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CHAPTER I

THE GRAPH CG(a, b)

1.1 Introduction

Let G be a finite abelian group such that G 6= {0} and a, b ∈ G r {0} with

o(b) ≤ o(a). Let CG(a, b) be the undirected graph whose vertex set is G and the

edge set is given by

E = {{x, x + a}, {x, x + b}, {x, x− a}, {x, x− b} : x ∈ G}.

We shall assume that a 6= ±b, otherwise CG(a, b) degenerates into CG(a) = CG(b),

where CG(a) is the graph whose vertex set is G and the edge set is given by

E = {{x, x + a}, {x, x− a} : x ∈ G}. A connected component of the graph CG(a)

is called an a-cycle.

A graph is k-regular if all its vertices have the same degree k. Under the above

conditions, we can classify CG(a, b) into three types of regular graph as follows.

Theorem 1.1.1. Let a, b ∈ G r {0} such that a 6= ±b and o(b) ≤ o(a).

(1) CG(a, b) is 2-regular if and only if a and b are elements of order two.

(2) CG(a, b) is 3-regular if and only if b is an element of order two but a is not.

(3) CG(a, b) is 4-regular if and only if a and b are not elements of order two.

Proof. (1) Assume that CG(a, b) is 2-regular. Let x be a vertex of CG(a, b). Since

a 6= ±b, x + a 6= x± b, so x + a = x− a and x + b = x− b. Thus, 2a = 0 and

2b = 0. Since a, b 6= 0, o(a) = 2 = o(b). Conversely, suppose that a and b are

elements of order two. Then 2a = 0 and 2b = 0, so x+a = x−a and x+b = x−b
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for all x ∈ G. Thus, the edge set of CG(a, b) is {{x, x+ a}, {x, x+ b} : x ∈ G}.

Since a 6= b, the vertices CG(a, b) is 2-regular.

(2) Assume that CG(a, b) is 3-regular. Let x be a vertex of CG(a, b). Since a 6= ±b,

x + a 6= x± b, so either x + a = x− a or x + b = x− b Thus, either 2a = 0 or

2b = 0. Since a, b 6= 0 and o(b) ≤ o(a), o(b) = 2 < o(a). Conversely, suppose

that b is an element of order two but a is not. Then 2b = 0 and 2a 6= 0, so

x+ b = x− b and x+ a 6= x− a for all x ∈ G. Thus, the edge set of CG(a, b) is

{{x, x+ a}, {x, x− a}, {x, x+ b} : x ∈ G}. Since a 6= ±b, CG(a, b) is 3-regular.

(3) Assume that CG(a, b) is 4-regular. Let x be a vertex of CG(a, b). Then {x, x+

a}, {x, x−a}, {x, x+b}, {x, x−b} are distinct. So x+a 6= x−a and x+b 6= x−b,

which implies 2a 6= 0 and 2b 6= 0. Hence, o(a) 6= 2 and o(b) 6= 2. Conversely,

suppose that a and b are not elements of order two. Then 2a 6= 0 and 2b 6= 0,

so x + a 6= x− a and x + b 6= x− b for all x ∈ G. Since a 6= ±b, x + a 6= x± b

for all x ∈ G. Thus, {x, x + a}, {x, x − a}, {x, x + b}, {x, x − b} are distinct.

Hence, CG(a, b) is 4-regular.

This completes the proof.

Example 1.1.2. Since o((1, 2)) = 6 6= 2, o((0, 3)) = 2 and o((0, 1)) = 6 6=

2, o((1, 0)) = 2 in Z2 × Z6, CZ2×Z6((1, 2), (0, 3)) and CZ2×Z6((0, 1), (1, 0)) are 3-

regular graphs as respectively shown below.

Remark. When G = 〈g〉 is cyclic, G has a unique element of order 2, so CG(a, b)

is not 2-regular. Then it is either 3-regular or 4-regular.

Next, we give a condition for CG(a, b) to be connected.
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Theorem 1.1.3. The graph CG(a, b) is connected if and only if the group G is

generated by a and b.

Proof. Assume that CG(a, b) is connected. Let y ∈ G and y 6= 0. Then there is a

path between vertices 0 and y, so y = ka + lb for some k, l ∈ Z. Thus, y ∈ 〈a, b〉.

Hence, G = 〈a, b〉. Conversely, suppose that G = 〈a, b〉. Let x and y be two

distinct vertices in CG(a, b). Then y − x ∈ G = 〈a, b〉. Thus, y − x = ka + lb for

some k, l ∈ Z. This means that there is a path between x and y. Hence, CG(a, b)

is connected.

Corollary 1.1.4. Let G = 〈g〉 be a cyclic group. The graph CG(a, b) is connected

if and only if g = ka + lb for some k, l ∈ Z.

Proof. It directly follows from Theorem 1.1.3 because G = 〈g〉 = 〈a, b〉 is equivalent

to g = ka + lb for some k, l ∈ Z.

Two graphs (V, E) and (V ′, E ′) are said to be isomorphic, denoted by (V, E) '

(V ′, E ′), if there exists a bijection f : V → V ′ such that {x, y} ∈ E if and only

if {f(x), f(y)} ∈ E ′ for all x, y ∈ V . Note that CG(a, b) and CG(b, a) are triv-

ially isomorphic. Moreover, since the edge sets of the graphs CG(a, b), CG(−a, b),

CG(a,−b), CG(−a,−b) are the same sets, they are also isomorphic.

We can generalize Theorem 1.1.3 as follows.

Theorem 1.1.5. If H = 〈a, b〉, then the graph CG(a, b) has [G : H] = |G|/|H|

connected components, each of which is isomorphic to CH(a, b).

Proof. Let x ∈ G and let x + CH(a, b) be the translation graph whose vertex

set is x + H and edge set is {{x + h, x + h + a}, {x + h, x + h + b}, {x + h, x +

h − a}, {x + h, x + h − b} : h ∈ H}. Clearly, x + CH(a, b) is isomorphic to

CH(a, b). By Theorem 1.1.3, CH(a, b) is connected, so x + CH(a, b) is a connected

component of CG(a, b) for all x ∈ G. Since
⋃

x∈G

(
x + CH(a, b)

)
= CG(a, b) and

|{x + CH(a, b) : x ∈ G}| = |{x + H : x ∈ G}| = [G : H] = |G|/|H|, we have

CG(a, b) has |G|/|H| connected components and each component is isomorphic to

CH(a, b).
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Remark. If G = Zn is a cyclic group of order n ≥ 2, then H = 〈a, b〉 = 〈gcd(a, b)〉,

so |H| = n
gcd(n,gcd(a,b))

= n
gcd(n,a,b)

and CG(a, b) has gcd(n, a, b) connected compo-

nents.

Furthermore, for a cyclic group G, Nicoloso and Pietropaoli [2] studied the

isomorphism testing problem for connected circulant graphs CG(a, b) and derived

a necessary and sufficient condition to test whether two circulant graphs CG(a, b)

and CG(a′, b′) are isomorphic. They proposed an elementary method to solve

isomorphism testing, which is purely combinatorial and new for the problem.

In addition, properties of the classes of mutually isomorphic graphs were ana-

lyzed. Later, they studied vertex coloring for connected circulant graphs CG(a, b)

in [3]. They provided an algorithm to find an assignment of colors to the vertices of

circulant graph CG(a, b) such that adjacent vertices receive different colors and the

number of colors is minimized. The vertex coloring of connected graph CG(a, b) is

based on the representative matrix of CG(a, b).

