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Chapter 1

Introduction

1.1 Introduction

Hydrogen is the lightest element in the periodic table. In 1935, when quantum

mechanics was firmly established, Wigner and Huntington[1] predicted that hy-

drogen could become a metal under enormously intense pressure. Since then it

stimulated an enormous amount of works in the search for metallic hydrogen. This

goal actually revealed much harder works than what initially expected. Wigner

and Huntington predicted a metallization pressure of 25 GPa. It is shown exper-

imentally that this estimation was too optimistic. So far, in 2003, metallization

has not been observed in crystalline hydrogen at least up to the pressure of 340

GPa. The metallic hydrogen is of great scientific interests because it is definitely

the lightest metal. Some calculations[2] indicated that it can be in a supercon-

ducting state even at high temperatures. A possible technological application is to

use metallic hydrogen as a very compact source for fuel cells. Furthermore, some
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evidences showed that the cores of Jupiter and Saturn are composed of metallic

hydrogen[3]. In this work, we would like to understand more about solid metal-

lic hydrogen. We assume that solid metallic hydrogen is a neutral collection of

static protons, which occupy a high symmetry lattice, and electrons. The ground

state energy of solid metallic hydrogen is calculated by using the Hartree-Fock

approximation[4-5] or the density functional approximation[5-6]. Our primary

goal is to determine the ground state energy of solid metallic hydrogen as func-

tion of rs, and to determine rs at which the ground state energy is minimum.

However, the determination of the phase transition point is very difficult.

According to experiments, hydrogen does not become a metallic solid under the

highest pressure available in laboratories, i.e. about 340 GPa. Furthermore, solid

molecular hydrogen[7] has lower ground state energy which is -1.1648 Ry/atom

at rs = 3.12a0. Thus it is more likely that solid molecular hydrogen will be found

under high pressure instead of the solid metallic hydrogen because the nature

will be in its lowest energy state. The solid metallic hydrogen might exist as a

metastable state. This work aims to study whether stable or metastable metallic

states.

1.2 Objectives

The purpose of this work is to calculate the ground state energy of solid metallic

hydrogen as a function of rs and to determine rs at which the ground state energy



3

is minimum. We carry out two similar methods. In the first method, we use the

Hartee-Fock approximation to solve a many-body problem of electrons moving

in a potential field and use the Wigner-Seitz method to accurately estimate the

energy band dispersion upto order of k4 using the most accurate available cor-

relation potential. Hence the ground state energy obtained in this work is more

accurate than that of previous works[7]. However, the major weakness of this

method is that the proper lattice symmetry is not taken into account.

Therefore, the ground state energy, the band structure and the density of

states of solid metallic hydrogen in various lattice structures, such as body cen-

tered cubic, faced centered cubic and hexagonal close packed are also investigated

by an alternative formalism.This is aimed to refine our calculations in order to

include the effect of lattice structures. We choose the full potential linearlized

augmented plane wave (FP-LAPW) method which imposes the density functional

theory to solve many-electron problems. The ground state energy depends on lat-

tice structures and can be expressed as a function of lattice constants. From this

relation, a stable lattice constant and a corresponding lattice structure, of which

the ground state energy is minimum, are determined.

1.3 Thesis Outline

This thesis is organized as follows: chapter 1 provides an introduction to previ-

ous works and the possibility of their extension. The objectives of this work are
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stated. In chapter 2, the Hartree-Fock approximation and the density functional

are discussed in general. The many-electrons problem can be reduced to a one

electron problem by using the Hartree-Fock approximation, the density functional

approximation and some other approximations such as the Born-Oppenheimer ap-

proximation and the independent particle local density approximation. In chapter

3, we discuss a more specific method for calculating the ground state energy of

solid metallic hydrogen by using the Hartree-Fock approximation. The energy

dispersion is calculated by the Wigner-Seitz method. This dispersion depends on

the density of the metal but does not depend on the information of lattice struc-

tures. In chapter 4, a more complicate theory, which can be used to calculate the

ground state energy, the energy bands and the density of states of the the metal

in various lattice structures, is presented. This method is an interplay between

the density functional theory and the full potential linearlized augmented plane

wave method. In chapter 5, the results of calculations, such as the ground state

energy, the energy band, and other properties in different lattice structures and

different lattice constants are presented. This formation can be used for deter-

mining the possible macroscopic states of solid metallic hydrogen. Conclusions

are in chapter 6.



Chapter 2

The Many Electron Theory

2.1 Introduction

In this chapter, the Hartree-Fock theory and the density functional theory, which

are two different approaches to the many-electron problem, are discussed. Both

theories are the simplification of the full problem of many-electrons moving in

a potential field. A physical system consists not only of electrons but also of

nuclei and each of these particles move in the field generated by the others.The

Hamiltonian of the system consisting of N electrons and K nuclei is

H =

N∑
i=1

p2
i

2m
+

K∑
n=1

P 2
n

2Mn

+
1

2

N∑
i,j=1;i�=j

e2

|�ri − �rj| (2.1)

−
K∑

n=1

N∑
i=1

e2Zn

|�ri − �Rn|
+

1

2

K∑
n,n′=1;n�=n′

e2ZnZn′

|�Rn − �Rn′|
,

where the index i, j refer to the electrons and n, n′ to the nuclei, e, ri, pi, and m are

the charges, position, momentum and the mass of the electrons, Zn, Rn, Pn and

Mn are the charges, position, momentum and the mass of different nuclei. The

first and second terms are the kinetic energies of electrons and nuclei respectively.
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The third term is the coulomb repulsion between the electrons and the fourth

term is the coulomb attraction between the electrons and the nuclei. The last

term is the coulomb repulsive between the nuclei. It is impossible to solve the

stationary Schrödinger equation for this Hamiltonian directly. In a few following

subsections, we will introduce some approximations.

2.1.1 Born-Oppenheimer Approximation

In a system consisting of both heavy and light particles, we can assume, to a high

degree of accuracy, that the movement of the heavy particles (ions) can not quite

follow the dynamics of the light particles (electrons). The motions of the nuclei

are slower than those of the electrons because the mass of a proton or a neutron is

about 1835 times larger than the electron mass. Thus we may separate the degree

of freedom, which is connected to the motions of the nuclei, from those of the

electrons. However, it is important to note that this approximation is not limited

to only systems of fixed ions. It fact, the nuclear degree of freedom could be

solved once the electronic configuration is known. This approximation was firstly

proposed by Born and Oppenheimer. The Born-Oppenheimer Hamiltonian[5] for

the electrons can be written as

HBO =
N∑

i=1

p2
i

2m
+

1

2

N∑
i,j=1;i�=j

e2

|�ri − �rj|

−
K∑

n=1

N∑
i=1

e2Zn

|�ri − �Rn|
+

1

2

K∑
n,n′=1;n�=n′

e2ZnZn′

|�Rn − �Rn′| . (2.2)
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Never the less, this Hamiltonian is still too complicated to be dealt with. In the

next subsection, we introduce a further approximation, known as the one-electron

approximation.

2.1.2 One Electron Approximation

The one-electron approximation is based on an assumption that each electron

is an independent particle which can be considered separately. Each electron

is treated as a particle moving in a mean field potential U (�r). This potential

represents the effects of all the other particles in the system. The one-electron

equations are of the form

{
− �

2

2m
∇2 + Ui (�r)

}
ψi (�r) = εiψi (�r) , (2.3)

where −�
2∇2/2m is kinetic energy operator, ψi (�r) are the one-electron wave

functions and εi are Lagrange multipliers which arise from the fact that the one-

electron wave functions are normalized. Then all ψi (�r) can be used as a basis to

construct a many-body wave function Ψ. Hartree was two first who consider this

approximation.

2.2 Hartree Approximation

This is true only if the electrons are independent particles. We will show that

this statement leads to the one-electron approximation. Hartree started that the
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N-electrons wave function Ψ is just the product of the one-electron wave functions

as

Ψ(�r1 , �r2 , ..., �rN
) = ψ1(�r1)ψ2(�r2)...ψN

(�r
N
), (2.4)

where ψ(�r) are obtained from Eq. (2.3). This many-body wave function can be

used to find the expectation value of the Hamiltonian as

〈Ψ|H|Ψ〉 =
N∑

i=1

∫
d�rψ∗

i (�r)

(
− �

2

2m
∇2 + Ui (�r)

)
ψi (�r)

+
1

2

N∑
i=1

N∑
j �=i

∫
e2

|�r1 − �r2| |ψi( �r1)|2|ψj(�r2)|2d�r1d�r2. (2.5)

We introduce a Lagrange multiplier εi because the one-electron wave functions

must be normalized. Then we minimize the above equation with respect to the

N-electron wave function, i.e.

δ

δΨ

{〈
Ψ

∣∣∣Ĥ∣∣∣ Ψ
〉

+
∑

j

εj

∫
d�r1 |ψj (�r1)|2

}
= 0. (2.6)

This leads to a set of one-electron equations which are known as the Hartree

equations

{
− �

2

2m
∇2 + Ui (�r)

}
ψi (�r) = εiψi (�r) , (2.7)

It can be easily shown that in the Hartree approximation,

Ui (�r) = −
∑

n

e2Zn∣∣∣�r − �Rn

∣∣∣ +
∑
j �=i

∫
d�r1 |ψj (�r1)|2 e2

|�r − �r1| . (2.8)
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The first term is the contribution from the nuclei potentials. The second term

is the contribution from the electron potentials which are approximated by the

electrostatic interaction among all other electrons and can be written in terms

of the electron density ρ (�r) .The electron density is constructed from the single

electron eigenstates:

ρ (�r) =
N∑

j=1

|ψj (�r)|2 , (2.9)

where the summation over j thus includes all occupied states. Note that, ψj (�r)

can be solved only when Uj (�r) are known and in return Uj (�r) also depend on all

ψj (�r) . Thus the solution must be solved self-consistently.

2.3 Hartree-Fock Approximation

In Hartree approximation, the effects of particle spin statistics are not included.

The way to account for the spin statistics was introduced by Fock.

