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Chapter 1

Introduction

The standard formulation of quantum mechanics was developed by Schrö-

dinger, Heisenberg and others in the 1920s. Those two formulations were shown

by Dirac to be equivalent. These approaches are based on the Hamiltonian of a

system, which is a function of operator. The third formulation, Feynman path

integral developed by R. P. Feynman, is based on the Lagrangian of the system.

This approach was inspired by P. A. M. Dirac’s [2], remarks that the action plays

a central role in classical mechanics. Feynman forwarded the idea by postulating

that not classical path contributes but all possible paths. The central concept in

Feynman’s approach is the propagator, containing all the information about the

system. In 1955, Feynman [3] applied the path integral to the polaron problem

by calculating the self energy and the effective mass of the polaron. The result

was valid for an arbitrary coupling strength (α) of electron-phonon interactions.

Consequently, path integrals have been applied widely to other problems and

various fields of theoretical physics.

In the meantime, path integrals have been applied intensively to the the-

ory of disordered systems. First, Edwards and Gulayev [4] introduced the path

integral to an electron moving in random scatterers but the density of states can-

not be solved explicitly. However, Sa-yakanit [5], and Sa-yakanit and Glyde [6]

used the variational path integral to calculate the density of states in the above

cases, i.e., the Gaussian potential and the screened Coulomb potential. Later,

Bezak [7] derived the action of an electron gas in a random potential and ex-

panded the autocorrelation function of Edwards’ model at very large correlation
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length. The theory of Bezak introduced the autocorrelation function by using

a nonlocal harmonic oscillator that represents an average potential energy. The

exact propagator can be applied to calculate the density of states at the limit of

the band-tail energy (E → −∞). This model has also been applied to other prob-

lems of disordered systems. Finally, the two-particle model was introduced by

Sa-yakanit [8]. The action is an electron moving in a two-parameter nonlocal har-

monic random potential with the force constant (κ) and the harmonic frequency

(ω). The action is exactly identical to the polaron trial action using by Osaka

[9], but substituting of a real time variable by the imaginary time (t → −ih̄β).

For a system of non-interacting electrons confined in two-dimensions un-

der the influence of a transverse magnetic field, an electron occupies a discrete

level known as the Landau level [10]. If we apply an electric field to a three-

dimensional system, an electron can move freely along the direction of the electric

field with the corresponding classical orbit being a helix. In real systems, in which

impurities are present, each Landau level is broadened into the band, which is

called “Landau band” [11]. The state of electron in Landau band consists of the

extended (delocalized) state and the localized state [12]. This gives rise to the

quantum Hall effect [13], discovered by von Klitzing in 1980.

The purpose of this thesis is to introduce the two-parameter nonlocal

harmonic random potential in the method. The main calculation is the two-

dimensional propagator of an electron in a two-parameters nonlocal harmonic

potential energy with transverse magnetic and x-direction electric fields, and the

density of states of a Gaussian random system.

The outline of this thesis is as follows : in the next Chapter, we review the

basic idea of the Feynman path integral and the derivation of Feynman propaga-
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tor, the semi-classical approximation and the general quadratic Lagrangian. The

examples are shown in the last section. In Chapter 3, we review the mathematical

models of a random potential via the path integral formulation. In Chapter 4,

we calculate the two-dimensional propagator of an electron in a two-parameter

nonlocal harmonic random potential with transverse magnetic and x-direction

electric fields. In Chapter 5, the density of states in two-dimensional random

system is calculated using the approximation in the low-energy and the high-

energy limits. The normalized density of states is then compared with the result

of the tight-binding simulation in the white noise limit. Finally, the conclusions

is presented in Chapter 6.



Chapter 2

Feynman’s Path Integrals

The Feynman path integral provides us an approach to solve quantum

mechanic problems, based on a Lagrangian of the system. The most important

thing of Feynman’s approach is the propagator, which is a Green’s function of

Schrödinger equation or the superposition of probability amplitudes in general

representation, containing all the information about the system. Furthermore,

the propagator also means the sum of contributions from all paths. However,

in certain cases, the sum over all contribution paths can be approximated to be

contribution of the classical path. This approximation is called the semi-classical

approximation based on an expansion around the classical path.

2.1 Derivation of Feynman’s Propagators

2.1.1 The Superposition of Probability Amplitudes

In quantum mechanics, the central quantity is the propagator (K). The

propagator represents the quantum mechanical transition amplitude defined by

K(x
′′

, t
′′

;x
′

, t
′

) ≡ 〈x
′′

, t
′′

|x
′

, t
′

〉. The right hand side bracket means that the sys-

tem will be found at position x
′′

at time t
′′

when the position x
′

and time t
′

are specified. This definition is obtained by the postulation of the interference

phenomena in quantum mechanics, obeying the composition law.

We begin with discussion of probability amplitudes in quantum mechan-

ics in general representation, which is the Green’s function of time-dependent

Schrödinger equation. First, let us begin with the time-dependent Schrödinger



5

equation,

[

ih̄
∂

∂t
− Ĥ

]

Ψ(x, t) = 0, (2.1)

where the Hamiltonian is defined by

H =
p2

2m
+ V (x). (2.2)

We can define the one-electron Green function of this equation as the solution of

[

ih̄
∂

∂t
− Ĥ

]

g(x
′′

, t
′′

;x
′

, t
′

) = δ(x
′′

− x
′

)δ(t
′′

− t
′

). (2.3)

As we have known, the propagator can be defined by a transition amplitude, then

K(x
′′

, t
′′

;x
′

, t
′

) ≡ g(x
′′

, t
′′

;x
′

, t
′

) = 〈x
′′

| exp{−iĤ(t
′′

− t
′

)/h̄}|x
′

〉. (2.4)

The one-dimensional time-dependent Green function of Schrödinger equation can

be represented in a matrix form, which is an expression of the Feynman prop-

agator. First, we consider the exponential of Hamiltonian operator for any N

times

e−iĤt/h̄ = [e−iĤt/Nh̄]N . (2.5)

We define the small subinterval time as

ε =
t

N
, (2.6)

and consider the limit N →∞ that ti+1 − ti = ε. Now we can write

〈x
′′

, t
′′

|x
′

, t
′

〉 = 〈x
′′

| e−iĤ(tN−tN−1+tN−1...+t1−t0)/h̄
︸ ︷︷ ︸

(N)−times

|x
′

〉



6

= 〈x
′′

|e−iĤ(ε+ε+ε+...)/h̄|x
′

〉. (2.7)

From the Baker-Haudoff lemma the transition amplitude is reduced to

〈x
′′

, t
′′

|x
′

, t
′

〉 = 〈x
′′

|e−iĤε/h̄.e−iĤε/h̄...e−iĤε/h̄|x
′

〉. (2.8)

We insert the completeness relation of N−1 intermediate space-time coordinates

(x1, x2, x3, ..., xN−1) into the transition amplitude, then we obtain

〈x
′′

, t
′′

|x
′

, t
′

〉 =
∫

dx1...dxN−1〈x
′′

|e−iĤε/h̄|xN−1〉〈xN−1|e
−iĤε/h̄|xN−2〉..〈x1|e

−iĤε/h̄|x
′

〉.

(2.9)

We consider the matrix element, the exponential involving the Hamiltonian op-

erator. If the operator acts on the eigenstate, then it gives the eigenvalue. Thus,

the matrix element becomes

〈xn| exp(
−iε

h̄
[
p̂2

2m
+ V̂ (x)])|xn−1〉 = 〈xn| exp[−

iε

2mh̄
p̂2]|xn−1〉 exp[−iεV (xn−1)/h̄].

(2.10)

The next step, we introduce the completeness relation of momentum space

∫
∞

−∞

dp

2πh̄
|p〉〈p| = 1, (2.11)

and the momentum eigenfunction for a free particle

〈x|p〉 = exp
(
ipx

h̄

)

(2.12)

and substitute the identities into the matrix element of equation (2.10), then

∫
∞

−∞

dp

2πh̄
〈xn| exp(−

iε

2mh̄
p̂2)|p〉〈p|xn−1〉 exp[−iεV (xn−1)/h̄]
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= exp[−iεV (xn−1)/h̄]
∫
∞

−∞

dp

2πh̄
exp

[

−
iεp2

2mh̄
+

i

h̄
(xn − xn−1)p

]

.

(2.13)

From the Gaussian integral formula

∫
∞

−∞

dpe−ap2+bp =

√
π

a
e−

b
2

4a , (2.14)

the matrix element in equation (2.13) can be reduced to

〈xn| exp(
−iε

h̄
[
p2

2m
+V (x)])|xn−1〉 =

√
m

2πih̄ε
exp

[
imε

2h̄
(
xn − xn−1

ε
)2 −

iε

h̄
V (xn−1)

]

.

(2.15)

The matrix element is an independent operator. We substitute the matrix element

in equation (2.15) into equation (2.9). For every matrix element we obtain the

transition amplitude

〈x
′′

, t
′′

|x
′

, t
′

〉 = (
m

2πih̄ε
)N/2

∫

dx1...dxN exp
i

h̄

∑

n

[
mε

2
(
xn − xn−1

ε
)2 − εV (xn−1)

]

.

(2.16)

Consider the infinitesimal time interval, we should be able to obtain the transition

amplitude for a finite time interval as

〈x
′′

, t
′′

|x
′

, t
′

〉 =
∫ N∏

n=1

(
m

2πih̄ε
)1/2dxn exp

iε

h̄

N∑

n=1

[
m

2ε2
(xn − xn−1)

2 − V (xn−1)
]

.

(2.17)

At the continuum notation or the infinitesimal time interval approach to zero,

the transition amplitude or the Feynman propagator can be rewritten as
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K(x
′′

, t
′′

;x
′

, t
′

) ≡ 〈x
′′

, t
′′

|x
′

, t
′

〉 =
∫

D[x(t)] exp
i

h̄

(
∫ t

′′

t
′

[
m

2
ẋ2(t)− V (x)

]

dt

)

,

(2.18)

where the integral measure

∫

D[x(t)] = lim
ε→0

∫ N∏

n=1

(
m

2πih̄ε
)1/2dxn, (2.19)

and the action

S[x(t)] =
∫ t

′′

t
′
dtL(x, ẋ, t). (2.20)

This is the Feynman path integrals expression form derived by the time-dependent

Green function of Schrödinger equation.

2.1.2 The Sum Over All Paths

In classical mechanics, when a particle moves from one point to another

point. From the principle of least action, a particle has only one classical path

that is stationary. Thus the action S is a minimum value

δS = 0. (2.21)

We can say that the value of S is unchanged if the path x(t) is the classical path.

The action function can be defined by

S =
∫ t

′′

t
′
dtL(ẋ, x, t), (2.22)

where L is Lagrangian of the system. In other words, the principle of least action

is the Lagrange equation.
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Nevertheless, the important concept of quantum mechanics is probability.

If we specify the position of a particle, then we cannot specify the momentum of

a particle. Therefore, we cannot predict the path in which a particle can take.

In the 1950 Feynman [1] introduced the theory of sum over all paths. In a sense,

if a particle moves from point x
′

at initial time t
′

to the end point x
′′

at time

t
′′

, there are many possible paths in which a particle can take. Thus a particle

moves with the action function of possible paths. We may summarize Feynman’s

postulation as

I. If an ideal measurement is performed determine whether a particle has

a path lying in a region of space-time, then the probability that the result will

be affirmative is the absolute square of a sum of complex contributions, one form

each path in the region.

II. The paths contribute equally in magnitude, but the phase of their

contribution is classical action S[x(t)] in unit of h̄.

This postulation, the probability of particle to go from a point x
′

at time

t
′

to the point x
′′

at t
′′

is the absolute square of the propagator,

P (x
′′

, x
′

) = |K(x
′′

, t
′′

;x
′

, t
′

)|2. (2.23)

that the propagator is the sum of contribution from each path. Therefore, the

propagator can be written

K(x
′′

, t
′′

;x
′

, t
′

) =
∑

overallpathsfromx
′
tox

′′

Φ[x(t)], (2.24)

where Φ is the contribution of path in which proportional to the action S,

Φ[x(t)] = (cont) exp
(
i

h̄
S[x(t)]

)

. (2.25)



10

We construct the path by connecting all the points so selected with

straight line of a point on space time coordinate. We choose a subset of all paths

by first separating the independent time in to small interval, ε. This gives us a set

of successive time ti{t1, t2, t3, ...} between the values t
′

to t
′′

, where ti+1 = ti + ε.

At each time, ti, we select some special point xi and constructing a path by con-

necting all of the point, so we set the form of them to be a line. This processes

are shown in Figure 2.1. It is possible to define a sum over all paths constructed

in this manner by taking a multiple integral over all values of xi for i from 1 to

n− 1, where

ta = t
′

, tb = t
′′

, nε = t
′′

− t
′

xa = x
′

, xb = x
′′

.

