009):

Process A: The powdered material is moistened with water and mixed with lime or alkali which combines with acids, tannins and other phenolic substances and sets free the alkaloids (if they exist in the plant as salts). Extraction is then carried out with organic solvents such as ether, chloroform or petroleum spirit. The concentrated organic liquid is then shaken with aqueous acid and allowed to separate. Alkaloid salts are now in the aqueous liquid, while many impurities behind in the organic liquid.

Process B: The powdered material is extracted with water or aqueous alcohol containing dilute acid. Pigments and other unwanted materials are removed by shaking with chloroform or other organic solvents. The free alkaloids are then precipitated by the addition of excess sodium bicarbonate or ammonia and separated by filtration or by extraction with organic solvents.

The extraction methods, process A (the sample is extracted with alkali in organic solvent first, then followed by acid-base shaking) has been prominent. Various literatures
follow this procedure for extraction of tropane alkaloids.

2. Methods of tropane alkaloids analysis

Tropane alkaloids are currently analyzed by several methods including thin layer chromatography (TLC) (Mroczek, 2008), high performance thin layer chromatography (HPTLC) (Sharma et al., 2009), gas chromatography (GC) (Drager, 2002), gas chromatography mass spectrometry (GC-MS) (Elisabetta et al., 2001), high performance liquid chromatography (HPLC) (Ceyhan et al., 2001), liquid chromatography mass spectrometry (LC-MS) (Steenkamp et al., 2004), and capillary electrophoresis (CE) (Cataldi and Bianco, 2008).

Thin layer chromatography (TLC) or planar chromatography is a type of liquid chromatography in which the stationary phase is in the form of a layer on a glass, an aluminum, or plastic support. It is still frequently used for tropane alkaloids as a common method of choice for herbal analysis. The classical capillary-action TLC is an inexpensive and easy technique, that require little instrumentation, which is used for separation of simple mixtures and for qualitative identification or semi-quantitative, visual analysis of samples (Liang et al., 2004).

The advantages of TLC are due to its simplicity, a small quantity of solvents used, analyzing samples with minimum sample preparation, and the possibility of separating many samples and standards simultaneously on a single plate, leading to high throughput, low cost analyses and also the ability to construct calibration curves from standards chromatographed under the same conditions as the samples (Sherma, 2005). Previous studied of TLC solvent systems and detection methods had been reported for their identification of scopolamine and also other tropane alkaloids (Muhtadi and Hassan, 1990; Mroczek, 2008; Wagner and Bladt, 2009).

Until recently, the use of TLC-image analysis has been applied for content determination of several compounds. With a combination of single computer technology and image analysis software for evaluation of TLC chromatogram, the quantitative TLC method based on image analysis is more convenient and less expensive than other chromatographic methods. Commercial and free web-based image software for TLCimage analysis are available in which performances are based on sensitivity of spot
detection, background compensation algorithms, intensity resolution, precision and accuracy of image analysis (Hung et al., 2001; Amber, 2007; Johnsson et al., 2007).

The simultaneous quantification of hyoscyamine and scopolamine in different plant parts such as, leaves, roots and seeds of wild morphotypes of D. metel L. by the high performance thin layer chromatography (HPTLC) technique was performed in 2009 by Sharma et al. The advantage of HPTLC is a rapid, reproducible, accurate, selective, and high sample throughput, which results from the small amount of sample preparation required and the simultaneous quantification of several samples (Sharma et al., 2009).

Gas chromatography (GC) and gas chromatography mass spectroscopy (GCMS) are well known for the analysis volatile chemical components. The advantages of GC or GC-MS clearly lie in its high sensitivity for the detection of almost all volatile compounds. The high selectivity of capillary columns enables separation of many tropane alkaloids simultaneously within comparatively short times (Miraldi et al., 2001). However, the most serious disadvantage of the method is that it is not suiTable for analyzing polar samples and non-volatile compounds (Liang et al., 2004).

High performance liquid chromatography (HPLC) is one type of liquid chromatography (LC) that is a physical separation technique conducted in the liquid phase. It is a high throughput technique for determining small amount of impurities of herbal materials with the advantages of high sensitivity and high reliability. Components of analyses are separated by distributing between the mobile phase (a flowing liquid) and a stationary phase (sorbents packed inside column). HPLC is very popular technique for analysis of herbal extract because it is easy to use and it not limited by the volatility or stability of the samples (Dong, 2006). Furthermore, HPLC can successfully use for the separation and quantitative determination of closely related tropane alkaloids. Thus rapid, simple, robust, reproducible and sensitive analytical methods are needed to enable the analysis of samples in a short analytical time (Banyai et al., 2006). Liquid chromatography mass spectroscopy (LC-MS) for tropane alkaloid analysis is a promising approach which will be increasingly used in the future, as improved interfaces and volatile but highly selective solvent systems become increasingly available. The metabolites and catabolites of tropane alkaloids, which no UV absorption can be measured by LC-MS (Drager, 2002; Aehle and Drager, 2010; Jakabova et al., 2012).

For capillary electrophoresis (CE), appears well suited to tropane alkaloid analysis because these compounds are natural cations, if the appropriate acidic buffer pH is chosen. Migration of the analyses in the usual cationic mode (sample introduction at the anode and detection and outlet at the cathode) is caused by the charged nitrogen atom. The sample volume in CE is very low, a few nanoliters, and therefore very sensitive is required (Suntornsuk, 2002). Detection in CE is usually achieved by a DAD system, a drawback for CE separation of tropane alkaloids due to their low UV light absorption (Bogusz and Erkens, 1994). While the tropic acid esters and others esters with aromatic carboxylic acids may be measured, the free amino alcohols like tropine and pseudotropine and other metabolites like hygrine and cuscohygrine are not detected at all (Aehle and Drager, 2010).

CHAPTER III
 MATERIALS AND METHODS

Part I. Macroscopic and microscopic evaluation

1.1. Macroscopic evaluation

Plant sample

D. metel L. var. metel was collected from The Somdej Phra Thepraratanarajsuda Medicinal Plants Garden, Petroleum Authority of Thailand, Rayong Province (LPK081001) and D. metel L.var. fastuosa was collected from Chatuchak Plant Market, Bangkok Province (KSL071001) in July-August 2010, then, were authenticated by Assoc. Prof. Dr. Nijsiri Ruangrungsi, (N.R.), Department of Pharmacognocy, Faculty of Pharmaceutical Sciences, Chulalongkorn University and compared with the herbarium specimens at Forrest Herbarium Thailand (BKF). Vouchers were deposited at the College of Public Health Sciences, Chulalongkorn University.

Apparatus

- 0.2 mm Line width black micro pigment pen (Sakura Corp., Japan)
- Drawing board
- Drawing paper 100 gram (Master art, Thailand)
- HB pencil and eraser (Pentel, Thailand)

Procedure

A complete branch of each plant was subjected to thoroughly observed and compared for the differences. The drawing outline of the two plant samples was illustrated in the proportion size related to the original and approved by the expert (N.R.).

1.2 . Microscopic evaluation

Plant sample
Mature leaves of D. metel L.var. metel were collected from three locations;

1. The Somdej Phra Thepraratanarajsuda Medicinal Plants Garden, Petroleum Authority of Thailand, Rayong Province (LPK081001, August, 2010)
2. Sirirukkachat garden, Faculty of Pharmacy, Mahidol University, Salaya, Nakhonpathom Province (LPK091002, September, 2010)
3. Bang Ra Jan District, Singburi Province (LPK011103, January, 2011)

Mature leaves of D. metel L.var. fastuosa were collected from three locations;

1. Chatuchak Plant Market, Bangkaen District, Bangkok Province (KSL071001, July, 2010).
2. Bang Nam Priao District, Chachoengsao Province (KSL041104, April, 2011)
3. Muang District, Chonburi Province (KSL051105, May, 2011)

The samples were authenticated separately for each location by the expert (N.R.).

Chemical and Reagent

- 70 Degree ethyl alcohol
- Distilled water
- Sodium hypochlorite (Haiter Bleach, Kao industrial, Thailand)

Apparatus

- 0.2 mm Line width black micro pigment pen (Sakura Corp., Japan)
- Beaker 250 ml . (Pyrex, Germany)
- Compound microscope (Zeiss model Axioskop, Germany)
- Digital Camera (Power Shot A640, Canon Inc., Japan)
- Drawing board
- Drawing paper 100 g (Master Art, Thailand)
- Forceps
- Glass slide and cover glass
- HB pencil and eraser (Pentel, Thailand)
- Hot plate Model HP-A191 (Thermolyne, USA)
- Razors (Gillette blade, USA)

Figure 12. Zeiss compound microscope model Axioskop attached with digital camera

Procedure

Stomatal number and stomatal index

This protocol was adapted from the method of Geisler (Geisler et al., 2000).

1. Paint a thick patch of clear nail polish on the both side of fresh leaf surface being studied. Make a patch at least one square centimeter.
2. Allow the nail polish to dry completely.
3. Tape a piece of clear cellophane tape to the dried nail polish patch. (The tape must be clear, do not use any other opaque tape)
4. Gently peel the nail polish patch from the leaf by pulling on a corner of the tape and peeling the fingernail polish off the leaf. This is the leaf impression will be examined.
5. Tape the peeled impression to a very clean microscope slide, use scissors to trim away any excess tape, and label the slide as appropriate for the specimen being examined.
6. Examine the leaf impression under a light compound microscope (Figure 12).

Search for areas where there are numerous stomata, and where there are no dirt, thumb prints, damaged areas, and large leaf veins.
7. A 20 X magnification of objective lens of compound microscope, with an attached digital camera was used and recorded the images. The images were scaled for the area of $0.5 \mathrm{~mm}^{2}$ using program AxioVision version 4.1 prior counting the stomata and epidermal cells (Figure 13-14).
8. The number of stomata and epidermal cells was multiplied by 4 in order to give total number of stomata and epidermal cells in the area of $1 \mathrm{~mm}^{2}$. The area of the sample was to be changed and recorded not less than 30 images from several fractions of leaves from one location.

Figure 13. The upper epidermal layer of D.metel L. leaf in the area of $0.5 \mathrm{~mm}^{2}$ (20X magnification)

Figure 14. The lower epidermal layer of D.metel L. leaf in the area of $0.5 \mathrm{~mm}^{2}$ (20X magnification)

Palisade ratio

The procedure was also modified from the method described in Pulok K. Mukherjee (Mukherjee, 2007).

1. Gently put the fractions of leaf, which were cut off from the middle of the leaf into the mixture of sodium hypochlorite: water (1:1), which was warmed on hot plate (the leaf had been soaked in 70 degree alcohol for at least 2-3 weeks prior before used).
2. Let the fractions of leaf to boil in sodium hypochlorite solution until the samples were transparent. Then, the samples were rinsed with distilled water until the samples were cleaned and mounted the samples on slide and covered with cover glass.
3. The pieces of sample were kept separately on a glass slide with its upper epidermal layer kept uppermost side. A 40X magnification of objective lens of compound microscope, with an attached digital camera was used and recorded the images.
4. The image of 4 clear continuous epidermal cells consist of the round, closely packed palisade cells was observed (Figure 15) and recorded by using digital camera.
5. The area of the sample was to be changed and recorded not less than 30 images. The palisade cells inside the boundary and those that are 50% or more inside the outer boundary of 4 epidermal cells were taken into account. The number of total palisade cells was divided by 4, which gave the average number of palisade cell under each epidermal cell.

Figure 15. The round, closely packed palisade cells in the boundary of four clear continuous epidermal cells of D.metel L. leaf (40X magnification)

Stem and midrib cross section

Mature stem and midrib from mature leaf of D.metel L. var. metel and D.metel L. var. fastuosa were thinly cross sectioned with a razor blade by hand then, separately placed a complete piece on the glass slide and covered with a cover glass. The stem and midrib cross section were observed under microscope with magnification of 10X to 40X to evaluate the fine details and recorded the images (Figure 16 and Figure 17). The images were illustrated to evaluate the differences.

Figure 16. D.metel L. stem cross section (10X magnification)

Figure 17. D.metel L. midrib cross section (10X magnification)

Statistic analysis

The data of stomatal number, stomatal index, and palisade ratio were calculated as mean and standard deviation, and statistically analyzed using independent sample t-test by SPSS version 17.0 for windows program for analyzing of significant difference between two varieties D.metel L.

Part II. Molecular evaluation

Plant sample
Table 5. Fresh aerial part authentic samples

Sample no.	Plant	Habitat (Province)	Collecting date (Month, Year)	Voucher ID
1	D. metel L.var. fastuosa	Chatuchak Plant Market, Bangkaen District, Bangkok Province	July, 2010	KSL071001
2	D. metel L.var. fastuosa	Nakhonchaisri District, Nakhonpathom Province	July, 2010	KSL071002
3	D. metel L. (hybrid)	Chatuchak Plant Market, Bangkaen District, Bangkok Province	July, 2010	LHB071001
4	D. metel L. (hybrid)	The Somdej Phra Thep Rattana Rajsuda Medicinal Plants Garden, Petroleum Authority of Thailand, Rayong Province	August, 2010	LHB081002
5	D. metel L.var. metel	The Somdej Phra Thep Rattana Rajsuda Medicinal Plants Garden, Petroleum Authority of Thailand, Rayong Province	August, 2010	LPK081001
6	D. metel L.var. metel	Sirirukkachat garden, Faculty of Pharmacy, Mahidol University, Salaya, Nakhonpathom Province	September, 2010	LPK091002
7	D. metel L. (hybrid)	Kanchanabhishek Institute of Medical and Public Health Technology, Chai Noi District, Nonthaburi Province	September, 2010	LHB091003
8	D. metel L. (hybrid)	Krok Phra District, Nakornsawan Province	October, 2010	LHB101004
9	D. metel L (hybrid)	Sirirukkachat Garden, Faculty of Pharmacy, Mahidol University, Salaya Campus, Nakhonpathom Province	October, 2010	LHB101005
10	D. arborea L. *	Pong Nam Ron District, Chanthaburi Province	November, 2010	TNF111001
11	D. metel L.var. metel	Bang Ra Jan District, Singburi Province	January, 2011	LPK011103
12	D. metel L. (hybrid)	Bang Bor District, Samutprakarn Province	February, 2011	LHB021106
13	D. metel L.var. fastuosa	Royal Agricultural Research Center, Muang District, Chiangmai Province	March, 2011	KSL031103
14	D. metel L. (hybrid)	Royal Agricultural Research Center, Muang District, Chiangmai Province	March, 2011	LHB031107

Sample no.	Plant	Habitat (Province)	Collecting date (Month, Year)	Voucher ID
15	D. metel L.var. fastuosa	Bang Nam Priao District, Chachoengsao Province	April, 2011	KSL041104
16	D. metel L.var. fastuosa	Muang District, Chonburi Province	May, 2011	KSL051105
17	D. metel L. (hybrid)	Herbal Botanical Garden of Khung Ta Phao Temple, Mueang District, Uttaradit Province	June, 2011	LHB061108
18	D. metel L. (hybrid)	Hang Dong District, Chiangmai Province	July, 2011	LHB071109
19	D. metel L. (hybrid)	Chon Dan District, Petchaboon Province	August, 2011	LHB081110
20	D. metel L. (hybrid)	The Queen Sirikit Botanic Garden, Mae Rim District, Chiangmai Province	August, 2011	LHB081111
21	D. metel L. (hybrid)	Muang District, Pathumthani Province	September, 2011	LHB091112

* assign for out group

DNA extraction

Chemical and Reagent

- 2-Mercaptoethanol (AR grade, BDH Chemical, England)
- 3 M Sodium acetate (pH 5)
- 70 Degree ethyl alcohol
- Absolute ethanol (Merck, Germany)
- CTAB (Cetyl trimethylammonium bromide) buffer
- Liquid nitrogen
- Phenol: chloroform: isopropanol (25: 24: 1)
- Saturated phenol (AR grade, BDH Chemical, England)
- TE (Tris-EDTA) buffer

Apparatus

- 1.5 ml Microcentrifuge tubes
- $\quad-20^{\circ} \mathrm{c}$ Freezer (Sharp, Japan)
- Micropipette (Biohit, Finland)
- Centrifugation machine (Sigma, Germany)
- Mortar and pestle
- Shaking water bath (GFL model 1086, Germany)
- Spatula
- Vortex mixer model K-550-GE (Scientific Equipment, USA)

Plant genomic DNA was individually extracted from the fresh young leaves using a modified CTAB technique (Doyle and Doyle, 1987).

1. Freeze the fresh young leaves rapidly in liquid nitrogen and grind to a power with mortar and pestle. Transfer into 1.5 ml microcentifuge tube.
2. Add $500 \mu \mathrm{l}$ of CTAB buffer into microcentifuge tube then, incubate and shaking in water bath at $65^{\circ} \mathrm{C}$ for 1 hour.
3. Centrifuge the microcentifuge tube at 10,000 round per min (rpm) for 10 min and transfer supernatant into a new clean 1.5 ml microcentifuge tube.
4. Add $500 \mu 1$ of saturated phenol to get rid of other phenolic compounds and
proteins then, vortex 1 min and centrifuge the microcentifuge tube at $10,000 \mathrm{rpm}, 10$ min.
5. Transfer the aqueous phase (upper layer) to a new 1.5 ml microcentifuge tube and added $500 \mu 1$ of phenol: chloroform: isopropanol (25:24: 1) to get rid of the excessive phenol and proteins from the DNA then, mixed well by vortex mixer. Centrifuged the samples $10,000 \mathrm{rpm}$ for 10 min , then transfered the aqueous phase to a fresh microcentifuge tube.
6. Add 1:10 volume of 3 M sodium acetate $(\mathrm{pH} 5)$ and invert tube 2-3 times. Add 2 volume of cold absolute ethanol to precipitate DNA, invert tube 2-3 times and keep at $-20^{\circ} \mathrm{C}$ for 1 hour.
7. Centrifuge the microcentifuge tube at $10,000 \mathrm{rpm}$ for 10 min then, discard the supernatant. DNA pellet was washed with 1 ml of cold 70% ethanol and centrifuged $10,000 \mathrm{rpm}$ for 10 min . Discarded the supernatant and dried DNA pellet at room temperature and dissolve DNA in $50-100 \mu$ of TE buffer was added to the DNA pellet and left to dissolve homogeneously, and then store at $4^{\circ} \mathrm{C}$ refrigerator.
8. The extracted DNA was stored at $-20^{\circ} \mathrm{C}$ for further use.

DNA qualification and DNA amplification by Polymerase Chain Reaction (PCR)
 Chemical and Reagent

- 100 bp , and 1 kb DNA ladder marker (Fermentas, USA)
- 1X Loading dye
- 1X TBE buffer
- 10 mM dNTPs
- $10 \mu \mathrm{M}$ Forward primer (ITS5) (Fermentas, USA)
- $\quad 10 \mu \mathrm{M}$ Reverse primer (ITS4) (Fermentas, USA)
- $10 \mu \mathrm{M} r b c \mathrm{~L} _$F Forward primer ($r b c \mathrm{~L} _\mathrm{F}$) (Fermentas, USA)
- $10 \mu \mathrm{M} r b c L_{-} \mathrm{R}$ Reverse primer ($r b c L_{-} \mathrm{R}$) (Fermentas, USA)
- $10 \mu \mathrm{M}$ atpB_F Forward primer (atpB_F) (Fermentas, USA)
- $10 \mu \mathrm{M}$ atpB_R Reverse primer (atpB_R) (Fermentas, USA)
- 10X PCR Buffer (Fermentas, USA)
- 5 Unit/ $\mu \mathrm{l}$ Taq DNA polymerase (Recombinant) (Fermentas, USA)
- 25 mM MgCl 2 (Fermentas, USA)
- Agarose gel (Merck, Geramany)
- Distilled deionized water
- DNA template (Extracted DNA solution)
- Ethidium bromide
- PCR purification kit (QIAGEN, USA)

Apparatus

- $\quad 100 \mu \mathrm{l}$ Microcentrifuge tubes (Axygen, USA)
- Centrifugation machine (Sigma, Germany)
- Electrophoresis chamber and power supply (Biorad, model 200/ 2.0 power)
- Micropipette $1.00-10.00 \mu \mathrm{l}, 100-1,000 \mu \mathrm{l}$ (Biohit, Finland) and tips
- PCR tubes (Axygen, USA)
- Thermal cycler (GeneAmp PCR system 9700, Applied Biosystems, USA)
- UV visualize gel documentation machine (Auto Chemi System, USA)

DNA qualification

The quality of extracted DNA was estimated by comparing the band intensity of the extracted DNA with 1 kb DNA ladder marker (Promega, USA) in agarose gel. A $1.5 \%(\mathrm{w} / \mathrm{v})$ agarose/TBE gel staind with ethidium bromide. Five microliter of extracted DNA solution was mixed with 1X loading dye and loaded onto the gel, which is placed in an electrophoresis chamber filled with 1 X TBE buffer. Electrophoresis was carried out at 100 V for 30 min or until the dye migrated to a sufficient distance. The gel was photographed under UV light using UV transilluminator gel documentation machine (Auto Chemi System, USA).

DNA amplification

A pair of ITS, $r b c \mathrm{~L}$ and $a t p \mathrm{~B}$ primer were used to amplify the ITS, $r b c \mathrm{~L}$, and $a t p B$ regions for DNA analysis. All the primer sequences were shown in Table 6. The PCR amplifications were conducted in a GeneAmp PCR system 9700 (Applied

Biosystems, USA).
Table 6. Primers used for PCR amplification and sequencing

Primer	Direction	Primer sequences ($\mathbf{5}^{\prime}-3$ ')	No. of bases	Tm $\left({ }^{\circ} \mathrm{C}\right)$
ITS4 ${ }^{1}$	Forward	5^{\prime} TCCTCCGCTTATTGATATGC 3'	20	55.0
ITS5 ${ }^{1}$	Reverse	5' GGAAGTAAAAGTCGTAACAAGG 3'	22	56.0
$r b c \mathrm{~L} \mathrm{~F}^{2}$	Forward	5' TGTCACCACAAACAGAAACTAAAGCAAGT 3'	29	62.4
$r b c \mathrm{~L}$ _ R^{2}	Reverse	5' CTTTTAGTAAAGATTGGGCCGAG 3'	23	58.9
$a t p \mathrm{~B}$ _F ${ }^{3}$	Forward	5' TCAGTACACAAAGATTTAAGGTCAT 3'	25	56.2
$a t p \mathrm{~B} \mathrm{R}^{3}$	Reverse	5' TATGAGAATCAATCCTACTACTTCT 3'	25	56.9

${ }^{1}$ Primers designed by White et al. (1990)
${ }^{2}$ Primers designed by Razafimandimbison and Bremer (2001)
${ }^{3}$ Primers designed by Hoot et al. (1995)

The ITS region

An approximately 750 bp fragment of the ITS region was amplified using universal primers, ITS4 and ITS5. The position of these primers is shown in Figure 18. PCR for the ITS was performed in a $20 \mu 1$ reaction volume mixture containing $1 \mu 1$ of genomic DNA, 0.1 mM of dNTPs, 1X PCR buffer (100 mM Tris-HCl (pH 8.0), 500 $\mathrm{mM} \mathrm{KCl}, 0.8 \%(\mathrm{v} / \mathrm{v})$ Nonidet P40), 2.5 mM of $\mathrm{MgCl}_{2}, 0.5$ Unit/ $\mu \mathrm{l}$ of Taq DNA polymerase (Fermentas), $0.1 \mu \mathrm{M}$ of each primer, and sterile deionized water, with the following thermocycling conditions: an initial denaturation at 95° Cfor 5 min , followed by 30 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 30 sec , annealing at $55^{\circ} \mathrm{C}$ for 30 sec , and extension at $72^{\circ} \mathrm{C}$ for 30 sec and ended with a final extension at $72^{\circ} \mathrm{C}$ for 5 min .

Figure 18. Diagram of the ITS region showing the position of primers and the predicted 750 bp PCR product

The rbcL gene

An approximately 1.5 kb fragment of $r b c \mathrm{~L}$ gene was amplified using two synthetic primers, $r b c L_{-} \mathrm{F}$ and $r b c \mathrm{~L}_{-} \mathrm{R}$. The position of these primers is shown in Figure 19. PCR amplification was performed in a $20 \mu 1$ reaction volume containing 1 μl of genomic DNA, 0.1 mM of dNTPs, 1 X PCR buffer (100 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$, $500 \mathrm{mM} \mathrm{KCl}, 0.8 \%(\mathrm{v} / \mathrm{v})$ Nonidet P40), 2.5 mM of $\mathrm{MgCl}_{2}, 0.5$ Unit/ $\mu \mathrm{l}$ of Taq DNA polymerase, $0.1 \mu \mathrm{M}$ of each primer, and sterile deionized water, with the following thermocycling conditions: an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min , followed by 30 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 60 sec , annealing at $58^{\circ} \mathrm{C}$ for 60 sec and extension at $72^{\circ} \mathrm{C}$ for 60 sec and ended with a final extension at $72^{\circ} \mathrm{C}$ for 5 min .

Figure 19. Diagram of the $r b c \mathrm{~L}$ region showing the position of $r b c L_{_} \mathrm{F}$ (5'end of gene) and $r b c \mathrm{~L}$ _R primers (100 bp downstream of the termination codon), and the predicted 1.5 kb PCR product

The atpB gene

An approximately 1.5 kb fragment of $a t p \mathrm{~B}$ was amplified by two universal primers, which are $a t p \mathrm{~B} _\mathrm{F}$ and $a t p \mathrm{~B} _\mathrm{R}$ The position of these primers is shown in Figure 20. PCR amplification was performed in a $20 \mu 1$ reaction volume containing 3 $\mu \mathrm{l}$ of genomic DNA, 0.1 mM of dNTPs, 1X PCR buffer (100 mM Tris-HCl (pH 8.0), $500 \mathrm{mM} \mathrm{KCl}, 0.8 \%(\mathrm{v} / \mathrm{v})$ Nonidet P40), 2.5 mM of $\mathrm{MgCl}_{2}, 0.5$ unit/ $\mu \mathrm{l}$ of Taq DNA polymerase, $0.1 \mu \mathrm{M}$ of each primer, and sterile deionized water, with the following thermocycling conditions: an initial denaturation at $95^{\circ} \mathrm{C}$ for 5 min , followed by 30 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 60 sec , annealing at $56^{\circ} \mathrm{C}$ for 60 sec and extension at $72^{\circ} \mathrm{C}$ for 60 sec and ended with a final extension at $72^{\circ} \mathrm{C}$ for 5 min .

