การออกแบบระบบสารสนเทศเพื่อการวางแผนการขนส่งสินค้าสำหรับโรงงานผลิตเครื่องนุ่งห่ม

นางสาวลีนา เอื้อบำรุงจิต

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาการจัดการทางวิศวกรรม ศูนย์ระดับภูมิภาคทางวิศวกรรมระบบการผลิต คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2554

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยิ์ในฟี้ใช้ให้ไม่ให้บารที่การที่กระวิจาที่ใช้ให้ให้ไม้ทารในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR) are the thesis authors' files submitted through the Graduate School.

INFORMATION SYSTEM DESIGN FOR TRANSPORTATION PLANNING OF A

GARMENT FACTORY

MS. LEENA UABUMRUNGJIT

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Engineering Management

The Regional Centre for Manufacturing Systems Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2011

Copyright of Chulalongkorn University

Thesis Title	INFORMATION SYSTEM DESIGN FOR TRANSPORTATION
	PLANNING OF A GARMENT FACTORY
Ву	Miss Leena Uabumrungjit
Field of Study	Engineering Management
Thesis Advisor	Assistant Professor Manop Reodecha, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

..... Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

..... Chairman

(Professor Sirichan Thongprasert, Ph.D.)

...... Thesis Advisor

(Assistant Professor Manop Reodecha, Ph.D.)

..... Examiner

(Assistant Professor Paveena Chaovalitwongse, Ph.D.)

..... External Examiner

(Assistant Professor Rein Boondiskulchok, D.Eng.)

ลีนา เอื้อบำรุงจิต : การออกแบบระบบสารสนเทศเพื่อการวางแผนการขนส่ง สินค้าสำหรับโรงงานผลิตเครื่องนุ่งห่ม. (INFORMATION SYSTEM DESIGN FOR TRANSPORTATION PLANNING OF A GARMENT IN FACTORY) อ. ที่ปรึกษา วิทยานิพนธ์หลัก: ผศ.ดร.มานพ เรี่ยวเดชะ, 217 หน้า.

วิทยานิพนธ์ฉบับนี้รายงานการออกแบบระบบสารสนเทศเพื่อสนับสนุนการวางแผนการขนสินค้า สำหรับโรงงานผลิตเครื่องนุ่งห่ม เพื่อให้สามารถดำเนินการรับและส่งสินค้าได้ภายในเวลาที่กำหนด และมี ต้นทุนในการขนส่งที่ต่ำ

การออกแบบระบบสารสนเทศแบ่งออกเป็น 5 ส่วน คือ (1) กระบวนการตัดสินใจการวางแผนการ ขนส่งสินค้า (2) กระบวนการปรับเปลี่ยนแผนการขนส่งสินค้า (3) ฐานข้อมูล (4) หน้าจอการทำงาน และ (5) กระบวนการทำงาน (business process) กระบวนการตัดสินใจการวางแผนการขนส่งสินค้าและการ ปรับเปลี่ยนแผนการขนส่งสินค้าได้ประยุกต์ใช้เทคนิค nearest neighbor ซึ่งเป็นวิธีการหาคำตอบด้วย วิธีฮิวริสติก (heuristics) เพื่อให้ได้วิธีการหาคำตอบและผลคำตอบที่เหมาะสม โดยคำนึงถึงต้นทุนการ ขนส่งเป็นหลัก การออกแบบฐานข้อมูล หน้าจอการทำงานและกระบวนการทำงานได้ใช้เครื่องมือ DFD (data flow diagram) และ แผนภาพกระบวนการทำงาน (business flow chart) เพื่อสื่อความคิดของระบบ ออกมาเป็นรูปธรรม

จากการประเมินระบบพบว่า วิธีการหาคำตอบของโมเดลที่ใช้ในการตัดสินใจเรื่องการจัดเส้นทาง การขนส่งที่พัฒนาขึ้นสามารถทำให้ต้นทุนการขนส่งรวมลดลงจากเดิม 46 % ส่วนคำตอบของโมเดลที่ใช้ใน การตัดสินใจเรื่องการปรับเปลี่ยนเส้นทางการขนส่งที่พัฒนาขึ้นทำให้ต้นทุนการขนส่งรวมน้อยกว่าคำตอบที่ ได้จากประสบการณ์วางแผนของเจ้าหน้าที่วางแผนในปัจจุบันถึง 58 % และสามารถขนส่งสินค้าทั้งหมดได้ ทันเวลาที่กำหนด นอกจากนี้ผู้ที่เป็นเป้าหมายเป็นผู้ใช้ระบบสารสนเทศมีความพึงพอใจกับหลักการและ แนวคิดของระบบที่ออกแบบขึ้น เพราะสามารถแก้บัญหาที่เกิดขึ้นในการจัดเส้นทางในปัจจุบัน และลด ความยุ่งยากในการตัดสินใจได้ และน่าจะนำไปประยุกต์ใช้ได้จริง

ศูนย์ระดับภูมิภาคทางวิศวกรรมระบบผลิต ลายมือชื่อนิสิต..... สาขาวิชา การจัดการทางวิศวกรรม ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก...... ปีการศึกษา.......2554...... # # 5371621021: MAJOR ENGINEERING MANAGEMENT KEYWORDS: INFORMATION SYSTEM DESIGN/TRANSPORTATION PLANNING/ VEHIVLE ROUTING PROBLEM/GARMENT FACTORY

LEENA UABUMRUNGJIT: INFORMATION SYSTEM DESIGN FOR TRANSPORTATION PLANNING OF A GARMENT FACTORY, ADVISOR: ASST. PROF. MANOP REODECHA, PH.D. 217 pp.

This thesis reports the design of an information system for supporting transportation planning of a garment factory in order to meet receipts and deliveries in time with low cost of transportation.

The design of the information system consists of 5 parts: (1) the decision making process in delivery planning, (2) the delivery plan changing process, (3) database, (4) computer screens that support delivery planning, and (5) the business process. The nearest neighbor, which is a technique of heuristics, is applied to generate and change transportation plans using the transportation cost as the main criteria. Business flow charts, data flow diagrams, and data schema are used to explain the design of the database, the user interface, and the business process.

The system evaluation shows that the proposed method of decision making process in delivery planning can reduce the transportation cost by 46% from the current method. The proposed delivery plan changing process can reduce the cost of delivery plan changes by 58% comparing to the method generated by the experienced transportation planner. In addition, the users of this information system are satisfied with the concept and the principle of the system, because it can solve present vehicle routing problem, reduce the complexity of making a decision, and practical to implement.

The Regional Centre for Manufacturing System. Engineering	Student's Signature
Field of Study : Engineering Management	Advisor's Signature
Academic Year : 2011	

ACKNOWLEDGEMENTS

First of all, the researcher would like to express my gratitude to Assistant Professor Manop Reodecha, Ph.D., thesis advisor, for giving me the valuable comment and suggestions during research time. Moreover, I would like to show my appreciation to Assistant Professor Rein Boondiskulchok, D.Eng for giving me an opportunity to do research in ROM unit (Intergration Development of Performance and Company for Resources and Operations System in Manufacturing and Service Organization). In addition, I would like to thank Assistant Professor Paveena Chaovalitwongse, Ph.D. for the encouragement and good advice. Furthermore, I would like to say thank you to Professor Sirichan Thongprasert, Ph.D., the chairman of thesis committees, for her recommendation.

Furthermore, I would like to thank my research team consisting of Mr. Siravit Swangnop, Mr. Kritsada Pausakul, Mr. Anawat Ariyasujjakorn, Ms. Voranan Ruchirat, and Mr. Samrerng Panchakunathorn for supporting me everything.

Last but not lease, I would like to thank every employer and employee working in the garment factory for scarifying their time in order to give the internal information to me. Moreover, I would like to express my gratefulness to my beloved family and friends for their encouragement and help. Without all of person I have mentioned above, this research could not be completed.

CONTENTS

Abstract in Thai iv
Abstract in Englishv
Acknowledgementsvi
Contentsvii
LIST OF TABLESxii
LIST OF FIGURESxvi
CHAPTER 1 INTRODUCTION1
1.1 Introduction and statement of problem1
1.2 Objectives of the research5
1.3 Research scope6
1.4 Methodology10
1.4.1 Design decision making process for delivery planning, and changing
the delivery plan process10
1.4.2 Design the decision support system for garment industry including
the business process, database, and user interface11
1.5 Research procedure11
1.6 Expected results12

1.7 Expected benefits	12
CHAPTER 2 LITERATURE REVIEW	13
2.1 Types of distribution planning	13
2.2 Vehicle routing problems	14
2.2.1 Travelling salesman problem	16
2.2.2 Multiple travelling salesman problem	20
2.2.3 Vehicle routing problem	21
2.3 Solution techniques	24
2.3.1 Exact optimization	24
2.3.2 Heuristics	24
2.4 Heuristics for solving vehicle routing problem in this research	25
2.5 Current logistics models	26
2.5.1 Direct shipping model	26
2.5.2 Milk run model	27
CHAPTER 3 CONCEPTS AND PRINCIPLE	29
3.1 Concepts and principle of decision making process for delivery planning	31
3.2 Concepts and principle of changing the delivery plan process	35
CHAPTER 4 DETAILS OF THE DESIGNED SYSTEM	39

ix

4.1 Business process and fundamentals of input data	
4.1.1 Business process and fundamentals of input data of decision making	
process for delivery planning	
4.1.2 Business process and fundamentals of input data of changing the	
delivery plan process	58
4.2 Decision support	63
4.2.1 Decision making process for delivery planning	63
4.2.2 Process for changing delivery plan	92
CHAPTER 5 INFORMATION SYSTEM	113
5.1 Database	113
5.1.1 Transportation time between any two points of each vehicle	113
5.1.2 Node	114
5.1.3 Routing	114
5.1.4 Maintenance plan	115
5.1.5 Transportation plan	115
5.1.6 Loading time per unit	116
5.1.7 Availability of vehicles	116
5.1.8 Transportation demand	117
5.1.9 In house vehicle	117

5.1.10 Outsourced vehicle	118
5.2 User interfaces	119
5.2.1 Set up	119
5.2.2 Decision making process for delivery planning	123
5.2.3 Changing the delivery plan process	145
5.2.4 Report	162
CHAPTER 6 SYSTEM EVALUATION	164
6.1 Evaluation of the correctness and completeness of the designed	
information system	164
6.1.1 Evaluation of the correctness and completeness of decision	
making process for delivery planning	
6.1.2 Evaluation of the correctness and completeness of changing	
the delivery plan process	
6.1.3 Decision support system evaluation	169
6.2 Evaluation results of the efficiency of information system	170
6.2.1 Evaluation result of the efficiency of decision making process	170
6.2.2 Evaluation result of the efficiency of changing the delivery plan	
process	
CHAPTER 7 CONCLUSION	

xi

7.1 Conclusion of the research	190
7.2 Limitations of the system	191
7.3 Problems and obstacles in conducting research	192
7.4 Suggestions for further studies	193
REFERENCES	194
APPENDICES	
APPENDIX A	197
APPENDIX B	208
BIOGRAPHY	217

LIST OF TABLES

Table 1 The assumptions of this system8
Table 2 Classification of vehicle routing problem14
Table 3 Scope of transportation 43
Table 4 Example of transportation demand46
Table 5 Example of the detail of monthly in house vehicle bought by factory
Table 6 Example of the detail of monthly in house vehicle rented more than
one month by the factory48
Table 7 example of maintenance plan
Table 8 Example of outsourced vehicle information in each day
Table 9 Example of routing information51
Table 10 Example of transportation time between any two points of
vehicle's type ID 00152
Table 11 Example of transportation time between any two points of
vehicle's type ID 00253
Table 12 Example of the details of in house vehicle in each day 54
Table 13 Example of transportation plan arraged by ID of vehicle
B00001 with car resigtration วฮ-345656
Table 14 Example of transportation plan arraged by ID of company
F0001 (Company A)58
Table 15 Example of transportation demand changed
F0001 (Company A)58

Table 16 Example of transportation demand with group of vehicle used	72
Table 17 Status of each transportation demand	73
Table 18 Points considered in order to calculate maximum time	73
Table 19 Transportation time between any two points of vehicle's type	
ID 003	74
Table 20 Routing	75
Table 21 Example of transportation plan	
Table 22 Transportation demand with method of transporting.	
Table 23 Transportation demand with N left	91
Table 24 Previous transportation plan operated by B00001	
Table 25 Previous transportation plan operated by B00002	97
Table 26 Result of time constraint that can operate demand with pattern1	
Table 27 Result of time constraint that can operate demand with pattern2	
Table 28 Result of time constraint that cannot operate demand	
Table 29 Result of time left constraint that can operate other demand	
Table 30 Result of time left constraint that can operate other demand	
Table 31 Transportation demand (1/8/2011) of a garment factory located	
in Bangkok, Thailand	172
Table 32 In house vehicle information	
Table 33 Outsourced vehicle information	
Table 34 Routing information	174

xiv

Table 35 Transportation time between any two points of vehicle's type ID 001175
Table 36 Transportation time between any two points of vehicle's type ID 002176
Table 37 The details of transportation plan by the experienced planner
Table 38 The transportation cost of model generated by the experienced planner
Table 39 The details of transportation plan in the system by proposed model
Table 40 The details of transportation plan exceeding operation time by proposed
model179
Table 41 The efficiency of decision making process result
Table 42 Transportation demand changed
Table 43 In house vehicle 184
Table 44 The previous transportation plan generated by transportation planner
Table 45 The previous transportation plan generated by proposed model
Table 46 The transportation plan changed by transportation planner
Table 47 The transportation plan changed by proposed model
Table 48 The efficiency of changing the delivery plan process 188
Table 49 The deatils of transportation plan from the proposed model (round 1)208
Table 50 The deatils of transportation plan from the proposed model (round 2)
Table 51 The deatils of transportation plan from the proposed model (round 3)210
Table 52 The deatils of transportation plan from the proposed model (round 4)211
Table 53 The deatils of transportation plan from the proposed model (round 5)211
Table 54 The deatils of transportation plan from the proposed model (round 6)212

xv

Table 55 The deatils of transportation plan from the proposed model (round 7)	213
Table 56 The deatils of transportation plan from the proposed model (round 8)	214
Table 57 The deatils of transportation plan from the proposed model (round 9)	215
Table 58 The deatils of transportation plan from the proposed model (round 10)	216

LIST OF FIGURES

Figure 1 The present delivery method: direct deliver from suppliers to plant2
Figure 2 Combining the raw materials in the same area, then sending to the plant2
Figure 3 Milk run method by starting and ending at the same point which is a plant
Figure 4 The routing of initial transportation plan4
Figure 5 The routing when the transportation demands are changed4
Figure 6 The overview of concept of decision making process for delivery planning
and the delivery plan changing process6
Figure 7 Direct shipping model adapted from Chopra and Meindl27
Figure 8 Milk run model adapted from Chopra and Meindl28
Figure 9 The overview concept of decision making process
Figure 10 The overview concept of changing the delivery plan process
Figure 11 Business process of decision making process40
Figure 12 Example of transportation plan which has 6 days of planning time fence41
Figure 13 The characteristics of transportation demand's ID45
Figure 14 Characteristic of vehicle's ID49
Figure 15 Business process of changing the delivery plan process
Figure 16 The detail of decision making process65
Figure 17 The detail of routing by in house and outsourced vehicle
Figure 18 The detail of changing the delivery plan process

Figure 19 The previous transportation plan operated by vehicle_ID B00001	
Figure 20 The transportation plan after cancelling OCF0002 operated by	
vehicle_ID B00001	100
Figure 21 The previous transportation plan	104
Figure 22 The transportation plan after cancelling SFM0004 operated	104
Figure 23 Relation between 10 databases in the system	119
Figure 24 User interface for setting up data and information of generating	
delivery plan	120
Figure 25 User interface for creating maintenance plan	122
Figure 26 User interface for retrieving transportation demand for decision	
making process for delivery planning	123
Figure 27 User interface for dividing overy capacity transportation demand	125
Figure 28 User interface for selecting the method of prioritising transportation	
demand exceeding operation time	126
Figure 29 User interface for displaying the priority of each transportation	
demand exceeding operation time prioritized by system	127
Figure 30 User interface for prioritising transportation demand exceeding	
operation time by user	128
Figure 31 User interface for selecting the method of choosing transportation	
demand exceeding operation time which must be operated within	
today	129

Figure 32 User interface for displaying the transportation demand exceeding
operation time which must be operated within today chosen by system131
Figure 33 User interface for choosing the transportation demand exceeding
operation time which must be operated within today chosen by user132
Figure 34 User interface for choosing the method of transportation to each
transportation demand exceeding operation time
Figure 35 User interface for selecting the group of vehicle which operates
transportation demand exceeding operation time134
Figure 36 User interface for displaying all available of transportation plan
and selecting the transportation plan for transportation demand
exceeding operation time136
Figure 37 User interface for selecting the method of choosing transportation
demand in the system which can be operated today137
Figure 38 User interface for displaying transportation demand in the system
which can be operated today chosen by system
Figure 39 User interface for selecting transportation demand in the system
which can be operated today chosen by user
Figure 40 User interface for displaying all available of transportation plans
and selecting the transportation plan for transportation demand in
the system141

Figure 41 User interface for selecting the method of cutting off transportation
demand in the system which does not operate today142
Figure 42 User interface for displaying transportation demand in the system
cut off by system143
Figure 43 User interface for cutting off transportation demand in the system
which does not operate today by user144
Figure 44 User interface for retrieving transportation demand changed for
changing the delivery plan process146
Figure 45 User interface for selecting the condition of changing the
transportation plan147
Figure 46 User interface for selecting the method of choosing
transportation demand changed which must be operated
within today (changing the delivery plan by condition 1)
Figure 47 User interface for displaying transportation demand changed
which must be operated within today chosen by system
(changing the delivery plan by condition 1)150
Figure 48 User interface for choosing transportation demand changed
which must be operated within today by user (changing the
delivery plan by condition 1)151
Figure 49 User interface for displaying transportation demand added
(changing the delivery plan by condition 2)152

Figure 50 User interface for selecting the method of changing the previous
transportation plan (changing the delivery plan by condition 2)154
Figure 51 User interface for displaying all available of transportation plan
and selecting the transportation plan for transportation demand
changed (changing the delivery plan by condition 2)
Figure 52 User interface for checking availability of transportation
plan changed by user (changing the delivery plan by condition 2)156
Figure 53 User interface for displaying transportation demand added
(changing the delivery plan by condition 3)158
Figure 54 User interface for selecting which transportation plan arranged
by vehicle's ID can be effected (changing the delivery plan
by condition 3)159
Figure 55 User interface for selecting the condition of changing for each
transportation demand (changing the delivery plan by condition 3)161
Figure 56 User interface for displaying the results of generating transportation

CHAPTER 1 INTRODUCTION

1.1 Introduction and statement of problem

Nowadays, every industry in Thailand has grown rapidly and highly competed with each other; therefore, these industries have to improve in every aspect in order to stay competitively. One of the core factors, especially for organisations which have to receive raw materials and send goods to several places, is transportation. These firms must focus on their transportation systems which have ability to respond transportation demand quickly, be in time, and low cost. If they cannot send their goods in time specified in the schedule, it will cause plenty of loss. For example, if the supplier is not able to send raw material to the plant in time, the manufacturing of this plant is stopped and cannot produce any goods. Thus, this plant has to pay the penalty cost to its customer because of lateness.

Transportation cost of garment industry is very expensive, since the plants do not focus on the transportation planning. Although some firms have the delivery planning, these plans have indistinct detail and the inefficient pattern. For instance, each supplier sends its raw material directly to the plant shown in Figure 1, even though these suppliers are located in the same area. If these suppliers coordinate with each other in order to combine the raw material from others and then send it to the plant which is shown in Figure 2, the transportation cost will be decreased. Another alternative, milk run, is shown in Figure 3. The plant uses its vehicles starting at the plant, then picking up the raw materials from each supplier, and then sending these raw materials to the plant. This method also reduces the transportation cost. Furthermore, milk run method will decrease the number of trucks and increase the utilization of space. [1]

Figure 1 The present delivery method: direct deliver from suppliers to plant (S: Supplier, and

P: Plant)

Figure 2 Combining the raw materials in the same area, then sending to the plant

Figure 3 Milk run method by starting and ending at the same point which is a plant

The delivery planning of garment industry, at the present, is managed separately by each department, because these departments have their own vehicles. Sometimes, the different department has the same route and destination, but they do not coordinate. Therefore, the total delivery cost of this plant is very high because of overlapped routing.

Moreover, the transportation demand of garment industry usually changes after releasing the delivery plan such as increasing the transportation demands, putting off the due date, and canceling the transportation demands, so the efficiency of the previous transportation planning is low. For example, it is shown that there are 2 vehicles and the sequence of receiving and sending the goods is shown in Figure 4. After releasing the transportation plan, the transportation demands from some suppliers are changed; that is, the demand from supplier6 is cancelled since there are some problems on production line, and the demand from supplier8 is increased. The plants, at the present, always solve this

problem by using new vehicle which is vehicle number 3 in order to pick up the raw material from supplier8 as shown in Figure 5. From this figure, it is shown that the delivery cost is very expensive because of low efficient in planning and no process for changing the transportation plan.

Figure 4 The routing of initial transportation plan

Figure 5 The routing when the transportation demands are changed

These demands are mostly specified in term of period such as receiving and sending the goods (ID 001) since 1/5/2011 until 5/5/2011. Moreover, the transportation demands are sometimes more than the capacity of the vehicles, so these transportation demands have to be operated more than one trip. In addition, each transportation demand has its constraint. For example, some transportation demands cannot operate in the same vehicle as the other demands. All of these things make the planning of transportation more complex.

At the present, the delivery planning is taken responsibility by a planning officer who uses his/her experience to plan and does not have any criteria to make a decision. Furthermore, there is no tool to support his/her decision for planning and no re-plan when the transportation demands are changed.

Therefore, the researcher will develop the decision making process for delivery planning of garment industry including the process of changing the transportation plan in order to pick up and deliver the goods in time with suitable cost. In addition, the decision support system for generating the transportation plan is designed.

1.2 Objectives of the research

To design an information system for generating delivery plans for a garment factory in order to meet all demands in time with low cost of transportation.

1.3 Research scope

The information system consists of 5 parts: the decision making process in delivery planning, the delivery plan changing process, user interface or computer screens, database for supporting the process of the system, and the business process. The overview of decision making process for delivery planning and the delivery plan changing process are shown in Figure 6.

Figure 6 The overview of concept of decision making process for delivery planning and the delivery plan changing process

- Inputs of the decision making process consist of the transportation demands, the detail of the routes, the transportation time between any two points of each vehicle, and the details of vehicles.
- Decision making process is to determine the type of vehicle, routing, and the sequence of receiving and sending the goods for demands that occur after planning time fence.

- Output of decision making process is the delivery plan.
- Inputs of the delivery plan changing process consist of the previous delivery plan, the detail of the routes, the transportation time between any two points of each vehicle, the details of vehicles, and the details of demands chaged which occure in planning time fence.
- The delivery plan changing process is designed for normal situation which excludes the emergency situation such as accident, and breaking down of the vehicles. The plan cannot change while the vehicle is executed.
- Output of delivery plan changing process is the delivery plan which is the same as output of decision making process.
- Any programmers who would like to develop this model to be a programme can use the output of this information system.
- Programme coding and implementation of information system for a garment factory are excluded.
- The delivery plan in this research excludes in house transportation.
- Transportation mode used in this research is road transportation.
- The solution of this system is not guaranteed optimal.
- Goods in this system mean raw materials(R), work in process (WIP), and finished goods (FG). All of these goods are specified in the same units which are kilogramme (kg), and cubic metre (m³).
- Transportation resources in this system are vehicles only, others such as the drivers and the crews are not taken into consideration.

- Nodes in this system consist of several places which are supplier, outsource, plant, distribution center, wholesaler, retailer, and port such as airport, sea port, and train station. Each node has different goods, but they can be receiving and sending points. Moreover, there is one centre point which is the plant.
- The vehicle capacity limitation in this system includes the size of the goods and the weight of goods, but the shape of the goods and the additional equipment for supporting the transportation are not taken into consideration.

The assumptions of this system are shown in Table 1.

lssues	Details of the system
Fuel station	 It is assumed that all delivery plans are executable; ignoring
	problem such as fuel shortage, etc.
Node	 The operating time of every node is the same. For example,
	every node opens at 8 am and closes at 10 pm.
Demand	 The planning time fence is specified by the users.
	 It can be splitted if it is over capacity of the largest vehicle
	in the system.
The conditions of	 Every vehicle has the same starting and ending point; that
	is, the centre or the plant.

Table 1 The assumptions of this system

Issues	Details of the system
operating vehicles	 The vehicle has to back to the centre point within the operatation per day which is specified by the users.
	 There is no transshipment.
Vehicle	 The number of in house vehicle is limited.
	 The number of outsourced vehicle is unlimited.
	 Each in house vehicle has different maintenance plan.
	When it is the time of maintenance, this vehicle is sent to the
	plant in order to repair according to the plan.
	 There is no maintenance plan for outsourced vehicles.
	 Transportation cost of each vehicle is known.
Time	 Loading and unloading time must be considered.
	 The transportation time between any two points is different
	and assumed to be constant and also applicable at any
	time. It is specified by the user.
Transportation cost	 The transportation cost of in house vehicle includes fixed
	and variable cost which is varied by the distance.
	 The transportation cost of outsourced vehicle includes fixed
	cost which is hiring cost per day and variable cost which is
	varied by the distance.

Issues	Details of the system
Maintenance plan	 The period of maintenance plan is specified in day.
Routing	 There is only one routing from node A to node B in this system. The distance from node A to node B is not equal to node B to node A.

1.4 Methodology

The research can be divided into 2 parts as follows:

1.4.1 Design decision making process for delivery planning, and changing the delivery plan process.

The model applied in this part is combining mathematic model and heuristic in order to find the suitable solution.

1.4.2 Design the decision support system for garment industry including the business process, database, and user interface.

Since this research focuses on the designing and excludes the programme coding and implementation, the researcher will use business flow chart to explain its idea and Microsoft access for displaying the database.