Figure 2.1 Diagram showing how the path integrals can be constructed [25].

By using this method, equation (2.24) becomes

K(x
′′

, t
′′

;x
′

, t
′

) ≈
∫ ∫

...
∫

dx1dx2...dxn−1Φ[x(t)] (2.26)

or
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K(x
′′

, t
′′

;x
′

, t
′

) ≈
∫ ∫

...
∫

dx1dx2...dxn−1(const) exp
i

h̄
S[x(t)].

(2.27)

We do not integrate x0 or xn because these are the fixed end point x
′

and x
′′

. In

order to achieve the correct measure, equation (2.27) must be taken in the limit

ε→ 0 and some normalizing factor A−1 which depends on ε must be provided in

in order that the limit of equation (2.27) becomes

K(x
′′

, t
′′

;x
′

, t
′

) = lim
ε→0

1

A

∫ ∫

...
∫ dx1

A

dx2
A

...
dxN

A
exp

i

h̄
S[x(t)], (2.28)

where a normalization constant

A = (
m

2πih̄T
)1/2. (2.29)

Equation (2.28) can also be written in a less restrictive notation as

K(x
′′

, t
′′

;x
′

, t
′

) =
∫

D[x(t)] exp
i

h̄
S[x(t)]. (2.30)

This is called a path integral (sum over all paths) and the amplitudeK(x
′′

, t
′′

;x
′

, t
′

)

is known as the Feynman propagator. We see that the propagator followed Feyn-

man’s argument has exactly the same form as the time-dependent Green function

(the superposition of probability amplitudes).

2.2 The Semi-Classical Approximation

The semi-classical approximation is applied by the path integral. The

classical path from x
′

to x
′′

is denoted by x̄(t). We express an arbitrary path in

terms of x(t) as x(t) = x̄(t)+δx(t). In general we are simply shifting the variable



12

x(t) by x̄(t) with the new variable δx(t). An arbitrary path can be expressed in

terms of x̄(t) and δx(t) by expanding the Taylor’s series of V (x̄ + δx). We can

write the action as

S =
∫ t

′′

t
′
dt

{

m

2
(
d

dt
(x̄+ δx))2 − V (x̄+ δx)

}

=
∫ t

′′

t
′
dt

{

m

2
[
d2x̄

dt2
+ 2m

dx̄

dt

dδx

dt
+ (

dδx

dt
)2]− V (x̄+ δx)

}

= Sc +
∫ t

′′

t
′
dt{m

dx̄

dt

dδx

dt
−

1

2

∂V

∂x̄
δx}

+
∫ t

′′

t′
dt{

m

2
(
d

dt
δx)2 −

1

2

∂2V

∂x̄2
(δx)2}

+
∫ t

′′

t
′
dt{−

1

6

∂3V

∂x̄3
(δx)3 + ...}. (2.31)

Classifying terms by their order in δx(t), we can write

S = Sc + S(2) + S(3) + ..., (2.32)

where there is no term linear in δx(t) because x̄(t) satisfies the equation of motion

and δx(t) vanishes at the end points. The semi-classical approximation to the

path integral involves dropping all terms higher than the quadratic in δx(t). From

the expression for the Feynman path integral, then

K(x
′′

, t
′′

;x
′

, t
′

) = exp{i
Sc

h̄
}
∫ t

′′

t
′
Dδx(t) exp{i

S(2)

h̄
}, (2.33)

where we neglect higher order, explicitly S(2) is the phase difference between the

classical path and contribution paths as

S(2) =
∫ t

′′

t
′
dt{

m

2
(
d

dt
δx)2 −

1

2

∂2V

∂x̄2
(δx)2}. (2.34)
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However, it is possible to express the answer for the Gaussian integral over δx(t)

in terms of the classical action Sc called the Van-Vleck Pauli formula [14,15,16],

K(x
′′

, t
′′

;x
′

, t
′

) =

√
√
√
√

1

2πih̄
(−

∂2Sc

∂xt
′∂xt

′′

) exp{i
Sc

h̄
}. (2.35)

For more variables, the pre-factor involves the determinant of the matrix of deriva-

tives of Sc in the d-dimensions. The semi-classical approximation can be used

with good results for a smooth potential. However, the formula breaks down on

the caustic where the Van Vleck-Pauli determinant vanishes.

2.3 The General Quadratic Lagrangian

From a previous section, the method of direct integration can be carried

out for the the path integral. For the fluctuation potential case, the semi-classical

approximation is more difficult to work out because it breaks down on a Gaussian

integral. In this section we show that the quadratic Lagrangian is the general

method to direct integrating out of path integrals. The two cases of general

quadratic Lagrangian are the quadratic Lagrangian (semi-classical approxima-

tion) and the two-time quadratic Lagrangian (fluctuation potential case).

2.3.1 The Quadratic Lagrangian

We know from classical physics that the action S is extremized and then

it furnishes us the classical path is completely fixed. Therefore, any path x(t) can

be written in terms of the classical path x̄(t) and a new variable y(t). That is

x(t) = x̄(t) + y(t), (2.36)

and the integral measurement D[x(t)] can replaced by D[y(t)]. This means that a

point on the path by its distance x(t) from an arbitrary coordinate axis, we now
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define it by its derivation y(t) from the classical path, as shown in Figure 2.2.

Since any path x(t) and the classical path x̄(t) must have the same end points.

The condition which the derivations y(t) have to satisfy is y(t
′

) = y(t
′′

) = 0.

Figure 2.2 Diagram showing a path deviating from the classical path [25].

The Lagrangian will be the quadratic form

L = a(t)ẋ2(t) + b(t)ẋ(t)x(t) + c(t)x2(t) + d(t)ẋ(t) + e(t)x(t) + f(t).

(2.37)

Hence, the action S can be expressed as

S[x(t)] = S[x̄(t) + y(t)]

=
∫ t

′′

t
′

[

a(t)
{

˙̄x
2
(t) + 2 ˙̄x(t)ẏ(t) + ẏ2(t)

}

+ ...+ f(t)
]

dt. (2.38)

It is obvious that the integral of all terms involving exclusively x̄(t) is exactly

the classical action and the integral of all terms that are linear in y(t) precisely



15

vanishes from boundary condition. So, all the remaining terms in the integral are

the second-order terms in y(t) only. That is

S[x(t)] = Scl[x̄(t)] +
∫ t

′′

t
′

[

a(t)ẏ2(t) + b(t)ẏ(t)y(t) + c(t)y2(t)
]

dt. (2.39)

Thus the propagator is the integral over paths y(t) does not depend upon the

classical path and all paths y(t) start from and return to the point y = 0, can be

written as

K(x
′′

, t
′′

;x
′

, t
′

) = exp
(
i

h̄
Scl[x̄(t)]

)

N
∫ 0

0
D[y(t)] exp

{

i

h̄

∫ t
′′

t
′
dt[a(t)ẏ2(t)

+b(t)ẏ(t)y(t) + c(t)y2(t)]
}

. (2.40)

For the quadratic Lagrangian, the propagator can be written as

K(x
′′

, t
′′

;x
′

, t
′

) = F (T ) exp
{
i

h̄
Scl[x̄(t)]

}

, (2.41)

where the prefactor is

F (T ) = N
∫ 0

0
D[y(t)] exp

{

i

h̄

∫ t
′′

t′
dt[a(t)ẏ2(t) + b(t)ẏ(t)y(t) + c(t)y2(t)]

}

.

(2.42)

For the quadratic Lagrangian, it can be seen that the path integral in equation

(2.40) which is a product of two functions, one of which does not depend upon

the end-point positions. This propagator is similar to the semi-classical approxi-

mation.

2.3.2 The Two-Time Quadratic Lagrangian

Such a situation with an electron interacting with a larger system, Feyn-

man [3] was first to introduce a nonlocal action in the polaron problem. The

general form of two-time Lagrangian is
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L =
m

2
ẋ2(t)−

1

2

∫ T

0
dsG(t, s)x(t)x(s). (2.43)

Physically G(t, s) is a simple phenomenological memory effect which arises when

the system interacts with a larger system. The example of this problem is an

electron moving in a disorder system or a random potential. The propagator

is very similar to the quadratic action. Thus, the entire contribution to the

propagator comes from the classical path alone

K(x
′′

, t
′′

;x
′

, t
′

) = F (T ) exp
{
i

h̄
Scl[x(t)]

}

, (2.44)

where the prefactor is

F (T ) = N
∫ 0

0
D[x(t)] exp

{
i

h̄
Scl

}

. (2.45)

2.4 Examples

2.4.1 The Harmonic Oscillator

For a simple problem is the one-dimensional harmonic oscillator. The

Lagrangian is given by

L(x, ẋ) =
1

2
mẋ2 −

1

2
mω2x2. (2.46)

From the semi-classical approximation, the propagator can be expressed in the

form

K(x2, t2;x2, t1) = F (T ) exp{
i

h̄
Sc[x(t)]}, (2.47)

where F (T ) is the prefactor and Sc[x(t)] is the classical action. The classical

action can be calculated by the principle of least action. The classical equation

of motion can be written in the form
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ẍ+ ω2x = 0, (2.48)

with conditions x(t1) = x1, x(t2) = x2, and the solution is

x(t) = A sin[ω(t+ α)], (2.49)

where α is an initial phase. The action can be simplified by using the equation of

motion in equation (2.48) and integration by parts. Using the equation of motion

ẍ+ ω2x = 0. We can write the action as

Scl =
m

2
[x(t2)ẋ(t2)− x(t1)ẋ(t1)] . (2.50)

Let us rewrite equation (2.49) in following form

x(t) = A sin [ω(t− t1) + ω(t1 + α)]

= A sin[ω(t− t1)] cos[ω(t1 + α)] + A sin[ω(t1 + α)] cos[ω(t− t1)].

We can continue to write classical path

x(t) =
1

ω
ẋ(t1) sin[ω(t− t1)] + x1 cos[ω(t− t1)]. (2.51)

For the particular condition value t = t2, then we find

ẋ(t1) =
ω

sin[ω(t2 − t1)]
{x2 − x1 cos[ω(t2 − t1)]} . (2.52)

Similarly,

ẋ(t2) =
ω

sin[ω(t2 − t1)]
{−x1 + x2 cos[ω(t2 − t1)]} . (2.53)

The action in equation (2.50), we need the product
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x(t2)ẋ(t2) =
ω

sin[ω(t2 − t1)]

{

x22 cos[ω(t2 − t1)]− x2x1
}

,

x(t1)ẋ(t1) =
ω

sin[ω(t2 − t1)]

{

−x21 cos[ω(t2 − t1)] + x2x1
}

.

Using this result to calculate the action in equation (2.50) with T = t2− t1. The

classical harmonic oscillator action gives

Sc =
mω

2 sinωT

{

(x22 + x21) cosωT − 2x2x1
}

, (2.54)

and the expression of Van-Vleck Pauli formula need for the prefactor,

√

−
∂2Sc

∂x2∂x1
=

√
mω

2 sinωT
. (2.55)

Using equations (2.54) and (2.55), substituting into equation (2.47) to obtain the

expression for the harmonic oscillator path integral,

K(x2, T ;x1, 0) =

√
mω

2πih̄ sinωT
exp

i

h̄

{
mω

2 sinωT
[(x22 + x21) cosωT − 2x2x1]

}

.

(2.56)

2.4.2 The Forced Harmonic Oscillator

The forced harmonic oscillator is an oscillator of the form acting on by a

time-dependent external force f(t), with the Lagrangian

L(x, ẋ) =
1

2
mẋ2 −

1

2
mω2x2 + f(t)x. (2.57)

Thus, the equation of motion is
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ẍ(t) + ω2x(t) =
f(t)

m
, (2.58)

and boundary conditions, x(t1) = x1, x(t2) = x2. We introduce the Green func-

tion to carry out the equation

[

m
d2

dt2
+mω2

]

G(t, s) = δ(t− s), (2.59)

with the Green function

G(t, s) = −H(t− s)
sinω(s− t1) sinω(t2 − t)

ω sinω(t2 − t1)

= −H(s− t)
sinω(t− t1) sinω(t2 − s)

ω sinω(t2 − t1)
(2.60)

where H(t, s) is a Heaviside step function. The classical path can be determined

by considering equations (2.59) and (2.60). Using the boundary conditions of the

classical path x(t). We obtain

x(t) =
x2 sinω(t− t1) + x1 sinω(t2 − t)

sinω(t2 − t1)
+

1

m

∫ t2

t1
f(t)G(t, s)ds. (2.61)

The classical action Scl can be calculated by following the same procedure in

equation (2.50), which is

Scl =
m

2
[x2ẋ(t2)− x1ẋ(t1)] +

1

2

∫ t2

t1
f(t)x(t)dt. (2.62)

Therefore, the classical action of system can be determined as

Scl =
mω

2 sinω(t2 − t1)
{(x22+x21) cosω(t2− t1)−2x2x1+

2x2
mω

∫ t2

t1
dtf(t) sinω(t1− t)

+
2x1
mω

∫ t2

t1
dtf(t) sinω(t2−t)−

2

m2ω2

∫ t2

t1

∫ t2

t1
dtdsf(t)f(s) sinω(t2−t) sinω(s−t)}.