In this work, we let G be any finite abelian group and use their properties

to define the representative matrix of CH(a, b) and derive isomorphism testing on

the graph CG(a, b) defined above. We study classes of isomorphic graphs. This

generalizes Nicoloso and Pietropaoli’s paper [2]. In addition, we shall study the

algorithms in [3] to give an explicit assignment of colors to the vertices of graph

CG(a, b) such that adjacent vertices receive different colors and the number of

colors is minimized.

The thesis is organized as follows. In the next section, we represent our graph

CG(a, b) as the matrix MG(a, b) and study its properties including a-cycles, b-cycles,

column jumps and block jumps. Isomorphism criteria are studied in Chapter II.

The final chapter gives some results on chromatic numbers and explicit vertex

coloring schemes from the algorithms presented in [3].
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1.2 Cycles and matrices

In the previous section, we learn that each connected components of CG(a, b) is

isomorphic to CH(a, b) where H = 〈a, b〉. Now we start with the definition of rep-

resentative matrix of CH(a, b) denote by MG(a, b), which will be used to prove the

isomorphism testing as our main theorem in the next chapter. The representative

matrix MG(a, b) for the graph CH(a, b) can be defined as the following table.

0 a 2a . . . (o(a) − 1)a

b b + a b + 2a . . . b + (o(a) − 1)a

2b 2b + a 2b + 2a . . . 2b + (o(a) − 1)a

...
...

...
. . .

...

(o(b + 〈a〉) − 1)b (o(b + 〈a〉) − 1)b + a (o(b + 〈a〉) − 1)b + 2a . . . (o(b + 〈a〉) − 1)b + (o(a) − 1)a

Lemma 1.2.1. Let a, b ∈ G r {0} with a 6= ±b and H = 〈a, b〉. Then

H/〈a〉 = {〈a〉, b + 〈a〉, 2b + 〈a〉, . . . , (o(b + 〈a〉)− 1)b + 〈a〉} = 〈b + 〈a〉〉.

In particular, o(b + 〈a〉) = |H|
o(a)

.

Proof. Clearly, 〈b + 〈a〉〉 ⊂ H/〈a〉. Let x ∈ H. Then x = ka + lb for some k, l ∈ Z,

so x + 〈a〉 = ka + lb + 〈a〉 = lb + 〈a〉 ∈ 〈b + 〈a〉〉. Hence, H/〈a〉 = 〈b + 〈a〉〉.

Moreover, o(b + 〈a〉) = |〈b + 〈a〉〉| = |H/〈a〉| = |H|
o(a)

.

From the above matrix, MG(a, b) has r = o(b+〈a〉) rows and c = o(a) columns.

The number of entries of MG(a, b) is o(b + 〈a〉)o(a) = |H|. Each row corresponds

to a coset in the quotient H/〈a〉 and all entries of MG(a, b) are distinct. In other

words, vertices of CH(a, b) appear exactly once.

Two vertices x, y ∈ G are said to be a-adjacent and {x, y} is an a-edge if

y − x = ±a and x, y are in an a-cycle if y − x ∈ 〈a〉. Notice that two consecutive

entries of a row are a-adjacent and the first and the last entries of a same row

also are a-adjacent, so that each row of MG(a, b) corresponds to an a-cycle of

CH(a, b). Thus, CH(a, b) consists of o(b + 〈a〉) a-cycles of length o(a). In addition,

two consecutive entries of a column are b-adjacent, that is, their difference is ±b.
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However, the first and the last entries of a same column are not necessarily b-

adjacent. It depends on the column-jump of MG(a, b) denoted by λG(a, b).

Lemma 1.2.2. Let a, b ∈ Gr{0} with a 6= ±b. Then there exists a unique number

λG(a, b) ∈ {0, 1, . . . , o(a)− 1}, called the column-jump of MG(a, b), satisfying

rb = λG(a, b)a. (1.2.1)

Proof. Since b + 〈a〉 ∈ G/〈a〉, we have

rb + 〈a〉 = o(b + 〈a〉)b + 〈a〉 = o(b + 〈a〉)(b + 〈a〉) = 〈a〉,

so rb ∈ 〈a〉. Hence, there exists a unique λG(a, b) ∈ {0, 1, . . . , o(a)− 1} such that

rb = λG(a, b)a as desired.

Some remarks on the column-jump of MG(a, b) are studied in the next theorem.

Theorem 1.2.3. Let a, b ∈ G r {0} with a 6= ±b.

(1) λG(−a, b) = 0 if and only if λG(a, b) = 0.

(2) λG(−a, b) = o(a)− λG(a, b) if λG(a, b) and λG(−a, b) are nonzero.

(3) λG(a,−b) = 0 if and only if λG(a, b) = 0.

(4) λG(a,−b) = o(a)− λG(a, b) if λG(a, b) and λG(a,−b) are nonzero.

(5) λG(−a,−b) = λG(a, b).

Proof. (1) Assume λG(−a, b) = 0. By Lemma 1.2.2, we have λG(a, b)a = o(b +

〈a〉)b = o(b + 〈−a〉)b = −λG(−a, b)a = 0. Since λG(a, b) ∈ {0, 1, . . . , o(a)− 1},

λG(a, b) = 0. A similar argument proves the reverse.

(2) From Lemma 1.2.2, we have (o(a) − λG(−a, b))a = o(a)a − λG(−a, b))a =

o(b+〈−a〉)b = o(b+〈a〉)b = λG(a, b)a. Then (λG(a, b)+λG(−a, b)−o(a))a = 0.

Since λG(a, b), λG(−a, b) ∈ {1, 2, . . . , o(a)− 1}, λG(−a, b) = o(a)− λG(a, b).



7

(3) Analogous to the proof of (1).

(4) Analogous to the proof of (2).

(5) If λG(a, b) = 0, then by (3) and (1), we have λG(a, b) = 0 ⇔ λG(a,−b) = 0 ⇔

λG(−a,−b) = 0, so λG(−a,−b) = λG(a, b). Assume that λG(a, b) 6= 0. From

(2) and (4), we have

λG(−a,−b) = o(a)− λG(a,−b) = o(a)− (o(a)− λG(a, b)) = λG(a, b).

The proof completes.

Theorem 1.2.4. Let a, b ∈ G. Then
c

o(a + 〈b〉)
=

o(b)

r
.

Proof. If a or b = 0, the conclusion is trivial. Assume that a, b ∈ G r {0}.

From Lemma 1.2.1, we have r =
|H|
c

and o(a + 〈b〉) =
|H|
o(b)

. Then rc = |H| =

o(a + 〈b〉)o(b), so
c

o(a + 〈b〉)
=

o(b)

r
.

Theorem 1.2.5. Let a, b ∈ G r {0} with a 6= ±b and write λ = λG(a, b) 6= 0.

Then gcd(λ, o(a)) = o(a + 〈b〉).

Proof. From Eq. (1.2.1) and r = o(b + 〈a〉) | o(b),

o(b)

r
=

o(b)

gcd(r, o(b))
= o(rb) = o(λa) =

o(a)

gcd(λ, o(a))
.

Thus, we have gcd(λ, o(a)) = o(a) · r
o(b)

= o(a + 〈b〉) by Theorem 1.2.4.

From the above theorem, 〈λa〉 = {0, λa, 2λa, . . . ,
(

o(a)
o(a+〈b〉)−1

)
λa}. This implies

that a b-cycle of CH(a, b) consists of h = o(a)
o(a+〈b〉) = c

o(a+〈b〉) columns. As a conse-

quence, MG(a, b) can be partitioned into h equally sized submatrices, the blocks

denoted by βl where l ∈ {0, 1, . . . , h− 1}. The block βl is defined on all the r rows

and o(a+ 〈b〉) consecutive columns from column lo(a+ 〈b〉)+1 to (l +1)o(a+ 〈b〉).