Figure 20. Diagram of the $a t p \mathrm{~B}$ region showing the predicted 1.5 kb PCR product

Detection of PCR product

The PCR products were separated by agarose gel electrophoresis. The 1.5% (w/v) agarose/TBE gel was prepared (by weighting 1.5 g of agarose in 100 ml of 1X TBE buffer and then melt until completely). Then, add $2 \mu \mathrm{l}$ of $10 \mathrm{mg} / \mathrm{ml}$ ethidium bromide were added to the warm gel, and gently mixed before pouring into a gel tray. After gel solidification, the gel was transferred into the electrophoresis chamber filled with 1X TBE buffer. PCR products were mixed with loading dye, which is used for loading PCR products into gel wells and tracked migration of the DNA fragments during electrophoresis. 1 kb DNA ladder was loaded along with the DNA samples for size comparison. A voltage of 100 V was applied to run the gel for 30 min or until the dye migrated to a sufficient distance. After that, the gel was examined under UV light and photographed using UV visualize gel documentation machine (Auto Chemi System, USA).

Purification of PCR product

The PCR products were purified from primers, nucleotides, polymerases, and salts using QIAquick PCR Purification Kit (QIAGEN, USA) prior DNA sequencing. According to the protocol (QIAGEN, 2002), all centrifugation steps were carried out at $13,000 \mathrm{rpm}$. Five volumes of PB buffer was added to 1 volume of PCR sample and mixed. The sample was applied to the QIAquick Spin Column sitting on the 2 ml collection tube provided, to allow DNA binding to the column. After centrifuged for 60 sec , the flow-through was discarded and the column was placed back on the same collection tube. Then, 0.75 ml of PE buffer was added into the column for washing and centrifuged for 60 sec . The flow-through was discarded and the column was placed back into the same tube. The column was centrifuged for another 60 sec to remove residual of ethanol in PE buffer. The column was placed on a clean 1.5 ml microcentrifuge tube. After that, $50 \mu \mathrm{l}$ of buffer EB (10 mM Tris-Cl, pH 8.5) was added to the center of the QIAquick membrane and the column was centrifuged for 60 sec . The purified DNA was stored at $-20^{\circ} \mathrm{C}$ for DNA sequencing (ABI system).

DNA sequencing analysis

ClustalW2 - multiple sequence alignment program (Online; available from http://www.ebi.ac.uk/Tools/msa/clustalw2/) was used to multiple aligned the sequences of the three regions; ITS, $r b c \mathrm{~L}$, and $a t p B$.

Part III. Scopolamine content evaluation

Material

- 20x20 cm Aluminum sheets silica gel plate, G60 F254 (Merck, Germany)
- Filter paper no.4, 125 mm (Whatman, England)
- pH paper (Merck, Germany)
- Syringe filter PTFE type, $13 \mathrm{~mm}, 0.45 \mu \mathrm{~m}$ with luer lock (Fortune Scientific, Thailand)

Chemical and Reagent

- 25 \% Ammonium hydroxide (AR grade, Merck, Germany)
- Acetonitrile (HPLC grade, RCI-Asia Labscan, Thailand)
- Chloroform (HPLC grade, JT Baker Chemical, USA)
- Diethylamine (AR grade, RCI-Asia Labscan, Thailand)
- Dragendorff’s reagent
- Ethyl acetate (AR grade, BDH Chemical, England)
- Methanol (HPLC grade, RCI-Asia Labscan, Thailand)
- Orthophosphoric acid (AR grade, BDH Chemical, England)
- Potassium dihydrogen orthophosphate (AR grade, Merck, Germany)
- (-)-Scopolamine hydrochloride (Sigma-Aldrich, Singapore)
- Sodium sulphate (AR grade, Merck, Germany)
- Toluene (AR grade, BDH Chemical, England)

Equipments and instruments

- Analytical balance 4 digits (Adventurer ${ }^{\mathrm{TM}}$ Ohaus Crop., USA)
- Digital scanner HP Deskjet F2280 (Hewlett-Packard, Thailand)
- Graduated cylinders $25 \mathrm{ml}, 100 \mathrm{ml}$, and 500 ml .
- High performance liquid chromatography (HPLC) Model LC-20A series with LC solution workstation software (Shimadzu, Japan)
- Image J software (http://rsbweb.nih.gov/ij)
- Micropipette 10-100 $\mu \mathrm{l}, 100-1000 \mu \mathrm{l}$ and tips (Biohit, Finland)
- pH meter model UB-10 (Denver Instrument, USA)
- Rotary vacuum evaporator R-200 (Buchi, Switzerland)
- Soxhlet apparatus
- TLC chamber (Camag, Switzerland)
- Ultrapure water system NW series (Heal Force Bio-Meditech Holdings, China)
- Ultra sonic chamber (Analytical Lab Science, Thailand)
- Vacuum pump with pressure regulator, model DOA-P504-BN (GAST Manufacturing, Inc., USA)
- Round bottle flask 500 ml .
- Volumetric flasks 250 ml , and 500 ml .
- Volumetric pipettes $1.00 \mathrm{ml}, 5.00 \mathrm{ml}$, and 10.00 ml .
- Vortex mixer, model K-550-GE (Scientific Industries, Inc., USA)

Determination of scopolamine content

Plant sample

Whole plants of D. metel L.var. metel were collected from three locations;

1. The Somdej Phra Thepraratanarajsuda Medicinal Plants Garden, Petroleum Authority of Thailand, Rayong Province (LPK081001, August, 2010)
2. Sirirukkachat garden, Faculty of Pharmacy, Mahidol University, Salaya, Nakhonpathom Province (LPK091002, September, 2010)
3. Bang Ra Jan District, Singburi Province (LPK011103, January, 2011)

Whole plants of D. metel L.var. fastuosa were collected from three locations;

1. Chatuchak Plant Market, Bangkaen District, Bangkok Province (KSL071001, July, 2010).
2. Bang Nam Priao District, Chachoengsao Province (KSL041104, April, 2011)
3. Muang District, Chonburi Province (KSL051105, May, 2011)

Sample preparation

The dry samples (leaves, flowers and fruits) were ground into a coarse powder with a blender and through 40 meshed sieve for further extraction and analysis.

Sample extraction

By following the modified method of Gontier (Gontier et al., 1994), the approximately 1 to 6 g of dried powder of each sample was weighed accurately and subjected to the extraction of tropane alkaloids. This sample was extracted for $4-5$ hours in a soxhlet apparatus with 300 ml of methanol- chloroform- 25% ammonium hydroxide (50-50-1.5) until it was exhausted. After filtration, the residue was washed twice with 15 ml of chloroform. The pooled filtrate was evaporated under reduced pressure in a rotary evaporator till dryness. The dry extract was washed in 20 ml of 0.1 N hydrochloric acid three times, and extracted twice with 15 ml of chloroform to eliminate impurities. The acid phase was adjusted to pH 10 with $5 \mathrm{ml}, 25 \%$ ammonium hydroxide, scopolamine was exhaustively extracted three time with 35 ml of chloroform. After addition of anhydrous sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the extract was filtrated and residue was washed with 10 to 20 ml of chloroform. These combined extracted solvent fractions were evaporated under reduced pressure till dryness (Figure 21).

For sample solution, each extract was dissolved in methanol to a concentration of $100 \mathrm{mg} / \mathrm{ml}$ of leaves, $50 \mathrm{mg} / \mathrm{ml}$ of flowers, and $40 \mathrm{mg} / \mathrm{ml}$ of fruits, respectively. These solutions need a brief sonication (10 min) at room temperature to enhance complete dissolution and keep in refrigerator for further analysis with thin layer chromatography (TLC) image and high performance liquid chromatography (HPLC) method, respectively.

1-6 g Dry weight powder of each sample
+300 ml of Extraction solvent
(methanol- chloroform- 25% ammonium hydroxide, 50-50-1.5)

wash $3 \times 20 \mathrm{ml}$ with 0.1 HCl

Adjust to pH 10 with

Figure 21. Schematic of alkaloids extraction from D.metel L.

Thin layer chromatography (TLC) image analysis

The TLC method was modified from Wagner \& Sabine, and Sotanaphun (Wagner and Bladt, 2009; Sotanaphun et al., 2009). Ten microliters of each standard solutions ($50-500 \mu \mathrm{~g} / \mathrm{ml}$) and alkaloids extracted solutions (leaf, flower, and fruit) were spotted as 10 mm bands in length onto the $20 \times 20 \mathrm{~cm}$ aluminum sheets silica gel plate (G60 F254, Merck) 0.25 mm thickness and developed in the solvent system, toluene: ethyl acetate: diethylamine (70: 20: $10 \mathrm{v} / \mathrm{v}$) for at least 1 hour and the developing distance was 18 cm . The distance between each spot was 0.5 cm . The scopolamine spots were detected with dragendorff's reagent.

The TLC chromatogram was scanned by a digital scanner (Hewlett Packard Deskjet F2280) and saved as a tagged image file (TIF) format at a resolution of 600 dpi . Quantification of each band was carried out by an image analysis using image J for windows version 1.45 s (http://rsbweb.nih.gov/ij). The colour image was converted to grayscale by photoshop software. The peak area corresponding to scopolamine was analysed by wand tool (available in the process toolbar) for peak area's measurement.

Method validation for TLC image analysis

In this study, the methods were evaluated for standard calibration curve and linearity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ).

Standard calibration curve, linearity, and detection range

For determination of standard calibration curve, a stock standard solution of scopolamine was prepared by dissolving 50 mg of standard scopolamine hydrochloride in 10 ml methanol. The working standard solutions of scopolamine were prepared by diluting the stock standard solution to obtain the concentration ranges of 0.5 to $5.0 \mathrm{mg} / \mathrm{ml}$. Ten microliter of each standard solution was spotted onto the TLC plate to obtain the final concentration of 5 to $50 \mu \mathrm{~g} / \mathrm{spot}$, respectively. Each concentration was spotted seven times on the TLC plate. The chromatogram was developed and the image was scanned and analysed as described above. The peak
areas were plotted against the corresponding standard concentrations. The standard calibration curve was obtained from the average of peak areas of each standard concentration by using Microsoft excel program. The scopolamine content was calculated from the standard calibration curve. The sample with scopolamine content over than $5.0 \mathrm{mg} / \mathrm{ml}$ was diluted and reanalysed. The content of scopolamine was expressed as milligram per gram (mg / g) of dried weight.

Accuracy

The accuracy of the method was determined by using the standard addition method. (AOAC). Three different concentration ($0.50,1.50$, and $2.50 \mu \mathrm{~g} / \mu \mathrm{l}$) of standard solution were added to the crude extract solution, whereas known amounts of scopolamine. The percentage recovery was calculated by the following equation:

Where $\mathrm{Cs}=$ the amount of scopolamine that found after adding standard solution
$\mathrm{C}=$ the amount of scopolamine that found before adding standard solution
$\mathrm{Ca}=$ the amount of reference standard actually added to the sample

Precision

Precision of the method was determined by analyzes the measurement of area under peak of six different concentrations ($5-50 \mu \mathrm{~g} /$ spot) of standard solutions in triplicates on the same day (repeatability) and on five different days (intermediate precision) (ICH). The relative standard deviation (RSD) was calculated by the following formula:

$$
\% \mathrm{RSD}=\frac{\mathrm{SD} \times 100}{\overline{\mathrm{X}}}
$$

Where $\mathrm{SD}=$ standard deviation
$\overline{\mathrm{X}}=$ mean

Limit of detection and limit of quantification (LOD and LOQ)

The LOD and LOQ of this method were determined based on the standard deviation of the response and the slope (ICH). The slope was estimated from the calibration curve of the analytic and the estimate of the standard deviation was carried out from the residual standard deviation of a regression line. The LOD and LOQ were calculated by the following formula:

$$
\begin{aligned}
& \mathrm{LOD}=3.3 \delta / \mathrm{S} \\
& \mathrm{LOQ}=10 \delta / \mathrm{S}
\end{aligned}
$$

Where $\delta=$ the standard deviation of y-intercepts of regression lines
$\mathrm{S}=$ the slope of the calibration curve

High performance liquid chromatography (HPLC) analysis

The scopolamine content was determined by high performance liquid chromatography (HPLC) by following the modified method of Hoseini (Hoseini et al., 2011) (Figure 22). The methanolic solutions of all tested samples were analyzed by HPLC model LC-20A ${ }^{\text {TM }}$ series using a ODS-3, C18 column, Inertsil ${ }^{\circledR}$, sized $5 \mu \mathrm{~m}$, $250 \times 4.6 \mathrm{~mm}$ equipped with LC-20 AD binary pump, SPD-M 20 A: UV-PDA detector, automatic vacuum degasser, autosampler, column thermostat compartment, and a 20μ injection loop. A ODS-3, C18 guard column, Inertsil®, sized $5 \mu \mathrm{~m}, 10 \mathrm{x} 4$ mm was coupled to the analytical column. The samples were analyzed using a buffer containing 50 mM potassium dihydrogen orthophosphate (adjusted to pH 3.0 by orthophosphoric acid prior before used) : acetonitrile (80: $20 \mathrm{v} / \mathrm{v}$). The mobile phase was pumped at a constant flow rate of $1.0 \mathrm{ml} / \mathrm{min}$ and the column temperature was maintained at $40^{\circ} \mathrm{C}$. Injection volume of standard and sample solutions were $10 \mu \mathrm{l}$. Detector was set at a maximum absorption wavelength 215 nm for monitoring chromatographic profile. The absorbance spectra for every chromatographic run were acquired from 190 to 800 nm .

Table 7. HPLC conditions for determination of scopolamine content

HPLC Parameters	Conditions
Instrument	high performance liquid chromatography (HPLC) Model LC$20 \mathrm{~A}^{\mathrm{TM}}$ series with LC solution workstation software (Shimadzu, Japan)
Analytical column Guard column	ODS-3 C18 column, Inertsil®, sized $5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}$ id. ODS-3, C18 guard column, Inertsil \circledR) sized $5 \mu \mathrm{~m}, 10 \times 4 \mathrm{~mm}$ id.
Mobile phase	$50 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}(\mathrm{pH} 3.0): \mathrm{ACN}(80: 20 \mathrm{v} / \mathrm{v})$
Mobile phase flow rate	$1.0 \mathrm{ml} / \mathrm{min}$
Column temperature	$40^{\circ} \mathrm{C}$ -
Injection volume	$10 \mu \mathrm{l}$
Detector	UY-PDA
Peak width	5 sec
Minimum area	5,000 count

Prior to HPLC column injection, all sample solutions were filtered through a $0.45 \mu \mathrm{~m}$ PTFE Syringe filter. The filtrates were stored in vials until analysis.

Figure 22. High performance liquid chromatography (HPLC) Model LC-20A series with LC solution workstation software (Shimadzu, Japan)

Method validation for HPLC analysis

In this study, the methods were evaluated for standard calibration curve and linearity, accuracy, precision, limit of detection (LOD), and limit of quantification (LOQ).

Standard calibration curve, linearity, and detection range

For determination of standard calibration curve, a stock standard solution of scopolamine was prepared by dissolving 50 mg of standard scopolamine hydrochloride in 10 ml methanol $(5 \mathrm{mg} / \mathrm{ml})$. The working standard solutions of scopolamine were prepared by diluting the stock standard solution to obtain the concentration ranges of 0.05 to $0.50 \mathrm{mg} / \mathrm{ml}$. The standard solutions of scopolamine were prepared at 6 concentration levels ($50-500 \mu \mathrm{~g} / \mathrm{ml}$) and analysed by HPLC under conditions were described in Table 7. Ten microliters containing 50 to $500 \mu \mathrm{~g} / \mathrm{ml}$ of standards and samples were injected to HPLC instrument (triplicate injections) respectively. The peak areas were plotted against the corresponding standard concentration to obtain the standard calibration curve by using LC solution
workstation software (Shimadzu, Japan). The standard calibration curve was obtained from the average of peak areas of each standard concentration. The scopolamine content was calculated from the standard calibration curve. The sample with scopolamine content over than $0.50 \mathrm{mg} / \mathrm{ml}$ was diluted and reanalysed. The content of scopolamine was expressed as milligram per gram of dried weight.

Accuracy

The accuracy of the method was determined by using the standard addition method. (AOAC). Three different concentration (50, 150, and $250 \mu \mathrm{~g} / \mu \mathrm{l}$) of standard solution were added to the crude extract solution, whereas known amounts of scopolamine. The percentage recovery was calculated by the following equation:

$$
\% \text { Recovery }=\frac{(\mathrm{Cs}-\mathrm{C}) \times 100}{\mathrm{Ca}}
$$

Where $\mathrm{Cs}=$ the amount of scopolamine that found after adding standard solution
$\mathrm{C}=$ the amount of scopolamine that found before adding standard solution
$\mathrm{Ca}=$ the amount of reference standard actually added to the sample

Precision

Precision of the method was determined by analyzes the measurement of area under peak of three different concentrations $(100.0,300.0$, and $500.0 \mu \mathrm{~g} / \mathrm{ml})$ of standard solutions in triplicates on the same day (repeatability) and on five different days (intermediate precision) (ICH). The relative standard deviation (RSD) was calculated by the following formula:

$$
\% \text { RSD }=\frac{\text { SD X } 100}{\overline{\mathrm{X}}}
$$

Where $\mathrm{SD}=$ standard deviation

$$
\overline{\mathrm{X}}=\text { mean }
$$

Limit of detection and limit of quantification (LOD and LOQ)

The LOD and LOQ of this method were determined based on the standard deviation of the response and the slope (ICH). The slope was estimated from the calibration curve of the analytic and the estimate of the standard deviation was carried out from the residual standard deviation of a regression line. The LOD and LOQ were calculated by the following formula:

$$
\begin{aligned}
\mathrm{LOD} & =3.3 \mathrm{\sigma} / \mathrm{S} \\
\mathrm{LOQ} & =10 \sigma / \mathrm{S}
\end{aligned}
$$

Where $\sigma=$ the standard deviation of y-intercepts of regression lines
$\mathrm{S}=$ the slope of the calibration curve

Statistic analysis

For TLC image method, the data will be calculated as grand mean and standard deviation (grand mean \pm pooled SD). For determination of scopolamine content, the area under peak will be analyzed using Image J software.

For HPLC method, the data will be calculated as grand mean and standard deviation (grand mean \pm pooled SD). For determination of scopolamine content, the area under peak will be analyzed using LC solution workstation software

The scopolamine content was statistically analyzed using paired t-test by SPSS version 17.0 for windows program for analyzing of significant difference between two methods.

CHAPTER IV

RESULTS

Part I. Macroscopic and microscopic evaluation of D.metel L. var. metel and D.metel L. var. fastuosa

1.1 Macroscopic evaluation

The observation of the areal part such as leaf, flower, stem and fruit of two variety of D.metel L. were compared (Table 8), and the drawing outline was done as shown in Figure 23-24.
D.metel L. var. metel is an annual herbaceous plant, green stem colour, erect, 1-1.5 m high. The alternate leaves have petioles 3-7 cm long. Leaves are ovate or broadly ovate, acute or acuminate apex, equal or symmetrical at the base, margins are repand-dentate or angulate with 3-4 coarse teeth. Sizes of leaves are approximately 6 to 15 cm long by 5-11 cm wide. The large tubular flowers are axillary and usually solitary. They are erect or nodding, have a five-toothed, calyx is $4-6 \mathrm{~cm}$ long, white or white cream colour, corolla is $8-15 \mathrm{~cm}$ long, and often single. The stem and branch are green colour. The fruit is in the form of a spiny and green colour capsule, borne on a short thick peduncle. Seeds are flat, yellowish-brown color, kidney-shaped, about 5 mm long, and have a small fleshy aril, which nearly fill the interior capsule.
D.metel L. var. fastuosa is a shrub-like herb with large flower, 1-1.5 m high. The alternate leaves have petioles $3-7 \mathrm{~cm}$ long. Leaves are ovate or broadly ovate, acute or acuminate apex, unequal or asymmetrical at the base and often cordate or heart-shaped with sinuate to irregularly toothed edges. Sizes of leaves are approximately 7 to 16 cm long by $4-10 \mathrm{~cm}$ wide. Flower is always erectly standing, occur in duplicate or triplicate. Calyx is inflated towards the middle of flower, persistent and reflexes in fruit. Corolla is about double or triple as long as the calyx, white or tinged with green. The stem and branch are purple or dark purple colour. The fruit is in the form of a glabrous or short spines and purple colour capsule, borne on a short thick peduncle. Seeds are flat, yellowish-brown colour, kidney-shaped, about 5 mm long, and have a small fleshy aril, which nearly fill the interior capsule.

Table 8. The comparison of macroscopic character of D. metel L.

Part of plant	D.metel L. var. metel	D.metel L. var. fastuosa
Flower	Single corolla, large flower with white or white cream colour	Double or triple corolla, large flower with white inside, and violet outside
Stem and branch	Stem and branch are green colour	Stem and branch are purple or dark violet colour
Lamina	Leaves are ovate or broadly ovate, acute or acuminate apex, margins are repand-dentate or angulate with 3-4 coarse teeth, and equal or symmetrical at the base	Leaves are ovate or broadly ovate, acute or acuminate apex, margins are cordate or heart-shaped with sinuate to irregularly toothed edges, and unequal or asymmetrical at the base
Fruit or capsule	Spiny, green colour capsule	Glabrous or short spines, purple colour capsule

Figure 23. Whole plant of D. metel L. var. metel with flower (a), fruiting branch (b), and seed (c)

Chulalongkorn University
Figure 24. Whole plant of D. metel L. var. fastuosa with flower (a), fruiting branch (b), and seed (c)

1.2 Microscopic evaluation

Microscopic characters of two variety of D.metel L. were examined in both upper and lower epidermis, and transverse section of midrib and stem. The stomata of two varieties of D.metel L. could be found on both side of the leaves and classified as the anisocytic stomata type. A number of stomata of lower (abaxial) epidermis were more presented than upper (adaxial) epidermis (Figure 25-26).

Figure 25. Epidermis of the leaf of D. metel L. var. metel with 20x magnification
a: Upper epidermis, 1. Anisocytic type stoma, 2. Multicellular uniseriated trichome,
3. Epidermal cell
b: Lower epidermis, 4. Anisocytic type stoma, 5. Epidermal cell

Figure 26. Epidermis of the leaf of D. metel L. var. fastuosa with 20x magnification
a: Upper epidermis, 1. Anisocytic type stoma, 2. Multicellular uniseriated trichome,
3. Epidermal cell
b: Lower epidermis, 4. Anisocytic type stoma, 5. Epidermal cell

1.2.1 Stomatal number, stomatal index, and Palisade ratio

The constant number of leaf measurements values which consists of stomatal number, stomatal index and palisade ratio were analyzed by microscopic assessment as described in chapter III. The mean and standard deviation of stomatal number (upper and lower epidermis), stomatal index (upper and lower epidermis) in the area of $1 \mathrm{~mm}^{2}$ and palisade ratio of D. metel L . var. metel and D. metel L. var. fastuosa were shown in Table 9-10. The independent samples t-test of stomatal number (upper and lower epidermis) (Table 11-12), stomatal index (upper and lower epidermis) (Table 13-14), and palisade ratio of two varieties of D. metel L. (Table 15) were shown. There were significant differences between the two varieties of D.metel L. (the significance is less than .05) (Table 11-15).

Table 9. The average leaf measurement values of D. metel L. var. metel from three locations. (mean \pm SD, $\mathrm{n}=90$)

D. metel L. var. metel				
stomatal number		stomatal index		palisade ratio
upper epidermis	lower epidermis	upper epidermis	lower epidermis	
85.58 ± 18.90	204.53 ± 23.40	13.59 ± 1.00	19.08 ± 0.96	5.11 ± 0.54

Table 10. The average leaf measurement values of D. metel L. var. fastuosa from three locations. (mean \pm SD, $n=90$)

D. metel L. var. fastuosa				
stomatal number		stomatal index		palisade ratio
upper epidermis	lower epidermis	upper epidermis	lower epidermis	
190.96 ± 29.03	235.89 ± 31.81	19.29 ± 0.98	20.82 ± 1.16	6.34 ± 0.68

Table 11. The independent samples test of upper stomatal number of D. metel L. var. metel and D. metel L. var. fastuosa

	Group Statistics				
	group	N	Mean	Std. Deviation	Std. Error Mean
Upper stomatal number	1	90	85.58	18.899	1.992
	2	90	190.96	29.030	3.060

$1=D$. metel L. var. metel
$2=$ D. metel L. var. fastuosa

Independent Samples Test

Table 12. The independent samples test of lower stomatal number of D. metel L. var. metel and D. metel L. var. fastuosa

	Group Statistics				
	group	N	Mean	Std. Deviation	Std. Error Mean
Lower stomatal number	1	90	204.53	23.395	2.466
	2	90	235.89	31.809	3.353

$1=D$. metel L. var. metel
$2=$ D. metel L. var. fastuosa

Table 13. The independent samples test of upper stomatal index of D. metel L. var. metel and D. metel L. var. fastuosa

	Group Statistics			
group	N	Mean	Std. Deviation	Std. Error Mean
Upper stomata index	1	90	13.5891	.99703
	10510			

$1=D$. metel L. var. metel
$2=$ D. metel L. var. fastuosa

Independent Samples Test

Table 14. The independent samples test of lower stomatal index of D. metel L. var. metel and D.metel L. var. fastuosa

	Group Statistics			
	group	N	Mean	Std. Deviation
Std. Error Mean				
Lower stomatal index	1	90	19.0821	.96245
	2	90	20.8182	1.16014

$1=$ D. metel L. var. metel
$2=$ D. metel L. var. fastuosa
Independent Samples Test

Lower stomatal index	Levene's Test for Equality of Variances		t-test for Equality of Means						
	F	Sig.				Mean Difference		95\% Confidence Interval of the Difference	
			t	df	Sig. (2tailed)		Std. Error Difference	Lower	Upper
Equal variances assumed Equal variances not assumed	3.784	$.053$	$\begin{aligned} & \hline-10.926 \\ & -10.926 \end{aligned}$	$\begin{gathered} 178 \\ 172.130 \end{gathered}$	$\begin{aligned} & .000 \\ & .000 \end{aligned}$	$\begin{aligned} & -1.73611 \\ & -1.73611 \end{aligned}$	$\begin{aligned} & .15889 \\ & .15889 \end{aligned}$	$\begin{aligned} & -2.04967 \\ & -2.04974 \end{aligned}$	$\begin{aligned} & \hline-1.42255 \\ & -1.42248 \end{aligned}$

Table 15. The independent samples test of palisade ratio of D. metel L. var. metel and D. metel L. var. fastuosa

	group	N	Mean	Std. Deviation	Std. Error Mean
Palisade ratio	1	90	5.1088	.54255	.05719
	2	90	6.3370	.67592	.07125

$1=D$. metel L. var. metel
$2=$ D. metel L. var. fastuosa

Independent Samples Test

1.2.2 Stem and midrib cross section

The stem cross section of D. metel L. var. metel, and D. metel L. var. fastuosa showed a single striated layered epidermis cells. The epidermal cells were tabular shaped and covered externally by a fairly thick cuticle, which having a few multicellular uniseriated and glandular trichomes. The chromoplast layer, that contained anthocyanin pigment was found only in D. metel L. var. fastuosa. The chlorenchyma was located next to the collenchyma. The xylem vessels were align gather in group located next to chlorenchyma. The vascular fibers align gather in group and were interposed horizontally above parenchyma of pith (Figure 27-28).