(2.63)
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Finally, the Feynman propagator for an electron in a harmonic potential with the

time dependent external force is

K(x2, t2;x1, t1) =

√

mω

2πih̄ sinω(t2 − t1)
exp{

i

h̄
Scl}, (2.64)

where the classical action can be defined in equation (2.63).



Chapter 3

Review of Mathematical Models

of Random Potential Systems

In this chapter, we review the mathematical model of random potential

via the Feynman path integral formulation. The model is an electron coupling

with a large system in the form of a random potential. In this model, we are

interested in the approximate propagator which can be obtained by averaging

the propagator over the coordinates of the large system.

3.1 Edwards’ Model

The model of an electron moving in a completely random system contain-

ing dense and weak scatterers has been introduced by Edwards and Gulayev [4],

Edwards [17], and Abram and Edwards [18].

3.1.1 Random Potential

The important problem in a disordered system is a model of an electron

moving in a fluctuation potential or a random potential. The interaction be-

tween a free electron with a fluctuation potential caused by the imperfection of

the system. The fluctuation potential [19] can be represented by the autocorrela-

tion function W ≡ 〈v(~r(t))v(~r(s))〉 where v(~r(t)), v(~r(s)) are the time-dependent

random potential and the angle brackets denote the ensemble average. The im-

portant characteristic parameters of the random potential are the magnitude of

fluctuation energy (ξ) and the correlation length (l). There are two alternative
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definitions of the fluctuation potential. Firstly, Anderson [20] discussed about

an electron with a system of deep potential wells situated on given lattice points

and separated by sufficiently high barriers. The second definition is from Lifshitz

[21] who assumed that there are scatterers in the system. The scatterer being

determined by its own field v(~r − ~Ri) which is called the scattering potential. In

such cases, the random potential can be defined by the autocorrelation function

which are dependent on the distance |~r(t)− ~r(s)| and the correlation length.

3.1.2 Action of the System

By considering a free electron moving in a set of N rigid scatterers con-

fined within a volume V and a density n = N/V and using the path integral

method to derive the average Green function of the Schrödinger equation, the

disordered system can be described by the Hamiltonian

H[v] = − ~
2

2m
∇2 +

∑
i

v(~r − ~Ri), (3.1)

where v(~r− ~Ri) is the potential of single scatterer at site ~Ri. The time-dependent

Schrödinger equation for an electron of the effective mass m in disordered system

is

(i~
∂

∂t
−H[v])g(~r

′
~r, T0; [~R]) = δ(~r

′ − ~r)δ(t). (3.2)

The Green function of the time-dependent Schrödinger equation can be expressed

in the path integral representation as

g(~r
′
~r, T0; [~R]) =

∫
D[~r(t)] exp

i

~

{∫ T

0

dt[
m

2
~̇r

2
(t)−

∑
i

v(~r(t)− ~Ri)]

}
,

(3.3)
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where D[~r(t)] denotes the path integral to be carried out with the boundary

conditions ~r(0) = ~r and ~r(T ) = ~r
′
. The site ~Ri denotes that the scatterer is in

random configuration (~R1, ..., ~Ri, ...), specified by the probability distribution on

configurations space,

P [~R]d[~R] =
d~R1, ..., d ~RN

V N
=

∏
N,V→∞

d~Ri

V
, (3.4)

where V is a small volume on configurations space.

The propagator of random system K(~r
′
, T ;~r, 0) is an ensemble average

of the Green function with respect to the random scatterers configuration which

is the integration of Green function with the probability distribution over all the

configurations of the scatterers,

K(~r
′
, T ;~r, 0) =

〈
g(~r

′
~r, T, 0; [~R])

〉
[~R]

=

∫
g(~r

′
~r, T0; [~R])P [~R]d[~R]

=

∫ {
exp

i

~

∫ T

0

[
m

2
~̇r2(t)−

∑
i

v(~r(t)− ~Ri)]dt

}
D[~r(t)]

N∏
i=1

(
d~Ri

V
)

=

∫
exp

{
i

~

∫ T

0

m

2
~̇r2(t)dt

}{∫
exp[− i

~

∫ T

0

v(~r(t)− ~R)dt
d~R

V
]

}N

D[~r(t)].

(3.5)

By using the identity ex = (1+x/N)N and the density of the scatterer is n = N/V .

The propagator of random system [4] can be written as

K(~r
′
, T ;~r, 0) ≡

〈
g(~r

′
~r, T0; [~R])

〉
[~R]

=

∫
D[~r(t)] exp

i

~

{∫ T

0

m

2
~̇r2(t)dt + n

∫
d~R

[
exp(− i

~

∫ T

0

v(~r − ~R)dt)− 1

]}
.

(3.6)
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This is the exact expression for a propagator or an average Green function.

For simplicity, we shall consider the limit of high density n →∞ and weak

scatterer v → 0 so that nv2 remains finite. Since ρv2 À ρv3, the exponential can

be expanded in the Taylor series. The average propagator can be written as

K(~r
′
, T ;~r, 0) =

∫
D[~r(t)] exp

{
i

~

∫ T

0

m

2
~̇r2(t)dt− in

~

∫
d~R

∫ T

0

v(~r(t)− ~R)dt

− n

2~2

∫
d~R

∫ T

0

∫ T

0

v(~r(t)− ~R)v(~r(s)− ~R)dtds

}
. (3.7)

The average potential energy density is defined as E0 = 〈v(~r(t))〉 = n
∫

d~Rv(~r(t)−
~R). The autocorrelation function of scatterers W (~r(t) − ~r(s)) is the effect of a

potential at one point on a potential at another point that is the two points are

correlated. The autocorrelation function can be defined as

W (~r(t)− ~r(s)) ≡ 〈v(~r(t))v(~r(s))〉 =

∫
d~Rv(~r(t)− ~R)v(~r(s)− ~R). (3.8)

The expression of path integrals can be expressed formally in term of the action

function S as

K(~r
′
, T ;~r, 0) =

∫
D[~r(t)] exp{ i

~
S}, (3.9)

where the action S is defined by

S =

∫ T

0

dt

[
m

2
~̇r2(t)− E0 +

in

2~

∫ T

0

dsW (~r(t)− ~r(s))

]
. (3.10)

This action is sometimes called “two-time” action. The system can be viewed as

an electron moving in the nonlocal potential with a memory effect. The autocor-

relation function for a Gaussian random potential has the form
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W (~r(t)− ~r(s)) = ξ · exp

(
−|~r(t)− ~r(s)|2

L2

)
, (3.11)

where the fluctuation energy ξ has the dimension of the energy squared and L is

the Gaussian correlation length which can be defined by L2 = 2l2. In the limiting

case of the Gaussian correlation length approaches to zero, the autocorrelation

function approaches the delta function as

W (~r(t)− ~r(s)) = D · δ(~r(t)− ~r(s)), (3.12)

where D is the magnitude of white noise energy. This is the white noise correlation

function.

3.2 Path Integral Theory of an Electron Gas in

a Random Potential : Bezak’s Model

Bezak [7,22] proposed his model to describe the impurity band in a poly-

crystalline semiconductor. The impurity can precipitate in the vicinity of inter-

faces between crystalline forming potential barrier, which is deep potential wells

with the magnitude (η). This model represented the interaction as a random

potential and the autocorrelation function as a Gaussian one. If the correlation

length L is larger than the interatomic distance, we can approximate the Gaussian

autocorrelation function by

W (~r(t)− ~r(s)) = exp

(
1− [~r(t)− ~r(s)]2

L2

)
, (3.13)

and the propagator in equation (3.7) takes the form

K(~r
′
, T ;~r, 0) = exp

(
−nη2T 2

2~2

)
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×
∫

D[~r(t)] exp
i

~

{∫ T

0

m

2
~̇r2(t)dt − mω2

4T

∫ T

0

∫ T

0

dtds[~r(t)− ~r(s)]2
}

,

(3.14)

where ω is the harmonic frequency related to the correlation length, l, by the

relation ω2 = 2inη2T/m~l2. The action of Bezak’s model can be defined with the

one-parameter nonlocal harmonic random potential as

S(ω) =

∫ T

0

m

2
~̇r2(t)dt− mω2

4T

∫ T

0

∫ T

0

dtds(~r(t)− ~r(s))2. (3.15)

The propagator of an electron moving in a random potential has been calculated

by Bezak [7], and Khandekar and Lawande [23], as

K(~r
′
, T ;~r, 0) = (

m

2πi~T
)3/2(

ωT

2 sin ωT
)3 exp

i

~

{
mω

4
cot(

ωT

2
)(~r′ − ~r)2 − inη2T 2

2~

}
.

(3.16)

3.3 Two-Particle Model System

In this section, we present the model used by Samathiyakanit [8] and use

his trial action which contains two parameters, S(κ, ω). The impurity in a random

system produces the random potential interacting with an electron. The effect

of the impurity field is produced by the fictitious particle of mass M . Physically,

this model is a free electron interacts harmonically with a fictitious particle of

mass M with κ as a spring constant and the harmonic frequency is ω =
√

κ/M .

The The Lagrangian of two-particle model system can be written as

L =
1

2
m ~̇X

2

(t) +
1

2
M ~̇Y

2

(t)− 1

2
κ( ~X(t)− ~Y (t))2, (3.17)
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where M and ~Y are the mass and the coordinate of fictitious particle, respectively.

Then the path integral of this Lagrangian can be written as

K
(

~X2, ~Y2, T ; ~X1, ~Y1, 0
)

=

∫
D[ ~X(t)]D[~Y (t)] exp

[∫ T

0

dtL( ~X, ~Y , t)

]
. (3.18)

The coordinate of the fictitious particles can be eliminated by setting

~Y2 = ~Y1. Integrating the propagator of two-particle system over the coordinate ~Y2

(see Appendix for more details) yields the average effect of the fictitious particles

on the electron. Therefore, the action of the two-particle model system has only

the electron coordinate, which is

S(ω, κ) =

∫ T

0

dt
1

2
m~̇r

2
(t)− κω

8

∫ T

0

∫ T

0

dtds(~r(t)− ~r(s))2 cos ω(T
2
− |t− s|)

sin ω
2
T

.

(3.19)

In fact, this action can be reduced to the action of Bezak’s model by setting

ω → 0 or equivalently M →∞.



Chapter 4

Results

This chapter, we will calculate the exact two-dimensional propagator in

the transverse magnetic field and the x-directional electric field with a two-

parameter nonlocal harmonic potential. In this calculation we introduce the

two-parameter nonlocal harmonic random potential [8] to describe the potential

of our system.

4.1 Two-Dimensional Propagators

We consider the non-interacting electron gas in the two-dimensional ran-

dom system. The model of interest involves an electron moving in a two-dimensional

random system with a transverse magnetic field and an x-directional electric field.

The impurity in a random system produces the random potential interacting with

an electron. Thus, the Lagrangian of the system is

L(x, y) =
m

2

[
~̇x

2
(t) + ~̇y

2
(t)

]
+

Ω

2
[x(t)ẏ(t)− y(t)ẋ(t)]

−κω

8

∫ T

0
ds

cos ω(T/2− |t− s|)
sin ω(T/2)

[
(~x(t)− ~x(s))2 + (~y(t)− ~y(s))2

]

+e ~Ex(t) · ~x(t), (4.1)

where Ω = eB/mc is the cyclotron frequency and a symmetric gauge of a magnetic

field ~Bz with the vector potential, ~A = (1/2)(yB,−xB, 0). The Lagrangian

describes an electron moving in a two-dimensional system under the influence

of a nonlocal harmonic random potential with a transverse magnetic and an
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x-direction electric fields. We see that the Lagrangian of system is a two-time

quadratic form. From §2.3.2, the propagator can be expressed by the contribution

of the classical action. Therefore, we will evaluate the classical action and the

prefactor of system.