Since o(a + 〈b〉) | λG(a, b), that is, λG(a, b) is a multiple of o(a + 〈b〉). From
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this, we define the block-jump of MG(a, b) to be

ΛG(a, b) =
λG(a, b)

o(a + 〈b〉)
, (1.2.2)

where ΛG(a, b) ∈ {0, 1, . . . , h− 1}. Moreover, we have

Theorem 1.2.6. Let a, b ∈ G r {0} with a 6= ±b.

(1) ΛG(−a, b) = h− ΛG(a, b).

(2) ΛG(a,−b) = h− ΛG(a, b).

(3) ΛG(−a,−b) = ΛG(a, b).

Proof. We use the definition of block-jump and Theorem 1.2.3 to prove (1)–(3) as

follows.

(1) ΛG(−a, b) = λG(−a,b)
o(−a+〈b〉) = o(a)−λG(a,b)

o(a+〈b〉) = o(a)
o(a+〈b〉) −

λG(a,b)
o(a+〈b〉) = h− ΛG(a, b).

(2) ΛG(a,−b) = λG(a,−b)
o(a+〈−b〉) = o(a)−λG(a,b)

o(a+〈b〉) = o(a)
o(a+〈b〉) −

λG(a,b)
o(a+〈b〉) = h− ΛG(a, b).

(3) ΛG(−a,−b) = λG(−a,−b)
o(−a+〈−b〉) = λG(a,b)

o(a+〈b〉) = ΛG(a, b).

This completes the proof.

Example 1.2.7. Let a = (1, 2), b = (0, 3) be in G = Z2 × Z6. Since Z2 × Z6 =

〈(1, 2), (0, 3)〉, the graph CZ2×Z6((1, 2), (0, 3)) is connected. We have r = o((0, 3) +

〈(1, 2)〉) = 2 and

(0, 0) = 2(0, 3) = r(0, 3) = λG((1, 2), (0, 3))(1, 2),

so λG((1, 2), (0, 3)) = 0, which implies ΛG((1, 2), (0, 3)) = λG((1,2),(0,3))
o((1,2)+〈(0,3)〉) = 0

6
= 0.

Since c = o((1, 2)) = 6, MG(a, b) has r = 2 rows and c = 6 columns. The

representative matrix MG((1, 2), (0, 3)) for the graph CZ2×Z6((1, 2), (0, 3)) is the

following table (the blocks are separated by double lines)

(0, 0) (1, 2) (0, 4) (1, 0) (0, 2) (1, 4)

(0, 3) (1, 5) (0, 1) (1, 3) (0, 5) (1, 1)
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Example 1.2.8. Let a = (0, 1, 2), b = (1, 1, 1) be in G = Z2×Z2×Z3. Since Z2×

Z2 × Z3 = 〈(0, 1, 2), (1, 1, 1)〉, the graph CZ2×Z2×Z3((0, 1, 2), (1, 1, 1)) is connected.

We have r = o((1, 1, 1) + 〈(0, 1, 2)〉) = 2 and

(0, 0, 2) = 2(1, 1, 1) = r(1, 1, 1) = λG((0, 1, 2), (1, 1, 1))(0, 1, 2),

so λG((0, 1, 2), (1, 1, 1)) = 4, which implies ΛG((0, 1, 2), (1, 1, 1)) = λG((0,1,2),(1,1,1))
o((0,1,2)+〈(1,1,1)〉) =

4
2

= 2. Since c = o((0, 1, 2)) = 6, MG(a, b) has r = 2 rows and c = 6 columns. The

representative matrix MG((0, 1, 2), (1, 1, 1)) for the graph CZ2×Z2×Z3((0, 1, 2), (1, 1, 1))

is the following table (the blocks are separated by double lines)

(0, 0, 0) (0, 1, 2) (0, 0, 1) (0, 1, 0) (0, 0, 2) (0, 1, 1)

(1, 1, 1) (1, 0, 0) (1, 1, 2) (1, 0, 1) (1, 1, 0) (1, 0, 2)



CHAPTER II

ISOMORPHISM TESTING

In the previous chapter, we defined the representative matrix MG(a, b) for the

graph CH(a, b), which has r = o(b + 〈a〉) rows and c = o(a) columns. Moreover,

we defined the block-jump of MG(a, b) denoted by ΛG(a, b), which is a constant

in {0, . . . , h − 1}, where h = o(a)
o(a+〈b〉) . In this chapter, we study the isomorphism

testing problem for the graphs CH(a, b) and use the properties of MG(a, b) to

derive a necessary and sufficient condition to test whether two graphs CG(a, b) and

CG(a′, b′) are isomorphic. We analyze more results when G is cyclic in Section 2.2.

2.1 Isomorphism Theorem

Our main theorem is as follows.

Theorem 2.1.1. Let a, a′, b, b′ ∈ G r {0} such that a 6= ±b, a′ 6= ±b′, o(b) ≤ o(a)

and o(b′) ≤ o(a′). Then CH(a, b) and CH′(a′, b′) are isomorphic if and only if either

one of the following two conditions holds:

(1) r = r′, o(b′) = o(b) < c = c′ and ΛG(a, b) = ±ΛG(a′, b′);

(2) r = r′, o(b′) = o(b) = c = c′ and either ΛG(a, b) = ±ΛG(a′, b′) or ΛG(a, b) =

±ΛG(b′, a′),

where H = 〈a, b〉, H ′ = 〈a′, b′〉, r = o(b + 〈a〉), r′ = o(b′ + 〈a′〉), c = o(a), c′ =

o(a′), ΛG(a, b) = λG(a,b)
o(a+〈b〉) and ΛG(a′, b′) = λG(a′,b′)

o(a′+〈b′〉) , where λG(a, b) and λG(a′, b′) are

the column-jump of MG(a, b) and MG(a′, b′) respectively.

Proof. Case 1. r = r′, o(b′) = o(b) < c = c′ and ΛG(a, b) = ±ΛG(a′, b′). By

Theorem 1.2.4, o(a + 〈b〉) = r
o(b)

· c = r′

o(b′)
· c′ = o(a′ + 〈b′〉) and observe
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that h = c
o(a+〈b〉) = c′

o(a′+〈b′〉) = h′. Then MG(a, b) and MG(a′, b′) have the

same number of rows and columns and the same size of the blocks.
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1.1 ΛG(a, b) = ΛG(a′, b′). Then λG(a′, b′) = ΛG(a′, b′)o(a′ + 〈b′〉) = ΛG(a, b)o(a + 〈b〉) = λG(a, b). Let λ = λG(a, b) = λG(a′, b′).

The representative matrices MG(a, b) and MG(a′, b′) are shown below.

0 . . . . . . . . . (λ− 1)a λa . . . (c− 1)a

...
...

(r − 1)b . . . (r − 1)b + (c− λ− 1)a (r − 1)b + (c− λ)a . . . . . . . . . (r − 1)b + (c− 1)a

0 . . . . . . . . . (λ− 1)a′ λa′ . . . (c− 1)a′

...
...

