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Chapter 1

Introduction

The standard formulation of quantum mechanics was developed by Schro-
dinger, Heisenberg and others in the 1920s. Those two formulations were shown
by Dirac to be equivalent. These approaches are based on the Hamiltonian of a
system, which is a funetion of operator. The third formulation, Feynman path
integral developed by R. P. Feynman, is based on the Lagrangian of the system.
This approach was inspired by P. A. M. Dirac’s [2], remarks that the action plays
a central role in classical mechanics. Feynman forwarded the idea by postulating
that not classical path contributes but all possible paths. The central concept in
Feynman’s approach is the propagator, containing all the information about the
system. In 1955, Feynman [3] applied the path integral to the polaron problem
by calculating the self energy and the effective mass of the polaron. The result
was valid for an arbitrary coupling strength («) of electron-phonon interactions.
Consequently, path integrals have been applied widely to other problems and
various fields of theoretical physics.

In the meantime, path integrals have been applied intensively to the the-
ory of disordered systems. First, Edwards and Gulayev [4] introduced the path
integral to an electron moving in random scatterers but. the density of states can-
not be solved explicitly. However, Sa-yakanit [5], and Sa~yakanit and Glyde [6]
used the variational path integral to calculate the density of states in the above
cases, i.e., the Gaussian potential and the screened Coulomb potential. Later,
Bezak [7] derived the action of an electron gas in a random potential and ex-

panded the autocorrelation function of Edwards’ model at very large correlation



length. The theory of Bezak introduced the autocorrelation function by using
a nonlocal harmonic oscillator that represents an average potential energy. The
exact propagator can be applied to calculate the density of states at the limit of
the band-tail energy (F — —o0). This model has also been applied to other prob-
lems of disordered systems. Finally, the two-particle model was introduced by
Sa-yakanit [8]. The action is an electron moving in a two-parameter nonlocal har-
monic random potential with the force constant (k) and the harmonic frequency
(w). The action is exactly identical to the polaron trial action using by Osaka
9], but substituting of a real time variable by the imaginary time (¢t — —ih/3).

For a system of non-interacting electrons confined in two-dimensions un-
der the influence of a transverse magnetic field, an electron occupies a discrete
level known as the Landau level [10]. If we apply an electric field to a three-
dimensional system, an electron can move freely along the direction of the electric
field with the corresponding classical orbit being a helix. In real systems, in which
impurities are present, each Landau level is broadened into the band, which is
called “Landau band” [11}. The state of electron in Landau band consists of the
extended (delocalized) state and the localized state [12]. This gives rise to the
quantum Hall effect [13], discovered by von Klitzing in 1980.

The purpose of this thesis is to introduce the two-parameter nonlocal
harmonic random potential in the method. The main calculation is the two-
dimensional propagator of an electron in a two-parameters nonlocal harmonic
potential energy with transverse magnetic and x-direction electric fields, and the
density of states of a Gaussian random system.

The outline of this thesis is as follows : in the next Chapter, we review the

basic idea of the Feynman path integral and the derivation of Feynman propaga-



tor, the semi-classical approximation and the general quadratic Lagrangian. The
examples are shown in the last section. In Chapter 3, we review the mathematical
models of a random potential via the path integral formulation. In Chapter 4,
we calculate the two-dimensional propagator of an electron in a two-parameter
nonlocal harmonic random potential with transverse magnetic and x-direction
electric fields. In Chapter 5, the density of states in two-dimensional random
system is calculated using the approximation in the low-energy and the high-
energy limits. The normalized density of states is then compared with the result
of the tight-binding simulation in the white noise limit. Finally, the conclusions

is presented in Chapter 6.



Chapter 2

Feynman’s Path Integrals

The Feynman path integral provides us an approach to solve quantum
mechanic problems, based on a Lagrangian of the system. The most important
thing of Feynman’s approach is the propagator, which is a Green’s function of
Schrodinger equation or the superposition of probability amplitudes in general
representation, containing all the information about the system. Furthermore,
the propagator also means the sum of contributions from all paths. However,
in certain cases, the sum over all contribution paths can be approximated to be
contribution of the classical path. This approximation is called the semi-classical

approximation based on an expansion around the classical path.

2.1 Derivation of Feynman’s Propagators

2.1.1 The Superposition of Probability Amplitudes

In quantum mechanies, the central quantity is the propagator (K). The
propagator represents the quantum mechanical transition amplitude defined by
K(z" t";2',t) = (x",t"|2",t'). The right hand side bracket means that the sys-
tem will be found: at position @ at time ¢’ when the position = and time ¢
are specified. This definition is obtained by the postulation of the interference
phenomena in quantum mechanics, obeying the composition law.

We begin with discussion of probability amplitudes in quantum mechan-
ics in general representation, which is the Green’s function of time-dependent

Schrodinger equation. First, let us begin with the time-dependent Schrodinger



equation,

[mgt - H] W(z,t) =0, (2.1)

where the Hamiltonian is defined by

A % + V(z). (2.2)

We can define the one-electron Green funetion of this equation as the solution of

lm% . H] gla’ ¢ t) =6 —x)ot —t). (2.3)

As we have known, the propagator can be defined by a transition amplitude, then

K 't 2 ) =g ta,t)= @ |exp{—iH({t —t)/h}z). (24)

The one-dimensional time-dependent Green function of Schrodinger equation can
be represented in a matrix form, which is an expression of the Feynman prop-
agator. First, we consider the exponential of Hamiltonian operator for any N

times

p—ilt/h _ [6—iﬁt/Nh]N. (2.5)
We define the small subinterval time as

e (2.6)

and consider the limit N — oo that ¢;,1 —t; = €. Now we can write

"

(2" ']z, £) = (2| RO TNt O |

(N)—times



= (¢ |- Hletereta by (2.7)

From the Baker-Haudoff lemma the transition amplitude is reduced to

(" 2 ) = <x”|e_iH€/h.e_iH€/h...e_iHG/h|$/>. (2.8)
We insert the completeness relation of N — 1 intermediate space-time coordinates

(21, T2, 3, ..., xy_1) into the transition amplitude, then we obtain

"

(" 'zt = /da:l...de_l(xuIe_mg/h|xN_1)(xN_lle_iﬁe/hh:N_Q)..(xl|e_iH6/h|x/).
(2.9)

We consider the matrix element, the exponential involving the Hamiltonian op-

erator. If the operator acts on the eigenstate, then it gives the eigenvalue. Thus,

the matrix element becomes

(alesp( ST 4 V@) e = faafespl

1€

thﬁ2] |zp_1) exp[—i€V (x,_1)/R].

(2.10)

The next step, we introduce the completeness relation of momentum space

L 2l =1, 211

and the momentum eigenfunction for a free particle

ipT
(ol =exp ( 2°) (2.12)
and substitute the identities into the matrix element of equation (2.10), then

5, (Tl exp(—ﬁﬁ) 1p)(p|zn—1) exp[—ieV (z,-1) /R



(xn - :Unfl)p .

(2.13)

= exp[—ie€V (x,_1)/R] /_OO onh P [_ 2mbh N h

From the Gaussian integral formula

oo 2
/ dpe™ ¥+ = \/?e_i_a, (2.14)
g a

the matrix element in equation (2.13) can be reduced to

2

—i€. P ’ m VME Ty, — Ty—1 |9 B E
(@l exp( o @)t o) = (o exp [ (22— SV ()|

The matrix element is an independent operator. We substitute the matrix element
in equation (2.15) into equation (2.9). For every matrix element we obtain the

transition amplitude

v _ m N/Q/ 1 |:777£
(x ,t |z, t) (Trihe) dxl...da:chphZ 5 (

n

fig — Fn1 _:jn*l 12—V (znot)| -
(2.16)
Consider the infinitesimal time interval, we should be able to obtain the transition

amplitude for-a finite time interval as

"

N 0N
ETAY B m 1€ m
x .t |x,t :/ A—_~1/2dxnex £ {—— Tn— T D)2 < V(1) .
ol ) S T e 3L |95l B8 < )
(2.17)
At the continuum notation or the infinitesimal time interval approach to zero,

the transition amplitude or the Feynman propagator can be rewritten as



K"t )= ' f) = [ Dla(t) exp% ( /tt gg;«?(t) _ V(x)] dt) |
(2.18)

where the integral measure

/D[x(t)] L\ lim/ E(%)I/den, (2.19)

e—0

and the action

"

Sle(t)] = /tf dtL(z, i), (2.20)

This is the Feynman path integrals expression form derived by the time-dependent

Green function of Schrédinger equation.

2.1.2 The Sum Over All Paths

In classical mechanics, when a particle moves from one point to another
point. From the principle of least action, a particle has only one classical path

that is stationary. Thus the action .S is a minimum value
Se=H (2.21)

We can say that the value of S is unchanged if the path z() is the classical path.

The action function can be defined by

t“
S = / diL (&, 1, 1), (2.22)
t

where L is Lagrangian of the system. In other words, the principle of least action

is the Lagrange equation.



Nevertheless, the important concept of quantum mechanics is probability.
If we specify the position of a particle, then we cannot specify the momentum of
a particle. Therefore, we cannot predict the path in which a particle can take.
In the 1950 Feynman [1] introduced the theory of sum over all paths. In a sense,
if a particle moves from point =  at initial time ¢ to the end point z at time
t", there are many possible paths in which a particle can take. Thus a particle
moves with the action function of possible paths. We may summarize Feynman’s
postulation as

L If an ideal measurement is performed determine whether a particle has
a path lying in a region of space-time, then the probability that the result will
be affirmative is the absolute square of a sum of complex contributions, one form
each path in the region.

II. The paths contribute equally in magnitude, but the phase of their
contribution is classical action S[x(t)] in unit of h.

This postulation, the probability of particle to go from a point = at time
t' to the point 2" at ¢ is the absolute square of the propagator,

1"

PG, 7)) = |[K@" 2 ) (2.23)

that the propagator is the sum of contribution from each path. Therefore, the

propagator can be written

Kt 2,t) = 3] dlx(t)], (2.24)
overallpaths froma tox”

where @ is the contribution of path in which proportional to the action S,

®[z(t)] = (cont) exp <%S[$(t)]) . (2.25)
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We construct the path by connecting all the points so selected with
straight line of a point on space time coordinate. We choose a subset of all paths
by first separating the independent time in to small interval, e. This gives us a set
of successive time t;{t,, s, t3, ...} between the values ¢t to t", where t;,, = t; + €.
At each time, t;, we select some special point x; and constructing a path by con-
necting all of the point, so we set the form of them to be a line. This processes
are shown in Figure 2.1. It is possible to define a sum over all paths constructed
in this manner by taking a multiple integral over all values of x; for ¢ from 1 to
n — 1, where

to=t tp=t ,me=t —1

/

/ !/
Ty =T ,Tp =T .