1.5 Research procedure

- 1. Study garment industry
- 2. Study the transportation problem
- 3. Study the literature review related to the vehicle routing problem and solution in

order to apply to thesis

- 4. Design making process for delivery planning
- 5. Design the delivery plan changing process
- 6. Design the decision support system
- 7. Test the information system designed
- 8. Analyze and conclude the results
- 9. Prepare report and presentation for thesis

1.6 Expected results

- Decision making process for delivery planning of garment industry. The result of this process is the delivery plan which has 2 patterns: the delivery plan arranged by ID of vehicle which is sent to tracking department and outsource in order to operate according to the transportation plan, and the delivery plan arraged by ID of company which is sent to transportation plan department in order to inform the details of receipts and deliveries to each company.
- Changing the delivery plan process for garment industry.
- User Interface
- Database
- Business process

1.7 Expected benefits

- Decrease the cost of transportation for garment industry which responds all demand in the system in time.
- Reduce the difficulty and complexity of planning the transportation including the process of changing delivery plan.
- Support the planning officer who has responsibility to plan the transportation and change the transportation plan

CHAPTER 2 LITERATURE REVIEW

This chapter explains the theories and literature review related to the problem of information system design for transportation planning, especially the solution of vehicle routing problem. The theories and literature review in this research covers 5 topics as follows:

- Type of distribution planning
- Vehicle routing problem
- Solution techniques
- Heuristics used for solving vehicle routing problem
- Logistics model used at the present

2.1 Types of distribution planning

Distribution planning can be divided into 3 levels as follows: strategic planning, tactical planning, and operational planning.

Firstly, it is a strategic planning which is a long term planning. Strategy planning determines the direction of the company or management policy such as the location and capacity of plants and warehouses. Secondly, it is a tactical planning which is a medium term planning. Tactical planning aims to manage and allocate the resource in order to achieve the goals and improve the system's performance. For example, the number of vehicles, the distribution channel, the supplier chosen and the transportation mode have to be determined. Thirdly, it is an operational planning which is a short term planning for day to

day activity. Operational planning determines the vehicle routing which consists of the amount of goods transported, and the sequence of picking up and delivery [2].

In conclusion, this research is considered to be an operational planning, because the vehicle routing has to be decided every day.

2.2 Vehicle routing problems

Vehicle routing problem can be classified according to the structure of problem as Table 2. [3], [4]

Characteristics	Options
Demand	Deterministic
	Stochastic
Size of fleet	One vehicle
	Multiple vehicles
Vehicle capacity	All the same
	Different
	Unlimited
Housing of vehicle	Single depot
	Multiple depots
Operations	Pick-ups only
	Deliveries only

Table 2 Classification of vehicle routing problem (VRP) [3], [4]

Characteristics	Options
	Pick-ups and deliveries
Route time	Same for all vehicles
	Different for all vehicles
	Unlimited
Costs	Variable cost
	Fixed cost
Objectives	Minimize total distribution time or distance
	Minimize sum of fixed cost and variable cost
	Minimize number of vehicles required
	Minimize total routing cost
	Maximize utility function based on service or
	convenience

This research belongs to the class with deterministic demand and there are several types of vehicle which have limited capacity. Moreover, there is single depot or centre point which is the plant and every vehicle has to back to the centre point within the operatation per day which is specified by the users. The objective of this system is to determine the routing of pick-ups and deliveries for all demands and be in time with suiatable cost consisting fixed and variable cost.

This research determines transportion planning for garment industry with single depot. There are 3 problems which has the same characteristic of research's problem. These three problems are classified according to the level of complication which varies from the simplest to the most difficult.

- Traveling Salesman Problem, TSP
- Multiple Traveling Salesmen Problem, MTSP
- Vehicle Routing Problem, VRP

The details of 3 problems are explained below:

2.2.1 Travelling salesman problem

Travelling sales problem is the simplest problem, because the vehicle starts from the single depot, and visits all customers, and then returns to this depot by using one routing. Moreover, there are no time and vehicle's capacity constraints. The output is a routing which starts and ends at the depot or distribution centre, and visits each customer only once time.

Assuming that network G = [N, A, C], where N denotes set of delivery nodes, A denotes set of arcs, and $C = [c_{ij}]$ denotes matrix of transportation cost starting from node i to node j. Moreover, start point and end point is at the distribution centre which is node 1. The model formulation is shown below:
Let $x_{ij} = 1$ if arc(i, j) belongs to the set of answer. Let $x_{ij} = 0$ if arc(i, j) does not belong to the set of answer. In addition, X denotes the matrix of x_{ij} : therefore, the mathematics model is as follow:

Minimize

$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

Equation 1

Subject to

$$\sum_{i=1}^{n} x_{ij} = b_j = 1 \qquad (j = 1, \dots n)$$
Equation 2
$$\sum_{j=1}^{n} x_{ij} = a_j = 1 \qquad (i = 1, \dots n)$$
Equation 3
$$X = (x_{ij}) \in S$$

Equation 4

$$x_{ij} = 0$$

Equation 5

S denotes the set for eliminating subtour which is not the needed results of routing, because the subtour does not start and end at the beginning point. Moreover, the subtour can make Equation 2, Equation 3, and Equation 5 to be true; therefore, the subtour has to be eliminated by using following constraints called subtour-breaking constraint (S).

$$S = \left\{ (x_{ij}) : \sum_{i \in \mathcal{Q}} \sum_{j \notin \mathcal{Q}} x_{ij} \ge 1 \right\}$$

Equation 6

Every subset of $Q \in N$ denotes the eliminating subtour within the routing.

2.
$$S = \left\{ (x_{ij}) : \sum_{i \in R} \sum_{j \in R} x_{ij} \le |R| - 1 \right\}$$

Equation 7

For R \in {2,3,..n } denotes that the selected routing does not overlap with other selected routing.

3.
$$S = \{(x_{ij}): y_i - y_j + nx_{ij} \le n - 1\}$$

Equation 8

For $2 \le i \ne j \le n$ by assuming that $y_i = t$ if the customer i is in the sequence t of routing. If there is other cases, $y_i = 0$

Fuethermore, there is several models of travelling salesman problem such as Gavish and Graves. This model has assumed flow variables (y_{ij}) which denotes the quantity of goods transported from node i to node j. In addition, there is n -1 customers, and starting point is at node 1, and each customer has only one transportation demand. Thus, if there is delivery at the next point, the value of y_{ij} will reduce. The mathematics model is shown below:

Minimise

 $\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$

Equation 9

Subject to

$\sum_{i=1}^{n} x_{ij} = 1$	(j = 1,n)	Equation 10
$\sum_{j=1}^n x_{ij} = 1$	(<i>i</i> = 1,n)	Equation 11
<u>n n</u>		

$$\sum_{j=1}^{n} y_{ij} - \sum_{j=1}^{n} y_{ji} = -1 \qquad (i = 2,...n)$$
Equation 12

$$y_{ij} \le U x_{ij}$$
 (i = 2,...n) Equation 13

$$x_{ij} = 0$$
 or $1, y_{ij} \ge 0$
Equation 14

 $U \ge n - 1$, Equation 10, and Equation 11 means that each node has only one vehicle routing. Equation 13 represents forcing constraint in order to give the value of y_{ij} on arc (i, j) equal to zero, if this arc is not on the needed routing. If x_{ij} is equal to zero, y_{ij} is equal to zero.

2.2.2 Multiple travelling salesman problem

Multiple travelling salesman problem is more complicate than travelling salesman problem, because there are several routes to visit all customer. Moreover, there is only depot and there is no time and capacity constraint.

Assuming that M denotes the number of vehicles or routes which deliver the goods to the customers n-1 customers in order to minimize the transportation cost of M routes. The mathmetics model is as follow:

Minimise

$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

Equation 15

Subject to

$$\sum_{i=1}^{n} x_{ij} = b_j = \begin{cases} M & \text{if } j = 1\\ 1 & \text{if } j = 2,3,..n \end{cases}$$
 Equation 16

$$\sum_{j=1}^{n} x_{ij} = b_i = \begin{cases} M & \text{if } i = 1\\ 1 & \text{if } i = 2,3,..n \end{cases}$$
 Equation 17

$$X = (x_{ij}) \in S$$
 Equation 18

$$x_{ij} = 0$$
 or 1 $(i,j = 1,...n)$ Equation 19

Let S denotes the set for eliminating subtour which uses the same as travelling salesman problem.

2.2.3 Vehicle routing problem

Vehicle routing problem is to determine the number of routes and the sequence of delivery the goods from distribution centre to each customer. These routes have to cause the minimum of transportation cost. In addition, there are time and vehicle's capacity constraints.

The mathmetics model of vehicle routing problem which derives from the characteristic of problem such as the function of objective, the constraint of time and capacity is as follows:

Minimise

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{\nu=1}^{NV} c_{ij} x_{ij}^{\nu}$$
Equation 20

Subject to

$$\sum_{i=1}^{n} \sum_{\nu=1}^{NV} x_{ij}^{\nu} = 1 \qquad (j = 2,...n)$$
 Equation 21

$$\sum_{i=1}^{n} \sum_{\nu=1}^{NV} x_{ij}^{\nu} = 1 \qquad (i = 2, \dots n)$$

Equation 22

$$\sum_{i=1}^{n} d_i \left(\sum_{j=1}^{n} x_{ij}^{v} \right) \le K_v \qquad (v = 1, \dots NV)$$
 Equation 24

$$\sum_{i=1}^{n} t_{i}^{v} \sum_{j=1}^{n} x_{ij}^{v} + \sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij}^{v} x_{ij} \le T_{v} \qquad (v = 1, \dots, NV)$$

Equation 25

$$\sum_{j=2}^{n} x_{1j}^{\nu} \leq 1 \qquad (\nu = 1, ..., NV)$$

Equation 26
$$\sum_{i=2}^{n} x_{i1}^{\nu} \leq 1 \qquad (\nu = 1, ..., NV)$$

Equation 27
$$X \in S$$

Equation 28
$$x_{ij}^{\nu} = 0 \quad \text{or } 1 \qquad \text{for all } i, j, \nu$$

Equation 29

When;

- n = the number of delivery points
- NV = the number of vehicles
- $K_v =$ capacity of vehicle v
- T_v = maximum time for operating vehicle v
- d_i = delivery demand at delivery point i
- t_i^v = loading time or unloading time at node i operated by vehicle v
- t_{ii}^{v} = travelling time from point i to point j operated by vehicle v
- $c_{\scriptscriptstyle ij}$ = transportation cost from point i to point j operated by vehicle v

Let $x_{ij}^{\nu} = 1$ if arc(i, j) belongs to the set of answer. Let $x_{ij}^{\nu} = 0$ if arc(i, j) does not belong to the set of answer. In addition, X is the matrix of $x_{ij}^{\nu} = \sum_{\nu=1}^{NV} x_{ij}^{\nu}$. [5]

2.3 Solution techniques

There are two major approaches for solving the vehicle routing problem: exact optimization and heuristics.

2.3.1 Exact optimization

This approach can find the optimal answer, but it takes long computational time. There are several techniques for finding the best solution. For example, the liner programming can be used to find the optimal solution; however, this technique can be applied with 42 customers.[6] Another technique is dynamic programming proposed by Bellman [7]. Furthermore, branch and bound can be used to find the best solution.

2.3.2 Heuristics

This approach can save the computational time, but the answer is not guaranteed optimal. Heuristics can be classified into 2 groups: classical heuristics and meta heuristics [8].

Classical heuristics

Classical heuristics can be categories into 3 groups which are route construction methods, two phase method, and route important methods [9].

Meta heuristics

There are several techniques such as ant colony optimization (ACO), generic algorithm (GA), and simulated annealing. Moreover, tabu search is another example of this group which is proposed by Gehring and Homberger. [10], [11]

The researcher has studied both advantages and disadvantages of exact optimization and heuristics; therefore, the researcher will choose heuristics in order to solve vehicle routing problem in this research. The reason for selecting heuristics as a solution is that there are several nodes and many transportation demands in the system. Thus, heuristics can solve this problem which is complicate and large problem and get the suitable answer with less computational time than using exact optimisation.

2.4 Heuristics for solving vehicle routing problem in this research

Nearest neighbor is a technique of heuristion. The concept of this technique is to route by visiting the clostest point. The detail of nearest neighbor is explained below. [12]

Step 1: Searching the next node which has the minimize distance comparing to the

current node

Step 2: Visiting the closest node

Step 3: Repeating step 1 and 2 until all nodes are visited

Step 4 Going back to the beginning node

2.5 Current logistics models

At the present, there are many distribution models such as direct shipping, milk run, hub and spoke, cross dock, and transshipment. In this research, direct shipping and milk run have been applied in order to generate delivery plan. The details of both models are explained below:

2.5.1 Direct shipping model

Direct shipping is the practical model and very popular at the present. The goods are transported from original point to delivery point directly. The distribution centre or warehouse has not been applied in direct shipping model. Therefore, the benefits of using direct shipping are that there is no cost of distribution centre or warehouse such as holding cost of goods. In addition, transportation time is less than other methods, thus it suits for transporting short shelf life product or passenger. However, there are drawbacks of direct shipping. For example, total transportation cost is high, because some routing is overlapped. The model of direct shipping is shown in Figure 7.

Figure 7 Direct shipping model adapted from Chopra and Meindl [13]

2.5.2 Milk run model

Milk run model is assigning a vehicle to travel around in order to pick up raw material, then deliver these raw material at retail stores. There are plenty of benefits for using milk run, for example, the number of vehicles used are fewer than direct shipping model, transportation cost is decreased, and it supports system using just in time (JIT). On the other hand, there are drawbacks of using milk run model as well, for instance, transportation time is higher than other methods, and high skilled planner is required. The model of milk run is shown in Figure 8.

Figure 8 Milk run model adapted from Chopra and Meindl [13]

CHAPTER 3 CONCEPTS AND PRINCIPLE

To generate the delivery plan for garment industry, there are several important issues for making a decision: choosing the date of operating transportation demand, type of vehicle which is classified by capacity, group of vehicle used which consists of in house vehicle and outsourced vehicle, method of transportation, routing, and sequence of transporting goods. The objective of generating delivery plan is to meet all demands in time with low cost of transportation. Therefore, the researcher will design an information system for generating delivery plan for a garment factory.

For garment industry, the transportation demand usually changes such as postponing the due date, increasing transportation demand, and cancelling transportation demand. Thus, the process of generating transportation plan created has to be flexible and can change the previous transportation plan in order that all transportation demands in the system are operated in time with low transportation cost.

The process of generating delivery plan can be divided into 2 parts as follow:

Part 1: decision making process for delivery planning

Part 2: changing the delivery plan process

Decision making process for delivery planning and changing the delivery plan process have different process for making a decision, but both 2 parts can use the same database such as the number of in house and outsourced vehicle for each day, routing, distance,' and transportation time between any two point of each vehicle.

3.1 Concepts and principle of decision making process for delivery planning

Figure 9 The overview concept of decision making process

The overview concept of decision making process is shown in Figure 9. It starts from recieiving input data consisting of planning time fence, operating time per day, transportation demand, in house and outsourced vehicle, and routing. Then, the system will screen all transportation demands in planning time fence and classify which transportation demand is in the system or outside the system. There are 2 conditions of classifying transportation demand. The first condition is that the quantity of transportation demand has to be less than or equal to the largest vehicle's capacity in the system. The second condition is that the operating time of transportation demand is less than or equal to operating time of transportation demand, it can be divided into 3 groups as follows:

- Group 1: over capacity transportation demand. The system will solve this problem by splitting the quantity of transportation demand into several batches. It will be divided by user. After that, the system will check that transportation demand splitted can be operated by vehicle in the system or not.
- Group 2: transportation demand exceeding operaton time per day. The system will solve this problem as following steps:
 - O Choose transportation demand which must be operated within today.
 - O Choose method of transportation for each transportation demand. There are 2 methods: direct shipping and milk run. The reason for having 2 methods is that each method has its advantages and disadvantages; therefore, the system creates the options in order that users can select the appropriate option and suit with his/her business.

- O Choose group of vehicle used. There are 2 groups: in house and outsourced vehicle. If in house vehicle is chosen, transportation demand exceeding operation time per day will be operated before transportation demand in the system. On the other hand, if outsourced vehicle is chosen, this transportation demand will be routed with the same process and techniques as in house vehicle routing; that is, nearest neighbor. Moreover, the constraints of capacity and time have to be considered when routing. After that, the type of vehicle which has cheapest cost per unit will be selected and will operate transportation plan. Transportation plan will be generated every day starting from the first day to last day of planning time fence.
- Group 3: transportation demand in the system. All demands in the system will be routed by all available types of in house vehicle, and using nearest neightbor technique which has 2 constraints: capacity in term of weight and volume as well as time constraint. Then, the type of vehicle which has cheapest cost per unit will be chosen. After that, system will cut off the completed transportation demand and use the same steps with transportation demand left. Transportation plan will be generated every day starting from the first day to the last day of planning time fence.

The reason for choosing all transportation demands is that it will give the good answer which has low transportation cost. In addition, nearest neighbor is selected because it can give the answer which generates low distance affecting on transportation cost. Furthermore, choosing the type of vehicle which has the cheapest transportation cost per unit will affect on low transportation cost as well. The system tries to do and choose the method affecting on low transportation cost which means that the system tries to achieve the objective.

After generating transportation plan, the system will consider all in house vehicles and ask that the number of in house vehicle is enough for operating all transportation demands or not. If the number of in house vehicle is enough, the system will conclude all transportation plans. On the contrary, if the number of in house vehicle is not enough, either system or user will cut off one transportation demand which has the lowest priority and this demand will be operated other day. Then, transportation demand left will be routed again by using the same process. Furthermore, if all transportation demands cannot be cut off or have to be operated only today, the system will select transportation demands left from generating by in house vehicle and route it by using outsourced vehicle which uses the same process as routing by in the house vehicle.

3.2 Concepts and principle of changing the delivery plan process

Figure 10 The overview concept of changing the delivery plan process

The overview concept of delivery plan changing process is shown in Figure 10. It starts from receiving input data consisting of planning time fence, operating time per day, transportation demand changed, vehicle, previous transportation plan, and routing. Then, user has to select the condition of changing transportation plan by considering constraint of changing previous transportation plan; therefore, user can select the appropriate condition with fit for the industry or factory. There are 3 conditions of changing transportation plan as follows:

 Condition 1: Changing transportation plan can effect on all previous transportation plans.

System will combine transportation demand changed and all previous transportation demands, then create transportation plan following Figure 9.

- Condition 2: Changing transportation plan cannot effect on all previous transportation plans.

System will start considering all transportation demands in planning time fence and classify the transportation demand by using the same method as making delivery planning process. After that, transportation demands will be divided into 3 groups and operated by the same method except group 3.

- O Group 3: transportation demand in the system. All demands in the system will be routed by using 3 following methods:
 - Adding transportation demand after the previous transportation plan.
 - Replacing new transportation demand in period of transportation demand cancelled.

Releasing new vehicle which has the same process as making delivery planning.

After that, system will select the method which has cheapest transportation cost per unit. Then, system will cut the completed transportation demand off and use the same process with transportation demand left. After generating transportation plan, system will consider the number of in house vehicle left. If there is no in house vehicle left, system will conclude all transportation plans. In contrast, if there is available in house vehicle, either system or user will select transportation demand which must be operated within today and be routed by the same process.

The reason for adding transportation demand to operate today in case of having available in house vehicle is utilizing the in house vehicle. Even though in house vehicle is used or not, the fixed cost of in house vehicle is always paid.

Moreover, user can change transportation plan by his/herself. Then, system will check availability of the method selected by user. The important issues checked are capacity in term of weight and volume, and time limitation. Therefore, user can generate transportation plan which suits to his/her industry or plant.

Condition 3: changing transportation plan can effect on some previous transportation plans.

There are 2 tasks for users if method 3 is selected. Firstly, user selects transportation plan which can be effected on both time confirmed with customer and type of vehicle operated. Transportation plan selected is arranged by ID of vehicle. Secondly, users select the condition of changing for each transportation demand. There are 2 conditions: condition 1 (changing transportation plan can effect on a

previous transportation plans), and condition 2 (transportation plan cannot effect on all previous transportation plans). After completing 2 tasks, the system will operated according to the process of condition 1, and 2.

CHAPTER 4 DETAILS OF THE DESIGNED SYSTEM

This chapter explains the details of the system designed which can be divided into 2 following topics:

- The business process and fundamental of input data
- Decision support

4.1 Business process and fundamentals of input data

There are 2 business processes in this system: business process of decision making process for delivery planning, and business process of changing the delivery plan process. Business process will explain receiving and sending data among departments which are related to the processes. Moreover, the frequency of receiving and sending information will be specified in this topic.

4.1.1 Business process and fundamentals of input data of decision making process for delivery planning

This part will explain business process of decision making process for delivery planning which has the detail as Figure 11.

Figure 11 Business process of decision making process

The fundamental of input data of decision making process for delivery planning has the details as below:

Fill in planning time fence and operating time per day

Planning time fence is the period of planning transportation ahead and it is specified in days. For instance, accordind to Figure 12, if today is 1/6/2011, 6 days of planning time fence mean that the system is going to retrieve transportation demand since 1/6/2011 till 5/6/2011 and the system will generate transportation plan. Then, if today is 2/6/2011, the system will retrieve transportation demand and generate transportation plan from 2/6/2011 to 7/6/2011.

Planning time fence is filled in by user when using information system the first time. This data is a set up data and will be used as an input of generating delivery plan process.

Figure 12 Example of transportation plan which has 6 days of planning time fence

Operating time per day is the maximum time that each vehicle is able to operate within one day. It starts counting since the vehicle leaves from centre plant and visits several places until the vehicle returns to centre plant.

Operating time per day is specified in hours by user when using information system the first time. This data is a set up data and will be used as an input of generating delivery plan process. Furthermore, this data is a time constraint of this system.

Retrieve transportation demand

Transportation demand is retrieved from transportation demand department. This department has to receive transportation demand from several places such as main plant, supplier, other plant, oursource, distribution centre, wholesales, retailer, sea port, airport, and train station. All of transportations of this research are concluded in Table 3.

Table 3 Scope of transportation

From	Supplier	Main plant	Other plant	Outsource	Distribution centre	Wholesaler	Retailer	Port/Sea port/ Train Station
Supplier	-	R	R	R	-	-	-	-
Main plant	R	-	R /W	R/ W	F	F	F	F
Other plant	R	R /W	-	R/ W	F	F	F	F
Outsource	R	R /W	R /W	R/ W	F	F	F	F
Distribution centre	-	F	F	F	-	-	-	-
Wholesaler	-	F	F	F	-	-	-	-
Retailer	-	F	F	F	-	-	-	-
Port/Sea port/Train Station	-	F	F	F	-	-	-	-

<u>Assumption</u> In house transportation is not taken into consideration.

Note Letter R represents raw material.

Letter W represents work in process.

Letter F represents finished goods.

The system will retrieve transportation demand every day and use as an input of generating delivery plan process. The detail of transportation demand is explained below:

- ID of transportation demand which has the characteristics as Figure 13 and has the details as follow:
 - Digit 1: pick up point which can be classified into 5 following groups:
 - F represents factory.
 - S represents supplier.
 - O represents outsource.
 - C represents distribution centre, wholesaler, retailer, sea port, airport, and train station.
 - E represents other points which cannot be grouped into 4 above groups.
 - Digit 2: delivery point which can be classified into 5 following groups:
 - F represents factory.
 - S represents supplier.
 - O represents outsource.
 - C represents distribution centre, wholesaler, retailer, sea port, airport, and train station.
 - E represents other points which cannot be grouped into 4 above groups.
 - Digit 3: type of goods transported which can be classified into 4 following groups:
 - R represents raw material.
 - W represents work in process.
 - F represents finished goods.
 - E represents other goods which cannot be grouped into 3 above groups.

- Digit 4 to 7: Running number such as 0001
- Digit 8 to 9: divided batch number which shows in the parentheses round brackets such as 01

Pick up point	Delivery point	Type of goods	Running number	Divided batch number
F/S/O/C/E	F/S/O/C/E	R/W/F/E	0000	(00)

Figure 13 The characteristics of transportation demand's ID

- Period of time that can pick up and deliver goods. It is specified in days, for example, the transportation demand can be operated since 10/7/2011 untill 12/7/2011.
- Name of pick up and delivery point
- Quantity of goods specified in 2 dimensions: weight (kg), and volume (m³)
- The constraint of transporting goods. This information sometimes receives from transportation demand department. Sometimes, the user or the transportation planer has to make the decision about the constraint by his/herself.
 - This transportation demand has to be separated from other transportation demands or not.
 - This transportation demand has to operate the same day as other transportation demands or not. If yes, the user must assign the demand to each group, assuming that the transportation demand in the same group will operate the same day. For example, ID OCF0003(01) and SFM0004(01) are in group 1, thus it means that both OCF0003(01) and SFM0004(01) are operated the same day.
- Type of goods which can be classified into 4 groups.
- Loading time and unloading time.

Assumption of loading and unloading time

Loading time is equal to unloading time if it is the same ID of transportation demand.

Table 4 shows the details of transportation demand.

Transportation	Teday	12/2/2011	14/7/2014	45/7/0044	Seperated	Group for	Gaada tura	Loading
demand_ID	Today	13///2011	14///2011	15///2011	demand	transportating	Goods_type	time (min)
FOW0001(01)	А- В				No	No	W	60
	(300kg., 2.4m ³)							
OCF0002(01)	A- D (500 kg., 3.9 m ³)				Yes	No	F	100
OCF0003(01)	D-C (200kg.,1.6				No	Yes/ group 1	F	50
	m³)							
SFM0004(01)	B - D (100 kg., 0.4 m³)			No	Yes/group 1	R	70	

Table 4 Example of transportation demand

If the user cannot fill in loading time and unloading time, or transportation demand department does not give this information, the system will calculate both loading and unloading time according to [1].

Receive the monthly in house vehicle

There are 2 types of in house vehicle in the system: vehicle bought by factory, and vehicle rented more than 1 month by the factory. This data receives from vehicle department. This department has evalulated aggregate plan to determine the number of vehicle required in each month, then generated the vehicle renting plan, then prepared the vehicle by renting according to the plan, respectively.

The detail of the monthly in house vehicle is as follow:

Vehicle bought by the factory

- Month consisting of 12 months since January until December
- ID of vehicle's type. The criterion for classifying vehicle is capacity. The characteristic of ID of vehicle's type consists of 3 digits which are running number.
 Assumption of in house vehicle's variable cost

In house vehicle which has the same capacity has the same variable cost.