The midrib cross section of D. metel L. var. metel, and D. metel L. var. fastuosa showed multicellular uniseriated trichomes located on the epidermis cells, which covered externally by a fairly thick cuticle . Both of collenchyma located next to the upper and lower epidermis, while parenchyma located next to the collenchyma. The palisade mesophyll consists of a single layer of cells, which lie above spongy mesophyll. The central of midrib, situated vascular tissue is surrounded by parenchyma cells. The xylem vessels and vascular fibers, which align gather in group were sparsely in vascular tissue. Anisocytic stoma type was presented on the both upper and lower epidermis (Figure 29 30).

Figure 27. Stem cross section of Datura metel L. var. metel

1. Multicellular uniseriated trichome
2. Epidermis
3. Chlorenchyma
4. Vascular fiber
5. Glandular trichome
6. Collenchyma
7. Xylem vessel
8. Parenchyma of pith

Figure 28. Stem cross section of Datura metel L. var. fastuosa

1. Multicellular uniseriated trichome 2. Glandular trichome
2. Epidermis
3. Collenchyma
4. Chromoplast containing anthocyanin pigment
5. Chlorenchyma
6. Xylem vessel
7. Vascular fiber
8. Parenchyma of pith

Figure 29. Midrib cross section of Datura metel L. var. metel

1. Upper epidermis
2. Spongy mesophyll
3. Parenchyma
4. Vascular fiber
5. Palisade mesophyll
6. Stomata
7. Collenchyma
8. Xylem vessel
9. Multicellular uniseriated trichome 10 . Lower epidermis

Figure 30. Midrib cross section of Datura metel L. var. fastuosa

1. Upper epidermis
2. Palisade mesophyll
3. Spongy mesophyll
4. Stomata
5. Multicellular uniseriated trichome
6. Parenchyma
7. Collenchyma
8.Vascular fiber
8. Xylem vessel
9. Lower epidermis

Part ll. Molecular evaluation of D.metel L. var. metel and D.metel L. var. fastuosa

2.1 ITS amplification

A pair of universal PCR primers (ITS5 and ITS4) designed from highly conserved regions flanking the Internal transcribe spacer (ITS) region were used for PCR amplification. The PCR products were subjected to electrophoresis using1.5\% agarose gel, then stained with ethidium bromide and visualized under UV transilluminator. An approximately 700 bp in size of PCR products comparing to 1 kb DNA ladder (Fermentas, USA) were obtained as shown in Figure 31.

Figure 31. The ITS amplification products in 1.5% agarose gel electrophoresis

2.2 rbcL amplification

A pair of universal PCR primers (rbcL-F and rbcL-R) were used for PCR amplification. The PCR products were subjected to electrophoresis using1.5\% agarose gel, then stained with ethidium bromide and visualized under UV transilluminator. An approximately 1.5 kp in size of PCR products comparing to 1 kb DNA ladder (Fermentas, USA) were obtained as shown in Figure 32.

Lane M:	1kb DNA Ladder	Lane 8:	KSL051105	Lane 16:	LHB061108
Lane 1:	LPK081001	Lane 9:	LHB071001	Lane 17:	LHB071109
Lane 2:	LPK091002	Lane 10:	LHB081002	Lane 18:	LHB081110
Lane 3:	LPK011103	Lane 11:	LHB091003	Lane 19:	LHB081111
Lane 4:	KSL071001	Lane 12:	LHB101004	Lane 20:	LHB091112
Lane 5:	KSL071002	Lane 13:	LHB101005	Lane 21:	TNF111001
Lane 6:	KSL031103	Lane 14:	LHB021106	Lane N:	negative control
Lane 7:	KSL041104	Lane 15:	LHB031107		

Figure 32. The $r b c \mathrm{~L}$ amplification products in 1.5% agarose gel electrophoresis

2.3 atpB amplification

A pair of universal PCR primers (atpB-F and atpB-R) were used for PCR amplification. The PCR products were subjected to electrophoresis using1.5\% agarose gel, then stained with ethidium bromide and visualized under UV transilluminator. An approximately 1.5 kp in size of PCR products comparing to 1 kb DNA ladder (Fermentas, USA) were obtained as shown in Figure 33.

Lane M:	1kb DNA Ladder	Lane 8:	KSL051105	Lane 16:	LHB061108
Lane 1:	LPK081001	Lane 9:	LHB071001	Lane 17:	LHB071109
Lane 2:	LPK091002	Lane 10:	LHB081002	Lane 18:	LHB081110
Lane 3:	LPK011103	Lane 11:	LHB091003	Lane 19:	LHB081111
Lane 4:	KSL071001	Lane 12:	LHB101004	Lane 20:	LHB091112
Lane 5:	KSL071002	Lane 13:	LHB101005	Lane 21:	TNF111001
Lane 6:	KSL031103	Lane 14:	LHB021106	Lane N:	negative control
Lane 7:	KSL041104	Lane 15:	LHB031107		

Figure 33. The $a t p B$ amplification products in 1.5\% agarose gel electrophoresis

The total length of the nucleotide fragments of all D.metel L. using ITS4 and ITS5 as a universal primers were 670 bp . Sequence comparison showed degree of sequence homology with $99-100 \%$ similarity, with 63% GC content. The multiple sequence alignment of ITS region of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L. were showed in Appendix B. The length of ITS1 region is 234 bp from position 1 to 234, 5.8S region is 165 bp from position 235 to 399, and ITS2 region is 271 bp from position 400 to 670. There are two polymorphisms within the 5.8 S region, four polymorphisms within the ITS2 as showed in Table 16. The phylogenetic relationship of ITS region sequences was generated and showed in

Figure 34.
Table 16. The alignments of ITS sequences of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L.

Samples	5.8S		Nucleotide Position			
			ITS2			
	335	350	499	506	512	614
D.metel L. var. fastuosa						
KSL071001	G	A	T	G	A	G
KSL071002	G	A	A	A	A	G
KSL031103	G	A	T	G	A	G
KSL041104	G	A	T	G	A	G
KSL051105	G	A	T	G	A	G
D.metel L. var. metel						
LPK081001		A	T	G	C	A
LPK091002	G	A	T	G	C	A
LPK011103	จพา G	A	T	G	C	A
hybrid D.metel L.						
LHB071001	G	A	T	G	A	G
LHB081002	C	T	T	G	C	A
LHB091003	G	A	T	G	C	A
LHB101004	G	A	T	G	C	A
LHB101005	G	A	T	G	C	A
LHB021106	G	A	T	G	C	A
LHB031107	G	A	T	G	A	G
LHB061108	G	A	T	G	C	A
LHB071109	G	A	T	G	A	G
LHB081110	G	A	T	G	C	A
LHB081111	G	A	T	G	C	A
LHB091112	G	A	T	G	C	A

Figure 34. Phylogenetic relationship of nucleotide sequences of ITS region of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L., (TNF111001 D. arborea L. was used as out group)

Both of atpB and rbcL of PCR products of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L. were sequenced. The rbcL sequences were 1,486-1,523 bp in length, with GC content 43%. The Sequence comparison of all D.metel L. showed 95-100 \% similarity, while atpB sequences were 1,184-1,464 bp in length, with GC content 43%. The Sequence comparison of all D.metel L. showed $94-99 \%$ similarity. The multiple sequence alignments of atpB, and rbcL of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L. were showed in Appendix B.

Part III. Scopolamine evaluation of D.metel L. var. metel and D.metel L. var. fastuosa

3.1 Preparation of crude extract for scopolamine determination

The approximately 1-6 g dried powder of each sample (leaf, flower, and fruit) of D. metel L. var. metel and D. metel L.var. fastuosa from six locations were extracted by sample extraction method, that was mentioned in chapter III (Figure 21). All samples were extracted by soxhlet apparatus. The yields of crude extracts ranged from 0.76 to 11.03 \% dry weight. The yield of crude extract of each sample was shown in Table 17.

Table 17. Yield of crude extract of D. metel L. var. metel and D. metel L.var. fastuosa from six locations (\% w/w of dry weight)

Sample	Location	Part used	Weight of dried powder (gram)	Crude extract (\% dry weight)
D. metel L. var. metel		Leaf	4.8890	7.63
	Rayong	Flower	3.0660	6.89
	(LPK081001)	Fruit	5.1922	9.85
		Leaf	4.0378	0.76
	Singburi	Flower	4.7602	4.48
	(LPK011103)	Fruit	5.0084	4.15
		Leaf	4.8163	1.97
	Nakhonpathom	Flower	1.2832	6.74
	(LPK091002)	Fruit	5.1220	11.03
D. metel L.var. fastuosa		Leaf	4.3354	2.18
	Bangkok	Flower	4.8188	5.10
	(KSL071001)	Fruit	5.0186	5.96
		Leaf	1TV2.7476	10.15
	Chonburi	Flower	3.8450	6.22
	(KSL051105)	Fruit	4.8964	9.51
		Leaf	6.3974	4.63
	Chachoengsao	Flower	5.1344	6.72
	(KSL041104)	Fruit	5.6851	5.94

Figure 35. TLC fingerprint of alkaloid extracted of D.metel L. var. metel

Detection
I = detection under UV light 365 nm
II = detection under UV light 254 nm
III = detection with dragendorff's reagent
STD = standard scopolamine hydrochloride
SAM = alkaloid extracted of D.metel L. var. metel
Developing solvent : Toluene-ethyl acetate-diethylamine $=7-2-1$
$R f$ values $=$ the distance from baseline travelled by the substance $=0.37$
the distance of solvent front from the baseline

3.2 Determination of scopolamine content by TLC image method

The scopolamine contents of each sample (leaf, flower and fruit) of D. metel L. var. metel and D. metel L.var. fastuosa from six different locations were evaluated by TLC Image analysis using Image J software (Figure 41). The yields of scopolamine from each sample of six locations were shown in Table 18.

Table 18. Scopolamine contents of each sample of D. metel L. var. metel and D. metel L.var. fastuosa from six different locations by TLC image method

Sample	Location	Part used	Scopolamine content of dried sample (mg / g dry weight)			
			No. 1	No. 2	No. 3	Mean \pm SD
D. metel L. var. metel		Leaf	0.196	0.206	0.201	0.201 ± 0.005
	Rayong	Flower	3.181	2.924	3.153	3.086 ± 0.141
	(LPK081001)	Fruit	0.951	0.903	0.791	0.882 ± 0.082
		Leaf	0.279	0.295	0.298	0.291 ± 0.010
	Singburi	Flower	1.659	1.658	1.675	1.664 ± 0.009
	(LPK011103)	Fruit	1.811	1.834	1.817	1.820 ± 0.012
		Leaf	1.360	1.415	1.270	1.348 ± 0.074
	Nakhonpathm	Flower	1.652	1.678	1.425	1.585 ± 0.139
	(LPK091002)	Fruit	0.986	1.061	1.125	1.057 ± 0.070
D. metel L.var. fastuosa		Leaf	0.106	0.095	0.099	0.100 ± 0.005
	Bangkok	Flower	1.835	1.918	2.328	2.027 ± 0.264
	(KSL071001)	Fruit	8.570	8.744	8.000	8.439 ± 0.389
		Leaf	1.253	1.116	1.372	1.247 ± 0.128
	Chonburi	Flower	1.368	1.647	1.597	1.538 ± 0.149
	(KSL051105)	Fruit	0.331	0.322	0.347	0.333 ± 0.013
		Leaf	0.229	0.206	0.211	0.215 ± 0.012
	Chachoengsao	Flower	3.373	3.375	3.045	3.264 ± 0.190
	(KSL041104)	Fruit	3.416	3.306	3.568	3.430 ± 0.132

Method validation

Linearity and detection range

The peak areas of standard scopolamine ($5.0-50.0 \mu \mathrm{~g} /$ spot) were shown in Table 19. Six concentrations of scopolamine were plotted against the response (peak area in pixel 2) for polynomial calibration curve. The correlation coefficient (r^{2}) of the curve was 0.9994 and polynomial equation was $y=-1029.5 x^{2}+16405 x-5426.1$ (Figure 36).

Table 19. The polynomial data of scopolamine by TLC image analysis ($\mathrm{n}=7$)
$\left.\begin{array}{cccccc}\hline \begin{array}{c}\text { Concentration } \\ \text { (} \boldsymbol{\mu g} \text { /spot) }\end{array} & \begin{array}{c}\text { No. } \\ \text { (n) }\end{array} & \begin{array}{c}\text { Peak area } \\ \text { (pixel) }\end{array} & \text { Average } & \text { SD } & \text { \% RSD } \\ \hline & 1 & 2695.8 & & & \\ & 2 & 5426.3\end{array}\right)$

	1	51850.9			
	2	47593.8			
50.0	3	42141.6			
	4	58568.8			
	5	68034.7			
	6	64269.6			
	7	49618.7	50734.8	1578.419	3.111

Figure 36. The calibration curve of scopolamine by TLC image analysis

Accuracy

The recovery of scopolamine content from the sample extracted was performed on samples spiked with three different concentration of scopolamine standard $(0.50,1.50$, and $2.50 \mu \mathrm{~g} / \mu \mathrm{l})$. The accuracy of scopolamine content was determined and the average of $\%$ recovery was found to be 104.32 ± 8.87 (Table. 20)
Table 20. The recovery of scopolamine by TLC image analysis ($\mathrm{n}=3$)

Amount of scopolamine added ($\boldsymbol{\mu g} /$ spot $)$	Amount of scopolamine detected ($\boldsymbol{\mu g} /$ spot)	Recovery (\%)
0.0	5.28	-
5.0	11.65	113.32
15.0	19.43	95.58
25.0	31.51	104.06
Average		104.32 ± 8.87

Precision

Repeatability (within day) was evaluated by assaying each standard concentration at $5.0,10.0,20.0,30.0,40.0$, and $50.0 \mu \mathrm{~g} /$ spot on the same day. The intermediate precision (between days) was studied by comparing the assay on the different days (3 days). The \% RSD of repeatability of scopolamine contents were $7.88 \%, 2.13 \%, 3.78 \%$, $4.20 \%, 4.35 \%$ and 4.47%, respectively (Table. 21). The \% RSD of intermediate precision (between days) of scopolamine contents were $2.25 \%, 5.51 \%, 3.20 \%, 4.27 \%, 4.87 \%$ and 4.62\%, respectively (Table. 22).

Table 21. The repeatability (within day) of scopolamine by TLC image analysis ($\mathrm{n}=3$)

Concentration ($\mu \mathrm{g} /$ spot)	No.	Concentration calculated from peak area ($\mu \mathrm{g} /$ spot)
5.0	1	5.60
	2	5.12
	3	4.79
	Average	5.17
	SD	0.41
	\%RSD	7.88
10.0	1	9.62
	2	9.24
	3	9.32
	Average	9.39
	SD	0.20
	\%RSD	2.13
20.0	1	19.54
	นัม 2 าวิ	20.83
	3	20.92
	Average	ITY 20.43
	SD	0.77
	\%RSD	3.78
30.0	1	30.09
	2	32.16
	3	29.80
	Average	30.68
	SD	1.29
	\%RSD	4.20
40.0	1	39.21
	2	41.30
	3	37.90
	Average	39.47
	SD	1.72
	\%RSD	4.35
	1	48.03
	2	51.67

50.0	3	47.72
	Average	49.14
	SD	2.20
	\%RSD	4.47

Table 22. The intermediate precision (between days) of scopolamine by TLC image analysis ($\mathrm{n}=3$)

Concentration ($\mu \mathrm{g} /$ spot)	Day	Concentration calculated from peak area ($\mu \mathrm{g} /$ spot)
5.0	1	5.17
	2	4.99
	3	4.96
	Average	5.04
	SD	0.11
	\%RSD	2.25
10.0	1	9.40
	2	10.47
	3	10.17
	Average	10.01
	SD	0.55
	\%RSD	5.51
20.0	1	20.43
	2	20.11
	3	19.20
	Average	19.91
	SD	0.64
	\%RSD	3.20
30.0	เม1าวิ์	30.68
	2	28.17
	OR3 U1	ITY 29.40
	Average	29.42
	SD	1.26
	\%RSD	4.27
40.0	1	39.47
	2	41.30
	3	43.50
	Average	41.42
	SD	2.02
	\%RSD	4.87
50.0	1	49.14
	2	47.83
	3	52.30
	Average	49.76
	SD	2.30
	\%RSD	4.62

Limit of detection (LOD) and limit of quantitation (LOQ)

LOD and LOQ values of this study were determined based on estimated standard deviation of the response and the slope. The slope and standard deviation of the response were estimated from 7 calibration curve. The slope value and standard deviation of the response were 10827.001 and 1994.273, respectively. The LOD value was 0.61 $\mu \mathrm{g} /$ spot which was the lowest amount of analyzing in sample that can be detected but not necessary quantitated as an exact value. LOQ for scopolamine was $1.84 \mu \mathrm{~g} / \mathrm{spot}$ which was the lowest concentration of sample, accurately detected and integrated by TLC image using Image J software.

Determination of scopolamine content by HPLC method

The scopolamine contents of each sample (leaf, flower and fruit) of D. metel L. var. metel and D. metel L.var. fastuosa from six different locations were evaluated by HPLC analysis using LC solution workstation software (Figure 42). The yields of scopolamine content in each sample of six locations were shown in Table 23.

Table 23. Scopolamine contents of each sample of D. metel L. var. metel and D. metel L.var. fastuosa from six different locations by HPLC method

Sample	Location	Part used	Scopolamine content of dried sample (mg/g dry weight)			
			No. 1	No. 2	No. 3	Mean \pm SD
D. metel L. var. metel	Rayong	Leaf	0.154	0.164	0.161	0.160 ± 0.005
	(LPK081001)	Flower	3.270	3.262	3.258	3.263 ± 0.006
		Fruit	0.726	0.769	0.765	0.753 ± 0.024
	Singburi	Leaf	0.275	0.272	0.275	0.274 ± 0.002
	(LPK011103)	Flower	1.662	1.611	1.687	1.653 ± 0.039
		Fruit	2.060	2.134	2.111	2.102 ± 0.038
	Nakhonpathom	Leaf	1.259	1.245	1.239	1.248 ± 0.010
	(LPK091002)	Flower	1.199	1.189	1.184	1.191 ± 0.008
		Fruit	1.263	1.262	1.262	1.262 ± 0.002
D. metel L.var. fastuosa	Bangkok	Leaf	0.032	0.031	0.030	0.031 ± 0.001
	(KSL071001)	Flower	1.990	1.967	1.971	1.976 ± 0.012
		Fruit	8.305	8.262	8.255	8.274 ± 0.027
	Chonburi	Leaf	0.633	0.612	0.610	0.619 ± 0.013
	(KSL051105)	Flower	1.385	1.346	1.370	1.367 ± 0.020
		Fruit	0.401	0.398	0.492	0.430 ± 0.054
	Chachoengsao	Leaf	0.124	0.121	0.120	0.122 ± 0.002
	(KSL041104)	Flower	2.884	2.876	2.893	2.885 ± 0.008
		Fruit	3.102	3.128	3.147	3.125 ± 0.023

Method validation

Linearity and detection range

Each of different concentration of standards was injected three times. The peak areas obtained for three analyses were averaged at each concentration. The average of peak areas was plotted versus concentration. A linear response between peak area and concentration range from $50-500 \mu \mathrm{~g} / \mathrm{ml}$ of standards were shown in Table 24. The correlation coefficient (r^{2}) of standard curve was 0.9999 and linear regression equation was $\mathrm{y}=9068 \mathrm{x}+10316$ (Figure 37).

Where, $\mathrm{y}=$ concentration of scopolamine $(\mu \mathrm{g} / \mathrm{ml})$
$x=$ area under peak of standard scopolamine
Table 24. The linear data of scopolamine by HPLC analysis ($\mathrm{n}=3$)

Concentration ($\mu \mathrm{g} / \mathrm{ml}$)	No. (n)	Peak area	Average	SD	\% RSD
50.0	1	442451			
	2	443263			
	3	443132	442949	435.941	0.098
100.0	1	921153			
	2	921193			
	3	920166	920837	581.736	0.063
200.0	1	1834161	-		
	2	า 1834440			
	3	A 1834927	1834509	387.678	0.021
300.0	1	2748350			
	2	2747339			
	3	2748916	2748202	798.896	0.029
400.0	1	3660438			
	2	3658083			
	3	3629740	3649420	17084.295	0.468
500.0	1	4521616			
	2	4522036			
	3	4520666	4521439	701.878	0.016

Figure 37. Calibration curve of standard scopolamine by HPLC analysis

Accuracy

The recovery of scopolamine content from crude extracted sample was performed on samples spiked with three different concentrations of scopolamine standard (50.0, 150.0 , and $250.0 \mu \mathrm{~g} / \mathrm{ml}$). The accuracy of scopolamine content was determined and the average of \% recovery was found to be 98.64 ± 3.76 (Table 25.)

Table 25. The recovery of scopolamine by HPLC analysis ($\mathrm{n}=3$)

Amount of scopolamine added ($\boldsymbol{\mu g} / \mathbf{m l})$	Amount of scopolamine detected ($\boldsymbol{\mu g} / \mathbf{m l} \mathbf{)}$	Recovery (\%)
0.0	93.02	-
50.0	141.64	97.24
150.0	236.71	95.79
250.0	350.27	102.90
Average		98.64 ± 3.76

Precision

Repeatability intraday (within day) was evaluated by assaying each standard at $100.0,300.0$, and $500.0 \mu \mathrm{~g} / \mathrm{ml}$ on the same day. The inter-day precision (between days) was studied by comparing the assay on the different days (3 days). The \% RSD of repeatabilitys of scopolamine contents were $4.93 \%, 1.17 \%$, and 0.65%, respectively
(Table 26). The \% RSD of intermediate of scopolamine contents were $2.56 \%, 0.42 \%$, and 0.78%, respectively (Table 27).

Table 26. The repeatability (within day) of scopolamine by HPLC analysis ($\mathrm{n}=3$)

Concentration ($\mu \mathrm{g} / \mathrm{ml}$)	No.	Concentration calculated from peak area ($\mu \mathrm{g} / \mathrm{ml}$)
100.0	1	93.02
	2	101.64
	3	101.25
	Average	98.64
	SD	4.87
	\% RSD	4.93
300.0	1	299.94
	2	304.81
	3	306.84
	Average	303.86
	SD	3.55
	\%RSD	1.17
500.0	1	498.95
	2	501.18
	3	505.38
	Average	501.84
	SD	3.26
	\%RSD	0.65

Table 27. The intermediate precision (between days) of scopolamine by HPLC analysis ($\mathrm{n}=3$)

Concentration ($\mu \mathrm{g} / \mathrm{ml}$)	Day	Concentration calculated from peak area ($\mu \mathrm{g} / \mathrm{ml}$)
100.0	1	TY 98.64
	2	101.70
	3	103.81
	Average	101.38
	SD	2.60
	\% RSD	2.56
300.0	1	303.86
	2	305.50
	3	302.99
	Average	304.12
	SD	1.27
	\% RSD	0.42
500.0	1	506.54
	2	503.02
	3	498.72
	Average	502.76
	SD	3.92
	\% RSD	0.78

Limit of detection (LOD) and limit of quantitation (LOQ)

LOD and LOQ values of this study were determined based on estimated standard deviation of the response and the slope. The slop and standard deviation of the response were estimated from the calibration curve. The slope value and standard deviation of the response were 9068.038, and 14555.087, respectively. The LOD value was $5.30 \mu \mathrm{~g} / \mathrm{ml}$, it was the lowest amount of analyzing in sample that can be detected but not necessary quantitated as an exact value. The LOQ value was $16.05 \mu \mathrm{~g} / \mathrm{ml}$, it was the lowest concentration of sample, and accurately detected by HPLC method.

Method comparison between TLC image analysis and HPLC-DAD analysis

The scopolamine contents of 18 samples (leaves, flowers and fruits) of D. metel L. var. metel and D. metel L.var. fastuosa analysed by TLC image method using Image J software and the HPLC method were compared as shown in Table 28 and the analytical data of both methods were shown in Table 29.