<>
o3

N

Xg Ar Xigy Xp

Figure 2.1 Diagram showing how the path integrals can be constructed [25].

By using this method, equation (2.24) becomes

K@t )~ //.../dmld:vg...dxn_lé[x(t)] (2.26)

or



11

Kz 'tz t)~ //.../dmldzg...dxn_l(const) exp%S[x(t)].
(2.27)

We do not integrate x, or z, because these are the fixed end point " and z”. In
order to achieve the correct measure, equation (2.27) must be taken in the limit
¢ — 0 and some normalizing factor A~! which depends on € must be provided in
in order that the limit of equation (2.27) becomes

" H' / dl’l dflfg de Z
Kt t) hmA// / —— exp ﬁS[m(t)], (2.28)

e—0

where a normalization constant

m

- /2 2.9
27rz'hT> (2:29)

=

Equation (2.28) can also be written in a less restrictive notation as

Kz 5z 1) /D | exp S[ (t)]. (2.30)

This is called a path integral (sum over all paths) and the amplitude K (2", t"; 2", t)
is known as the Feynman propagator. We see that the propagator followed Feyn-
man’s argument has exactly the same form as the time-dependent Green function

(the superposition of probability amplitudes).

2.2 'The Semi-Classical Approximation

The semi-classical approximation is applied by the path integral. The
classical path from z' to 2" is denoted by Z(t). We express an arbitrary path in

terms of z(t) as z(t) = Z(t) +0x(t). In general we are simply shifting the variable
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x(t) by z(t) with the new variable dz(t). An arbitrary path can be expressed in
terms of Z(t) and dz(t) by expanding the Taylor’s series of V(Z + dx). We can

write the action as

5=, dt{%d—x—i—ém‘)) V(:H(sx)}
md dz dbx déx B
§ dt{2 t2m +(dt)}—V(x+5x)}

dzdéz 10V

t/l

e 12V
+/ A (o = 5 7 0

+/ dt{—%?j—z 52) 4.} (2.31)

Classifying terms by their order in dz(t), we can write

S=5 + 58 s®y (2.32)
where there is no term linear in d2:(t) because Z(t) satisfies the equation of motion
and dx(t) vanishes at the end points. The semi-classical approximation to the
path integral involves dropping all terms higher than the quadratic in dz(t). From
the expression for the Feynman path integral, then

17 1" / ! SC t// S(Z)
K@ ¢, 1) :exp{iﬁ}// Do (f) expli~—}, (2.33)
t

where we neglect higher order, explicitly S® is the phase difference between the

classical path and contribution paths as

S@ = /tt dt{ﬂ;(jtéx) ;g “__(sx)?). (2.34)
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However, it is possible to express the answer for the Gaussian integral over dz(t)

in terms of the classical action S, called the Van-Vleck Pauli formula [14,15,16],

1 (— 025,
2mih Oxy Oz

" 1" / ’ S
K(x ,t;z,t)= J )exp{iﬁc}. (2.35)
For more variables, the pre-factor involves the determinant of the matrix of deriva-
tives of S, in the d-dimensions. The semi-classical approximation can be used

with good results for a smooth potential. However, the formula breaks down on

the caustic where the Van Vleck-Pauli determinant vanishes.

2.3 The General Quadratic Lagrangian

From a previous section, the method of direct integration can be carried
out for the the path integral. For the fluctuation potential case, the semi-classical
approximation is more difficult to work out because it breaks down on a Gaussian
integral. In this section we show that the quadratic Lagrangian is the general
method to direct integrating out of path integrals. The two cases of general
quadratic Lagrangian are the quadratic Lagrangian (semi-classical approxima-

tion) and the two-time quadratic Lagrangian (fluctuation potential case).

2.3.1 The Quadratic Lagrangian

We know from classical physics that the action S'is extremized and then
it furnishes us the classical path is completely fixed. Therefore, any path z(t) can

be written in terms of the classical path #(t) and a new variable y(t). That is
x(t) = z(t) + y(t), (2.36)

and the integral measurement D[z(t)] can replaced by D[y(t)]. This means that a

point on the path by its distance x(t) from an arbitrary coordinate axis, we now
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define it by its derivation y(t) from the classical path, as shown in Figure 2.2.
Since any path z(¢) and the classical path Z(t) must have the same end points.

The condition which the derivations y(¢) have to satisfy is y(t') = y(t') = 0.

x(1)
y@®)
x(1)

X

Figure 2.2 Diagram showing a path deviating from the classical path [25].

The Lagrangian will be the quadratic form

L =a(t)z*(t)+ bt)a(t)x(t) + c(t)z>(t) + d(t)i(t) + e(t)x(t) + f(t).
(2.37)

Hence, the action S can be expressed as

Sla(t)] = Slz(t) + y(t)]
t// . '
= /t la(t) {Z°(t) + 28®y(t) + (O} + .. + F(b)] dt. (2.38)
It is obvious that the integral of all terms involving exclusively Z(t) is exactly

the classical action and the integral of all terms that are linear in y(t) precisely
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vanishes from boundary condition. So, all the remaining terms in the integral are

the second-order terms in y(¢) only. That is
STa(0)] = Sale()] + [ [alt)57(0) + OO0 + )y (0)] . (2.39)

Thus the propagator is the integral over paths y(t) does not depend upon the
classical path and all paths y(¢) start from and return to the point y = 0, can be

written as

1

K@ t'2t) = exp (%sd[g-;@)]) N /0 " Dly(t)] exp {% /tf da(t)i(t)
+0()y(t)y(t) + C(t)?f(t)]} ~ (2.40)

For the quadratic Lagrangian, the propagator can be written as

Kz tha t)=F(T)exp {%Sd [a:(t)]} : (2.41)

where the prefactor is
0 e : .
P =N [ Dlvtolesp ] [L aaldlifo) + o0 0ute) + 057(0]}
(2.42)
For the quadratic Lagrangian, it can be seen that the path integral in equation
(2.40) which is a product of two functions, one of which does not depend upon

the end-point positions. This propagator is similar to the semi-classical approxi-

mation.

2.3.2 The Two-Time Quadratic Lagrangian

Such a situation with an electron interacting with a larger system, Feyn-
man [3] was first to introduce a nonlocal action in the polaron problem. The

general form of two-time Lagrangian is
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L= %i?(t) - % /0 " dsGt, )2 ()2 (s). (2.43)

Physically G(t, s) is a simple phenomenological memory effect which arises when
the system interacts with a larger system. The example of this problem is an
electron moving in a disorder system or a random potential. The propagator
is very similar to the quadratic action. Thus, the entire contribution to the

propagator comes from the classical path alone
K530 = F(@)exp{55ula(t)]} (244)
where the prefactor is

F@) =N [ "Dlz(®)] exp {;Sd} | (2.45)

2.4 Examples

2.4.1 The Harmonic Oscillator

For a simple problem is the one-dimensional harmonic oscillator. The

Lagrangian is given by

1
RO — émiQ - Emwsz. (2.46)

From the semi-classical approximation, the propagator can be expressed in the

form

K (. 1) 9o, 10) = F(T) eXp{%SC[:I:(t)]}, (2.47)

where F(T') is the prefactor and S.[z(t)] is the classical action. The classical
action can be calculated by the principle of least action. The classical equation

of motion can be written in the form
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i+ wlr =0, (2.48)

with conditions z(t1) = x1, z(t2) = x2, and the solution is

z(t) = Asinfw(t + a)], (2.49)

where « is an initial phase. The action can be simplified by using the equation of
motion in equation (2.48) and integration by parts. Using the equation of motion

¥ + w?xr = 0. We can write the action as

m

Sel = i [z (ta)E(te) — x(t1)x(t1)] .- (2.50)

Let us rewrite equation (2.49) in following form

x(t) = Asin [w(t — t1) + w(t; + )]

= Asinfw(t — t1)] cos[w(t; + a)] + Asinfw(t; + )] cos[w(t — t1)].

We can continue to write classical path

() = %j:(tl) S DRt — £1)]. (2.51)

For the particular condition value t = t5, then we find

.fE(tl) == m {ZL’Q — T COS[W(tQ — t1>]} . (252)
Similarly,
B(ty) = ———— [y + zg cos|w(ts — )]} (2.53)

N sin[w(tg — tl)]

The action in equation (2.50), we need the product
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x(to)d(ts) = sm[w(;;:—tl)] {:17% cos|w(ty — t1)] — xgzvl} :

w

sinfw(ty — )] {—xf coslw(ts — t1)] + mgxl} :

z(t1)i(t) =

Using this result to calculate the action in equation (2.50) with 7" = t5 — ¢;. The

classical harmonic oscillator action gives

mw
g 3
2sinwT

{(scg +a7) cos wT = 2x2x1} : (2.54)

and the expression of Van-Vleck Pauli formula need for the prefactor,

025, mw
— — . 2.
\/ 012011 2sinwT (2.55)

Using equations (2.54) and (2.55), substituting into equation (2.47) to obtain the

expression for the harmonic oscillator path integral,

mw 7 mw
K 7T7 70 - \/ A o { A 2 T —2 } .
(w2 71,0) 2mih sin T eXP i (2sin cuT[(x2 +7) cosw T271]
(2.56)

2.4.2 The Forced Harmonic Oscillator

The forced harmonic oscillator is an oscillator of the form acting on by a
time-dependent external force f(t), with the Lagrangian
1

1
L(z, &) = imj:Q - §mw2x2 + f(t). (2.57)

Thus, the equation of motion is
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i(t) + wz(t) = @, (2.58)

m

and boundary conditions, x(t1) = x1,x(t3) = x2. We introduce the Green func-

tion to carry out the equation

d2
[m— 3 mwz} G(t,s) =0(t —s), (2.59)
with the Green function

G(t, ST Gt sinw(s — t1)sinw(te — t)

wsinw(ty — t1)

sinw(t — t) sinw(ty — s)

L A4t (2.60)

wsinw(ty — t)
where H(t,s) is a Heaviside step function. The classical path can be determined

by considering equations (2.59) and (2.60). Using the boundary conditions of the

classical path z(t). We obtain

Tosinw(t —t1) +arsinw(ty —¢) - 1

(t) = |  HOG(L, 5)ds. (2.61)

sinw(ty — t1) m Ju

The classical action S, can be calculated by following the same procedure in

equation (2.50), which is

53 G i) i) 45 [ @5 (2.62)

Therefore, the classical action of system can be determined as

mw ZZE to .