4.1.1 The Classical Action

From the principle of least action, we cannot calculate the classical action

exactly because an equation of motion is the set of coupled integro-differential

equation due to a symmetric gauge. However, a classical action can be calculated

by applying the two-particle method [8] and the first-order cumulant approxima-

tion [24]. The two-dimensional propagator can be expressed by a product of the

x-component propagator and the y-component propagator as

K(xT , yT , T ; x0, y0, 0) = Kx(xT , T ; x0, 0)Ky(yT , T ; y0, 0), (4.2)

with Lagrangians of the system are

Lx =
m

2
~̇x

2
(t) +

Ω

2
(x(t)ẏ(t)− y(t)ẋ(t)) + e ~Ex(t) · ~x(t)

−1

8
κω

∫ T

0
ds

cos ω(T/2− |t− s|)
sin ω(T/2)

(~x(t)− ~x(s))2, (4.3)

and

Ly =
m

2
~̇y

2
(t)− 1

8
κω

∫ T

0
ds

cos ω(T/2− |t− s|)
sin ω(T/2)

(~y(t)− ~y(s))2. (4.4)

Firstly, we consider the x-component propagator and integrate by parts

the magnetic field term



30

∫ T

0
(xẏ − yẋ)dt = −(xT yT − x0y0) + 2

∫ T

0
xẏdt. (4.5)

Let us carry out the x-component propagator of the Lagrangian in equation (4.3)

by using equation (4.5). The x-component propagator can be written in the form

Kx(xT , x0; T ) = exp
(
− iΩ

2h̄
[xT yT − x0y0]

) ∫
D[~x(t)] exp

i

h̄

∫ T

0
dt

{
m

2
~̇x

2
(t)

−1

8
κω

∫ T

0
ds

cos ω(T/2− |t− s|)
sin ω(T/2)

(~x(t)− ~x(s))2 + ~f(t) · ~x(t)

}
,

(4.6)

where the external force can be defined as

f(t) = [Ωẏ(t) + eEx(t)] . (4.7)

Referring to §3.3, we applied the two-particle model system. This propagator can

be calculated by the two-particle system. The two-particle system is described by

an electron of mass m coupling with an another particle of mass M with a force

constant κ. We obtain the classical path in three dimensions from the Lagrangian

in equation (3.16) as

L =
1

2

[
m ~̇X2(t) + M ~̇Y 2(t)− κ( ~X(t)− ~Y (t))2

]
+ ~f(t) · ~X(t). (4.8)

It is obviously seen that the equation of motion is a set of coupled equations.

Such a problem can be solved by transforming the Lagrangian into the center of

mass coordinate system

~r = ~X − ~Y , ~R =
m ~X + M ~Y

m + M

m0 = m + M,µ =
mM

m + M
, (4.9)
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where ~r is a relative coordinate and ~R is a center of mass coordinate. Hence,

the Lagrangian can be written as containing two coupled systems with a forced

harmonic oscillator

L =
1

2
(µ~̇x2 − κ~x2) +

µ

m
~f · ~x +

1

2
m0

~̇R2 + ~f · ~R, (4.10)

where m0 and µ are the total mass and the reduced mass, respectively. This

can be interpreted that there are two non-interacting forced harmonic oscillators

which one of mass µ has a frequency ν =
√

κ/µ and is acted by the force µ~f/m,

but the other has mass m0, no frequency, and is acted by the force ~f . From

the two-particle model system, the classical action can be calculated exactly by

Samathiyakanit [8] as

Sf
cl =

(
µν

4
cot

ν

2
T +

1

2

mµ

MT

)
(~rT − ~r0)

2

+~rT ·
∫ T

0
dt~f(t)

(
µ

m
(

sin νt

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

) +
µt

MT

)

+~r0 ·
∫ T

0
dt~f(t)

(
µ

m
(
sin ν(T − t)

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

) +
µ(T − t)

MT

)

−
∫ T

0

∫ T

0
dtds~f(t) · ~f(s)

(
µ2

m2
(
sin ν(T − t) sin νs

ν sin νT

−4 sin ν
2
(T − t) sin ν

2
t sin ν

2
(T − s) sin ν

2
s

ν sin νT
) +

µ(T − t)s

MT

)
. (4.11)

Applying the classical action of the two-particle system in equation (4.11), and

substituting the notation of external force in equation (4.7), then we obtain the

x-component propagator

Kx(xT , x0; T ) = F (T ) exp
i

h̄

{
S0

x,Cl −
Ω

2
(xT yT − x0y0)
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+xT

∫ T

0
dt[Ωẏ(t) + eEx(t)]g1(t) + x0

∫ T

0
dt[Ωẏ(t) + eEx(t)]g2(t)

−
∫ T

0

∫ T

0
dtds[Ωẏ(t) + eEx(t)][Ωẏ(s) + eEx(s)]G(t, s)

}
, (4.12)

where

S0
x,Cl = (

µν

4
cot

ν

2
T +

1

2

mµ

MT
)(xT − x0)

2, (4.13)

g1(t) =
µ

m
(

sin νt

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

) +
µt

MT
, (4.14)

g2(t) =
µ

m
(
sin ν(T − t)

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

) +
µ(T − t)

MT
, (4.15)

G(t, s) =
µ2

m2
(
sin ν(T − t) sin νs

ν sin νT

−4 sin ν
2
(T − t) sin ν

2
t sin ν

2
(T − s) sin ν

2
s

ν sin νT
) +

µ(T − t)s

MT
. (4.16)

In addition, the classical action is separated into two parts, which are the classical

forced nonlocal harmonic action in the x-component and the time derivative of

the y-component. The integral of a time derivative of the y-component can be

carried out by integration by parts term by term. Therefore, the x-component

propagator can be rewritten as

Kx(xT , x0; T ) = F (T ) exp
i

h̄

{
Sf

x,Cl + S
′
[y(t)] + Ω

4µ−m

2m
xT yT + Ω

4µ + m

2m
x0y0

−2yT Ω
∫ T

0
dteEx(t)(

µ sin ν(T − t)

m2ν
+

µ(T − t)

mM
)

}
, (4.17)
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where the action

Sf
x,Cl =

(
µν

4
cot

ν

2
T +

1

2

mµ

MT

)
(xT − x0)

2

+xT

∫ T

0
dteEx(t)

(
µ

m
(

sin νt

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

) +
µt

MT

)

+x0

∫ T

0
dteEx(t)

(
µ

m
(
sin ν(T − t)

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

) +
µ(T − t)

MT

)

−e2
∫ T

0

∫ T

0
dtdsEx(t)Ex(s)

(
µ2

m2
(
sin ν(T − t) sin νs

ν sin νT

−4 sin ν
2
(T − t) sin ν

2
t sin ν

2
(T − s) sin ν

2
s

ν sin νT
) +

µ(T − t)s

MT

)
, (4.18)

and

S
′
[y(t)] = −(xT + x0)Ω

∫ T

0
dty(t)(

µν cos ν
2
(T − 2t)

2m sin ν
2
T

+
µ

mT
)

+2Ω
∫ T

0
dteEx(t)

µ sin ν
2
(T − t)

m2 sin ν
2
T

∫ T

0
dsy(s) cos

ν

2
(t− 2s)

+2Ω
∫ T

0
dteEx(t)

µ(T − t)

mMT

∫ T

0
dsy(s)

+Ω2
∫ T

0

∫ T

0
dtdsy(t)y(s)(

µν

2m2

cos ν(T
2
− (t− s))

sin ν
2
T

+
µ

mMT
).

(4.19)

Secondly, we will calculate the y-component propagator. By applying an

action, S
′
[y(t)], in equation (4.19), we combine this action with the trial action,

S0[y(t)], of a y-component Lagrangian in equation (4.4) and inserting the identity

of trial action. The y-component propagator can be written as

Ky(yT , T ; y0, 0) =

∫
D[y(t)] exp i

h̄

{
S0[y(t)] + S

′
[y(t)] + S0[y(t)]

}

∫
D[y(t)] exp i

h̄
{S0[y(t)]} . (4.20)
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Since an average is defined by

〈f [y(t)]〉S0 =

∫
D[y(t)]f [y(t)] exp{ i

h̄
S0[y(t)]}∫

D[y(t)] exp{ i
h̄
S0[y(t)]} . (4.21)

The cumulant approximation [24] is

〈
exp[

i

h̄
S]

〉

S0

= exp
{

i

h̄
〈S〉S0 + (

i

h̄
)2 1

2

(
〈S2〉S0 − 〈S〉2S0

)
+ ...

}
, (4.22)

and keeping only the first-order term, which is the first-order cumulant approx-

imation,
〈
eix/h̄

〉
∼ ei〈x〉/h̄. Then the exponential in equation (4.20) can be sepa-

rated to the exponential of a trial action and the average of action, 〈S ′〉Sy,0 . The

y-component propagator is contributed by a classical path as

Ky(yT , T ; y0, 0) = Ky,0(yT , T ; y0, 0) exp
i

h̄
〈S ′〉S0 , (4.23)

where the trial propagator

Ky,0(yT , T ; y0, 0) = exp
i

h̄

(
µν

4
cot

ν

2
T +

1

2

mµ

MT

)
(yT − y0)

2, (4.24)

and

〈S ′〉S0 = −(xT + x0)Ω
∫ T

0
dt〈y(t)〉S0(

µν cos ν
2
(T − 2t)

2m sin ν
2
T

+
µ

mT
)

+2Ω
∫ T

0
dteEx(t)

µ sin ν
2
(T − t)

m2 sin ν
2
T

∫ T

0
ds〈y(s)〉S0 cos

ν

2
(t− 2s)

+2Ω
∫ T

0
dteEx(t)

µ(T − t)

mMT

∫ T

0
ds〈y(s)〉S0

+Ω2
∫ T

0

∫ T

0
dtds〈y(t)y(s)〉S0(

µν

2m2

cos ν(T
2
− (t− s))

sin ν
2
T

+
µ

mMT
).

(4.25)
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We see that equation (4.25) contains the average over quantities like 〈y(t)〉S0 and

〈y(t)y(s)〉S0 . These quantities can be evaluated from the generating function [25].

The generating function is defined as

〈
exp

[∫ T

0
dt~f(t) · ~r(t)

]〉

S0

=

∫
D[~r(t)] exp[S0 +

∫ T
0 dt~f(t) · ~r(t)]∫

D[~r(t)] exp[S0]
, (4.26)

with end points condition ~r(T ) = ~rT , ~r(0) = ~r0 and ~f(t) is a time-dependent

arbitrary function. From Feynman and Hibbs [25], we are thus left with is the

exponential of the two classical action, that is

〈
exp

[∫ T

0
dt~f(t) · ~r(t)

]〉

S0

= exp
(
Sf

cl − S0
cl

)
. (4.27)

Hence, we can see that the quantities of interest can be extracted from the formula

in equation (4.27) by performing the functional differentiation with respect to the

function ~f(t) and setting it to be zero. For examples,

〈
~r(t) exp

[∫ T

0
dt~f(t) · ~r(t)

]〉

S0

=
δ

δ ~f(t)
[exp(Sf

cl − S0
cl)]

=
δSf

δ ~f(t)
[exp(Sf

cl − S0
cl)]. (4.28)

Therefore, by evaluating both sides when ~f(t) ≡ 0, we obtain

〈~r(t)〉S0 =

[
δSf

cl

δ ~f(t)

]

~f≡0

. (4.29)

We can continue this process to get the second derivatives as

〈~r(t) · ~r(s)〉S0 =
δ2

δ ~f(t)δ ~f(s)
exp(Sf

cl − S0
cl) |~f≡0

=

[
h̄

i

δ2Sf
cl

δ ~f(t)δ ~f(s)
+

δSf
cl

δ ~f(t)

δSf
cl

δ ~f(s)

]

~f≡0

. (4.30)
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Actually, since Sf
cl is quadratic in ~f(t), the quantities 〈~r(t)〉S0 and 〈~r(t) · ~r(s)〉S0

can be directly evaluated in terms of δSf
cl/δ

~f(t) and δ2Sf
cl/δ

~f(t)δ ~f(s), which is

independent of ~f(t).