When we consider a many-electron problem, we must keep in mind that

electrons are identical particles and have antisymmetric wave functions. When

any two arguments are swapped, the wave function changes sign, for example

Ψ(X1, X2, ..., Xi, ..., Xj , ..., XN ) = −Ψ(X1, X2, ..., Xj , ..., Xi, ..., XN ), (2.10)

where Xi contain r representing the electron coordinates and s representing the

electron-spin projections. This follows from Pauli exclusion principle which is

stated that, no two electrons can have the same set of quantum numbers. It
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implies that electrons, which have the same spin, cannot occupy the same state.

The probability density for finding particles with specific values of X1, ..., XN is

given by

ρ(X1, X2, ..., XN ) = |ψ1(X1)|2|ψ1(X1)|2...|ψN(XN)|2, (2.11)

which is just the product of the one-electron probability densities. This probabil-

ity distribution is uncorrelated. By taking Pauli principle into account, the wave

function can be written in form of Slater determinant, as

ΨAS(X1, X2, ..., XN ) =
1√
N !

⎡
⎢⎢⎢⎣

ψ1(X1) ψ2(X1) · · · ψN(X1)
ψ1(X2) ψ2(X2) · · · ψN(X2)

...
...

. . .
...

ψ1(XN) ψ2(XN) · · · ψN(XN)

⎤
⎥⎥⎥⎦ . (2.12)

We will calculate total energy using this wave function and Hamiltonian. This

wave function is also used for finding the expectation value of the Hamiltonian

as

〈Ψ|Ĥ|Ψ〉 =
∑

i

∫
d�rψ∗

i (�r)

(
− �

2

2m
∇2 + Ui (�r)

)
ψi (�r)

+
1

2

∑
i

∑
j

∫
d�r1d�r2

e2

|�r1 − �r2| |ψi( �r1)|2|ψj(�r2)|2

−1

2

∑
i

∑
j(like spin)

∫ ∫
d�r1d�r2

e2

|�r1 − �r2|
· [ψ∗

i (�r1)ψ
∗
j (�r2)ψi(�r2)ψj(�r1)

]
. (2.13)

The results of minimizing the expectation value of Ĥ with respect to the one-

electron wavefunctions are the Hartree-Fock equations.
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εiψi (�r) =

(
− �

2

2m
∇2 + Ui (�r)

)
ψi (�r)

+
∑

j

∫
e2

|�r − �r1| |ψj (�r1) |2ψi(�r)d�r1

−
∑

j(like spin)

∫
e2

|�r − �r1|ψ
∗
j (�r1)ψi(�r1)ψj(�r)d�r1. (2.14)

The first two terms is kinetic energy and the effective potential. The second term

is the Hartree potential and the third term is the exchange term. The effects of

the exchange term are that the electrons of like spins tend to avoid each other.

As a result, an electron has a “hole” associated with it. This hole is known as

the exchange hole. It is a small volume around the electron which other like spin

electrons try to a void. The charge, which fills in the exchange hole, is positive

and equivalent to the absence of one-electron.

2.4 Density Functional Approximation

A weakness of the Hartree-Fock equations is that they depends on the occupied

electron orbitals. Thus it is difficult to apply for an extended system. A better

way to solve this problem is called the density functional approximation intro-

duced by Hohenberg, Kohn and Sham. In the density functional approximation,

Schrödinger equations depend on the electron density rather than on the indi-

vidual electron orbital. This method can include correlation effects which are

completely neglected in the Hartree-Fock approximation.
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Kohn and Sham[9] stated, based on the Hohenberg-Kohn theorem, that

energy of the system E (ρ (�r)) is a function of the electron density. and can be

minimized by varying the density as

δ

δρ (�r)

{
E (ρ (�r)) − ε

∫
ρ (�r) d�r

}
= 0. (2.15)

We get

δE (ρ (�r))

δρ (�r)
= ε,

and ∫
ρ (�r) d�r = N.

The variation principle for interacting electrons takes the form:

E (ρ (�r)) = Ts (ρ (�r)) +
1

2

∫ ∫
ρ (�r) ρ (�r1)

|�r − �r1| d�rd�r1

+Exc (ρ (�r)) +

∫
ρ (�r) Vxcd�r, (2.16)

where Ts (ρ (�r)) is the kinetic energy of non interacting electron gas with density

ρ (�r). It is written in the form

Ts (ρ (�r)) = − �
2

2m

∑
i

∫
ψ∗

i (�r)∇2ψi (�r) d�r. (2.17)

Exc is the exchange-correlation energy and is Vxc the exchange-correlation poten-

tial. The second, third and forth terms of Eq. (2.16) are the Hartree energy,

exchange-correlation energy and external energy respectively. The corresponding
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Euler-Lagrange equation for a given total number of electrons have the form

δTs (ρ (�r))

δρ (�r)
+ Veff (�r) = ε, (2.18)

where

Veff (�r) = Vion (�r) +

∫
ρ (�r′)
|�r − �r′|d�r

′ + Vxc (�r) , (2.19)

and

Vxc (�r) =
δExc (ρ (�r))

δρ (�r)
. (2.20)

Veff is the effective potential and Vion is nuclei potential. Eq. (2.18) is the

solution of the one-electron equation in an effective external potential Veff (�r).

The minimized density is given by solving the single electron equation, called the

Kohn-Sham equation,

(
− �

2

2m
∇2 + Veff (�r)

)
ψi (�r) = εiψi (�r) , (2.21)

with

ρ (�r) =
∑

i

|ψi (�r)|2 ,

and the total energy of the system is

E =
∑

i

εi − 1

2

∫
d�rd�r1ρ (�r)

e2

|�r − �r1|ρ (�r1) + Exc [ρ (�r)] −
∫

d�rVxcρ [(�r)] ρ (�r) .

(2.22)

Again ψi (�r) can be solved only if we know Veff (�r) and Veff (�r) is a function

of ψi (�r). Thus these equations must be solved self consistently. This scheme
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naturally leads to an iterative procedure. Firstly a starting electronic density is

guessed and the refined through the self consistent cycle below.

Construct 
))r((Veff
v

ρ  

Solve the Kohn-
Sham equation 

for ))r((Veff
v

ρ to 

get )r(i
v

ψ  

Construct 

∑ψ

=ρ

i

2
i

new

)r(

)r(
v

v

 

)r(oldρ  ( )rold
v

ρ  

Fig. 2.1 A self-consistent method used in the density functional theory.

2.4.1 Local Density Approximation (LDA)

The difference between the Hartree-Fock approximation and the density func-

tional approximation is that the Hartree-Fock exchange term is replaced by the

exchange-correlation energy which is a function of the electron density. For a ho-
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mogeneous electron gas, the exchange-correlation potential is a functional deriva-

tive of the exchange-correlation energy with respect to the local density. To a

good approximation the exchange-correlation potential at position �r depends only

on the electron density at position �r . This is called local density approximation

(LDA)[5]. In a nonhomogeneous system, it depends not only on the density at

�r but also on its variation close to �r. The explicit local density approximation

expression for the exchange-correlation energy is

Exc (ρ (�r)) ≈
∫

εxc (ρ (�r)) (ρ (�r)) d�r, (2.23)

where εxc (ρ (�r)) is the exchange-correlation energy per electron of the uniform

electron gas of density ρ (�r) .The exchange energy per electron can be written in

the form of

εex (ρ (�r)) = −3e2

4

(
3

π

) 1
3

(ρ (�r))
1
3 , (2.24)

and the local density exchange potential is given by

Vex (ρ (�r)) = −2e2

(
3

π

) 1
3

(ρ (�r))
1
3 . (2.25)

The local density approximation is remarkably accurate but often fails when the

electrons are strongly correlated, such as a system containing d and f electron

orbitals.



Chapter 3

The Wigner-Seitz Method

3.1 Introduction

The purpose of this chapter is to present a simple calculation of the ground

state energy of solid metallic hydrogen using the Hartree-Fock approximation.

The wave functions of electrons in the hydrogen metal can be determined by the

Wigner-Seitz method, some times called the Cellular method, which was first

proposed by Wigner and Seitz. The Wigner-Sietz method[4], reduces a many-

electron problem into one-electron problems and gives the dispersion of the energy

band near k = 0. The interactions between a given proton and an electron are

modelled by a Coulomb potential, a uniform screened Coulomb potential and a

Thomas-Fermi screened potential. The correlation effect is included by using the

most acceptable correlation potential[6].
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3.2 The Cellular Method

In general a metal is composed of N ion cores and N electrons moving around

these ion cores. Ideally, a solid has a periodic symmetry in the bulk. This fact

can be exploited to reduce the size of the problem by using Bloch’s theorem[10].

Bloch’s theorem enables us to replace the problem of solving the Schrödinger

equation for an infinite periodic solid by a problem of solving the Schrödinger

equation in a unit cell with different Bloch boundary conditions. In order to ob-

tain the simplest boundary conditions, we choose the unit cell to be a polyhedron

with greatest possible symmetry about an atomic position. Some examples are

shown in Fig. 3.1.

Fig. 3.1 Atomic polyhedra for (a) the body-centered cubic lattice, (b)the face-

centered cubic lattice,(c) the hexagonal close-packed lattice.
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Thus the whole metal can be divided into N atomic cells with an equal volume.

For simplicity, a volume of an atomic cell V is replaced by a sphere of radius rs

where 4
3
πr3

s = V . This sphere is called Wigner-Seitz’s sphere. The key physics

of this method is that even though electrons are nearly free to move but on

the average, one Wigner-Seitz’s sphere contains only one electron. In fact there

can be only two electrons with opposite spins in each orbital states ψk (�r). The

resulting Hartree-Fock like approximation for the ground state energy is just

NE0 = 2
∑

k

∫
ψ∗

k (�r)

[
− �

2

2m
∇2 +

N∑
a

Ua (�r)

]
ψk (�r) d�r

+2
∑

k

∑
k′

∫ ∫
e2

|�r1 − �r2| |ψk (�r1)|2 |ψk′ (�r2)|2 d�r1d�r2

−
∑

k

∑
k′

∫ ∫
e2

|�r1 − �r2|ψ
∗
k (�r1) ψ∗

k′ (�r2) ψk (�r2) ψk′ (�r1) d�r1d�r2

+
1

2

N∑
a

N∑
b�=a

e2∣∣∣�Ra − �Rb

∣∣∣ , (3.1)

where Ua (r) is potential between an electron and its ion core within cell a and

Ua (r) = 0 outside the cell, E0 is the average energy per electron and the last

term is the interaction energy between a proton at position Ra in Wigner-Seitz

cell a and a proton at position Rb in Wigner-Seitz cell b. The wave functions

ψk (�r) are eigenfunctions of the Schrödinger equation

[
− �

2

2m
∇2 + U (�r)

]
ψk (�r) = ε (k) ψk (�r) , (3.2)



19

where the potential function U (�r) between electrons and their corresponding ion

cores in Eq.(3.1) can be written as

U (�r) =
N∑

a=1

Ua (�r) .