Table 28. Comparison of scopolamine contents of D. metel L. var. metel and D. metel L. var. fastuosa from six different locations by TLC image method and HPLC method

Sample	Location	Part used	Scopolamine content of dried sample (mg / g dry weight)	
			TLC image	$\begin{gathered} \text { HPLC } \\ (\mathrm{n}=3) \end{gathered}$
D. metel L. var. metel	Rayong	Leaf	0.201 ± 0.005	0.160 ± 0.005
	(LPK081001)	Flower	3.086 ± 0.141	3.263 ± 0.006
		Fruit	0.882 ± 0.082	0.753 ± 0.024
	Singburi	Leaf	0.291 ± 0.010	0.274 ± 0.002
	(LPK011103)	Flower	1.664 ± 0.009	1.653 ± 0.039
		Fruit	1.820 ± 0.012	2.102 ± 0.038
	Nakhonpathom	Leaf	1.348 ± 0.074	1.248 ± 0.010
	(LPK091002)	Flower	1.585 ± 0.139	1.191 ± 0.008
		Fruit	1.057 ± 0.070	1.262 ± 0.002
D. metel L.var. fastuosa	Bangkok ORII	Leaf	0.100 ± 0.005	0.031 ± 0.001
	(KSL071001)	Flower	2.027 ± 0.264	1.976 ± 0.012
		Fruit	8.439 ± 0.389	8.274 ± 0.027
	Chonburi	Leaf	1.247 ± 0.128	0.619 ± 0.013
	(KSL051105)	Flower	1.538 ± 0.149	1.367 ± 0.020
		Fruit	0.333 ± 0.013	0.430 ± 0.054
	Chachoengsao	Leaf	0.215 ± 0.012	0.122 ± 0.002
	(KSL041104)	Flower	3.264 ± 0.190	2.885 ± 0.008
		Fruit	3.430 ± 0.132	3.125 ± 0.023

Table 29. Paired samples t-test of TLC image method and HPLC method

1. Paired samples statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	TLC image analysis	1.80706	18	1.955502	.460916
	HPLC analysis	1.70750	18	1.932073	.455394

Paired samples statistics shows for each variable the number of cases, the mean, the standard deviation, and the standard error of the mean.
2. Paired samples correlations

		N	Correlation	Sig.
Pair 1 HPLC analysis	18	.993	.000	

Paired samples correlations shows the correlation between the two variables. The two variables are positively correlated, $r=0.993(\mathrm{~N}=18), p=0.000$.
3. Paired Samples Test

		Paired Differences					t	df	Sig. (2tailed)	
		Mean	Std. Deviation	Std. Error Mean	95\% Confidence Interval of the Difference					
		Lower			Upper					
Pair 1	TLC image \& HPLC analysis		. 099556	. 226401	. 053363	-. 013031	. 212142	1.866	17	. 079

Paired samples test shows the t statistics for the paired differences. Compare between content of scopolamine determine by TLC image analysis using Image J software and HPLC analysis. The mean was less difference, $0.099556, \mathrm{t}(17)=1.866, p=0.079$.

- TLC image analysis = scopolamine content determine by TLC image analysis using Image J software
- HPLC analysis = scopolamine content determine by High Performance Liquid Chromatography analysis

CHAPTER V DICUSSION AND CONCLUSION

The increased use of medicinal plants has the needs for methods to control the safety and administration of plants for the effective prevention and treatment of human diseases. The identification of plant is a great importance to ensure the highest efficacy (Ernst, 2006). There are a number of analytical tools available for medicinal plant authentication. Most of the regulatory guidelines and pharmacopoeias suggest macroscopic and microscopic evaluation and chemical profiling of herbal materials for quality control and standardization (WHO, 1998). Therefore, additional of DNA technologies have been applied for medicinal plant authentication (Sucher and Carles, 2008). Combinations of various analytical methods have been employed for quality assurance, control and authentication of medicinal plant species in herbal drug technology development.

Morphological assessment is an effective tool for determining the identity of plant material as it fast and inexpensive. Based on the morphological characteristics, macroscopic observations of the entire plant require highly skilled or well trained individuals whereas microscopic observations require smaller sections of the plant such as its leaf measurement index which require only simple sample preparation and standard laboratory instruments. Microscopic technique has been widely used for plant authentication by examination the palisade ratio, stomatal number, stomatal index, veinislet number, and vein-islet termination number (Trease and Evan, 2009; Roonyamarai et al., 2011). According to the results, macroscopic and microscopic analysis of D. metel L. var. metel. and D. metel L.var. fastuosa revealed the different morphology but contained almost similar cell components. Leave measurement index (stomatal number, stomata index and palisade ratio), the important property for species identification, showed different constant numbers espectially stomatal number in upper epidermis of D. metel L.var. fastuosa that found twofold higher than D. metel L. var. metel. In addition, molecular techniques have been also introduced for DNA fingerprinting. Analysis of the DNA that is present in all organisms is a suitable method for identifying plant materials because the genetic composition is unique for each
individual organism. DNA extracted from leaves, stems or roots of plants all carry the same genetic information without being affected by physiological conditions and environmental factors (Sucher and Carles, 2008).

Recently, several molecular markers have been developed and increasingly used as modern techniques to distinguish genotypes of organisms. The DNA fragment markers, such as Simple Sequence Repeat (SSR) (Morgante and Olivieri, 1993), InterSimple Sequence Repeat (ISSR) (Zietkiewicz et al., 1994), Random Amplified Polymorphic DNA (RAPD) (Williams et al., 1990), and Amplified Fragment Length Polymorphism (AFLP) (Vos et al., 1995), have been successfully used in polymorphism analysis and phylogenetic evaluation in many plants. Each marker technique has its own advantages and disadvantages. Common benefits from most markers include rapid analyses, highly informative results, and being independent on environmental factors. However, DNA fragment amplification markers also have some limitations in the data analysing step. For instance, DNA band results may not be clear enough for the analysis and some PCR amplified fragments may not be repeatable due to a low quality of the genomic DNA. To avoid such problems, DNA sequencing technique would rather be used as an alternative molecular marker than DNA fragment markers (Nantharat et al., 2009).

The species-specific regions in nuclear DNA, mitochondrial DNA and chloroplast DNA have been used for the identification of each individual species. Plant nuclear genome, ITS (internal transcribed spacer) region is now perhaps the most widely sequenced DNA region in fungi, gymnosperm and angiosperm due to the relatively small size (<700 base pairs) and high copy number of the ribosomal DNA gene which enable easy amplification even from small quantities of DNA or from herbarium materials and due to a high degree of variation, even between closely related species which makes the ITS region an interesting site for phylogenetic investigations (Bisbal et al., 2009, Sukrong et al., 2007). It has typically been most useful for molecular systematics at the species level, and even within species (e.g., to identify geographic races) (Baldwin et al., 1995). Because of its higher degree of variation than other genetic regions of rDNA, variation among individual rDNA repeats can sometimes be observed within both the ITS and IGS regions (Hunter et al., 1997). In addition, plant chloroplast genomes have also been proved to be a primary source of data for molecular genetic relationship studies. They are
now used routinely as a tool to investigate evolutionary processes in plants. Many early publications usually focused on several coding-regions of chloroplast DNA (cpDNA) sequences such as rbcL, matK, atpB and ndhF genes to elucidate genetic relationships (Chase et al. 1993; Olmstead and Sweere, 1994; Steele and Vilgalys, 1994). Due to its relatively low average rate of evolution most previous studies have used cpDNA sequence variation to examine plant systematics and evolution above the species level (Palmer et al., 1988; Soltis and Miligan, 1992). In this recent study, the ITS, rbcL, and $a t p B$ region were investigated in D. metel L . The sequence comparisons of three regions showed $94-100 \%$ similarity in all three regions. The ITS region of D.metel L. showed the intra-species specific within the species, while the $r b c \mathrm{~L}$ and $a t p \mathrm{~B}$ regions are highly conserved within the species and genus level. It revealed no distinguishing characteristic between two varieties of D.metel L. Two polymorphisms were found within the 5.8 S region, and four polymorphisms within the ITS2. The two positions of single nucleotide polymorphism (SNP) were shown at positions 512 and 614 of ITS2 region. According to the SNP at position 512, restriction enzyme HpyCH41V (ACGT) and Mae II (ACGT) can be used for identification these closely related plant when performed for PCR-RFLP. Based on the results, the ITS2 region can be potentially used as a standard DNA barcode to identify the medicinal plants and their closely related species (Chen et al., 2010).

Chromatographic fingerprint is an analytical method for establishing a characteristic chemical pattern for a plant material fraction or extracts. TLC and HPLC are routinely used as valuable tools for qualitative determination of small amounts of impurities. TLC fingerprint analysis is an easy operating and time-saving method with low cost while HPLC has been used for analysis of a wide range of compounds and become the most widely applied effective separation and analysis tool for herbal products but require high cost of instrument. Several methods including GC, GC/MS, HPLC, LC/MS, and CE (Drager, 2002; Elisabetta et al., 2001; Ceyhan et al., 2001; Steenkamp et al., 2004; Cataldi and Bianco, 2008) were also used for identification and quantitative determination of scopolamine in herbal plants and herbal products. Even though the major advantages of these methods have been claimed for their being highly sensitivity and specific, the analytical instruments are quite costly and expertise is usually required. Unlike those, the use of simple and inexpensive TLC method can overcome these drawbacks and being more accessible to many local authorities and small
laboratories. Furthermore, based on a combination with simple computer technology and image analysis software, TLC-image analysis method has been developed and applied for quantitative assay with good accuracy and precision (Prosek and Vovk, 2003). Therefore, the aim of this study was to develop an economic, accurate, reproducible and convenient TLC-image analysis method for rapid determination and quantitative analysis of scopolamine contents of two varieties D. metel L. The proposed method was validated in compliance with ICH guidelines and compared with HPLC method.

In order to evaluate its accuracy and precision, TLC-image analysis was compared with high performance liquid chromatography (HPLC) analysis. In this study, a number of leaves, flowers and fruits of two varieties D.metel L. from six different locations were analyzed for their scopolamine content using two methods and the results were compared. The result indicated that scopolamine content in eighteen samples determine by TLC image method (Mean=1.80706, $\mathrm{SD}=1.955502$) were closed to that determine by HPLC method (Mean=1.70750, $\mathrm{SD}=1.932073$). The two variables are positive correlated, $\mathrm{r}=0.993, p=0.000$ and there were not significantly different $(\mathrm{t}(17)=$ 1.866, $p=0.079$). The amount of scopolamine from flower part of D. metel L. var. metel contained high scopolamine content whereas the fruit part of D. metel L.var. fastuosa showed high scopolamine content. Because of many environmental factors can influence the scopolamine content including soil composition, soil fertilization, salinity, climate and altitude, application of plant growth regulators and hormones, insect herbivory, and plant health (Afsharypuor et al., 1995; Shonle and Bergelson, 2000). The different of scopolamine contents of D.metel L.var. fastuosa in leaves part when compare with two methods could be ascribed to the contrast of matrix effect between scopolamine and background due to the impurities (such as ; chlorophyll). These will be the limitation of TLC image analysis for this part. Previous study of Gupta, et al. (1973) revealed scopolamine in D. metel L. var. fastuosa usually was the principal alkaloid in root to leaf and up to pre-flowering stages, later on hyoscyamine content increases. Very young fruits were found to possess maximum alkaloids. (Gupta et al., 1973). This information may be of immense value for commercial exploitation of this drug plant grown for its alkaloids.

Because of tropane alkaloids possess poor chromophores (maximum wavelength of UV absorption is about 205 nm), therefore, in majority of proposed detection and
quantitation systems derivatization with Dragendorff reagent was applied at first for increasing the sensitivity and the orange bands of alkaloids could be further scanned by absorption densitometric method at 520-530 nm (Mroczek, 2008). These would be captured by digital camera or scanner machine, and then analysed by image analysis software. In 2004, Berkov and Pavlov proposed a rapid and convenient TLC image method for preparation and simultaneous densitometric quantification of hyoscyamine and scopolamine by derivatization with Dragendorff reagent and quantification by QuantiScan image analysis software. The quantitative results of these were compared with gas chromatography (GC) method, and the result showed good correlation with each other (Berkov and Pavlov, 2004).

In conclusion, based on the result from this study, the combination of macroscopic, microscopic and molecular method are able to authenticate the closely related plants between D. metel L. var. metel and D. metel L.var. fastuosa. Both of them have a potency to be a source of scopolamine production.

Future study

1. There are many interesting of other chloroplast genomes, that may be used to investigate the two closely related plants, such as matK, atpB-rbcL intergenic spacer, or intergenic region of $t r n \mathrm{H}-\mathrm{psbA}$ region.
2. In order to eliminate the impurity from samples, the solid phase extraction technique or standard addition method may be used for this purpose.

References

ภาษาไทย

บุญชู ศรีตุลารักษ์. 2553. แอลคาลอยด์เคมีและการใช้ประโยชน์ทางยา. กรุงเทพฯ :โรงพิมพ์แห่ง จุฬาลงกรณ์มหาวิทยาลัย.

สุชาดา สุขหร่อง. 2553. ลายพิมพ์ดีเอ็นเอของพืชสมุนไพร : วิธีวิเคราะห์ การใช้ประโยชน์ ตัวอย่าง จากงานวิจัยและเทคนิคพื้นฐานทางชีววิทยาโมเลกุล. กรุงเทพฯ :โรงพิมพ์แห่งจุพาลงกรณ์ มหาวิทยาลัย.

ภาษาอังกฤษ

Aehle, E., and Drager, B. 2010. Tropane alkaloid analysis by chromatographic and electrophoretic technique: An update. J. Chromatogr B. 878: 1391-1406.

Afsharypuor, S., Mostajeran, A., and Mokhtary, R. 1995. Variation of scopolamine and atropine in different parts of Datura metel during development. Planta Med. 61(4): 383-384.

Alejandro, G. D., Razafimandimbison, S. G., and Liede-Schumann, S. 2005. Polyphyly of Mussaenda inferred from ITS and trnT-F data and ITS implication for generic limits in Mussaendeae (Rubiaceae). Am J Bot. 92(3): 544-557.

Alexander, A. et al. 2008. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on Tropane alkaloids (from Datura sp.) as undesirable substances in animal feed. The EFSA Journal. 691: 1-55.

Amber, V. I. S. 2007. Digitally enhanced thin-layer-chromatography: an inexpensive, new technique for qualitative and quantitative analysis. J. Chem Educ. 84(5): 842-847.

AOAC, AOAC Guideline for Single Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals. [Online]. Available from http://www.aoac.org /official_Methods/slv_guideline.pdf [2012, June 26]

Avery, A. G., Satina, S., and Rietsema, J. 1959. Blakeslee: The genus Datura. New York: The Ronald Press.

Ayensu, E. S. 1981. Medicinal Plants of West Africa. Michigan: Reference Publications.

Baldwin, B. G., et al. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Miss Bot Gard. 82: 247277.

Banyai, P., et al. 2006. HPLC analysis of alizarin and purpurin produced by Rubia tinctorum L. hairy root cultures. Chromatographia Supplement. 63: S111-114.

Benslimani, N., et al. 2011. In Vitro Radiosensitivity Study of Datura Species Seeds for Increased Alkaloid-producing Mutant Lines. Adv Environ Biol. 5(2): 381393.

Berkov, S., and Pavlov, A. 2004. A rapid densitometric method for the analysis of hyoscyamine and scopolamine in Solanaceous plants and their transformed root cultures. Phytochem Anal. 15: 141-45.

Bliss, M. 2001. Datura Plant Poisoning. Clinical Toxicology Review. 23(6): 1-2.
Bogusz, B., and Erkens, M. 1994. Reversed-phase high-performance liquid chromatographic database of retention indices and UV spectra of toxicologically relevant substances and its inter-laboratory use. J. Chromatogr A. 674: 97-126.

Bowler, R. G., Crooke, A. C., and Morris, C. J. O. R. 1944. The effect of morphine and hyoscine on dye concentration curves in plasma volume determination. $\underline{\mathrm{J}}$. of Physiol. 103: 137-141.

Brown, J. H., and Taylor, P. 2001. Muscarinic receptor agonists and antagonists. In: Joel G. Hardman, Lee E. Limbird, [eds] Goodman \& Gilman's the pharmacological basis of therapeutics, $10^{\text {th }}$ ed. New York : McGraw-Hill.

Bruneton, J. 1999. Pharmacognosy, Phytochemistry, Medicinal Plants. $2^{\text {nd }}$ ed. London : Lavoisier.

Carles, M., et al. 2005. A DNA microarray for the authentication of toxic traditional Chinese medicinal plants. Planta Med. 71: 580-584.

Cataldi, T. R. I., and Bianco, G. 2008. Capillary Electrophoresis of Tropane Alkaloids and Glycoalkaloids Occurring in Solanaceae Plants. Methods in Molecular Biology. In: Capillary Electrophoresis. pp.171-203. Totowa, NJ : Humana Press.

Ceyhan, T., Kartal, et al. 2001. LC determination of atropine sulfate and scopolamine hydrobromide in pharmaceuticals. J. Pharmaceut Biomed Anal. 25: 399-406.

Chase, M. W. et al. 2005. Land plants and DNA barcodes: short-term and long-term goals. Philos Trans R Soc Lond B Biol Sci. 29; 360(1462): 1889-1895.

Chase, M. W., et al. 1993. Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard. 80: 528-580.

Chen, S. et al. 2010. Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 5(1): e8613.

Cherkaoui, S. et al. 1997. Development and validation of a capillary zone electrophoresis method for the determination of atropine, homatropine and scopolamine in ophthalmic solutions. J. Chromatogr B. 696: 283 - 290.

Chian, T. Y., Schaal, B. A., and Peng, C. I. 1998. Universal primers for amplification and sequencing a noncoding spacer between the $a t p \mathrm{~B}$ and $r b c \mathrm{~L}$ genes of chloroplast DNA. Bot Boll Acad Sin. 39: 245-250.

Dabur, R., et al. 2004. A novel antifungal pyrrole derivative from Datura metel leaves. Pharmazie. 59: 568-570.

Dechatiwongse-Na-Ayudhya, T., Techadamrongsin, Y., and Jirawattanapong, W. 1993. Chemical Specification of Thai Herbal Drugs Vol.1. Phytochemistry Section. Bangkok : Division of Medicinal Plant Research and Development, Department of Medical Sciences, Ministry of Public Health, Thailand.

Doebley, A. , Stec, J., Endei, W., and Edwards, M. 1990. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize. Proc Natl Acad Sci. 87: 9888-9892.

Dong, M. W. 2006. Modern HPLC for practicing scientist. New Jersey: John Wiley.
Donoghue, M. J. et. al. 1993. Phylogenetic relationships of Dipsacales based on rbcL sequences. Ann Mo Bot Gard. 79: 333-345.

Downie, S. R., and Palmer, J. D. 1992. Use of chloroplast DNA rearrangements in reconstruction plant phylogeny. In: Soltis et al. [eds.], Molecular systematics of plants. pp 1-13.New York : Chapman \& Hall.

Doyle, J. J., and Doyle J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 19: 11-15.

Drager, B. 2002. Review: Analysis of tropane and related alkaloids. J. Chromatogr A. 978: 10-19.

Eames, A. J., and MacDaniels, L. H. 1974. An introduction to plant anatomy. $2^{\text {nd }}$ ed. NewYork: McGraw-Hill.

Elisabetta, M., et al. 2001. Distribution of hyoscyamine and scopolamine in Datura stramonium. Fitoterapia. 72(6): 644-648.

Erlich, H. A. 1989. PCR technology: principles and applications for DNA amplifications. New York: Stockton Press.

Ernst, E. 2006. Herbal medicines - they are popular, but are they also safe? Eur J Clin Pharmacol. 62: 1-2.

Facchini, P. J. 2001. Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol. 52: 41-43.

Facchini, P. J. 2006. Regulation of alkaloid biosynthesis in plant. Alkaloids Chem Biol. 63: 1-44.

Farnsworth, N. R. 1966. Biological and phytochemical screening of plants. J. Pharm. Sci. 55: 225-275.

Frascaria, N. et al. 1993. The rbcL gene sequence from chestnut indicates a slow rate of evolution in the Fagaceae. Genome. 36: 668-671.

Gatenby, A. A., Rothstein, S. J., and Nomura, M. 1989. Translational coupling of the maize chloroplast $a t p B$ and $a t p E$ genes. Proc Natl Acad Sci. 86: 4066-4070.

Geisler, M., Nadeau, J., and Sack, F. 2000. Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation, The Plant Cell. 12: 2075-2086.

Gerbi, S. A. 1985. Evolution of ribosomal DNA, In: R. J. MacIntyre (eds.), Molecular evolutionary genetics, pp 419-517. New York : Plenum Press.

Gnanamani, A., et al. 2003. Antibacterial activity of two plant extracts on eight burn pathogens. J. Ethnophormocol. 86 (1): 59-61.

Gontier, E., Sangwan, B. S., and Barbotin, J. N. 1994. Effects of calcium, alginate and calcium-alginate immobilization on growth and tropane alkaloid levels of a stable suspension cell line of Datura innoxia Mill. Cell Reports. 13: 533536.

Griffin, W. J., and Lin, G. D. 2000. Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry. 53(6): 623-637.

Gupta, S., Prabhakar, V. S., and Madan, C. L. 1973. The distribution of total alkaloids and major components in the organs of Datura metel var. fastuosa at various stages of growth. Planta Med. 23(4): 370-376.

Haegi, L. 1976. Taxonomic Account of Datura L.(Solanaceae) in Australia with a Note on Brugmansia. Pers Aust J Bot. 24: 415-435.

Hahn, R. 2003. Swami's Sacred Plant: A Report of Unprecedented Datura Use in Nepal. The Entheogen Review. 12(1): 1-6.

Hilu, K. W., and Liang, H. 1997. The matK gene: sequence variation and application in plant systematics. Am J Bot. 84: 830-839.

Hoot, S. B., Culham, A., and Crane, P. R. 1995. The Utility of atpB Gene Sequences in Resolving Phylogenetic Relationships: Comparison with rbcL and 18S Ribosomal DNA Sequences in the Lardizabalaceae. Ann Mo Bot Gard. 82 (2): 194-207.

Hoseini, N., et al. 2011. Simultaneous determination of atropine and scopolamine in different of Hyoscyamus arachoideus Pojark plants by high-performance liquid chromatography (HPLC). J. of Med Plant Res. 5(15): 3552-3557.

Houghton, P., and Mukherjee, P. K. 2009. Authentication of botanicals used in clinical research. New York: Pharmaceutical Press.

Hunter, C. L., Morden, C. W., and Smith, C. M. 1997. The utility of ITS sequences in assessing relationships among zooxanthellae and corals. Proc $8^{\text {th }}$ Int Coral Reef Symp. 2: 1599-1602.

ICH, Validation of Analytical Procedure: Text and Methodology - Q2(R1). 1994. [Online]. Available from http://www.ich.org/products/guidelines/ quality/article/quality-guideline.html [2012, June 26].

Jakabova, S., et al. 2012. Determination of tropane alkaloids atropine and scopolamine by liquid chromatography-mass spectrometry in plant organs of Datura species. J. Chromatogr A. 1232: 295-301.

James, G. R. 1991. The Importance of the Solanaceae in Medicine and Drug Therapy. In: G.J. Hawkes, (eds). pp. 7-23, Solanaceae III, Surrey, Royal Botanic Gardens Society of London.

Javaid, A., Shafique, S., and Shafique, S. 2008. Herbicidal activity of Datura metel L. against Phalaris minor Retz. Pak Weed Sci Res. 14(3-4): 209-220.

Johnson L. A., Schultz, J. L., Soltis, D. E., and Soltis, P. S. 1996. Monophyly and generic relationships of Polemoniaceae based on matK sequences. Am J Bot. 83: 1207-1224.

Johnsson, R., Traff, G., Sunden, M., and Ellervik, U. 2007. Evaluation of quantitative thin layer chromatography using staining reagents. J. Chromatogr A. 1164: 298-305.

Joshi, K., Chavan, P., Warude, D., and Patwardhan, B. 2004. Molecular Markers in Herbal Drug Technology. Curr Sci. 87(2): 159-165.

Kursinszki, L., et al. 2005. Simultaneous analysis of hyoscyamine, scopolamine, 6ßhydroxyhyoscyamine and apoatropine in Solanaceous hairy roots by reversedphase high-performance liquid chromatography. J. Chromatogr A. 1091: 3239.

Liang, Y. Z., Xie, P., and Chan, K. 2004. Review: Quality control of Herbal medicines. J. Chromatogr B. 812: 53-70.

Mace E. S., Gebhardt C. G., and Lester R. N. 1999. AFLP analysis of genetic relationships in the tribe Datureae (Solanaceae). Theor Appl Genet. 99: 634641.

Maxam, A. M., and Gilbert, W. 1977. A new method for sequencing of DNA. Proc Natl Acad Sci. 74: 560-564.

Miraldi, E., et al. 2001. Distribution of hyoscyamine and scopolamine in Datura stramonium. Fitoterapia. 72: 644-648.

Morgante, M., and, Olivieri, A.M. 1993. PCR-amplified microsatellites as markers in plant genetics. Plant J. 3: 175-182.

Mroczek, T. 2008. TLC of Tropane Alkaloids. In: Thin Layer Chromatography in Phytochemistry. pp. 685-697. Boca Raton: CRC Press.

Muhtadi F. J. M and Hassan, Mahmoud M. A. 1993. Scopolamine Hydrobromide.. In Klaus Florey (eds). pp. 477, Analytical Profiles of Drug Substances vol.19. San Diego: Academic Press.

Mukherjee, P. K. 2007. Quality Control of Herbal Drugs. $2^{\text {nd }}$ ed. New Delhi: Business Horizons Pharmaceutical.

Muller, K. F., Borsch, T., and Hilu, K. W. 2006. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F and rbcL in basal angiosperms. Mol Phylogenet Evol. 41: 99-117.

Mullis, K. B. and Faloona, F. A. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth Enzymol. 155: 335-350.