- Capacity of vehicle which is specified in 2 dimensions: weight (kg), and volume (m³)
- Fix cost which comes from depreciation

Assumption of in house vehicle's fixed cost (Vehicle bought by the factory)

Fixed cost of in house vehicle bought by the factory is always paid, even though it is operated or not.

- Variable cost which comes from fuel cost varied by distance
- The number of in house vehicle

Table 5 shows the detail of monthly in house vehicle bought by factory.

Mainth	Vehicle's	Capacity	Capacity	Fixed cost	Variable cost	Number of
Month	Month type_ID		(m³)	(Baht/month)	(Baht/km.)	vehicle (unit)
June	001	1,000	4	9,000	3	5
	002	5,000	30	15,000	8	5
July	001	1,000	4	9,000	3	4
	002	5,000	30	15,000	8	6

Table 5 Example of the detail of monthly in house vehicle bought by factory

Vehicle rented more than one month by the factory

- Month consisting of 12 months since January until December
- ID of vehicle's type. The criterion for classifying vehicle is capacity. The characteristic of ID of vehicle's type consists of 3 digits which are running number.
- Capacity of vehicle which is specified in 2 dimensions: weight (kg), and volume (m³)
- Average fix cost which comes from the average hiring cost per month

Assumption of in house vehicle's fixed cost (Vehicle rented more than one month by

the factory)

Fixed cost of in house vehicle rented more than one month by the factory is always paid, even though it is operated or not.

- Variable cost which comes from fuel cost varied by distance
- The number of in house vehicle

Table 6 shows the detail of monthly in house vehicle rented more than one month by the factory.

Table 6 Example of the detail of monthly in house vehicle rented more than one month by the factory

Mainth	Vehicle's	Capacity	Capacity	Average fixed cost	Variabel cost	Number of
Month	type_ID (kg.) (m ³)		(Baht/month)	(Baht/km.)	vehicle (unit)	
June	001	1,000	4	20,000	3	10
	002	5,000	30	55,000	8	10
July	001	1,000	4	20,000	3	10
	002	5,000	30	55,000	8	15

This information has received every year and used as an input in order to determine the number of in house in each day.

Retrieve maintenance plan

Maintenance plan is retrieved from maintenance department. The details of maintenance plan of each vehicle which is explained below will know ahead about 1 month.

The detail of maintenance plan is as follow:

- ID of maintenance plan which consists of 6 digits which has the detail as follow and shown in Figure 14.
 - O Digit 1: type of vehicle classified by physical shape. There are 6 following groups.
 - A represents car.
 - B represents 4 wheeled pick up truck.
 - C represents 4 wheeled van
 - D represents 6 wheeled truck
 - E represents 10 wheeled truck
 - F represents other vehicles which have different physical shape from 5 above groups.
 - O Digit 2 to 6 which is running number

Physical shape of vehicle	Running number
A/B/C/D/E/F	00000

Figure 14 Characteristic of vehicle's ID

- Car registration
- ID of vehicle's type
- Start date of maintenance vehicle
- End date of maintenance vehicle

Table 7 shows the detail of maintenance plan

Table 7 example of maintenance plan

Maintenance		Car	Vehicle	Start date	End date
plan_ID	venicie_iD	registration	type_ID	(D/M/Y)	(D/M/Y)
D00001	D00001	65-1234	001	6/6/2011	8/6/2011
B00002	B00001	วฮ-3456	002	7/6/2011	10/6/2011

The system will retrieve maintenance plan every month in order to use as an input and determine the number of vehicle in each day.

Receive outsourced vehicle information

Outsourced vehicle considered in this system is vehicle which has only hiring cost per day or short term contract. This data comes from outsource and has the detail as below:

- Date consisting day, month, and year, respectively.
- Vehicle's type ID which uses the same criteria for classifying type of vehicle.

Assumption of outsourced vehicle's variable cost

Outsourced vehicle which has the same capacity will have the same variable cost

- Capacity which is specified in 2 dimensions: weight(kg), and volume(m³)
- Fixed cost which comes from hiring cost per day
- Variable cost which comes from fuel cost varied by distance
- The number of vehicle in each day

Assumption of the number outsource

The number of outsourced vehicle is unlimited

Table 8 shows the details of outsourced vehicle information in each day

Date	Vehicle's	Capacity	Capacity	Fixed cost	Variable cost	Number of
(D/M/Y)	type_ID	(kg.)	(m ³)	(Baht/day)	(Baht/km.)	vehicle (unit)
1/6/2011	001	1,000	4	1,000	3	unlimited
	002	5,000	30	4,500	8	unlimited
2/6/2011	001	1,000	4	1,000	3	unlimited
	002	5,000	30	4,500	8	unlimited

Table 8 Example of outsourced vehicle information in each day

This information receives from outsource everyday and uses as an input of generating transportation plan.

Receive routing information

Routing information receives from tracking vehicle department which comes from the data of tracking vehicle in the real suitation. The distance from A to B is not necessary to equal to the distance from B to A. Thus, this data is very pratical and has the detail as shown in Table 9. Moreover, all distances between any two points cannot be known easily in the real practice, hence the distance between two points which is specidifed in Table 3 has to be known and recorded in the database. The reason is that it is a transportation occurring in the system.

From / To	A (km.)	B (km.)	C (km.).	D (km.)
A (km.)		20	50	30
B (km.)	20		15	70
C (km.)	55	20		30
D (km.)	35	60	30	

Table 9 Example of routing information

This data is changed according to the information from tracking vehicle department; therefore, the transportation planning used this data is more accurate and pratical. This information is used as an input of generating transportation plan.

Receive transportation time between any two points of each vehicle's type

The information of transportation time between any two points of each vehicle receives from tracking vehicle department which comes from the data of tracking vehicle in the real suitation. The transportation time from A to B is not necessary to equal to the transportation time from A to B. In addition, the transportation time does not need to depend on the distance operated. Hence, this information is very pratical.

Table 10 and Table 11 display the detail of transportation time between any two points. Furthermore, transportation time classified by the vehicle's type is very pratical, since different type of vehicle uses differ travelling time on the same route in the real suitation.

From / To	A (min)	B (min)	C (min)	D (min)
A (min)		50	125	75
B (min)	55		40	175
C (min)	100	50		75
D (min)	70	170	75	

Table 10 Example of transportation time between any two points of vehicle's type ID 001
From / To	A (min)	B (min)	C (min)	D (min)
A (min)		30	75	45
B (min)	30		22	105
C (min)	60	30		45
D(min)	40	105	55	

Table 11 Example of transportation time between any two points of vehicle's type ID 002

This information is changed according to the information from tracking vehicle department. Hence, the transportation planning used this information is more accurate and pratical. This data is used as an input of generating transportation plan.

Calculate the number of in house vehicle in each day

The number of in house vehicle in each day is calculated from the number of in house vehicle in each month and maintenance plan, according to Equation 30.

 $NH_{km}^{\nu} = NH_{m}^{\nu} - NHM_{km}^{\nu}$

Equation 30

When;

- NH_{km}^{ν} represents the number of in house vehicle type v which is ready for operating on day k, month m.
- NH^v_m represents the number of in house vehicle type in month m. It comes from the total number of in house vehicle bought by factory and vehicle rented more than 1 month by factory.
- NHM_{km}^{ν} represents the number of in house vehicle type v which is repaired on day k, month m.

- k represents date
- v represents type of vehicle
- m represents month

Assumption of maintenance plan

The period of maintenance plan is specified in day; that is, even though the vehicle is repaired less than one day, the system will assume that this vehicle cannot operate on the maintenance day. This assumption has both advantages and disadvantages as follows:

The advantage is that it is easy for determining the number of vehicle in each day. However, the disadvantage is that it is not practical, because the vehicle can operate after repairing in the real suitation.

The detail of in house vehicle in each day is shown as below:

- Date consisting of day, month, and year
- Type of vehicle. The criterion for classifying is capacity.
- Capacity of vehicle which is specified in 2 dimensions: weight(kg), and volume(m³)
- Fix cost
- Variable cost which comes from the fuel cost varied by the distance
- The number of vehicle in each day

Table 12 displays the details of in house vehicle in each day

Table 12 Example of the details of in house vehicle in each day

Dete	Vehicle's	Capacity	Capacity	Fixed cost	Variable cost	Number of
Date	type_ID	(kg.)	(m³)	(Baht/day)	(Baht/km)	vehicle (unit)
1/6/2011	001	1,000	4	15,000	3	14
1/0/2011	002	5,000	30	40,000	8	13
2/6/2011	001	1,000	4	15,000	3	12
	002	5,000	30	40,000	8	11

The system will calculate the number of in house in each day every month. This information will be used as an input of generating transportation plan.

Decision making process

Decision making process starts from recieiving planning time fence, operating time per day, transportation demand, in house and outsourced vehicle, routing, and transportation time as input data in order to generate the transportation plan.

There are several following issues that have to be made a decision when generating delivery plan.

- Choose transportation demand operated in each day
- Choose type of vehicle
- Chooose routing and the sequence of transporting goods

This transportation planning aims to meet all demands in time with low cost of transportation.

Send delivery plan to transportation demand department

After generating transportation plan, the system will send this plan to transportation demand department every day. There are 2 patterns of transportation plan which is explained below:

Pattern 1 is transportation plan which is arraged by ID of vehicle in order to operate according to the plan. It will be assigned to tracking vehicle department and outsource by transportation demand department. The detail of transportation plan arraged by ID of vehicle is as follows:

- ID of vehicle
- Car registration
- ID of vehicle's type

- Time
- Details in each period of time (OTW mens on the way)
- Place where the vehicle operates
- ID of transportation demand
- Quantity of transportation demand
- Capacity left
- Total distance
- Transportation cost

Table 13 displays the detail of transportation plan arraged by ID of vehicle

Table 13 Example of transportation plan arraged by ID of vehicle B00001 with car resigtration วย-3456

Vehicle's	Time	Detail	Place	Transportation	Weight	Volume	Weight	Volume left
type_ID				demand_ID	(kg.)	(m ³)	left (kg.)	(m ³)
002	9.00	Leave	Р				1,000	4
(In house)	9.00-	OTW					1,000	4
	10.00							
	10.00	Arrive	А				1,000	4
	10.00-	Loading	А	FOW0001	300	2.4	700	1.6
	11.00							
	11.00	Leave	А				700	1.6
	11.00 -	OTW					700	1.6
	12.00							
	12.00	Arrive	В				700	1.6
	12.00-	Unloading	В	FOW0001	300	2.4	1,000	4
	13.00							
	13.00	Leave	В				1,000	4

Vehicle's	Time	Detail	Place	Transportation	Weight	Volume	Weight	Volume left	
type_ID				demand_ID	(kg.)	(m ³)	left (kg.)	(m ³)	
	13.00-	OTW					1,000	4	
	15.00								
	15.00	Arrive	А				1,000	4	
	15.00-	Loading	А	OCF0002	500	3.9	500	0.1	
	16.00								
	16.00	Leave	А				500	0.1	
	16.00-	OTW					500	0.1	
	18.00								
	18.00	Arrive	D				500	0.1	
	18.00-	Unloading	D	OCF0002	500	3.9	1,000	4	
	19.00								
	19.00	Leave	D				1,000	4	
	19.00-	OTW					1,000	4	
	21.00								
	21.00	Arrive	Р				1,000	4	
	Total distance = 425 km								
	Variable cost = 425 km X 3 baht/km. = 1,275 km								
	Fixed cost = 500 baht								
	Total transportation cost = 1,775 baht								

Pattern 2 is transportation plan which is arraged by ID of company in order to inform the detail of transportation plan to every company related to the plan. The detail of transportation plan arraged by ID of company is as follows

- ID of company
- Name of company
- ID of transportation demand
- Detail
- Time

- Weight
- Volume
- ID of vehicle
- Car registration

Table 14 displays the detail of transportation plan arraged by ID of company.

Table 14 Example of transportation plan arraged by ID of company F0001 (Company A)

Transportation	Detail	Time	Weight	Volume	Vehicel_ID	Car
demand_ID			(kg.)	(m ³ .)		registration
FOW0001	Pick up	10.00-11.50	300	2.4	B00001	วฮ-3456

4.1.2 Business process and fundamentals of input data of changing the delivery plan

process

This part will explain business process of delivery plan changing process which has the detail as Figure 15

Figure 15 Business process of changing the delivery plan process

The fundamental of input data of of changing the delivery plan process has the detail as below

Receive the previous transportation plan

The previous transportation plan is received every day and uses as a constraint of changing the delivery plan.

Fill in planning time fence and operating time per day

See more details in page 41.

Retrieve transportation demand changed

Transportation demand changed is retrieved from transportation demand department. Transportation demand considered is in planning time fence only.

Transportation demand changed has 2 following types:

Type 1: Transportation demand added

Type 2: Transportation demand cancelled

For transportation demand postponed the due date, the system will automatically cancel the previous transportation demand which has the old due date, and add new transportation demand which has the new due date.

The system will retrieve transportation demand changed every time that it occurs and use it as an input of changing the delivery plan process. The detail of transportation demand changed is as below:

- ID of transportation demand which has the characteristic as Figure 13
- Period of time that can pick up and delivery goods
- Name of pick up and delivery point
- Quantity of goods specified in 2 dimensions: weight (kg), and volume (m³)
- The constraint of transporting goods

- Type of goods which can be classified into 4 groups
- Loading time and unloading time
- Status of transportation demand changed

Table 15 displays the detail of transportation demand changed.

 Table 15 Example of transportation demand changed

Transportation demand_ID	Today	13/7/2011	Seperated transportation demand	Group for transporting	Goods_type	Loading time (min)	Transportation demand_status
FOW0001(01)	A-B(300kg., 2.4m ³)		No	No	W	60	cancel
OCF0002(01)	A- D (300 kg.,	2.4 m ³)	Yes	No	F	100	add

In case of no loading time data, see more details in page 66.

Recieve the monthly in house vehicle information

See more details in page 46.

Retrieve maintenance plan

See more details in page 48.

Recieve the outsourced vehicle information

See more details in page 50.

Recieve routing information

See more details in page 51.

Recieve information of transportation time between any two point of each vehicle See more details in page 52.

Recieve the daily in house vehicle information

See more details in page 53.

Changing the delivery plan process

Changing the delivery plan process starts from recieiving the previous transportation plan, planning time fence, operating time per day, transportation demand changed, in house and outsourced vehicle, routing, and transportation time as input data in order to generate the transportation plan. There are several following issues that have to be made a decision when transportation demand changed.

- Choose transportation demand operated in each day
- Choose type of vehicle and group of vehicle
- Choose routing and the sequence of transporting goods

This transportation plan changed aims to meet all demand in time with low cost of transportation. Moreover, there are many conditions of changing the transportation plan, for example, changing transportation plan cannot effect on the previous transportation plan both time, and vehicle used. Hence, the user can choose the suitable condition which is fit to the nature of the business.

Sending delivery plan to transportation demand department

See more details in page 55.

4.2 Decision support

4.2.1 Decision making process for delivery planning

In this part, the detail of decision making process for delivery plannig will be explained step by step. Moreover, the assumption of each step will be stated in this part.

Figure 16 shows the detail of decision making process for delivery planning.

Figure 16 The detail of decision making process

The detail of each step is explained below:

[1] Calculate loading and unloading time of each transportation demand

Loading and unloading time of each transportation demand are calculated according to Equation 31 and Equation 32.

$$TLW_{i} = TUW_{i} = tlw_{j} \times W_{i}$$
Equation 31
$$TLV_{i} = TUV_{i} = tlv_{j} \times V_{i}$$
Equation 32

When;

- TLW_i represents loading time of transportation demand ID i which is calculated from weight dimension (unit: min).
- TUW_i represents unloading time of transportation demand ID i which is calculated from weight dimension (unit: min).
- tlw_i represents loading time per weight of goods' type j which is different according to

the type of goods. (unit: $\frac{min}{kg}$)

- W_i represents weight of transportation demand ID i (unit: kg.)
- TLV_i represents loading time of transportation demand ID i which is calculated from volume dimension (unit: min).

- TUV_i represents unloading time of transportation demand ID i which is calculated from volume dimension (unit: min).
- tlv_j represents loading time per volume of goods' type j which is different according to

the type of goods. (unit: $\frac{min}{m^3}$)

- V_i represents volume of transportation demand ID i (unit: m³)
- i represents ID of transportation demand.
- j represents type of goods.

After calculating loading time according to Equation 31 and Equation 32, the system will compare these two answers and choose the maxmimum answer as a loading and unloading time of each transportation demand. In other words, loading time is selected according to Equation 33.

 $TL_i = TU_i = Max(TLW_i, TLV_i)$

Equation 33

When;

TL_i represents loading time of transportation demand ID i (unit: min).

TU_i represents unloading time of transportation demand ID i (unit: min).

[2] Calculate operating time and capacity in term of weight and volume of every transportation demand in order to check which transportation demand is in the system.

Equation 34 is used for calculating the operating time of each transportation demand comparing to the operating time per day. If the demand can make Equation 34 come true, it means that this demand can operate within the operating time per day. Moreover, Equation 35 and Equation 36 are used to calculate and check that quantity of each transportation demand can be operated by the vehicle in the system or not.

$$T^{v}_{h \rightarrow p(i)} + TL_{i} + T^{v}_{p(i) \rightarrow d(i)} + TU_{i} + T^{v}_{d(i) \rightarrow h}$$

 Solution Solution Soluti

Equation 34

 $W_i \leq CW^{v}$; v represents the largest type of vehicle.

Equation 35

 $V_i \leq CV^v$; v represents the largest type of vehicle.

Equation 36

When;

- $T^{v}_{h \rightarrow p(i)}$ represents travelling time of vehicle type v from home to pick up point of transportation demand ID i.
- $T^{v}_{p(i) \rightarrow d(i)}$ represents travelling time of vehicle type v from pick up point to delivery point of transportation demand ID i.
- $T^{v}_{\ d(i) \ \text{->h}}$ represents travelling time of vehicle type v from delivery point of
- TO represents operating time per day (unit: min).

transportation demand ID i to home.

 CW^{\vee} represents capacity of vehicle type v in term of weight (unit:kg.).

- CV^{v} represents capacity of vehicle type v in term of volume (unit: m^{3})
- p(i) represents pick up point of transportation demand ID i.
- d(i) represents delievery point of transportation demand ID i.
- h represents home.

[3] Is this transportation demand in the system?

The transportation demand in the system has to make Equation 34, Equation 35, and Equation 36 come true. It means as follows:

Operating time of this transportation demand has to be less than or equal to operating time per day at lease one type of vehicle; in other words, at lease one type of vehicle can make Equation 34 come true.

The quantity of transportation demand in term of weight and volume has to be less than the capacity of the largest vehicle in the system. The vehicle considered is both in house and outsourced vehicle. In other words, Equation 35 and Equation 36 are true.

[4] Choose transportation demand which can be operated today

There are 2 methods of choosing transportation demand which can be operated today as follows:

1. System chooses transportation demand which can be operated today

The system will select all transportation demands that can be operated today; however, the total quantity transported has to be less than the capacity of all in house vehicles.

- The reasons that operate all transportataion demands as fast as possible are as follows:
 - O It is suitable with the nature of garment industry which has the details as below:

The number of transportation demand is usually decreased at the beginning of planning time fence, since the transportation demand is cancelled or postponed. Hence, the transportation demand is increased at the following period or day.

The main reasons of cancelling and postponing the demand are as follows:

- Supplier cannot produce raw material such as bolt as specifying in the schedule.
- Plant cannot product finished goods as specifying in the schedule.

Therefore, operating transporting demand since the beginning of the period will increase the number of available vehicle in the following day. Then, the efficiency of generating transportation plan will be high and the number of outsourced vehicle rented will be reduced as well. Thus, the total transportation cost will be decreased.

This method is suitable with the factory which the transportation demand is usually cancelled at the beginning of planning time fence or postponed to the other date. In addition, the transportation plan is already generated and the companies related to this plan know the details of transportation plan. Furthermore, this method is suitable with the factory which transportation demand is increased at the following period or day and the companies already prepare vehicle for transportation.

This method is not suitable with the factory which the transportation demand is usually added at the beginning of planning time fence, since the companies related to this plan know the details of transportation plan. Thus, it is hard to change transportation plan and also difficult to generate the effective plan. However, this characteristic does not occur in garment industry.

O It is utilize the in house vehicle, since the factory has to pay for fixed cost of in house vehicle, even thogh it is used or not.

2. User chooses transportation demand which can be operated today

[5] Route by every type of in house and outsourced vehicle

Heuristices that is applied in this research is nearest neighbor. In addition, the model of transporting applied in this research is milk run model which has both advantages and disadvanges as below:

The advantage of milk run model is reducing cost of transportation, since there is no overlapped routing. On the other hand, the disadvantage of milk run model is taking long travelling time, thus it is not suit for short shelf life goods. However, there is no effect on goods in garment industry.

Routed by every type of in house vehicle

Transportation demand chosen will be routed according to process specified in Figure 17.

Routed by every type of outsourced vehicle

Transportation demand left which the in house vehicle cannot operate will be selected in order to be routed by outsourced vehicle. Transportation demand chosen will be routed according to process specified in Figure 17.Table 16 is the example of transportation demand with group of vehicle used.

Transportation	Today	Seperated	Goods_	Loading	Group of
demand_ID		demand	type	time (min)	vehicle
FOW0001(1)	A - B (300 kg., 2.4 m ³)	Ν	W	60	In house
OCF0002(1)	A - D (500 kg., 3.9 m ³)	Y	F	100	In house
OCF0003(1)	D - C (200 kg., 1.6 m ³)	Ν	F	50	In house
SFM0004(1)	B - D (100 kg., 0.4 m ³)	Ν	R	70	Outsource

Table 16 Example of transportation demand with group of vehicle used

From Table 16, it is shown that there are 4 transportation demands which must be operated within today. In house vehicle can operate transportation demand ID FOW0001(1) OCF0002(1), and OCF0003(1); therefore, outsourced vehicle will operate transportation demand left which is transportation demand ID SFM0004(1).

[6] Calculate maximum time at any point of time

Maximum time is the maximum travelling time from any point to pick up or delivery point. This value depends on the status of each transportation demand, and also type of vehicle used.

Calculation method

1. Consider transportation demand which has status 1 and 2. The status of transportation demand can be divided into 3 statuses as follows:

Status 1: Transportation demand which has not picked up and delivered.

Status 2: Transportation demand which has picked up, but has not delivered.

Status 3: Transportation demand which has picked up, and delivered.

Table 17 shows the status of each transportation demand.

Table 17 Status of each transportation demand

Transportation	Today	Seperated	Goods_type	Loading	Status
demand_ID		demand		time (min)	
FOW0001(1)	A - B (300 kg., 2.4 m ³)	Ν	W	60	1
OCF0002(1)	A - D (500 kg., 3.9 m ³)	Y	F	100	1
OCF0003(1)	D - C (200 kg., 1.6 m ³)	Ν	F	50	1
SFM0004(1)	B - D (100 kg., 0.4 m ³)	Ν	R	70	1

2. Consider pick up and delivery point of transportation demand which has status 1, and delivery point of transportation demand which has status 2.

Table 18 Points considered in order to calculate maximum time

Transportation	Today	Seperated	Goods_	Loading	Status	Points
demand_ID		demand	type	time (min)		considered
FOW0001(1)	A - B (300 kg., 2.4 m ³)	N	W	60	1	A B
OCF0002(1)	A - D (500 kg., 3.9 m ³)	Y	F	100	1	A D
OCF0003(1)	D - C (200 kg., 1.6 m ³)	N	F	50	1	DC
SFM0004(1)	B - D (100 kg., 0.4 m ³)	N	R	70	1	ВD

From Table 18, there are 4 points considered which are A, B, C, and D.

 Find maximum time from any point to A, B, C, and D from table of transportation time between any two points. For example, the maximum time from any point to A, B, C, and D of vehicle's type ID 003 which is shown below can be found from Table 19.
 Maximum time from any point to A is 100 minutes.

Maximum time from any point to ${\sf B}$ is 170 minutes.

Maximum time from any point to C is 125 minutes.

Maximum time from any point to D is 175 minutes.

From / To	A (min)	B (min)	C (min)	D (min)
A (min)		50	125	75
B (min)	55		40	175
C (min)	100	50		75
D (min)	70	170	75	

Table 19 Transportation time between any two points of vehicle's type ID 003

[7] Calculate minimum time of each transportation demand

Minimum time of each transportation demand is the minimum operating time for picking up and delivery the goods. This value depends on the current point and type of vehicle. Moreover, minimum time can be calculated from Equation 37.

$$T^{vx}_{min(i)} = T^{vx}_{this point->p(i)} + TL_i + T^{vx}_{p(i) ->d(i)} + TU_i + T^{vx}_{d(i) ->t}$$

74

Equation 37

When;

T ^{vx} _{min(i)}	represents the minimum operating time for picking up and delivery
	transportation demand ID I by vehicle type v, vehicle ID x.
T ^{vx} this point->p(i)	represents travelling time from the current point or this point to pick up point of transportation demand ID I by vehicle type v, vehicle ID x.
T ^{vx} _{h->p(i)}	represents travelling time from home to pick up point of transportation demand ID I by vehicle type v, vehicle ID x.
this point	represents the point that vehicle is operated at the present.
Х	represents ID of vehicle.

[8] Choose the closet point which has the minimum distance comparing to home

The closet point which has the minimum distance comparing to home can be found from Table 20. For example, if point A is assumed to be home, the closet point which has the minimum distance comparing to home is B located far from home 20 kilometres.

From/ To	A (km.)	B (km.)	C (km.)	D (km.)
A (km.)		20	50	30
B (km.)	20		15	70
C (km.)	55	20		30
D (km.)	35	60	30	

Table 20 Routing

[9] Calculate operating time for all delivery goods, weight, and volume.