Sa = 2 sinw(ts —tl){(ngrﬁ) (3()39‘}(752_731)_2$2£U1-|-m—;/t1 dtf(t)sinw(t; —t)
22y (T2 . 2 ta 2 . .

o /t1 dtf(t) Slnw(t2_t)_—m2w2 /t1 \ dtdsf(t)f(s)sinw(ta—t)sinw(s—t)}.

(2.63)
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Finally, the Feynman propagator for an electron in a harmonic potential with the

time dependent external force is

mw
2mih sin W(tg — tl)

K(.Z‘Q,tg;.’L'l,tl) = \/ exp{%Scl}, (264)

where the classical action can be defined in equation (2.63).
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Chapter 3

Review of Mathematical Models
of Random Potential Systems

In this chapter, we review the mathematical model of random potential
via the Feynman path integral formulation. The model is an electron coupling
with a large system in the form of a random potential. In this model, we are
interested in the approximate propagator which can be obtained by averaging

the propagator over the coordinates of the large system.

3.1 Edwards’ Model

The model of an electron moving in a completely random system contain-
ing dense and weak scatterers has been introduced by Edwards and Gulayev [4],

Edwards [17], and Abram and Edwards [18].

3.1.1 Random Potential

The important problem in a disordered system is a model of an electron
moving in a fluctuation potential or a random potential. The interaction be-
tween a free electron with a fluctuation potential caused by the imperfection of
the system. The fluctuation potential [19] can be represented by the autocorrela-
tion function W = (v(r(t))v(r(s))) where v(7(t)), v(7(s)) are the time-dependent
random potential and the angle brackets denote the ensemble average. The im-
portant characteristic parameters of the random potential are the magnitude of

fluctuation energy (£) and the correlation length (I). There are two alternative



22

definitions of the fluctuation potential. Firstly, Anderson [20] discussed about
an electron with a system of deep potential wells situated on given lattice points
and separated by sufficiently high barriers. The second definition is from Lifshitz
[21] who assumed that there are scatterers in the system. The scatterer being
determined by its own field v (7 — él) which is called the scattering potential. In
such cases, the random potential can be defined by the autocorrelation function

which are dependent on the distance |r(t) — 7(s)| and the correlation length.

3.1.2 Action of the System

By considering a free electron moving in a set of N rigid scatterers con-
fined within a volume V and a density n = N/V and using the path integral
method to derive the average Green function of the Schrodinger equation, the

disordered system can be described by the Hamiltonian

H[v] = ———v2 Z (3.1)

where v(r'— él) is the potential of single scatterer at site R;. The time-dependent
Schrodinger equation for an electron of the effective mass m in disordered system
is

0

(ihoy = Hlv])g (77, TO; [R]) = 6(7 — 75 (t). (3.2)

The Green function of the time-dependent Schrodinger equation can be expressed

in the path integral representation as

9(7 7, /D Jexp — {/OTdt[m

v |
Y
—~
~
N—

|

e
—
=y
~
~
N—

|
S
=

N——
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where D[r(t)] denotes the path integral to be carried out with the boundary

conditions 7(0) = 7 and #(T) = 7. The site R; denotes that the scatterer is in

—

random configuration (ﬁl, ..., Ry, ...), specified by the probability distribution on

configurations space,

P[é]d[ﬁ] N dRy,....dRy - H dR;

, (3.4)
N
4 N,V —o0

where V' is a small volume on configurations space.

The propagator of random system K (7_’/ ,T:7,0) is an ensemble average
of the Green function with respect to the random scatterers configuration which
is the integration of Green function with the probability distribution over all the

configurations of the scatterers,

K (7, T:7,0) = (g7 T 05

=20
1|
Tob
<
'
1l
-
=2
=
3
el
&=
el

-/ {exp + | GPO=3 ot - émdt} D] TI5)

= e L [ 20a b ] et [ oy — ByardE ND[F(t)].
[l 3 }{/ i) v }
(3.5)

By using the identity e® = (14+x/N)" and the density of the scatterer isn = N/V.

The propagator of random system [4] can be written as
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This is the exact expression for a propagator or an average Green function.
For simplicity, we shall consider the limit of high density n — co and weak
scatterer v — 0 so that nv? remains finite. Since pv? > pv3, the exponential can

be expanded in the Taylor series. The average propagator can be written as

/D exp{h OTZ‘ ()dt—— dR/ )dt

2h2 dR/ / (F(S)—é)dtdS}- (3.7)

The average potential energy density is defined as Ey = (v(7(t))) =n [ dRuv(7(t)—
R). The autocorrelation function of scatterers W (7(t) — 7(s)) is the effect of a
potential at one point on a potential at another point that is the two points are

correlated. The autocorrelation function can be defined as

W (F(t) — 7(s)) = W(FE)o(F(s))) = / dRv(7(t) — R)v(7(s) — R).  (3.8)

The expression of path integrals can be expressed formally in term of the action

function S as

a /D[F(t)] eXp{%S}, (3.9)

where the action S is defined by

T m in [T . S,

S = / dt | =2(t) — By + — dsW(r(t) —7(s))] - (3.10)
0 2" 2h

This action is sometimes called “two-time” action. The system can be viewed as

an electron moving in the nonlocal potential with a memory effect. The autocor-

relation function for a Gaussian random potential has the form
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W(F(t) — 7(5)) = € - exp (— i (3.11)

where the fluctuation energy ¢ has the dimension of the energy squared and L is
the Gaussian correlation length which can be defined by L? = 2[2. In the limiting
case of the Gaussian correlation length approaches to zero, the autocorrelation

function approaches the delta function as

W(r(t) = 7(s)) = D - §(7(t) — 7(s)), (3.12)

where D is the magnitude of white noise energy. This is the white noise correlation

function.

3.2 Path Integral Theory of an Electron Gas in
a Random Potential : Bezak’s Model

Bezak [7,22] proposed his model to describe the impurity band in a poly-
crystalline semiconductor. The impurity can precipitate in the vicinity of inter-
faces between crystalline forming potential barrier, which is deep potential wells
with the magnitude (n). This model represented the interaction as a random
potential and the autocorrelation function as a Gaussian one. If the correlation
length L is larger than the interatomic distance, we can approximate the Gaussian

autocorrelation function by

W (7(t) — 7(s)) = exp (1 . (3.13)

and the propagator in equation (3.7) takes the form

2T2
K(f/,T;ﬁO):exp (_nn )

2h?
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m
DIr(t)] exp — {
<f ey 5

where w is the harmonic frequency related to the correlation length, [, by the

dtds t) —7(s)] }
(3.14)

relation w? = 2inn*T /mhl%. The action of Bezak’s model can be defined with the

one-parameter nonlocal harmonic random potential as

S(w) = /0 o (f)di -

The propagator of an electron moving in a random potential has been calculated

dtds(7(t) — 7(s))>. (3.15)

by Bezak [7], and Khandekar and Lawande [23], as

mo. A e i [ mw wT inn*T?
K(7,T;7,0) = 3/2 3 MY ot (L = 2 = L
(7,757, 0) (2m'hl ) (ZSian )5 cot( )7 =7 2h

(3.16)

3.3 Two-Particle Model System

In this section, we present the model used by Samathiyakanit [8] and use
his trial action which contains two parameters, S(%;w). The impurity in a random
system produces the random potential interacting with an electron. The effect
of the impurity field is produced by the fictitious particle of mass M. Physically,
this model is a free electron interacts harmonically with a fictitious particle of
mass M with x as a spring constant and the harmonic frequency is w = \//<;/—M .
The The Lagrangian of two-particle model system can be written as

Lx° ;M?Q(w_%m()?(t)_?(t))?, (3.17)

h
I
|

S

>

+
|



27

where M and Y are the mass and the coordinate of fictitious particle, respectively.

Then the path integral of this Lagrangian can be written as

—

K (%, Y0, T X, 7,,0) = /D[}?(t)]p[?(t)] exp UOT QXY t)} (318

The coordinate of the fictitious particles can be eliminated by setting
Yy =Y. Integrating the propagator of two-particle system over the coordinate Yy
(see Appendix for more details) yields the average effect of the fictitious particles
on the electron. Therefore, the action of the two-particle model system has only

the electron coordinate, which is

S(w, k) = /0 dtlm%f‘?(t) /. f{ﬂ/o 0 dtds(7(t) - F(S))2COSM(S?H_£|; _ S|)'
(3.19)

In fact, this action can be reduced to the action of Bezak’s model by setting

w — 0 or equivalently M — oo.



Chapter 4
Results

This chapter, we will calculate the exact two-dimensional propagator in
the transverse magnetic field and the x-directional electric field with a two-
parameter nonlocal harmonic potential. In this calculation we introduce the
two-parameter nonlocal harmonic random potential [8] to describe the potential

of our system.

4.1 Two-Dimensional Propagators

We consider the non-interacting electron gas in the two-dimensional ran-
dom system. The model of interest involves an electron moving in a two-dimensional
random system with a transverse magnetic field and an x-directional electric field.
The impurity in a random system produces the random potential interacting with
an electron. Thus, the Lagrangian of the system is

L) =3 [B60) + 7] + 5 ) (0) — ()i )]

S [ e S ) )2 510 — 7100

+eE,(t)- (1), (4.1)
where Q = eB/mc is the cyclotron frequency and a symmetric gauge of a magnetic
field B, with the vector potential, A = (1/2)(yB,—xB,0). The Lagrangian
describes an electron moving in a two-dimensional system under the influence

of a nonlocal harmonic random potential with a transverse magnetic and an
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x-direction electric fields. We see that the Lagrangian of system is a two-time
quadratic form. From §2.3.2; the propagator can be expressed by the contribution
of the classical action. Therefore, we will evaluate the classical action and the

prefactor of system.