Ua (�r) are assumed spherically symmetric. This is called spherical cell approxima-

tion. Explicit potentials will be discussed in next section. By replacing Eq.(3.2)

in Eq.(3.1), each integral over the volume in the first and the second terms in

Eq.(3.1) may be separated into a sum over lattice sites plus an integral over

the corresponding Wigner-Seitz cells. The problem is reduced from N electron

problem to N one-electron problems which are much easier to be solved. In

spherical cell approximation, all cross terms in the integral of the first and the

second term, in Eq.(3.1), conspire to exactly cancel with the proton-proton en-

ergy. Throughout this work, the ground state energy E0 is expressed in atomic

unit. In this unit an energy is expressed in rydberg(1Ry = me4/2�) and length

in Bohr unit(1a0 = �
2/me2). Consequently, we let me4/2� = 1, �

2/me2 = 1,

�
2/2m = 1 and e2 = 2.

NE0 = 2
∑

k

ε (k) + 2
∑

k

∑
k′

∫
a

∫
a

2

|�r1 − �r2| |ψk (�r1)|2 |ψk′ (�r2)|2 d�r1d�r2

−
∑

k

∑
k′

∫ ∫
2

|�r1 − �r2|ψ
∗
k (�r1) ψ∗

k′ (�r2) ψk (�r2) ψk′ (�r1) d�r1d�r2 (3.3)

This final expression is called the Wigner-Seitz approximation. The wave func-

tions and the energy, which is a function of k, can be determined. The exact
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wave functions are complicated because they are expressed by some functions of

complex number and their true symmetry is not known. However, one hydrogen

atom has only one electron, when it forms a metal, the conduction band is only

half-band filled. Thus the expansion of the wave function near the bottom of the

band can be expressed as[11]

ψk (r) = ei�k·�r {
u0 (r) + u1 (r) k + u2 (r) k2 + ...

}
. (3.4)

In addition, the energy band dispersion ε (k), which is the most important relation

because it leads to the ground state energy, is

ε (k) = E0 + E2k
2 + E4k

4 + .... (3.5)

Due to the periodic nature of metals, the wave functions must satisfy Bloch

conditions and the metallic condition, i.e. the electrons are not truly localized in

Wigner-Seitze spheres but rather wandering around, and hence (dψ/dr)rs
= 0.

This principle is also applied for the metallic hydrogen.

We can separate the Schrödinger equation,

(−∇2 + U (r)
)
ψk (r) = ε (k) ψk (r) , (3.6)

into a set of equations by substituting the expansion of the wave functions and

the energy dispersion as follows,

(−∇2 + U − E0

)
u0 = 0,
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(−∇2 + U − E0

)
u1 = 2i

∂u0

∂z
,

(−∇2 + U − E0

)
u2 = 2i

∂u1

∂z
+ (E2 − 1) u0, (3.7)

(−∇2 + U − E0

)
u2n = 2i

(
∂u2n−1

∂z

)
+ (E2 − 1) u2n−2 + ... + E2nu0,

(−∇2 + U − E0

)
u2n+1 = 2i

(
∂u2n

∂z

)
+ (E2 − 1) u2n−1 + ... + E2nu1.

Bardeen[12] and Silverman[13] showed that the first few terms and E0, E2

and E4 were given by solving the boundary condition, (∂ (s part of u2n) /∂r)r=rs
=

0. As a result, we get

E2 = γ

(
r

f1

∂f1

∂r

)
rs

, (3.8)

E4 =
2

5
r2
sE2 − 4r2

sE
2
2E2

15γ

(
r

f2

∂f2

∂r

)−1

rs

+
γE2

u0 (rs)

(
∂2f1

∂r∂E

)
rs,E0

, (3.9)

where γ = 4
3
πr3

su
2
0 (rs) and

(
− 1

r2

d

dr
r2 d

dr
+ U (r) − E0

)
u0 = 0, (3.10)

and fl satisfies the following equation

(
− 1

r2

d

dr
r2 d

dr
+ U (r) +

l (l + 1)

r2
− E0

)
fl = 0, (3.11)

where index l = 0, 1, 2, 3, .... In the usual atomic physics, l is called the quan-

tum number of the orbital angular momentum and fl is the radial part of the

corresponding wave function. However, the physical interpretion of fl in above

equation is quite different. It just a dummy function related to ul in Eq.(3.4).
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ψ (r) must also satisfy (∂ψ/∂r)rs
= 0. the complete relation between f1 and u0 is

f1 (rs) = rsu0 (rs) [13]. The first term in Eq.(3.3) may be evaluated by replacing

the sum by an integral over the Fermi sphere. For the final result, we get

2

N

∑
k

ε (k) ≈ E0 + E2
2.21

r2
s

+ E4
5.81

r4
s

, (3.12)

In next section, we will specify some potentials for the metallic hydrogen.

Once, an explicit potential function U (r) is applied, the function u0,f1 and f2

can be evaluated. The ground state energy in Eq.(3.3) can also be calculated. In

previous work, Styer and Ashcroft[7] have evaluated u0 and f1, and used Eq.(3.3)

to calculate the ground state energy of metallic hydrogen. The exact calculation

is far more complicated so they preformed some sensible estimation to all terms

in Eq.(3.3) . Nevertheless, they evaluated the first term in Eq.(3.3) by expanding

ε (k) up to k2 only. In this work, we shall evaluate f2 and perform a more accurate

calculation by adding a correction term of order k4 to ε (k).

3.3 Model Potentials

3.3.1 Coulomb Potential

In this section, we assume that the interaction between the electron and its pos-

itive core is purely coulomb, i.e. U (r) = −2/r . This means that the nuclei

interact with all other nuclei in the metal because this potential is long range.



23

According to our calculation, we find that[7]

u0 (r) = Ce−
√

εbr

{
1F1

(
1 − 1√

εb

; 2; 2
√

εbr

)}
, (3.13)

f1 (r) = Are−
√

εbr

{
1F1

(
2 − 1√

εb

; 4; 2
√

εbr

)}
, (3.14)

f2 (r) = A1r
2e−

√
εbr

{
1F1

(
3 − 1√

εb

; 6; 2
√

εbr

)}
, (3.15)

where εb = −E0 and 1F1 is the confluent hypergeometric function or Kummer

function[14] which is written in form

1F1 (a, b, r) = 1 +
a

b
r +

a (a + 1)

2!b (b + 1)
r2 +

a (a + 1) (a + 2)

3!b (b + 1) (b + 2)
r3 + ....

A,A1 are an arbitrary constant which is cancelled in Eq.(3.8) and (3.9) and C is

normalized constant.

3.3.2 Screening Effects

As electrons move nearly freely in metals, the screening effects are extremely

efficient. In order to study the metallic hydrogen, we must consider the screening

effects as well. Thus, our calculations are more realistic if we replace Coulomb

potential by a screened potential. Our Hamiltonian is modified and the Hartree-

Fock like energy must include a negative term,

−2
∑

k

∫
a

|ψk (�r)|2 Us (�r) d�r.

where Us (�r) is screened potential and is assumed spherically symmetric.
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For the uniform screening, which is the potential of a negative unit charge

uniformly distributed throughout the Wigner-Seitz sphere, the potential is

U (r) = −2

r
+ Us (r) = −2

r
+

(3r2
s − r2)

r3
s

. (3.16)

The uniform screened potential is short range. The potential vanishes

at the cell boundary. This means that the nuclei do not feel the presence of

the others. By inserting this potential in Eq. (3.10) and solving by using the

Frobenius method1, we find that[7]

u0 (r) =
C

r

∞∑
i=1

bir
i, (3.17)

where C is the normalized constant,

b0 = 0, b1 = 1, b2 = −1, b3 =
1

6
(2 − E0 + 3/rs) ,

and

bi =
1

(i − 1)

(
2bi−1 +

(
E0 − 3

rs

)
bi−2 +

bi−4

r3
s

)
, i ≥ 4.

The solutions f1, f2 of Eq.(3.11) are also solved. We get

f1 =
A

r

∞∑
i=1

bir
i, (3.18)

where

b0 = 0, b1 = 0, b2 = 1, b3 = −1

2
,

1A solution of a differential equation y (x) is expanded in a Taylor’s series about regular

singular point x0, y (x) =
∞∑

n=0
an (x − x0)

m+n.Then, the coefficient of the polynomial an are

determined.
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and

bi =
1

i (i − 1) − 2

(
2bi−1 +

(
E0 − 3

rs

)
bi−2 +

bi−4

r3
s

)
, i ≥ 4.

and

f2 =
A1

r

∞∑
i=1

bir
i, (3.19)

where

b0 = 0, b1 = 0, b2 = 0, b3 = 1,

and

bi =
1

i (i − 1) − 6

(
2bi−1 +

(
E0 − 3

rs

)
bi−2 +

bi−4

r3
s

)
, i ≥ 4.

For Thomas-Fermi screening, the potential is

U (r) = −2

r
+ Us (r) = −2

r
+

2

r

(
1 − e−kTF r

)
, (3.20)

where kTF =
(

3
√

12/π
)

/
√

rs. Thomas-Fermi screened potential has an interme-

diate range. The potential extends over a couple of neighboring cells. By inserting

Eq. (3.20) into Eq. (3.10) and using the Frobenius method, the solution of u0

is[7]

u0 =
C1

r

∞∑
i=1

bir
i (3.21)

where

b0 = 0, b1 = 1,

and

bi =
1

i (i − 1)

(
2

i−1∑
m=1

−ki−m−1
TF

(i − m − 1)
bm + E0bi−2

)
, i ≥ 2.
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The solutions of f1, f2 are

f1 =
A2

r

∞∑
i=1

bir
i (3.22)

where

b0 = 0, b1 = 1,

and

bi =
1

i (i − 1) − 2

(
2

i−1∑
m=1

−ki−m−1
TF

(i − m − 1)
bm + E0bi−2

)
, i ≥ 2,

f2 =
A3

r

∞∑
i=1

bir
i (3.23)

where

b0 = 0, b1 = 0, b2 = 1,

and

bi =
1

i (i − 1) − 6

(
2

i−1∑
m=1

−ki−m−1
TF

(i − m − 1)
bm + E0bi−2

)
, i ≥ 3.