Calculation method of operating time of sending the goods

 $\sum_{\forall i \in setB} TD_{max(i)}^{vx} = T_{this \text{ point->d(i)}}^{v} + \sum_{\forall i \in setB} TU_{i} + Max(T_{setA->h}^{v})$

Equation 38

When;

- Set A represents pick up and delivery point of transportation demand which has status 1, and delivery point of transportation demand which has status 2.
- Set B represents transportation demand delivered at the current point or delivery point of transportation demand ID i.
- $\sum_{\forall i \in setB} TD_{max(i)}^{vx}$ represents total operating time of delivery goods until returning home of transportation demand ID i by vehicle type v, vehicle ID x.
- $\sum_{\forall i \in setB} TU_i$ represents total unloading time of transportation demand ID i.
- $Max(T_{set A > h}^{v})$ represents the maximum travelling time from any point in set A to

home by vehicle type v.

Calculation method of quantity of transportation demand

Weight (kg.)=
$$\sum_{\forall i \in setB} W_i$$

Equation 39

Volume (m³)=
$$\sum_{\forall i \in setB} V_i$$

Equation 40

When;

$$\begin{split} \sum_{\forall i \in setB} W_i & \text{represents total weight of transportation demand delivered at d(i)} \\ & \text{(unit: kg.)} \\ \\ \sum_{\forall i \in setB} V_i & \text{represents total volume of transportation demand delivered at d(i)} \end{split}$$

[10] Can transportation demand delivered or picked up operate under constraint?

Transportation demand that can be operated by this system has to pass all 3 constraints as follows:

Constraint 1: $TO^{vx}_{max(i)} \leq TO^{vx}_{left}$

(unit: m^{3} .)

Constraint 2: Weight constraint

Case of delivery

Constraint 3: Capacity constraint

Case of delivery

$\sum_{\forall i \in setC} V_i$	_	$\sum_{\forall i \in setB} V_i$	≤	CV^{v}
Case of receipt				
$\sum_{\forall i \in setC} V_i$	+	$\sum_{\forall i \in setB} V_i$	≤	CV^{\vee}

When,

 $\sum_{\forall i \in setC} W_i$ represents total weight of transportation demand on vehicle. (Unit: kg) $\sum_{\forall i \in setC} V_i$ represents total volume of transportation demand on vehicle. (Unit: m³)Set Crepresents transportation demand which has status 2 and operated by
vehicle type v, vehicle ID x. $TO^{vx}_{max(i)}$ represents operating time of transportation demand ID I which calculates
from maximum time, and is operated by vehicle type v, vehicle ID x. TO^{vx}_{left} represents operating time left of vehicle type v, vehicle ID x.

[11] Calculate and update operating time left, weight left, volume left, maximum time, and minimum time

Calculation method of operating time left

$$\mathsf{TO}^{^{\mathsf{VX}}}_{\mathsf{left}} = \mathsf{TO} - \mathsf{TO}^{^{\mathsf{VX}}}_{\mathsf{max}(i)} + \sum_{\forall i \in setD} (\mathsf{TO}_{\mathsf{max}(i)} - \mathsf{TO}^{^{\mathsf{VX}}}_{\mathsf{real}(i)})$$

Equation 41

Set D represents transportation demand which has status 3 and is operated by vehicle type v, vehicle ID x.

 $TO_{real(i)}^{vx}$ represents operating time used for transporting transportation demand ID i by vehicle type v, vehicle ID x.

Calculation method of weight and volume left (on truck)

 $CW^{vx}_{left} = CW^{v} - \sum_{\forall i \in setC} W_{i}$

Equation 42

 $CV_{ieft}^{vx} = CV^{v} - \sum_{\forall i \in setC} V_{i}$

Equation 43

When,

 $\label{eq:cwv} CW^{vx}_{\ \ left} \qquad \ \ represents \ capacity \ left \ which \ is \ specified \ in \ term \ of \ weight \ of \ vehicle \ type \ v, \ \ vehicle \ ID \ x \ (unit:kg.)$

 $\text{CV}_{\text{left}}^{\text{vx}}$ represents capacity left which is specified in term of volume of vehicle type

v, vehicle ID x (unit:m³)

Calculation method of maximum time

See more detail in [6]

Calculation method of Minimum time

See more detail in [7]

[12] Calculate operating time for picking up all goods, weight, and volume.

Calculation method of operating time of picking up and sending the goods

$$\begin{split} \sum_{\forall i \in setE} TO_{max(i)}^{vx} &= \mathsf{T}_{\mathsf{this point->p(i)}} + \sum_{\forall i \in setE} TL_i + \sum_{\forall i \in setE} \mathsf{Max}(\mathsf{T}_{\mathsf{set A->d(i)}}^{\mathsf{vx}}) + \\ &\sum_{\forall i \in setE} TU_i + \mathsf{Max}(\mathsf{T}_{\mathsf{set A->h}}^{\mathsf{vx}}) \end{split}$$

Equation 44

When;

Set Erepresents transportation demand picked up at pick up point of
transportation demand ID i by vehicle type v, vehicle ID x.
$$\sum_{\forall i \in set E} TO_{max(i)}^{vx}$$
represents total operating time of transportation demand ID i in set E,
by vehicle type v, vehicle ID x. $\sum_{\forall i \in set E} Max(T_{set A \rightarrow d(i)}^{vx})$ represents total maximum travelling time of set E from any
point in set A to delivery point of transportation demand ID i
by vehicle type v, vehicle ID x.

 $T_{this point->p(i)} = 0$, because the vehicle is at pick up point. Therefore, operating time of picking up and sending the goods can calculate according Equation 45.

$$\sum_{\forall i \in setE} TO_{max(i)}^{vx} = \sum_{\forall i \in setE} TL_i + \sum_{\forall i \in setE} Max(T_{setA->d(i)}^{vx}) + \sum_{\forall i \in setE} TU_i + Max(T_{setA->h}^{vx})$$

Equation 45

Calculation method of quantity of transportation demand

Weight (kg.) = $\sum_{\forall i \in setE} W_i$

Equation 46

Volume (m³) =
$$\sum_{\forall i \in setE} V_i$$

Equation 47

[13] End

The transportation plan consisting of sequenvce of routing, total distance, total time, total weight, and volume will be shown. Table 21 shows the example of transportation plan.

Vehicle_ID	Time	Detail	Place	Transportation	Weight	Volume	Weight	Volume
				demand_ID	(kg)	(m ³)	left (kg)	left(m ³)
B00002	9.00	Leave	Р				1,000	4
(In house)	9.00-	OTW					1,000	4
	10.00							
	10.00	Arrive	А				1,000	4
	10.00-	Loading	А	FOW0001	300	2.4	700	1.6
	11.00							
	11.00	Leave	А				700	1.6
	11.00	OTW					700	1.6
	-12.00							

Table 21 Example of transportation plan

Vehicle_ID	Time	Detail	Place	Transportation	Weight	Volume	Weight	Volume
				demand_ID	(kg)	(m ³)	left (kg)	left(m ³)
B00002	12.00	Arrive	В				700	1.6
(In house)	12.00-	Unloading	В	FOW0001	300	2.4	1,000	4
	13.00							
	13.00	Leave	В				1,000	4
	13.00-	OTW					1,000	4
	15.00							
	15.00	Arrive	А				1,000	4
	15.00-	Loading	А	OCF0002	500	3.9	500	0.1
	16.00							
	16.00	Leave	А				500	0.1
	16.00-	OTW					500	0.1
	18.00							
	18.00	Arrive	D				500	0.1
	18.00-	Unloading	D	OCF0002	500	3.9	1,000	4
	19.00							
	19.00	Leave	D				1,000	4
	19.00-	OTW					1,000	4
	21.00							
	21.00	Arrive	Р				1,000	4
Total distance = 425 km								
Variable cost = 425 km. X 3 Baht/km. = 1,275 Baht								
Fixed cost = 500 Baht								
Total transportation cost = 1,775 Baht								

[14] Is time left more than minimum time?

If the operating time left is more than minimum time of any transportation demand operated by vehicle type v, vehicle ID x at lease one demand, it means there is time left.

[15] Calculate operating time for picking up goods, weight, and volume.

Calculation method of operating time for picking up goods

$$TO_{max(i)}^{vx} = T_{this \ point->p(i)}^{vx} + TL_i + Max(T_{set \ A->d(i)}^{vx}) + TU_i + Max(T_{set \ A->h}^{vx})$$

Equation 48

Calculation method of quantity of transportation demand

Weight (kg.) =
$$W_i$$

Equation 49

Volume (m³) =
$$V_{1}$$

Equation 50

[16] Find the feasible solution of picking up all transportation demands by considering the constraint of separated transportation demand

There are at least 2 feasible solutions as follows:

Solution 1: Picking up only separated transportation demand

Solution 2: Picking up all transportation demands except separated transportation demand

If the vehicle cannot operate all transportation demands at this point, the system will pick up as much as possible.

[17] Find the feasible solution of picking up all transportation demands

There are several feasible solutions. The system will find the feasible solution by assuming that the system will pick up as much as possible.

Figure 17 The detail of routing by in house and outsourced vehicle

[18] Prioritising all transportation demands exceeding operating time per day

There are 2 methods of prioritising transportation demand exceeding operating time per day as follows:

1. System prioritizes transportation demand exceeding operating time per day according to equation below:

$$N_{left(i)} = N_i - NP_i - (NO_i - 1)$$

Equation 51

$$P_i = N_{left(i)} + 1$$

Equation 52

When;

N_i represents total number of days that can operate transportation demand ID i

NP_i represents number of daypassed including today that can operate

transportation demand ID i

- NO_i represents the number of days operating transportation demand ID i.
- P_i represents priority of transportation demand ID i.
- $N_{left(i)}$ represents number of days left that can operate transportation demand ID i.
 - 2. User prioritizes transportation demand exceeding operating time per day.

[19] Select transportation demand that must be operated today

There are 2 methods of choosing transportation demand which must be operated today as follows:

1. System chooses transportation demand which must be operated today.

The system will choose transportation demand which has priority =1.

2. User chooses transportation demand which must be operated today.

[20] Choose method of transportation

User has to select the method of transportation to each demand. There are 2 methods: direct shipping and milk run. Each method has its advantages and disadvantages. For example, the advantage of direct shipping is using less transportation time than milk run. However, there is disadvantage of direct shipping such as high transportation cost.

If the user selects milk run method, the user has to specify group for transporting. The demand in the same group will be operated on the same day. Table 22 displays transportation demand with method of transporting.

Table 22 Transportation demand with method of transporting.

Transportation demand_ID	Method of transporting		
FOW0001(01)	direct shipping		
OCF0002(01)	milk run /Group 1		
OCF0003(01)	milk run / Group 1		

From Table 22, it is concluded that there are 2 vehicles used. The first vehicle will operate transportation demand ID FOW0001(01) by direct shipping. The second vehicle will operate transportation demand ID OCF0002(01) and OCF0003(01) by milk run.

Assumption of transportation demand exceeding operating time per day is that it can operate only in the period of operating time.
[21] Select group of vehicle

User has to select group of vehicle used: in house and outsourced vehicle.

[22] Calculate transportation cost per unit in both dimensions: weight (Baht//kg.) and volume (Baht/m³) and select the type of vehicle or method that has the lowest transportation cost per unit

In house vehicle group

The system will select the type of in house vehicle that has the lowest transportation cost per unit $(\frac{Baht}{kg.} \text{ or } \frac{Baht}{m^3})$. Transportation cost per unit can calculate from Equation 53 and Equation 54.

$$CPW^{vx} = \frac{\sum_{\forall i \in setD} d_i \quad x \, VC^v}{\sum_{\forall i \in setD} W_i}$$
Equation 53

$$CPV^{vx} = \frac{\sum_{\forall i \in setD} d_i \quad x \, VC^v}{\sum_{\forall i \in setD} V_i}$$

Equation 54

When;

Outsourced vehicle group

The system will select the type of outsourced vehicle that has the lowest transportation cost per unit $(\frac{Baht}{kg.} \text{ or } \frac{Baht}{m^3})$. Transportation cost per unit can calculate from Equation 55 and Equation 56.

$$CPW^{vx} = HC^{v} \times NHC^{v} + \frac{\sum_{\forall i \in setD} d_{i} \times VC^{v}}{\sum_{\forall i \in setD} W_{i}}$$

Equation 55

$$CPV^{vx} = HC^{v} \times NHC^{v} + \frac{\sum_{\forall i \in setD} d_{i} \times VC^{v}}{\sum_{\forall i \in setD} V_{i}}$$

Equation 56

When;

HC^{vx} represents renting cost per day of vehicle type v, vehicle ID x. (unit: Baht)
 NHC^{vx} represents the number of day renting outsourced vehicle type v, vehicle ID x (unit: day)

[23] End

The system will update the number of in house vehicle left in each type, and outsourced vehicle used, and display transportation plan.

[24] The system saves new transportation demand and constraint

The system saves new transportation demand and constraint of transporting such as separated transportation demand and group for transporting.

[25] Prioritising all transportation demands in the system

There are 2 methods of prioritising transportation demand in the system as follows:

 System prioritizes transportation demand in the system according to equation below:

$$\mathsf{N}_{\mathsf{left}(i)} = \mathsf{N}_{\mathsf{i}} - \mathsf{NP}_{\mathsf{i}}$$

Equation 57

$$P_i = N_{left(i)} + 1$$

Equation 58

The reason of choosing due date or N_{left} as criteria to give priority for each demand is that there will cause lots of effect such as penalty cost, if the goods cannot be transported on time.

Table 23 Transportation demand with N left

Transportation	Today	12/7/2011	14/7/2011	15/7/2011	N left
demand_ID	Today	13/7/2011	14/7/2011	15/7/2011	(days)
FOW0001(01)	A- B(300 kg., 2.4m ³)				0
OCF0002(01)	A- D (500 kg., 3.9	m ³)			1
OCF0003(01)	D-C (200 kg.,1.6 m ³)				0
SFM0004(01)	B - D	(100 kg., 0.4	m ³)		3

2. User prioritizes transportation demand in the system

[26] Cut off one transportation demand

There are 2 methods of cutting transportation demand in the system as follows:

- System cuts off one transportation demand in the system which is the lowest priority. If there is more than one transportation demand which is the lowest priority, the user has to select which demand should be cut off. In addition, if transportation demand cut off has the group for transporting, the system will cut off all demands in this group.
- 2. User cuts off one transportation demand in the system

[27] Must all transportation demands left be operated today?

There are 2 methods of considering transportation demand in order to operate today as follows:

- 1. System will consider transportation demand left. If all demands have priority equal to 1, all demands will be operated today
- 2. User will consider transportation demand left in order to determine which demand should be operated today.

4.2.2 Process for changing delivery plan

In this part, the detail of changing the delivery plan process will be explained

step by step. Moreover, the assumption of each step will be stated in this part.

displays the details of changing the delivery plan process.

Figure 18 The detail of changing the delivery plan process

[28] User selects the condition of changing transportation plan by considering constraint of changing previous transportation plan

In this step, user has to select only one condition of changing transportation plan. There are 3 conditions of changing transportation plan as follows:

Condition 1: changing transportation plan can effect on all previous transportation plans.

If user selects this condition, the previous transportation will be changed both time and ID of vehicle; however, the demand will be operated in the same day as the previous transportation plan.

This condition is suitable with company that has high flexibility in receiving and delivery time.

Condition 2: changing transportation plan cannot effect on all previous transportation plan.

If user selects this condition, the previous transportation cannot be changed both time and ID of vehicle operated. This condition is suitable with company that has low flexibility in receiving and delivery time.

Condition 3: changing transportation plan can effect on some previous transportation plans.

If user selects this condition, some previous transportation plans can be changed both time and ID of vehicle which is the same as condition 1. Some previous transportation plans or some transportation demands cannot be changed both time and ID of vehicle which is the same as condition 2. Moreover, the previous transportation plan is arraged by ID of vehicle, and there is an assumption of fixed transportation demand "transportation plan which consists of fixed transportation demand cannot be changed." For example, there are 2 previous transportation plans operated by B00001 and B00002 shown in Table 24 and Table 25. If the previous transportation plan operated by B00001 can be changed, time of picking up and delivery of transportation demand ID FOW0001 and OCF0002 will be changed and vehicle operated will be changed as well. On the other hand, the previous transportation plan operated by B00002 or transportation demand ID OCF0003 cannnot be changed, time of picking up and delivery transportation demand ID OCF0003 will be the same and operated by vehicle ID B00002.

Vehicle's	Time	Details	Place	Demand_ID	Weight	Volume	Weight	Volume
type_ID					(kg)	(m ³)	left (kg)	left (m ³)
002	9.00	Leave	Р				1,000	4
(In	9.00-10.00	OTW					1,000	4
house)	10.00	Arrive	А				1,000	4
	10.00-11.00	Loading	А	FOW0001	300	2.4	700	1.6
	11.00	Leave	А				700	1.6
	11.00 -12.00	OTW					700	1.6
	12.00	Arrive	Р				700	1.6
	12.00-13.00	Unloading	Р	FOW0001	300	2.4	1,000	4
	13.00	Leave	Р				1,000	4
	13.00-15.00	OTW					1,000	4
	15.00	Arrive	В				1,000	4
	15.00-16.00	Loading	В	OCF0002	500	3.9	500	0.1
	16.00	Leave	В				500	0.1
	16.00-18.00	OTW					500	0.1
	18.00	Arrive	С				500	0.1/
	18.00-19.00	Unloading	С	OCF0002	500	3.9	1,000	4
	19.00	Leave	С				1,000	4
	19.00-21.00	OTW					1,000	4
	21.00	Arrive	Р				1,000	4
		-	Fotal dista	ance = 425 km				

	Table 24 Previous	transportation	plan operate	d by B00001
--	-------------------	----------------	--------------	-------------

Vehicle's	Time	Details	Place	Demand_ID	Weight	Volume	Weight	Volume
type_ID					(kg)	(m ³)	left (kg)	left (m ³)
002	9.00	Leave	Р				1,000	4
(In	9.00-10.00	OTW					1,000	4
house)	10.00	Arrive	С				1,000	4
	10.00-11.00	Loading	С	OCF0003	200	1.6	800	2.4
	11.00	Leave	С				800	2.4
	11.00 -12.00	OTW					800	2.4
	12.00	Arrive	Р				800	2.4
	12.00-13.00	Unloading	Р	OCF0003	200	1.6	1,000	4
	13.00	End	Р				1,000	4
		To	otal dist	ance = 200 k	m			

Table 25 Previous transportation plan operated by B00002

[29] Route

The step of roting is as follows:

- Update all transportation demands consisting of transportation demand changed and added.
- 2. Combine transportation demand changed and all previous transportation deamands, then create transportation plan according to Figure 17.

[30] End

The system will update the number of in house vehicle left, the number of outsourced vehicle used, and transportation plan changed.

[31] Update transportation plan by considering transportation demand cancelled

The system will update transportation plan by considering transportation demand cancelled and calculate transportation cost according to [22].

[32] Routing transportation demand added

Before routing transportation demand added, the user has to select the method of changing such as system or user.

Changing transportation plan by system

The step of changing transportation plan by system is as follows:

- 1. The system will find all possible solutions from 3 following methods:
 - 1.1 Adding transportation demand after every previous transportation plan

Assumption of adding transportation demand

Picking up and delivery have to be operated continuously in every transportation demand.

The step of adding transportation demand is as follows:

1.1.1) Find the nearest point comparing to the final point in the previous transportation plan by considering the distance. For example, according to Table 24, the final point is C.

1.1.2) Check that there is transportation demand at this point or not.

- Have transportation demand at this point: do 1.1.3
- Do not have transportation demand at this point: find the next nearest point, then do 1.1.2.

1.1.3) Check that this demand can be operated under constraint or not Equation 59 is used for checking time constraint

$$T^{vx}_{\text{this point->p(i)}} + TL_i + T^{vx}_{p(i) \rightarrow d(i)} + TU_i + T^{vx}_{d(i) \rightarrow h} \leq TO^{vx}_{\text{left}}$$

Equation 59

- If Equation 59 is true, this demand can be operated under time constraint. Hence, do 1.1.4.
- If Equation 59 is false, this demand cannot be operated under time constraint. Hence, find the next nearest point, then do 1.1.2.

1.1.4) Pick up or delivery

1.1.5) update TO_{left}^{vx} , CW_{left}^{vx} , CV_{left}^{vx} , and transportation plan

1.1.6) check demand left that must be operated today and operating time per day left. Then, operating time per day left is compared with operating time of each demand.

The method of check demand left: If there is status 1 of transportation demand, there is demand left.

The method of check time left: use Equation 60

- If Equation 60 is true, time left is enough to operate other demand.
- If Equation 60 is false, time left is not enough to operate other demand.

$$TO_{left}^{vx} \geq T_{min(i)}^{vx}$$

Equation 60

The method of finding $T_{min(i)}^{vx}$ is specified in [7].

- If there is demand left and enough time to operate, the system will find the next nearest point and then do 1.1.2.
- If there is no demand left or time left is not enough time to operate, the system will conlude the routing, transportation demand operated, and transportation cost.

1.2 Replacing transportation demand cancelled method.

Assumption of replacing transportation demand cancelled method. There are 2 patterns of assumption:

- Pattern 1: picking up and delivery has to be operated continuously.
- Pattern 2: picking up and delivery has not operated continuously.

If the system can do both patterns, pattern 1 will always be selected.

The step of replacing transportation demand cancelled is as follows:

1.2.1) Find the nearest point comparing to the final point before transportation demand cancelled period. For example, the details of Table 24 can be drawn as Figure 19. Then, transportation demand ID OCF0002 is cancelled shown in Figure 20, thus final point of transportation demand cancelled period is P.

Figure 19 The previous transportation plan operated by vehicle_ID B00001

Figure 20 The transportation plan after cancelling OCF0002 operated by vehicle_ID B00001

1.2.2) Check that there is transportation demand at this point or not.

- Have transportation demand at this point: do 1.2.3
- Do not have transportation demand at this point: find the next nearest point, then do 1.2.2.

1.2.3) Check that this demand can be operated under constraint or not <u>Pattern 1</u>

Equation 61 is used for checking time constraint of pattern 1.

 $T_{last point->p(i)}^{vx} + TL_i + T_{p(i)}^{vx} + TU_i + T_{d(i)}^{vx} - starting point \leq TOC_{left(i)}^{vx}$

Equation 61

When;

Last point represents final point before transportation demand cancelled period (pattern 1), such as last point is P, according to Figure 20.

Starting point represents the beginning point after transportation demand

cancelled period (pattern 1), such as starting point is P, according to Figure 20.

- $T^{vx}_{last point->p(i)}$ represents travelling time from final point before transportation demand cancelled period to pick up point point of transportation demand ID i by vehicle type v, vehicle ID x .
- $T_{d(i) \rightarrow starting point}^{vx}$ represents travelling time from delivery point of transportation demand ID i to beginning point after transportation demand cancelled period by vehicle type v, vehicle ID x .

TOC^{vx}_{left(i)} represents total operating time left of transportation demand ID i cancelled by vehicle type v, vehicle ID x .For example, from Figure 20, TOC^{vx}_{left(i)} of TOC^{002, B0001}_{left(02)} is 8 hours starting from 21.00 to 13.00.

Pattern 2

Equation 62 and Equation 63 is used for checking time constraint of pattern 2.

 $T^{vx}_{last \ point1 -> p(i)} + TL_i + T^{vx}_{p(i) \ -> starting \ point1} \leq TOC^{vx}_{left1(i)}$

Equation 62

and

$$T^{vx}_{last point2->d(i)} + TU_i + T^{vx}_{d(i) -> starting point2} \leq TOC^{vx}_{left2(i)}$$

Equation 63

When;

Last point1 represents final point before transportation demand cancelled period (pattern 2: picking up period), such as last point1 is C, according to Figure 22.

Starting point1 represents the beginning point after transportation demand

cancelled period (pattern 2: picking up period), such as starting point1 is B, according to Figure 22.

Last point2 represents final point before transportation demand cancelled period (pattern 2: delivery period), such as last point2 is B, according to Figure 22.

Starting point2 represents the beginning point after transportation demand

cancelled period (pattern 2: delivery period), such as starting point2 is P, according to Figure 22.

 $T^{vx}_{last\,point1->p(i)}$ represents travelling time from final point before transportation demand cancelled period (pattern 2: picking up period) to pick up point of transportation demand ID i by vehicle type v, vehicle ID x .

 $T_{p(i) \rightarrow starting point1}^{vx}$ represents travelling time from pick up point of transportation

demand ID i to the beginning point after transportation demand cancelled period (pattern 2: picking up period) by vehicle type v, vehicle ID x \cdot .

TOC^{vx}_{left1(i)} represents total operating time left of transportation demand ID i cancelled (pattern 2: picking up period) by vehicle type v, vehicle ID x .For example, from Figure 22 TOC^{vx}_{left1(i)} of TOC^{vx}_{left1(o4)} is 4 hours starting from 15.00 to 11.00.

T^{vx}_{last point2->d(i)} represents travelling time from final point before transportation demand cancelled period (pattern 1: delivery period) to delivery point of transportation demand ID i by vehicle type v, vehicle ID x.

 $T_{d(i) \rightarrow starting point2}^{vx}$ represents travelling time from delivery point of transportation

demand ID i to the beginning point after transportation demand

cancelled period (pattern 2: delivery period) by vehicle type v, vehicle ID \boldsymbol{x} .

TOC^{vx}_{left2(i)} represents total operating time left of transportation demand ID i cancelled (pattern 2: delivery period) by vehicle type v, vehicle ID x .For example, from Figure 22, $TOC^{vx}_{left2(i)}$ of $TOC^{vx}_{left2(04)}$ is 5 hours strating from 21.00 to 16.00.

Figure 21 The previous transportation plan

Figure 22 The transportation plan after cancelling SFM0004 operated

Equation 64 and Equation 65 are used for checking capacity constraint in term of weight, and volumn, respectively.

 $\sum_{\forall i \in \textit{setF}} W_i \qquad \qquad \leq \qquad \mathsf{W}^{^{vx}}_{_{\text{cancel}(i)}} \, (\text{kg.})$

Equation 64

 $\sum_{\forall i \in setF} V_i \leq V_{cancel(i)}^{vx} (m^3)$

Equation 65

When;

Set F

 $\sum_{\forall i \in setF} W_i$

represents transportation demand replaced in cancelling period operated by vehicle type v, vehicle ID x. represents total weight of transportation demand ID i in set F

• If the demand has no problem about time constraint which has the detail as Table 26, and no problem about capacity constraint (Equation 64 and Equation 65 is true), it means that the system can operate this transportation. Hence, do 1.2.4. with pattern 1.