4.1.1 The Classical Action

From the principle of least action, we cannot calculate the classical action
exactly because an equation of motion is the set of coupled integro-differential
equation due to a symmetric gauge. However, a classical action can be calculated
by applying the two-particle method [8] and the first-order cumulant approxima-
tion [24]. The two-dimensional propagator can be expressed by a product of the

x-component propagator and the y-component propagator as

K(xTa yr, Ta Zo, Yo, O) T K:L‘('TT> T? Zo, O)Ky(yT7 T7 Yo, 0)7 (42)

with Lagrangians of the system are

Lo = "0 + D ()i(t) — ult)a(0) + eBalt) - 51
—;m / Pras ‘”Sg{f(; /Z)_ D) SE6) (4.3)

and

m -2 1 T cosw(T/2—1t—s]),, IR
N /0 sinw(T/2) () —g(s))"  (44)

Firstly, we consider the x-component propagator and integrate by parts

the magnetic field term
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T T
/0 (xy — yx)dt = —(xryr — ToYo) + 2/0 xydt. (4.5)

Let us carry out the x-component propagator of the Lagrangian in equation (4.3)

by using equation (4.5). The x-component propagator can be written in the form

K (z7,20; T) = exp (—;S;l[xTyT - x0y0]> /D[f(t)] exp ;L /OT dt {7;15:’2(15)

_;/{w /OT dSCOSw(T/Q = ’t - 8‘)(f(t) . 5(8))2 + _‘(t) . f(t)} :

sinw(7'/2)
(4.6)
where the external force can be defined as
f@)=[Qy(t) + eE.(t)]. (4.7)

Referring to §3.3, we applied the two-particle model system. This propagator can
be calculated by the two-particle system. The two-particle system is described by
an electron of mass m coupling with an another particle of mass M with a force
constant k. We obtain the classical path in three dimensions from the Lagrangian

in equation (3.16) as

1 A = - - - -
L=3 mX2(t) + MY?2(t) — k(X (t) = Y()?| + f(t) - X(¢). (4.8)
It is obviously seen that the equation of motion is a set of coupled equations.
Such a problem- can be solved by transforming the Lagrangian into the center of

mass coordinate system

(4.9)
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where 7 is a relative coordinate and R is a center of mass coordinate. Hence,
the Lagrangian can be written as containing two coupled systems with a forced
harmonic oscillator

1

. — ]_ = — —
L= 5;’2—/@32’2)+%f-§;‘+§m0R2+f-R, (4.10)

where mg and p are the total mass and the reduced mass, respectively. This
can be interpreted that there are two non-interacting forced harmonic oscillators
which one of mass p has a frequency v = m and is acted by the force p f /m,
but the other has mass myg, no frequency, and is acted by the force f From
the two-particle model system, the classical action can be calculated exactly by

Samathiyakanit [8] as

v v Im i ~
sh= (1] ot 5T 5 3fp ) e aro)?

T 1 in Y — mY
. > p sinvt  sin Z(T —t)sin 5t put
. dtf(t) | — 7
o /0 /) <m(sinyT szt )T T

+f0_/0Tdtf(t) (u(sinu(T—t) —sing{l~t)singt, M(T_t)>

m-  sinvT cos 5T MT
T T 2 . .
> > w sinv(T —1t)sinvs
- dtdsf(t) - —
/0 /0 /() J(s) <m2( vsinvT

4sin §(T"=t)sin Stsin 5 (7' —s)sings. p(T —t)s
— . 4.11
vsinvT )+ MT (4.11)

Applying the classical action of the two-particle system in equation (4.11), and

substituting the notation of external force in equation (4.7), then we obtain the

X-component propagator

i Q
K. (vr,v0;T) = F(T) exp 7 {Sg,cz - §($TyT — ToYo)
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+ag /0 ) + eBa(®)]gr(t) + 70 /0 (1) + B (#)]galt)

_ /OT /OT dtds[Qu(t) + e B, ()][Q(s) + eEL(s)]G(t, s)}, (4.12)

where

Sg,cz = <Z cot §T + §m)(xT —z0)%, (4.13)
o) = (2L Sm%(i;;}smgt> Vg (114)
lt) = % sin;(lj;; t) sin Z(Z;S—;)fm %t) N /,L(]\T4; t)7 (4.15)

G(t.s) = ;L;(sin V(Vj;;l Z);in Vs
_Asing(T"=1) SISS%IES;;%(T — s)sin gs) X M(Y;\/‘[—Tt)s' (4.16)

In addition, the classical action is separated into two parts, which are the classical
forced nonlocal harmonic action in the x-component-and the time derivative of
the y-component. The integral of a time derivative of the y-component can be
carried out by integration by parts term by term. Therefore, the x-component

propagator can be rewritten as

4 —m dp+m

2m

) /
K. (xr,70;T) = F(T) exp 7 {Sicz + Sy +Q rryr + Q ZoYo

T
2y Q) /0 dteE, (1)(

m2y mM

psinv(T — 1) M(T_t))}’ (4.17)
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where the action

Fo (M ot U “w)
ST o (4 cot2 +SuT (xp — x0)
T - nZ(T — ) sin ¥
p o sinvt  sing (T —t)sin 5t ut
dteB,(t -
o 0 ‘ ()<m(sinyT cos 5T ) MT
T : nZ(T — ) sin ¥
posinv(T —¢t)  sing(T —t)singt, p(T —t)
dteE,(t) | — : s
o 0 ‘ <)<m( sin v’ cos 5T )+ MT
T T > siny(T — t)sinvs
—e? E. (HE M
‘ /0 0 didsE, (1) (5) m2( vsinvT
dsin (T —t)sin £tsin (T — s)sin s, u(T —t)s
_ 2 2 2 2
vsinvT )+ MT o (418)
and
) % pvcos 5 (1" — 2t) L
STy(t)] = — Q[ dy(t)
y®)] = —(or +20)2 |~ diy(t)(=% ey T )
+ZQ/Tdt PN i / d Y (1 — 2s)
0 > m?sin 5T sy(s C082 °
+2§2/ dteF,(t )H / dsy(s
mMT
T T v cosv(L —(t—5s)) 1
0 [0 [ atasy(t)y(s) - 2 .
* 0o Jo syl )y(s)(2m2 sin g1 + mMT)
(4.19)

Secondly, we will calculate the y-component propagator. By applying an
action, S [y(t)]; in-equation (4:19), we combine this action with the trial action,
Soly(t)],of a y-component Lagrangian in equation (4.4) and inserting the identity

of trial action. The y-component propagator can be written as

J Dly®)]exp  {Soly(®)] + 5"y (®)] + Soly(t)]}

Ky(yr,T;v0,0) = [ D[y(t)] exp % {Soly(t)]}

(4.20)
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Since an average is defined by

J Dly@)] 1y (®)] exp 5 Soly($)]}

VWOlse = = Dl Bl explEsoly 0]} 2
The cumulant approximation [24] is
(exolz5]) | = expf5lS)s, +6 5 ((am 93) + -} @2

and keeping only the first-order term, which is the first-order cumulant approx-
imation, <em/h> ~ e@/"  Then the exponential in equation (4.20) can be sepa-
rated to the exponential of a trial action and the average of action, (S)g,,. The

y-component propagator is contributed by a classical path as

/

1
Ky(yTaT; Yo,0) = Ky,o(yT; T';90,0) exp ﬁ<5 )So» (4.23)

where the trial propagator

7 v 1 m
(“— cot 2T + ——“) (yr —w0)%  (4.24)

K 4 2 2MT

i
vo(yr 590, 0) = exXp

and

/

(S)sy = —lr+ xO)Q/OT dt(y(t»so(MVCOS%(T —21) . "

)

2m sin %T mT

psing (T —t)

m2sin 41

+20 /0 ! dteEx(t)W /0 ' ds(y(s))s,

v [ [ sty s s = )

(4.25)

+2Q /OT dtels, (t) /OT ds(y(s))g, cos g(t —2s)
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We see that equation (4.25) contains the average over quantities like (y(t))s, and
(y(t)y(s))s,- These quantities can be evaluated from the generating function [25].

The generating function is defined as

—

v [ D] exblS-+ T atF () - 7(e)
(w7 “*“”DJ Do) (4.26)

—

with end points condition #(7T") = 7, 7(0) = 7, and f(¢) is a time-dependent
arbitrary function. From Feynman and Hibbs [25], we are thus left with is the

exponential of the two classical action, that is

<exp [ /O i - f(t>]> = oxp (54— 59) . (4.27)

So

Hence, we can see that the quantities of interest can be extracted from the formula

in equation (4.27) by performing the functional differentiation with respect to the

—

function f(t) and setting it to be zero. For examples,

FleYep [ —dtFe) T == lexpls), — 1)
o710

So

_ 5Sf o I _ Q0
= FoleR(si- sl @2

Therefore, by evaluating both sides when f(t) = 0, we obtain

55
(T(t))sy = [Td«] : (4.29)
] af(t) =0
We can continue this process to get the second derivatives as
62 ! 0
7(t) - r(s 0 — T .o _€X SC_SC ol
(7(t) - 7(s))s ST007(s) P(Sa = Sa) | =

(4.30)

= 3 = 3

- [idf(t)éf(S) 3f(t) af(s)

—

ho 628, N 657 555]
f=0
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Actually, since S/, is quadratic in f(t), the quantities (7(t))s, and (7(t) - 7(s))s,
can be directly evaluated in terms of 657 /6f(t) and 6257, /6 f(¢)0f(s), which is
independent of f(t).

Next, by applying the generating functional technique, we can evaluate
the quantities (y(t))s, and (y(t)y(s))s, in equation (4.25). First, we will evaluate

these quantities by introducing the Lagrangian of forced nonlocal harmonic as

i) - = [ras e L gy + flo ). 3

and the classical action Sy can be evaluated in the equation (4.11). Substituting

St in equation (4.11) of the y-component into equations (4.29) and (4.30), we

obtain
Wt))e, — (:;COS (gn—%?sin 5t \ ﬁ;)
and
), = (WQLZ/ sin £(T — t)SSiirI:’g;cos (T —t) n M(?:]\:[;)s>
St

Substituting equations (4.32) and (4.33) into equation (4.25), we can be evaluated
(8" s, by integrating term by term. Then an average of the action, (8" Sy, Can

be rewritten as
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2 2
()5 = =2 {AW®) + B} - (L5 + £5)(@r + 20) (yr + )}
miv  m
T
20 [ dte, (E{yrChlt) + 1oGa(t)} (4.34)
where
v Y v v
Gl(t) = W <21/TSIH §(T - t) + 3sin §(T — t) COS §<3T — t)
: .V v
—2sin (T = t) + sin §(T —t) cos §(T + t)) :
v N L v
Gg(t) = Wf <—21/TSIH §(T - t) 5 ?)Sln E(T — t) COS §<T + t)
. /. v
—2siny(T —t) + sin -2—(T — t) cos §<3T - t)) :
1 2 2\, 22
A(T) = T |16mM + 4 - M T
(T) 32m4 M2T 3 sin? g (V [ Y S v
—(M? + 4m*v*T?) cos vT — 16mM cos 20T + M? cos 3I/T}
+8M sinvT [—4m + M?V*T? + (4m — 2mv*T?) cos I/T.D :
3
1
B(T)=-— "
(T) 24mAM3T213

x {[6mMuv(8m + 3MT) + 21V (m(4m* + 6mM + 3M?) — 3M>T (3m + M))
+3mMTv((16m — 10M) cosvT — v((8m +2M —2MT) cot %T — MTv csc? gT)