(r − 1)b′ . . . (r − 1)b′ + (c− λ− 1)a′ (r − 1)b′ + (c− λ)a′ . . . . . . . . . (r − 1)b′ + (c− 1)a′

We see that {{(r−1)b+ja, (λ+j)a} : 0 ≤ j ≤ c−λ−1} and {{(r−1)b+(c−λ+j)a, ja} : 0 ≤ j ≤ λ−1} contain boundary

b-edges connecting an entry of the last row with an entry of the first row of MG(a, b). While, {{(r − 1)b′ + ja′, (λ + j)a′} :

0 ≤ j ≤ c− λ− 1} and {{(r − 1)b′ + (c− λ + j)a′, ja′} : 0 ≤ j ≤ λ− 1} contain boundary b′-edges connecting an entry of

the last row with an entry of the first row of MG(a′, b′). We define a bijection f : H → H ′ by f(ib + ja) = ib′ + ja′ where

i ∈ {0, 1, . . . , r − 1} and j ∈ {0, 1, . . . , c − 1}. Then f is a bijection preserving the adjacency condition, so CH(a, b) and

CH′(a′, b′) are isomorphic.
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1.2 ΛG(a, b) = −ΛG(a′, b′). Then λG(a′, b′) = ΛG(a′, b′)o(a′ + 〈b′〉) = (h − ΛG(a, b))o(a + 〈b〉) = c − λG(a, b). Let λ = λG(a, b).

The representative matrices MG(a, b) and MG(a′, b′) are shown below.

0 . . . (λ− 1)a λa . . . (c− λ− 1)a (c− λ)a . . . (c− 1)a

...
...

...
...

...
...

(r − 1)b . . . (r − 1)b + (λ− 1)a (r − 1)b + λa . . . (r − 1)b + (c− λ− 1)a (r − 1)b + (c− λ)a . . . (r − 1)b + (c− 1)a

0 . . . (λ− 1)a′ λa′ . . . (c− λ− 1)a′ (c− λ)a′ . . . (c− 1)a′

...
...

...
...

...
...

(r − 1)b′ . . . (r − 1)b′ + (λ− 1)a′ (r − 1)b′ + λa′ . . . (r − 1)b′ + (c− λ− 1)a′ (r − 1)b′ + (c− λ)a′ . . . (r − 1)b′ + (c− 1)a′

We see that {{(r−1)b+ja, (λ+j)a} : 0 ≤ j ≤ c−λ−1} and {{(r−1)b+(c−λ+j)a, ja} : 0 ≤ j ≤ λ−1} contain boundary

b-edges connecting an entry of the last row with an entry of the first row of MG(a, b). While, {{(r−1)b′+ ja′, (c−λ+ j)a′} :

0 ≤ j ≤ λ− 1} and {{(r − 1)b′ + (λ + j)a′, ja′} : 0 ≤ j ≤ c− λ− 1} contain boundary b′-edges connecting an entry of the

last row with an entry of the first row of MG(a′, b′). We define a bijection f : H → H ′ by f(ib + ja) = ib′ + (c − j − 1)a′

where i ∈ {0, 1, . . . , r − 1} and j ∈ {0, 1, . . . , c − 1}. Then f is a bijection preserving the adjacency condition, so CH(a, b)

and CH′(a′, b′) are isomorphic.
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Case 2. r = r′, o(b′) = o(b) = c = c′ and either ΛG(a, b) = ±ΛG(a′, b′) or

ΛG(a, b) = ±ΛG(b′, a′). Clearly, if ΛG(a, b) = ±ΛG(a′, b′), then CH(a, b)

and CH′(a′, b′) are isomorphic. Suppose ΛG(a, b) = ±ΛG(b′, a′). Then we

can apply Case 1 by swapping a′ and b′, we have CH(a, b) ' CH′(b′, a′).

From trivially isomorphic, CH(a, b) and CH′(a′, b′) are isomorphic as de-

sired.

Conversely, assume that CH(a, b) and CH′(a′, b′) are isomorphic. Then the

representative matrices MG(a, b) and MG(a′, b′) have the same number of rows

and columns and the same size of the blocks, which implies r = r′, c = c′ and

o(a + 〈b〉) = o(a′ + 〈b′〉). So o(b) = rc
o(a+〈b〉) = r′c′

o(a′+〈b′〉) = o(b′). Since we have

assumed that o(b) ≤ c, we clearly obtain in the following two conditions.

(1) r = r′, o(b′) = o(b) < c = c′ and ΛG(a, b) = ±ΛG(a′, b′);

(2) r = r′, o(b′) = o(b) = c = c′ and either ΛG(a, b) = ±ΛG(a′, b′) or ΛG(a, b) =

±ΛG(b′, a′),

as desired.

Lemma 2.1.2. Let a, a′, b, b′ ∈ G r {0} such that a 6= ±b and a′ 6= ±b′.

(1) If r = r′, o(b) = o(b′) and c = c′, then rb′ = ±λG(a, b)a′ if and only if

ΛG(a, b) = ±ΛG(a′, b′).

(2) If r = r′ and o(b′) = o(b) = c = c′, then ra′ = ±λG(a, b)b′ if and only if

ΛG(a, b) = ±ΛG(b′, a′).

Here, r = o(b + 〈a〉), r′ = o(b′ + 〈a′〉), c = o(a), c′ = o(a′), ΛG(a, b) = λG(a,b)
o(a+〈b〉) and

ΛG(a′, b′) = λG(a′,b′)
o(a′+〈b′〉) , where λG(a, b) and λG(a′, b′) are the column-jump of MG(a, b)

and MG(a′, b′) respectively.

Proof. (1) Let r = r′, o(b) = o(b′) and c = c′. By Theorem 1.2.4, we have

o(a + 〈b〉) =
r

o(b)
· c =

r′

o(b′)
· c′ = o(a′ + 〈b′〉).
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Assume that rb′ = ±λG(a, b)a′. From

λG(a, b)a′ = ±rb′ = ±r′b′ = ±λG(a′, b′)a′,

so (λG(a, b) ± λG(a′, b′))a′ = 0. Then c′ = o(a′) divides λG(a, b) ± λG(a′, b′),

which implies λG(a, b) ± λG(a′, b′) = 0. By Eq. (1.2.2), ΛG(a, b) = λG(a,b)
o(a+〈b〉) =

± λG(a′,b′)
o(a′+〈b′〉) = ±ΛG(a′, b′). Conversely, assume that ΛG(a, b) = ±ΛG(a′, b′). By

Eq. (1.2.2), we have λG(a, b) = ΛG(a, b)o(a + 〈b〉) = ±ΛG(a′, b′)o(a′ + 〈b′〉) =

±λG(a′, b′), so

rb′ = r′b′ = λG(a′, b′)a′ = ±λG(a, b)a′

as desired.

(2) We can apply (1) by swapping a′ and b′.

Hence, we have the lemma.

Corollary 2.1.3. Let a, a′, b, b′ ∈ G r {0} such that a 6= ±b, a′ 6= ±b′, o(b) ≤ o(a)

and o(b′) ≤ o(a′). Then CG(a, b) and CG(a′, b′) are isomorphic if and only if either

one of the following two conditions holds:

(1) r = r′, o(b′) = o(b) < c = c′ and rb′ = ±λG(a, b)a′;

(2) r = r′, o(b′) = o(b) = c = c′ and either rb′ = ±λG(a, b)a′ or ra′ = ±λG(a, b)b′,

where r = o(b + 〈a〉), r′ = o(b′ + 〈a′〉), c = o(a), c′ = o(a′) and λG(a, b) is the

column-jump of MG(a, b).

Proof. Let H = 〈a, b〉 and H ′ = 〈a′, b′〉. Assume CH(a, b) and CH′(a′, b′) are

isomorphic. Then |H| = |H ′|, which implies CG(a, b) and CG(a′, b′) have the

same number of connected components. Moreover, each connected components

of CG(a, b) is isomorphic to CH(a, b) and each connected components of CG(a′, b′)

is isomorphic to CH′(a′, b′) by Theorem 1.1.5. So CG(a, b) and CG(a′, b′) are iso-

morphic. Clearly, if CG(a, b) and CG(a′, b′) are isomorphic, then CH(a, b) and

CH′(a′, b′) are isomorphic. Hence, this corollary follows from Theorem 2.1.1 and

Lemma 2.1.2.
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We give examples to demonstrate the above corollary.