Again, A,A1, A2 and A3 in Eq. (3.18) , (3.19) , (3.22) and (3.23) are an arbitrary

constant which is cancelled in Eq. (3.8) and (3.9) and C and C1 in Eq.(3.17) and

(3.21) are a normalized constant.

By substituting u0, f1 and f2 into Eq. (3.8) and (3.9), we can calculate

the energy dispersion ε (k), its average over the conduction band in Eq. (3.12)

and the ground state energy in Eq.(3.3).
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3.4 Hartree Energy

We have seen that the wave functions of the occupied states are nearly free. Let

us therefore use the free electron approximation to evaluate the remaining two

terms of Eq. (3.3). Since these terms have opposite signs, it is probable that

the errors is introduced in this way will partially cancel each other. Now we

investigate the second term in Eq. (3.3) which is called Hartree energy. The first

term in the sum of Hartree energy for the lower bound is

H00 =

∫
a

∫
a

u2
0 (�r1) u2

0 (�r2)

|�r1 − �r2| d�r1d�r2,

= 32π2

∫ rs

drru2
0 (r)

∫ r

dr′r′2u2
0 (r′) , (3.24)

where u0 (r) is obtained form Eq. (3.7). It is the Hartree energy at wave vector

k = 0. In the free electron approximation, ρ (r) = N
V

= 3
4πr3

s
, so the last term in

the sum for the upper bound is[7]

HkF kF
= 32π2

∫ rs

drr

∫ r

dr′r′2
(

3

4πr3
s

)2

,

=
1.2

rs

Ry. (3.25)

This is Hartree energy at the Fermi level. The Hartree energy is approximated

as the average between the two bounds.
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3.5 Exchange Energy

Again, the third term in Eq. (3.3) , called the exchange energy, is evaluated by

using the wave function of the free electron. The plane wave is substituted in the

equation and a summation is replaced by an integral over the Fermi sphere. This

gives[15]

∑
k

εx (k) = − 2

2π

[
2kF +

k2
F − k

k
log

(
kF + k

kF − k

)]

= − V

π8π3

kF∫
0

[
2kF +

k2
F − k

k
log

(
kF + k

kF − k

)]
4πk2dk

= − V

2π3

kF∫
0

[
2kF k2 + k

(
k2

F − k2
)
log

(
kF + k

kF − k

)]
dk

= −0.916N

rs

Ry. (3.26)

where N is a number of the electron.

3.6 Correlation Energy

To further improve the accuracy of the ground state energy, an accurate correla-

tion energy εc is added to Eq. (3.3). The explicit expression for the correlation

energy per electron is[6],[16]

εc (rs) = A{ln
(

x2

X (x)

)
+

2b

Q
arctan

(
Q

2x + b

)
−

bx0

X (x0)

[
ln

(
(x − x0)

2

X (x)

)
+

2 (b + 2x0)

Q
arctan

(
Q

2x + b

)]
},(3.27)
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where x =
√

rs, X (x) = x2 + bx + c, Q =
√

4c − b2, A = 0.0621814, x0 =

−0.10498, b = 3.72744 and c = 12.9352. This correlation energy was proposed

by Ceperley and Alder[6] and revived by Vosko, Wilk and Nusair and accepted

as the most accurate correlation energy available.

Finally, the addition term in the screened potential case is approximated

in the same manner as the Hartree energy, i.e. by averaging between the lower

bound, (H0), and upper bound, (HkF
). The lower bound is

H0 = −4π

∫ rs

dru2
0 (r) Us (r) . (3.28)

The upper bound for uniform screening is

HkF
= − 3

rs

∫ rs

drr2Us (r) = − 12

5rs

, (3.29)

and for the Thomas-Fermi screening, the upper bound is[7]

HkF
= − 3

rs

∫ rs

drr2Us (r) = −6

3

[
r2
s

2
− 1

kTF

+ e−kTF rs

(
rs

kTF

+
1

k2
TF

)]
. (3.30)

The total ground state energy per electron is evaluated by replacing the sum by

an integral over the Fermi sphere. Finally, in Wigner-Seitz approximation, the

total ground state energy is expressed as

E0 (rs) = E0 + E2
2.21

r2
s

+ E4
5.81

r4
s

+
1

2
(H00 + HkF kF

)

+
1

2
(H0 + HkF

) − 0.916

rs

+ εc (rs) . (3.31)
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However, a fundamental weakness of this approach is that the higher order

terms in k and the direction dependence of the wave function are discarded. The

directional dependency can be neglected if the lattice has high symmetry such as

body-centered cubic. In the next chapter, we will introduce a more complicated

and more accurate method for calculating the total ground state energy where

the effects of lattice structures are fully included.



Chapter 4

The Full Potential Linearized
Augmented Plane Wave

4.1 Introduction

A fundamental weakness of Wigner-Seitz method is that the higher order terms

in k and the direction dependence of the wave function are discarded and the

atomic polyhedral cell is replaced by a sphere of radius rs. The total ground state

energy depends on the density of the metal but not on the information of the lat-

tice structure. In addition, the Hartree-Fock approximation completely neglects

correlation effects and the assumption in the part of Hartree and exchange ener-

gies is that wave function of system is of nearly free electrons. To improve our

work in chapter 3, in this chapter an alternative method, which can calculate the

ground state energy, the energy band, the density of states and other properties

of metals under various lattice structures is discussed. This method is called the

full potential linearlized augmented plane wave method (FP-LAPW), which is the
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most accurate methods available for performing electronic structure calculations

for crystals. It is based on the density functional theory. For the treatment of

the exchange and correlation, we use the local density approximation. Normally,

many-electron problems in metals can be simplified by solving self consistently a

one-electron problem, known as Kohn-Sham equation. The Kohn-Sham equation

is solved by using the variational method. In this method, stationary states of the

wave function are found within a subspace of Hilbert space[17] that is spanned

by a set of basis vectors

|ψ〉 =
∑

p

Cp |χp〉 , (4.1)

where χp is a set of basis vectors and Cp is coefficient which is the projection of

ψ onto the basis vector χp. The energy functional is given by

E =

N∑
p,q=1

C∗
pCpHpq

N∑
p,q=1

C∗
pCpOpq

, (4.2)

with Hamiltonian matrix defined by

Hpq = 〈χp |H|χq〉 , (4.3)

and the overlap matrix,

Opq = 〈χp|χq〉 . (4.4)
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4.2 The Augmented Plane Wave(APW)

There are two things to strive for when we choose a basis set. First of all the basis

functions should be as mathematically simple as possible, in order to simplify the

setup of the matrix elements. The other important feature is that the basis

functions are well suited to describe the system of interest. This will minimize

the size of basis set and hence the computation effort. The augmented plane wave

(APW)[18-19] was originated in 1937 by J.C. Slater. The APW is based on the

muffin tin approximation to the actual crystal potential. Firstly, we construct a

sphere centered at each atomic site. Inside the sphere, there is a potential which

is spherically symmetric and labelled by I. Outside the sphere the potential is

taken to be a constant, usually zero, labelled by II. In this work, the radius of

the muffin tin sphere is chosen to be one-half the nearest neighbor distance.
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Fig. 4.1 The muffin tin potential approximation used in the augmented plane

waves. �τυ is a position of each atom, �r is a local coordinate in the sphere, centered

at the atom position, and �ρ is a position vector which relative to origin and can

be expressed as �ρ = �τυ + �r.

The two types of different regions have different basis sets. Inside the

non-overlapping atomic sphere υ of radius Rυ there is a basis χI
k in the form of

linear combination of radial functions and spherical harmonics.

χI
k (r, E) =

∞∑
l=0

l∑
m=−l

Alm (k) ul (r, E) Y l
m (r̂) , (4.5)
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where Alm is a coefficient, Y l
m (r̂) is spherical harmonic and the functions ul (r, E)

are solutions of the radial Schrodinger equation with energy E,

− 1

r2

d

dr

(
r2dul (r, E)

dr

)
+

[
l (l + 1)

r2
+ Uυ (r)

]
ul (r, E) = Eul (r, E) . (4.6)

It is regular at the origin and can be solved with high accuracy. Uυ (r) is a

spherically symmetric potential. In the region outside the sphere or the interstitial

region a plane wave expansion is used, i.e.

χII
k =

1√
V

ei�k·�ρ =
1√
V

ei�k·�τυei�k·�r, (4.7)

where �kn = �k+ �Kn, �Kn are the reciprocal lattice vectors, �k is the wave vector inside

the first Brillouin zone, V is the volume of unit cell and vector �r, �ρ, �τυ are showed

in the Fig.4.1. Each plane wave is augmented by an atomic-like function in every

atomic sphere. The coefficients Alm (k) is determined by boundary conditions

stated that the wave functions in both regions are matched at the muffin tin

radius. However, the slope of the wave functions at muffin tin radius does not

necessarily continuous. The plane wave can be expanded in spherical harmonics

as,

1√
V

ei�k·�ρ =
4π√
V

ei�k·�τυ

∞∑
l=0

l∑
m=−l

iljl (kr) Y l∗
m

(
k̂
)

Y l
m (r̂) , (4.8)

where i =
√−1, jl (x) is a spherical Bessel function of order l. Otherwise, the

unit vector k̂ and r̂ are the angular of vectors �k and �r respectively. From the
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boundary conditions, the coefficients are

Alm =
4π√
V

ei�k·�τυ ilY l∗
m

(
k̂
) jl (kRυ)

ul (Rυ)
, (4.9)

where Rυ the radius of the muffin tin sphere.