Table 26 Result of time constraint that can operate demand with pattern1

Equation 61	Equation 62	Equation 63
True	True	True
True	True	False
True	False	True
True	False	False

• If the demand has no problem about time constraint which has the detail as Table 27 and no problem about capacity constraint (Equation 64 and Equation 65 is true), it means that the system can operate this transportation. Hence, do 1.2.4. with pattern 2.

Table 27 Result of time constraint that can operate demand with pattern2

Equation 61	Equation 62	Equation 63
False	True	True

 If the demand has problem about time constraint which has the detail as Table 28 or has problem about capacity constraint (Equation 64 or Equation 65 is false), it means that the system cannot operate this transportation. Hence, find the next closet point. Then, do 1.2.2.

Table 28 Result of time constraint that cannot operate demand

Equation 61	Equation 62	Equation 63
False	True	False
False	False	True
False	False	False

1.2.4) Pick up and delivery goods

- Pattern 1: Pick up or delivery the goods continuously
- Pattern2: Pick up the goods in transportation demand cancelled period (picking up period), and deliver the goods in transportation demand cancelled period (delivery period).

1.2.5) update TOC $^{vx}_{left(i)}$,TOC $^{vx}_{left1(i)}$,TOC $^{vx}_{left2(i)}$, set F , last point1 , last point 2 , and transportation plan

1.2.6) check demand left that must be operated today and operating time left. Then, operating time left is compared with operating time of each demand.

The method of check demand left: If there is status 1 of transportation demand, there is demand left.

<u>The method of check time left</u>: Equation 66, Equation 67, and Equation 68 are used for checking time left.

- If the result has the same as Table 29, time left is enough to operate ulletother demand
- If the result has the same asTable 30, time left is not enough to operate • other demand.

Table 29 Result of ti	me left constraint that c	can operate other demand

Equation 66	Equation 67	Equation 68
True	True	True
True	True	False
True	False	True
True	False	False
False	True	True

Table 30 Result of time left constraint that can operate other demand

Equation 66	Equation 67	Equation 68
False	True	False
False	False	True
False	False	False

 $TOC^{vx}_{left(i)} \geq T^{vx}_{min(i)}$

Equation 66

or

 $TOC^{vx}_{left1(i)} \geq TP^{vx}_{min(i)}$

Equation 67

and

$$TOC^{vx}_{left2(i)} \geq TD^{vx}_{min(i)}$$

Equation 68

When;

The method of calculating $T_{min(i)}^{vx}$ is explained in [7]

- TP^{vx}_{min(i)} represents operating time for picking up demand of transportation demand ID i, operated by vehicle type v, vehicle ID x. This value can be calculated according to Equation 69.
- TD^{vx}_{min(i)} represents operating time for delivery demand of transportation demand ID i, operated by vehicle type v, vehicle ID x. This value can be calculated according to Equation 70.

 $TP_{min(i)}^{vx} = T_{last point1->p(i)}^{vx} + TL_i + T_{p(i)}^{vx} + TL_i + TL_i + T_{p(i)}^{vx} + TL_i +$

Equation 69

 $TD_{min(i)}^{vx} = T_{last point2->d(i)}^{vx} + TU_i + T_{d(i)}^{vx} + TU_i + TU_i + T_{d(i)}^{vx} + TU_i + T$

Equation 70

- If there is demand left and enough time to operate, the system will find the next nearest point and then do 1.2.2.
- If there is no demand left or time left is not enough time to operate, the system will conlude the routing, transportation demand operated, and transportation cost.

1.3 Releasing new vehicle method which has the same process of making delivery plan.

Assumption of releasing new vehicle method

Ousource vehicle will be used if there is no in house vehicle left.

The step of releasing new vehicle is as follows:

In step of choosing group of vehicle, in house vehicle will be operated first. Then, it is a step of routing which has the details as Figure 16.

2. Calculate transportation cost per unit in both dimensions: weight (Baht//kg.) and volume (Baht/m³)

Adding transportation demand after the previous transportation plan and replacing in transportation demand cancelled periof method

$$CPW^{vx} = \frac{TC_{new}^{vx} - TC_{old}^{vx}}{W_{new}^{vx} - W_{old}^{vx}}$$

Equation 71

$$CPV^{vx} = \frac{TC_{new}^{vx} - TC_{old}^{vx}}{V_{new}^{vx} - V_{old}^{vx}}$$

Equation 72

When;

TC^{vx}
newrepresents transportation cost of transportation plan changed
operated by vehicle type v, vehicle ID x.(unit:baht.)TC^{vx}
oldrepresents transportation cost of old transportation plan operated
by vehicle type v, vehicle ID x.(unit: baht.)

- W^{vx}_{new} represents total weight of transportation demand after changing plan operated by vehicle type v, vehicle ID x.(unit:kg.)
- Wold
 represents total weight of transportation demand before changing plan operated by vehicle type v, vehicle ID x.(unit:kg.)

 Vvx
 represents total volume of transportation demand after changing plan operated by vehicle type v, vehicle ID x.(unit:m³.)

 Vvx
 represents total volume of transportation demand after changing plan operated by vehicle type v, vehicle ID x.(unit:m³.)

 Vvx
 represents total volume of transportation demand before

changing plan operated by vehicle type v, vehicle ID x.(unit: m³.)

Releasing new vehicle: The method of calcution is explained in [22].

- 3. Select the method or answer that has the lowest transportation cost per weight($\frac{Baht}{kg.}$) and volume ($\frac{Baht}{m^3}$). Sometimes, the method which has lowest transportation cost per weight and transportation cost per volume is the different method or answer.
 - 3.1 If the lowest transportation cost per weight and transportation cost per volume is the same method or answer, the system will automatically choose that method or answer.
 - 3.2 If the lowest transportation cost per weight and transportation cost per volume is different method or answer, the user has to choose the method or answer needed.
- 4. Cut off transportation demand operated. Then, repeat step 1 to 4 until no transportatation demand changed which must be operated today.

Changing transportation plan by user

The step of changing transportation plan by user is as follows:

 User has to select the method to each transportation demand change. Therer are 3 methods:

- Adding transportation demand.
- Replacing transportation demand cancelled method.
- Releasing new vehicle method which has the same process of making delivery planning.
- 2. The system will check availability of the method selected by user; in other words, the system will check that the selected method by user can operate or noy by checking capacity in term of weight and volume, and time limit Checking availability of each method has the details as below:
 - 2.1 Adding transportation demand method

Checking time constraint: Equation 59

Checking weight constraint: No need to check

Checking volume constraint: No need to check

2.2 Replacing transportation demand cancelled method.

Pattern 1

Checking time constraint: Equation 61

Checking weight constraint: Equation 64

Checking volume constraint: Equation 65

<u>Pattern 2</u>

Checking time constraint: Equation 62 and Equation 63

Checking weight constraint: Equation 64

Checking volume constraint: Equation 65

2.3 Releasing new vehicle method

This method is divided into 2 following patterns:

- Pattern 1: Pick up and delivery the goods have to do continuously each demand by demand.
- Pattern 2: Pick up and delivery the goods do not need to operate continuously each demand by demand.

Therefore, the process of checking time, weight, and volume constraint of each pattern is explained below:

Pattern 1

Checking time constraint: Equation 59

Checking weight constraint: No need to check

Checking volume constraint: No need to check

Pattern 2

Time, weight, and volume constraint of this pattern can be checked after the sequence of picking up and delivery are specified clearly. The system will show the capacity of vehicle left and time used at each move. Thus, the user will know when it is over capacity and over time.

 Show the results of selected method and conclude that it can operate or not.

If the selected method can operate, do step 4.

If the selected method cannot operate, the user has to select new method. Then, the system will calculate and repear since step2.

- Cut off transportation demand fit into transportation plan. Then, update TO^{vx}_{left}, TOC^{vx}_{left(i)}, TOC^{vx}_{left2(i)}, setF, CW^{vx}, CV^{vx} and transportation plan.
- Repeat step 1 to 4 until no transportatation demand changed which must be operated today.

CHAPTER 5

INFORMATION SYSTEM

This chapter explains the details of the information system designed which can be divided into 2 following topics:

- Database
- User interface

5.1 Database

Database of this system can be classified into 10 parts as follows:

5.1.1 Transportation time between any two points of each vehicle

The details of transportation time between any two points of each vehicle

database are as follows:

- Transportation time_ID
- Starting point_ID
- Destination point_ID
- Starting point_name
- Destination point_name
- Vehicle's type_ID
- Transportation time

5.1.2 Node

The details of node database are as follows:

- Company_ID
- Company_name
- Company_contact number
- Representative_name
- Representative_contact number
- Company_type
- Address
- Latitude
- Longitude
- Opening time
- Closing time

5.1.3 Routing

The details of routing database are as follows:

- Routing_ID
- Starting point_ID
- Destination point_ID
- Starting point_name
- Destination point_name
- Distance

5.1.4 Maintenance plan

The details of maintenance plan database are as follows:

- Maintenance plan_ID
- Vehicle_ID
- Car registration
- Vehicle's type_ID
- Start date
- End date
- Maintenance plan_status
- Information_Status

5.1.5 Transportation plan

The details of transportation plan database are as follows:

- Transportation plan_ID
- Date
- Vehicle_ID
- Vehicle's type_ID
- Car registration
- Time
- Details
- Place_name
- Transportation demand_ID
- Weight
- Volume

- Weight left
- Volume left
- Total distance
- Fixed cost
- Variable cost
- Transportation cost
- Created date
- Last update

5.1.6 Loading time per unit

The details of loading time per unit database are as follows:

- Goods' type_ID
- Goods_type
- Loading time per kg
- Loading time per m^3

5.1.7 Availability of vehicles

The details of availability of vehicle database are as follows:

- Date
- In house vehicle_ID
- Outsourced vehicle_ID
- Maintenance plan_status

5.1.8 Transportation demand

The details of transportation demand database are as follows:

- Transportation demand_ID
- Picking up point_name
- Delivery point_name
- Start date
- End date
- Retrieved date
- Seperated transportation demand
- Group for transporting
- Weight
- Volume
- Goods_Type
- Loading time
- Transportation demand_status
- Changing transportation demand_status

5.1.9 In house vehicle

The details of in house vehicle database are as follows:

- In house vehicle_ID
- Car registration
- Vehicle classified by physical shape_type
- Brand
- Model

- Colour
- Vehicle's type_ID
- Maximum capacity in term of weight
- Maximum capacity in term of volume
- Fixed cost
- Variable cost
- Start date
- End date

5.1.10 Outsourced vehicle

The details of outsourced vehicle database are as follows:

- Outsourced vehicle_ID
- Car registration
- Vehicle classified by physical shape_type
- Brand
- Model
- Colour
- Vehicle's type_ID
- Maximum capacity in term of weight
- Maximum capacity in term of volume
- Fixed cost
- Variable cost
- Start date
- End date

Relation between 10 databases in the system is shown in Figure 23.

Figure 23 Relation between 10 databases in the system

5.2 User interfaces

Use interface, which is the computer screen that support delivery planning, can be divided into 4 sections: set up, decision making process for delivery planning, changing the delivery plan process, and report sections.

5.2.1 Set up

5.2.1.1 Setting up data and information of generating delivery plan

The user interface desgined for setting up data and information of generating delivery plan is shown below in Figure 24.

Delivery plan	n Changing the delivery pl	an process Report	
 Planning time fence Operating time per day We have a state of the stat	Day Edit Save Ir Edit Save		Create maintenance plan >>
- Routing Routing	Status	Edit	
Transportation time within any two poi	nto		
Vehicle_type	Status	Edit	

Figure 24 User interface for setting up data and information of generating delivery plan

Objective

To set up planning time fence and operating time per day in order to use as an input of generating transportation.

To retrieve the routing information and transportation time between any two point of each vehicle from tracking vehicle department in order to use as an input of generating transportation.

Instruction

Only transportation planning officer can access this user interface. The details of set up data and all input are stated below:

- Planning time fence

Planning time fence is specified in day. User has to fill in planning time fence in the blank. The user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button.

Operating time per day

The unit of operating time per day is hour. The user can select the number of operating time per day which has the data since 0 untill 24 hours. The user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button.

Routing information

Routing information can be retrieved by clicking "Browse" button in edit column. The user can see the status of routing information such as no information, and the date updating the information.

Transportation time between any two points of each vehicle

Transportation time between any two points of each vehicle can be retrieved by clicking "Browse" button in edit column. The user can see the status of transportation time such as no information, and the date updating the information.

Moreover, user can fill in or add the maintenance plan by clicking "Create maintenance plan" buttom.

5.2.1.2 Input of maintenance plan

The user interface desgined for for creating maintenance plan is shown below in Figure 25.

•	Set up information for ge	neration deliver	y plan process)					
			Da	ite Friday, Sej	otember	• 16, 2011	Time	9:42:32 PM	
	Maintenance plan								
	Maintenance plan_ID	Vehicle_ID	Car registra	tion Vehicle	_type	Start date	End date	Status	
								~	
				Add ma	ntenance	e plan	Edit	Delete Sav	e

Figure 25 User interface for creating maintenance plan

<u>Objective</u>

To retrieve maintenance plan in order to calculate the number of in house vehicle in each day.

Instruction

Only maintenance officer can access this user interface. The details of maintenance plan are stated below:

- ID of maintenance plan
- ID of vehicle
- Car registration
- Vehicle's type
- Start date of maintenance

- End date of maintenance
- Status of information such as no information, and the date updating the information.

Maintenance officer will fill in the maintenance data. The user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can delete the information by pushing "Delete" button, and can add the data by clicking "Add maintenance plan".

5.2.2 Decision making process for delivery planning

5.2.2.1 Retrieving transportation demand for decision making process for delivery planning.

The user interface desgined for retrieving transportation demand for decision making process for delivery planning is shown below in Figure 26.

t up Decision making	process fo	or deliver	y plan Changing the	e delivery plan proc	ess Report				
Have you ever retrieved the transportation demand?									
□Yes □No Edit Save						Date Friday, September 16, 2011 Time 9:43:21 PM			
						Planning time fence Days			
Pending transporta	tion dem	ands							
User selects the constr	ain of each	transpor	tation demand (in * c	riteria)					
Transportation demand_ID	Start date	End date	Picking up point_name	Delivery point_name	Seperated transportation demand *	Group for transporting *	Goods_type	Loading time (min)	Details
						vailability of transportation demand Edit Save			
					Calculate av	ailability of transporta	tion deman	d Edit	∨ Save
Completed transpo	ortation de	emands	6		Calculate ava	ailability of transporta	tion demand	d Edit	▼ Save
Completed transpo	ortation de	emands End date	9 Picking up poin <u>t</u> name	Delivery point_name	Calculate av	ailability of transporta Group for transporting	tion demand	d Edit	Save
Completed transport	ortation de Start date	emands End date	S Picking up point_name	Delivery point_name	Calculate ava	ailability of transporta	tion demand	d Edit (Save Details
Completed transport	Start date	emands End date	; Picking up point_name	Delivery point_name	Calculate av	ailability of transporta	tion demand	d Edit Coading time (min)	Save Details

Figure 26 User interface for retrieving transportation demand for decision making

process for delivery planning

Objective

To retrieve transportation demand and calculate the availability of all transportation demand in order to check which demand is in the system.

Instruction

Only transportation planning officer can access this user interface. This user inferface presents pending transportation demands; in other words, the demand that has not been considered in order to generate transportation plan. Furthermore, it presents completed transportation demand which is fit into transportation plan.

The user can edit the constraint of each transportation demand by pushing "Edit" button. The information that the user can edit is as follows:

- Seperated transportation demand
- Group for transporting

After that, the user can save the data by pushing "Save" button. After completing all constraint of the demand, the user can click "calculate availability of transportation demand" in order to check which demand is in the system and out of the system.

5.2.2.2 Dividing overy capacity transportation demand

The user interface desgined for dividing overy capacity transportation demand is shown below in Figure 27.
Transportation demand e	exceeding o	peration ti n demai	^{ime} nd : divide	the transp	ortation demand -							
								Date Friday, Sej Frozen period	ptember T	r 16, 2011 Days	Time 9:43:551	PM
lser divides the transpor Transportation demand_ID	tation dem Start date	and (in * c End date	riteria), beca Picking up point_name	use the capa Delivery point_name	city is over the largest v Seperated transportation demand *	ehicle's capac Group for transporting *	city. Goods_type	Loading time (min)	Details	Number of divided batch*	% of transportati quantity*	ion
										0		^
										🗘		~
											0	^
											🗘	~
										Edit	Save	Next

Figure 27 User interface for dividing overy capacity transportation demand

To divide overy capacity transportation demand which is over the largest vehicle's capacity in order that this demand can be operated by vehicle in the system.

Instruction

Only transportation planning officer can access this user interface. The user has to split the transporation demand by selecting the number of divided batch. Then, the user has to select the percent of transportation quantity to each divided demand. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. 5.2.2.3 Selecting the method of prioritising transportation demand exceeding operation time

The user interface desgined for selecting the method of prioritising transportation demand exceeding operation time is shown below in Figure 28.

rioritise transportation demand by	Date Friday, September 16, 2011 Time 9:44:25 PM
System	Planning time fence Days
User	

Figure 28 User interface for selecting the method of prioritising transportation demand exceeding operation time

Objective

To select the method of prioritising transportation demand exceeding operation time

Instruction

Only transportation planning officer can access this user interface. The user has to select the method of prioritising transportation demand exceeding operation time by selecting in front of the method needed. There are 2 methods: system prioritizing, and user prioritizing. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.4 Displaying the priority of each transportation demand exceeding operation time prioritized by system

The user interface desgined for displaying the priority of each transportation demand exceeding operation time prioritized by system is shown below in Figure 29.

Transportation dem	and exc	eeding	operation time : p	rioritised by sy	stem					
Prioritise transport	ation de	mand by	/			Date Friday, Sej	otember 16,	2011 9:45:0	$4 \mathrm{PM}$	
 System 						Planning tim	e fence	Days		
🗖 User										
Transportation demand_ID	Start date	End date	Picking up point_name	Delivery point_name	Seperated transportation demand	Group for transporting	Goods_type	Loading time (min)	Details	Priority
								·	-	
< Back								Edit	ave	Next >>

Figure 29 User interface for displaying the priority of each transportation demand exceeding operation time prioritized by system

Objective

To display the priority of each transportation demand exceeding operation time prioritized by system

Only transportation planning officer can access this user interface. This user interface will present the priority of each transportation demand exceeding operation time. Then, the user can save the data by pushing "Save" button if the user agrees with the system priorizing. However, if the user would like to edit the data, the user can edit by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.5 Prioritising transportation demand exceeding operation time by user

The user interface desgined for prioritising transportation demand exceeding operation time by user is shown below in Figure 30.

Transportation demand exceeding operation time Transportation demand exceeding operatio	on time : prioritised by us	ser					
Prioritise transportation demand by			Date Friday, Sej Planning tim	ptember 16, ne fence	2011 Time Days	9:45:31	PM
User User priortises transportation demand (in * criteria	a)					1	
Transportation demand_ID Start date End date Picking up	point_name Delivery point_name	Seperated transportation demand	Group for transporting	Goods_type	Loading time (min)	Details	Priority*
							- 0
							\$
							- 0
<< Back					Edit	Save	Next >

Figure 30 User interface for prioritising transportation demand exceeding operation time

by user

To prioritise transportation demand exceeding operation time by user

Instruction

Only transportation planning officer can access this user interface. The user has to prioritise transportation demand exceeding operation time by selection the priority in priority column. Then, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.6 Selecting the method of choosing transportation demand exceeding operation time which must be operated within today

The user interface desgined for selecting the method of choosing transportation demand exceeding operation time which must be operated within today is shown below in Figure 31.

ē.	Transportation demand exceeding operation time	
ſ	Transportation demand exceeding operation time : choose transportation deman	d
	Choose transportation demand which must operate within today by	Date Friday, September 16, 2011 Time 9:45:59 PM
	System	Planning time fence Days
	User	
ſ	<< Back	Edit Save Next >>
Ļ		

Figure 31 User interface for selecting the method of choosing transportation demand exceeding operation time which must be operated within today

To select the method of choosing transportation demand exceeding operation time which must be operated within today.

Instruction

Only transportation planning officer can access this user interface. The user has to select the method of choosing transportation demand exceeding operation time which must be operated within today by selecting in front of the method needed. There are 2 methods: chosen by system, and user. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.7 Displaying the transportation demand exceeding operation time which must be operated within today chosen by system

The user interface desgined for displaying the transportation demand exceeding operation time which must be operated within today chosen by system is shown below in Figure 32.

E Transportation	demand e	xceeding o	peration time							(
Transportat	ion dema	and exce	eding operation ti	me : choose trar	nsportation demand by sy	stem				
Choose tra	insportat	ion dem	and which must op	perate within tod	ay by	Date H	riday, Sept	ember 16, 2011	Tim	e 9:46:28 PM
System System						Plar	nning time	fence Days		
🗖 User										
Transportation	n demand	which mu	ist operate within tod	ay						
Transportation demand_ID	Start date	End date	Picking up point_name	Delivery point_name	Seperated transportation demand	Group for transporting	Goods_type	Loading time (min)	Details	Operate today
								_		
<< Back								E	Edit	Save Next

Figure 32 User interface for displaying the transportation demand exceeding operation time which must be operated within today chosen by system

Objective

To display the transportation demand exceeding operation time which must be operated within today chosen by system.

Instruction

Only transportation planning officer can access this user interface. This user interface will present the transportation demand exceeding operation time which must be operated within today chosen by system. Then, the user can save the data by pushing "Save" button if the user agrees with the system. However, if the user would like to edit the data, the user can edit by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button. 5.2.2.8 Choosing the transportation demand exceeding operation time which must be operated within today chosen by user

The user interface desgined for choosing the transportation demand exceeding operation time which must be operated within today chosen by user is shown below in Figure 33.

Transportation	demand ex	xceeding o	peration time									
Transportati	on dema	and exce	eding operation ti	me : choose trar	nsportation demand b	y user						
Choose tra	nsportat	ion dem	and which must or	perate within tod	ay by		Date F	riday, Sept	ember 16, 2011	Time	9:47:0	$2\mathrm{PM}$
System							Plar	ning time	fence Days			
☑ User Use	r chooses t	ransportatio	on demand which must o	perate within today (in	* criteria)							
Transportation	n demand	which mu	ist oprate within toda	ý								
Transportation demand_ID	Start date	End date	Picking up point_name	Delivery point_name	Seperated transportation der	nand Group fo	r transporting	Goods_type	Loading time (min)	Details	Operate to	day*
											~	^
											 	
											✓	~
<< Back									E	dit	Save	Next >>

Figure 33 User interface for choosing the transportation demand exceeding operation time which must be operated within today chosen by user

Objective

To choose the transportation demand exceeding operation time which must be operated within today by user.

Instruction

Only transportation planning officer can access this user interface. The user has to choose the transportation demand exceeding operation time which must be operated within today by selection the column of operate today. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.9 Choosing the method of transportation to each transportation demand exceeding operation time

The user interface desgined for choosing the method of transportation to each transportation demand exceeding operation time is shown below in Figure 34.

Transportation Transportat	demand e ion dema	exceeding o and exce	peration time eding oper	ration time	: choose the meti	nod of transportati	ion							
							Date Friday, September 16, 2011 Time 9: Planning time fence Days							
For selecting Transportation	milk run r	nethod, us	er has to ch Picking up	oose the gro Delivery	oup for transporting. Seperated									
demand_ID	Start date	End date	point_name	point_name	transportation demand	Group for transporting	Goods_type	Loading time (min)	Details	Transportation method*	Group for transport	ing*		
										×	~	- ^		
										×	~	-		
										×	~	-		
										×	~			
										×	~			
										×				
										×	•	~		
<< Back										Edit	Save Ne	xt >>		

Figure 34 User interface for choosing the method of transportation to each transportation demand exceeding operation time

Objective

To choose the method of transportation to each transportation demand exceeding operation time

Only transportation planning officer can access this user interface. The user has to choose the method of transportation to each transportation demand exceeding operation time by selecting in transportation method column. There are 2 methods: direct shipping, and milk run. In case of milk run method, the user has to select the group for transporting in the column of group for transporting as well in order to operate in the same day. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.10 Selecting the group of vehicle which operates transportation demand exceeding operation time

The user interface desgined for selecting the group of vehicle which operates transportation demand exceeding operation time is shown below in Figure 35.

Transportation demand exceeding operation time Transportation demand exceeding operation time : select the group of vel	nicle used
User select the group of vehicle used.	Date Friday, September 16, 2011 Time 9:47:52 PM Planning time fence Days
Outsource	
<< Back	Edit Save Next >>

Figure 35 User interface for selecting the group of vehicle which operates transportation

demand exceeding operation time

To select the group of vehicle which operates transportation demand exceeding operation time

Instruction

Only transportation planning officer can access this user interface. The user has to select the group of vehicle which operates transportation demand exceeding operation time by selecting in front of group needed. There are 2 groups: in house vehicle, and outsourced vehicle. Then, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.11 Displaying all available of transportation plan and selecting the transportation plan for transportation demand exceeding operation time

The user interface desgined for displaying all available of transportation plan and selecting the transportation plan for transportation demand exceeding operation time is shown below in Figure 36.

										Date Fric	lay, Ser ng tim	otember 1 e fence	6, 2011 Days	Time	9:48:17 PM
II a∨ailabi er selects the	ity of transporta	ansportatic ition plan (in * c	on plan criteria)												
nswer type	le's Tra _ID den	insportation hand operated	Total weight	Total volume	Total distance	e Transporta	ation cost	Transportation cost per kg	Trans cost per	portation cubic metre	Details	Sele	cted answer*		
														^	
														~	<< Select >>
ompleted	l transp	ortation pla	an												
ransportation demand_ID	Vehicle_	ID Vehicle's ty	/pe_ID Tran dem:	nsportation and operated	Total weight	Total volume	Total dista	nce Transpor	tation cost	Transporta cost per	tion kg co	Transportati st per cubic i	on Det	ails	
														2	
														~	

Figure 36 User interface for displaying all available of transportation plan and selecting the transportation plan for transportation demand exceeding operation time

Objective

To display all available of transportation plan and select the transportation plan for transportation demand exceeding operation time.