Next, by applying the generating functional technique, we can evaluate

the quantities 〈y(t)〉S0 and 〈y(t)y(s)〉S0 in equation (4.25). First, we will evaluate

these quantities by introducing the Lagrangian of forced nonlocal harmonic as

Ly =
m

2
~̇y2(t)− κω

8

∫ T

0
ds

cos(T
2
− |t− s|)

sin(ωT/2)
(~y(t)− ~y(s))2 + ~f(t) · ~y(t), (4.31)

and the classical action Sf can be evaluated in the equation (4.11). Substituting

Sf in equation (4.11) of the y-component into equations (4.29) and (4.30), we

obtain

〈y(t)〉S0
= yT

(
µ

m

cos ν
2
(T − t) sin ν

2
t

sin ν
2
T

+
µt

MT

)

+y0

(
µ

m

sin ν
2
(T − t) cos ν

2
t

sin ν
2
T

+
µ(T − t)

MT

)
(4.32)

and

〈y(t)y(s)〉S0
=

(
2µ

m2ν

sin ν
2
(T − t) sin ν

2
s cos ν

2
(T − t)

sin ν
2
T

+
µ(T − t)s

mMT

)

+

(
y0

[
µ

m

sin ν
2
(T − t) cos ν

2
t

sin ν
2
T

+
µ(T − t)

MT

]

+yT

[
µ

m

cos ν
2
(T − t) sin ν

2
t

sin ν
2
T

+
µt

MT

])2

. (4.33)

Substituting equations (4.32) and (4.33) into equation (4.25), we can be evaluated

〈S ′〉S0 by integrating term by term. Then an average of the action, 〈S ′〉S0 , can

be rewritten as
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〈S ′〉S0 = −Ω2 {A(t) + B(t)} − Ω{( µ2

m2ν
+

µ2

m2
)(xT + x0)(yT + y0)}

−2Ω
∫ T

0
dteEx(t){yT G1(t) + y0G2(t)} (4.34)

where

G1(t) =
ν

8m3ν sin ν
2
T

(
2νT sin2 ν

2
(T − t) + 3 sin

ν

2
(T − t) cos

ν

2
(3T − t)

−2 sin ν(T − t) + sin
ν

2
(T − t) cos

ν

2
(T + t)

)
,

G2(t) =
ν

8m3ν sin ν
2
T

(
−2νT sin2 ν

2
(T − t) + 3 sin

ν

2
(T − t) cos

ν

2
(T + t)

−2 sin ν(T − t) + sin
ν

2
(T − t) cos

ν

2
(3T − t)

)
,

A(T ) =
µ2

32m4M2Tν3 sin2 ν
2
T

(
νT

[
16mM + 4(m2 −M2)ν2T 2

−(M2 + 4m2ν2T 2) cos νT − 16mM cos 2νT + M3 cos 3νT
]

+8M sin νT
[
−4m + M2ν2T 2 + (4m− 2mν2T 2) cos νT.

])
,

B(T ) =
µ3

24m4M3T 2ν3

×
{[

6mMν(8m + 3MT ) + 2T 2ν3(m(4m2 + 6mM + 3M2)− 3M2T (3m + M))

+3mMTν((16m− 10M) cos νT − ν((8m + 2M − 2MT ) cot
ν

2
T −MTν csc2 ω

2
T )

+2M(−24m2 + ν2T 2(12M2 + 18mM + 7M2)) sin νT
]
y2

0
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+2mν
[
(−6M(MT + 8m + 4mT ) + ν2T 2(4m2 + 12mM + 3M2)− 6MT (4m + M)

cos νT − 3MTν((8m + 2M + 2MT ) cot
ν

2
T + MTν csc2 ω

2
T )

+2M(24m2 + MT 2ν2(3m + 2M))
]
y0yT

+
ν

MT 2

[
(6mM(5M3T 3 + 8m(M2T 2 + M2T 3)) + 2MT 3ν2(4m3MT + 6m2M2T

+3M3T 2 + 3mM2(MT + MT 2))− 3mM2T 2(6M2T cos νT

+2ν(4mMT + M2(T + T 2) cot
ν

2
T )−M2T 2ν2 csc2 ν

2
T ))

+2M(24m2 + MT 2ν2(3m + 2M)) sin νT
]
y2

T

}
. (4.35)

Finally, the full classical action is a product of the classical action of the

x-component in equation (4.17) and the classical action of the y-component in

equation (4.33), which is

Scl[x, y] = exp
{
S0

cl,x,y − Ω2[A(T ) + B(T )] + Ω
4µ−m

2m
xT yT + Ω

4µ + m

2m
x0y0

−Ω((
µ2

m2ν
+

µ2

m2
)(xT + x0)(yT + y0))

−2Ω
∫ T

0
dteEx(t)(yT G1(t) + y0G2(t))

−2yT Ω
∫ T

0
dteEx(t)(

µ sin ν(T − t)

m2ν
+

µ(T − t)

mM
)

+xT

∫ T

0
dteEx(t)(

µ

m
[
sin νt

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

] +
µt

MT
)

+x0

∫ T

0
dteEx(t)(

µ

m
[
sin ν(T − t)

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

] +
µ(T − t)

MT
)

−e2
∫ T

0

∫ T

0
dtdsEx(t)Ex(s)(

µ2

m2
[
sin ν(T − t) sin νs

ν sin νT

−4 sin ν
2
(T − t) sin ν

2
t sin ν

2
(T − s) sin ν

2
s

ν sin νT
] +

µ(T − t)s

MT
)

}
. (4.36)
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4.1.2 The Prefactor

From the Feynman propagator, we will calculate the prefactor F (T ). An

explicit expression for this function may be given from the classical solution by

introducing a generating functional [26].

According to equation (2.45), we differentiate both sides by the operator

κ∂/∂κ and using notation of the average in equation (4.21). We obtain

−ih̄κ
∂

∂κ
ln F (T ) =

〈
κ
∂SF=0

∂κ

〉

S0

. (4.37)

We substitute an action of the Lagrangian in equation (4.1) into an above equa-

tion, neglecting magnetic and electric fields, becomes

−ih̄κ
∂

∂κ
ln F (T ) = −1

8
κω

∫ T

0

∫ T

0
dtds

cos ω(T
2
− |t− s|)

sin ω
2
T

〈
[~r(t)− ~r(t)]2

〉
S=0

,

(4.38)

where we define ~r(t) as a two-dimensional coordinate.

Next, we can calculate the average 〈[~r(t)− ~r(t)]2〉S=0 by introducing the

generating functional. We expand an average as 〈~r2(t)〉S0
− 2 〈~r(t) · ~r(s)〉S0

+

〈~r2(s)〉S0
. From the previous section an average 〈[~r(t)− ~r(t)]2〉S0

becomes

〈
[~r(t)− ~r(t)]2

〉
S0

=
µ2

m2

[
sin ν

2
(t− s) cos ν

2
(T − (t + s))

sin ν
2
T

+
m(t− s)

MT

]2

(~rT − ~r0)
2

−2ih̄
µ

m

[
2 sin ν

2
(t− s) sin ν

2
(T − (t− s))

mν sin ν
2
T

+
(t− s)(T − (t− s))

MT

]
.

(4.39)

Although, the prefactor is independent with the end points. We can set the limit

of the end points condition by ~r(T ) = ~r(0) = 0. Neglecting the first term on
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the right hand side in equation (4.39) and substituting into equation (4.38), we

obtain

−ih̄κ
∂

∂κ
ln F (T ) = −κω

4

{
2ih̄µ

m
[− 2

mν

νT

2ω(ν2 − ω2)
(ν cot

ν

2
T − ω cot

ω

2
T )

+
2

Mω3
− T

Mω2
cot

ω

2
T ]

}
. (4.40)

Since, ν =
√

κ/µ and ω =
√

κ/M are the relative (center of mass) harmonic and

harmonic frequency respectively, harmonic frequencies and the force constant κ

are related by

κ

m
= ν2 − ω2. (4.41)

We can rewrite equation (4.40) as

−ih̄κ
∂

∂κ
ln F (T ) = ih̄

κT

2mν

(
cot

ν

2
T − 2

νT

)
. (4.42)

According to equation (4.42), we can carry out the prefactor by introducing the

expression

∂ν

∂κ
=

1

2mν
,

and substitute into equation (4.42), to obtain

∂

∂ν
ln F (T ) = 2

(
1

ν
− 1

2
T cot

ν

2
T

)
. (4.43)

Integrating both sides of equation (4.43), we obtain the prefactor for the particle

in random potential,

F (T ) = C(t)

(
ν

sin ν
2
T

)2

. (4.44)
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Comparing equation (4.44) with a prefactor for a free particle (κ = 0, ν = ω), we

have

m

2πih̄T
= C(t)

(
ω

sin ω
2
T

)2

. (4.45)

Finally, the full prefactor can be written as

F (T, ω, ν) =
m

2πih̄T

(
ν sin ω

2
T

ω sin ν
2
T

)2

. (4.46)

4.1.3 Two-dimensional propagators

The analytic two-dimensional propagator in x-direction electric and mag-

netic fields with a two-parameter nonlocal harmonic potential is

K(xT , yT , T ; x0, y0, 0) =
m

2πih̄T

(
ν sin ω

2
T

ω sin ν
2
T

)2

· exp
i

h̄

{
S0

cl,x,y − Ω2[A(T ) + B(T )] + Ω
4µ−m

2m
xT yT + Ω

4µ + m

2m
x0y0

−Ω((
µ2

m2ν
+

µ2

m2
)(xT + x0)(yT + y0))

−2Ω
∫ T

0
dteEx(t)(yT G1(t) + y0G2(t))

−2yT Ω
∫ T

0
dteEx(t)(

µ sin ν(T − t)

m2ν
+

µ(T − t)

mM
)

+xT

∫ T

0
dtEx(t)(

µ

m
[
sin νt

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

] +
µt

MT
)

+x0

∫ T

0
dtEx(t)(

µ

m
[
sin ν(T − t)

sin νT
− sin ν

2
(T − t) sin ν

2
t

cos ν
2
T

] +
µ(T − t)

MT
)

−e2
∫ T

0

∫ T

0
dtdsEx(t)Ex(s)(

µ2

m2
[
sin ν(T − t) sin νs

ν sin νT

−4 sin ν
2
(T − t) sin ν

2
t sin ν

2
(T − s) sin ν

2
s

ν sin νT
] +

µ(T − t)s

MT
)

}
. (4.47)
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4.2 The Propagator in Limiting Cases

The main quantity of the calculation in this chapter is the two-dimensional

propagator of an electron in the transverse magnetic field and the x-direction

electric field with a two-parameter nonlocal harmonic potential energy. In this

section, we consider the propagator in the limiting cases.

Absence of Magnetic Field

In this case, the transverse magnetic field approaches zero. We consider

the system of interest corresponding to ω → 0 or equivalently M →∞. We first

consider the prefactor in equation (4.47). In the case

lim
ω→0

F (T ) = lim
ω→0

m

2πih̄T

(
ν sin ω

2
T

ω sin ν
2
T

)2

.

According to equation (4.41), if the force constant (κ) approaches to zero then

the relative harmonic frequency (ν) is equal to the harmonic frequency (ω). Thus,

the prefactor is

F (T ) =
m

2πih̄T

(
ωT

2 sin ω
2
T

)2

. (4.48)

We consider in the limit M →∞, the classical path becomes

Sf
cl =

(
mω

4
cot

ω

2
T

)
|(xT − x0)

2 + (yT − y0)
2|

+xT

∫ T

0
dteEx(t)

(
sin ωt− 2 sin ω

2
T sin ω

2
(T − t) sin ω

2
t

sin ωT

)

+x0

∫ T

0
dteEx(t)

(
sin ωt− 2 sin ω

2
T sin ω

2
(T − t) sin ω

2
t

sin ωT

)

−e2
∫ T

0

∫ T

0
dtdsEx(t)Ex(s)(

sin ω(T − t) sin ωs

ω sin ωT
.
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−4 sin ω
2
(T − t) sin ω

2
t sin ω

2
(T − s) sin ω

2
s

ω sin ωT
). (4.49)

Recalling that the Feynman propagator expression,

K(xT , yT , T ; x0, y0, 0) = F (T ) exp
(

i

h̄
Scl

)
,

it is the exact propagator of an electron moving in two dimensions under the

x-direction electric field and a one-parameter nonlocal harmonic potential [8].

Absence of Electric Field

If the electric field ~Ex(t) → 0, then the propagator reduces to

K(xT , yT , T ; x0, y0, 0) =
m

2πih̄T

(
ωT

2 sin ω
2
T

)2

exp
i

h̄

(
mω

4
cot

ω

2
T |(xT − x0)

2 + (yT − y0)
2|

)
. (4.50)

This expression is the two-dimensional propagator of an electron in a one-parameter

nonlocal harmonic potential energy.

Absence of Nonlocal Field

When the nonlocal harmonic potential goes to zero, the system of in-

terest corresponds to the case when a relative harmonic frequency ν → 0. The

propagator reduces to the simple form of

K(xT , yT , T ; x0, y0, 0) = (
m

2πih̄T
) exp

i

h̄

(
m∗

2T
|(xT − x0)

2 + (yT − y0)
2|

)
,

(4.51)

where m∗ = mµ/M is defined as the effective mass. This is a free particle

propagator.
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4.3 Summary

The exact propagator for an electron moving in a two-dimensional system

under the influence of a magnetic field and an electric field with a one-parameter

nonlocal harmonic potential was calculated by Samathiyakanit [8] and Sa-yakanit

et al. [40].

In this work, we generalize the model of random potential by introduc-

ing the nonlocal harmonic random potential with two parameters. The exact

two-dimensional propagator in the transverse magnetic field and the x-direction

electric field with a two-parameter nonlocal harmonic random potential cannot

be evaluated exactly. Because the equation of motion is a set of coupled integro-

differential equations due to the symmetric gauge, it cannot be solved exactly by

the above methods.

However, we apply the first-order cumulant approximation to calculate

the problem. The cumulant approximation is

〈exp[X]〉 = exp
{
〈X〉+

1

2
(〈X2〉 − 〈X〉2) + ...