In summary the APW function for the state, which is specified by the

wave vector �k, has the following form,

χAPW
(
�k, �r

)
=

1√
V

ei�k·�ρ; r ∈ II (4.10)

=
4π√
V

ei�kn·�τυ
∑
lm

iljl (kRυ) Y l∗
m

(
k̂
)

Y l
m (r̂)

ul (r)

ul (Rυ)
; r ∈ I(4.11)

where l values have a cut off at finite value. The wave functions can be expanded

in terms of APW basis set as,

ψn (k, r) =
∑

p

Cn
p χAPW

p , (4.12)

where Cn
p is coefficient which is the projection of ψn (k, r) onto the basis

vector χAPW
p . The Cp summation is over the reciprocal lattice vectors �Kp which

have norm smaller than some cut off. The variational method is applied on the

wave functions which are expanded by using the APW basis set for minimizing

the energy with respect to each coefficient. We get,

∑
p

C∗
pCq [Hpq + Spq − EOpq] = 0, (4.13)

where

Hpq =

∫
I+II

χ∗
pHχqd�r, (4.14)
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Opq =

∫
I+II

χ∗
pχqd�r, (4.15)

and surface integral term is

Spq = −1

2

∫
sphere

(
χII

p + χI
p

)∗ (
∂

∂r
χII

q − ∂

∂r
χI

q

)
d�s, (4.16)

where d�s is surface element. The Energy E can take only those values for which

the secular determinant is zero, i.e.

det [Hpq + Spq − EOpq] = 0. (4.17)

For a crystal with n atoms per unit cell, the matrix elements Mpq = Hpq + Spq −

EOpq for APW basis functions with wave vector �kp = �k + �Kp and �kq = �k + �Kq,

�Kp and �Kq are reciprocal lattice vectors index p and q, are given by

Mpq =
(
k2

p − E
)
δpq − 4π

V

n∑
υ

ei( �Kp− �Kq)·�τυR2
υ[

(
�kp · �kq − E

) j1

(∣∣∣ �Kp − �Kq

∣∣∣ Rυ

)
∣∣∣ �Kp − �Kq

∣∣∣
−

∞∑
l=0

(2l + 1) Pl

(
�kp · �kq

)
jl (kpRυ) jl (kqRυ)

u′
l (Rυ)

ul (Rυ)
], (4.18)

where Pl are Legendre polynomial, ul (Rυ) and u′
l (Rυ) is the radial functions and

its radial derivative at the muffin tin radius Rυ. To find the energy eigenvalues

for a state with wave vector �k the matrix elements of Mpq are constructed and

the determinant of this matrix is calculated on a fine energy grid where its deter-

minant is zero. To avoid a very large basis set size, the APW basis determinant

must therefore be re-evaluated for each new energy because it is non linear in
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energy. In general, the search for APW eigenvalues becomes very time consum-

ing as the determinant must be recalculated for a number of energies in order to

localize the zero values as illustrated in Fig. 4.2.

Energy(Ry)

0.0 0.1 0.2 0.3 0.4 0.5

det[M]

-4e+8

-2e+8

0

2e+8

4e+8

6e+8

Fig. 4.2 The APW determinant of Hpq+Spq−EOpq must be evaluated for a num-

ber of energies E. The square indicates the eigenenergies of the valence electrons

in face-centered cubic copper at k = 2π
a

(0.74, 0.74, 0.74) and a = 6.822a0.

The task of finding the APW eigenvalues becomes somewhat more trouble

when a large number of energies are involved, one might hit an energy in which
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ul (Rυ, E) is very small or even equal to zero. When it is inserted in the equation

of coefficient, the coefficient is very large or infinite. The determinant involving

matrix elements with summations over the coefficients, will go to infinite,

det [Hpq + Spq − EOpq] → ∞,

as

ul (Rυ, E) → 0.

Therefore, the APW method is hardly used because of the energy dependent and

an asymptotic problem.In next section, we shall describe the linearized augmented

plane wave (LAPW) method which is based on the augmented plane wave but

avoids the above problems.

4.3 The Linearized Augmented Plane Wave(LAPW)

An efficient way of avoiding the energy dependence problem in APW calculations

would be to use a fixed energy Ep, called pivot, in which the basis functions are

calculated with and to use these wave functions for a range of energies around

the fixed energy. The idea of the LAPW[20-22] method is that the radial so-

lutions of the basis set in the muffin tin sphere is approximated by an energy

linearization[23-24]

ul (r, E) = ul (r, Ep) + (E − Ep) u̇l (r, Ep) + ..., (4.19)
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where u̇l (r, Ep) is a derivative of ul (r, E) with respect to energy at the Ep. In

the remainder of this section, the dot stands for the energy derivative and the

prime is used for the radial derivative for an arbitrary function f (r, E)

ḟ (r, E) =
∂

∂E
f (r, E) , (4.20)

and

f ′ (r, E) =
∂

∂r
f (r, E) . (4.21)

The energy derivative of the radial solution within the muffin tin is used in the

radial solutions to match onto the plane wave outside the spheres. Note that

the APW Hamiltonian depends only on energy via the radial solution, so if we

take these solutions and their energy derivatives at a fixed energy into account,

we have eliminated all energy dependence from the Hamiltonian. In comparison

with the APW method, we have twice as many radial functions inside the muffin

tin sphere, ul (r, E) and u̇l (r, E), and we can match not only the value but also

the derivative of the plane wave across the sphere boundary as shown in Fig. 4.3.



41

III

Fig 4.3 Parts of the radial l composition of a LAPW basis function for Cesium

at the same �k point.

In summary, the LAPW function for the state which is specified by the

wave vector �k, has the following form,

χp
k (�r) =

1√
V

ei(�k+ �Kp)·�ρ =
1√
V

ei(�kp)·�ρ; r ∈ II

=
∞∑
l=0

l∑
m=−l

{Ap
lmul (r, Ep) + Bp

lmu̇l (r, Ep)} ; r ∈ I (4.22)

where Alm and Blm are arbitrary constant and fixed by the matching conditions.

There is no energy dependence of the wave functions and the wave functions

are smooth across the sphere boundary. However, the price to pay for this is to

give up the exactness of the solution inside the sphere for the range of the pivot

energies. From the equation of radial Schrödinger equation with energy El the
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radial solutions must be normalized inside the muffin tin sphere

∫ Rυ

r2u2
l (r, E) dr = 1, (4.23)

and the energy derivative is obtained from the equation

− 1

r2

d

dr

(
r2 dul (r, E)

dr

)
+

[
l (l + 1)

r2
+ Uυ (r)

]
u̇l (r, E) − Eu̇l (r, E) = ul (r, E) .

(4.24)

This is an inhomogeneous equation with ul (r, E) as its homogeneous solution.

Thus by obtaining a solution and orthogonalizing it to ul (r, E), we can obtain

u̇l (r, E) and the normalization constant from the relation

R2
υ [u′ (Rυ) u̇ (Rυ) − u (Rυ) u̇′ (Rυ)] = 1. (4.25)

Obviously, this is a different normalization from that applied to ul (r, E) since Nl

is given by

Nl =

∫ Rυ

r2u̇2
l dr. (4.26)

This is generally not equal to unity. The expressions for the matrix elements are

complicated. It depends on the normalizations for ul (r, E) and u̇l (r, E) which

will be specified below. The coefficients Alm and Blm obtained from the matching

conditions are

Ap
lm =

4π√
V

R2
υi

lY l∗
m

(
k̂p

)
al, (4.27)

Bp
lm =

4π√
V

R2
υi

lY l∗
m

(
k̂p

)
bl, (4.28)
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where

al = j′l (kpRυ) u̇l (Rυ) − jl (kpRυ) u̇′
l (Rυ) , (4.29)

and

bl = jl (kpRυ) u′
l (Rυ) − j′l (kpRυ) ul (Rυ) . (4.30)

The basis functions already satisfy the cellular boundary condition and connectiv-

ity conditions across the muffin tin spheres, so that, there is no surface integral.

Thus, the variation yields a simple generalized eigenvalue problem with these

energy independent overlap and Hamiltonian matrices. These matrices are re-

liable for some energy ranges around the pivot energy. It turns out that the

resulting wave functions have inaccuracy of order (E − Ep)
2 as a result of the

linearization and the energy eigenvalues deviate as order of (E − Ep)
4 from those

evaluated at the correct energy. The matrix elements of the overlap matrix and

the Hamiltonian can be calculated. The results are

Opq = U
(
�kp − �kq

)
+

n∑
υ

ei| �Kp− �Kq|·�τυ
4πR4

υ

V

∑
l=0

(2l + 1) Pl

(
k̂p · k̂q

)
sl

pq, (4.31)

where U
(
�kp − �kq

)
is Fourier transform of the step function which is zero inside

the muffin tin spheres and one outside,

U
(
�kp − �kq

)
= δ�kp,�kq

−
n∑
υ

ei| �Kp− �Kq|·�τυ
4πR2

υ

V

j1

(∣∣∣ �Kp − �Kq

∣∣∣ Rυ

)
∣∣∣ �Kp − �Kq

∣∣∣ , (4.32)

where

sl
pq = al (kq) al (kp) + bl (kq) bl (kp) Nl, (4.33)
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and Pl

(
k̂p · k̂q

)
is the Legendre polynomial. Similarly, the Hamiltonian matrix

is obtained as

Hpq =
(
�kp · �kq

)
U

(
�kp − �kq

)
+

n∑
υ

ei�kn·�τυ
4πR4

υ

Ω
(2l + 1) Pl

(
k̂p · k̂q

) (
Els

l
pq + γl

)
,

(4.34)

where

γl = u̇l (Rυ) u′
l (Rυ) [j′l (kq) j′l (kp) + jl (kq) j′l (kp)]

− [u̇′
l (Rυ) u′

l (Rυ) jl (kq) jl (kp) + u̇l (Rυ) ul (Rυ) j′l (kq) j′l (kp)] .(4.35)

This is explicitly Hermitian and it is the actual form that we use in our code.

Another quantity of interest is the charge density which is needed for calculating

the the Hartree and exchange-correlation potentials in the density functional

theory self-consistency loop.

4.4 Brillouin Zone Integration

Many calculations of crystals involve the integration of a periodic functions of

Bloch wave vector over either the entire Brillouin zone or over specified por-

tions. The latter case arises, for example, in averages over states within the

Fermi surface. The accuracy and the computational effort of the electronic struc-

ture calculations for solids depend directly on these Brillouin zone integrations,

because they determine how many k points that we must consider for a given ac-
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curacy. Thus, this section presents the tetrahedron method which is a Brillouin

zone integration method.