Instruction

Only transportation planning officer can access this user interface. The user has to select the transportation plan for transportation demand exceeding operation time by selecting in the column of selected answer. Then, the user clicks the "Select" button. After selecting the transportation plan, the user can move to the next page by pushing "OK" button. On the other hand, the user can go the previos page by pushing "Back" button. 5.2.2.12 Selecting the method of choosing transportation demand in the system which can be operate today

The user interface desgined for selecting the method of choosing transportation demand in the system which can be operated today is shown below in Figure 37.

Transportation demand in the system Transportation demand in the system : choose transportation demand	
Choose transportation demand which can be operated today by	Date Friday, September 16, 2011 Time 9:48:45 PM Planning time fence Days
USer	
	Edit Save Next >>

Figure 37 User interface for selecting the method of choosing transportation demand in the system which can be operated today

Objective

To select the method of choosing transportation demand in the system which can be operated today.

Instruction

Only transportation planning officer can access this user interface. The user has to select the method of choosing transportation demand in the system which can be operated today by selecting in front of group needed. There are 2 methods: chosen by system and user. Then, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button.

5.2.2.13 Displaying transportation demand in the system which can be operated today chosen by system

The user interface desgined for displaying transportation demand in the system which can be operated today chosen by system is shown below in Figure 38.

			,				Det. B.	1	-1 16 2011	T	0.40.21 DM
Choose tr	anspotat	ion dem	and which can be	e operated toda	y by		Date Fr.	iday, Septer	noer 10, 2011	Ime	9:49:21 PM
Svstem							Planni	ng time fe	nce Davs		
OSEI											
ransportatio	n demand	which car	be operated today								
Transportation	Start date	End date	Picking up point_name	Delivery point_name	Seperated transportation de	emand Group fo	r transporting	Goods_type	Loading time (min)	Details	Operate today
									-		
Back									E		Save Next:

Figure 38 User interface for displaying transportation demand in the system which can

be operated today chosen by system

Objective

To display transportation demand in the system which can be operated today chosen by system.

Only transportation planning officer can access this user interface. This user interface will present transportation demand in the system which can be operated today chosen by system. Then, the user can save the data by pushing "Save" button if the user agrees with the system. However, if the user would like to edit the data, the user can edit by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.14 Selecting transportation demand in the system which can be operated today chosen by user

The user interface desgined for selecting transportation demand in the system which can be operated today chosen by user is shown below in Figure 39.

ransportation demand in the system : chosen transportation demand by user														
Choose tra	anspotati	on dem	and which can be	e operated toda	iy by			Date Fri Plann	day, Septer iing time f	nber 16, 2011 ence Days	Time	9:49:48 PM		
🗹 User 🛛 Use	r selects tra	nsportation	demand which can be o	perated todat (in * crit)	eria)									
Transportation	demand	which can	be operated today											
Transportation	Start date	End date	Picking up point_name	Delivery point_name	Seperated trans	portation demand	Group for tra	nsporting	Goods_type	Loading time (min)	Details	Operate today*		
												 <		
< Back										Edi	r (s	ave Next >>		

Figure 39 User interface for selecting transportation demand in the system which can be

operated today chosen by user

To select transportation demand in the system which can be operated today chosen by user.

Instruction

Only transportation planning officer can access this user interface. The user has to select transportation demand in the system which can be operated today chosen by user by selection the column of operate today. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.15 Displaying all available of transportation plan and selecting the transportation plan for transportation demand in the system

The user interface desgined for displaying all available of transportation plan and selecting the transportation plan for transportation demand in the system is shown below in Figure 40.

									Date Fri Plann	lay, Sej ng tim	otember 16, 20 e fence D	avs	Time	9:50:14 PM
ll availabi	lity of tran	sportation pla	an											
er selects the unswer Vehi type	transportatio le's Trans _ID demar	n plan (in * criteria) portation Id operated Total v	weight Total volume	Total distance	Transportati	on cost Tran	nsportation list per kg	Trans cost per	portation cubic metre	Details	Selected a	nswer*		
													_ ▼ (<< Select >>
	l transpor	tation plan —												
complete		Vehicle's type_ID	Transportation demand operated	Total weight	Fotal volume	Total distance	Transport	ation cost	Transporta cost per	tion kg co	Transportation st per cubic metre	Detail	s	
omplete ransportation demand_ID	Vehicle_ID													
omplete ransportation demand_ID	Vehicle_ID												 	

Figure 40 User interface for displaying all available of transportation plans and selecting the transportation plan for transportation demand in the system

Objective

To display all available of transportation plans and select the transportation plan for transportation demand in the system

Instruction

Only transportation planning officer can access this user interface. The user has to select the transportation plan for transportation demand in the system by selecting in the column of selected answer. Then, the user clicks the "Select" button. After selecting the transportation plan, the user can move to the next page by pushing "OK" button. On the other hand, the user can go the previos page by pushing "Back" button. 5.2.2.16 Selecting the method of cutting off transportation demand in the system which does not operate today

The user interface desgined for selecting the method of cutting off transportation demand in the system which does not operate today is shown below in Figure 41.

Transportation demand in the system	
Cut off transportation demand in the system which does not operate today by	Date Friday, September 16, 2011 Time 9:50:40 PM Planning time fence Days
User	
< <back< td=""><td>Edit Save Next>></td></back<>	Edit Save Next>>

Figure 41 User interface for selecting the method of cutting off transportation demand in the system which does not operate today

Objective

To select the method of cutting off transportation demand in the system which does not operate today

Instruction

Only transportation planning officer can access this user interface. The user has to select the method of cutting off transportation demand in the system which does not operate today by selecting in front of the method needed. There are 2 methods: cut by system, and user. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.17 Displaying transportation demand in the system cut off by system

The user interface desgined for displaying transportation demand in the system cut off by system_is shown below in Figure 42.

							Date	Friday, Septeml	oer 16. 2	011	Time 9:51:10 PM
ut off tra	nsportati	on dem	and in the system	which do	es not operate to	day by					
Status							PI	anning time fer	nce D	Days	
User											
					1						
ansportation demand_ID	Start date	End date	Picking up point_name	Delivery point_name	Seperated transportation demand	Group for transporting	Goods_type	Loading time (min)	Details	Transporta	ation demand cut off
Back										Edit	Save Next

Figure 42 User interface for displaying transportation demand in the system cut off by

system

Objective

To display transportation demand in the system cut off by system.

Only transportation planning officer can access this user interface. This user interface will display transportation demand in the system cut off by system. Then, the user can save the data by pushing "Save" button if the user agrees with the system. However, if the user would like to edit the data, the user can edit by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.2.18 Cutting off transportation demand in the system which does not operate today by user

The user interface desgined for cutting off transportation demand in the system which does not operate today by user is shown below in Figure 43.

Figure 43 User interface for cutting off transportation demand in the system which does

not operate today by user

To cut off transportation demand in the system which does not operate today by user.

Instruction

Only transportation planning officer can access this user interface. The user has to cut off transportation demand in the system which does not operate today. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3 Changing the delivery plan process

5.2.3.1 Retrieving transportation demand changed for changing the delivery plan

The user interface desgined for retrieving transportation demand changed for changing the delivery plan process is shown below in Figure 44.

Figure 44 User interface for retrieving transportation demand changed for changing the delivery plan process

Objective

To retrieve transportation demand changed for changing the delivery plan process.

Instruction

Only transportation planning officer can access this user interface. This user inferface presents transportation demands cancelled and transportation demand added in planning time fence.

The user has to edit the constraint of each transportation demand added by pushing "Edit" button. The information that the user can edit is as follows:

Seperated transportation demand

- Group for transporting

After that, the user can save the data by pushing "Save" button, and can move to the next page by pushing "Next" button.

5.2.3.2 Selecting the condition of changing the transportation plan

The user interface desgined for selecting the condition of changing the transportation plan is shown below in Figure 45.

Delivery plan Set up Derision making process for delivery plan Changing the delivery plan process Report	
	Date Friday, September 16, 2011 Time 9:53:21 PM Planning time fence Davs
Changing transportation demand : select condition of changing transportation plan	
User selects condition of changing transportation plan by considering constrain of chaning exist transportation p	olan.
Condition 1 : changing transportation plan can effect on all exist transportation plan.	
Condition 2 : changing transportation plan cannot effect on all exist transportation plan.	
Condition 3 : changing transportation plan can effect on some exist transportation plan.	
<< Back	Edit Save Next >>

Figure 45 User interface for selecting the condition of changing the transportation plan

<u>Objective</u>

To selecte the condition of changing the transportation plan.

Only transportation planning officer can access this user interface. The user has to select the condition of changing the transportation plan by selecting in front of the condition. Then, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3.3 Selecting the method of choosing transportation demand changed which must be operated within today (changing the delivery plan by condition 1)

The user interface desgined for selecting the method of choosing transportation demand changed which must be operated within today (changing the delivery plan by condition 1) is shown below in Figure 46.

🐱 Delivery plan	
Set up Decision making process for delivery plan Changing the delivery plan process Report	
$_{ m C}$ Chaning transportation plan with condition 1 : transportation demand which must operat	te within today
Choose transportation demand demand which must operate within today by	
System	Date Friday, September 16, 2011 Time 9:53:46 PM
	Planning time fence Days
< Back	Edit Save Next >>
	,

Figure 46 User interface for selecting the method of choosing transportation demand changed which must be operated within today (changing the delivery plan by condition

To select the method of choosing transportation demand changed which must be operated within today (changing the delivery plan by condition 1)

Instruction

Only transportation planning officer can access this user interface. The user has to select the method of choosing transportation demand changed which must be operated within today (changing the delivery plan by condition 1) by selecting in front of the method needed. There are 2 methods: chosen by system, and user. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3.4 Displaying transportation demand changed which must be operated within today chosen by system (changing the delivery plan by condition 1)

The user interface desgined for displaying transportation demand changed which must be operated within today chosen by system (changing the delivery plan by condition 1) is shown below in Figure 47.

	Deliv	ery plan													
S	et up	Decision	making p	roce	ess for deliv	very plan Ch	anging the de	livery plan process Re	port						
	Cha	anging tra hoose tra	insporta insporta	tion	demand	demand w	hich must o	transportation dema	by						
		System	lioporta		aomana	domand n		sporate main today		Date Frid	ay, September 16, 2	2011	Time 9:54	:12 P	м
		User								Planni	ng time fence [Davs			
	Tra	nsportatio	demand	whic	h must ope	erate within to	day								
	Tra	ansportatio lemand ID) Start d	ate	End date	Picking up point name	Delivery point name	Seperated transportation demand	Group for transporting	Goods_type	Loading time (min)	Details	Operate too	lay	
										•			 Image: Construction Image: Construction<	^	
													 		
													V	~	
hſ	<< E	Back										Edit	Save		ext >>
4															

Figure 47 User interface for displaying transportation demand changed which must be operated within today chosen by system (changing the delivery plan by condition 1)

Objective

To display transportation demand changed which must be operated within today chosen by system (changing the delivery plan by condition 1)

Instruction

Only transportation planning officer can access this user interface. This user interface will present the transportation changed which must be operated within today chosen by system (changing the delivery plan by condition 1) chosen by system. Then, the user can save the data by pushing "Save" button if the user agrees with the system. However, if the user would like to edit the data, the user can edit by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3.5 Choosing transportation demand changed which must be operated within today by user (changing the delivery plan by condition 1)

The user interface desgined for choosing transportation demand changed which must be operated within today by user (changing the delivery plan by condition 1) is shown below in Figure 48.

hanging trar Choose trar	naking proc isportation	ess for deliv plan with demand	very plan Ch	anging the de 1 : chosen t thich must o	livery plan process Re transportation dema	port and by user	Dete 7	Sector 10	2011	T
System	selects transp	ortation dema	nd which must o	operate within to	day (in * criteria)		Plannii	ng time fence	Davs	Time 9:54:55 PM
ransportation	demand whi	ch must ope	erate within to	day						
demand_ID	Start date	End date	point_name	point_name	transportation demand	Group for transporting	Goods_type	Loading time (min)	Details	Vperate today*

Figure 48 User interface for choosing transportation demand changed which must be operated within today by user (changing the delivery plan by condition 1)

Objective

To choose transportation demand changed which must be operated within today by user (changing the delivery plan by condition 1).

Only transportation planning officer can access this user interface. The user has to choose transportation demand changed which must be operated within today by user (changing the delivery plan by condition 1) by selection the column of operate today. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3.6 Displaying transportation demand added (changing the delivery plan condition2)

The user interface desgined for displaying transportation demand added (changing the delivery plan by condition 2) is shown below in Figure 49.

🛃 D	livery plan										
Set	up Decision making pr	ocess for	delivery p	lan Changing the de	elivery plan proces:	s Report					
- 0	hanging transportat	ion plan	with con	dition 2							
	5 5 1										
							Date Friday, Se	ptember 16	, 2011	Time	9:55:22 PM
							Diamaina tim		Dava		
								le lence	Days		
	Transportation den	nand add	led								
	Transportation demand_ID	Start date	End date	Picking up point_name	Delivery point_name	Seperated transportation demand	Group for transporting	Goods_type	Loading f	ime (min)	Details
						•					^
ιL											
	Back					Calculate	availability of trans	ortation do	mand	Edit	CC Save >>
Ľ	Dack					Calculate	avanaonity of trainsp	Jonation de	manu	Luit	- Odve >>
<u></u>											

Figure 49 User interface for displaying transportation demand added (changing the

To display transportation demand added (changing the delivery plan by condition 2).

Instruction

Only transportation planning officer can access this user interface. This user interface shows transportation demand added (changing the delivery plan by condition 2).

The user can edit the constraint of each transportation demand by pushing "Edit" button. The information that the user can edit is as follows:

- Seperated transportation demand

- Group for transporting

After that, the user can save the data by pushing "Save" button. After completing all constraint of the demand, the user can click "calculate availability of transportation demand" in order to check which demand is in the system and out of the system.

5.2.3.7 Selecting the method of changing the previous transportation plan (changing the delivery plan by condition 2)

The user interface desgined for selecting the method of changing the previous transportation plan (changing the delivery plan by condition 2) is shown below in Figure 50.

🖉 Delivery plan	
Set up Decision making process for delivery plan Changing the delivery plan process Re	port
Changing transportation plan with condition 2 : mode of changing	
Change the exist transportation plan by	
System	Date Friday, September 16, 2011 Time 9:56:10 PM
🗆 User	Planning time fence Days
< Back	Edit Save Next>>

Figure 50 User interface for selecting the method of changing the previous transportation plan (changing the delivery plan by condition 2)

Objective

To select the method of changing the previous transportation plan (changing the delivery plan by condition 2)

Instruction

Only transportation planning officer can access this user interface. The user has to select the method of of changing the previous transportation plan (changing the delivery plan by condition 2) by selecting in front of the method needed. There are 2 methods: changed transportation plan by system, and user. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button. 5.2.3.8 Displaying all available of transportation plan and selecting the transportation plan for transportation demand changed (changing the delivery plan by condition 2)

The user interface desgined for displaying all available of transportation plan and selecting the transportation plan for transportation demand changed (changing the delivery plan by condition 2) is shown below in Figure 51.

t up Decisio	n making pro	ocess for delive	ery plan Cha	anging th	ie delivery p	lan proc	ess Report								
onanging tr	ansportatio	on plan with o	condition 2	∠ : cnan	igea by s	/stem -									
										Date 1	Friday, Sej	otember 16	5, 2011	Time	9:56:44 PM
										Pla	nnina tim	e fence	Davs		
All availabi	lity of trans	sportation pla	an												
Answer Meth	od Transporta	ation Transpo D demand car	ortation Ve ncelled_ID ty	/ehicle's type_ID	Transportatio demand opera	in Tot ited wei	al Total ght volume	Total distance	Transportat	ion cost	ansportation cost per kg	Transpo cost per cu	ortation ubic metre	Details	Selected answer
															Edit Save
Completer	transport	ation plan													Edit Save
Completed Transportation	transport	ation plan	Transportati	iion Tota	tal weight	tal volume	Total distance	Transn	ortation cost	Transporta	ition Tra	nsportation	Detai	le	Edit Save
Completed Transportation demand_ID	transport	ation plan Vehicle's type_ID	Transportati demand oper	tion rated Tota	tal weight To	tal volume	Total distance	• Transp	ortation cost	Transporta cost per	tion Tra kg cost p	nsportation er cubic metro	e Detai	Is	Edit Save
Completed Transportation demand_ID	transport	ation plan Vehicle's type_ID	Transportati demand oper	ion rated Tota	tal weight To	tal volume	Total distance	7 Transp	ortation cost	Transporta cost per	ation Tra kg cost p	nsportation er cubic metre	e Detai	Is	Edit Save
Completed Transportation demand_ID	I transport	ation plan Vehicle's type_ID	Transportati demand oper	tion rated Tota	tal weight To	tal volume	Total distance	• Transp	ortation cost	Transporta cost per	ntion Tra kg cost p	nsportation er cubic metre	e Detai	Is	Edit Sav
Completec Transportation demand_ID	l transport	ation plan Vehicle's type_ID	Transportati demand oper	tion rated Tota	tal weight To	tal volume	Total distance	Transp	ortation cost	Transporta cost per	ntion Tra kg cost p	nsportation er cubic metre	e Detai		Edit Sav
Completec Transportation demand_ID	I transport	ation plan Vehicle's type_ID	Transportati demand oper	ion Tota	tal weight To	tal volume	Total distance	9 Transp	ortation cost	Transporta cost per	ttion Tra	nsportation er cubic metre	e Detai	IS N	Edit Sav
Completed Transportation demand_ID	I transport	ation plan Vehicle's type_ID	Transportati demand oper	tion Tota	tal weight To	tal volume	Total distance	9 Transp	ortation cost	Transporta cost per	ttion Tra kg cost p	nsportation er cubic metre	e Detai		Edit Sav

Figure 51 User interface for displaying all available of transportation plan and selecting the transportation plan for transportation demand changed (changing the delivery plan

by condition 2)

Objective

To display all available of transportation plan and selecte the transportation plan for transportation demand changed (changing the delivery plan by condition 2)

Only transportation planning officer can access this user interface. The user has to select the transportation plan for transportation demand changed (changing the delivery plan by condition 2) by selecting in the column of selected answer. Then, the user clicks the "Save" button. Moreover, the user can edit the selected answer by pushing "Edit" button After selecting the transportation plan, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3.9 Checking availability of transportation plan changed by user (changing the delivery plan by condition 2)

The user interface desgined for checking availability of transportation plan changed by user (changing the delivery plan by condition 2) is shown below in Figure 52.

e	Delivery plan													
Se	t up Decisio	on making	process for d	lelivery plar	Changin	ng the delivery p	lan process Re	eport						
r (Changing ti	ransport	ation plan w	/ith condi	tion 2 : cl	hanged by s	ystem							
										Date F	riday, Septen	nber 16, 2011	Time 9:5	7:14 PM
										Plan	nina time fe	ence Dave		
	User selects	method of	transporting fo	r each trans	sportation d	lemand (in * criti	eria)				ing the re	nico Baje		
	Transportation	Method*	Transportation	Transpo demand car	rtation	Vehicle's type_ID	Check availability	Results	Weight result	Volume result	Time result			
	deman_ip		plan_ib	demand ca			Check				^	•		
							Check							
							Check					Edit	Save	
ſ	Method 3 (pi	icking up a	and delivery g	oods do nc	t operate o	continuously) —								
	Vehicle's type	e ID 001 Transporti	ation Details	Deside	1.07	- Carlos				T				
	Sequence	demand	_ID Details	Results	W	eight result	Volu	me result		Lime re	sult	~		
					\leq		\leq							
						-						Che	eck availability	
	< Back													Next >>
_														
<u></u>														

Figure 52 User interface for checking availability of transportation plan changed by user

(changing the delivery plan by condition 2)

To check availability of transportation plan changed by user (changing the delivery plan by condition 2)

Instruction

Only transportation planning officer can access this user interface. The user has to select the method for transportation demand added. There are 3 methods: adding transportation demand after previous transportation plan, replacing transportation demand cancelled, releasing new vehicle method.

If the users choose adding transportation demand after previous transportation plan method, the user has to select ID of the previous transportation plan. If the user chooses replacing transportation demand cancelled method, the user has to select ID of transportation demand cancelled. If the user chooses releasing new vehicle method which the pick up and delivery goods operates continuously, the user has to select type of vehicle operated as well. After selecting the method to each demand, the user must save the data by pushing "Save" button first. Then, the user can check the availability of the selected method that it can operate or not by clicking "Check" button. The system will check all of the limitation of the sytem consisting opertating time constraint, and capacity of vehicle constraint by considering both weigh, and volumn dimension. Then, the system will display the result of selected method and conclude that it can operate or not.

For releasing new vehicle method which the pick up and delivery goods does not operate continuously, the system is able to chek if the user choose the sequence of picking up and delivery. After selecting the sequence, the user can click "Check availability" buttom. Then, the system will show the results as well. Furthemore, the user can edit the method to each transportation demand by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3.10 Displaying transportation demand added (changing the delivery plan by condition 3)

The user interface desgined for displaying transportation demand added (changing the delivery plan by condition 3) is shown below in Figure 53.

nanging transport	ation plan with	condition 3						
					Date Friday, S	eptember 1	.6, 2011 Time	9:57:41 PM
					Planning ti	me fence	Days	
ransportation der	nand added							
ransportation demand_ID	Start date End da	ate Picking up point_name	Delivery point_name	Seperated transportation demand	Group for transporting	Goods_type	Loading time (min)	Details
								~

Figure 53 User interface for displaying transportation demand added (changing the delivery plan by condition 3)

Objective

To display transportation demand added (changing the delivery plan by

condition 3)

Only transportation planning officer can access this user interface. This user interface presents transportation demand added, and the user cannot change any information. After that, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3.11 Selecting which transportation plan arranged by vehicle's ID can be effected (changing the delivery plan by condition 3)

The user interface desgined for selecting which transportation plan arranged by vehicle's ID can be effected (changing the delivery plan by condition 3) is shown below in Figure 54.

Dellinen elen					
📰 Denvery plan					
Set up Decisi	on making process for d	elivery plan Changing the delivery plan p	process Report		
Changing	ransportation plan w	ith condition 3 : select plan which	can be effected.		
User selects transportation plan which can be effected on both time confirmed and type of vehicle (in * cri				Date Friday, September 16, 2011	Time 9:58:08 PM
Vehicle_I) Can be effecte	d*		Planning time fence Days	
		v			
<< Back				E	dit Save Next >>
					.;;

Figure 54 User interface for selecting which transportation plan arranged by vehicle's ID can be effected (changing the delivery plan by condition 3)

To select which transportation plan arranged by vehicle's ID can be effected (changing the delivery plan by condition 3)

Instruction

Only transportation planning officer can access this user interface. The user has to choose which transportation plan arranged by vehicle's ID can be effected (changing the delivery plan by condition 3) by selecting the column of can be effected. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.3.12 Selecting the condition of changing for each transportation demand (changing the delivery plan by condition 3)

The user interface desgined for selecting the condition of changing for each transportation demand (changing the delivery plan by condition 3) is shown below in Figure 55
ivery plan	
Ip Decision making process for delivery plan Changing the delivery plan process Report hanging transportation plan with condition 3 : select the condition for each transportation	tion demand
Iser selects the condition of changing for each transportation demand (in * criteria)	Date Friday, September 16, 2011 Time 9:58:33 PM Planning time fence Days
Back	Edit Save O

Figure 55 User interface for selecting the condition of changing for each transportation demand (changing the delivery plan by condition 3)

Objective

To select the condition of changing for each transportation demand (changing the delivery plan by condition 3)

Instruction

Only transportation planning officer can access this user interface. The user has to select the condition of changing for each transportation demand (changing the delivery plan by condition 3) by selecting the column of condition of changing. After that, the user can save the data by pushing "Save" button, and can edit the data by pushing "Edit" button. In addition, the user can move to the next page by pushing "Next" button. On the other hand, the user can go the previos page by pushing "Back" button.

5.2.4 Report

5.2.4.1 Displaying the results of generating transportation

The user interface desgined for displaying the results of generating transportation is shown below in Figure 56.

Delivery plan								
Set up Decision making process for delivery pla	an Chang	ing the delivery plan pro	cess Report					
Search								
Arranged by vehicle ID				Date Frid	ay, Septe	mber 16,	2011 Ti	ime 9:52:15 PM
Arranged by company ID		Search		Planni	ng time f	ence	Days	
Results of transportation plan arranged	by ID of	vehicle						
Vehicle_ID Vehicle's type_ID Car registration	Time	Details	Place_name	Transportation demand ID	Weight	Volume	Weight left	Volume left
· · ·								^
ital distanceKM								~
ixed cost Bath								
ransportation cost Bath								Print
Results of transportation plan arranged	by ID of	company						
Company_ID Company_name Transportation	Time	Details	Place_name	Transportation	Weight	Volume	Vehicle_IE	Car registration
uernanu_iD				uernanu_iD	E			
uemanu_iD			1	demand_ID				^
				demand_ID				
uemanu_ro				demand_LD				 X
				demand_L)				Print
				uernanu_iD				Print

Figure 56 User interface for displaying the results of generating transportation

Objective

To present the results of generating transportation arranged by ID of vehicle and ID of company.

Instruction

Only transportation planning officer can access this user interface. The user has to select the pattern of transportation plan by selecting in front of the pattern. There are 2 patterns: transportation plan arraged by ID of vehicle and ID of company. If the user would like transportation plan arraged by ID of vehicle, the user has to select the ID of vehicle. On the other hand, if the user would like transportation plan arraged by ID of company, the user has to select the ID of company as well. After selecting the pattern and ID, the user has to click "search" button in order that the system will retrieve transportation plan from the database. Moreover, the user can print this plan by pushing "Print" button.

CHAPTER 6 SYSTEM EVALUATION

This chapter explains the evaluation of the system designed which can be divided into 2 following topics:

- Evaluation of the correctness and completeness of the designed information system
- Evaluation of the efficiency of information system result

6.1 Evaluation of the correctness and completeness of the designed information system

The research designed is evaluated the correctness and completeness by interviewing officer working in garment industry and related to transportation planning such as transportation planner. The researcher has interviewed 2 garment factories which are located in Bangkok, Thailand. The, these two factories have evaluated the concept of information system desgined which is didived into 3 sections: evaluation of the correctness and completeness of decision making process for delivery planning, evaluation of the correctness and completeness of changing the delivery plan process, and decision support system evaluation. The detail of each section is explained below:

6.1.1 Evaluation of the correctness and completeness of decision making process for delivery planning

- The capability of solving the current problem.