}
.

If we keep only the first-order term, then the first-order cumulant approxima-

tion becomes 〈eX〉 ∼ e〈X〉. Therefore, the first-order cumulant approximation

neglects the quantum fluctuation around the mean value. The propagator can

be calculated by separating the Lagrangian into the x- and y-components. The

x-component propagator can be calculated exactly using the two-particle sys-

tem method but the y-component propagator cannot be evaluated exactly. We

use the first-order cumulant approximation to approximate the classical action

of the y-component and we calculate 〈y(t)〉S0 and 〈y(t)y(s)〉S0 by using the gen-

erating functional method [22]. Therefore, the propagator is a product of the
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x-component and y-component propagators; nevertheless, the expression is more

complicated.

Finally, we consider the two-dimensional propagator in the limiting cases.

For the case of the absence of the magnetic field, the propagator of a two-

parameter random potential reduces to a close form of the one-parameter random

potential that can be calculated by Samathiyakanit [8]. The two-parameter result

becomes more general than the one-parameter result; moreover, it can be reduced

to the one-parameter result by taking the limit M →∞. In the cases of absence

of the electric field and the nonlocal harmonic potential, the propagator can be

reduced to the nonlocal harmonic propagator and the free particle propagator,

respectively.



Chapter 5

Density of States

In this chapter we will calculate the density of states in a random sys-

tem. The variational path integral method can be used for calculating the ap-

proximated density of states. In the next section, a comparison between two-

dimensional density of states (2D DOS) from the path integral and the result of

white noise limit is discussed. The result using the two-parameter trial action

will be compared with the one-parameter.

5.1 Introduction

The problem of an electron in a disordered system at a high density

limit (HDL) has been interested by physicists for five decades. The important

example is heavily doped semiconductors, as impurity ions have very high density.

Kane [27] has applied the semiclassical or Thomas-Fermi type approximation to

calculate DOS in the high energy limit. In the semiclassical approximation(SA),

the potential fluctuation caused by charged impurities are assumed to be smooth

[28]. The electron only feels the potential of the point where it locates. In the low

energy limit, Halperin and Lax [29] introduced the potential fluctuation caused

by the quantum effects. In the regions of deep narrow potential wells the electrons

will be highly localized. This is the band tail of DOS. However, Sa-yakanit [5],

and Sa-yakanit and Glyde [6] has introduced the Feynman path-integral method

to calculated the DOS in the cases, i.e., the Gaussian random potential and the

screened Coulomb potential. His resulting density of states is valid at all energy
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limits. In the low energy limit it can be expressed in an analytic form which is

the same as proposed by Halperin and Lax [29] and in the high energies limit it

is analogous to the semiclassical Kane’s result [27].

In this work we consider an electron confined in two-dimensional disorder

systems. The impurity in the system produces the random potential interact-

ing with an electron. The aim of the present work is to analyze the fluctuation

potentials which can be expressed in the Gaussian correlation function. The two-

dimensional density of states (2D DOS) has been treated within the variational

Feynman path integral with a two-parameter nonlocal harmonic trial action. In

high energy limit, the 2D DOS has been expressed in an analytic form by letting

t→ 0, which is the assumption of the semiclassical approximation. In the asymp-

totic approximation, the analytic 2D DOS reduces to a free electron DOS and

the Gaussian band tail, which agrees with Kane’s result. In the case of the low

energy limit, the 2D DOS is expressed in the analytic form with the dimensionless

functions of the preexponential factor a(υ, ρ) and the exponential b(υ, ρ), respec-

tively that the expression of 2D DOS is analogous with the result of Halperin and

Lax in low energies.

5.2 Density of States for a Random System

The density of states N(E) is the total number of energy eigenstates in

the interval [E,E + dE] and can be represented as

n(E) =
1

V

∞∑

n=1

δ(E − En), (5.1)

when En is the energy of the nth eigenstate, V is the volume of the system. If the

system is disordered, we must average equation (2.41) over the statistical ensemble
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for the random potential. It is convenient to consider the density of states in

the form of equation (2.41). In order to apply the path integral formulation to

equation (2.41), one converts equation (5.1) into

n(E) =
1

2πh̄

∫
∞

−∞

TrK(x
′′

, T ;x
′

, 0) exp[
i

h̄
Et]dt (5.2)

where the operator Tr denotes the trace of propagator K. The propagator is a

retarded propagator describing the propagation of an electron from point x
′′

to

point x
′

. If the propagator K is invariant under translation of x, then

K(x
′′

, T ;x
′

, 0) = K(x
′′

− x
′

;T, 0). (5.3)

To find the density of states, the end point and initial point must be the same.

Therefore,

n(E) =
1

2πh̄

∫
∞

−∞

K(0, 0;T, 0) exp[
i

h̄
Et]dt. (5.4)

5.2.1 The Approximate Propagator

The two-dimensional random system in the Edward-Gulayev’s model is

considered in the limit of a set of N rigid scatterers confined randomly within

a volume V in a surface space. The density, n, of the scatterer is high but

the potential between an electron and a scatterer, v(~r(t) − ~R), is weak. The

system can be viewed as an electron moving in the average scattering potential

by expressing the autocorrelation function, the action of this system is

S[~r(t)] =
∫ T

0
dt

[

m

2
~̇r
2
(t)− E0 +

inη2

2h̄

∫ T

0
dsW (~r(t)− ~r(s))

]

, (5.5)
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where ~r(t) are two dimension coordinates. The E0 is the average potential energy,

which is defined as E0 = 〈v(~r)〉, and the parameter η represents the weakness

of the scattering potential and it is explicitly written to indicate the dimensions

involved. For the case of interest, the scatterers random distribution can be

described by the Gaussian distribution. An electron moving in weak and dense

receptors is equivalent to moving in the Gaussian potential. The autocorrelation

[30] has the form

W (~r(t)− ~r(s)) = u2(πL2)−1 exp

(

−
|~r(t)− ~r(s)|2

L2

)

(5.6)

where L is the Gaussian correlation length of the random system and u is another

parameter which takes care the dimensionality of the system.

In general, a lot of path integrals cannot be integrated out and our prob-

lem is one of these cases. The most widely used methods in path integral formal-

ism is a variational method. The concept of this method is that the appropriate

trial action with parameter can be obtained with high accuracy. There are two

basic idea that indicate whether the chosen trial action is suitable or not. First,

this action should be carried out easily and exactly. Second, the physical mean-

ing of the of the real system and the trial action must be likely. Therefore, we

use the variational method which we can adjust appropriate trial action. In this

investigation, we follow the method given by Samathiyakanit [8]. He introduced

a two-parameter nonlocal harmonic trial action with ω and κ, which is

S0(κ, ω) =
∫ T

0
dt
m

2
~̇r
2
(t)−

κω

8

∫ T

0

∫ T

0
dtds(~r(t)− ~r(s))2

cosω(T
2
− |t− s|)

sin ω
2
T

, (5.7)

where κ, ω are the the forced constant and harmonic frequency respectively. This

trial action is the action of a two-particles model system. The idea of this model is
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that a set of scatterers is dense and can be approximated by one-particle oscillator

with frequency, ω, at the same time its coupling with a free electron by forced

constant, κ. The average propagator is written as

K1(~rT , ~r0;T ) = K0(~r0, ~r0;T )
〈

exp
[
i

h̄
(S − S0(κ, ω))

]〉

S0(κ,ω)
(5.8)

where a non-local harmonic oscillator has

K0(~r0, ~r0;T ) =
∫

D[~r(t)] exp
i

h̄
S0[~r(t)],

and the average 〈.〉S0(κ,ω) is defined in equation (4.21). Consequently, we approx-

imate the equation (5.8) by using the first-order cumulant expansion [24]. The

average propagator can be rewritten as

K1(~rT , ~r0;T ) = K0(~r0, ~r0;T ) exp
[
i

h̄
(〈S〉S0(κ,ω) − 〈S0〉S0(κ,ω))

]

, (5.9)

where the index 1 denotes the first-order cumulant approximation. To evaluate

K1(~rT , ~r0;T ), we have to find K0(~r0, ~r0;T ), 〈S〉S0(κ,ω) and 〈S0〉S0(κ,ω) since the

kinetic term is always cancelled out from the average. The K0(~r0, ~r0;T ) can be

carried out in previous chapter by taking translation invariant

K0(~r0, ~r0;T ) = F (ν, ω, T ) exp[
i

h̄
S0,Cl(~rT − ~r0, T )]

=
1

2πih̄T

(

ν sin 1
2
ωT

ω sin 1
2
νT

)2

. (5.10)

The average 〈S〉S0(κ,ω) can be evaluated by making a Fourier transform of au-

tocorrelation function W (~r(t) − ~r(s)) and the expression (5.10) can be used to

evaluate 〈S0〉S0(κ,ω). Thus we can write

〈S〉S0(κ,ω) = −E0T +
inη2

2h̄

∫ T

0

∫ T

0
dtds〈W (~r(t)− ~r(s))〉S0(κ,ω) (5.11)
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where W (~r(t)− ~r(s)) is given by equation (5.6) for the Gaussian potential. This

average is difficult to carry out the average of the Gaussian potential. We have

better use its Fourier transform in the two dimensional system,

W (~r(t)− ~r(s)) =
∫ d~k

(2π)2
W (~k) exp[i~k · (~r(t)− ~r(s))] (5.12)

where

W (~k) = u2 exp

[

−
L2

4
~k2
]

. (5.13)

We can rewrite the average 〈S〉S0(κ,ω) by taking the Fourier transform of the

autocorrelation function as

〈S〉S0(κ,ω) =
inη2u2

2h̄

∫ T

0

∫ T

0
dtds

∫ d~k

(2π)2
exp

{

−A~k2 + i ~B · ~k
}

(5.14)

where the defined parameters are

A = {
L2

4
+

1

2
[
1

2
〈(~r(t)− ~r(s))2〉S0(κ,ω) − 〈r(t)− r(s)〉2S0(κ,ω)

]}

~B = 〈~r(t)− ~r(s)〉S0(κ,ω). (5.15)

For the Gaussian case, we apply the Gaussian integration formula for equation

(5.14) and for each cartesian coordinate of ~k-integration. The we obtain

〈S〉S0(κ,ω) = −E0T +
inη2

8πh̄

∫ T

0

∫ T

0
dtdsA−1 exp



−
~B2

4A



 , (5.16)

where the parameters in an above equation can be solved explicitly in [8], by

using

A = {
L2

4
+ ih̄

µ

m2ν
(
sin ν(T − |t− s|)/2 sin ν(t− s)/2

sin νT/2
+

(T − (t− s))(t− s)

2MT
)}
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~B = {
µ sin ν(t− s)/2 cos ν(T − |t− s|)/2

m sin νT/2
+
µ(t− s)

MT
}(~rT − ~r0). (5.17)

Next, we evaluate 〈S0〉S0(κ,ω) by employing the identity in equation (4.51)

and setting ω equal to a constant

i

h̄
〈S0〉S0(κ,ω) = κ

δ lnK0

δκ
|ω=constant, (5.18)

where

K0 = F (T ) exp
[
µν

4
cot

ν

2
T +

mµ

2MT

]

(~rT − ~r0)
2, (5.19)

and

F (T ) =
m

2πih̄T

(

ν sin ω
2
T

ω sin ν
2
T

)2

. (5.20)

Using equations (5.19),(5.20) and carrying out the differentiation in equation

(5.18), we obtain

i

h̄
〈S0〉S0(κ,ω) =

i

h̄

µ2

2m

{
νT

2
(1 +

2m

M
) cot

ν

2
T − (

1

2
νT csc

ν

2
T )2 −

2m

M

}

·
(~rT − ~r0)

2

2T

−
µ

m

(
νT

2
cot

ν

2
T − 1

)

. (5.21)

5.2.2 The Approximation of the Density of States

The approximated density of states for a random system can be calculated

by following the same procedure in equation (5.5) and substituting equations

(5.16), (5.17) and (5.21) into the average propagator K1(rT , r0;T ) in equation

(5.9). Next, we take the trace of the average propagator which is we set ~rT = ~r0

and substitute in the expression of the density of states, we get

N1(E) =
1

2πh̄

∫
∞

−∞

dT
(

m

2πih̄T

)(

ν sin ω
2
T

ω sin ν
2
T

)2
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exp
{
i

h̄
(E − E0)T +

µ

m

(
νT

2
cot

ν

2
T − 1

)

−
ξ
′

L

2h̄2

∫ T

0

∫ T

0
dtds{

L2

4
+ ih̄

µ

m
(
sin ν(t− s)/2 sin ν(T − |t− s|)/2

mν sin νT/2

+
(T − |t− s|)(t− s)

2MT
)}−1

}

, (5.22)

where ξ
′

L = nu2η2. Note that the periodic function, J , has the property

J(|t− s|) = J(T − |t− s|),

the double-time integration can be reduced to a single integration [31], change

integral by set x = t− s and obtain

∫ T

0

∫ T

0
dtds[J(T − |t− s|) + c]−1 = T

∫ T

0
dx[J(x) + c]−1. (5.23)

If, we define the variable

ρ =
√

m/(m+M), (5.24)

then we have the relation ω = νρ and µ/m = 1− ρ2. The variational parameters

(ω, κ) can be converted by the new variational parameters that are the relative

harmonic frequency ν and a parameter ρ, respectively. The density of states can

be rewritten as

N1(E) =
1

2πh̄

∫
∞

−∞

dT
(

m

2πih̄T

)(

sin 1
2
ρνT

ρ sin ν
2
T

)2

exp
{
i

h̄
(E − E0)T

+(1− ρ2)
(
νT

2
cot

ν

2
T − 1

)

−
ξ
′

L

2h̄2
T
∫ T

0
dxJ(x, ρ)−1

}

,

(5.25)
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where

J(x, ρ) =

{

L2

4
+ ih̄(1− ρ2)(

sin νx/2 sin ν(T − x)/2

mν sin νT/2
) +

ih̄ρ2

2m

(T − x)x

T

}

. (5.26)

However, the obtained density of states is still too complicated and cannot be

calculated exactly. Therefore, we consider it in the asymptotic approximation for

the low energy and high energy limits. At large negative energies deep in the band

tail (E → −∞), it is the so-called “quantum case” or “full-ground-state”. The

other limiting case (E → ∞) corresponds to a “classical well”. Therefore, two

analytic expressions for the two-dimensional density of states can be obtained

from the above expression and they are called the low energy limit and high

energy limits.