+2M (=24m? + VP T*(12M? + 18mM + 7TM?)) sinvT|
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+2my [(—6M (MT + 8m + 4mT) + v*T2(4m? + 12mM + 3M?) — 6MT (4m + M)
cos VT —3MTv((8m + 2M + 2MT) cot gT + MTv csc? %T)

+2M (24m? + MT?v*(3m + 2M))} Yoyr

+ MVTZ [(6mM(5M3T3 + 8m(MT? + M>*T?)) + 2MT3*(4mP M T + 6m>M>T
+3M3T? + 3mM®(MT + MT?)) — 3mM*T?(6 M>T cos vT

+2u(AmMT + M*(T + T2) cot gT) — MET%2 csc? gT))

+2M (24m? 4+ MT?*@m + 2M)) sinvT| v} } . (4.35)

Finally, the full classical action is a product of the classical action of the

x-component in equation (4.17) and the classical action of the y-component in

equation (4.33), which is

—m 4 +m
xTyT—l—Q A

ZoYo

Sale,u] = exp { %, —P[AT) + B + Q2K

_Q((n/jhj + “—2)(.7:T + 20)(yr + %))

20 /0 dte B, (1) (yrGa (t) + yoGal(t)

T psinv(T —t) (T —1t)
S0 / 348 O A T TR0
wosinvt  sin¥(7T —t)sin 2t put
2 2% 4 )

dteE,(
—HCT/ ‘ >(m[sm T - coss T ME
posine(T = t)  sin 5(T =1)singt. © (T — 1)
dteE,( —
+x0/ ‘ )(m[ sinvT’ cos 5T I+ MT )

2 siny(T —t)sinvs

_e? /0 /O dtds B, (t) By (5) (L [

4sin§(T —t)sin§tsin 5 (T — s)sings,  p(T —t)s
_ (4.
vsinvT I+ MT ) (4:36)
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4.1.2 The Prefactor

From the Feynman propagator, we will calculate the prefactor F(T'). An
explicit expression for this function may be given from the classical solution by
introducing a generating functional [26].

According to equation (2.45), we differentiate both sides by the operator

k0/0k and using notation of the average in equation (4.21). We obtain

L, 0 [/ 05pr=
—zfmgfglnF(T)—</<; I >S. (4.37)

We substitute an action of the Lagrangian in equation (4.1) into an above equa-

tion, neglecting magnetic and electric fields, becomes

cosw(L — [t = s])

sin %T

_mna‘i In F(T) — —%W | - / " dtds (i) = 7012

Y

=0

(4.38)

where we define 7(t) as a two-dimensional coordinate.
Next, we can calculate the average ([7(¢) — 7(¢)]*)s_, by introducing the
generating functional. We expand an average as (/*(1))g — 2 (F(t) - 7(s))g, +

—,

(7(s)) g, From the previous section an average ([7(t) — 7(t)]*)g, becomes

([F(H) — 7))o =L

_ ~2 [sin;(t— s)cos g(T' = (t+s)) " m(t — 3)]2(

=2
§ih LT vt | =)

o b [28ing (t—s)sing (T'= (t—5)) o (b= T~ (t —s))
—2@71;1— [ mysin 5T d MT ] '

(4.39)

Although, the prefactor is independent with the end points. We can set the limit

—

of the end points condition by 7(7") = 7(0) = 0. Neglecting the first term on
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the right hand side in equation (4.39) and substituting into equation (4.38), we

obtain
0 kw [ 2ihp . 2 vT v w
—ithk— I F(T)=— —[———F+—— t =T — t =T
R (T) 4 { m my2w(u2—w2)(yco 2 Yty )
2 T w
— =T|. 4.4
T Mer T A ]} (4.40)

Since, v = y/k/p and w = /K /M are the relative (center of mass) harmonic and
harmonic frequency respectively, harmonic frequencies and the force constant x

are related by

Do WA (4.41)
m
We can rewrite equation (4.40) as
L 0 — v 2
—zfma InF(T) = ZthI/ <Cot §T — I/T) : (4.42)

According to equation (4.42), we can carry out the prefactor by introducing the

expression

ov ]|

Ok 2mu

)

and substitute into equation (4.42); to obtain

0 la ol v

Integrating both sides of equation (4.43), we obtain the prefactor for the particle

in random potential,

F(T):C’(t)< Y )2. (4.44)



Comparing equation (4.44) with a prefactor for a free particle (k =

have

2
m w
omihT c) (sin gT) '

Finally, the full prefactor can be written as

m vsin 9T\ 2
F(T, — 2 .
e — 2mihT (w sin %T)

4.1.3 Two-dimensional propagators

41

0,v =w), we

(4.45)

(4.46)

The analytic two-dimensional propagator in x-direction electric and mag-

netic fields with a two-parameter nonlocal harmonic potential is

m vsin 9T\ 2
K<xT>yT7T§$anO;O): z ( A 2 >

2mihT \ wsingT
4 4 —m dpu+m
-exp — {Scl ey $ [A(T) + B(T)] + Q xryr + ToYo
1’ il
—U(S + ) (@ + 20)(yr + 4o))
20 [ dte (1) (5 Ga (1) + 9oGal0)
- :

B psinv(T —t)  p(lT —1t)

2702 /0 dte B, (1)(F 2 - )

posinpt - sin (10— t)sin 5t it
E.(
—HUT/ % )(m[smyT cos 5T I+ MT)
posin(T=t) ~ sing(T —=t)sin gt - p(T —t)
B, _
+x0/ N )(m[ sin T’ cos 5T I+ MT )
T T 2 . _ .

) W sinv(T —t)sinvs

e [ [ drdsE (0B (o) (25—

4sin§(T —t)sin§tsin 5 (T — s)sings,  p(T —t)s
_ . (44
vsin vl I+ MT ) (4.47)
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4.2 The Propagator in Limiting Cases

The main quantity of the calculation in this chapter is the two-dimensional
propagator of an electron in the transverse magnetic field and the x-direction
electric field with a two-parameter nonlocal harmonic potential energy. In this

section, we consider the propagator in the limiting cases.

Absence of Magnetic Field
In this case, the transverse magnetic field approaches zero. We consider
the system of interest eorresponding to w — 0 or equivalently M — oo. We first

consider the prefactor in equation (4.47). In the case

lim F(T) = lim — (

) 2
v sin %T
w—0 w—0 2mih T ’

wsin 5T
According to equation (4.41), if the force constant (k) approaches to zero then

the relative harmonic frequency (#) is equal to the harmonic frequency (w). Thus,

the prefactor is

2
m wT

F(T) = ) 4.48

(T) 2mih T <2sin“2’T> ( )

We consider in the limit M — oo.-the classical path becomes

mw w
Sfl — (4 cot 2T> |(zr — x0)2 + (yr — yo)2]

sinwT

Yy /0 Nate () (

sinwt = 2sin 7 sin 4(T — t)sin gt)

2
sinwT

+ /0 " dte (1) (

sinwt — 2sin ¥7'sin £ (T — t) sin gt)

sinw(T — t)sinws

- [ ' | " dtds B, () E(s)(

wsin wT’
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_4sing(T —1)sin %'tsin $(T — s)sin %3) (4.49)
wsinwT

Recalling that the Feynman propagator expression,

1
K(JZ'T, yr, T7 Lo, Yo, O) F 3 F(T) €xp (hScl) )

it is the exact propagator of an electron moving in two dimensions under the

x-direction electric field and a one-parameter nonlocal harmonic potential [8].

Absence of Electric Field

If the electric field E, (t) — 0, then the propagator reduces to

m wT \
K(.ZUT,yTyT;any()?O) ( )

~ OmihT \2sm 2T
v [ mw w
exp <4 cot §T|(xT —20)% 4 (yr — y0)2|> . (4.50)

This expression is the two-dimensional propagator of an electron in a one-parameter

nonlocal harmonic potential energy.

Absence of Nonlocal Field
When the nonlocal harmonic potential goes to zero, the system of in-
terest corresponds to the case when a relative harmonic frequency v — 0. The

propagator reduces to the simple form of

m v /m*
K(zr,yr, T; 0, Y0,0) = (m) exp o <2T|($T —@0)” + (yr — Z/o)2|> ;
(4.51)
where m* = mu/M is defined as the effective mass. This is a free particle

propagator.
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4.3 Summary

The exact propagator for an electron moving in a two-dimensional system
under the influence of a magnetic field and an electric field with a one-parameter
nonlocal harmonic potential was calculated by Samathiyakanit [8] and Sa-yakanit
et al. [40].

In this work, we generalize the model of random potential by introduc-
ing the nonlocal harmonic random potential with two parameters. The exact
two-dimensional propagator in the transverse magnetic field and the x-direction
electric field with a two-parameter nonlocal harmonic random potential cannot
be evaluated exactly. Because the equation of motion is a set of coupled integro-
differential equations due to the symmetric gauge, it cannot be solved exactly by
the above methods.

However, we apply the first-order cumulant approximation to calculate

the problem. The cumulant approximation is

(expIXT) = exp { (X) F 5 (X = (X)) .}

If we keep only the first-order term, then the first-order cumulant approxima-

~ elX)

X Therefore, the first-order cumulant approximation

tion becomes (e
neglects the quantum fluctuation around the mean value. The propagator can
be calculated by separating the Lagrangian into the x- and y-components. The
x-component propagator can be calculated exactly using the two-particle sys-
tem method but the y-component propagator cannot be evaluated exactly. We
use the first-order cumulant approximation to approximate the classical action

of the y-component and we calculate (y(t))s, and (y(t)y(s))s, by using the gen-

erating functional method [22]. Therefore, the propagator is a product of the
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x-component and y-component propagators; nevertheless, the expression is more
complicated.

Finally, we consider the two-dimensional propagator in the limiting cases.
For the case of the absence of the magnetic field, the propagator of a two-
parameter random potential reduces to a close form of the one-parameter random
potential that can be calculated by Samathiyakanit [8]. The two-parameter result
becomes more general than the one-parameter result; moreover, it can be reduced
to the one-parameter result by taking the limit M — oco. In the cases of absence
of the electric field and the nonlocal harmonic potential, the propagator can be
reduced to the nonlocal harmonic propagator and the free particle propagator,

respectively.