Example 2.1.4. Let a = (1, 0), a′ = (0, 1), b = (0, 2), b′ = (2, 0) be in G = Z4×Z4.

Then o(b′) = o((2, 0)) = 2 = o((0, 2)) = o(b) < c = o((1, 0)) = 4 = o((0, 1)) = c′

and r = o((0, 2)+ 〈(1, 0)〉) = 2 = o((2, 0)+ 〈(0, 1)〉) = r′. From Lemma 1.2.2, since

(0, 0) = 2(0, 2) = rb = λG(a, b)a = λG(a, b)(1, 0)

for some λG(a, b) ∈ {0, 1, 2, 3 = c− 1}, λG(a, b) = 0. Thus,

rb′ = 2(2, 0) = (0, 0) = 0(0, 1) = λG(a, b)a′.

By Corollary 2.1.3, CZ4×Z4((1, 0), (0, 2)) is isomorphic to CZ4×Z4((0, 1), (2, 0)).

Example 2.1.5. Let a = (1, 0), a′ = (1, 1), b = (0, 1), b′ = (2, 0) be in G =

Z4 × Z4. Since o(b′) = o((2, 0)) = 2 6= 4 = o((0, 1)) = o(b), CZ4×Z4((1, 0), (0, 1))

and CZ4×Z4((1, 1), (2, 0)) are not isomorphic by Corollary 2.1.3.

We quote two results on finite abelian groups as follows.

Theorem 2.1.6. [1] Let G be a finite abelian group. Then there exist integers

n1, . . . , nt > 1 such that

G ∼= Zn1 × Zn2 × · · · × Znt .

Theorem 2.1.7. [1] Let G1, G2, . . . , Gt be finite abelian groups and (a1, a2, . . . , at) ∈∏t
i=1 Gi. Then

o((a1, a2, . . . , at)) = lcm(o(a1), o(a2), . . . , o(at)),

where o(ai) denotes order of ai in Gi for all i ∈ {1, 2, . . . , t}.

The next corollary gives an easier way to compute the order of elements.

Corollary 2.1.8. Let a = (a1, a2, . . . , at), b = (b1, b2, . . . , bt) ∈ Zn1×Zn2×· · ·×Znt

where n1, . . . , nt > 1. Then
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(1) o(a) = lcm
(

n1

gcd(n1,a1)
, n2

gcd(n2,a2)
, . . . , nt

gcd(nt,at)

)
.

(2) |H| = o(a) · o(b)
|〈a〉 ∩ 〈b〉|

, where H = 〈a, b〉.

(3) o(b + 〈a〉) =
|H|
o(a)

.

Example 2.1.9. Let a = (1, 2), a′ = (0, 1), b = (0, 3), b′ = (1, 0) be in G = Z2×Z6.

By Example 1.2.7, we have r = o((0, 3)+ 〈(1, 2)〉) = 2 and λG((1, 2), (0, 3)) = 0, so

rb′ = 2(1, 0) = (0, 0) = 0(0, 1) = λG(a, b)a′.

From

c = o(a) = o((1, 2)) = lcm
(

2
gcd(2,1)

, 6
gcd(6,2)

)
= lcm(2, 3) = 6,

c′ = o(a′) = o((0, 1)) = lcm
(

2
gcd(2,0)

, 6
gcd(6,1)

)
= lcm(1, 6) = 6,

o(b) = o((0, 3)) = lcm
(

2
gcd(2,0)

, 6
gcd(6,3)

)
= lcm(1, 2) = 2,

o(b′) = o((1, 0)) = lcm
(

2
gcd(2,1)

, 6
gcd(6,0)

)
= lcm(2, 1) = 2

and 〈a′〉 ∩ 〈b′〉 = 〈(0, 1)〉 ∩ 〈(1, 0)〉 = {(0, 0)}, we have o(b′) = o(b) < c = c′ and

|H ′| = o(a′)·o(b′)
|〈a′〉∩〈b′〉| = 6(2)

1
= 12, which imply r′ = o(b′ + 〈a′〉) = |H′|

o(a′)
= 12

6
= 2 = r. By

Corollary 2.1.3, CZ2×Z6((1, 2), (0, 3)) is isomorphic to CZ2×Z6((0, 1), (1, 0)).

Example 2.1.10. Let a = (0, 1, 2), a′ = (1, 0, 1), b = (1, 1, 1), b′ = (0, 1, 1) be in

G = Z2 × Z2 × Z3. From Example 1.2.8, we have r = o((1, 1, 1) + 〈(0, 1, 2)〉) = 2

and λG((0, 1, 2), (1, 1, 1)) = 4, so

rb′ = 2(0, 1, 1) = (0, 0, 2) = −4(1, 0, 1) = −λG(a, b)a′.
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From

c = o(a) = o((0, 1, 2)) = lcm
(

2
gcd(2,0)

, 2
gcd(2,1)

, 3
gcd(3,2)

)
= lcm(1, 2, 3) = 6,

c′ = o(a′) = o((1, 0, 1)) = lcm
(

2
gcd(2,1)

, 2
gcd(2,0)

, 3
gcd(3,1)

)
= lcm(2, 1, 3) = 6,

o(b) = o((1, 1, 1)) = lcm
(

2
gcd(2,1)

, 2
gcd(2,1)

, 3
gcd(3,1)

)
= lcm(2, 2, 3) = 6,

o(b′) = o((0, 1, 1)) = lcm
(

2
gcd(2,0)

, 2
gcd(2,1)

, 3
gcd(3,1)

)
= lcm(1, 2, 3) = 6

and 〈a′〉∩〈b′〉 = 〈(1, 0, 1)〉∩〈(0, 1, 1)〉 = {(0, 0, 0), (0, 0, 1), (0, 0, 2)}, we have o(b′) =

o(b) = c = c′ and |H ′| = o(a′)·o(b′)
|〈a′〉∩〈b′〉| = 6(6)

3
= 12, which imply r′ = o(b′ + 〈a′〉) =

|H′|
o(a′)

= 12
6

= 2 = r. By Corollary 2.1.3, CZ2×Z2×Z3((0, 1, 2), (1, 1, 1)) is isomorphic

to CZ2×Z2×Z3((1, 0, 1), (0, 1, 1)).

Example 2.1.11. Let a = (6, 9), a′ = (6, 15), b = (12, 18), b′ = (12, 6) be in

G = Z36 × Z36. Then

c = o(a) = o((6, 9)) = lcm
(

36
gcd(36,6)

, 36
gcd(36,9)

)
= lcm(6, 4) = 12,

c′ = o(a′) = o((6, 15)) = lcm
(

36
gcd(36,6)

, 36
gcd(36,15)

)
= lcm(6, 12) = 12,

o(b) = o((12, 18)) = lcm
(

36
gcd(36,12)

, 36
gcd(36,18)

)
= lcm(3, 2) = 6,

o(b′) = o((12, 6)) = lcm
(

36
gcd(36,12)

, 36
gcd(36,6)

)
= lcm(3, 6) = 6,

〈a〉 ∩ 〈b〉 = 〈(6, 9)〉 ∩ 〈(12, 18)〉 = {(0, 0), (12, 18), (24, 0), (0, 18), (12, 0), (24, 18)},

〈a′〉 ∩ 〈b′〉 = 〈(6, 15)〉 ∩ 〈(12, 6)〉 = {(0, 0), (0, 18)}.