Low Energy Limit

In the low energy band tail, the density of states is the contribution of

the ground state energy. Thus we let T → ∞ [6] and suppose that ρ is large.

Hence, we are able to approximate [32],

sin νx/2 sin ν(T − x)/2

sin νT/2
≈

1

2i
,

sin ρνT/2 ≈
1

2
ρνT,

sin νT/2 ≈
1

2i
eiνT/2,

(
νT

2
cot νT/2− 1

)

≈
iνT

2
. (5.27)

Since, we substitute equation (5.27) into equation (5.25) and integrate by keeping

only the term up to T 2, then the density of states becomes
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N1L(E) =
1

2πh̄

(
m

2πh̄

)

ν2
∫
∞

−∞

dT (iT ) exp
{
i

h̄

(

(E − E0)− Eν +
1

2
Eν(1− ρ2)

)

T

−
T 2

2h̄2
ξL

(

1 + 4
EL

Eν

(1− ρ2)
)−1

}

, (5.28)

where Eν = h̄ν, EL = h̄2/2mL2 is the energy associated with localizing an

electron within the correlation length and the fluctuation energy ξL = 4ξ
′

L/L
2 is

the dimension of the energy squared. Using the formula [33] and the parabolic

cylinder function, Dp(z), we get

∫
∞

−∞

dt(it)p exp(−β2t2 − iqt) =

√
π

2p/2βp+1
exp(

−q2

8β2
)Dp(

q

β
√
2
). (5.29)

Therefore, the density of states can be written in an analytic form as

N1L(E) =
m

(2πh̄)2

√
πE2

ν√
2h̄

[

ξL

2h̄2
(1 + 4

EL

Eν

(1− ρ2))−1
]
−1

× exp



−
(E − E0 − Eν +

1
2
Eν(1− ρ2))2

4ξL(1 + 4EL

Eν
(1− ρ2))−1





×D1



−
E − E0 − Eν +

1
2
Eν(1− ρ2)

√
ξL(1 + 4EL

Eν
(1− ρ2))−1/2



 . (5.30)

Let define the energy dimensionless parameters υ = (E0 − E)/EL, x = Eν/EL

and x
′

= Eν(1 − ρ2)/EL. Now we are interested in the density of states in the

deep band tail. This can be achieved by letting E → −∞(q →∞) and using the

asymptotic expansion of the parabolic cylinder function [33],

Dp(x) = e−x2/4xp

(

1−
p(p− 1)

2x2
+ ...

)

. (5.31)

For large argument values, D1(x) ∼ xe−x2/4, we obtain the asymptotic expression

with dimensionless parameter for the low energy density of states as



56

N1L(E) =
(EL/L

2)2

ξ
3/2
L

a(υ, x, x
′

) exp

(

−b(υ, x, x
′

)E2
L

2ξL

)

, (5.32)

where the dimensionless parameters are

a(υ, x, x
′) =

1

25/2π3/2
x2(υ + x−

1

2
x
′

)(1 +
4

x′
)3/2 (5.33)

b(υ, x, x
′

) = (υ + x−
1

2
x
′

)2(1 +
4

x′
). (5.34)

The 2D DOS in the low energy limit is analogous with that proposed by Halperin

and Lax [29]. This DOS is proportional to the dimensionless parameters a(υ, x, x
′

)

and b(υ, x, x
′

), respectively.

High Energy Limit

In high energy limit case, it is necessary to take the limit T → 0 [6] or

equivalently ρ → 0, which we can neglect the ρ2 term. Thus we are able to

approximate

sin νx/2 sin ν(T − x)/2

sin νT/2
≈ 0,

(

sin ρνT/2

ρ sin νT/2

)2

≈ 1,

(
νT

2
cot νT/2− 1

)

≈ 0. (5.35)

Inserting equation (5.35) into equation (5.25), we obtain

N1H(E) =
1

2πh̄

(
m

2πh̄

) ∫
∞

−∞

dT (iT )−1 exp

{

−
i

h̄
(E0 − E)T −

T 2

2h̄2
ξL

}

. (5.36)
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By using the parabolic cylinder function and the condition of the low energy

limit, the density of states in high energy limit becomes

N1H(E) =
2m

(2π)3/2h̄2
e−(E0−E)2/4ξLD−1

(

(E0 − E)
√
ξL

)

. (5.37)

This is analogous with the semiclassical Kane’s result [27] for the two dimensional

density of states. Using the asymptotic expansion of parabolic cylinder function

for a large negative argument [34], D−1(x) ∼
√

π/2 · ex
2/4[1 + erf(x)], we get

the following expression for the two dimensional free electron density of states in

terms of the error function

N1H(E) =
m

2πh̄2

(

1 + erf

(

E − E0√
ξL

))

. (5.38)

This equation for the density of states is analogous to Van Mieghem’s result [34].

Let us consider two limiting cases for positive and negative E0−E. From

the analytic expression in equation (5.37) using the asymptotic representation of

the parabolic cylinder function for E ¿ E0 [35], D−1(x) ∼ e−x2/4/x for |x| ¿ −1

and we take the error function in equation (5.38) for E À E0 [35], we obtain the

asymptotic density of states

N1H(E) =







m

π3/2h̄2

√
ξ

√
2(E0 − E)

e−(E0−E)2/2ξL : (E − E0)¿ −1

m

πh̄2
: (E − E0)À 1

. (5.39)

The first of these expressions is the band tail result of Kane for a two dimensional

problem and the second is well known free electron band valid for a positive

(E − E0).

We also plot the normalized analytic DOS and the free electron DOS on

the same plot as shown in Figure 5.1. The tail shows localized states of electrons.
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Heavily doped semiconductors have impurity localized energy levels in the band

gap. At high densities, these localized energy levels interact and form a band, this

impurity band merges with the conduction and the valence band. The impurity

band is a band tail of the system. The asymptotic density of states for the two

limits, the plots are shown in Figure 5.2. These curves represent the normalized

analytic DOS and the normalized asymptotic DOS.
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Figure 5.1: The normalized analytic DOS in equation (5.37) (dash line) with a
normalized free electron gas DOS (solid line).

5.3 Comparison of Results

In this section, the results of 2D DOS in the previous section are compared

with the results calculated by Sa-yakanit and Slavcheva [36], and Sa-yakanit et al.

[37] and the result of tight-binding simulation in the white noise limit [38]. The

white noise limit, the correlation length (L) of the Gaussian random potential

approaches zero, that is a delta function potential.
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Figure 5.2: Plot of the normalized analytic DOS (solid line) and the normalized
asymptotic DOS (dash line).

5.3.1 Comparison 2D DOS Between 1P with 2P Varia-

tional Path Integrals

The DOS in equation (5.32) has been calculated by the variational path

integral with the the two variational parameters (2P) that are ν, ρ, respectively.

In order to account for the variational parameters that introduced to min-

imize the argument of the exponential in DOS or equivalently to maximize DOS

[39]. First, we choose ν which maximizes DOS, by differentiating dimensionless

b(υ, x, x
′

) with respect to x and letting it equal to zero [29]. The variable x is the

ratio of the energy associating with the harmonic oscillator and the correlation

energy. The Gaussian case, the best choice of x is kept only the positive roots

that is satisfy the equation

x2 −
4υ

(1 + ρ2)2
+

4υρ4

(1 + ρ2)2
+

2x(1− ρ4)

1 + ρ2
= 0. (5.40)

In the white noise limit, L → 0. This implies that x = 2mL2ν/h̄ is vanishingly
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small. Neglecting x2 corresponds to neglecting the fluctuation in W (~r) within its

correlation length L, then we can write

x =
2υ

1 + ρ2
, (5.41)

and we introduce the dimensionless fluctuation energy as

ξ
′

=
ξL
E2

L

. (5.42)

We substitute equations (5.41), (5.42) into equation (5.32) and normalize it with

respect to the 2D free electron DOS. At the same time we apply the dimensionless

expression in equations (5.33) and (5.34), then the normalized 2D-DOS can be

written as

N2P
1L (υ)

N0

=

(

2π

ξ′3/2

)

a(υ, ρ)e−b(υ,ρ)/2ξ
′

, (5.43)

where

a(υ, ρ) =
1

25/2π3/2

(2υ)3

(1 + ρ2)2

(

1 +
4(1 + ρ2)

2υ(1− ρ2)

)3/2

, (5.44)

b(υ, ρ) = (2υ)2
(

1 +
4(1 + ρ2)

2υ(1− ρ2)

)

. (5.45)

For the 2D-DOS with dimensionless parameter in the band tail has been

calculated by Sa-yakanit and Slavcheva [36], using the variational path integral

method with the one-parameter trial action. The normalized 2D-DOS in the

white noise limit is

N1P
1L (υ)

N0

=

(

2π

ξ′3/2

)

a(υ)e−b(υ)/2ξ
′

, (5.46)
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where

a(υ) =
1

25/2π3/2
(2υ)3(1 +

4

2υ
)3/2, (5.47)

b(υ) = (2υ)2(1 +
4

2υ
). (5.48)

In fact, the parameter ρ is proportional to the mass M . According to equation

(5.24), if M → ∞ then the parameter ρ2 → 0. Therefore, the normalized 2D

DOS in equation (5.43) reduces to the normalized 2D DOS of the one-parameter

variational in equation (5.46) in the limit of ρ2 = 0.

5.3.2 Comparison Path Integral Results in the White Noise

Limit

The density of states of an electron in the white noise potential in two

dimensions has been calculated by Thouless and Elzain [38]. The 2D-DOS in the

white noise limit has been calculated by the coherent potential approximation

(CPA) at high energies, it has also been calculated from the fluctuation theory

in low-energy band tails. The result of a tight-binding (T-B) two-dimensional

simulation with respect to the white noise problem in low energies is compared

with the CPA in Figure 5.3. In addition, the tight-binding normalized 2D DOS

for negative E−E0 is the straight line, which fits well with the simple exponential

nT−B(E)

N0

≈ 0.17 exp

[

4π(0.931)(E − E0)

Q

]

(5.49)

where Q is energy scale of the white noise.
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Figure 5.3 Normalized density of states n(E)on logarithm as a function of energy

E. Their calculation results are shown with error bars. The curve gives the CPA

density of states and the straight line the exponential tail of the tight-binding

simulation.

This DOS is, however, independent of the dimensionless energy υ. We

define Q proportional to the variance,W 2 = ξ
′

, and the potential energy, V = EL.

Therefore, we can define a new dimensionless energy η as

η =
4π(E − E0)

Q
=

4π(E − E0)

ELξ
′ . (5.50)

Thus, the dimensionless energy can be rewritten in terms of the new parameter

η as

υ =
ηξ

′

4π
. (5.51)

Therefore, the normalized 2D DOS in a Gaussian white noise limit can be written

in terms of a new dimensionless energy as
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nT−B(η)

N0

≈ (0.17) exp (0.931η) . (5.52)

Referring to equations (5.43) and (4.46) in the white noise limit, they imply that x

is very small and the dimensionless energy υ ¿ 1. We can express the normalized

2D DOS in terms of a new parameter η as

N1P
1L (η)

N0

=
23η

π3/2ξ′1/2
exp

(

−
η

4π

)

, (5.53)

and

N2P
1L (η)

N0

=
23η

π3/2ξ′1/2(1 + ρ2)2
exp

(

−
η(1 + ρ2)

4π(1− ρ2)

)

, (5.54)

where superscripts 1P and 2P are the case of the one- and two parameter trial

actions, respectively.