Chapter 5
Density of States

In this chapter we will calculate the density of states in a random sys-
tem. The variational path integral method can be used for calculating the ap-
proximated density of states. In the next section, a comparison between two-
dimensional density of states (2D DOS) from the path integral and the result of
white noise limit is discussed. The result using the two-parameter trial action

will be compared with the one-parameter.

5.1 Introduction

The problem of an electron in a disordered system at a high density
limit (HDL) has been interested by physicists for five decades. The important
example is heavily doped semiconductors, as impurity ions have very high density.
Kane [27] has applied the semiclassical or Thomas-Fermi type approximation to
calculate DOS in the high energy limit. In the semiclassical approximation(SA),
the potential fluctuation caused by charged impurities are assumed to be smooth
[28]. The electron only feels the potential of the point where it locates. In the low
energy limit, Halperin and Lax[29] introduced the potential fluctuation caused
by the quantum effects. In the regions of deep narrow potential wells the electrons
will be highly localized. This is the band tail of DOS. However, Sa-yakanit [5],
and Sa-yakanit and Glyde [6] has introduced the Feynman path-integral method
to calculated the DOS in the cases, i.e., the Gaussian random potential and the

screened Coulomb potential. His resulting density of states is valid at all energy
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limits. In the low energy limit it can be expressed in an analytic form which is
the same as proposed by Halperin and Lax [29] and in the high energies limit it
is analogous to the semiclassical Kane’s result [27].

In this work we consider an electron confined in two-dimensional disorder
systems. The impurity in the system produces the random potential interact-
ing with an electron. The aim of the present work is to analyze the fluctuation
potentials which can be expressed in the Gaussian correlation function. The two-
dimensional density of states (2D DOS) has been treated within the variational
Feynman path integral with a two-parameter nonlocal harmonic trial action. In
high energy limit, the 2D DOS has been expressed in an analytic form by letting
t — 0, which is the assumption of the semiclassical approximation. In the asymp-
totic approximation, the analytic 2D DOS reduces to a free electron DOS and
the Gaussian band tail, which agrees with Kane’s result. In the case of the low
energy limit, the 2D DOS is expressed in the analytic form with the dimensionless
functions of the preexponential factor a(v, p) and the exponential b(v, p), respec-
tively that the expression of 2D DOS is analogous with the result of Halperin and

Lax in low energies.

5.2 Density of States for a Random System

The density of states N(E) is the total number of energy eigenstates in

the interval [F, E + dFE] and can be represented as

1 (e}
n=1
when F, is the energy of the nth eigenstate, V' is the volume of the system. If the

system is disordered, we must average equation (2.41) over the statistical ensemble
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for the random potential. It is convenient to consider the density of states in
the form of equation (2.41). In order to apply the path integral formulation to

equation (2.41), one converts equation (5.1) into

1 oo " / )
n(E) = o /_OO TrK(x ,T;x,0) exp[%Et]dt (5.2)

where the operator Tr denotes the trace of propagator K. The propagator is a
retarded propagator describing the propagation of an electron from point =" to

point z". If the propagator K is invariant under translation of x, then

/

Kz T;z ,0)=K(z —z:;T,0). (5.3)

To find the density of states, the end point and initial point must be the same.

Therefore,

. — )
n(E) = e [m K(0,0;7,0) exp[%Et]dt. (5.4)

5.2.1 The Approximate Propagator

The two-dimensional random system in the Edward-Gulayev’s model is
considered in the limit of a set of NV rigid scatterers confined randomly within
a volume V in a surface space.. The density, n, of the scatterer is high but
the potential between an electron and a scatterer, v(7(t) — R), is weak. The
system can be viewed as an electron moving in the average scattering potential

by expressing the autocorrelation function, the action of this'system is

inn?

sirte) = [ dr [gﬁ(t)—Eﬁ W [Caswen - )| 69)
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where 7(t) are two dimension coordinates. The Fj is the average potential energy,
which is defined as FEy = (v(7)), and the parameter n represents the weakness
of the scattering potential and it is explicitly written to indicate the dimensions
involved. For the case of interest, the scatterers random distribution can be
described by the Gaussian distribution. An electron moving in weak and dense
receptors is equivalent to moving in the Gaussian potential. The autocorrelation

[30] has the form

W (7(t) =#(s)) = u*(wL*) " exp (_W)Z_j(%) (5.6)
where L is the Gaussian correlation length of the random system and w is another
parameter which takes care the dimensionality of the system.

In general, a lot of path integrals cannot be integrated out and our prob-
lem is one of these cases. The most widely used methods in path integral formal-
ism is a variational method. The concept of this method is that the appropriate
trial action with parameter can be obtained with high accuracy. There are two
basic idea that indicate whether the chosen trial action is suitable or not. First,
this action should be carried out easily and exactly. Second, the physical mean-
ing of the of the real system and the trial action must be likely. Therefore, we
use the variational method which we can adjust appropriate trial action. In this

investigation, we follow the method given by Samathiyakanit [8]. He introduced

a two-parameter nonlocal harmonic trial action with'w and x, which is

seosw( =t — s|)

sin “—2’T

So(k,w) = /()Tdt%%‘g(t) L ’%"/OT/OTdtds(f(t) Ots)) L (5.7)

where k,w are the the forced constant and harmonic frequency respectively. This

trial action is the action of a two-particles model system. The idea of this model is
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that a set of scatterers is dense and can be approximated by one-particle oscillator
with frequency, w, at the same time its coupling with a free electron by forced
constant, k. The average propagator is written as
Lo Lo i
Ky (7, 70; T) = Ko(70,70; T) <exp [ﬁ(S — Sg(lﬁ,u))):| >S - (5.8)
o(k,w

where a non-local harmonic oscillator has
b S q (AU
Koo, 7:T) = | DB exp 5ol (1),

and the average (.)s,(xw) is defined in equation (4.21). Consequently, we approx-
imate the equation (5.8) by using the first-order cumulant expansion [24]. The
average propagator can be rewritten as

L. Fis, )

K (77, 70; T') = Ko(70, 70; T') exp ﬁ(<S>So(H,w) — (S0) S0 (k)| (5.9)
where the index 1 denotes the first-order cumulant approximation. To evaluate
Ki(7p,70; T), we have to find Ko(ro, 70; 1), (S)so(rw) and (So)sy(sw) since the
kinetic term is always cancelled out from the average. The K (7, 7;T) can be

carried out in previous chapter by taking translation invariant
— — Z’ — —
Ko(70,70;T) = F(v,w,T) exp[ﬁSoa(rT — 710, 1]

1 (1/ sin %wT)2 (5.10)

i 2mih1 \wsin %VT

The average (S)sy(sw) can be evaluated by making a Fourier transform of au-
tocorrelation function W (r(t) — 7(s)) and the expression (5.10) can be used to

evaluate (S())SO(,W). Thus we can write

mn

[ s EO) - A s (G11)

<S>So(n,w) = _EOT +
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where W (7(t) — 7(s)) is given by equation (5.6) for the Gaussian potential. This
average is difficult to carry out the average of the Gaussian potential. We have

better use its Fourier transform in the two dimensional system,

W (i(t) — 7(s)) = / (2{1]_{;)21/[/(12) explik - (7(t) — 7(s))] (5.12)
where
W (k) = u® exp [—LZZ/?} . (5.13)

We can rewrite the average (5)s,(s.) by taking the Fourier transform of the

autocorrelation function as

(S) su () = ””7 4 / / dtds/

where the defined parameters are

sexp{—AR* +iB -k} (5.14)

1.1

A= (& 4+ LD = st — () = (e}

B = (i(t) — 7(5)) sy(.0)- (5.15)
For the Gaussian case, we apply the Gaussian integration formula for equation

(5.14) and for each cartesian coordinate of E—integration. The we obtain

m
(S) 5oy = E0T+8Tnh / / dids A~ exp( ] A) (5.16)

where the parameters in an above equation can be solved explicitly in [8], by

using

L? posinv(T —|t—s|)/2sinv(t—s)/2 (T —(t—s))(t—2s)
A= {_ ih sin T /2 OMT

m2y

)}
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B {,usinu(t —s)/2cosv(T — |t —s|)/2  u(t—2s)
B msin v /2 MT

Hrr — 7). (5.17)

Next, we evaluate (So) g,(xw) by employing the identity in equation (4.51)

and setting w equal to a constant

) 0In Ky
ﬁ<so>5'o(:‘i,w) = ) Sk |w=consmnt7 (518)
where
p mp )
Koy =F(T 2 T - 1
o =F(Tjexp [ Kl cot 50+ T (7 — ), (5.19)
and
. 2
m vsin €T
i (@ F= 3 . 2
(T) 2mihT (wsin%T) (5.20)

Using equations (5.19),(5.20) and carrying out the differentiation in equation

(5.18), we obtain

i i p? (vT 2m 1 V.o 2mY) (Fr—T5)
—{S Hw:——{—l t— T T =T ——}-7
 Sodsoine) = g 5 (I ) cota = (GrTese 5T)" = 7 2T
VT
—— ot T—l 5.21
m<2 2 ) ( )

5.2.2 The Approximation of the Density of States

The approximated density of states for a random system can be calculated
by following the same procedure in equation (5.5) and substituting equations
(5.16), (5.17) and (5.21) into the average propagator Ki(rr,7e; 1)) in equation
(5.9). Next, we take the trace of the average propagator which-is we set 7 = 79

and substitute in the expression of the density of states, we get

/ ( ) v sin %T 2
N 27rh 2mihT w sin I—Z’T
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1 w (vl v
—(E—E)T+ — | ——cot=T —1
exp{h( 0) +m<200t2 )

w o sinv(t —s)/2sinv(T — |t —s|)/2
2h2/ / dtds{——i—h ( mysinvT/2

+

(T_ ‘t—SD(t—S))}_l}’ (522)

2MT

where &; = nu®n?. Note that the periodic function, .J, has the property
J([t= s|) = J(T = [t =s]),

the double-time integration can be reduced to a single integration [31], change

integral by set x =t — s and obtain

//dtds =t =s))+di T/ dzx[J : (5.23)

If, we define the variable

p=\/m/(m+ M), (5.24)

then we have the relation w = vp and p/m = 1 — p?. The variational parameters
(w, k) can be converted by the new variational parameters that are the relative
harmonic frequency v and. a parameter p, respectively.-The density of states can

be rewritten as

sin 2 pvT ? 7
2 =(E — Ep)I!
i 27Th/ (2th> <psin %T) exp{h( 0)
T 3 T
1 - p? <”— T 1> 3’ T -1
+(1 = p7) 5 cot2 il ) drJ(x,p)~ "¢,

(5.25)
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where

L? sinve/2sinv(T — ) /2

Ja.p) = {z +ih(L = g

ihp? (T — x)x
e } (5.26)

However, the obtained density of states is still too complicated and cannot be

)+

my sinvT/2

calculated exactly. Therefore, we consider it in the asymptotic approximation for
the low energy and high energy limits. At large negative energies deep in the band
tail (E — —o0), it is the so-called “quantum case” or “full-ground-state”. The
other limiting case (£ — o00) corresponds to a “classical well”. Therefore, two
analytic expressions for the two-dimensional density of states can be obtained
from the above expression and they are called the low energy limit and high

energy limits.