Since |H| = o(a)·o(b)
|〈a〉∩〈b〉| = 12(6)

6
= 12 and |H ′| = o(a′)·o(b′)

|〈a′〉∩〈b′〉| = 12(6)
2

= 36, r = o(b +

〈a〉) = |H|
o(a)

= 12
12

= 1 6= 3 = 36
12

= |H′|
o(a′)

= o(b′ + 〈a′〉) = r′. By Corollary 2.1.3,

CZ36×Z36((6, 9), (12, 18)) is not isomorphic to CZ36×Z36((6, 15), (12, 6)).

2.2 CG(a, b) when G is cyclic

When G is a cyclic group, the next proposition gives the explicit form of elements

in G which have the same order. The proof is immediate.
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Proposition 2.2.1. Let a, a′ ∈ G. Then o(a) = o(a′) if and only if a′ = ka for

some 1 ≤ k ≤ o(a) and gcd(k, o(a)) = 1.

Theorem 2.2.2. Let G be a cyclic group such that a, a′, b, b′ ∈ G r {0} with

a 6= ±b, a′ 6= ±b′, o(b) ≤ o(a) and o(b′) ≤ o(a′). If o(a) = o(a′) and o(b) = o(b′),

then CG(a, b) is connected if and only if CG(a′, b′) is connected.

Proof. Assume CG(a, b) is connected. Then G = 〈a, b〉 by Corollary 1.1.3. By the

above proposition, since o(a) = o(a′) and o(b) = o(b′), we have a′ = ka and b′ = lb

for some 1 ≤ k ≤ o(a), gcd(k, o(a)) = 1, 1 ≤ l ≤ o(b) and gcd(l, o(b)) = 1. Then

〈a′, b′〉 = 〈ka, lb〉 = 〈a, b〉 = G,

so CG(a′, b′) is connected. By symmetry, we have the theorem.

Corollary 2.2.3. Let G be a cyclic group such that a, a′, b, b′ ∈ G r {0} with

a 6= ±b, a′ 6= ±b′, o(b) ≤ o(a) and o(b′) ≤ o(a′). Then CG(a, b) and CG(a′, b′) are

isomorphic if and only if either one of the following two conditions holds:

(1) o(b′) = o(b) < c = c′ and rb′ = ±λG(a, b)a′;

(2) o(b′) = o(b) = c = c′ and either rb′ = ±λG(a, b)a′ or ra′ = ±λG(a, b)b′,

where r = o(b + 〈a〉), c = o(a), c′ = o(a′) and λG(a, b) is the column-jump of

MG(a, b).

Proof. Assume o(a) = c = c′ = o(a′) and o(b) = o(b′). From Corollary 2.1.3,

it suffices to show that r = r′. By Proposition 2.2.1, since G is cyclic, a′ = ka

and b′ = lb for some gcd(k, o(a)) = 1 and gcd(l, o(b)) = 1. Then H ′ = 〈a′, b′〉 =

〈ka, lb〉 = 〈a, b〉 = H. From Lemma 1.2.1, we have r = |H|
c

= |H′|
c′

= r′ as

desired.

Proposition 2.2.4. Let G be a cyclic group of order n such that a, b ∈ G. Then

(1) o(a) =
n

gcd(n, a)
.
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(2) o(b + 〈a〉) =
gcd(n, a)

gcd(n, a, b)
.

(3)
o(a)

o(a + 〈b〉)
=

n gcd(n, a, b)

gcd(n, a) gcd(n, b)
.

Proof. (1) comes from Corollary 2.1.8 (1). (2) is obtained from Corollary 2.1.8 (3)

and remark after Theorem 1.1.5. (3) can be proved by (1) and (2).

Example 2.2.5. Let a = 3, a′ = 21, b = 5, b′ = 55 be in G = Z60. Then o(b′) =

o(55) = 60
gcd(60,55)

= 12 = 60
gcd(60,5)

= o(5) = o(b) < c = o(3) = 60
gcd(60,3)

= 20 =

60
gcd(60,21)

= o(21) = c′ and r = o(5+ 〈3〉) = gcd(60,3)
gcd(60,3,5)

= 3. From Lemma 1.2.2, since

15 = 3(5) = rb = λG(a, b)a = λG(a, b)3

for some λG(a, b) ∈ {0, 1, . . . , 19 = c− 1}, λG(a, b) = 5. Thus,

rb′ = 3(55) = 165 = 45 = 105 = 5(21) = λG(a, b)a′.

This shows that CZ60(3, 5) is isomorphic to CZ60(21, 55).

Example 2.2.6. Let a = a′ = 2, b = 9, b′ = 15 be in G = Z42. Then o(b′) =

o(15) = 42
gcd(42,15)

= 14 = 42
gcd(42,9)

= o(9) = o(b) < c = c′ = o(2) = 42
gcd(42,2)

= 21

and r = o(9 + 〈2〉) = gcd(42,2)
gcd(42,2,9)

= 2. From Lemma 1.2.2, since

18 = 2(9) = rb = λG(a, b)a = λG(a, b)2

for some λG(a, b) ∈ {0, 1, . . . , 20 = c− 1}, λG(a, b) = 9. Thus,

rb′ = 2(15) = 30 6= ±18 = 9(2) = ±λG(a, b)a′.

This shows that CZ42(2, 15) is not isomorphic to CZ42(2, 9).

Lemma 2.2.7. Let G be a cyclic group such that a, a′, b, b′ ∈ G r {0} with a 6= ±b

and a′ 6= ±b′.

(1) o(b′) = o(b) < c = c′ and rb′ = ±λG(a, b)a′ if and only if o(b) < c and
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(a′, b′) ∈ {(ka, lb) :1 ≤ k ≤ o(a), gcd(k, o(a)) = 1,

1 ≤ l ≤ o(b), gcd(l, o(b)) = 1 and k ≡ ±l mod h}.

(2) o(b′) = o(b) = c = c′ and either rb′ = ±λG(a, b)a′ or ra′ = ±λG(a, b)b′ if and

only if o(b) = c and either

(a′, b′) ∈ {(ka, lb) :1 ≤ k ≤ o(a), gcd(k, o(a)) = 1,

1 ≤ l ≤ o(b), gcd(l, o(b)) = 1 and k ≡ ±l mod h} or

(a′, b′) ∈ {(l′b, k′a) : 1 ≤ k′ ≤ o(a), gcd(k′, o(a)) = 1,

1 ≤ l′ ≤ o(b), gcd(l′, o(b)) = 1 and k′ ≡ ±l′ mod h}.

Here, h = o(b)
o(b+〈a〉) , r = o(b + 〈a〉), c = o(a), c′ = o(a′) and λG(a, b) is the column-

jump of MG(a, b).

Proof. (1) Assume o(b) = o(b′) < o(a) = c = c′ = o(a′) and rb′ = ±λG(a, b)a′.

From Proposition 2.2.1, we have a′ = ka and b′ = lb where 1 ≤ k ≤ o(a), gcd(k, o(a)) =

1, 1 ≤ l ≤ o(b) and gcd(l, o(b)) = 1. Then

rlb = rb′ = ±λG(a, b)a′ = ±λG(a, b)ka = ±rkb.

So (k± l)rb = 0, which implies o(b) divides (k± l)r = (k ± l)o(b + 〈a〉). Since

o(b)(b + 〈a〉) = o(b)b + 〈a〉 = 〈a〉, o(b + 〈a〉) | o(b). Thus, h = o(b)
o(b+〈a〉) divides

k ± l, hence k ≡ ±l mod h.