We plot the two cases of the variational path integral results for the nor-

malized 2D DOS on the same plot with the result of the tight-binding simulation

[38] in the white noise limit as shown in Figure 5.4. From the work of Sa-yakanit

and Glyde [6], the magnitude of the energy fluctuation ξ
′

is about 5 in n-GaAs.

As it can be seen in the Figure 5.4 that the results from the two variational pa-

rameters of the path integral in the white noise limit with setting the variational

parameter ρ2 = 0.15 is closed to the tight-binding simulation point than that

from the one-parameter variational path integral.
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Figure 5.4 The normalizes 2D DOS on logarithm with a dimensionless energy η in
the white noise limit for the fluctuation energy dimensionless of n-GaAs (ξ

′

= 5)
[6] : (T-B : the tight-binding energy simulation result), (1P : the one-parameter
variation result), (2P, ρ2 = 0.15 : The two-parameter variation result).



Chapter 6

Discussions and Conclusions

We shall begin with the summary of the main results obtained in this

work. Discussions and comparison will then be considered intensively. The main

point: we generalize the model of random potential by introducing the the two-

parameter nonlocal harmonic random potential instead of the one-parameter non-

local harmonic random potential.

The exact propagator for an electron moving in a two-dimensional system

under the influence of a magnetic field and an electric field with a one-parameter

nonlocal harmonic potential was calculated by Sa-yakanit et al. [40]. The actual

problem is transformed into an electron moving in a magnetic field under the

external electric field and the nonlocal harmonic force by using Stratonovich’s

transformation [42]. Nevertheless, the transformed problem is a set of coupled

differential equations due to the symmetric gauge. Using the 2×2 matrices intro-

ducing by Papadopoulos and Jones [41], the set of coupled differential equation

reduces to the matrix equation, without a coupled equation. After completing

the routine evaluation, we obtain the exact propagator.

Firstly, we calculate the exact two-dimensional propagator of an electron

in the transverse magnetic field and the x-direction electric field with a two-

parameter nonlocal harmonic random potential. The problem cannot be solved

exactly by the Stratonovich’s transformation and the 2x2 matrices methods be-

cause the equation of motion is a set of coupled integro-difference equations.

However, we apply the two-particle system method [8] and the first-order cumu-

lant approximation [24] to carry out. The first-order cumulant approximation
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is

〈eX〉 ∼ e〈X〉.

The high-order terms are neglected. This mean that the quantum fluctuations

around the mean value have been neglected. Thus we separate the Lagrangian

into the x- and y-components. The x-component propagator can be calculated

exactly using the method of a two-body problem but the y-component propaga-

tor cannot be evaluated exactly. We use the first-order cumulant approximation

to approximate the classical action of the y-component and we calculate 〈y(t)〉S0

and 〈y(t)y(s)〉S0 by using the generating functional method [25]. Therefore, the

propagator is a product of the x-component and y-component propagators; never-

theless, the expression is more complicated. In the case of absence the transverse

magnetic field, the propagator of a two-parameter random potential reduces to a

close form of the one-parameter random potential [8] in the limit M →∞.

Secondly, the density of states for a system with the Gaussian random

potential is calculated by using the two-parameter variational method via path

integrals or so-called the two-parameter theory. The approximation is based on

the first-order cumulant approximation. The density of states can be considered

in the two energy limits, which are the high-energy and the low-energy limits. At

the high-energy limit, the two-dimensional density of states (2D DOS) is obtained

by letting the time variable T → 0. The density of states is independent on

the number of variational parameters. Therefore, the 2D DOS agrees exactly

with those of the one variational parameter for Sa-yakanit and Slavcheva [36];

furthermore, it is similar to the semiclassical Kane result also. However, the

density of states is proportional to the magnitude of fluctuation potential energy
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(ξL). The influence of a fluctuation potential energy is to localized electrons at

an electron energy E < E0 as shown in Figure 6.1. The probability of finding

localized electron states increases as the fluctuation potential energy increases.
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Fig.6.1 Plot of the normalized analytic DOS in a difference limits of the fluctuation

potential energy ξL(eV )2 : (Solid line : ξL = 1), (Long dash line : ξL = 1.1),

(Medium dash line : ξL = 1.5), (Short dash line : ξL = 100).

The low-energy limit can be reduced to the analytic density of states by tak-

ing T → ∞. This means that only in the ground states will be retained in

DOS. The asymptotic DOS (E → −∞) is proportional to the dimensionless

parameters a(υ, x, x
′
) and b(υ, x, x

′
) given by equations (5.33) and (5.34), and

clearly dependent on the parameters υ, x and ρ, where x
′

has been defined by

x
′
= Eν(1 − ρ2)/EL. At the low energy limit or the full-ground state, 2D DOS

from the two-parameter theory reduces to the one-parameter theory by letting

ρ2 = 0 or equivalent setting x = x
′
.

Moreover, at the white noise limit the density of states in equation (5.54)

is dependent on the parameter (ρ). The normalized DOS of two-parameter theory
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is closer to the tight-banding simulation point than that from the one-parameter

theory as shown in Figure 5.4. We see that the two-parameter theory is more ad-

vantageous than the one-parameter theory. Because, we can vary the variational

parameters (x, ρ) to close the simulation result than the a one-parameter case.

However, the two-parameter result can be reduced to the one-parameter result

by letting ρ2 = 0.

Finally, the result from the two-parameter theory becomes more gen-

eral and covers the one-parameter condition. We may conclude that the two-

parameter theory has improvement and advantages over the one-parameter the-

ory.
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Appendix

The Two-parameter Action

The Lagrangian of system

L =
1

2
[mẊ2(t) + MẎ 2(t)− κ(X(t)− Y (t))2]. (A.1)

and the propagator as

K(X2Y2, X1Y1; T ) = 〈X2Y2; T |X1Y1; 0〉

= N
∫

D[X(t)]D[Y (t)] exp
i

h̄

{∫ T

0
dt

1

2
[mẊ2(t)− κX2(t)]

+
∫ T

0
dt

1

2
[MẎ 2(t)− κY 2(t) + 2X(t)Y (t)]

}
, (A.2)

where N is a normalization constant determined so that for κ = 0

N = (
m

2πih̄t
)3/2(

M

2πih̄t
)3/2. (A.3)

We shall therefore carrying out the path integral for the second particle, by

using harmonic forced oscillator, Eq. (A.2) becomes

K(X2Y2, X1Y1; T ) = (
m

2πih̄t
)3/2(

M

2πih̄t
)3/2

·
∫

D[X(t)] exp
i

h̄

{∫ T

0
dt

1

2
[mẊ2(t)− κX2(t)] · exp(Scl[Y (t)])

}
,

(A.4)

where ω =
√

κ/M and

Scl(Y (t)) =
Mω

2 sin ωt
[(Y 2

2 + Y 2
1 ) cos ωt− 2Y2 · Y1 +

2κY2

Mω

∫ T

0
dtX(t) sin ωt
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+
2κY1

Mω

∫ T

0
dtX(t) sin ω(T−t)− 2κ2

M2ω2

∫ T

0

∫ t

0
dtdsX(t)·X(s) sin ω(T−t) sin ωs].

As mentioned above,we shall not be interested in the second particle. One

can carry out the path integral for the second particle, thus setting Y2 = Y1

and defining the propagator for a single particle

K(X2, X1; T ) =
∫

δ(Y2 − Y1)K(X2Y2, X1Y1; T )dY2

= (
mMω

(2πih̄t)(2πih̄ sin ωt)
)3/2

∫
D[X(t)] exp

i

h̄

{∫ T

0
dt

1

2
[mẊ2(t)− κX2(t)]

×
∫

dY2 exp
i

h̄

[
−Mω tan

ω

2
T · Y 2

2 + κ
∫ T

0
dtX(t)(

sin ωt + sin ω(T − t)

sin ωT
) · Y2

]

× exp
i

h̄

[
− κ2

Mω

∫ T

0

∫ t

0
dtdsX(t) ·X(s)

sin ω(T − t) sin ωs

sin ωT

]}
. (A.5)

Now we are ready to carry out of second term in Y2 integral, using the

Gaussian formula

∫ ∞

−∞
dpe−ap2+bp =

√
π

a
e

b2

4a , (A.6)

we can write the propagator

K(X2, X1; T ) = (
mMω

(2πih̄t)(2πih̄ sin ωt)
)3/2(

πh̄

iMω tan ω
2
T

)3/2

×
∫

D[X(t)] exp
i

h̄

{∫ T

0
dt

1

2
[mẊ2(t)− κX2(t)

+
κ2

4Mω tan ω
2
T

∫ T

0

∫ t

0
dtdsX(t)·X(s)(

sin ωt + sin ω(T − t)

sin ωT
)(

sin ωs + sin ω(T − s)

sin ωT
)
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− κ2

Mω

∫ T

0

∫ t

0
dtdsX(t) ·X(s)

sin ω(T − t) sin ωs

sin ωT

}
. (A.7)

Since sin ωt + sin ω(T − t) = 2 sin ω
2
T cos ω

2
(T − t), then

1

tan ω
2
T

(
sin ωt + sin ω(T − t)

sin ωT
)(

sin ωs + sin ω(T − s)

sin ωT
)

=
cos ω

2
(T − t) cos ω

2
(T − s)

sin ω
2
T cos ω

2
(T )

=
1

sin ωT
[cos ω(T − (t + s)) + cos ω(t− s)]. (A.8)

Substituting equation (A.8) into equation (A.9),

K(X2, X1; T ) = (
m

2πih̄T
)3/2 1

(2i sin ω
2
T )3

∫
D[X(t)] exp

i

h̄

{∫ T

0
dt

1

2
[mẊ2(t)− κX2(t)

+
κ2

4Mω tan ω
2
T

∫ T

0

∫ t

0
dtdsX(t)·X(s)[

2

4

1

sin ωT
cos ω(T−(t+s))+cos ω(t−s)

−sin ω(T − s) sin ωs

sin ωT
]

}
. (A.9)

Further,

2

4
(

1

sin ωT
cos ω(T − (t + s)) + cos ω(t− s))− 2 sin ω(T − s) sin ωs

2 sin ωT

=
1

2

cos ω(T
2
− (t− s))

sin ω
2
T

, (A.10)

substituting equation (A.10) in to equation (A.9), we have propagator

K(X2, X1; T ) = (
m

2πih̄t
)3/2 1

(2i sin ω
2
T )3

∫
D[X(t)] exp

i

h̄

{∫ T

0
dt

1

2
[mẊ2(t)− κX2(t)

+
κ2

2Mω

∫ T

0

∫ t

0
dtdsX(t) ·X(s)

cos ω(T
2
− (t− s))

sin ω
2
T

}
. (A.11)
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Since

∫ T

0

∫ t

0
dtdsX(t) ·X(s)

cos ω(T
2
− (t− s))

sin ω
2
T

=
1

2

∫ T

0

∫ T

0
dtdsX(t) ·X(s)

cos ω(T
2
− |t− s|)

sin ω
2
T

,

where ω =
√

κ/M , κ2/Mω = κω, then the second term in the exponential of

equation (12) becomes

κ2

2Mω

∫ T

0

∫ t

0
dtdsX(t) ·X(s)

cos ω(T
2
− (t− s))

sin ω
2
T

=
1

4
κω

∫ T

0

∫ T

0
dtdsX(t) ·X(s)

cos ω(T
2
− |t− s|)

sin ω
2
T

, (A.12)

and

∫ T

0
dt

cos ω(T
2
− |t− s|)

sin ω
2
T

=
2

ω
, (A.13)

since,

1

2

∫ T

0
dtκX2(t) =

1

2
κ
ω

2

∫ T

0

∫ T

0
dtds(

X2(t) + X2(s)

2
)
cos ω(T

2
− |t− s|)

sin ω
2
T

.

(A.14)

Combining equation (A.12), (A.13) and (A.14), becomes

K(X2, X1; T ) = (
m

(2πih̄t)
)3/2 1

(2i sin ω
2
T )3

∫
D[X(t)] exp

i

h̄

{∫ T

0
dt

1

2
[mẊ2(t)− κX2(t)

−1

8
κω

∫ T

0

∫ T

0
dtds

cos ω(T
2
− |t− s|)

sin ω
2
T

(X(t)−X(s))2]

}
.

(A.15)

Therefore, the action of two-particle model system is

S[X(t)] =
1

2

∫ T

0
dtmẊ2(t)−1

8
κω

∫ T

0

∫ T

0
dtds

cos ω(T
2
− |t− s|)

sin ω
2
T

(X(t)−X(s))2.
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