Low Energy Limit

In the low energy band tail. the density of states is the contribution of
the ground state energy. Thus we let T — oo [6] and suppose that p is large.
Hence, we are able to approximate [32],

sinvr/2sinv(T —x)/2 1
sinvT/2 ak

1
sin pvT'/2 ~ 5 oL,

1 .
: T/9 o~ — wT/2
sin T’/ 5

?

wT

T
(% cot vT /2 — 1) N (5.27)

Since, we substitute equation (5.27) into equation (5.25) and integrate by keeping

only the term up to T2, then the density of states becomes
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Ny (B) = — ( m ) V2 /O:O dT(iT) exp {3 ((E B — B+ SE,(1— p2)> T

o7h \2xh/) " - n 2
T2 Er !
——ép (1 +4—(1 - p? ) 2
e (1ragia- ) (5.29
where E, = hv, Ep = h*/2mL? is the energy associated with localizing an

electron within the correlation length and the fluctuation energy &;, = 4¢; /L? is
the dimension of the energy squared. Using the formula [33] and the parabolic

cylinder function, D,(z), we get

0o . 2
/_ " (it exspl- 3 < i) = /3/;;1 exp( 852 )D,,(ﬁ%). (5.29)

Therefore, the density of states can be written in an analytic form as

2h? E,
(E—Ey—E, +3E,(1—p?)?
X ex =
- A€ (1 +4Z:(1 — p2)) !

NlL(E) =

E—EBy— B, +1B,0- p
x-Ds (- o — Pt p)) (5.30)

V450 = )"

Let define the energy dimensionless parameters v = (Ey — E)/EL, © = E,/E
and ©'° = E,(1 — p?)/Er. Now we are interested in the density of states in the
deep band tail. This can be achieved by letting £ — —oo(¢ — 00) and using the

asymptotic expansion of the parabolic cylinder function [33],

Dp<ZL‘) = e—x2/4;[;p (1 — % —+ ) . (531)

—x2/4

For large argument values, D;(z) ~ xe , we obtain the asymptotic expression

with dimensionless parameter for the low energy density of states as
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R e ) (5:32)
L L

where the dimensionless parameters are

/ 1 1, 4
) _ 2 1 21372
a(v,z, = St (v+x—2x)(1+x,)/ (5.33)
; 4
b(v,:v,r)z(u#—x—ix) (1+—). (5.34)
T

The 2D DOS in the low energy limit is analogous with that proposed by Halperin
and Lax [29]. This DOS is proportional to the dimensionless parameters a(v, z, z")

and b(v, z,z'), respectively.

High Energy Limit
In high energy limit case, it is necessary to take the limit 7" — 0 [6] or
equivalently p — 0, which we can neglect the p? term. Thus we are able to

approximate

sinve/2sinv(T — ) /2

~ 0
sinvT /2 |
: 2
sinpvT'/2\" © :
psinvT/2) 7
T
(”? cot vT/2 ~ 1) ~ 0. (5.35)

Inserting equation (5.35) into equation (5.25), we obtain

2

NMu(E) = % (%) /_O:o dT(iT) ™" exp {—%(EO — BT — %&} . (5.36)
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By using the parabolic cylinder function and the condition of the low energy

limit, the density of states in high energy limit becomes

2 2 Ey—F
Nig(E) = W%G(EOE) Mep (%) . (5.37)

This is analogous with the semiclassical Kane’s result [27] for the two dimensional
density of states. Using the asymptotic expansion of parabolic cylinder function
for a large negative argument [34], D_i(x) ~ /7/2 - e*/4[1 + erf(z)], we get
the following expression for the two dimensional free electron density of states in

terms of the error function

Nip (B) = % (1 + erf (%)) . (5.38)

This equation for the density of states is analogous to Van Mieghem’s result [34].

Let us consider two limiting cases for positive and negative £y — E. From
the analytic expression in equation (5.37) using the asymptotic representation of
the parabolic cylinder function for £ < Ey [35], D_y(z) ~ e **/*/z for |z| < —1
and we take the error function in equation (5.38) for E > Ej [35], we obtain the

asymptotic density of states

U Ve —(Bo—E)?/2r,
€ (E - Eo) < -1
Nig(E) = { 70 V2(E, — E) (5.39)
™m

The first of these expressions is the band tail result of Kane for a two dimensional
problem and the second is well known free electron band valid for a positive
(£ — Eo).

We also plot the normalized analytic DOS and the free electron DOS on

the same plot as shown in Figure 5.1. The tail shows localized states of electrons.
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Heavily doped semiconductors have impurity localized energy levels in the band
gap. At high densities, these localized energy levels interact and form a band, this
impurity band merges with the conduction and the valence band. The impurity
band is a band tail of the system. The asymptotic density of states for the two
limits, the plots are shown in Figure 5.2. These curves represent the normalized

analytic DOS and the normalized asymptotic DOS.

Nor mal i zed DOS
1.2+

1 — —

0.8
0.6/

0,4}

NSRS ol ‘ ‘ ‘ _ E-Ey eV

Figure 5.1: The normalized analytic DOS in equation (5.37) (dash line) with a
normalized free electron gas DOS (solid line).

5.3 Comparison of Results

In this section, the results-of 2D DOS in the previous section are compared
with the results calculated by Sa-yakanit-and Slavcheva [36];,-and Sa~yakanit et al.
[37] and the result of tight-binding simulation in the white noise limit [38]. The
white noise limit, the correlation length (L) of the Gaussian random potential

approaches zero, that is a delta function potential.
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Figure 5.2: Plot of the normalized analytic DOS (solid line) and the normalized
asymptotic DOS (dash line).

5.3.1 Comparison 2D DOS Between 1P with 2P Varia-
tional Path Integrals

The DOS in equation (5.32) has been calculated by the variational path
integral with the the two variational parameters (2P) that are v, p, respectively.

In order to account for the variational parameters that introduced to min-
imize the argument of the exponential in DOS or equivalently to maximize DOS
[39]. First, we choose v which maximizes DOS, by differentiating dimensionless
b(v,z,z) with respect to x and letting it equal to zero [29]. The variable x is the
ratio of the energy associating with the harmonic oscillator and the correlation
energy. The Gaussian case, the best choice of x is kept only the positive roots
that is satisfy the equation

9 4v 4upt 22(1 — p*)

— =0. 4

In the white noise limit, L — 0. This implies that z = 2mL?v/k is vanishingly
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small. Neglecting 22 corresponds to neglecting the fluctuation in W () within its

correlation length L, then we can write

2v

= — 5.41
z 1+ p2’ ( )
and we introduce the dimensionless fluctuation energy as
APt
L s 5.42

We substitute equations (5.41), (5.42) into equation (5.32) and normalize it with
respect to the 2D free electron DOS. At the same time we apply the dimensionless

expression in equations (5.33) and (5.34), then the normalized 2D-DOS can be

written as
NZP ) ,
1]LV(U) = (837;2> a(v,p)e‘b(“’p)/2§ , (5.43)
0
where
1 (20) 41 £ p?) \*?
= ] 5.44
a(v,p) 25/271'3/2 (1 + ,02)2 ( K 2’0(1 /T p2> ) ( )
4(1+ p?)
b(’l),p) = (21))2 <1 + m . (545)

For the 2D-DOS with dimensionless parameter in the band tail has been
calculated by Sa-yakanit and Slaveheva [36], using the variational path integral
method with the one-parameter trial action. The normalized 2D-DOS in the

white noise limit is

NlP 2 ,
IJLV(U) = (5,37;2> a(v)e’b(”)/2£ , (5.46)
0
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where

1 3 4 3/2
a(v) = 25/2—7r3/2(2v) (1+ %) /2, (5.47)
b(v) = (20)2(1 + %). (5.48)

In fact, the parameter p is proportional to the mass M. According to equation
(5.24), if M — oo then the parameter p> — 0. Therefore, the normalized 2D
DOS in equation (5.43) reduces to the normalized 2D DOS of the one-parameter

variational in equation (5.46) in the limit of p* = 0.

5.3.2 Comparison Path Integral Results in the White Noise
Limit

The density of states of an electron in the white noise potential in two
dimensions has been calculated by Thouless and Elzain [38]. The 2D-DOS in the
white noise limit has been calculated by the coherent potential approximation
(CPA) at high energies, it has also been calculated from the fluctuation theory
in low-energy band tails. The result of a tight-binding (T-B) two-dimensional
simulation with respect to the white noise problem in low energies is compared
with the CPA in Figure 5.3. In addition, the tight-binding normalized 2D DOS

for negative E — Ej is the straight line, which fits well with the simple exponential

nT—B(

47(0.931)(B) < Ey)
LV~ (0.17ex
N, | Q

where () is energy scale of the white noise.

(5.49)
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Figure 5.3 Normalized density of states n(FE)on logarithm as a function of energy
E. Their calculation results are shown with error bars. The curve gives the CPA
density of states and the straight line the exponential tail of the tight-binding

simulation.

This DOS is, however, independent of the dimensionless energy v. We
define @) proportional to the variance, W2 = &', and the potential energy, V = E;.
Therefore, we can define a new dimensionless energy n as
An(E'— Ey)  4n(E — Ey)

n= G - Ef (5.50)

Thus, the dimensionless energy can be rewritten in-terms of the new parameter

7 as

né
= . 5.51
V= (5.51)
Therefore, the normalized 2D DOS in a Gaussian white noise limit can be written

in terms of a new dimensionless energy as
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= U~ (0.17) exp (0.9317) . (5.52)

Referring to equations (5.43) and (4.46) in the white noise limit, they imply that
is very small and the dimensionless energy v < 1. We can express the normalized

2D DOS in terms of a new parameter n as

Nif'(m) = 2% 7
Ny niEns exp <_E> , (5.53)
and
No  (m3PEI2(1p?)? dn(1—p?) )" '

where superscripts 1P and 2P are the case of the one- and two parameter trial
actions, respectively.