According to the interview of transportation planners, mostly planner said that proposed decision making process can solve the problem at the present. For example, the overlap routing is reduce, and also the transportation cost is decrease. The main reson that can solve the problem is milk run model which can decrease both distance and number of vehicle used.

Furthemore, transportation planner has suggested that milk run model is not suit for transportation demand which has long distance, because it may cause more distance than direct shipping model. However, the system designed has already solved this problem by choosing either milk run or direct shipping method when transportation demand is operated more than one day or located far from home.

Concept and principle for finding the solution

According to the interview of transportation planners, they said that the concept is correct, and appropriate such as giving the priority to each transportation demand by using due date as a criteria, using milk run model in order to reduce the transportation cost, using outsourced vehicle in order to operate transportation when it is the due date, using cost per unit in order to select transportation plan. Moreover, planner from one factory has recommended that sometimes using outsourced vehicle is cheaper than using in house vehicle, because using in house vehicle has several costs apart from depreciation, and fuel cost. It is maintance cost, and driver salary. Thus, it should have process in order to trade off between using in house and outsourced vehicle.

Input information

Input information of decision making process is adequate and appropriate, especially the data of transportation time between any two points of each vehicle. It will genetate delivery plan more accurately.

Nowadays, there is no record of input information, but the planner can give the information by using his/her experice. However, it is the estimation number. In addition, there is no transportation demand which has the due date specified in range of days. All demand s has specified in the exactly date.

Output of decision making process

Planner of the garment factory told that the output of decision making process is enough and appropriate for transporting goods. There are many details in transportation plans which are very goods such as the arriving time, the leaving time, weight left, and volume left. Furthermore, transportation plan arranged by ID of company is very good idea, because every company related to this plan will know the details aheaf, then the resource inclucing loding and unloading staff will be prepared.

Constraint of decision making process

According to the interview of transportation planners, every transportation planner said that the constraint in the system design is adequate and very practical such as separating transportation demant. The example of the real situation is that finish goods transported to port has to be separated, and mixed with other brands or transportation demand.

Number of options

According to the interview of transportation planners, every transportation planner said that there are many options in the system and very flexible such as choosing the transportion plan needed, and transportion demand which must be operated within today.

Possibility in implementing the decision making process to the real situation

The decision making process designed is high possibility in impleting to the real situation; however, there are several uncertainty in garment industry. For example, the supplier has told the date of sending raw material, then the supplier cannot produce or find raw material on time on the specified date. Another example is that the factory has rented the 6 wheel truck and it is already confirmed that it is available, but there is no 6 wheel truck on the specified date.

6.1.2 Evaluation of the correctness and completeness of changing the delivery plan process

The capability of solving the current problem.

According to the interview of transportation planners, mostly planner said that changing the delivery plan process designed can solve the problem at the present by reducing number of vehicle used, and transportation cost. The main reson that can solve the problem is that the system uses several methods apart from releasing new vehicle such as the method of adding transportation demand after the previous transportation plan, and replacing transportation demand cancelled. All of these methods cause decreasing of the number of vehicle and cost of transportation.

Concept and principle for finding the solution

According to the interview of transportation planners, they said that the concept is correct, and appropriate such as changing transportation plan by considering the consition of the previous transportation plan.

Moreover, the planners have supported the method of replacing transportation demand cancelled, but they saild that the information of the system has to be vey accurately such as loading time, and transportation time between any two points. Then, this method will be a practical solution.

Input information

Input information of changing the delivery plan process is adequate and appropriate. Nowadays, there is no record of input information, but the planner can give the information by using his/her experice. However, it is the estimation number. In addition, there is no transportation demand which has the due date specified in range of days. All demand s has specified in the exactly date.

Output of changing the delivery plan process

Planner of the garment factory told that the output of changing the delivery plan process is enough and appropriate for transporting goods.

Constraint of changing the delivery plan process

According to the interview of transportation planners, every transportation planner said that the constraint in the system design is adequate and very practical.

Number of options

According to the interview of transportation planners, every transportation planner said that there are many options in the system and very flexible such as selecting either system or user in order to change transportation plan. Possibility in impleting the changing the delivery plan process to the real situation

Possibility in impleting the changing the delivery plan process to the real situation is medium because of high uncertainty in garment industry and changing transportation demand after vehicle releasing. The system designed cannot change transportation plan after releasing the vehicle.

6.1.3 Decision support system evaluation

Linkage and coherence of user interface

According to the interview, the user who relates to user interface such as transportation planner, and mainternance officer said that the linkage and coherence of user interface is good. Moreover, they have suggested that the manual of using the programme will help the user understand programme more quickly.

User friendly

According to the interview, the user who relates to user interface said that this user interface is easy for use, because there is a message in every user interface. For example, the user has to fill in the constraint of each transportation demand in*criteria. Hence, it can be called user frienfly.

- Reduce the complexity of planning the transportation plan

According to the interview, the user related to user interface said that this user interface can reduce the complexity of planning transportation time, and uses less than user to generate the plan .In addition, it supports the user to know which transportation demand is important.

6.2 Evaluation results of the efficiency of information system

To evaluation the efficiency of information system result, the real case will be used. Then, the answer from the proposed method of the system which uses heuristics and the current method which plans by the experienced transportation planner will be compared. The system testing consists of the evaluatation of routing and choosing the type of vehicle operated. In addition, the process of selecting transportation demand in order to operate in each day cannot be evaluated, since there is no input which is transportation demand specified in the range of transportation date in the real suitataion at the present; in other words, transportation demand input, nowadays, is specified the exactly transportation date.

Evaluation of the efficiency of information system result is divided into 2 following parts:

- Evaluation of the efficiency of decision making process result
- Evaluation of the efficiency of changing the delivery plan process result

6.2.1 Evaluation result of the efficiency of decision making process

The details of input for decision making process which comes from the real case are as follows: Table 31 shows transportation demand (1/8/2011) of a garment factory located in Bangkok, Thailand, Table 32 displays the information of in hosue vehicle on 1/8/2011, Table 33 displays the information of outsorce vehicle on 1/8/2011, Table 34 presents the routing data, Table 35 displays transportation time between any two points of vehicle's type ID 001, and Table 36 presents transportation time between any two points of vehicle's type ID 002. Furthermore, operating time per day is 24 hours or 1440 minutes.

The characteristic of generating transportation plan at the the present is as follows:

In hosue vehicle type ID 002 which has only 1 unit always operate transportation demand between the main plant and other plant. The other demands will be operated by outsourced vehicle starting from the pick up point, and going to the delivery point, and then back to the pick up point; in order words, direct shipping is applied. Moreover, each department or each node has operated its own demands, so there is some overlapped route. In addition, there is no home base in the real practice. The details of transportation plan generated by the experienced planner are shown in Table 37 and Table 38.

The processes of proposed model are displayed in Figure 16, and Figure 17 by giving F0001 to be home base.

The details of transportation plan generated by the proposed model are shown in Table 39 and Table 40. Table 39 is the transportation plan of transportation demand in the system, and Table 40 is the transportation plan of transportation demand exceeding the opertation time.

Demand_ID	Pick up point_ID	Delivery point_ID	Seperated transportation demand	Group for transporting	Goods_type	Loading time (min)	Volume (m ³)	Weight (kg)
SMR0001	S0001	F0001	Ν	N	RM	70	7	2,000
SFR0002	S0002	F0001	Ν	N	RM	40	4	1,000
SFR0003	S0003	F0001	Ν	N	RM	40	4	1,000
SFR0004	S0004	F0002	Ν	Ν	RM	100	11	3,000
SFR0005	S0005	F0002	Ν	N	RM	40	4	1,000
SFR0006	S0006	F0003	Ν	N	RM	40	4	1,000
FFW0007	F0001	F0002	Ν	Ν	WIP	80	20	2,560
FOW0008	F0001	O0001	Ν	Ν	WIP	10	1	100
FOW0009	F0001	O0002	Ν	N	WIP	15	1	120
OFW0010	O0002	F0001	Ν	Ν	WIP	15	1	150
FCF0011	F0001	C0001	Ν	Ν	FG	30	3	385
FCF0012	F0001	C0002	Ν	N	FG	15	2	200
FCF0013	F0001	C0003	Ν	Ν	FG	15	2	180
FCF0014	F0001	C0005	Ν	Ν	FG	15	1	120
FFF0015	F0002	F0001	Ν	Ν	FG	30	3	300
FFF0016	F0003	F0001	Ν	N	FG	35	3	400
FCF0017	F0001	C0006	Y	Ν	FG	35	4	520
FCF0018	F0001	C0007	Y	N	FG	35	3	380
FCF0019	F0001	C0008	Ν	N	FG	15	2	190
FCF0020	F0001	C0009	Y	Ν	FG	20	2	220

Table 31 Transportation demand (1/8/2011) of a garment factory located in Bangkok, Thailand

Table 32 In house vehicle information

Date (D/M/Y)	Vehicle's type_ID	Weight (kg.)	Volume (m ³)	Fixed cost (Baht/day)	Variable cost (Baht/km.)	Number of vehicle (unit)
1/8/2011	002	5,000	30	500	8	1

Table 33 Outsourced vehicle information

Date(D/M/Y)	Vehicle's type_ID	Weight (kg.)	Volume (m ³)	Fixed cost (Baht/day)	Variable cost (Baht/km.)	Number of vehicle(unit)
1/8/2011	001	1,000	4	1,000	3	Unlimited
	002	5,000	30	4,500	8	Unlimited

From/ To	F0001	F0002	F0003	C0001	C0002	C0003	C0004	C0005	S0001	S0002	S0003	S0004	S0005	S0006	O0001	O0002	C0006	C0007	C0008	C0009
F0001	0	175	682	6	10	190	706	271	15	20	25	22	9	30	10	27	16	140	38	160
F0002	175	0	755	180	185	120	830	198	200	210	215	222	207	240	230	240	230	130	150	140
F0003	682	755	0	670	665	780	180	920	670	675	677	680	660	670	650	661	630	780	620	770
C0001	6	180	670	0	3	183	699	264	8	13	18	15	2	23	3	20	9	133	31	153
C0002	10	185	665	3	0	180	696	261	5	10	15	12	3	20	5	17	6	130	28	150
C0003	190	120	780	183	180	0	850	130	117	123	129	125	115	140	117	130	120	15	130	10
C0004	706	830	180	699	696	850	0	980	740	742	744	749	730	750	740	750	740	830	720	820
C0005	271	198	920	264	261	130	980	0	250	254	257	259	262	262	261	253	250	140	220	148
S0001	15	200	670	8	5	117	740	250	0	10	18	15	20	25	14	17	20	112	20	120
S0002	20	210	675	13	10	123	742	254	10	0	16	13	18	23	12	15	18	110	18	118
S0003	25	215	677	18	15	129	744	257	18	16	0	18	23	28	17	20	23	115	23	123
S0004	22	222	680	15	12	125	749	259	15	13	18	0	22	27	16	19	22	114	22	122
S0005	9	207	660	2	3	115	730	262	20	18	23	22	0	37	26	29	32	124	32	132
S0006	30	240	670	23	20	140	750	262	25	23	28	27	37	0	19	22	25	117	25	125
O0001	10	230	650	3	5	117	740	261	14	12	17	16	26	19	0	27	30	122	30	130
O0002	27	240	661	20	17	130	750	253	17	15	20	19	29	22	27	0	33	125	33	133
C0006	16	230	630	9	6	120	740	250	20	18	23	22	32	25	30	33	0	180	30	185
C0007	140	130	780	133	130	15	830	140	112	110	115	114	124	117	122	125	180	0	39	140
C0008	38	150	620	31	28	130	720	220	20	18	23	22	32	25	30	33	30	39	0	170
C0009	160	140	770	153	150	10	820	148	120	118	123	122	132	125	130	133	185	140	170	0

Table 34 Routing information

From/To	F0001	F0002	F0003	C0001	C0002	C0003	C0004	C0005	S0001	S0002	S0003	S0004	S0005	S0006	O0001	O0002	C0006	C0007	C0008	C0009
F0001	0	159	620	5	9	173	642	246	14	18	23	20	8	27	9	25	15	127	35	145
F0002	159	0	686	164	168	109	755	180	182	191	195	202	188	218	209	218	209	118	136	127
F0003	620	686	0	609	605	709	164	836	609	614	615	618	600	609	591	601	573	709	564	700
C0001	5	164	609	0	3	166	635	240	18	23	18	23	9	21	14	18	27	121	28	139
C0002	9	168	605	3	0	164	633	237	14	18	27	23	9	23	14	27	23	118	25	136
C0003	173	109	709	166	164	0	773	118	106	112	117	114	105	127	106	118	109	14	118	27
C0004	642	755	164	635	633	773	0	891	673	675	676	681	664	682	673	682	673	755	655	745
C0005	246	180	836	240	237	118	891	0	227	231	234	235	238	238	237	230	227	127	200	135
S0001	14	182	609	18	14	106	673	227	0	27	36	18	18	23	45	36	18	102	18	109
S0002	18	191	614	23	18	112	675	231	27	0	27	27	27	36	18	27	36	100	18	107
S0003	23	195	615	18	27	117	676	234	36	27	0	18	45	45	18	18	21	105	45	112
S0004	20	202	618	23	23	114	681	235	18	27	18	0	23	27	27	36	32	104	27	111
S0005	8	188	600	9	9	105	664	238	18	27	45	23	0	18	27	36	45	113	29	120
S0006	27	218	609	21	23	127	682	238	23	36	45	27	18	0	32	27	23	106	23	114
O0001	9	209	591	14	14	106	673	237	45	18	18	27	27	32	0	25	27	111	27	118
O0002	25	218	601	18	27	118	682	230	36	27	18	36	36	27	25	0	30	114	30	121
C0006	15	209	573	27	23	109	673	227	18	36	21	32	45	23	27	30	0	164	27	168
C0007	127	118	709	121	118	14	755	127	102	100	105	104	113	106	111	114	164	0	35	127
C0008	35	136	564	28	25	118	655	200	18	18	45	27	29	23	27	30	27	35	0	155
C0009	145	127	700	139	136	27	745	135	109	107	112	111	120	114	118	121	168	127	155	0

Table 35 Transportation time between any two points of vehicle's type ID 001

From/To	F0001	F0002	F0003	C0001	C0002	C0003	C0004	C0005	S0001	S0002	S0003	S0004	S0005	S0006	O0001	O0002	C0006	C0007	C0008	C0009
F0001	0	175	682	6	10	190	706	271	15	20	25	22	9	30	10	27	16	140	38	160
F0002	175	0	755	180	185	120	830	198	200	210	215	222	207	240	230	240	230	130	150	140
F0003	682	755	0	670	665	780	180	920	670	675	677	680	660	670	650	661	630	780	620	770
C0001	6	180	670	0	3	183	699	264	20	25	20	25	10	23	15	20	30	133	31	153
C0002	10	185	665	3	0	180	696	261	15	20	30	25	10	25	15	30	25	130	28	150
C0003	190	120	780	183	180	0	850	130	117	123	129	125	115	140	117	130	120	15	130	30
C0004	706	830	180	699	696	850	0	980	740	742	744	749	730	750	740	750	740	830	720	820
C0005	271	198	920	264	261	130	980	0	250	254	257	259	262	262	261	253	250	140	220	148
S0001	15	200	670	20	15	117	740	250	0	30	40	20	20	25	50	40	20	112	20	120
S0002	20	210	675	25	20	123	742	254	30	0	30	30	30	40	20	30	40	110	20	118
S0003	25	215	677	20	30	129	744	257	40	30	0	20	50	50	20	20	23	115	50	123
S0004	22	222	680	25	25	125	749	259	20	30	20	0	25	30	30	40	35	114	30	122
S0005	9	207	660	10	10	115	730	262	20	30	50	25	0	20	30	40	50	124	32	132
S0006	30	240	670	23	25	140	750	262	25	40	50	30	20	0	35	30	25	117	25	125
O0001	10	230	650	15	15	117	740	261	50	20	20	30	30	35	0	27	30	122	30	130
O0002	27	240	661	20	30	130	750	253	40	30	20	40	40	30	27	0	33	125	33	133
C0006	16	230	630	30	25	120	740	250	20	40	23	35	50	25	30	33	0	180	30	185
C0007	140	130	780	133	130	15	830	140	112	110	115	114	124	117	122	125	180	0	39	140
C0008	38	150	620	31	28	130	720	220	20	20	50	30	32	25	30	33	30	39	0	170
C0009	160	140	770	153	150	30	820	148	120	118	123	122	132	125	130	133	185	140	170	0

Table 36 Transportation time between any two points of vehicle's type ID 002

Transportation		Fixed cost	Variable cost	Total Fixed	Total Variable	Number of	Total distance	Total time
demand_ID	Vehicle_type	(Baht/day)	(Baht/km)	Cost(Baht)	Cost (Baht)	vehicle(Unit)	(km)	(min)
SMR0001	OS001	1,000	3	2,000	180	2	60	168
SFR0002	OS001	1,000	3	1,000	120	1	40	116
SFR0003	OS001	1,000	3	1,000	150	1	50	126
SFR0004	OS002	4,500	8	4,500	3,552	1	444	644
SFR0005	OS002	4,500	8	4,500	3,312	1	414	494
SFR0006	OS002	4,500	8	4,500	10,720	1	1,340	1,420
FFW0007	IH002	500	8	500	1,400	1	175	335
FOW0008	OS001	1,000	3	1,000	60	1	20	38
FOW0009	OS001	1,000	3	1,000	81	1	27	55
OFW0010	OS001		3	0	81		27	55
FCF0011	OS001	1,000	3	1,000	36	1	12	73
FCF0012	OS001	1,000	3	1,000	60	1	20	48
FCF0013	OS001	1,000	3	1,000	1,140	1	380	376
FCF0014	OS001	1,000	3	1,000	1,626	1	542	522
FFF0015	IH002		8	0	1,400		175	235
FFF0016	OS002	4,500	8	4,500	10,912	1	1,364	1,434
FCF0017	OS001	1,000	3	1,000	96	1	32	100
FCF0018	OS002	4,500	8	4,500	2,240	1	280	350
FCF0019	OS001	1,000	3	1,000	228	1	76	100
FCF0020	OS002	4,500	8	4,500	2,560	1	320	360

Table 37 The details of transportation plan by the experienced planner

Transportation demand_ID	Fixed cost (Baht/day)	Number of operating day (day)	Variable cost (Baht/km)	Total fixed cost (Baht)	Total variable cost(Baht)
SMR0001	1,000	1	3	2,000	180
SFR0002	1,000	1	3	1,000	120
SFR0003	1,000	1	3	1,000	150
SFR0004	4,500	1	8	4,500	3,552
SFR0005	4,500	1	8	4,500	3,312
SFR0006	4,500	1	8	4,500	10,720
FFW0007	500	1	8	500	1,400
FOW0008	1,000	1	3	1,000	60
FOW0009	1,000	1	3	1,000	81
OFW0010		1	3	0	81
FCF0011	1,000	1	3	1,000	36
FCF0012	1,000	1	3	1,000	60
FCF0013	1,000	1	3	1,000	1,140
FCF0014	1,000	1	3	1,000	1,626
FFF0015		1	8	0	1,400
FFF0016	4,500	1	8	4,500	10,912
FCF0017	1,000	1	3	1,000	96
FCF0018	4,500	1	8	4,500	2,240
FCF0019	1,000	1	3	1,000	228
FCF0020	4,500	1	8	4,500	2,560

Table 38 The transportation cost of model generated by the experienced planner

Dound	Vahiela tuma	Fixed cost	Variable cost	Total distance	Total weight	Total volume	Total transportation cost	Total transportation cost	Demand energied
Round	venicie_type	(Baht)	(Baht/km)	(km)	operated(kg)	operated(m ³)	per weight (Baht/kg)	per volume (Baht/m ³)	Demand operated
1	IH002	500	8	52	620	5	1.47	183.20	FOW0008/FCF0017
2	05001	1 000	2	160	90E	o	1.66	105 75	FCF0011/FCF0012/
2	03001	1,000	3	102	690	0	1.00	165.75	FOW0009/FCF0019
3	OS001	1,000	3	280	380	3	4.84	613.33	FCF0018
4	OS001	1,000	3	320	220	2	8.91	980	FCF0020
5	OS001	1,000	3	380	180	2	11.89	1070	FCF0013
6	OS001	1,000	3	391	1,000	4	2.17	543.28	SFR0005
7	OS001	1,000	3	94	1,150	5	1.15	256.40	SFR0002/OFW0010
8	OS001	1,000	3	50	1,000	4	1.15	287.50	SFR0003
0	05000	4 500	0	000	4 090	21	2.20	292.10	SMR0001/FFW0007/
9	03002	4,500	O	922	4,900	31	2.59	363.10	FFF0015/FCF0014
10	OS002	4,500	8	419	3,000	10	2.17	785.20	SFR0004

Table 39 The details of transportation plan in the system by proposed model

Table 40 The details of transportation plan exceeding operation time by proposed model

Transportation demand_ID	Vehicle's type_ID	Fixed cost (baht)	Variable cost (baht/km)	Total distance (km)	Total time (min)	Total transportation cost (baht)
SFR0006	OS001	1,000	3	1,387	1,336	5,161
FFF0016	OS001	1,000	3	1,364	1,310	5,092

After generating transportation from 2 methods, the result is summarized according to Table 41. In addition, the researcher has calaulated percent of improving the answer from Equation 73.

% of improving the answer =
$$\frac{AM-AP}{AP} \times 100$$

Equation 73

When;

AM denotes the answer from the proposed method.

AP denotes the answer from the experienced planner.

Table 41 The efficiency of decision making process result

laguag	Answer from the	Answer from the	% of improving	
issues	proposed method	experienced planner	the answer	
Total transportation	<i>4</i> 2 928	79 454	-45 97	
cost (Baht)	42,020	70,404	40.01	
Fixed cost (Baht)	18,500	39,500	-53.16	
Total number of vehicle	12	10	-36.84	
used (Unit)	12	19	-30.04	
Number of vehicle type	Q	12	-25.00	
001 (Unit)	9	12	-23.00	
Number of vehicle type	3	7	-57 14	
002 (Unit)	5		-57.14	
Variable cost (Baht)	24,428	39,954	-38.86	
Total distance (km)	5,821	5,798	0.40	

From Table 41, it is shown that the proposed method of decision making process in delivery planning can reduce the transportation cost consisting of fixed and

variable cost by 45.971% comparing to the current method with the same case of a garment factory in Bangkok. The main reduction comes from fixed cost which depends on the number of vehicle used, and variable cost coming from distance and type of vehicle used, so it can achieve the objective of the research and also increase the competitive advantage to the garment factory. Moreover, it can decrease the complexity of transportation planning by using calculation time about 1 second to 3 minutes depending on the size of problem, while the efficiency of the transportation is better. At the present, generating transportation plan takes about 20 to 45 minutes

From testing, it is shown that total distance of proposed model ismore than total distance of current method. The reason is that there are some nodes located very far from home, but there is transportation demand which has little quantity and is not related with the home point. Moreover, every vehicle has to be back to home base every time, so it causes more distance than the current method which is no home base and operates by direct shipping model. Therefore, it can be concluded that transportation demand which is very far from home and not related to home suits with no home base system.

Furhermore, Equation 34 which is used in order to check which transportation is in the system may not work in some case, some demand, especially demand which has the pick up or delivery point far from home takes time nearly operation time per day and can make Equation 34 come true such as SFR0006 and FFF0016. Both these 2 demands have effect on calculating maxmum time process, thus the demand left cannot be operate. Therefore, the researcher has recommended that Equation 34 should have allowance time in order to be able find every transportation plan.

6.2.2 Evaluation result of the efficiency of changing the delivery plan process

The details of input for changing the delivery plan process which comes from the real case are as follows: Table 42 shows transportation demand changed (1/8/2011) of a garment factory located in Bangkok, Thailand, Table 43 displays the information of in hosue vehicle on 1/8/2011 including the number of vehicle left, Table 33 displays the information of outsorce vehicle on 1/8/2011, Table 33 displays the information of outsorce vehicle on 1/8/2011, Table 34 presents the routing data, Table 35 displays transportation time between any two points of vehicle's type ID 001, Table 36 presents transportation time between any two points of vehicle's type ID 002, and the previous transportation plan. Furthermore, operating time per day is 24 hours or 1440 minutes.

The previous transportation plan is given to operate only 2 transportation demands which are FOW0008 and FCF0017. The detail of the previous transportation plan generated by the experienced planner is shown in Table 44, and the details of the previous transportation plan generated by proposed model is shown in Table 45. This plan comes from decision making process.

At the the present, there is no changing delivery plan processs. When transportation demand is cancelld, the planner will ignore it. On the other hand, when transportation demand is added, the planner will always assign new vehicle to operate demand added. From the test case, there is transportation demand; that is, transportation demand ID FOW0008 is cancelled, and transportation demand ID SFR0021 is added. The planner will solve this problem by ignoring transportation demand cancelled and assigning new vehicle type 002 in order to operate transportation demand ID SFR0021. The detail of transportation plan changed by experienced planner is shown in Table 46.

The processes of proposed model are displayed in Figure 18.

The condition 2 of changing transportation plan, changing transportation plan cannot effect on both time and vehicle used, is selected. Moreover, the system will make all decision. The details of transportation plan changed by the proposed model are shown in Table 47.