For the Brillouin zone integrations, the following two methods are most

widely used, i.e. the tetrahedron method[25-26] and the special point scheme[27-

29]. The special point scheme, which is limited to insulating or semiconducting

materials, represents the Brillouin Zone integration as a weighted sum over se-

lected k points. A more general integration scheme is the tetrahedron method

which is equally applicable to insulators and metals. In this method, the recip-

rocal space is divided into several tetrahedra in which matrix elements and band

energies are linearized in k. The linear approximation allows the integration to

be performed analytically. It takes into account the complicated shape of the

Fermi surface. In addition, the tetrahedron method is superior to the special

point method because it gives spectral functions.

Before the presentation of the tetrahedron method, we would like to in-

troduce first the Brillouin zone for some specific structures.

4.4.1 The Body-Centered Cubic Lattice.

The primitive translation vectors (a1, a2, a3) of the body-centered cubic lattice

are

�a1 =
a

2
(−x̂ + ŷ + ẑ) ,

�a2 =
a

2
(x̂ − ŷ + ẑ) , (4.36)
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�a3 =
a

2
(x̂ + ŷ − ẑ) ,

where a is lattice constant, x̂, ŷ, ẑ are unit vectors in x,y,z directions respectively

and the volume of the primitive cell is

V = |�a1 · �a2 × �a3| =
a3

2
.

We obtain the reciprocal lattice vectors (b1, b2, b3) as

�b1 =
2π

a
(ŷ + ẑ) ,

�b2 =
2π

a
(x̂ + ẑ) , (4.37)

�b3 =
2π

a
(x̂ + ŷ) ,

and the general reciprocal lattice vector �K is, for integer n1, n2 and n3, is

�K =
2π

a
[(n2 + n3) x̂ + (n1 + n3) ŷ + (n1 + n2) ẑ] . (4.38)

The first Brillouin zone is thus the rhombododecahedron, shown in Fig.4.4.

4.4.2 The Face-Centered Cubic Lattice.

The primitive translation vectors (a1, a2, a3) of the body-centered cubic lattice

are

�a1 =
a

2
(ŷ + ẑ) ,

�a2 =
a

2
(x̂ + ẑ) , (4.39)

�a3 =
a

2
(x̂ + ŷ) ,
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and the volume of the primitive cell is

V = |�a1 · �a2 × �a3| =
a3

4
.

We obtain the reciprocal lattice vectors (b1, b2, b3) as

�b1 =
2π

a
(−x̂ + ŷ + ẑ) ,

�b2 =
2π

a
(x̂ − ŷ + ẑ) , (4.40)

�b3 =
2π

a
(x̂ + ŷ − ẑ) ,

and the general reciprocal lattice vector �K is, for integer n1, n2 and n3, is

�K =
2π

a
[(−n1 + n2 + n3) x̂ + (n1 − n2 + n3) ŷ + (n1 + n2 − n3) ẑ] . (4.41)

The first Brillouin zone is the truncated octahedron shown in Fig.4.4.

4.4.3 The Hexagonal Close-Packed Lattice.

The primitive translation vectors (a1, a2, a3) of the body centered cubic lattice

are

�a1 = cẑ,

�a2 = ax̂, (4.42)

�a3 = a

(
x̂

2
+

√
3

2
ŷ

)
,
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where a and c is a lattice constant in the xy plane and z direction respectively,

and the volume of the primitive cell is

Ω = |�a1 · �a2 × �a3| =

√
3

2
a2c.

We obtain the reciprocal lattice vectors (b1, b2, b3) as

�b1 =
2π

c
ẑ,

�b2 =
2π

a
x̂ +

2π

a
√

3
ŷ, (4.43)

�b3 =
2π

a

2√
3
ŷ,

and the general reciprocal lattice vector �K is, for integer n1, n2 and n3, is

�K =
2π

a

[
n2x̂ +

(
n2

1√
3

+ n3
2√
3

)
ŷ +

a

c
n1ẑ

]
. (4.44)

The first Brillouin zone is shown in Fig.4.4.
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(a) (b)

(c)

Fig. 4.4 The fundamental domain of k or first Brillouin zone for (a) the body-

centered cubic lattice (b) the face-centered cubic lattice and (c) the hexagonal

close-packed lattice.
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4.4.4 The Tetrahedron Method

In a crystalline solid, the lattice translation symmetry results in a quantum num-

ber. The wave function ψn

(
�k
)

and the eigenvalue En

(
�k
)

depend on the band

index n and the crystal momentum �k. The expectation value 〈A〉 of an operator

A is obtained by integrating the matrix elements An

(
�k
)

over occupied states in

reciprocal space as

〈A〉 =
1

VG

∑
n

∫
VG

An

(
�k
)

f
(
En

(
�k
))

d3k, (4.45)

where An

(
�k
)

=
〈
ψn

(
�k
)
|A|ψn

(
�k
)〉

. VG is the volume of the reciprocal unit

cell and f
(
En

(
�k
))

is the occupation number. In this work, we consider only

the Fermi distribution function at absolute zero. It is equal to 1 for E < EF and

zero for E > EF . For metals, the tetrahedron method can be expressed so that

the expectation value 〈A〉 of an operator A is obtained by changing integral to

sum over irreducible �k points

〈A〉 =
∑
j,n

An

(
�kj

)
wn,j, (4.46)

where wn,j are called weight and are obtained in the next. These weight are

independent of the matrix elements An

(
�k
)

and they are calculated only once for

a given set of energy bands with the tetrahedron method.

Firstly, we define an equispaced grid in the reciprocal space. The lattice

vectors of the submesh are obtained by dividing a set of the primitive reciprocal
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lattice vectors by integer m1,m2 and m3. Each submesh cell is divided into six

tetrahedra. As illustrated in Fig 4.5, we choose one main diagonal of a submesh

cell as a common edge of all six tetrahedra.

8

 

Fig. 4.5 Break up of a submesh cell into six tetrahedra.

In order to minimize interpolation distances, the shortest main diagonal

is chosen. The energy E
(
�k
)

is linearly expanded inside the tetrahedron and the

coefficients of expansion are determined in term of the corner energies and the

coordinates of wave vector �k. For this purpose it is convenient to arrange the

energy at the corner of the tetrahedrons in an increasing or a decreasing order.

Let �ki (i = 1, 2, 3, 4) be the coordinates of the four corners of the tetrahedron with

associated and Ei. we assume E1 < E2 < E3 < E4. The density of states D (E)
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and the number of states n (E) or the integrated density of states from a given

tetrahedron are

D (E) = 0, (4.47)

n (E) = 0. (4.48)

For E < E1,

D (E) =
VT 3 (E − E1)

2

VGE21E31E41

, (4.49)

n (E) =
VT (E − E1)

3

VGE21E31E41

, (4.50)

for E1 < E < E2,

D (E) =
VT

VGE31E41

[
3E21 + 6 (E − E2) − 3

E31 + E42

E32E42

(E − E2)
2

]
, (4.51)

n (E) =
VT

VGE31E41

[
E2

21 + 3E21 (E − E2) + 3 (E − E2)
2 − E31 + E42

E32E42

(E − E2)
3

]
,

(4.52)

for E2 < E < E3,

D (E) =
VT

VG

3 (E4 − E)2

E41E42E43

, (4.53)

n (E) =
VT

VG

(
1 − (E4 − E)3

E41E42E43

)
, (4.54)

for E3 < E < E4, and

D (E) = 0, (4.55)

n (E) =
VT

VG

, (4.56)
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for E > E4, where Eij is a shorthand notation for Ei−Ej and VT is the reciprocal

space volume of the tetrahedron. Note that, the band index n is suppressed. After

a number of states is calculated, it is used to determine the Fermi energy level.

The weight is also evaluated by using these expressions.For a fully unoccupied

tetrahedron, EF < E1, the contributions vanish, i.e.

w1 = w2 = w3 = w4 = 0. (4.57)

For E1 < EF < E2,

w1 = C

[
4 − (EF − E1)

(
1

E21

+
1

E31

+
1

E41

)]
, (4.58)

w2 = C
(EF − E1)

E21

, (4.59)

w3 = C
(EF − E1)

E31

, (4.60)

w4 = C
(EF − E1)

E41

, (4.61)

with

C =
VT

4VG

(EF − E1)
3

E21E31E41

.

For E2 < EF < E3,

w1 = C1 + (C1 + C2)
(E3 − EF )

E31

+ (C1 + C2 + C3)
E4 − EF

E41

, (4.62)

w2 = C1 + C2 + C3 + (C2 + C3)
E3 − EF

E32

+ C3
E4 − EF

E42

, (4.63)

w3 = (C1 + C2)
EF − E1

E31

+ (C2 + C3)
EF − E2

E32

, (4.64)
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w4 = (C1 + C2 + C3)
EF − E1

E41

+ C3
EF − E2

E42

, (4.65)

with

C1 =
VT

4VG

(EF − E1)
2

E31E41

,

C2 =
VT

4VG

(EF − E1) (EF − E2) (E3 − EF )

E31E31E41

,

C3 =
VT

4VG

(EF − E2)
2 (E4 − EF )

E41E32E42

.

For E3 < EF < E4,

w1 =
VT

4VG

− C
(E4 − EF )

E41

, (4.66)

w2 =
VT

4VG

− C
(E4 − EF )

E42

, (4.67)

w3 =
VT

4VG

− C
(E4 − EF )

E43

, (4.68)

w4 =
VT

4VG

− C

[
4 − (E4 − EF )

(
1

E43

+
1

E42

+
1

E41

)]
, (4.69)

with

C =
VT

4VG

(E4 − EF )3

E43E42E41

.