We plot the two cases of the variational path integral results for the nor-
malized 2D DOS on the same plot with the result of the tight-binding simulation
[38] in the white noise limit as shown in Figure 5.4. From the work of Sa-yakanit
and Glyde [6], the magnitude of the energy fluctuation ¢’ is about 5 in n-GaAs.
As it can be seen in the Figure 5.4 that the results from the two variational pa-
rameters of the path integral in the white noise limit with setting the variational
parameter p?-= 0.15-is closed to the tight-binding simulation point than that

from the one-parameter variational path integral.
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0.0

log(N 14 (n)/Ng)

n-1n (k& pIQ

Figure 5.4 The normalizes 2D DOS on logarithm with a dimensionless energy n in
the white noise limit for the fluctuation energy dimensionless of n-GaAs (¢ = 5)
[6] : (T-B : the tight-binding energy simulation result), (1P : the one-parameter
variation result), (2P, p?> = 0.15 : The two-parameter variation result).



Chapter 6

Discussions and Conclusions

We shall begin with the summary of the main results obtained in this
work. Discussions and comparison will then be considered intensively. The main
point: we generalize the model of random potential by introducing the the two-
parameter nonlocal harmonic random potential instead of the one-parameter non-
local harmonic random potential.

The exact propagator for an electron moving in a two-dimensional system
under the influence of a magnetic field and an electric field with a one-parameter
nonlocal harmonic potential was calculated by Sa-yakanit et al. [40]. The actual
problem is transformed into an electron moving in a magnetic field under the
external electric field and the nonlocal harmonic force by using Stratonovich’s
transformation [42]. Nevertheless, the transformed problem is a set of coupled
differential equations due to the symmetric gauge. Using the 2 x 2 matrices intro-
ducing by Papadopoulos and Jones [41], the set of coupled differential equation
reduces to the matrix equation, without a coupled equation. After completing
the routine evaluation, we obtain the exact propagator.

Firstly, we calculate the exact two-dimensional propagator of an electron
in the transverse magnetic field and the x-direction electric. field with a two-
parameter nonlocal harmonic random potential. The problem cannot be solved
exactly by the Stratonovich’s transformation and the 2x2 matrices methods be-
cause the equation of motion is a set of coupled integro-difference equations.
However, we apply the two-particle system method [8] and the first-order cumu-

lant approximation [24] to carry out. The first-order cumulant approximation
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1s
(eX) ~ o),

The high-order terms are neglected. This mean that the quantum fluctuations
around the mean value have been neglected. Thus we separate the Lagrangian
into the x- and y-components. The x-component propagator can be calculated
exactly using the method of a two-body problem but the y-component propaga-
tor cannot be evaluated exactly. We use the first-order cumulant approximation
to approximate the classical action of the y-component and we calculate (y(t))s,
and (y(t)y(s))s, by using the generating functional method [25]. Therefore, the
propagator is a product of the x-component and y-component propagators; never-
theless, the expression is more complicated. In the case of absence the transverse
magnetic field, the propagator of a two-parameter random potential reduces to a
close form of the one-parameter random potential [8] in the limit M — oc.
Secondly, the density of states for a system with the Gaussian random
potential is calculated by using the two-parameter variational method via path
integrals or so-called the two-parameter theory. The approximation is based on
the first-order cumulant approximation. The density of states can be considered
in the two energy limits, which are the high-energy and the low-energy limits. At
the high-energy limit, the two-dimensional density of states (2D DOS) is obtained
by letting the time variable T — 0. The density of states is independent on
the number of variational parameters. Therefore, the 2D DOS agrees exactly
with those of the one variational parameter for Sa-yakanit and Slavcheva [36];
furthermore, it is similar to the semiclassical Kane result also. However, the

density of states is proportional to the magnitude of fluctuation potential energy
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(&). The influence of a fluctuation potential energy is to localized electrons at
an electron energy F < E; as shown in Figure 6.1. The probability of finding

localized electron states increases as the fluctuation potential energy increases.

Nor mal i zed DOS
INAAT

1t

Fig.6.1 Plot of the normalized analytic DOS in a difference limits of the fluctuation
potential energy &1(eV)? : (Solid line : &, = 1), (Long dash line : & = 1.1),
(Medium dash line : &, = 1.5), (Short dash line : &, = 100).

The low-energy limit can be reduced to the analytic density of states by tak-
ing T" — oo. This means that only in the ground states will be retained in
DOS. The asymptotic DOS (F“— —o0) is proportional to the dimensionless
parameters a(v,z,r") and-b(v,w,z') given by equations (5:33) and (5.34), and
clearly dependent on the parameters v, z and p, where ' has been defined by
v = E,(1—p*/EL. At the low energy limit or the full-ground state, 2D DOS
from the two-parameter theory reduces to the one-parameter theory by letting
p? = 0 or equivalent setting z = T

Moreover, at the white noise limit the density of states in equation (5.54)

is dependent on the parameter (p). The normalized DOS of two-parameter theory
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is closer to the tight-banding simulation point than that from the one-parameter
theory as shown in Figure 5.4. We see that the two-parameter theory is more ad-
vantageous than the one-parameter theory. Because, we can vary the variational
parameters (z, p) to close the simulation result than the a one-parameter case.
However, the two-parameter result can be reduced to the one-parameter result
by letting p? = 0.

Finally, the result from the two-parameter theory becomes more gen-
eral and covers the one-parameter condition. We may conclude that the two-
parameter theory has improvement and advantages over the one-parameter the-

ory.
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Appendix

The Two-parameter Action

The Lagrangian of system

L= ;[mXQ(t) FMV2() = m(X () =Y (£)?]. (A1)
and the propagator as
K(XoYy, XaYiiT) = (XoX5; T| X1 Y1 0)
= N [ DIX (DY ()] exp % { / j dt;[mX2(t) — eX2()
+ [ ' dt;[MYQ(t) RV 4 2X(t)Y(t)]} | (A.2)

where N is a normalization constant determined so that for k =0

m M
N = e 2 A3
(27r7lht 27riht) ( )

We shall therefore carrying out the path integral for the second particle, by

using harmonic forced oscillator, Eq. (A.2) becomes

m M
K(XoYa, XaY1;T) = (27riht)3/2(27riht)3/2

[ Dx(@)esp ! { [k mxe) - nx). exp(Sd[m)])} |
(A4)

where w = \/k/M and

B Mw
© 2sinwt

28Y, (T
Sa(Y (1)) (Y7 + V) coswt — 2Ys - Yy + ]\lj[ 2 / dtX (t) sinwt
w Jo
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22
M2?

2/~£Y1

/ dtX (t)sinw(T—t)— / /dtdsX t)-X(s)sinw(T—t) sinws].

As mentioned above,we shall not be interested in the second particle. One
can carry out the path integral for the second particle, thus setting Y5 =Y

and defining the propagator for a single particle

K (X, X, )= [3(%— Y K(XaY, X,Y3:T)dYs

mMw 3/2 i C N - )
<(27m'ht)(27rih sin wt)> /D[ ()l exp A {/0 dt2 [m X7 () — K X7(1)]
: 3 inwt + sinw(T —t
x /dYQ exp 3 [—Mw tan =11 Y+ m/o X (1) J;EZ;( )y YZ]

sin w7’

X oxp [ / /dtdsX (>sinw(T.—t)sinws}}' (A5)

Now we are ready to carry out of second term in Y5 integral, using the

Gaussian formula

e.¢] 2
/_Oo dpe 7"t = \/geébﬁ, (A.6)

we can write the propagator

mMw )3/2 Th )3/2
(2miht)(2mih sin wt) iMwtan §T

K(Xp, Xi;T) = (
X /D[X(t)] exp; {/OT dt;[mXQ(t) — KX2(t)

K2 T rt sinwt +sinw(T —t), ,sinws + sinw(T — s)
—_ dtdsX (t)-X
+4M¢u tan $T° /o /o sX(t)-X(s)( sinwT' ) sinwT )
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sinw(T — t) sinws
- dtdsX(t) - X . AT
/ / sX(1) - X(s) sinwT’ } (A.7)
Since sin wt + sinw(T' —t) = 2sin $T cos 5 (T —t), then
1 (sinwt+sinw(T—t))(sinws—|—sinw(T—s))
tan ST sinwT' sinwT
PEOs (T 1] cosg (il ="%)
- sin 7 cos §(T)
= fCosbM= (1 4 8)) + cos (e — ) (A
= ooy s cos w s)]. :

Substituting equation (A.8) into equation (A.9),

K (60 X05T) = (e Pt [ DX (O [ gm0 = )

K’ Tt 2 1
3T ot o dtds X (t)- X — T—(t i
+4M¢utam “2’T/o /0 sX(t) (8)[4sian cosw(T—(t+s))+cosw(t—s)

sinw(T = s) sinws
_ _ A9
sin wT’ ]} (A.9)
Further,
2,1 2sinw(T — s)sinws
z T 1 Q)| £
4(sian cos w( (t+'s))+ cosw(t—s)) b T
-, Leosw(g— (t—9))
) A.10
T2 sin 7 | ( )
substituting equation (A.10) in to equation (A.9), we have propagator
K (Xa, X0:T) = (=0 y3/2 /D Jexp - /T - ImX2() — X2()
2 2miht”  (2isin % hlJo 2

2Mw/ /dtdSX B X(s )Coswsmggf_s))}. (A11)
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Since

cosw(L — (t —s))

T ot
dtdsX (t) - X
/0 /0 sX(t) (5) sm“QJT
1 /T T cosw(L — |t — s|)
S dtdsX(t) - X 2
2/0/0 SX(?) (5) sin $7T ’

where w = \/W , k?/Mw = kw, then the second term in the exponential of

equation (12) becomes

2Mw/ /dtdsX e X )COSW(EH_‘;;_S))

_ le/w/OT/ontdsX(t)«X(S)COSW(% Sl a )

sin%T

and

r L—t— 2

/ s o 7 (A.13)

0 81115T w
since,

X2(s T _|t—
/dthQ //dtds + (8)) costols — |t = s))
sm§T

(A.14)
Combining equation (A.12), (A.13) and (A.14), becomes

z«xzxaT>:<@;;QP”QmQQTP/JﬂX@nwp;{ATﬁgmv@a>—nX%w

i [ s == - e}

sin “’T

Therefore, the action of two-particle model system is

/dth2 —W/ / s 15D ey

sin “’T
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