Transportation	Pick up	Delivery	Seperated	Group for	Goods_type	Loading tme	Volume	Weight	Status
demand_ID	point_name	point_name	demand	transporting		(min)	(m ³)	(kg)	Status
FOW0008	F0001	O0001	Ν	Ν	RM	10	0.78	100	Cancel
SFR0021	F0001	F0002	Ν	Ν	WIP	80	20	2,500	Add

Table 42 Transportation demand changed

Table 43 In house vehicle

Date (D/M/Y)	Vehicle's type_ID	Capacity (kg.)	Capacity (m ³)	Fixed cost (Baht/day)	Variable cost (Baht /km.)	Number of vehicle (unit)
1/8/2011	002	5,000	30	500	8	0

Table 44 The previous transportation plan generated by transportation planner

Transportation	Transportation	Vehicle's	Total fixed	Total variable	Number of	Total distance	Total time	Routing
plan_ID	demand_ID	type_ID	cost (Baht)	cost (Baht)	vehicle (unit)	(km.)	(min)	rtouting
00001	FOW0008	OS001	1,000	60	1	20	38	F0001 > O0001 > F0001
00002	FCF0017	OS001	1,000	96	1	32	100	F0001 > C0006 > F0001

			Tra	nsportation pla	in_ID 00001			
Vehicle's type_ID	Time	Details	Place	Demand_ID	Weight (kg)	Volume (m ³)	Weight left (kg)	Volume left(m ³)
IH002	8.00-8.10	Loading	F0001	FOW0008	100	0.78	4,900	29.22
	8.10	Leave	F0001				4,900	29.22
	8.10-8.20	OTW					4,900	29.22
	8.20	Arrive	O0001				4,900	29.22
	8.20-8.30	Unloading	O0001	FOW0008	100	0.78	4,900	29.22
	8.30	Leave	O0001				5,000	30
	8.30-8.40	OTW					5,000	30
	8.40	Arrive	F0001				5,000	30
	8.40-9.15	Loading	F0001	FCF0017	520	4	4,680	26
	9.15	Leave	F0001				4,680	26
	9.15-9.31	OTW					4,680	26
	9.31	Arrive					4,680	26
	9.31-10.06	Unloading	C0006	FCF0017	520	4	5,000	30
	10.06	Leave					5,000	30
	10.06-10.22	OTW					5,000	30
	10.22	Arrive	F0001				5,000	30

Table 45 The previous transportation plan generated by proposed model

	Demond ID	Vehicle 's	Fixed cost	Varibel cost	Total fixed	Total variable	Number of	Total	Total	Deuting
Plan_ID	Demand_ID	type_ID	(baht/day)	(baht/km)	cost(baht)	cost(baht)	vehicle(unit)	distance (km)	time (min)	Routing
00003	SFR0021	OS002	4,500	8	4,500	2,800	1	350	510	F0001 > F002 > F0001
00002	FCF0017	OS001	1,000	3	1,000	96	1	32	100	F0001 > C0006 > F0001

Table 46 The transportation plan changed by transportation planner

Table 47 The transportation plan changed by proposed model

	Transportation plan_ID 00001								
Vehicle's type_ID	Time	Details	Place	Demand_ID	Weight (kg)	Volume (m ³)	Weight left (kg)	Volume left(m ³)	
IH002	8.00-8.40			FOW0008 is c	anclled		5,000	30	
	8.40	Arrive	F0001				5,000	30	
	8.40-9.15	Loading	F0001	FCF0017	520	4	4,680	26	
	9.15	Leave	F0001				4,680	26	
	9.15-9.31	OTW					4,680	26	
	9.31	Arrive					4,680	26	
	9.31-10.06	Unloading	C0006	FCF0017	520	4	5,000	30	
	10.06	Leave					5,000	30	
	10.06-10.22	OTW					5,000	30	

			Tra	nsportation pla	n_ID 00001			
Vehicle's type_ID	Time	Details	Place	Demand_ID	Weight (kg)	Volume (m ³)	Weight left (kg)	Volume left(m ³)
	10.22	Arrive	F0001				5,000	30
	10.22-11.42	Loading	F0001	SFR0021	2500	20	2,500	20
	11.42	Leave	F0001				2,500	20
	11.42-14.37	OTW					2,500	20
	14.37	Arrive	F0002				2,500	20
	14.37-15.57	Unloading	F0002	SFR0021	2500	20	5,000	30
	15.57	Leave	F0002				5,000	30
	15.57-18.52	OTW					5,000	30
	18.52	Arrive	F0001				5,000	30

Issues	Answer from	the proposed method		Answer from the experienced planner					
	Previous transportation plan	Transportation plan changed	Diff.	Previous transportation plan	Transportation plan changed	Diff.			
Total transportation cost (Baht)	916	3,556	2,640	2,156	8,396	6,240			
Fixed cost (Baht)	500	500	0	2,000	5,500	3,500			
Total number of vehicle used (Unit)	1	1	0	2	2	0			
Number of vehicle type 001 (Unit)	0	0	0	2	1	1			
Number of vehicle type 002 (Unit)	1	1	0	0	1	1			
Varaible cost (Baht)	416	3,056	2,640	156	2,896	2,740			
Total distance (km)	52	382	330	52	382	330			

Table 48 The efficiency of changing the delivery plan process

From Table 48, it is shown that the proposed method of the delivery plan changing process can decrease the transportation cost consisting of fixed and variable cost by 57.69% or 3,600 baht comparing to the current method with the same case of a garment factory in Bangkok. The main reduction cost comes from fixed cost by decreasing the number of vehicle operated, so it can be achieved according to the objective of the research which is to design an information system for generating delivery plans for a garment factory in order to meet all demands in time with low cost of transportation.

CHAPTER 7

CONCLUSION

This chapter shows the conclusion of the research which can be divided into 4 following topics:

- Conclusion of the research
- Limitation of the system
- Problem and obstacle during the research time
- Suggestion for further studies

7.1 Conclusion of the research

This thesis reports the details of an information system design for transportation planning of a garment factory. The objective of this research is to design an information system for generating delivery plans for a garment factory in order to meet all demands in time with low cost of transportation. The researcher has applied nearest neighbor which is a technique of heuristics in order to generate and change the transportation plan which is a suitable answer. The answer from this model uses the transportation cost as the main criteria. In addition, the business flow chart, data flow diagram, and Microsoft access are used in order to explain and show the idea of decision support system consisting of database, user interface, and business process.

The steps of doing research starts from studying garment industry, the transportation problem, the literature review related the vehicle routing problem method in order to apply to thesis. After that, the researcher has design making process for

delivery planning, the delivery plan changing process, and decision support system, respectively. After designing process, the information system designed is tested. The testing process can be divided into 2 parts. The fist tesing is an evaluation of the correctness and completeness of information system by interviewing the staff related to the system. According to the interviewing, the user of this information system are satisfied with the concept and principle of the system, because it can solve vehicle routing problem which happens at the present, reduce the complexity of making a decision, and apply the concept and implement to the real practice. The second testing is an evaluation of the efficiency of information system result. The system testing shows that the proposed method of decision making process in delivery planning can reduce the transportation cost consisting of fixed and variable cost by 45.97% comparing to the current method. Another system testing, the delivery plan changing process, displays that the transportation cost is decreased by 57.69% comparing to the method generated by the experienced transportation planner. After that, the research has analysed and concluded the results of this research.

The outputs of information system are the decision making process in delivery planning, the delivery plan changing process, user interface, database, and the business process.

7.2 Limitations of the system

- Information system is desgined for normal situation which excludes the emergency situation such as accident, and breaking down of the vehicles.
- The transportation plan cannot change while the vehicle is executed.
- The solution of this system is not guaranteed optimal.

- Transportation resources in this system are vehicles only, others such as the drivers, and the crew are not considered.
- There is single depot which is plant.
- The period of maintenance plan is specified in day.
- Outsorce vehicle has one renting type which is one day contract.
- Transportation demand can be splitted if it is over capacity of the largest vehicle in the system.
- The operating time of every node is the same.
- There is no transshipment in the system designed

7.3 Problems and obstacles in conducting research

- In the evaluation of the efficiency of information system result, the reseacher can evaluate only some processes which are routing and choosing the type of vehicle operated, but the researcher cannot evaluate the process of selecting transportation demand in order to operate in each day. The reason is that input of transportation demand, at the present, is specified the exactly transportation date and does not specified in the range of transportation date as an input of this research.
- Observation of real practice and collecting data takes lots of time than the schedule, because some companies are not able to give the information on the date specified in the schedule.
- Some companies cannot give the internal information that is necessary for doing research, because it is a secret of company.

7.4 Suggestions for further studies

- Comparison and trading off between buy in house vehicle and renting outsourced vehicle
- Study the method of loading goods by considering the sequence of routing and utilizing the space
- Study vehicle routing problem by adding the fuel station, for example, the vehicle should add fuel before operating or add the fuel while operating.
- Study the density of vehicle in each routing in different time in order to generate transportation more accurately. For instance, the density of routing which comes from A to B is very low on 9.00-15.00.

REFERENCES

- [1] Theeratham M., and Manoj L. (n.d) <u>Vehicle Routing in Milk-Run Operations: A</u> <u>Column Generation Based Approach</u>. [Online]. Available from: http://www.logistics.eng.chula.ac.th/_downloads/Paper%202.pdf [2011, 15thJune]
- [2] Laporte G., and Crainic, T. (1997) Planning model for freight transportation. <u>European Journal of Operation Research</u> 34: 409-438.
- [3] Bodin, L.E., Golden, B., Assad, A., and Ball, M. (1983) Routing and Scheduling of Vehicles and Crews: The State of the Art. <u>Computer and Operations</u> <u>Research</u> 10, 2: 67-211.
- [4] C.K.Y Lin (2008) A cooperative strategy for a vehicle routing problem with pickup and delivery time windows. <u>Computer and Industrial Engineering</u> 55: 766-782.
- [5] Chaikit, Thorapat, and Phohlawoot. (2009) <u>Vehicle routing problem by Ant Colony</u> <u>System</u>. Senior project, Department of Industrial Engineering Faculty of Engineering Chulalongkorn University.
- [6] Dantzig, Fulkerson, and Johnson. (1995) Linear programming under uncertainty. <u>Management Science</u>:197-206.
- [7] Bellman R. (2003) <u>Dynamic programming</u>. USA: Dover Publications.

- [8] Gilbert Laporte, Michel Gendreau Jean-Yves Potvin, and FredericSemet. (1999) <u>Classical and Modern Heuristics for the Vehicle Routing Problem</u>. [Online]. Available from: http://www.gerad.ca/fichiers/cahiers/G9921R.ps [2011, 30th June]
- [9] Laporte G., and Semet F. (2002) Classical heuristics for the capacitated VRP. <u>SIAM</u> <u>Monographs on Discrete Mathematics and Applications</u>: 109-128.
- [10] HoongChuin Lau, Melvyn Sim, and KwongMengTeo (2003) Vehicle routing problem with time windows and a limited number of vehicles. <u>European Journal of</u> <u>Operational Research</u>: 559-569.
- [11] H. Gehring, and J. Homberger (2000) Parallelization of a two-phase metaheuristic for routing problems with time windows. <u>Presentedat 5th APORS Conference</u>, Singapore.
- [12] <u>Travelling salesman problem</u> [Online]. Available from: www.cs.uiuc.edu/~chekuri/teaching/fall2006/lect2.pdf [2011, 28th July]
- [13] The institute for working futures (n.d) <u>Direct shipping</u>. [Online]. Available from: http://www.marcbowles.com/courses/adv_dip/module4/module6/m6four1.htm [2011, 30th July]

APPENDICES
APPENDIX A

Record of interview Company A

Date of interview 4 April 2011

1. General Information

Company A has produced many popular international sport brands, and worked as a sub-contractor, and then exported the product to other countries. There are 3 plants of company A in Thailand: two plants are located in Bangkok, and one plant is located in Ubonratchatani. The company, at the present, has already expanded the production to China. Moreove, company A has a plan to expand its production line to Vietnam.

Yearly aggregate plan is dealed between the contractor and the plant in order that the plant will evaluate the production capacity needed for each year and plan for support that demand. When the real demand is known in each month, the company has to produce according to the required number. In case of the production capacity cannot meet the customer requirement; the company will consider outsourcing for the exceeding demand.

2. Transportation Information

There are transportation resources as follows:

6 wheeled truck	2 units
Pick-up truck	6 units
KIA truck	1 unit

The transportation planning will be generated every day. It is divided into two rounds; morning and afternoon round. The vehicles are shared among divisions in the company in order to utilize the resources. However, transportation division has the first priority for using vehicle. In the maintenance aspect, the company has a credit with many garages for maintainanace the vehicle. The process of choosing the garage is based on quotation. Moreover, the company will assign specific driver to each vehicle, and provide budget for general maintenance and wash his/her own vehicle.

3. Characteristics of transporting goods

Transportation of company A is divided into following categories;

<u>Tranportation of raw material</u>: For transporting raw material, supplier will manage every thing in orde to send the material to the plant. Thus, the company will not consider of transporting raw material.

Transportation of raw material between Bangkok and Ubonratchatani plant: Two 6 wheeled trucks will be used in order to transporte raw material within these plants. There are two rounds per week and each round takes time about 3 days. the vehicle will leave from Bangkok plant at 7 pm on first day and go to Ubonratchatani. Then, the vehicle will arrive at Ubonratchatani plant in the morning on second day, and the whole day is used for loading and unloading the goods. After loading and unloading, the vehicle will leave from Ubonratchatani plant at the evening on second day and arrive at Bangkok plant in the morning on third day.

<u>Transportation of raw material between the two Bangkok plants</u>: Pick-up truck will be used for transporting raw material within these two Bangkok plants. Warehouse at

the main plant is major warehouse. When sub plant needs any raw material, it will be transported from this warehose to sub plant.

<u>Transportation of finished goods to port</u>: There are two main ports for transporting finished goods: Ladkrabang and Bangprakong port. Transporting finished goods to port needs high level of control. The reason is that if finished good is losted, the company has to pay for the penalty cost which is very high due to the regulation of intellectual property. Moreover, transporting good to the port has to reserve space and specific time. Normally, the company will hire a sub-contract transportation company in order to pick-up finished goods from plant and delivery to ports. These sub-contractors will be evaluated and must be met the requirements, and then the contract will be signed for transportation with a fixed rate of transportation cost per trip. On the other hand, the two 6 wheeled trucks may be used for transportation of finished good when they're availble.

Company B	
11 April 2011	

1. General Information

Company B has provided production for popular international sport brands and worked as a sub-contractor and exported the product to other countries. There are 2 plants of company B: one is located in Bangkok, and the other one is located in Mahasarakham.

The core business of company B is the production for foreign customer by using Bangkok plant as a main plant and Mahasarakham plant as a sub plant. Bangkok plant has a respondsibility for managing every thing, while Mahasarakham plant has a respondsibility for only producing goods. In other words, Bangkok plant will produce the more complex products than Mahasarakham plant due to the high performance of labor.

2. Transportation Information

There are transportation resources as follows:

6 wheeled truck	2 units
Pick-up truck	unknown

Network LAN will be used for showing the available time of each vehicle and booking vehicle. Person who would like to use vehicle can book via this system. Moreover, maintenance plan will be managed by the transportation division, and each vehicle has it own driver.

3. Characteristics of transporting goods

Transportation of company B is divided into following categories;

<u>Raw material</u>: Due to the high level of safety sepcified by foreign customers, raw material and supplier will be chosen by the customer. Thus, the suppliers will be deliver raw material to the company. Therefore, the company has no responsibility for this transportation.

<u>Transportation of raw material between Bangkok and Mahasarakham plant</u>: 6 wheeled truck will be operated for transportating within these 2 plants. There are 2 rounds per week which leaves from Bangkok plant on every Tuesday and Friday. In addition, the backhaul from Mahasarakham plant to Bangkok will transport the finished goods as well.

Transportation of finished good to port: There are two major ports: Ladkrabang and Klongtoey port. Transporting finished goods to port needs high level of control. The reason is that if finished good is losted, the company has to pay for the penalty cost which is very high due to the regulation of intellectual property. Moreover, transporting good to the port has to reserve space and specific time. Normally, the company will hire a sub-contract transportation company in order to pick-up finished goods from plant and delivery to ports. All products have to be finished by Wednesday in order to deliver finished goods in time on every Thursday.

Record of interview	Company C
Date of interview	29 April 2011

1. General Information

Company C has produced the goods for both domestic and international customer. The company has 5 own plants located in Bangkok, Lampoon, Kabinburi, Maesod and Sriracha. Each plant has its different skill.

2. Transportation Information

There are transportation resources as follows:

6 wheeled truck 1 unit

Only one vehicle in this plant is used for transporting raw material from Bangkok to Kabinburi. The vehicle will leave from Bangkok plant once a week. Because of having a few in house vehicle, the company has not focused on transportation plan.

3. Characteristics of transporting goods

Transportation of company C is divided into following category;

<u>Raw material</u>: The responsibility for transporting raw material from supplier to the main plant in Bangkok is a supplier. Raw material will be transported before production plan about one week, because the company has policy that any material cannot stock in the warehouse more than 15 days. Thus, supplier has to stock the material and deliver it when company C needs

Transportation of raw material between Bangkok and Kabinburi plant: This route will be opreated by 6 wheeled truck once per week. Kabinburi plant will order any material needed for production from main plant, then main plant has to pick-up all the material in the warehouse, load into the truck, and delivery it to Kabinburi plant. On backhauling, finished good will be sent back to main plant for inspecting and selling.

<u>Transportation of finished goods</u>: Because the domestic customer is the department store, there is high level of variety of products. Thus, Bankok plant has to pack finished good into a box containing each order for each department store. Then, there will be vehicle to pick up all finished goods in order to send to the customers every morning.

Record of interview	Company D		
Date of interview	22 April 2011		

1. General Information

Company D has provided a transportation service including renting vehicle. The service of this company is very vary such as renting vehicle service, renting vehicle with driver, hiring vehicle for one trip of transportation. Moreover, the company has a truck installing HIAB crane which is suitable for delivery heavy goods or needs to move by the crane.

2. Transportation Information

There are transportation resources as follows:

6 wheeled and 10 wheeled truck	unknow
Container truck	≈ 28 units
Pick-up truck	≈ 6 units

Due to the company business, the management will be varied to each type of service. However, the company has its own garage for maintenance the vehicle which causes lower maintenance cost comparing to the competitors.

3. Characteristics of transporting goods

Transportation of company D is divided into following category;

Short period rental (less than one year): Vehicle will be send to customer site under the control contract. There are several optional prices for customers such as including driver service, and including the fuel cost. All of this causes the differentiation of rental cost. Long period rental (more than one year): Vehicle will be sent to customer site under the control contract and has the same characteristics as short period rental. Moreover, there is 15% discount for this type of renting.

<u>Trip base hiring</u>: Vehicle will be at transportation base and waiting for transportation requirement from customer. When the requirement comes, the truck will pick up goods at the pick up point and and delivery it at destination point. If the distance is short or both two destinations are located in around Bangkok area, one truck can operate about 2 trips per day. On the other hand, if the distance is far, one truck can operate about 1 trip per day.

<u>Whole day renting</u>: Vehicle will be rent for each day. The customer may consider that there are many transportation requirements for one day and renting the vehicle for whole day will be cheaper than trip base hiring.

Record of interview	Company E	
Data of interview	27 April 2011	
Date of Interview	Zi Aphi zu i	

1. General Information

Company E has provided full logistics service. The company will responsible for whole transportation activity which help the customers reduce their transportation task. The company is experted in the logistics field which can make lower transportation cost than other company, because of economy of scale and many distribute channels.

2. Transportation Information

There are transportation resources as follows:

Transportation vehicle \approx 400 units

The transportation policy of this company is very interesting. All the vehicles of the company are owned by driver and the company supports financial problem. Since all drivers act as owner, they have to manage their own vehicles. The company will feed the transportation job for each driver that is fixed in each area. Moreover, each driver lives in the area that they work, so they are expert in the routing. The payment will be made on job base system which can stimulate the driver to be hard-working. On the other hand, maintenance will be made by each driver, so the transportation cost is low. For all above reasons, the company has no need to install any vehicle monitoring and tracking system.

3. Characteristics of transporting goods

Transportation of company E is divided into following categories;

<u>Managing the tranportation for specific customer</u>: The company will provide overall transportation service. The company will start working by evaluating the transportation cost. Then, the company will buy new vehicle in orde to operate only the customer's works. Sometimes, there is customer's logo on vehicle. When transportation demand is place, the company has to operate according the demand.

<u>Delivery general goods:</u> The characteristics is same as DHL; that is, when the demand is placed, the company will pick up and delivery goods according to the transportation demand.

APPENDIX B

The details of transportation plan from the proposed model according to 6.1.2 (the evaluation of the answer from the proposed model which generates the transportation plan) are shown below:

Round 1

Table 49 The deatils of transportation plan from the proposed model (round 1)

ID of transportation plan 00001			
Vehicle's type_ID	Place	Details	Transportation demand_ID
IH002	F0001	Loading	FOW0008
	F0001	Leave	
		OTW	
	O0001	Arrive	
	O0001	Unloading	FOW0008
	O0001	Leave	
		OTW	
	F0001	Arrive	
	F0001	Loading	FCF0017
	F0001	Leave	
		OTW	
	C0006	Arrive	
	C0006	Unloading	FCF0017
	C0006	Leave	
		OTW	
	F0001	Arrive	

ID of transportation plan 00002			
Vehicle's type_ID	Place	Details	Transportation demand_ID
OS001	F0001	Loading	FCF0011
	F0001	Leave	
		OTW	
	C0001	Arrive	
	C0001	Unloading	FCF0011
	C0001	Leave	
		OTW	
	F0001	Arrive	
	F0001	Loading	FCF0012
	F0001	Leave	
		OTW	
		Arrive	
	C0002	Unloading	FCF0012
		Leave	
		OTW	
	F0001	Arrive	
	F0001	Loading	FOW0009
	F0001	Leave	
		OTW	
	O0002	Arrive	
	O0002	Unloading	FOW0009
	O0002	Leave	
		OTW	
	F0001	Arrive	
	F0001	Loading	FCF0019

Table 50 The deatils of transportation plan from the proposed model (round 2)

ID of transportation plan 00002			
Vehicle's type_ID	Place	Details	Transportation demand_ID
	F0001	Leave	
		OTW	
	C0008	Arrive	
	C0008	Unloading	FCF0019
	C0008	Leave	
		OTW	
	F0001	Arrive	

Table 51 The deatils of transportation plan from the proposed model (round 3)

ID of transportation plan 00003			
Vehicle's type_ID	Place	Details	Transportation demand_ID
OS0001	F0001	Loading	FCF0018
	F0001	Leave	
		OTW	
	C0007	Arrive	
	C0007	Unloading	FCF0018
	C0007	Leave	
		OTW	
	F0001	Arrive	

ID of transportation plan 00004			
Vehicle's type_ID	Place	Details	Transportation demand_ID
OS0001	F0001	Loading	FCF0020
	F0001	Leave	
		OTW	
	C0009	Arrive	
	C0009	Unloading	FCF0020
	C0009	Leave	
		OTW	
	F0001	Arrive	

Table 52 The deatils of transportation plan from the proposed model (round 4)

Round 5

Table 53 The deatils of transportation plan from the proposed model (round 5)

ID of transportation plan 00005			
Vehicle's type_ID	Place	Details	Transportation demand_ID
OS001	F0001	Loading	FCF0013
	F0001	Leave	
		OTW	
	C0003	Arrive	
	C0003	Unloading	FCF0013
	C0003	Leave	
		OTW	
	F0001	Arrive	

ID of transportation plan 00001				
Vehicle's type_ID	Place	Details	Transportation demand_ID	
OS001	F0001	Leave		
		OTW		
	S0005	Arrive		
	S0005	Loading	SFR0005	
	S0005	Leave		
		OTW		
	F0002	Arrive		
	F0002	Unloading	SFR0005	
	F0002	Leave		
		OTW		
	F0001	Arrive		

Table 54 The deatils of transportation plan from the proposed model (round 6)

ID of transportation plan 00007				
Vehicle's type_ID	Place	Details	Transportation demand_ID	
OS001	F0001	Leave		
		OTW		
	S0002	Arrive		
	S0002	Loading	SFR0002	
	S0002	Leave		
		OTW		
	F0001	Arrive		
	F0001	Unloading	SFR0002	
	F0001	Leave		
		OTW		
	O0002	Arrive		
	O0002	Loading	OFW0010	
	O0002	Leave		
		OTW		
	F0001	Arrive		
	F0001	Unloading	OFW0010	

Table 55 The deatils of transportation plan from the proposed model (round 7)

ID of transportation plan 00008				
Vehicle's type_ID	Place	Details	Transportation demand_ID	
OS001	F0001	Leave		
		OTW		
	S0003	Arrive		
	S0003	Loading	SFR0003	
	S0003	Leave		
		OTW		
	F0001	Arrive		
	F0001	Unloading	SFR0003	

Table 56 The deatils of transportation plan from the proposed model (round 8)

ID of transportation plan 00009				
Vehicle's type_ID	Place	Details	Transportation demand_ID	
OS002	F0001	Loading	FFW0007/ FCF0014	
	F0001	Leave		
		OTW		
	S0001	Arrive		
	S0001	Loading	SFR0001	
	S0001	Leave		
		OTW		
	F0001	Arrive		
	F0001	Unloading	SFR0001	
	F0001	Leave		
		OTW		
	F0002	Arrive		
	F0002	Unloading	FFW0007	
	F0002	Loading	FFF0015	
	F0002	Leave		
		OTW		
	F0001	Arrive		
	F0001	Unloading	FFF0015	
	F0001	Leave		
		OTW		
	C0005	Arrive		
	C0005	Unloading	FCF0014	
	C0005	Leave		
		OTW		
	F0001	Arrive		

Table 57 The deatils of transportation plan from the proposed model (round 9)

ID of transportation plan 00010				
Vehicle's type_ID	Place	Details	Transportation demand_ID	
OS002	F0001	Leave		
		OTW		
	S0004	Arrive		
	S0004	Loading	SFR0004	
	S0004	Leave		
		OTW		
	F0002	Arrive		
	F0002	Unloading	SFR0004	
	F0002	Leave		
		OTW		
	F0001	Arrive		

Table 58 The deatils of transportation plan from the proposed model (round 10)

BIOGRAPHY

Leena Uabumrungjit was born on 21th January 1988, Bangkok, Thailand. She was graduted from Chulalongkorn University, faculty of Engineering, majoring in Industrial Engineering in 2010. She continued Master degree in Engineering Management at Regional Centre for Manufacturing System Engineering (RCMSE), a dual master's degree programme of Chulalongkorn University in Thailand which cooperates with University of Warwick in United Kingdom. While she was studying Master degree, she was a researcher at ROM unit (Intergration Development of Performance & Company for Resources and Operations System in Manufacturing & Service Organization).