Newton, C. R. and Graham, A. 1994. PCR, part 1: Basic principles and methods. Oxford: Bios Scientific.

Olmstead, R. G., and Sweere, J. A. 1994. Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol. 43: 467-481.

Palazon, J., et al. 2008. Application of metabolic engineering to the production of scopolamine. Molecules. 13: 1722-1742.

Palmer, J. D. 1992. Mitochondria DNA in plant systematic, In: Applications and limitations in molecular systematics of plants II. New York: Kluwer academic.

Palmer, R., et al. 1988. Chloroplast DNA variation and plant phylogeny. Ann Mo Bot Gard. 75: 1180-1206.

Phiya, S. K., et al. 2002. Healing potential of Datura alba on burn wounds in albino rats. J. Ethnophormocol. 83 (3): 193-199.

Phua, D. H., Cham, G., and Seow, E. 2008. Case Report: Two instances of chinese herbal medicine poisoning in Singapore. Singapore Med. 49(5): 131-133.

Pramod, K. K., Singh, S., and Jayabaskaran, C. 2010. Expression of hyoscyamine 6ßhydroxylase in the root pericycle cells and accumulation of its product scopolamine in leaf and stem tissues of Datura metel L. Plant Science. 178: 202-206.

Preissel, U., and Preissel, H. G. 2002. Brugmansia and Datura: Angel's Trumpets and Thorn Apples. New York: Firefly Books.

Prosek, M., and Vovk, I. 2003. Basic principles of optical quantification in TLC. Handbook of Thin-Layer Chromatography. New York: Marcel Dekker.

Punyarajun, S., and Tipduangta, P. 1981. Datura fastuosa Grown in Chiang Mai. ․ . Pharmaceutical Science. 8(3):71-74.

QIAGEN. 2002. QIA quick PCR Purification Kit. In: QIA quick Spin Handbook. California: QIAGEN Inc.

Quisumbing, E. 1951. Medicinal Plants of Philippines. Manila : Bureau of Printing.

Rajesh-Sharma, G. L. 2002. Studies on antimycotic properties of Datura metel. J. Ethnopharmacol. 80: 193-197.

Ratana Teeyapant. 1987. Effect of fertilizers and harvesting times on total alkaloid, hyoscyamine and/or atropine and hyoscine contents in different parts of Datura metel L. var. fastuosa Safford (Solanaceae). Master's thesis, Department of Pharmacognosy. Faculty of Pharmacy. Chiang Mai University.

Razafimandimbison, S. G., and Bremer, B. 2001. Tribal Delimitation of Nauclea (Cinchonoideae, Rubiaceae): Inference from Molecular and Morphological Data. Systematics and Geography of Plants. 71(2): 515-538.

Reynolds, E. F.1982. Martindale: The extra pharmacopoeia. $28^{\text {th }}$ ed. London: The pharmaceutical Press.

Richard, G. F., Kerrest, A., and Dujon, B. 2008. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev. 72 (4): 686-727.

Robbers, J. E., Speedie, M. K., and Tyler, V. E. 1996. Alkaloids. Pharmacognosy \& Pharmacobiotechnology. New York: William \& Wiking Press.

Roonyamarai, W., Rungsihirunrat, K., Vipunngeun, N., and Ruangrungsi, N. 2011. Microscopic and molecular analyses of selected Morinda species in Thailand. Asian Journal of Traditional Medicines. 6 (3): 118-126.

Safford, W. E. 1921. Synopsis of the genus Datura. J. Wash Acad Sci. 11:173-189.
Sahoo, L. 2003. Plant biotechnology lab manual. New Denhi : Department of Biotechnology, Indian Institute of Technology, Guwahati.

Salguero, C.P. 2003. A Thai Herbal: Traditional Recipes for Health and Harmony, $1^{\text {st }}$ ed. Forres, Scotland: Findhorn.

Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory Manual Vol. 3. New York : Cold Spring Harbor Laboratory Press.

Sanger, F., Nicklen, S., and Coulson, A. R. 1977. DNA sequencing with chaintermination inhibitors. Proc Natl Acad Sci. 74: 5463-5467.

Sezik, E., Zor, M., and Yesilada, E. 1992. Traditional Medicine in Turkey II. Folk Medicine in Kastamonu. Int J Pharmacognosy. 30(3): 233-239.

Sharma, V., Sharma, N., Singh, B., and Gupta, R. C. 2009. Cytomorphological studies and HPTLC fingerprinting in different plant parts of three wild morphotypes of Datura metel L. "Thorn Apple" from North India. Int J Green Pharm. 3(1): 40-46.

Shaw, P. C., Wang, J., and But, P. P. H. 2002. Authentication of Chinese medicinal materials by DNA technology. New Jercy: World Scientific Press.

Sherma, J. 2005. Thin Layer Chromatography. Ewing's Analytical Instrumentation Handbook. $3^{\text {rd }}$ ed. New York: Marcel Dekker.

Shonle, I., and Bergelson, J. 2000. Evolutionary ecology of the tropane alkaloids of Datura stramonium L. (solanaceae). Evolution. 54(3): 778-788.

Shutt L.E., and Bowes, J.B. 1979. Atropine and hyoscine. Anaesthesia. 34: 476-490.

Siddigui, S., et al. 1986. Isolation and Structure of a New Alkaloid Datumetine from the Leave of Datura metel L. J Nat Prod. 44: (3). 511-513.

Sirichan Pattanapongsirikul. 2002. Agrochemicals from the flowers of Datura metel Linn. Master's thesis, Department of Chemistry. Faculty of Sciences. Chulalongkorn University.

Smitinand, T. 1980. Thai Plant Names (Botanical Names-Vernacular Names). Bangkok: Funny Publishing.

Soltis, D. E., and Miligan, B. G. 1992. Intraspecific chloroplast DNA variation: systematic and phylogenetic implications. In Soltis, P. S., Soltis, D. E., and Doyle, J. J. [eds.], Molecular systematics of plants. pp. 117-150. New York: Chapman and Hall.

Soltis, D. E., Soltis, P. S., and Doyle, J. F. 1998. Molecular Systematics of Plants II: DNA sequencing. Boston: Kluwer Academic Press.

Sotanaphun, U., Phattanawasin, P., and Sriphong, L. 2009. Application of scion image software to the simultaneous determination of curcuminoids in turmrric (Curcuma longa). J. Phytochem Anal. 20: 19-23.

Souframanien, J., Joshi, A., and Gopalakrishna, T. 2003. Intraspecific variation in the internal transcribed spacer region of rDNA in black gram (Vigna mungo L.Hepper). Curr Sci. 85(6): 798-802.

Steele, K. P., and Vilgalys, R. 1994. Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the Plastid gene matK. Syst Bot. 19: 126-142.

Steenkamp, P. A., et al. 2004. Fatal Datura poisoning: identification of atropine and scopolamine by high performance liquid chromatography / photodiode array / mass spectrometry. Forensic Sci Int. 145: 31-39.

Sucher, N. J., and Carles, M. C. 2008. Genome-Based Approaches to the authentication of medicinal Plants. Planta Med. 74: 603-623.

Sukrong S, et al. 2007. Molecular analysis of the genus Mitragyna existing in Thailand based on rDNA ITS sequences and its application to identify a narcotic species: Mitragyna speciosa. J. Biol Pharm Bull. 30(7): 1284-1288.

Suntornsuk, L. 2002. Capillary electrophoresis of phytochemical substances. J. Pharmaceut Biomed Anal. 27: 679-98.

Tantivatana, T., Bavovada, R., and Jirawongse, V. 1978. Alkaloids of the leaves of Datura metel Linn. growingin Thailand. J. Natl Res Council Thailand. 10: 7784.

Trease, G. E. and Evans, W. C. 2009. Pharmacognosy. $16^{\text {th }}$ ed. London : W \& B Saunders Press.

Vos, P., Hogers, R., et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407-14.

Vosberg, H. P. 1985. DNA topoisomerases: Enzymes that control DNA conformation. Curr Top Microbiol Immunol. 114: 19-102.

Wagner, H., and Bladt, S. 1996. Plant Drug Analysis: A Thin Layer Chromatography Atlas. $2^{\text {nd }}$ ed. New York: Springer.

Wallis T. E. 1960. Textbook of Pharmacognosy. $14^{\text {th }}$ ed. London: J \& A Churchill Press.

Weising, K., et al. 2005. DNA fingerprint in plants: principles, methods, and applications. $2^{\text {nd }}$ ed. Florida: CRC Press.

White, T. J., et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Michael A. Innis (ed). pp. 315-322. PCR Protocols: A Guide to Methods and Applications. San Diego: Academic Press.

Williams, J. G. K., et al. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535.

Wolfe, K.H. 1991. Protein-coding genes in chloroplast DNA: Compilation of nucleotide sequences, database entries and rates of molecular evolution. In Indra K. Vasil (eds) pp. 200-267. Cell Culture and Somatic Cell Genetics in Plants. San Diego: Academic Press.

World Health Organization (WHO). 1998. Quality control methods for medicinal plant materials. Geneva. World Health Organization.

Yip, P. Y., et al. 2007. DNA method for identification of Chinese medicinal materials. J. Chin Med. 2(9): 1-19.

Youngken, H.W.1948. Textbook of Pharmacognosy. $6^{\text {th }}$ ed. New York: McGrawHill.

Zhang, Y., et al. 2007. Molecular authentication of Chinese Herbal Materials. J. Food Drug Anal. 15: 1-9.

Zhao, Z., et al. 2006. Authentication is fundamental for standardization of Chinese medicines. Planta Med. 72 (10): 865-874.

Zietkiewicz, E., A. Rafalsik, and S. Labuda. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomes. 20: 176-183.

Zurawski, G., Bottomley, W., and Whiifield, P.R. 1982. Structures of the genes for the β and E subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci. 79: 6260-4.

Chulalongkorn University

APPENDIX A

Part I. Microscopic evaluation
(Constant values of leaves)

Table 30. Stomatal number and stomatal index of D. metel L. var. metel
(upper epidermis)
Location: The Somdej Phra Thepraratana Rajsuda Medicinal Plants Garden,
Petroleum Authority of Thailand, Rayong province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	94	592	13.70
2	94	652	12.60
3	86	598	12.57
4	116	754	13.33
5	114	746	13.26
6	96	680	12.37
7	106	644	14.13
8	92	$\square 634$	12.67
9	88	$\square 618$	12.46
10	98	678	12.63
11	116	686	14.46
12	100	602	14.25
13	110	648	14.51
14	102	606	14.41
15	126	712	15.04
16	116	750	13.39
17	108	756	12.50
18	द) 96	674	12.47
19	- 120	766	13.54
20	134	740	15.33
21	114	- 792	12.58
22	110	-161『 788	12.25
23	110	712	13.38
24	102	690	12.88
25	110	768	12.53
26	106	746	12.44
27	118	754	13.53
28	106	764	12.18
29	104	730	12.47
30	102	734	12.20
Mean	106.47	700.47	13.20
SD	11.10	61.73	0.91
Range	92-126	592-792	12.18-15.33

Table 31. Stomatal number and stomatal index of D. metel L. var. metel (lower epidermis)

Location: The Somdej Phra Thepraratana Rajsuda Medicinal Plants Garden,
Petroleum Authority of Thailand, Rayong province

Position	Number of stomata (1 sq.mm.)	Number of epidermalcell (1 sq.mm.)	Stomatal index
1	218	912	19.29
2	196	840	18.92
3	198	896	18.10
4	188	840	18.29
5	214	868	19.78
6	210	884	19.20
7	194	$\bigcirc 802$	19.48
8	- 202	$\square 818$	19.80
9	192	$\bigcirc 790$	19.55
10	206	812	20.24
11	204 回	898	18.51
12	184	- 854	17.73
13	212	906	18.96
14	222	950	18.94
15		838	18.80
16	218	978	18.23
17	218	986	18.11
18	C- 222	(5) 992	18.29
19	- 204	- 934	17.93
20	216	964	18.31
21	200	- 896	18.25
22	\% 204	-1v 892	18.61
23	186	- 818	18.53
24	188	- 832	18.43
25	198	842	19.04
26	162	756	17.65
27	180	804	18.29
28	208	876	19.19
29	178	774	18.70
30	218	944	18.76
Mean	201.13	873.20	18.73
SD	14.74	64.89	0.64
Range	178-222	756-992	17.65-20.24

Table 32. Stomatal number and stomatal index of D. metel L. var. metel (upper epidermis)

Location: Sirirukkachat garden, Faculty of Pharmacy, Mahidol University,
Salaya, Nakhonpathom province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	74	418	15.04
2	72	454	13.69
3	56	402	12.23
4	64	420	13.22
5	60	388	13.39
6	76	458	14.23
7	62	$\square \quad 400$	13.42
8	-62	$\square 386$	13.84
9	66	$\square 364$	15.35
10	64	386	14.22
11	64 -60]	380	14.41
12	58	- 420	12.13
13	52	380	12.04
14	$58 \times$	398	12.72
15	80	376	17.54
16	70	9 458	13.26
17	56	368	13.21
18	56	332	14.43
19	282	2 440	15.71
20	70	478	12.77
21	82	- 578	12.42
22	-1.76 74	8176161478	13.41
23	80	Whumen 484	14.18
24	64	458	12.26
25	60	428	12.30
26	58	422	12.08
27	60	388	13.39
28	78	474	14.13
29	62	384	13.90
30	68	404	14.41
Mean	66.27	420.13	13.64
SD	8.72	49.31	1.24
Range	52-82	332-578	12.04-17.54

Table 33. Stomatal number and stomatal index of D. metel L. var. metel (lower epidermis)

Location: Sirirukkachat garden, Faculty of Pharmacy, Mahidol University,
Salaya, Nakhonpathom province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	216	864	20.00
2	216	840	20.45
3	212	860	19.78
4	178	792	18.35
5	210	834	20.11
6	184	820	18.33
7	202	770	20.78
8	190	$\square 788$	19.43
9	204	- 792	20.48
10	200	798	20.04
11	254 -	1034	19.72
12	250	980	20.33
13	218	980	18.20
14	226	986	18.65
15	248	984	20.13
16	222	1006	18.08
17	260	1068	19.58
18	द- 214	1038	17.09
19	226	1028	18.02
20	230	1084	17.50
21	218	1036	17.38
22	W 1632	815 976	19.21
23	212	900	19.06
24	206	964	17.61
25	220	934	19.06
26	244	950	20.44
27	234	930	20.10
28	218	1018	17.64
29	216	930	18.85
30	226	908	19.93
Mean	219.53	929.73	19.14
SD	19.49	93.89	1.10
Range	178-260	770-1084	17.38-20.78

Table 34. Stomatal number and stomatal index of D. metel L. var. metel
(upper epidermis)
Location: Bang Ra Jan district, Singburi province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	86	536	13.83
2	90	552	14.02
3	86	506	14.53
4	82	480	14.59
5	74	500	12.89
6	76	460	14.18
7	96	626	13.30
8	76	- 484	13.57
9	84	$\cdots 512$	14.09
10	84	$\square 486$	14.74
11	74	- 496	12.98
12	$76 / \sim$	- 460	14.18
13	78	470	14.23
14	84	520	13.91
15	82	- 516	13.71
16	72	494	12.72
17	78	452	14.72
18	96	562	14.59
19	76	- 474	13.82
20	92	602	13.26
21	- 98	592	14.20
22	- 98	- 600	14.04
23	- 84	幺) 476	15.00
24	82	546	13.06
25	HIILA 86 CIKORH	WIVFR 534	13.87
26	84	520	13.91
27	82	568	12.62
28	96	582	14.16
29	88	494	15.12
30	80	500	13.79
Mean	84.00	520.00	13.92
SD	7.56	47.36	0.66
Range	72-98	452-626	12.72-15.12

Table 35. Stomatal number and stomatal index of D. metel L. var. metel
(lower epidermis)
Location: Bang Ra Jan district, Singburi province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	192	852	18.39
2	186	790	19.06
3	196	830	19.10
4	198	790	20.04
5	176	764	18.72
6	182	732	19.91
7	192	768	20.00
8	180	740	19.57
9	180	$\bigcirc 764$	19.07
10	182	$\square 714$	20.31
11	- 182	$\square 784$	18.84
12	190	- 756	20.08
13	174	- 784	18.16
14	200	- 786	20.28
15	226	- 830	21.40
16	208	-852	19.62
17	248	892	21.75
18	228	938	19.55
19	168	- 714	19.05
20	276	1018	21.33
21	4 182	740	19.74
22	162	- 736	18.04
23	- 160	- 696	18.69
24	150	664	18.43
25	172	NIVFR 716	19.37
26	194	806	19.40
27	178	806	18.09
28	212	944	18.34
29	196	914	17.66
30	218	920	19.16
Mean	192.93	801.33	19.37
SD	26.43	83.86	1.01
Range	150-276	714-1018	17.66-21.75

Table 36. Palisade ratio of D. metel L. var. metel

Location: The Somdej Phra Thepraratana Rajsuda Medicinal Plants
Garden, Petroleum Authority of Thailand, Rayong province

Position	Number of Palisade cell*	Palisade ratio
1	19.5	4.88
2	18	4.50
3	24	6.00
4	20	5.00
5	23.5	5.88
6	20.5	5.13
7	20	5.00
8	20.5	5.13
9	-18	4.50
10	$\longrightarrow 20.5$	5.13
11	- 22	5.50
12	. 22	5.50
13	22	5.50
14	23	5.75
15	19	4.75
16	16	4.00
17	-17	4.25
18	19	4.75
19	17.5	4.38
20	21	5.25
21	18	4.50
22	- 24	6.00
23	22	5.50
24 คง	ลงกร 24 เหาวิบ	6.00
25	23.5	5.88
26	22.5	5175.63
27	24	6.00
28	24	6.00
29	23	5.75
30	19	4.75
Mean	20.90	5.23
S.D	2.41	0.6
Range	16-24	4.00-6.00

*Number of Palisade cell beneath 4 epidermal cells

Table 37. Palisade ratio of D. metel L. var. metel

Location: Sirirukkachat garden, Faculty of Pharmacy, Mahidol University,
Salaya, Nakhonpathom province

Position	Number of Palisade cell*	Palisade ratio
1	18.5	4.63
2	19	4.75
3	21.5	5.38
4	21	5.25
5	23.5	5.88
6	24	6.00
7	20	5.00
8	21.5	5.38
9	22.5	5.63
10	$\longrightarrow 23.5$	5.88
11	17.5	4.38
12	22	5.50
13	18	4.50
14	24	6.00
15	20	5.00
16	- 20	5.00
17	- 21	5.25
18	- 17.5	4.38
19	18	4.50
20	21	5.25
21	21.5	5.38
22	\bigcirc	5.00
23	16	4.00
24 จง	ลงกร 19 เหาวิท	- 4.75
25	22.5	5.63
26	19	51T4.75
27	23.5	5.88
28	24	6.00
29	23.5	5.88
30	21.5	5.38
Mean	20.82	5.20
S.D	2.25	0.56
Range	16-24	4.00-6.00

*Number of Palisade cell beneath 4 epidermal cells

Table 38. Palisade ratio of D. metel L. var. metel
Location: Bang Ra Jan district, Singburi province

Position	Number of Palisade cell*	Palisade ratio
1	18.5	4.63
2	21.5	5.38
3	20	5.00
4	22	5.50
5	19	4.75
6	20	5.00
7	21	5.25
8	20	5.00
9	21.5	5.38
10	19 /	4.75
11	20.5	5.13
12	$\square 21.5$	5.38
13	-17	4.25
14	20	5.00
15	20.5	5.13
16	19	4.75
17	20.5	5.13
18	-19	4.75
19	- 20	5.00
20	18.5	4.63
21	16.5	4.13
22	18	(6) 4.50
23	19.5	- 4.88
24	20.5	5.13
25	18	4.50
26	1ดงกร์21	าสย 5.25
27	16	4.00
28	M-UIVIT 20	ETIST 5.00
29	17.5	4.38
30	21	5.25
Mean	19.57	4.89
S.D Range	$\begin{gathered} 1.55 \\ 16.5-21.5 \end{gathered}$	$\begin{gathered} 0.39 \\ 4.00-5.50 \\ \hline \end{gathered}$

*Number of Palisade cell beneath 4 epidermal cells

Table 39. Stomatal number and stomatal index of D. metel L. var. fastuosa
(upper epidermis)
Location: Chatuchak Plant Market, Bangkaen district, Bangkok province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	174	776	18.32
2	158	684	18.76
3	140	714	16.39
4	154	610	20.16
5	174	680	20.37
6	150	608	19.79
7	162	640	20.20
8	150	$\square 700$	17.65
9	152	- 688	18.10
10	168	660	20.29
11	164	736	18.22
12	$190 /$ 60	- 684	21.74
13	172	680	20.19
14	164	692	19.16
15	146	616	19.16
16	172	- 652	20.87
17	160	- 668	19.32
18	170	636	21.09
19	A 172	$\bigcirc 660$	20.67
20	- 172	704	19.63
21	202	- 778	20.61
22	210	846	19.89
23	ลหา 220 กณมเห	กทยาล918	19.33
24	234	948	19.80
25	UTULA-192 GMURI	UTIIER 802	19.32
26	204	848	19.39
27	186	788	19.10
28	178	778	18.62
29	158	746	17.48
30	196	796	19.76
Mean	174.80	724.53	19.45
SD	22.74	87.59	1.16
Range	140-234	608-948	16.39-21.74

Table 40. Stomatal number and stomatal index of D. metel L. var. fastuosa
(lower epidermis)
Location : Chatuchak Plant Market, Bangkaen district, Bangkok province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	186	758	19.70
2	202	740	21.44
3	154	644	19.30
4	172	688	20.00
5	174	714	19.59
6	152	632	19.39
7	206	794	20.60
8	182	- 682	21.06
9	296	- 1014	22.60
10	324	1082	23.04
11	322	1070	23.13
12	246 -	- 928	20.95
13	254	1082	19.01
14	228	860	20.96
15	242	838	22.41
16	234	- 846	21.67
17	252	$\square 890$	22.07
18	238	866	21.56
19	A 242	$\bigcirc 838$	22.41
20	- 252	906	21.76
21	204	- 884	18.75
22	238	890	21.10
23	อหา 248 กณม่	ไวทยาล956	20.60
24	268	950	22.00
25	VTULA 278 GMURT	UITIER 940	22.82
26	258	948	21.39
27	278	936	22.90
28	288	986	22.61
29	242	868	21.80
30	212	860	19.78
Mean	235.73	869.67	21.21
SD	44.93	122.82	1.30
Range	152-324	18.75-23.13	632-1082

Table 41. Stomatal number and stomatal index of D. metel L. var. fastuosa (upper epidermis)

Location : Bang Nam Priao district, Chachoengsao province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	168	730	18.71
2	174	732	19.21
3	188	780	19.42
4	186	760	19.66
5	174	778	18.28
6	180	856	17.37
7	174	800	17.86
8	200	$\bigcirc 844$	19.16
9	180	$\square 764$	19.07
10	170	778	17.93
11	176	782	18.37
12	$172 / \mathrm{cos}$	- 732	19.03
13	192	800	19.35
14	166	706	19.04
15	162	748	17.80
16	172	- 756	18.53
17	196	0810	19.48
18	204	768	20.99
19	A 190	$\checkmark 752$	20.17
20	182	752	19.49
21	174	-758	18.67
22	166	712	18.91
23	จษา 180 กณูง	กวทยาล 822	17.96
24	174	712	19.64
25	UTULA 178 UnURT	UIIIER 718	19.87
26	182	728	20.00
27	184	760	19.49
28	192	720	21.05
29	182	778	18.96
30	180	728	19.82
Mean	179.93	762.13	19.11
SD	10.23	38.65	0.88
Range	162-204	706-856	17.37-21.05

Table 42. Stomatal number and stomatal index of D. metel L. var. fastuosa (lower epidermis)

Location : Bang Nam Priao district, Chachoengsao province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	218	864	20.15
2	218	840	20.60
3	212	860	19.78
4	190	792	19.35
5	212	800	20.95
6	210	834	20.11
7	198	816	19.53
8	206	$\square 770$	21.11
9	242	- 856	22.04
10	230	834	21.62
11	198	788	20.08
12	204 -	- 788	20.56
13	200	798	20.04
14	254	1034	19.72
15	250	980	20.33
16	226	- 968	18.93
17	230	- 982	18.98
18	262	972	21.23
19	A. 248	$\bigcirc 984$	20.13
20	230	980	19.01
21	260	- 1068	19.58
22	230	980	19.01
23	อหา 232 ธณม่	ทวทยาล976	19.21
24	218	900	19.50
25	VTULA 220 URURT	- 9 934	19.06
26	244	950	20.44
27	234	930	20.10
28	216	920	19.01
29	226	908	19.93
30	216	840	20.45
Mean	224.47	898.20	20.02
SD	19.00	83.36	0.82
Range	190-262	770-1068	19.01-22.04

Table 43. Stomatal number and stomatal index of D. metel L. var. fastuosa
(upper epidermis)

Location : Muang district, Chonburi province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell ($1 \mathbf{~ s q . m m .) ~}$	Stomatal index
1	204	804	20.24
2	168	718	18.96
3	166	686	19.48
4	184	778	19.13
5	174	766	18.51
6	198	850	18.89
7	220	862	20.33
8	226	$\square 928$	19.58
9	210	$\square 922$	18.55
10	228	932	19.66
11	226	1034	17.94
12	$264 / \sqrt{4}$	-1084	19.58
13	230	900	20.35
14	232	970	19.30
15	246	984	20.00
16	274	- 1000	21.51
17	232	- 922	20.10
18	226	932	19.52
19	A 224	$\checkmark 914$	19.68
20	- 204	932	17.96
21	238	- 954	19.97
22	258	1022	20.16
23	จชา 212 กณู่า	ไวทยาล938	18.43
24	264	1100	19.35
25	UTULA 246 URURI	UTIUER 962	20.36
26	196	868	18.42
27	204	876	18.89
28	186	870	17.61
29	194	856	18.48
30	210	928	18.45
Mean	218.13	909.73	19.31
SD	28.37	96.34	0.89
Range	166-274	686-1100	17.61-21.51