For a fully occupied tetrahedron the contribution for each corners is identical, i.e.

w1 = w2 = w3 = w4 =
VT

4VG

. (4.70)

The correction terms of the weight factors have a simple form

dwi =
∑

T

1

40
DT (EF )

4∑
j=1

(Ej − Ei) . (4.71)
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where DT (EF ) is the density of state of the T th tetrahedra at the Fermi energy. In

a finite Temperature case, the step function is replaced by the Fermi distribution

and the Fermi energy is determined from the requirement that

N =
∑

k

∑
n

w (k, εn (k) − EF ) , (4.72)

where the weights are given by

w (k, εn (k) − EF ) = w (k)
1

e(εn(k)−EF )/kBT + 1
. (4.73)

4.5 The Full Potential Linearized Augmented

Plane Wave(FP-LAPW)

In full potential augmented plane wave method[30-32], there is no shape approx-

imation of the potential and the density in the interstitial and inside the muffin

tin region. The potential is expanded in the following form

V (�r) =
∞∑
K

VKei �K·�r; r ∈ II

=
∞∑
l=0

l∑
m=−l

Vlm (r) Ylm (r̂) ; r ∈ I, (4.74)

where VK is the Fourier coefficient of the potential V (�r) and Vlm (r) is a spher-

ical harmonic coefficient which is the projection of the potential V (�r) onto the

harmonic coefficient Ylm (r̂). The muffin tin approximation used in early calcu-

lations corresponds to containing in Eq.(4.74) only the K = 0 component in the
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first expression and only the l = 0 and m = 0 components in the second. Again,

the charge density |Ψ|2 is represented in the same way as the potential

n (�r) =
∑
�k,n

∣∣∣ψ�k,n (�r)
∣∣∣2 w (k, n)

=
∞∑
K

nKei �K·�r; r ∈ II

=
∞∑
l=0

l∑
m=−l

nlm (r) Ylm (r̂) ; r ∈ I, (4.75)

where nK is the Fourier coefficient of the density n (�r) and nlm (r) is a spherical

harmonic coefficient which is the projection of the density n (�r) onto the harmonic

coefficient Ylm (r̂). The plane wave coefficients of the electron density are

nK =
1

V

∑
k,n

∑
K′,K′′,K′′−K′=K

(
CK′

n (k)
)∗

CK
′′

n (k) w (k, n) , (4.76)

where CK
n (k) is the coefficient which is the projection of the wave function ψkn (�r)

onto the basis vectors χK
k (�r). and the density spherical harmonic coefficients nlm

are[33]

nl′′m′′ =
∑
l,l

(∑
k

∑
n

∑
m′,m

(Al′m′,n (k))∗ Alm,n (k) Gmm′m′′
ll′l′′ w (n, k)

)
ul′ (r) ul (r)

+
∑
l,l

(∑
k

∑
n

∑
m′,m

(Al′m′,n (k))∗ Blm,n (k) Gmm′m′′
ll′l′′ w (n, k)

)
ul′ (r) u̇l (r)

+
∑
l,l

(∑
k

∑
n

∑
m′,m

(Bl′m′,n (k))∗ Alm,n (k) Gmm′m′′
ll′l′′ w (n, k)

)
u̇l′ (r) ul (r)

+
∑
l,l

(∑
k

∑
n

∑
m′,m

(Bl′m′,n (k))∗ Blm,n (k) Gmm′m′′
ll′l′′ w (n, k)

)

· (u̇l′ (r) u̇l (r)) , (4.77)
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with

Gmm′m′′
ll′l′′ =

∫
Y ∗

lmYl′m′Yl′′m′′dΩ =

∫
YlmY ∗

l′m′Y ∗
l′′m′′dΩ

=

[
(2l′ + 1) (2l′′ + 1)

4π (2l + 1)

] 1
2

· [C (l′, l′′, l : m′,m′′,m) C (l′, l′′, l : 0, 0, 0)] , (4.78)

where C (l′, l′′, l : m′,m′′,m) is Clebsh-Gordan coefficient and

Alm,n(k) =
∑
K

CK
n (k) AK

lm(k),

Blm,n(k) =
∑
K

CK
n (k) BK

lm(k). (4.79)

4.5.1 Construction of the Full Potential

The Coulomb potential Vc consists of two parts: Hartree potential VH(�r) and

potential of nuclei. The Hartree-potential is determined from the charge density

via the poisson equation

∇2VH(�r) = −8πn(�r), (4.80)

where n(�r) is the density. Solving this equation with plane wave basis is not so

difficult, as the Laplace operator is diagonal in the reciprocal space. For the muffin

tin region, the pseudocharge method developed by Weinert[34] is used to calculate

the Hartree-potentail without the shape approximation. The method is based on

the concept of multipole potentials and the spherical boundary value problem.

It has two steps. In the first step, the true muffin tin charge is replaced by a
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pseudocharge density, ñ(�r),that leads to the same potential outside the muffin

tin. The interstitial potential is calculated in the reciprocal space

VI(�r) =
∑
K �=0

8πñK

K2
ei �K·�r, (4.81)

where ñK is Fourier of pseudocharge density.

In the second step, the muffin tin potential is determined from the Dirich-

let boundary value problem which is defined by the exact muffin tin charge and

the interstitial potential on the muffin tin sphere boundaries, i.e.

V (�r) =

∫
S

n(�r1)G(�r, �r1)d
3�r1 − R2

υ

4π

∮
S

VI(R1υ)

(
∂G

∂r1

)
Rυ

dΩ1 , (4.82)

where Rυ is a point on the sphere and the Green’s function G(�r, �r1) is given by

G(�r, �r) = 4π
∑
lm

Y ∗
lm(r̂1)Ylm(r̂)

2l + 1

rl
<

rl+1
>

[
1 −

(r>

R

)2l+1
]

, (4.83)

where r>(r<) is the greater (smaller) of r and r1, the normal derivative is

(
∂G

∂r1

)
υ

= − 4π

R2
υ

∑
lm

(
r

Rυ

)l

Y ∗
lm(r̂1)Ylm(r̂), (4.84)

We synthesize the spherical harmonic components of VK on the sphere and use

the Green’s function to compute the potential Vlm (r) within the sphere. It can
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be written as

Vlm (r) = (4π)2
∑
K �=0

∑
υ

ei �K·�τυ
2ñK

K2
iljl (KR) R2Y ∗

lm

(
K̂

)
Ylm (r̂)

( r

R

)l

+
4π

2l + 1

⎡
⎣ 1

rl+1

r∫
0

2nlm (r′) (r′)l+2
dr′ − 2√

4π

[
1

r

]
δl0

⎤
⎦

+
4π

2l + 1

⎡
⎣− rl

R2l+1

R∫
0

2nlm (r′) (r′)l+2
dr′

⎤
⎦

+
4π

2l + 1

⎡
⎣rl

R∫
r

2nlm (r′) (r′)1−l
dr′

⎤
⎦ . (4.85)

where δl0 is a Kronecker delta l, 0. Finally, the muffin tin potential has to be

expanded into spherical harmonics and the potential of the nuclei is added to the

spherical (l = 0)component of the effective potential.

The problem of the determination of the exchange-correlation potential

Vxc is different from the Coulomb potential because the exchange-correlation con-

tribution depends only on the position �r. The calculation of the exchange potential

in the muffin tin has two steps. In the first step, the charge density is calculated

on a set of the real space. In the second step, the exchange potential is calculated

and expanded in spherical harmonics of which coefficients can be obtained from

vxc,lm(r) =

∫
Y ∗

lm(r̂)Vxc(�r)dΩ. (4.86)

where vxc,lm(r) is a spherical harmonic coefficient which is the projection of the

exchange-correlation potential Vxc (�r) onto the harmonic coefficient Ylm (r̂). In the
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interstitial region, The three-dimensional fast Fourier is used because the charge

density is expanded into three dimensional plane waves. Again, the exchange

potential is calculated on the real space. Finally Vxc,K , which is the Fourier coef-

ficient of the exchange-correlation potential Vxc (�r) , is the reverse transformed.

4.5.2 Construction of the Full Hamiltonian

To include the full potential or non muffin effect, the Hamiltonian matrix is

modified. It has the following form

Hpq =
(
�kp · �kq

)
U

(
�kp − �kq

)
+

∑
K′

VK′U
(

�K ′ + �kp − �kq

)
+

∑
υ

ei( �Kq− �Kp)·�τυ
4πR4

υ

Ω
(2l + 1) Pl

(
k̂p · k̂q

) (
Els

l
pq + γl

)
+

∑
υ

ei( �Kq− �Kp)·�τυ
∑

lm,l′m′

∑
L=1,M

GmMm′
lLl′ ·

[

Rυ∫
0

drr2 (Ap
l′m′(kp)ul′ + Bp

l′m′(kp)u̇l′)
∗ VLM

(Aq
lm(kq)ul + Bq

lm(kq)u̇l)]. (4.87)

where GmMm′
lLl′ is defined in Eq.(4.78) and Aq

lm, Bq
lm are defined in Eq.(4.27-4.28).

In order to minimize the linearization error, the energy parameters should be

chosen as close to the band energies as possible. However, the band energies

εn(k) depend on �k whereas the energy parameters are constants. In addition,

the radial functions contribute to the eigenfunctions of the different bands with

different energies. An optimal choice can be obtained from the requirement that
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the energy parameters minimize

∑
k

∑
n

(εn (k) − El)
2 nn,l (k) w (k, n) . (4.88)

where

nn,l(k) =
l∑

m=−l

|Alm,n(k)|2 + |Blm,n(k)|2 Nl. (4.89)

By setting the derivative
(

∂
∂El

)
of Eq.(4.88) equal to zero, it yields the optimal

energy parameter

El =

∑
k

∑
n

εn (k) nn,l (k) w (k, n)∑
k

∑
n

nn,l (k) w (k, n)
, (4.90)

4.5.3 Mixing Scheme

The aim of the electronic structure calculations is to minimize the energy func-

tional with respect to the electron density. The minimization of the density

functional is performed implicity by the self-consistent density. The construction

of new density from the resulting single particle wave functions is described as

nnew(�r) = F
{
nold(�r)

}
. (4.91)

This scheme is in general divergent. Thus it is necessary to stabilize the self-

consistent cycle by mixing the new density with the old (input) density to obtain

the density actually used in the next iteration as

nnew(�r) = (1 − α)nold(�r) + αF
{
nold(�r)

}
,
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where α is between 0 and 1. In this work, we find that α = 0.3 is the most

optimum choice.