Conversely, assume that o(b) < c and (a′, b′) ∈ {(ka, lb) : 1 ≤ k ≤ o(a),

gcd(k, o(a)) = 1, 1 ≤ l ≤ o(b), gcd(l, o(b)) = 1 and k ≡ ±l mod h}. By

Proposition 2.2.1, o(b) = o(b′) < o(a) = c = c′ = o(a′). Since k ≡ ±l

mod h = o(b)
o(b+〈a〉) , o(b) divides (k± l)o(b + 〈a〉) = (k± l)r. That is, krb± lrb =

(k ± l)rb = 0 implies rlb = ±rkb. From Lemma 1.2.2, we have

rb′ = rlb = ±rkb = ±λG(a, b)ka = ±λG(a, b)a′.

(2) Assume o(b′) = o(b) = c = o(a) = o(a′) = c′ and either rb′ = ±λG(a, b))a′

or ra′ = ±λG(a, b)b′. By Proposition 2.2.1, a′ = l′b and b′ = k′a where
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1 ≤ k′ ≤ o(a), gcd(k′, o(a)) = 1, 1 ≤ l′ ≤ o(b) and gcd(l′, o(b)) = 1. Clearly, if

rb′ = ±λG(a, b)a′, then (a′, b′) ∈ {(ka, lb) : 1 ≤ k ≤ o(a), gcd(k, o(a)) = 1, 1 ≤

l ≤ o(b), gcd(l, o(b)) = 1 and k ≡ ±l mod h}. Suppose ra′ = ±λG(a, b)b′.

From

rl′b = ra′ = ±λG(a, b)b′ = ±λG(a, b)k′a = ±rk′b,

so k′ ≡ ±l′ mod h.

On the contrary, suppose that o(b) = c and either (a′, b′) ∈ {(ka, lb) : 1 ≤

k ≤ o(a), gcd(k, o(a)) = 1, 1 ≤ l ≤ o(b), gcd(l, o(b)) = 1 and k ≡ ±l

mod h} or (a′, b′) ∈ {(l′b, k′a) : 1 ≤ k′ ≤ o(a), gcd(k′, o(a)) = 1, 1 ≤ l′ ≤

o(b), gcd(l′, o(b)) = 1 and k′ ≡ ±l′ mod h}. By Proposition 2.2.1, o(b′) =

o(b) = c = o(a) = o(a′) = c′. Clearly, if (a′, b′) ∈ {(ka, lb) : 1 ≤ k ≤

o(a), gcd(k, o(a)) = 1, 1 ≤ l ≤ o(b), gcd(l, o(b)) = 1 and k ≡ ±l mod h}, then

rb′ = ±λG(a, b)a′. Suppose (a′, b′) ∈ {(l′b, k′a) : 1 ≤ k′ ≤ o(a), gcd(k′, o(a)) =

1, 1 ≤ l′ ≤ o(b), gcd(l′, o(b)) = 1 and k′ ≡ ±l′ mod h}. Then

ra′ = rl′b = ±rk′b = ±λG(a, b)k′a = ±λG(a, b)b′.

This completes the proof.

Next, we use Corollary 2.2.3 and Lemma 2.2.7 to derive classes of isomorphic

graphs. The results have necessary and sufficient conditions which not depends

on λG(a, b) in the next theorem. It is equivalent to Theorem 5.2 of [2] but our

presentation is simpler.

Theorem 2.2.8. Let G be a cyclic group such that a, a′, b, b′ ∈ G r {0} with

a 6= ±b, a′ 6= ±b′, o(b) ≤ o(a) and o(b′) ≤ o(a′). Then CG(a, b) and CG(a′, b′) are

isomorphic if and only if either one of the following two conditions holds:

(1) o(b) < c and

(a′, b′) ∈ {(ka, lb) :1 ≤ k ≤ o(a), gcd(k, o(a)) = 1,

1 ≤ l ≤ o(b), gcd(l, o(b)) = 1 and k ≡ ±l mod h};
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(2) o(b) = c and either

(a′, b′) ∈ {(ka, lb) :1 ≤ k ≤ o(a), gcd(k, o(a)) = 1,

1 ≤ l ≤ o(b), gcd(l, o(b)) = 1 and k ≡ ±l mod h} or

(a′, b′) ∈ {(l′b, k′a) : 1 ≤ k′ ≤ o(a), gcd(k′, o(a)) = 1,

1 ≤ l′ ≤ o(b), gcd(l′, o(b)) = 1 and k′ ≡ ±l′ mod h},

where c = o(a) and h = o(b)
o(b+〈a〉) .

Example 2.2.9. CZ42(a
′, b′) is isomorphic to CZ42(2, 9) if and only if (a′, b′) ∈

{(2k, 9l) : 1 ≤ k ≤ 21, gcd(k, 21) = 1, 1 ≤ l ≤ 14, gcd(l, 14) = 1 and k ≡ ±l

mod h}, where h = o(b)
r

= 14
2

= 7. Then k ∈ {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}

and l ∈ {1, 3, 5, 9, 11, 13}. Since

{(k, l) : k ≡ ±l mod 7} = {(1, 1), (1, 13), (2, 5), (2, 9), (4, 3), (4, 11), (5, 5), (5, 9)

(8, 1), (8, 13), (10, 3), (10, 11), (11, 3), (11, 11), (13, 1),

(13, 13), (16, 5), (16, 9), (17, 3), (17, 11), (19, 5), (19, 9),

(20, 1), (20, 13)},

we have

(a′, b′) ∈ {(2, 9), (2, 33), (4, 3), (4, 39), (8, 27), (8, 15), (10, 3),

(10, 39), (16, 9), (16, 33), (20, 27), (20, 15), (22, 27),

(22, 15), (26, 9), (26, 33), (32, 3), (32, 39), (34, 27),

(34, 15), (38, 3), (38, 39), (40, 9), (40, 33)}.



CHAPTER III

VERTEX COLORING

In this chapter, we give some results on chromatic numbers of CG(a, b) and explicit

vertex coloring schemes from the algorithms presented in [3]. The conclusion is

recorded in tables in Section 3.4.

3.1 Elementary results

Let G be a finite abelian group such that G 6= {0} and a, b ∈ G r {0} with

a 6= ±b and o(b) ≤ o(a). In this chapter, we shall study the algorithms in [3] to

give an explicit assignment of colors to the vertices of graph CG(a, b) such that

adjacent vertices receive different colors and the number of colors is minimized.

Since each connected componets of CG(a, b) is isomorphic to CH(a, b) where H =

〈a, b〉, we just consider the assignment on the vertices of graph CH(a, b) by using the

representative matrix MG(a, b). Recall that MG(a, b) is defined on r = o(b + 〈a〉)

rows and c = o(a) columns and it can be partitioned into h = c
o(a+〈b〉) blocks,

each block is equally sized r× o(a + 〈b〉) submatrices and let λ denotes λG(a, b) ∈

{0, 1, . . . , c− 1} such that rb = λa.

A k-coloring of a graph G is an assignment of k colors to the vertices of G. It

is feasible if adjacent vertices receive different colors. A graph G is k-colorable if it

has a feasible k-coloring. The chromatic number χ(G) is the smallest k such that

G is k-colorable.

The representative matrix MG(a, b) for the graph CH(a, b) is as follows

0 . . . . . . . . . (λ − 1)a λa . . . (c − 1)a

..

.

...