Table 44. Stomatal number and stomatal index of D. metel L. var. fastuosa (lower epidermis)

Location : Muang district, Chonburi province

Position	Number of stomata (1 sq.mm.)	Number of epidermal cell (1 sq.mm.)	Stomatal index
1	244	838	22.55
2	228	848	21.19
3	246	856	22.32
4	226	882	20.40
5	252	900	21.88
6	236	884	21.07
7	252	932	21.28
8	258	$\square 918$	21.94
9	250	$\square 920$	21.37
10	232	914	20.24
11	258	936	21.61
12	278 - ${ }^{\text {a }}$	-1020	21.42
13	232	888	20.71
14	236	890	20.96
15	224	- 912	19.72
16	216	- 820	20.85
17	242	$\square 930$	20.65
18	248	1002	19.84
19	- 252	(958	20.83
20	242	918	20.86
21	248	- 968	20.39
22	288	964	23.00
23	อหา 276 -	กวทยาล 914	23.19
24	- 268	934	22.30
25	UTULA22 220	UIITER 866	20.84
26	200	810	19.80
27	236	866	21.42
28	268	960	21.82
29	264	998	20.92
30	296	1092	21.33
Mean	247.47	917.93	21.22
SD	21.26	61.42	0.88
Range	200-296	810-1092	19-72-23.19

Table 45. Palisade ratio of D. metel L. var. fastuosa
Location: Chatuchak Plant Market, Bangkaen district, Bangkok
province

*Number of Palisade cell beneath 4 epidermal cells

Table 46. Palisade ratio of D. metel L. var. fastuosa
Location: Bang Nam Priao district, Chachoengsao province

Position	Number of Palisade cell*	Palisade ratio
1	28.5	7.13
2	23	5.75
3	21.5	5.38
4	29.5	7.38
5	30	7.50
6	30	7.50
7	26.5	6.63
8	29	7.25
9	21.5	5.38
10	25	6.25
11	-28	7.00
12	$\longrightarrow 28$	7.00
13	25	6.25
14	25.5	6.38
15	29	7.25
16	- 29	7.25
17	21.5	5.38
18	26.5	6.63
19	22	5.50
20	- 22.5	5.63
21	25.5	6.38
22	22.5	5.63
23	28	7.00
24	- 26.5	6.63
25	25.5	6.38
26 จง	ลงกร 24.5 ชาวิง	- 6.13
27	21	5.25
28	26.5	6.63
29	23.5	5.88
30	29	7.25
Mean	25.80	6.45
S.D	2.91	0.73
Range	21-30	5.25-7.50

*Number of Palisade cell beneath 4 epidermal cells

Table 47. Palisade ratio of D. metel L. var. fastuosa
Location: Muang district, Chonburi province

Position	Number of Palisade cell*	Palisade ratio
1	25.5	6.38
2	23.5	5.88
3	27	6.75
4	24.5	6.13
5	25	6.25
6	23.5	5.88
7	29	7.25
8	25	6.25
9	22.5	5.63
10	26.5	6.63
11	-23	5.75
12	$\longrightarrow 26$	6.50
13	- 22	5.50
14	24	6.00
15	22.5	5.63
16	- 24.5	6.13
17	- 25	6.25
18	- 24	6.00
19	25.5	6.38
20	- 26	6.50
21	23.5	5.88
22	24.5	6.13
23	28	7.00
24	$\cdots 28.5$	7.13
25	25.5	6.38
26 คง	เลงกร 27.5 หาวิบ์	¢ 6.88
27	25	6.25
28	1] 24.5	6.13
29	24	6.00
30	24.5	6.13
Mean	25.00	6.25
S.D Range	$\begin{gathered} 1.75 \\ 22-28.5 \end{gathered}$	$\begin{gathered} 0.44 \\ 5.50-7.25 \end{gathered}$

*Number of Palisade cell beneath 4 epidermal cells

APPENDIX B

Part II. Molecular evaluation
(Sequence Alignment)

1. Alignments of ITS sequences of D.metel L. var. metel, D.metel L.

var. fastuosa, and hybrid D.metel L.

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

GAAACCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 60 GAAACCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 60 GAAACCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 60 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAAACCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 60 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAA-CCTGCAAAGCAGAACGACCCGCGAACCCGTTCAAACACTTGGGGAGCCGCGCGGGC 59 GAA-CCTGCAGAGCAGAACGACCCGCGAACCTGTTCAAACACTGGGGTGGCCGCGCGGGG 59 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 120 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 120 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 120 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 120 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGCGCTTCGGCCCTCATCCGTGCGTCTCCCTCCCGTCCCCGGCGCGCGCTCGCGGGCG 119 GGGGTGCTTCGGCCCCCTTCCGCGCGTCACCCTCCCGTCCCCGGCGTGCGCCAGCG--CG 117 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 180 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 180 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 180 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 180 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGCCGGGTGATGAACTAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAATTGATAGCCT 179 CGTCGGGTGATTAACGAACCCCGGCGCGGAAAGCGCCAAGGAATACTAAACTGACAGCCT 177

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 239 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 239 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 239 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 239 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCTCGCGCC-CCGTTCGCGGTGCGCGCGGGAGGGCCTGTGCTTCTTTTGAAACAAAA 238 GCCTCCCGCGCCGCCGTCCGCGGTGCGCGCGGG-GGTCCTGTGCTTCTTTTGTAACCGAA 236

ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 299 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 299 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 299 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 299 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTGGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 298 ACGACTCTCGGCAACGGATATCTCGGCTCTCGCATCGATGAAGAACGTAGCGAAATGCGA 296

TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 359 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 359 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 359 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCCAGTCTTTGAACGCATGTTGCGCCC 359 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358 TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 358
TACTTGGTGTGAATTGCAGAATCCCGTGAACCATCGAGTCTTTGAACGCAAGTTGCGCCC 356

AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 418 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 418 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 418

KSL031103
LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105

AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 418 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417 AAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCC-GCAC 417
GAAGCCATTAGGCCGAGGGCACGTCTGCCTGGGCGTCACGCATCGCGTCGCCCCCCGCAC 416

TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 478 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 478 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 478 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 478 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 TCCGCGCCAAAAACCTTGGCTGCGGTTGTGTCGGGGGACGGATACTGGCCTCCCGTGAGC 477 AGCGCGCCCAAATTCTTGGCCGCGGCAGTGTCGTGGGACGGATACTGGCCTCCCGTGCGC 476

CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCACGTCGACGGACGTCACGGCAAGTGGT 538 CCCCGAGCCCGCGGCTGGCNAAAATGCAAGTCCACGTCGACGGACGTCACGGCAAGTGGT 538 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCACGTCGACGGACGTCACGGCAAGTGGT 538 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCACGTCGACGGACGTCACGGCAAGTGGT 537 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCACGTCGACGGACGTCACGGCAAGTGGT 537 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCACGTCGACGGACGTCACGGCAAGTGGT 537 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCACGTCGACGGACGTCACGGCAAGTGGT 537 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCACGTCGACGGACGTCACGGCAAGTGGT 537 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCCCGTCGACGGACGTCACGGCAAGTGGT 538 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCCCGTCGACGGACGTCACGGCAAGTGGT 537 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCCCGTCGACGGACGTCACGGCAAGTGGT 537 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCCCGTCGACGGACGTCACGGCAAGTGGT 537 CCCCGAGCCCGCGGCTGGCCTAAATGCGAGTCCCCGTCGACGGACGTCACGGCAAGTGGT 537 CTC-GAGCTCGCGGCTGGCCTAAATGCGAGTCCACGTCGACGGACGTCACGGCAGGTGGT 535

GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 598 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 598 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 598 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597

LHB071109
LHB081002
LHB081111
LHB081110
LHB021106
LHB101004
LHB091003
LPK091002
LPK081001
LHB101005
LPK011103
LHB061108
LHB091112
TNF111001

KSL071001
KSL071002
LHB071001
KSL031103
LHB031107
KSL041104
KSL051105
LHB071109
LHB081002
LHB081111
LHB081110
LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

KSL071001 KSL071002 LHB071001 KSL031103 LHB031107 KSL041104 KSL051105 LHB071109 LHB081002 LHB081111 LHB081110 LHB021106 LHB101004 LHB091003 LPK091002 LPK081001 LHB101005 LPK011103 LHB061108 LHB091112 TNF111001

GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 598 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597 GGTTGGAACTCAACTCTCGTAATGTCGTGGCTACAGCCCGTCGCTCGTTTGTGCTCCTAG 597 GGTTGAAACTCAGCTCTCGTAGTGCCGTGGCCGCAGACCGTCGGCAGTTTGGGCTCCTAG 595

ACCCTTCACGCGCTTGGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 658 ACCCTTCACGCGCTTGGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 658 ACCCTTCACGCGCTTGGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 658 ACCCTTCACGCGCTTGGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCACGCGCTTGGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCACGCGCTTGGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCACGCGCTTGGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCACGCGCTTGGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCACGCGCTTAGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 658 ACCCTTCACGCGCTTAGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCACGCGCTTAGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCACGCGCTTAGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCACGCGCTTAGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATCACCCGCTGA 657 ACCCTTCGTGCGCTTAGGCGCTCCGACCGCGACCCCAGGTCAGGCGGGATTACCCGCTGA 655

GTTTAAGCATAT 670 GTTTAAGCATAT 670 GTTTAAGCATAT 670 GTTTAAGCATAT 669 GTTTAAGCATAT 669 GTTTAAGCATAT 669 GTTTAAGCATAT 669 GTTTAAGCATAT 669 GTTTAAGCATAT 670 GTTTAAGCATAT 669 GTTTAAGCATAT 669 GTTTAAGCATAT 669 GTTTAAGCATAT 669 GTTTAAGCATAT 667

Sequence type explicitly set to DNA Sequence format is Pearson
Sequence 1: KSL071001 670 bp
Sequence 2: KSL071002 670 bp
Sequence 3: LHB071001 670 bp
Sequence 4: LHB081002 670 bp
Sequence 5: LPK081001 670 bp
Sequence 6: LPK091002 670 bp

equence 8: LHB101004	
Sequence 9: LHB101005	
Sequence 10: TNF111001	
Sequence 11: LPK011103	
Sequence 12: LHB021106	
Sequence 13. KSL031103	
Sequence 14: LHB031107	
Sequence 15: KSL041104	
Sequence 16: KSL051105	
Sequence 17: LHB061108	
Sequence 18: LHB071109	
Start of Pairwise alignmen	
Sequences (1:2) Aligned. Sco	
Sequences (1:3)	
Sequences (1:4)	
Sequences (1:5)	
Sequences (1:6)	
Sequences (1:7)	
Sequences (1:8)	
Sequences (1:9)	
Sequences (1:10) Aligned. Score: 91	
Sequences (1:11) Aligned. Score: 99	
Sequences (1:12) Aligned. Score: 99	
Sequences (1:13) Aligned. Score: 99	
Sequences (1:14) Aligned. Score: 99	
Sequences (1:15) Aligned. Score: 99	
Sequences (1:16) Aligned. Score: 99	
Sequences (1:17) Aligned. Score: 99	
Sequences (1:18) Aligned. Score: 99	
Sequences (1:19) Aligned. Score: 99	
Sequences (1:20) Aligned. Score: 99	
Sequences (1:21) Aligned. Score: 99	
Sequences (2:3)	
Sequences (2:4)	
Sequences (2:5)	
Sequences (2:6)	
Sequences (2:7)	
Sequences (2:8)	
Sequences (2:9) Aligned. Score: 99	
Sequences (2:10) Aligned. Score: 90	
Sequences (2:11) Aligned. Score: 99	
Sequences (2:12) Aligned. Score: 99	
Sequences (2:13) Aligned. Score: 99	
Sequences (2:14) Aligned. Score: 99	
Sequences (2:15) Aligned. Score: 99	
Sequences (2:16) Aligned. Score: 99	

Sequences (2:17) Aligned. Score: 99	
Sequences (2:18)	Aligned. Score: 99
Sequences (2:19)	
Sequences (2:20) Aligned. Score: 99	
Sequences (2:21) Aligned. Score: 99	
Sequences (3:4)	
Sequences (3:5)	Aligned
Sequences (3:6)	Aligned. Sco
Sequences (3:7)	Aligned. Sco
Sequences (3:8)	Aligned. Score:
Sequences (3:9)	Aligned. Sco
Sequences (3:10)	Aligned Sco
Sequences (3:11)	Aligned Score
Sequences (3:12)	Aligned. Scor
Sequences (3:13)	Aligned. Scor
Sequences (3:14)	Aligned. Score
Sequences (3:15)) Aligned
Sequences (3:16)	Aligned
Sequences (3:17)	Aligne
Sequences (3:18)	Aligned
Sequences (3:19)	Aligne
Sequences (3:20)	Aligned. Sc
Sequences (3:21)	Aligned. Scor
Sequences (4:5)	Aligned. Scor
Sequences (4:6)	Aligned. Score:
Sequences (4:7)	Aligned. Sc
Sequences (4:8)	Aligned. Scor
Sequences (4:9)	Aligned. Score: 99
Sequences (4:10)	Aligned
Sequences (4:11)	Align
Sequences (4:12)	lign
Sequences (4:13)	Aligned. Score: 99
Sequences (4:14)	Aligned. Score: 99
	Aligned. Score: 99
Sequences (4:20)	Aligned. Score: 99
Sequences (4:21)	Aligned. Score: 99
Sequences (5:6)	Aligned. Score: 100
Sequences (5:7)	Aligned. Score: 100
Sequences (5:8)	Aligned. Score: 100
Sequences (5:9)	Aligned. Score: 99
Sequences (5:10)	Aligned. Score: 91
Sequences (5:11)	Aligned. Score: 99
Sequences (5:12)	Aligned. Score: 100
Sequences (5:13)	Aligned. Score: 99
Sequences (5:14)	Aligned. Score: 99
Sequences (5:15)	Aligned. Score: 99
Sequences (5:16)	Aligned. Score: 99
Sequences (5:17)	Aligned. Score: 99

Sequences (5:18)	Aligned. Score: 99
Sequences (5:19)	Aligned. Score: 100
Sequences (5:20)	Aligned. Score: 100
Sequences (5:21)	Aligned. Score: 99
Sequences (6:7)	Aligned. Score: 100
Sequences (6:8)	Aligned. Score: 100
Sequences (6:9)	Aligned. Score: 99
Sequences (6:10)	Aligned. Score: 91
Sequences (6:11)	Aligned. Score: 99
Sequences (6:12)	Aligned. Score: 100
Sequences (6:13)	Aligned. Score: 99
Sequences (6:14)	Aligned. Score: 99
Sequences (6:15)	Aligned. Score: 99
Sequences (6:16)	Aligned. Score: 99
Sequences (6:17)	Aligned. Score: 99
Sequences (6:18)	Aligned. Score: 99
Sequences (6:19)	Aligned. Score: 100
Sequences (6:20)	Aligned. Score: 100
Sequences (6:21)	Aligned. Score: 99
Sequences (7:8)	Aligned. Score: 100
Sequences (7:9)	Aligned. Score: 99
Sequences ($7: 10$)	Aligned. Score: 91
Sequences (7:11)	Aligned. Score: 99
Sequences (7:12)	Aligned. Score: 100
Sequences (7:13)	Aligned. Score: 99
Sequences (7:14)	Aligned. Score: 99
Sequences (7:15)	Aligned. Score: 99
Sequences (7:16)	Aligned. Score: 99
Sequences (7:17)	Aligned. Score: 99
Sequences (7:18)	Aligned. Score: 99
Sequences (7:19)	Aligned. Score: 100
Sequences (7:20)	Aligned. Score: 100
Sequences (7:21)	Aligned. Score: 99
Sequences (8:9)	Aligned. Score: 99
Sequences (8:10)	Aligned. Score: 91
Sequences (8:11)	Aligned. Score: 99
Sequences (8:12)	Aligned. Score: 100
Sequences (8:13)	Aligned. Score: 99
Sequences (8:14)	Aligned. Score: 99
Sequences (8:15)	Aligned. Score: 99
Sequences (8:16)	Aligned. Score: 99
Sequences (8:17)	Aligned. Score: 99
Sequences (8:18)	Aligned. Score: 99
Sequences (8:19)	Aligned. Score: 100
Sequences (8:20)	Aligned. Score: 100
Sequences (8:21)	Aligned. Score: 99
Sequences (9:10)	Aligned. Score: 91
Sequences (9:11)	Aligned. Score: 100
Sequences (9:12)	Aligned. Score: 99
Sequences (9:13)	Aligned. Score: 99
Sequences (9:14)	Aligned. Score: 99
Sequences (9:15)	Aligned. Score: 99

Sequences (9:16) Aligned. Score: 99
Sequences (9:17) Aligned. Score: 100
Sequences (9:18) Aligned. Score: 99
Sequences (9:19) Aligned. Score: 99
Sequences (9:20) Aligned. Score: 99
Sequences (9:21) Aligned. Score: 100
Sequences (10:11) Aligned. Score: 91
Sequences (10:12) Aligned. Score: 91
Sequences (10:13) Aligned. Score: 91
Sequences (10:14) Aligned. Score: 91
Sequences (10:15) Aligned. Score: 91
Sequences (10:16) Aligned. Score: 91
Sequences (10:17) Aligned. Score: 91
Sequences (10:18) Aligned. Score: 91
Sequences (10:19) Aligned. Score: 91
Sequences (10:20) Aligned. Score: 91
Sequences (10:21) Aligned. Score: 91
Sequences (11:12) Aligned. Score: 99
Sequences (11:13) Aligned. Score: 99
Sequences (11:14) Aligned. Score: 99
Sequences (11:15) Aligned. Score: 99
Sequences (11:16) Aligned. Score: 99
Sequences (11:17) Aligned. Score: 100
Sequences (11:18) Aligned. Score: 99
Sequences (11:19) Aligned. Score: 99
Sequences (11:20) Aligned. Score: 99
Sequences (11:21) Aligned. Score: 100
Sequences (12:13) Aligned. Score: 99
Sequences (12:14) Aligned. Score: 99
Sequences (12:15) Aligned. Score: 99
Sequences (12:16) Aligned. Score: 99
Sequences (12:17) Aligned. Score: 99
Sequences (12:18) Aligned. Score: 99
Sequences (12:19) Aligned. Score: 100
Sequences (12:20) Aligned. Score: 100
Sequences (12:21) Aligned. Score: 99
Sequences (13:14) Aligned. Score: 100
Sequences (13:15) Aligned. Score: 100
Sequences (13:16) Aligned. Score: 100
Sequences (13:17) Aligned. Score: 99
Sequences (13:18) Aligned. Score: 100
Sequences (13:19) Aligned. Score: 99
Sequences (13:20) Aligned. Score: 99
Sequences (13:21) Aligned. Score: 99
Sequences (14:15) Aligned. Score: 100
Sequences (14:16) Aligned. Score: 100
Sequences (14:17) Aligned. Score: 99
Sequences (14:18) Aligned. Score: 100
Sequences (14:19) Aligned. Score: 99
Sequences (14:20) Aligned. Score: 99
Sequences (14:21) Aligned. Score: 99
Sequences (15:16) Aligned. Score: 100
Sequences (15:17) Aligned. Score: 99
Sequences (15:18) Aligned. Score: 100
Sequences (15:19) Aligned. Score: 99
Sequences (15:20) Aligned. Score: 99
Sequences (15:21) Aligned. Score: 99
Sequences (16:17) Aligned. Score: 99
Sequences (16:18) Aligned. Score: 100
Sequences (16:19) Aligned. Score: 99
Sequences (16:20) Aligned. Score: 99
Sequences (16:21) Aligned. Score: 99
Sequences (17:18) Aligned. Score: 99
Sequences (17:19) Aligned. Score: 99
Sequences (17:20) Aligned. Score: 99
Sequences (17:21) Aligned. Score: 100
Sequences (18:19) Aligned. Score: 99
Sequences (18:20) Aligned. Score: 99
Sequences (18:21) Aligned. Score: 99
Sequences (19:20) Aligned. Score: 100
Sequences (19:21) Aligned. Score: 99
Sequences (20:21) Aligned. Score: 99

There are 20 groups
Start of Multiple Alignment
Aligning...
Group 1: Sequences: 2 Score:12701
Group 2: Sequences: 3 Score:12715
Group 3: Sequences: 2 Score:12711
Group 4: Sequences: 3 Score:12711
Group 5: Sequences: 4 Score:12711
Group 6: Sequences: 5 Score:12711
Group 7: Sequences: 8 Score:12687
Group 8: Sequences: 2 Score:12692
Group 9: Sequences: 3 Score:12711
Group 10: Sequences: 4 Score:12717
Group 11: Sequences: 5 Score:12720
Group 12: Sequences: 6 Score:12722
Group 13: Sequences: 7 Score:12723
Group 14: Sequences: 8 Score:12724
Group 15: Sequences: 2 Score:12711
Group 16: Sequences: 3 Score:12711
Group 17: Sequences: 4 Score:12711
Group 18: Sequences: 12 Score:12696
Group 19: Sequences: 20 Score:12667
Group 20: Sequences: 21 Score:11778
Alignment Score 1092794
Figure 38. Comparison of nucleotide sequence of ITS (ITS1-5.8S- ITS2) region of rDNA gene of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L. Highlight indicate 5.8S region, * indicate clustal consensus, - indicate indels, (TNF111001 was assigned as outgroup sample)

2. Alignments of rbcL sequences of D.metel L. var. metel, D.metel L.

var. fastuosa, and hybrid D.metel L.

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTCAGTACCAAACCAAGGATACT 60 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAAAGAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 60 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59 GCTGGTGTTAA-GAGTACAAATTGACTTATTATACTCCTGAGTACCAAACCAAGGATACT 59

KSL031103
LHB031107
LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 120 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119 GATATATTGGCAGCATTCCGAGTAACTCCTCAACCTGGAGTTCCACCTGAAGAAGCAGGG 119

GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 180 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179 GCCGCGGTAGCTGCCGAATCTTCTACTGGTACATGGACAACTGTATGGACCGATGGACTT 179

LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 240 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239 ACCAGTCTTGATCGTTACAAAGGGCGATGCTACCGCATCGAGCGTGTTGTTGGAGAAAAA 239

GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTG -CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTG - CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTGGCTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 300 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 299 GATCAATATATTG - CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298 GATCAATATATTG-CTTATGTAGCTTACCCTTTAGACCTTTTTGAAGAAGGTTCCGTTAC 298

CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 356 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 357 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 357 CAACATGTTTAYTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 357 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 356 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 357 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 356 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 356 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 356 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCTGGCGCGCTCTA 357 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCTTGCGCGCTCTA 357 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 356 CAACATGTTTACTTCCCATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 358 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 357 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 357 CAACATGTTTACTTCC - ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 358 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 357 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 357 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 356 CAACATGTTTACTTCC-ATTGTAGGTAATGTATTTGGGTTCAAAGCCCT-GCGCGCTCTA 356

CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 415 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGTTCCGCCTCA 417 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 415 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 415 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 415 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 415

LHB021106
LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001

CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 415 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 417 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 417 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 416 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 415 CGTCTGGAAGATCTGCGAATCCCTCCTGCTTATATTAAAACTTTCCAGGGT-CCGCCTCA 415

TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCYGGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTGGTTGGGATGTA 476 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTG-TTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCTG-TTGGGATGTA 476 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTCCCC-TGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTTCCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGTTCCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 474 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCYGTTGGGATGTA 474 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 476 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 476 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 475 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 474 TGGGATCCAAGTTGAAAGAGATAAATTGAACAAGTATGGTCGT-CCCCTGTTGGGATGTA 474

CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAAYTACGGTAGAGCTGTTTATGAATG 533 CTATTTAAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 535 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 534 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 532 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 532 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 534 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 534 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCTTGCTAAAAACTACGGTAGAGCTGTTTATGAATG 533 CTATT-AAACCTAAATTGGGGTTATCT-GCTAAAAACTACGGTAGAGCTGTTTATGAATG 532

TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTTTCGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 595 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 593 TCTT-YGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 591 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 591 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 593 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 593

LHB101004
LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 592 TCTT-CGCGGTGGACTTGATTTTACCAAAGATGATGAGAACGTGAACTCACAACCATTTA 591

TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTTTAAAGCACAGGTTGAA 655 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 652 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 650 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 650 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 652 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTGTTT-AAAGCACAGACTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 652 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 651 TGCGTTGGAGAGATCGTTTCTTATTTTGTGCCGAAGCACTTTTT-AAAGCACAGGTTGAA 650

ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 715 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 712 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 710 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 710 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 712 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATG 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 712 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 711 ACAGGTGAAATCAAAGGGCATTACTTGAATGCTACTGCAGGTACATGCGAAGAAATGATC 710

AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 774 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 771 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 769 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 769 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 771 AAAAGAGCTGTATTTGCTAGAGAATTGGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 771 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCC-GATCGTAATGCATGACTACTTAAC 770 AAAAGAGCTGTATTTGCTAGAGAATTAGGCGTTCCCGATCGTAATGCATGACTACTTAAC 770

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111

GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 827 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 824 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGGGATTCACCGGCAAATACTAGCCTTGGCTC-ATTA-TTGCCCGAGATAATGGGTC 828 GGGGGGGATTCACCGGCAAATACTAGCCTTGGCTC-ATTA-TTGCCCGAGATAATGGGTC 828 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 822 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGGGATTCACCG-CAAATACTAGC-TTGGCTC-ATTAATTGCC-GAGATAATGGGTC 826 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 822 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 824 GGGGGG-ATTCACCG-CAAATACTACC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 824 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGG-ATTCACCG-CAAATACTAGC-TTGGCTC-ATTA-TTGCC-GAGATAATGG-TC 823 GGGGGGGATTCACCGGCAAATACTAGCTTTGGCTTCATTAATTGCCGAAGATAATGGGTC 830 GGGGGG-ATTCACCGGCAAATACTAGCCTTGGCTCAATTATTTGCCGAGATAAATGGGTC 829

TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 877 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 874 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACT--TCTTCACATC-CACCGTTGCAA-TGCAT-GCGGGTTATT-GA-TAGAC-AGAAG 880 TACT--TCTTCACATC-CACCGTTGCAA-TGCAT-GCGGGTTATT-GA-TAGAC-AGAAG 880 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GCGG-TTATT-GA-TAGAC-AGAAG 872 TACT--TCTTCACATC-CACCGTG-CAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACTC-TCTTCACATCGCACCGTGGCAA-TGCAT-GCCGGTTATTTGA-TAGACTAGAAG 882 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 872 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 874 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 874 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACT--TCTTCACATC-CACCGT-GCAA-TGCAT-GC-GGTTATT-GA-TAGAC-AGAAG 873 TACTTTCTTTAACATTCCACCGTTGCCAATGCATTGCCGGTTATTTGAATAGAC-AGAAG 889 TACTT-CTTTCACATTCCACCGTGGCAATTGCAT-GCCGGTTATTTGATTAGA--ACAAG 885 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 919 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 923 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 919 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 920 AA-----TCATGGT-A-TCCACTTT-CCGGGTA-TTAGCAAAAAGC-GTTACGT-ATG-T 921 AA-----TCATGGT-A-TCCACTT--CCGGGTA-TTAGCAAAA-GC-GTTACGT-ATG-T 919 AAA----TCATGGT-AATCCAACTT-CCGGGGTATTAGCCAAAAGCCGTTACGT-ATGGT 933 AAA----TCATGGT-AATCCAACTT-CCGGGGTATTAGCCAAAAGCCGTTACGT-ATGGT 933 AA-----TCATGGT-A-TCCA-CTT-CCGGGTAATTAGC-AAAAGC-GTTACGT-ATG-T 919 AAT----CA-TGGT-A-TCCACTT--CCGGGTATT-AGCAAAAGG--GTTACGT-ATG-T 919 AAT----CAATGGT-AATCCACTTT-CCGGGTATTTAGCAAAAGGC-GTTACGTTATG-T 934 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGCAAAAAGC-GTTACGTAATG-T 920 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 920 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 919 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 919 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 920 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 919 AA-----TCATGGT-A-TCCA-CTT-CCGGGTA-TTAGC-AAAAGC-GTTACGT-ATG-T 919 AA-----TCATGGT-ATTC-AMTT--CCGGGT-ATTAGCA-AAAGC-GTTACGT-ATG-T 935 AAGGAATTCATGGTTATCCCACTTTCCCGGGTTATTAGCACAAAGC-GTTACGT-ATG-T 942

CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 970 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 974 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 970 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 971 CTTGGTGGAGA-TCATATTC-ACTCTGG-TACC-GTAAGTA-GGTAAA-CTTGGAAGGTG 975 CT-GGTGGAGA-TCATATTC-ACTCTGG-TACC-GTA-GTA-GGTAAA-CTTG-AAGGTG 970 CTGGGTGGAGAATCATATTTCACTCTGGGTACCCGTAAGWA-GGTAAAACTTGAAAGGTG 992

LHB091003
KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001

CTGGGTGGAGAATCATATTTCACTCTGGGTACCCGTAAGWA-GGTAAAACTTGAAAGGTG 992 CTGG-TGGAGA-TCATATT-CACTCTGGGAACC--KWAKTA-GGTAAA-CTTGAAAGGTG 972 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTAGG--TAAACTTGAA-GGTG 970 CTGGGTGGAGA-TCATATTCCACTCTGGGTACC--GTAGKAAGGTCAAACTTGAAAGGTG 991 CTGGGTGGAAGATCATATTCACTTCTGGTTACC-GKAATTAAGGTAAACTTTGAAAGGTG 979 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 971 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 970 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 970 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 971 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 970 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 970 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 986 CTGG-TGGAGA-TCATATTC-ACTCTGG-TACC--GTAGTA-GGTAAA-CTTG-AAGGTG 993

AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1020 AAA--RAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1024 AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1020 AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1021 AAA-GAAGACATAACTTTKGG--CTTTTGTTGAATTTAC-TGGCGTGATGGATTTTTGTT 1031 AAA-GA-GACATAACTTTGGG--CTTT-GTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1020 AAA-AGAGAMATAAACTTTTGGGCCTTTGTTGA-ATTAACTGCCGGGATGAA-TTTTGTT 1049 AAA-AGAGAMATAAACTTTTGGGCCTTTGTTGA-ATTAACTGCCGGGATGAA-TTTTGTT 1049 AAA-GARAACATAAACTTTGGGGCTTTTGTTGA-TTTACCTGCCGTGATGAA-TTTTGTT 1029 AAA-GAGA-CATAACTTTGGG---CTTTGTTGA-TTTAC-TGC-GTGATGAT-TTT-GTT 1020 AAAAGAGAACATAACTTTTGGTG-YTTTGTTGAATTTACCTGCCGTGATGAT-TTTTGTT 1049 AAAAGAGACAATAA-CTTTGGGG-CTTTGTTGAATTTAC-TGCCGTGATGAA-TTTTGTT 1035 AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1021 AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1020 AAA--GAGACATAACTTTGGG--CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1020 AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1021 AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1020 AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1020 AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA--TTTTGTT 1036 $\underset{\star * *}{\text { AAA--GAGACATAACTTTGGG---CTTTGTTGA-TTTAC-TG-CGTGATGA - -TTTTGTT } 1043}$

GAACAARA---TCGAAG--TCGCG-GGTATTTATTT-CACTC-AAGATTGGGGTCTCTTT 1072 GAACAAGA---TCGAAG--TCGCC-GGTATTTATTT-CACTC-AAGATTGGGGTCTCTTT 1076 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1070 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1071 GAACAARATATCGGAARTTCCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1086 GAACAAGATC---GAAGT--CGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1070 GAAACAAG-AWCCGAAAG-TCGCCGGGAATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1104 GAAACAAG-AWCCGAAAG-TCGCCGGGAATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1104 GAA-CAAG-AWCCGAAR--TCGC-GGGAATTTATTT-CACTCCAAGATTGGG-TCTCTTT 1082 GAACAAG---ATCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1070 GAAMAAGG-AATSGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1101 GAAACAAR-ATCGAAAGT-CCGC--GGTATTTATTTTCACTC-AAGATTGGG-TCTCTTT 1089 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1071 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1070 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1070 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1071 GAACAAGA-- TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1070 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1070 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1086 GAACAAGA---TCGAAG--TCGC--GGTATTTATTT-CACTC-AAGATTGGG-TCTCTTT 1093

ACCAGGTGTTCTACCGGGTGGCTTC-AGGAGGTAATTCACGTTTGGCATATTGCCTGCTC 1131 ACCAGGTGTTCTACCCGGTGGCTTCCAGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1134 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1126 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1127 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1142 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1126 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1160 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1160 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1138 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1126 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1157 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1145 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1127 ACCAGGTGTTCTACC-TGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1126

LPK091002
KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1126 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1127 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1126 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1126 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1142 ACCAGGTGTTCTACC-GGTGGCTTC-AGGAGGTA-TTCACGTTTGGCATAT-GCCTGCTC 1149 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1191 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1194 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1186 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1187 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1202 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1186 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1220 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1220 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1198 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1186 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1217 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1205 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1187 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1186 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1186 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1187 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1186 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1186 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1202 TGACCGAGATCTTTGGGGATGATTCCGTACTACAGTTCGGTGGAGGAACTTTAGGACATC 1209

CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1249 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1252 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1244 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1245 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1260 CTTGGGGTAATCGCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1245 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1278 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1278 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1256 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1244 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1275 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1263 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1245 CTTGGGGTAAT-GCGCCAGGTGCCSTTAGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1245 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1244 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1245 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1244 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1244 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1260 CTTGGGGTAAT-GCGCCAGGTGCCGT-AGCTAATCGAGTAGCTCTAGAAGCATGTGTAAA 1267

AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1309 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1312 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1304 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1305 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1320 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1305 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1338 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1338 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1316 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1304 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1335 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1323 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1305 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAAGCTGC 1305 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1304 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1305 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1304 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1304 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1320 AGCTCGTAATGAAGGACGTGATCTTGCTCGGGAAGGTAATGAGATTATTCGCGAGGCTTC 1327

KSL031103 LHB031107 LHB071001 LHB081002 KSL041104 LPK081001 LHB081111 LHB091003 KSL051105 LHB021106 LHB071109 LPK011103 KSL071002 TNF111001 LPK091002 KSL071001 LHB101004 LHB101005 LHB081110 LHB091112

CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1369 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1372 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1364 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1365 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1380 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1365 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1398 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1398 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1376 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1364 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1395 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1383 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1365 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1365 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1364 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1365 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1364 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1364 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1380 CAAATGGAGCCCGGAACTAGCTGCTGCTTGTGAGGTATGGAAAGAGATCGTATTTAATTT 1387

TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1429 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1432 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1424 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1425 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1440 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1425 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1458 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1458 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1436 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1424 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1455 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1443 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1425 TGCAGCAATGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGAGAAATTAGCAGG 1425 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1424 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1425 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1424 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1424 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1440 TGCAGCAGTGGACGTTTTGGATAAGTAAAAACAGTAGACATTAGCAGATAAATTAGCAGG 1447

AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCT-C-GTTCTTT-AATGAATT 1485 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTTTTAATTAATT 1490 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTTT---------1473 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATATCCTTC-GTTCTTT-------- 1474 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTCCGTTC-TTTAA----T 1493 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTC-TTTAA-----T 1477 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTTTAA------T 1510 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTTTAA------T 1510 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTCCTTTTAAAT---T 1491 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTC--TTTAA-----T 1475 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTC--TTTAA-----T 1506 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTC--TTTAA-----T 1494 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCT-TTAA-----T 1477 AAATAAAAAAGGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTCTTAA-----T 1479 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTTTTAA-----T 1477 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTTTTAA-----T 1478 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTTTTAA-----T 1477 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCTTC-GTTCTTTTAA-----T 1477 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATTTCCT-C-GTC-TTTTAAT----T 1492 AAATAAAAA-GGATAAGGAGAAAGAACTCAAGTAATATCCTTC-GTC-TTTTAAT----T 1500

Sequence type explicitly set to DNA
Sequence format is Pearson
Sequence 1: KSL031103 1491 bp
Sequence 2: KSL041104 1504 bp
Sequence 3: KSL051105 1503 bp

Sequence 6: LH		
Seque		
Sequen		
Sequen		
Sequen		
que		
que		
-		
Sequence 18. LPK0	- 01	
Sequence 19:	081001	
Sequence 20:	001	
Start of Pairwise alignments Aligning...		
Sequences (1:2)		
Sequences (1:3)		
Sequences (1:4)		
Sequences (1:5)		
Sequences (1:6)		
Sequences (1:7)		
Sequences (1:8)		
Sequences (1:9)		
Sequences (1:10)		
Sequences (1:11)		
Sequences (1:12)		
Sequences (1:13)		
Sequences (1:14)		
Sequences (1:15)		
Sequences (1:16)		
Sequences (1:17)		
Sequences (1:18)		
Sequences (1:19)		
Sequences (1:20)		
Sequences ($2: 3$)		
Sequences (2:4)		
Sequences (2:5)		
Sequences (2:6)		
Sequences (2:7)		
Sequences (2:8)		
Sequences (2:9)		
Sequences (2:10)		
Sequences (2:11)		
Sequences (2:12)		
Sequences (2:13)		
Sequences (2:14) Aligned. Score: 96		
Sequences (2:15) Aligned. Score: 97		

Sequences (2:16) Aligned. Score: 97
Sequences (2:17) Aligned. Score: 97
Sequences (2:18) Aligned. Score: 97
Sequences (2:19) Aligned. Score: 97
Sequences (2:20) Aligned. Score: 96
Sequences (3:4) Aligned. Score: 97
Sequences (3:5) Aligned. Score: 97
Sequences (3:6) Aligned. Score: 97
Sequences (3:7) Aligned. Score: 97
Sequences (3:8) Aligned. Score: 97
Sequences (3:9) Aligned. Score: 96
Sequences (3:10) Aligned. Score: 97
Sequences (3:11) Aligned. Score: 96
Sequences (3:12) Aligned. Score: 97
Sequences (3:13) Aligned. Score: 97
Sequences (3:14) Aligned. Score: 96
Sequences (3:15) Aligned. Score: 97
Sequences (3:16) Aligned. Score: 98
Sequences (3:17) Aligned. Score: 97
Sequences (3:18) Aligned. Score: 97
Sequences (3:19) Aligned. Score: 97
Sequences (3:20) Aligned. Score: 96
Sequences (4:5) Aligned. Score: 98
Sequences (4:6) Aligned. Score: 97
Sequences (4:7) Aligned. Score: 98
Sequences (4:8) Aligned. Score: 98
Sequences (4:9) Aligned. Score: 97
Sequences (4:10) Aligned. Score: 98
Sequences (4:11) Aligned. Score: 96
Sequences (4:12) Aligned. Score: 97
Sequences (4:13) Aligned. Score: 97
Sequences (4:14) Aligned. Score: 97
Sequences (4:15) Aligned. Score: 98
Sequences (4:16) Aligned. Score: 98
Sequences (4:17) Aligned. Score: 97
Sequences (4:18) Aligned. Score: 98
Sequences (4:19) Aligned. Score: 98
Sequences (4:20) Aligned. Score: 97
Sequences (5:6) Aligned. Score: 97
Sequences (5:7) Aligned. Score: 98
Sequences (5:8) Aligned. Score: 98
Sequences (5:9) Aligned. Score: 97
Sequences (5:10) Aligned. Score: 98
Sequences $(5: 11)$ Aligned. Score: 96
Sequences (5:12) Aligned. Score: 97
Sequences (5:13) Aligned. Score: 97
Sequences (5:14) Aligned. Score: 97
Sequences (5:15) Aligned. Score: 98
Sequences (5:16) Aligned. Score: 98
Sequences (5:17) Aligned. Score: 97
Sequences (5:18) Aligned. Score: 98
Sequences (5:19) Aligned. Score: 98

Sequences (5:20) Aligned. Score: 97
Sequences (6:7) Aligned. Score: 97
Sequences (6:8) Aligned. Score: 97
Sequences (6:9) Aligned. Score: 97
Sequences (6:10) Aligned. Score: 97
Sequences (6:11) Aligned. Score: 96
Sequences (6:12) Aligned. Score: 97
Sequences (6:13) Aligned. Score: 97
Sequences (6:14) Aligned. Score: 97
Sequences (6:15) Aligned. Score: 97
Sequences (6:16) Aligned. Score: 98
Sequences (6:17) Aligned. Score: 97
Sequences (6:18) Aligned. Score: 98
Sequences (6:19) Aligned. Score: 97
Sequences (6:20) Aligned. Score: 97
Sequences (7:8) Aligned. Score: 98
Sequences (7:9) Aligned. Score: 95
Sequences (7:10) Aligned. Score: 98
Sequences (7:11) Aligned. Score: 96
Sequences (7:12) Aligned. Score: 95
Sequences (7:13) Aligned. Score: 95
Sequences (7:14) Aligned. Score: 96
Sequences (7:15) Aligned. Score: 98
Sequences (7:16) Aligned. Score: 98
Sequences (7:17) Aligned. Score: 96
Sequences (7:18) Aligned. Score: 98
Sequences (7:19) Aligned. Score: 98
Sequences (7:20) Aligned. Score: 96
Sequences (8:9) Aligned. Score: 97
Sequences (8:10) Aligned. Score: 98
Sequences (8:11) Aligned. Score: 96
Sequences (8:12) Aligned. Score: 97
Sequences (8:13) Aligned. Score: 97
Sequences (8:14) Aligned. Score: 97
Sequences (8:15) Aligned. Score: 98
Sequences (8:16) Aligned. Score: 98
Sequences (8:17) Aligned. Score: 97
Sequences (8:18) Aligned. Score: 98
Sequences (8:19) Aligned. Score: 98
Sequences (8:20) Aligned. Score: 97
Sequences (9:10) Aligned. Score: 97
Sequences (9:11) Aligned. Score: 95
Sequences (9:12) Aligned. Score: 96
Sequences (9:13) Aligned. Score: 96
Sequences (9:14) Aligned. Score: 95
Sequences (9:15) Aligned. Score: 97
Sequences (9:16) Aligned. Score: 97
Sequences (9:17) Aligned. Score: 96
Sequences (9:18) Aligned. Score: 97
Sequences (9:19) Aligned. Score: 97
Sequences (9:20) Aligned. Score: 96
Sequences (10:11) Aligned. Score: 96

Sequences (10:12) Aligned. Score: 96 Sequences (10:13) Aligned. Score: 96 Sequences (10:14) Aligned. Score: 97 Sequences (10:15) Aligned. Score: 98 Sequences (10:16) Aligned. Score: 98 Sequences (10:17) Aligned. Score: 97 Sequences (10:18) Aligned. Score: 97 Sequences (10:19) Aligned. Score: 98 Sequences (10:20) Aligned. Score: 96 Sequences (11:12) Aligned. Score: 95 Sequences (11:13) Aligned. Score: 95 Sequences (11:14) Aligned. Score: 96 Sequences (11:15) Aligned. Score: 96 Sequences (11:16) Aligned. Score: 97 Sequences (11:17) Aligned. Score: 96 Sequences (11:18) Aligned. Score: 96 Sequences (11:19) Aligned. Score: 96 Sequences (11:20) Aligned. Score: 95 Sequences (12:13) Aligned. Score: 100 Sequences (12:14) Aligned. Score: 95 Sequences (12:15) Aligned. Score: 97 Sequences (12:16) Aligned. Score: 97 Sequences (12:17) Aligned. Score: 96 Sequences (12:18) Aligned. Score: 97 Sequences (12:19) Aligned. Score: 97 Sequences (12:20) Aligned. Score: 95 Sequences (13:14) Aligned. Score: 95 Sequences (13:15) Aligned. Score: 97 Sequences (13:16) Aligned. Score: 97 Sequences (13:17) Aligned. Score: 96 Sequences (13:18) Aligned. Score: 97 Sequences (13:19) Aligned. Score: 97 Sequences (13:20) Aligned. Score: 95 Sequences (14:15) Aligned. Score: 97 Sequences (14:16) Aligned. Score: 98 Sequences (14:17) Aligned. Score: 96 Sequences (14:18) Aligned. Score: 97 Sequences (14:19) Aligned. Score: 97 Sequences (14:20) Aligned. Score: 96 Sequences (15:16) Aligned. Score: 98 Sequences (15:17) Aligned. Score: 97 Sequences (15:18) Aligned. Score: 98 Sequences (15:19) Aligned. Score: 98 Sequences (15:20) Aligned. Score: 97 Sequences (16:17) Aligned. Score: 97 Sequences (16:18) Aligned. Score: 98 Sequences (16:19) Aligned. Score: 98 Sequences (16:20) Aligned. Score: 97 Sequences (17:18) Aligned. Score: 97 Sequences (17:19) Aligned. Score: 97 Sequences (17:20) Aligned. Score: 96 Sequences (18:19) Aligned. Score: 98

Sequences (18:20) Aligned. Score: 97
Sequences (19:20) Aligned. Score: 97
There are 19 groups
Start of Multiple Alignment
Aligning...
Group 1: Sequences: 2 Score:28004
Group 2: Sequences: 2 Score:28154
Group 3: Sequences: 4 Score:27967
Group 4: Sequences: 2 Score:27881
Group 5: Sequences: 2 Score:28937
Group 6: Sequences: 3 Score:27786
Group 7: Sequences: 2 Score:27582
Group 8: Sequences: 5 Score:27670
Group 9: Sequences: 6 Score:27503
Group 10: Sequences: 8 Score:27348
Group 11: Sequences: 12 Score:27059
Group 12: Sequences: 2 Score:27971
Group 13: Sequences: 3 Score:28042
Group 14: Sequences: 4 Score:28014
Group 15: Sequences: 5 Score:28028
Group 16: Sequences: 17 Score:26928
Group 17: Sequences: 18 Score:27271
Group 18: Sequences: 2 Score:27912
Group 19: Sequences: 20 Score:27072
Alignment Score 1791301
Figure 39. Comparison of nucleotide sequence of $r b c \mathrm{~L}$ gene of D.metel L. var. metel, D.metel
L. var. fastuosa, and hybrid D.metel L., (TNF111001 was assigned as outgroup sample)

* indicate clustal consensus, - indicate indels

3. Alignments of atpB sequences of D.metel L. var. metel, D.metel L.

var. fastuosa, and hybrid D.metel L.

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004
--AAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 57 -AAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 58 -AAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 58 ----AAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 55 ----AAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 55 -AAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 58 ----AAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 55 ---AAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 56 ---AAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 56 ---AAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 56 AAAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 59 AAAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 59 -AAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 58 -AAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 58 -AAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 58 -AAAAAAAAACCTGGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 59 AAAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 59 --AAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 57 - -AAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 57 -AAAAAAAAACC-GGGGCGTGTCGTCCAAATCATCGGTCCGGTACTAGATGTAGCCTTTC 58

CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 116 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 117 CCCCGGGCAAGATGCCGAAATATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 118 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 114 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 114 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 117 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 114 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 115 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 115 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 115 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 118 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 118 CCCCGGGCAAGATGCCGAA - TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 117 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 117 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 117 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 118 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 118 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 116 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 116 CCCCGGGCAAGATGCCGAA-TATTTATAACGCTCTGGTAGTTCAAGGTCGAGATAGTGTT 117

GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 176 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 177 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 178 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 174 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 174 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 177 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 174 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 175 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 175 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 175 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 178 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 178 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 177 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 177 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 177 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATAGAGTTAGG 178 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 178 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 176 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 176 GGTCAACCAATTAATGTGGCTTGTGAGGTACAGCAATTATTAGGAAATAATCGAGTTAGG 177 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 236

KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112

GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 237 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 233 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 233 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 236 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 233 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 234 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 234 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 234 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 237 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 237 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 236 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 236 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 236 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGGGAATGGAAGTGATTGACACAGG 238 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 237 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGGGAATGGAAGTGATTGACACAGG 236 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 235 GCTGTAGCTATGAGTGCTACAGACGGTCTAACGAGAGG-AATGGAAGTGATTGACACAGG 236

AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 292 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 293 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 294 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 290 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 290 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 293 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 290 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 291 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 291 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTTTAACGTGTCT 293 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 294 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 294 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 293 AGCTCCTTATAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 294 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 293 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 295 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 294 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 293 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 292 AGCTCCTA-TAAGTGTTCCGGTCGGGGGAGCGACTCTGGGACGAATTTTT-AACGTG-CT 293 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTAAGATACT--AGTA-CAACG-TCTTCC 345 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG-TCTCCC 345 CGGAGAGCCT-GTTGATAATTTAGGGGCCCTGTA-GATACTTTAGTA-CAACGGTCTTCC 351 CGGAGAGCCT-GTTGATAATTTAGGG-CCCTGTA-GATACT--AGTA-CAACG--TYTCC 342 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 341 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 344 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 341 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 342 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 342 CGGAGAGCCTTGTTGATAATTTAAGG-GCCTGTAGAATACT--AGTAACAACG-TTCTCC 349 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 345 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TYTCC 345 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TYTCC 344 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 345 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 344 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAATG--TCTCC 346 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 345 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TYTCC 344 CGGAGAGCCT-GTTGATAATTTAGGG--CCTGTA-GATACT--AGTA-CAACG--TCTCC 343

T-ATTCA-TAGAT-CCGCGCCCC-GCCTTTATAC--AGTTGG-ATACAAAATTATCTW-T 397 T-ATTCA-TAGATTCCGCGCCC--GCCTTTATACC-AGTTGG-ATACAAAATTATCTW-T 398 TTATTCAATAGATTCCGCGCCCCCGCCTTTATATCAAGTTGGGATACAAAATTATCTTAT 411 T-ATTCA-TAGAT-CCGCGCCCC-GCCTTTATAAC-AGTTGG-ATACAAAATTATCTA-- 394 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 391 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 394 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 391 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 392 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 392

LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001

T-ATTCA-TAGATCCGGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTW-- 400 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 395 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 395 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 394 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 395 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 394 T-ATTCA-TAGAT-CTGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 396 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 395 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 394 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 393 T-ATTCA-TAGAT-CCGCGCCC--GCCTTTATAC--AGTTGG-ATACAAAATTATCTA-- 394

TTTT-GAAACA-GGAATT-AAAGTAG-TAGATCTTTTTAGCCCCTTATTCGCCGTGG-AG 452 TTTTTGAAACAAGGAATT-AAAGTAG-TAGATTCTTTTAGCCCCTTAATCGCCGTGG-AG 455 TTTTTGAAACAGGGAATTTAAAGTAGGTAGATCTTTTTAGCCCCTTAATCGCCGTGGGAG 471 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 448 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 445 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 448 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 445 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 446 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 446 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 454 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 449 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 449 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 448 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 449 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 448 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 450 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 449 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 448 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 447 TTTTTGAAACA-GGAATT-AAAGTAG-TAGATC-TTTTAGCCCCTTA-TCGCCGTGG-AG 448

GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAAC-AGTACTC-ATTATGG 506 GAAAAAT-CGGACTATTTCGGGGG-AGCTGG-AGTGGGTAAAAC-AGTACTC-ATTATGG 510 GAAAAATTCGGACTATTTCGGGGGGAGCTGGGAGTGGGTAAAACCAGTACTCCATTATGG 531 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAAC-AGTACTC-ATTATGG 502 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACT-CATTATGG 499 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACT-CATTATGG 502 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACT-CATTATGG 499 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAAACAGTACTTCATTATGG 502 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACT-CATTATGG 500 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 508 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 503 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 503 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 502 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 503 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 502 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 504 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 503 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 502 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 501 GAAAAAT-CGGACTATT-CGGGGG-AGCTGG-AGTGGGTAAAA-CAGTACTC-ATTATGG 502

AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 558 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 562 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGGGCGTA-TCCG-TATTTTGGTGG 585 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 554 AA-TTGATTAACAA-TATTGC-TAAAGCTTCACGGGAGGCGTAATCCG-TATTTTGGTGG 555 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGG-GGCGTA-TCCG-TATTT-GGTGG 554 AA-TTGATTAACAA-TATTGC-TAAAGCTC-ACGGGGG-CGTA-TCCG-TATTT-GGTGG 551 AAATTGATTAACAAATATTGCCTAAAGCTCCACGGGGGGCGTA-TCCGGTATTT-GGTGG 560 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGG-GGCGTA-TCCG-TATTT-GGTGG 552 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 560 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 555 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 555 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 554 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 555 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 554 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 556

LHB101005
KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 555 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 554 AA-TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 553 AA - TTGATTAACAA-TATTGC-TAAAGCT-CACGGGGG-CGTA-TCCG-TATTT-GGTGG 554 ** *********** ****** ******* ***** * **** **** ***** *****
-AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 613 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 617 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 640 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 609 -AGTGGGGTGAACGGTACTCGGGGAAGGAAATGATCTTTTACATGGAAATGAAAGAATCT 614 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 609 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTTTACATGGAAATGAAAGAATCT 607 GAGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 616 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 607 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 615 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 610 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 610 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 609 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 610 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 609 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 611 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 610 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 609 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 608 -AGTGGG-TGAACG-TACTCGGG-AAGGAAATGATCTTT-ACATGGAAATGAAAGAATCT 609
-GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 671 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 675 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 698 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 667 TGGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 673 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 667 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 665 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 674 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGGGTCAGA 666 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 673 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 668 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 668 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 667 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 668 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 667 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 669 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 668 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 667 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 666 -GGAGTGATTAATGAAGAAAATATTGCAGAATCAAAAGTGGCCCTAGTTTACGG-TCAGA 667

TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 731 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 735 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 758 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 727 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 733 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 727 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGGGGAAT 725 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 734 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 726 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 733 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 728 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 728 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 727 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 728 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 727 TGAATGAACCGCCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 729 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 728 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 727 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 726 TGAATGAACCACCGGGAGCTCGTATGAGAGTTGGTTTGACTGCCCTAACTATGGCGGAAT 727

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 791 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 795 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 818 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 787 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 793 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 787 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 785 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 794 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 786 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 793 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 788 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 788 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 787 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 788 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 787 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 789 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 788 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 787 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 786 ATTTCCGAGATGTTAATGAGCAAGACGTACTTCTATTTATTGACAATATCTTCCGTTTCG 787

TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCS-CTGTGGGTT 848 TCCAAGCAGGATCCGAAGTATCCGGCCTTATTGGGTAAGAATGCCTTCCCGCTGTGGGTT 855 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 875 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 844 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 850 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 844 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 842 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 851 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 843 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 850 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 845 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 845 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 844 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 845 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 844 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 846 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 845 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 844 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 843 TCCAAGCAGGATCCGAAGTATC-GGCCTTATTGGGTA-GAATGCCTTCCG-CTGTGGGTT 844 ********************** ************** ****************************)

ATCAACC-GACCCTAA-GTACCGAAA-TGGGGTTCTTTACAAAGAAARAATTACTTC-TA 904 ATCAACCCGACCCTAAAGTACCGAAAATGGGGTTCTTTACAAAGAAAGAATTACTTCCTA 915 ATCAACCCGACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTTCTA 931 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 898 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 904 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 898 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 896 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 905 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 897 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAARAAAAAAATTACTTC-TA 905 ATCAACC-GACCCTAA-GTACCGAAA-TGGGGTTCTTTACAAGAAAAAAATTACTTC-TA 901 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAARAAAAAAATTACTTC-TA 900 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 898 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 899 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 898 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 900 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 899 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 898 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-RAAARAATTACTTC-TA 897 ATCAACC-GACCCTAA-GTACCGAAA--TGGGTTCTTTACAA-GAAAGAATTACTTC-TA 898 CCAAARAAAGGGTCC-ATAACCYC-TATT-CAAGC-AGTTTATGTACCCGC-AGAACGAT 959 CCAAARAAAGGGTCCCATAACCYCCTATT-CAAGCCAGTTTATGTACCCGC-AGA-CGAT 972 CCAAAAGAAGGGTCC-ATAACCCTCTATT-CAAGCARTTTTATGTACCCGCCAGAACGAT 989 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 951 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 957 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 951 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 949

LHB081111
LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002

CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 958 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 950 CCAAGAGAAGGGTCC-ATAACCCTCTATT-CAAGC-AGTTTATGTACCCGC-AGAACGAT 961 CCAAARAAAGGGTCC-ATAACCTC-TATTTCAAGCAGTTTTATGTACCCGC-AGAACGAT 958 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 953 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 951 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 952 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 951 CTAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 953 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 952 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 951 CCAAA-GAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 950 CCAAA-RAAGGGTCC-ATAACCTC-TATT-CAAGC-AGTTTATGTACCCGC-AGA-CGAT 951

TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1011 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1024 TTGACCSAACCCTG-CTCCTGGCTACGA-CATTTGCACCATTTTAGA-TGCTACTACCCG 1046 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1003 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1009 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1003 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1001 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1010 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1002 TTGACCSAACCCTG-CTCCCTGCTACGAACATTTGCACA--TTTAGAATGCTACTACCCG 1018 TTGACCCGACCCTGGCTCCTG-CTACGAACATTTGCACA--TTTAGAATGCTACTACCCG 1015 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1005 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1003 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1004 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1003 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1005 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1004 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1003 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1002 TTGACCGA-CCCTG-CTCCTG-CTACGA-CATTTGCACA--TTTAGA-TGCTACTACC-G 1003

TACTATC-AAGAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1066 TACTATC-AAGAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1079 TACTATCCAARAGGA-TTGGCTGGCCAAAAGGTATTTATTCCAGCAGTAGATCCTTTAGA 1105 TACTATC-AAGAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1058 TACTATC-AAGAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1064 TACTATC-AAGAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCATTAAATCCTTTAAA 1058 TACTATC-AAGAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1056 TACTATC-AAGAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1065 TACTATC-AAGAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1057 TACTATCAARAAGGAATTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1075 TACTATTCAARAAGAATTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1072 TACTATCAARAAGGA-TTGGCTGCC--AAAGGTATTTAT-CCAGCAGTAGATCCTTTAGA 1061 TACTATCAAGA-GGA-TTGGCTGCC--AAAGGTATTTATCC-AGCAGTARATCCTTTARA 1058 TACTATCAARA-RGA-TTGGCTGCC--AAAGGTATTTATCC-AGCARTARATCCTTTARA 1059 TACTATCAAGA-GGA-TTGGCTGCC--AAAGGTATTTATCC-AGCAKTARATCCTTTAGA 1058 TACTATCAAGA-GGA-TTGGCTGCC--AAAGGTATTTATCC-AGCAKTARATCCTTTARA 1060 TACTATCAAGA-GGA-TTGGCTGCC--AAAGGTATTTATCC-AGCAGTARATCCTTTAGA 1059 TACTATCAARAAGGA-TTGGCTGCC--AAAGGTATTTATCCCAGCARTARATCCTTTARA 1060 TACTATCAAGA-GGA-TTGGCTGCC--AAAGGTATTTATCC-AGCAKTARATCCTTTARA 1057 TACTATCAARA-GGA-TTGGCTGCC--AAAGGTATTTATCC-AGCAKTARATCCTTTARA 1058

TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1125 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1138 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1164 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1117 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1123 TTCAACGTCAACCATGCTTCAACCTCCGATCGTTGGTGAGGAACATTACGAAACCGCCC-1117 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1115 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1124 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1116 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1134 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1131 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1120 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1117 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTMCGAAACCGCCCC 1119

LHB091003
TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCSCCC-1117 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1119 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCGCCC-1118 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCS-CCC 1119 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCCGCCC 1117 TTCAACGTCAACCATGCTTCAACCTCGGATCGTTGGTGAGGAACATTACGAAACCS-CCC 1117

AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1182 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1195 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1221 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1174 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1180 AAAAAGTTAAGCAAACTTTAA-CACCTTTCCAAAAACTTCA-GGACTTT-A-AGCTATCC 1173 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1172 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1181 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1173 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1191 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1188 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1177 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACWTT-ATAGCTATCC 1174 AAAGAGTTAAGCAAACTTTACCAACGTTACAAAGAACTTCA-GGACATTTAWAGCTATCC 1178 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACWTT-ATAGCTATCC 1174 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1176 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACWTT-ATAGCTATCC 1175 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAARAACTTCA-GGACATT-AWAGCTATCC 1176 AAAGAGTTAAGCAAACTTTACCAACGTTACAAARAACTTCAAGGACWTT-AWAGCTATCC 1176 AAAGAGTTAAGCAAACTTTAC-AACGTTACAAAGAACTTCA-GGACATT-ATAGCTATCC 1174

TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1240 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1253 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1279 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1232 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1238 TTGGATTGGAC--1184 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1230 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1239 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1231 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1249 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1246 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1235 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1232 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1236 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1232 TTGGATTGGACGAATTATCC-GAAGAAGGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1235 TTGGATTGGACGAATTAYCC-RAAGA-GGATCGTTTACYCGTAGCAAGAGCGCGAAAAAT 1233 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1234 TTGGATTGGACGAATTATCCCGAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1235 TTGGATTGGACGAATTATCC-GAAGA-GGATCGTTTACTCGTAGCAAGAGCGCGAAAAAT 1232 ***********

TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1300 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1313 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1339 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1292 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1298

TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1290 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1299 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1291 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1309 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1306 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1295 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1292 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1296 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1292 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1295 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1293 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1294 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1295 TGAGCGTTTCTTATCACAACCCTTTTTCGTAGCAGAAGTATTTACCGGTTCTCCAGGGAA 1292

KSL041104
LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

KSL041104 LHB081110 KSL031103 LHB031107 LHB021106 LPK091002 LHB071009 LHB081111 LHB091112 LHB061108 KSL051105 LHB071001 KSL071001 LHB081002 LHB091003 TNF111001 LHB101005 KSl071002 LPK081001 LHB101004

ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1360 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1373 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1399 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1352 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1358

ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1350 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1359 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1351 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1369 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1366 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1355 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1352 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1356 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1352 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1355 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1353 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1354 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1355 ATATGTTGGTCTAGCGGAAACAATTCGAGGATTTCAATTGATCCTTTCCGGAGAATTAGA 1352

TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1420 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1433 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1459 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1412 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1418

TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1410 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1419 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1411 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1429 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1426 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1415 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1412 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1416 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1412 TGGTCTTCCGGAACAGGCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1415 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1413 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1414 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1415 TGGTCTTCCTGAACAGTCCTTTTATTTGGTAGGTAATATCGATGAAGCTACCGCGAAGGC 1412

TATGAACTA-GAAATGCAA-CCAATTTT---TTTTTT- 1452 TATGAATTA-GAGATGCAAACCAATTTT---TTTT-- 1464 TATGAACTA-GAGATGCAAACCAATTTT---TTTTTTT 1493 TATGAATTA-GAGATGCATCCCATTTTT---TTTTT-- 1444 TATGAATTA-GAGAT--CA-CCATTTTT---TTTTA-- 1447

TATGAATTA-GAGA--CCA-CTATTTTT---TTTTT-- 1439 TATGAATTA-GAAATGCAA-CCAATTTT---TTTTTT- 1451 TATGAATTA-GAGATGCAT-CCTATTTT---TTTT--- 1441 TATGAATTA-GAGATCCAA-CCTATTTT---TTTT-- 1459 TATGAACTA-GAAATGAGA--CCATTTTAAATTTT--- 1458 TATGAACTAAGAAATGCAAACCAATTAT---TTTTTTT 1450 TATGAACTTAGAAATGGAGAGCAATTGAGATTTTTT-- 1448 TATGAACT-AGAAATGGAGAGCAATTTATTTATTT--- 1450 TATGAACTTAGAAATGGAGAGCAATTAATTAATTT--- 1447 TATGAACTTAGAAATGGAGAGCAATTTAAAAAAT---- 1449 TATGAACTTAGAAATGCAAACCAAATTAATTTTTTT-- 1449 TATGAATTTAGAAAATTCAATCCTATTATTTTTTTT-- 1450 TATGAATTTAGAGA-TCCAATCTTATTATTTTTTTTT- 1451 TATGAACTTAGAAA-TGCAAACCAATTAATTTTTTT-- 1447

Sequence type explicitly set to DNA
Sequence format is Pearson
Sequence 1: KSL031103 1493 bp
Sequence 2: KSL041104 1452 bp
Sequence 3: KSL051105 1458 bp

Sequences (2:16) Aligned. Score: 96
Sequences (2:17) Aligned. Score: 96
Sequences (2:18) Aligned. Score: 95
Sequences (2:19) Aligned. Score: 97
Sequences (2:20) Aligned. Score: 95
Sequences (3:4) Aligned. Score: 96
Sequences (3:5) Aligned. Score: 96
Sequences (3:6) Aligned. Score: 97
Sequences (3:7) Aligned. Score: 97
Sequences (3:8) Aligned. Score: 96
Sequences (3:9) Aligned. Score: 97
Sequences (3:10) Aligned. Score: 97
Sequences (3:11) Aligned. Score: 96
Sequences (3:12) Aligned. Score: 96
Sequences (3:13) Aligned. Score: 96
Sequences (3:14) Aligned. Score: 97
Sequences (3:15) Aligned. Score: 98
Sequences (3:16) Aligned. Score: 97
Sequences (3:17) Aligned. Score: 96
Sequences (3:18) Aligned. Score: 96
Sequences (3:19) Aligned. Score: 98
Sequences (3:20) Aligned. Score: 96
Sequences (4:5) Aligned. Score: 96
Sequences (4:6) Aligned. Score: 96
Sequences (4:7) Aligned. Score: 96
Sequences (4:8) Aligned. Score: 95
Sequences (4:9) Aligned. Score: 97
Sequences (4:10) Aligned. Score: 96
Sequences (4:11) Aligned. Score: 97
Sequences (4:12) Aligned. Score: 96
Sequences (4:13) Aligned. Score: 96
Sequences (4:14) Aligned. Score: 97
Sequences (4:15) Aligned, Score: 97
Sequences (4:16) Aligned. Score: 97
Sequences (4:17) Aligned. Score: 97
Sequences (4:18) Aligned. Score: 96
Sequences (4:19) Aligned. Score: 97
Sequences (4:20) Aligned. Score: 96
Sequences (5:6) Aligned. Score: 96
Sequences (5:7) Aligned. Score: 96
Sequences (5:8) Aligned. Score: 95
Sequences (5:9) Aligned. Score: 97
Sequences (5:10) Aligned. Score: 96
Sequences (5:11) Aligned. Score: 96
Sequences (5:12) Aligned. Score: 95
Sequences (5:13) Aligned. Score: 95
Sequences (5:14) Aligned. Score: 96
Sequences (5:15) Aligned. Score: 97
Sequences (5:16) Aligned. Score: 97
Sequences (5:17) Aligned. Score: 96
Sequences (5:18) Aligned. Score: 97
Sequences (5:19) Aligned. Score: 96

Sequences (5:20) Aligned. Score: 95
Sequences (6:7) Aligned. Score: 98
Sequences (6:8) Aligned. Score: 97
Sequences (6:9) Aligned. Score: 97
Sequences (6:10) Aligned. Score: 98
Sequences (6:11) Aligned. Score: 96
Sequences (6:12) Aligned. Score: 97
Sequences (6:13) Aligned. Score: 97
Sequences (6:14) Aligned. Score: 97
Sequences (6:15) Aligned. Score: 99
Sequences (6:16) Aligned. Score: 97
Sequences (6:17) Aligned. Score: 96
Sequences (6:18) Aligned. Score: 96
Sequences (6:19) Aligned. Score: 98
Sequences (6:20) Aligned. Score: 96
Sequences (7:8) Aligned. Score: 97
Sequences (7:9) Aligned. Score: 97
Sequences (7:10) Aligned. Score: 98
Sequences (7:11) Aligned. Score: 96
Sequences (7:12) Aligned. Score: 97
Sequences (7:13) Aligned. Score: 97
Sequences (7:14) Aligned. Score: 97
Sequences (7:15) Aligned. Score: 98
Sequences (7:16) Aligned. Score: 97
Sequences (7:17) Aligned. Score: 96
Sequences (7:18) Aligned. Score: 96
Sequences (7:19) Aligned. Score: 98
Sequences (7:20) Aligned. Score: 96
Sequences (8:9) Aligned. Score: 96
Sequences (8:10) Aligned. Score: 96
Sequences (8:11) Aligned. Score: 95
Sequences (8:12) Aligned. Score: 95
Sequences (8:13) Aligned. Score: 95
Sequences (8:14) Aligned. Score: 95
Sequences (8:15) Aligned. Score: 97
Sequences (8:16) Aligned. Score: 95
Sequences (8:17) Aligned. Score: 95
Sequences (8:18) Aligned. Score: 95
Sequences (8:19) Aligned. Score: 96
Sequences (8:20) Aligned. Score: 94
Sequences (9:10) Aligned. Score: 97
Sequences (9:11) Aligned. Score: 97
Sequences (9:12) Aligned. Score: 96
Sequences (9:13) Aligned. Score: 97
Sequences (9:14) Aligned. Score: 97
Sequences (9:15) Aligned. Score: 98
Sequences (9:16) Aligned. Score: 97
Sequences (9:17) Aligned. Score: 97
Sequences (9:18) Aligned. Score: 97
Sequences (9:19) Aligned. Score: 97
Sequences (9:20) Aligned. Score: 96
Sequences (10:11) Aligned. Score: 96

Sequences (10:12) Aligned. Score: 97
Sequences (10:13) Aligned. Score: 97
Sequences (10:14) Aligned. Score: 97
Sequences (10:15) Aligned. Score: 98
Sequences (10:16) Aligned. Score: 97
Sequences (10:17) Aligned. Score: 96
Sequences (10:18) Aligned. Score: 96
Sequences (10:19) Aligned. Score: 97
Sequences (10:20) Aligned. Score: 96
Sequences (11:12) Aligned. Score: 95
Sequences (11:13) Aligned. Score: 96
Sequences (11:14) Aligned. Score: 97
Sequences (11:15) Aligned. Score: 97
Sequences (11:16) Aligned. Score: 97
Sequences (11:17) Aligned. Score: 96
Sequences (11:18) Aligned. Score: 96
Sequences (11:19) Aligned. Score: 97
Sequences (11:20) Aligned. Score: 96
Sequences (12:13) Aligned. Score: 96
Sequences (12:14) Aligned. Score: 96
Sequences (12:15) Aligned. Score: 98
Sequences (12:16) Aligned. Score: 96
Sequences (12:17) Aligned. Score: 96
Sequences (12:18) Aligned. Score: 95
Sequences (12:19) Aligned. Score: 97
Sequences (12:20) Aligned. Score: 95
Sequences (13:14) Aligned. Score: 96
Sequences (13:15) Aligned. Score: 98
Sequences (13:16) Aligned. Score: 96
Sequences (13:17) Aligned. Score: 96
Sequences (13:18) Aligned. Score: 96
Sequences (13:19) Aligned. Score: 97
Sequences (13:20) Aligned. Score: 95
Sequences (14:15) Aligned. Score: 97
Sequences (14:16) Aligned. Score: 98
Sequences (14:17) Aligned. Score: 97
Sequences (14:18) Aligned. Score: 96
Sequences (14:19) Aligned. Score: 97
Sequences (14:20) Aligned. Score: 97
Sequences (15:16) Aligned. Score: 97
Sequences (15:17) Aligned. Score: 97
Sequences (15:18) Aligned. Score: 97
Sequences (15:19) Aligned. Score: 98
Sequences (15:20) Aligned. Score: 96
Sequences (16:17) Aligned. Score: 97
Sequences (16:18) Aligned. Score: 97
Sequences (16:19) Aligned. Score: 97
Sequences (16:20) Aligned. Score: 97
Sequences (17:18) Aligned. Score: 96
Sequences (17:19) Aligned. Score: 97
Sequences (17:20) Aligned. Score: 96
Sequences (18:19) Aligned. Score: 97

Sequences (18:20) Aligned. Score: 95
Sequences (19:20) Aligned. Score: 97
There are 19 groups
Start of Multiple Alignment
Aligning...
Group 1: Sequences: 2 Score:27042
Group 2: Sequences: 3 Score:26694
Group 3: Sequences: 4 Score:26535
Group 4: Sequences: 2 Score:22047
Group 5: Sequences: 2 Score:27042
Group 6: Sequences: 4 Score:24493
Group 7: Sequences: 5 Score:26968
Group 8: Sequences: 9 Score:26293
Group 9: Sequences: 10 Score:26356
Group 10: Sequences: 11 Score:26367
Group 11: Sequences: 12 Score:26409
Group 12: Sequences: 2 Score:27297
Group 13: Sequences: 2 Score:27242
Group 14: Sequences: 4 Score:27115
Group 15: Sequences: 5 Score:27213
Group 16: Sequences: 2 Score:27283
Group 17: Sequences: 3 Score:27258
Group 18: Sequences: 8 Score:26979
Group 19: Sequences: 20 Score:25951
Alignment Score 1719367

Figure 40. Comparison of nucleotide sequence of atpB gene of D.metel L. var. metel, D.metel L. var. fastuosa, and hybrid D.metel L., (TNF111001 was assigned as outgroup sample)

* indicate clustal consensus, - indicate indels

Reagent and buffers for agarose gel electrophoresis

1. Loading dye (10x)

Ten time concentrate loading dye (10x) consisted of 50% glycerol, 0.25% bromophenol blue and 0.25% xylene cyanole FF

2. TBE buffer (10x)

To prepare the 10x TBE buffer, the following ingredients were mixed:

Tris-base	104.0 g
Boric acid	55.0 g
EDTA-2H2O	9.3 g
Deionized water	700.0 ml

The solution was adjusted pH to 8.3 with concentrate HCl before the volume was made to $1,000 \mathrm{ml}$. This buffer was sterilized by autoclaving.

3. Working TBE buffer (1x)

The 10x TBE (100 ml) was added to 900 ml of deionized water. This solution can be reused three times.

4. Ethidium bromide solution

To prepare stock ethidium bromide solution, a Tablet of ethidium bromide was dissolved in 1 ml of deionized water to obtain a concentration of $10 \mathrm{mg} / \mathrm{ml}$. Fifty microliters of the stock solution was then added to 100 ml of the buffer to make of $0.5 \mu \mathrm{~g} / \mathrm{ml}$ working concentration. The solution was kept protected from light.

5. Agarose ($\mathbf{1 . 5 \%)}$) gel preparation

Agarose 0.45 g was added to 30 ml of either 1x TBE buffer and dissolved by heating. Molten agarose was allowed to cool down to $50-60^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ before poring in a gel casting apparatus.

APPENDIX C

Part III. Scopolamine evaluation

จุฬาลงกรณ์มหาวิทยาลัย

Determination of scopolamine content by TLC image method

$$
R f=6.4 / 17.3=0.37
$$

Figure 41. Processing of TLC image analysis by image J software: (a) TLC chromatogram; (b) converting the image to greyscale; (c) chromatogram profiles obtained from the converting image. (From left to right lanes: standard scopolamines $5-50 \mu \mathrm{~g} / \mathrm{spot}$ and triplicate of two samples.) TLC chromatogram showed the spot of scopolamine at the retention factor $\left(\mathrm{R}_{\mathrm{f}}\right)$ of 0.37 , which developed in toluene: ethyl acetate: diethylamine (7: $2: 1 \mathrm{v} / \mathrm{v}$)

Reagent

- Dragendorff's reagent

Solution A: Dissolve 1.7 g bismuth (III) nitrate in a mixture of 20 mL glacial acetic acid and 80 mL of water (4:1).
Solution B: Dissolve 40 g potassium iodide in 100 mL of water.
Spray solution: Mix equal parts of solution A and solution B, before use. Store this solution in refrigerater and discard after 2 weeks.

Determination of scopolamine content by HPLC method

Figure 42. HPLC chromatogram pattern of standard scopolamine hydrocloride (a) and crude extracted of D.metel L. (b) HPLC chromatogram showed scopolamine peak at the retention time $\left(\mathrm{R}_{\mathrm{t}}\right)$ of 5.34 min

Reagent and buffer

- $\quad 50 \mathrm{mM}$ Potassium dihydrogen orthophosphate buffer

To prepare $50 \mathrm{mM} \mathrm{KH}{ }_{2} \mathrm{PO}_{4}$, the following ingredients were mixed:

$\mathrm{KH}_{2} \mathrm{PO}_{4}$	6.804 g
Deionized water	800.0 ml

The solution was adjusted pH to 3.0 with orthophosphoric acid before the volume was made to $1,000 \mathrm{ml}$. This buffer was filtered through a $0.45 \mu \mathrm{~m}$ filter before use.

VITA

Mr. Somchai Issaravanich was born on June 1, 1965 in Bangkok, Thailand . He received his Bachelor's degree of Sciences (Biology) from Faculty of Sciences, Kasetsart University, Thailand in 1987. He has worked at Institute of Health Research, Chulalongkorn University, science Febuary, 1989 to September, 2007 and College of Public Health Sciences, Chulalongkorn University, science October, 2007.

Publication

Issaravanich, S., Rungsihirunrat, K., and Ruangrungsi, N. Nucleotide sequence of the internal transcribed spacer (ITS) region of Datura metel L. var. fastuosa in Thailand. Proceedings of the 9th Joint Seminar Natural Medicine Research for the Next Decade: New Challenges and Future Collaboration, pp. 305-306. Bangkok, 2010.

Scholarships

1. Research Fund; 90 th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).
2. The Herbal Remedies and Alternative Medicine Task Force of STAR: Special Task Force for Activating Research under 100 Years Chulalongkorn University Fund.

[^0]: Classification Key
 sec. $=$ section, section, \quad var. $=$ varietas,variety, spp. $=$ sub-species, $\mathrm{f} .=$ forma,form
 (Source: Preissel, U., and Preissel, H. G. 2002).