4.5.4 Total Energy Calculation

From the density functional theory, a simple expression for the total energy per

unit cell is

E =
∑
kn

εn (k) wkn−1

2

∫
Ω

2n (�r) [Vc (�r) + 2Vxc (�r)] d�r−1

2

∑
υ

ZυVM (�γυ)+Exc [n (�r)] ,

(4.92)

where εn (k) is the dispersion relation, n (�r) is the density, Vxc (�r) and Exc [n (�r)]

is the exchange-correlation potential and exchange-correlation energy. Vc (�r) is

the Coulomb potential. VM (�rυ) is a generalized Madelung potential[20] which

is the Coulomb potential at the positions �rυ of nuclei due to all charges in the

crystal except own the nuclear charge. The Madelung potential of hydrogen is

defined as

VM (�rυ) =

∫
2n (�r) d�r

|�r − �rυ| −
∑

α

2Zυ∣∣∣�Rα − �rυ

∣∣∣ . (4.93)

Again, the solution of poisson’s equation of Madelung potential is solved by the

pseudocharge method. The solution is

VM (�rυ) =
1

Rυ

[RυS0 (Rυ) + 2Zυ − 2Qυ] + 2
√

4π

Rυ∫
0

drrn00 (r) , (4.94)

where S0 (Rυ) is the spherical average of the coulomb potential about centered Rυ

and Qυis the total electronic charge in the sphere, n00 (r) is a spherical harmonic
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coefficient with l,m = 0. Then, the simplifying total energy is

E =
∑
kn

εn (k) wkn − 1

2

⎡
⎣∫

V

2n (�r) Vc (�r) d�r + 2
√

4π
∑

υ

Zυ

Rυ∫
0

drrn00 (r)

⎤
⎦

−
∫

V

2n (�r) Vxc (�r) d�r − 1

2

∑
υ

1

Rυ

[RυS0 (Rυ) + 2Zυ − 2Qυ]

+Exc. (4.95)

This expression will be used for further calculations in the next chapter.



Chapter 5

Calculation of the Ground State
Energy

5.1 Introduction

In this chapter, we calculate the ground state energy of the solid metallic hydrogen

by using the two methods, Wigner-Seitz method and FP-LAPW, described in

previous chapters. In addition, the energy bands and the density of states are

calculated by FP-LAPW.

5.2 The Total Ground State Energy of the Solid

Metallic Hydrogen by the Wigner-Seitz Method

From Eq. (3.31), the ground state energy of the solid metallic hydrogen as a

function of rs is calculated.
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Fig.5.1. Ground state energy calculated by the Wigner-Seitz method with various

potentials: Coulomb potential (solid line), the uniform screened Coulomb poten-

tial (long dashed line) and the Thomas-Fermi screened potential (short dashed
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line).

Following the estimation of the other terms in Eq. (3.31) proposed by Styer and

Ashcroft[7], the ground state energy as a function of rs is shown in Fig.5.1. For

Coulomb potential(solid line), the minimum energy is -1.10 Ry/atom at rs=1.8a0

which corresponds to a density of 0.44 g/cm3 . For uniform screening (long

dashed line), the minimum energy is -1.07Ry/atom at rs=1.6a0. For Thomas-

Fermi screening (short dashed line), the minimum energy is -0.94Ry/atom at

rs=1.8a0. For comparison, the minimum ground state energy calculated by Styer

and Ashcroft[7] is -1.078Ry/atom at rs=1.66a0 , -1.038 Ry/atom at rs=1.65a0 and

-1.052 Ry/atom at rs=1.61a0 for Coulomb, the uniform screened and Thomas-

Fermi screened potential Coulomb potentials, respectively.

5.3 The Ground State Properties of the Solid

Metallic Hydrogen by the Full Potential Lin-

earized Augmented Plane Wave Method

In this section, we represent the results of our calculations, i.e. the energy band

structure, the density of states and the ground state energy of solid metallic hy-

drogen in some different atomic structures. The ground state energy is calculated

by using Eq. (4.95) and the density of states is evaluated by using the tetrahedron

method, described in section 4.4.4.
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5.3.1 The Energy Band Structure

Fig. 5.2 The energy band structure of the solid metallic hydrogen in a face-

centered cubic structure.

Fig. 5.3 The energy band structure of the solid metallic hydrogen in a body-

centered cubic structure.
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Fig. 5.4 The energy band structure of the solid metallic hydrogen in a hexagonal

close-packed structure.

5.3.2 The Density of States

By using the tetrahedron method, the density of states is calculated by using Eq.

(4.47-4.55).
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Fig. 5.5 The density of states of the solid metallic hydrogen in a face-centered

cubic structure.
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Fig. 5.6 The density of states of the solid metallic hydrogen in a body-centered

cubic structure.
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Fig. 5.7 The density of states of the solid metallic hydrogen in a hexagonal

close-packed structure.

The density of states of the solid hydrogen in three structures show the Fermi

energy in the conduction band which mean that the solid hydrogen is a metal.

5.3.3 The total Ground State Energy

From the total energy calculation, we calculate the total ground state energy of

metallic hydrogen as function of rs by using Eq.(4.95) .
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Fig. 5.8 The total ground state energy of metallic hydrogen with various atomic

structures: a face-centered cubic(long dashed line), a body-centered cubic(solid

line) and a hexagonal close-packed(short dashed line)
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For the face-centered cubic structure (solid line), the minimum energy is about

-0.98 Ry/atom at rs=1.75a0. For the body-centered cubic structure (short dashed

line), the minimum energy is about -0.94 Ry/atom at rs=1.85a0. For the hexag-

onal close-packed structure (long dashed line), the minimum energy is -1.05

Ry/atom at 1.80a0.

5.4 Discussion

In the calculations of the ground state energy of the solid metallic hydrogen by

the Wigner-Seitz method which based on the Hartree-Fock theory, our results

show effects of the screening interaction between the electrons and their own

nuclei, and the interaction among the nuclei. In Styer and Ashcroft ’s work[7],

the screening effects have no obvious impact on the physical properties of the

metallic hydrogen. This is contrast with our findings. We see that the minimum

ground state energy is higher in the case of Thomas-Fermi screened Coulomb

potential than in the case of Coulomb potential. In the uniform screening, the

volume is small because the interaction caused by the uniform screened potential

has a very short range effect, i.e. U (r) vanishes at the cell boundary. Thus the

nuclei can hardly see each other and tend to stay closer together.

However, the total ground state energy of the metallic hydrogen does

not depend on the structure. In addition, a nearly free electron wave is used

in the calculation of the exchange energy and the Hartree energy. To improve
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our calculations, we choose the full potential linearized augmented plane wave

based on the density functional theory to solve this problem. The results of

this method in different structures show that the total ground state energy is

minimum in the hexagonal close-packed. This agrees well with other works[36]

which is the calculation of the ground state of solid molecular hydrogen in various

structures. The density of states below the Fermi level calculated in the full

potential linearized augmented plane wave method is similar to the density of

states calculated in the Wigner-Seitz method up to the Fermi level. It implies

that the Wigner-Seitz method is applicable.



74

r
s
(a

0)

0 1 2 3 4 5

E0(Ry/atom)

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

HCP

BCC

FCC

Coulomb

Uniform

Thomas-Fermi

} FP-LAPW

{Wigner-Seitz

Fig. 5.9 A comparison of the total ground state energy of the metallic hydrogen

between Wigner-Seitz method and the full potential linearized augmented plane

wave.

However, this calculation method is based on the local density functional
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approximation which is used in a homogeneous electron system. In future work,

we will use a generalized gradient approximation or an exact exchange in the

density functional theory. In addition, we will include the contribution of ionic

motions at finite temperatures.



Chapter 6

Conclusions

In the present work, we investigate the total ground-state energy of solid metallic

hydrogen as a function of rs and to determine rs at which the ground state energy

is minimum. We assume that the solid metallic hydrogen consists of electrons and

protons which occupy the sites of a rigid Bravais lattice. The many-body problem

is solved by using the Hartree-Fock theory and the density functional theory.

The total ground state energy is calculated by using the Wigner-Seitz method

and the full potential linearized augmented plane wave. We use the Wigner-

Seitz method to estimate the energy band dispersion upto o(k4) and use the most

accurate correlation potential available. Under the simple Coulomb potential, the

minimum ground state energy is 1.10 Ry/atom at rs=1.8 a0 which corresponds

to the density of 0.44 g/cm3. Under screening by the uniform screening and

Thomas-Fermi screening, the minimum ground state energy are –1.07 Ry/atom

at rs=1.6a0 and –0.94 Ry/atom at rs=1.8a0 respectively. Normal metals have rs

between 2.0a0 − 6.0a0. The density of lithium is 0.542 g/cm3 and the density of



77

iron is 7.87 g/cm3.

To improve our works, we also apply the FP-LAPW method. In the full

potential linearized augmented plane wave, we calculate the total ground state

energy, the density of states and the band energy structure in various atomic

structures. In the body-centered cubic and the face-centered cubic structures,

the solid hydrogen is a metal with the minimum ground state energy about –

0.94Ry/atom and -0.98Ry/atom at rs=1.85a0 and rs=1.75a0 respectively. In

the hexagonal close-packed, the solid hydrogen is a metal with the ground state

energy about –1.05Ry/atom at rs=1.8a0 . Our results agree with other’s results

in that the hexagonal close-packed structure has the lower ground state energy

than the face-centered cubic and the body-centered cubic structures[35]. When

we consider the density of states, we find that the density of states below Fermi

energy calculated by the full potential linearized augmented plane wave has a

similar as the density of states approximated by the Wigner-Seitz method. It

implies that the Wigner-Seitz method is simple and yet applicable approximation

for alkali metals.

From our calculations, they confirm that there is possibility that the solid

metallic hydrogen exists because the ground state energy is negative. However,

the determination of the phase transition point is very difficult. According to ex-

periments, hydrogen does not become a metallic solid under the highest pressure



78

available in laboratory, i.e. about 340 GPa[36]. Furthermore, solid molecular hy-

drogen[7] has lower ground state energy which is -1.1648 Ry/atom at rs = 3.12a0.

Thus it is more likely that the solid molecular hydrogen will be found under pres-

sure instead of the solid metallic hydrogen because the nature will be in its lowest

energy state. The solid metallic hydrogen might exist as a metastable state. If

it is stable , there must be some other effects, apart from those effects included

in this work, which reduce the total ground state energy. Recently there has

been a report on collective excitations, which produce extra binding energy and

might cause the metallization. However, this is beyond the scope of the present

work.
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