(r − 1)b . . . (r − 1)b + (c − λ − 1)a (r − 1)b + (c − λ)a . . . . . . . . . (r − 1)b + (c − 1)a
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As for the a-edges of MG(a, b), we distinguish into two types: A0 = {{ib +

ja, ib + (j + 1)a} : 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ c − 2}, which contains ordinary a-

edges connecting consecutive entries in the same row and A1 = {{ib, ib+(c−1)a} :

0 ≤ i ≤ r − 1}, which contains boundary a-edges connecting an entry of the last

column with an entry of the first column in the same row. As for the b-edges, we

distinguish into three types: B0 = {{ib + ja, (i + 1)b + ja} : 0 ≤ i ≤ r− 2 and 0 ≤

j ≤ c − 1}, which contains ordinary b-edges connecting consecutive entries in the

same column and B1 = {{(r − 1)b + ja, (λ + j)a} : 0 ≤ j ≤ c − λ − 1} and

B2 = {{(r − 1)b + (c − λ + j)a, ja} : 0 ≤ j ≤ λ − 1}. We can use the fact

that rb = λa to prove that B1 and B2 contain boundary b-edges connecting an

entry of the last row with an entry of the first row of MG(a, b). Throughout the

whole chapter, we denote by B, W, R, G the colors black, white, red and green

respectively.

The coloring some entries of MG(a, b) according to the BW -schema, we mean

the assignment BW : H → {B, W} such that

BW (ib + ja) =

B, if i + j is even;

W, if i + j is odd,

for all i ∈ {0, 1, . . . , r − 1} and j ∈ {0, 1, . . . , c − 1}, while the WB-schema, we

mean the assignment WB : H → {B, W} such that

WB(ib + ja) =

W, if i + j is even;

B, if i + j is odd,

for all i ∈ {0, 1, . . . , r − 1} and j ∈ {0, 1, . . . , c− 1}.

Next, we shall describe the vertex coloring algorithm for the graph CH(a, b).

These colorings are usually given as elements of the free monoid generated by
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{B, W, R, G}, for instance,

B(WB)kWB =


B WB . . .WB︸ ︷︷ ︸

k copies of WB

WB, if k ≥ 1;

BWB, if k = 0,

and we write B for B(WB)−1WB. In addition, when we write these elements in

a column, we shall mean we color vertically.

Let the chessboard coloring of MG(a, b) denoted by C2, be a 2-coloring of

MG(a, b) for which we color all its entries according to the BW -schema. The

block chessboard coloring, denoted by BC2, is a 2-coloring for which we color each

block β0, . . . , βh−1 of MG(a, b) like a chessboard, in such a way that the upper left

corner of each block has always the same color (B or W does not matter).

When we assign C2 on MG(a, b), we just consider coloring feasibility for three

sets of boundary edges, namely, A1, B1 and B2.

A criterian for 2-colorable is given in the next theorem.

Theorem 3.1.1. Let a, b ∈ G r {0} and H = 〈a, b〉. Then χ(CH(a, b)) = 2 if and

only if r + λ and c are both even.

Proof. Assume r + λ and c are both even.

Case 1. r and λ are even. Then c−λ is even. When we assign color to all entries

of MG(a, b) according to the C2, we have

B (WB)
λ
2 −1 W B (WB)

c−λ
2 −1 W

(WB)
r
2−1 (BW )

r
2−1

W (BW )
c−λ

2 −1 B W (BW )
λ
2 −1 B

We see that A1, B1 and B2 are feasible. The coloring completes.

Case 2. r and λ are odd. Then c− λ is odd. When we assign color to all entries

of MG(a, b) according to the C2, we have

B (WB)
λ−3

2 W B W (BW )
c−λ−3

2 B W

(WB)
r−3
2 W (BW )

r−3
2 B

B (WB)
c−λ−3

2 W B W (BW )
λ−3

2 B W
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We see that A1, B1 and B2 are feasible. The coloring completes.

So C2 is a vertex coloring for r + λ and c are both even. Hence χ(CH(a, b)) = 2.

Conversely, assume that χ(CH(a, b)) = 2. Then CH(a, b) is bipartite. Recall

that a graph is bipartite if and only if there is no odd cycle. So {(r − 1)b, (r −

2)b, . . . , b, 0, a, 2a, . . . , λa} and {0, a, 2a, . . . , (c− 1)a} are even cycles. Hence r + λ

and c are both even.

We give a example to demonstrate the above theorem.

Example 3.1.2. Consider the graph CZ2×Z6((1, 2), (0, 3)) in Example 1.2.7.

(0, 0) (1, 2) (0, 4) (1, 0) (0, 2) (1, 4)

(0, 3) (1, 5) (0, 1) (1, 3) (0, 5) (1, 1)

Since r +λ = 2+0 = 2 and c = 6 are even, by Case 1, we have the vertex coloring

for CZ2×Z6((1, 2), (0, 3)) in the following table.

B W B W B W

W B W B W B

Lemma 3.1.3. Let a, b ∈ G r {0} with b ∈ 〈a〉. Then there exists 2 ≤ λ ≤ c
2

such

that CH(a, b) ' CH(a, λa) where H = 〈a〉.

Proof. Assume b ∈ 〈a〉. Then r = o(b + 〈a〉) = 1 and H = 〈a, b〉 = 〈a〉. By

Lemma 1.2.2, since b 6= 0 and a 6= ±b, we have b = λa for some 2 ≤ λ ≤ c − 2.

Thus CH(a, b) ' CH(a, λa). By trivially isomorphic, CH(a, λa) ' CH(a,−λa) '

CH(a, (c− λ)a). If 2 | c, then CH(a, b) ' CH(a, λa) for some 2 ≤ λ ≤ c
2
, otherwise

CH(a, b) ' CH(a, λa) for some 2 ≤ λ ≤ c−1
2

. Hence CH(a, b) ' CH(a, λa) for some

2 ≤ λ ≤ c
2
.

From the above lemma, we now focus on 2 ≤ λ ≤ c
2

for CH(a, b) with b = λa.

Lemma 3.1.4. If c is odd, then CH(a, 2a) ' CH(a, ( c−1
2

)a).

Proof. Assume that c is odd. Since c− 2( c−1
2

) = 1, gcd( c−1
2

, c) = 1. Thus,

o(2a) =
o(a)

gcd(2, o(a))
=

c

gcd(2, c)
=

c

1
= c



28

and

o
(
(
c− 1

2
)a

)
=

o(a)

gcd( c−1
2

, o(a))
=

c

gcd( c−1
2

, c)
=

c

1
= c.

Clearly, r = o(2a + 〈a〉) = 1 = o
(
( c−1

2
)a + 〈a〉

)
= r′. From Lemma 1.2.2,

λG(a, 2a) = 2. Since o(2a) = o(( c−1
2

)a) = o(a) = c and ra = −λG(a, 2a)( c−1
2

)a, we

have CH(a, 2a) ' CH(a, ( c−1
2

)a) by Corollary 2.1.3.

Lemma 3.1.5 (Theorem 4.1 of [3]). Let G be a cyclic group such that a, b ∈

Gr{0} and a 6= ±b. Consider the graph CH(a, b) such that either (a /∈ 〈b〉∧b /∈ 〈a〉)

or (a ∈ 〈b〉 ∨ b ∈ 〈a〉). Then

χ(CH(a, b)) =



2, if |H| even a, b odd;

5, if |H| = 5;

4, if |H| = 13, a = 1, b = 5 or |H| 6= 5, 3 - |H|, a = 1, b ∈ {2, |H|−1
2
};

3, otherwise.

Lemma 3.1.6. Let G be a cyclic group such that a, b ∈ G r {0} with a 6= ±b and

o(b) ≤ o(a). Consider the graph CH(a, b) such that either b /∈ 〈a〉 or b = λa with

2 ≤ λ ≤ c
2
. Then

χ(CH(a, b)) =



2, if r + λ and c are even;

5, if r = 1 and c = 5;

4, if r = 1, c = 13, λ = 5 or r = 1, c 6= 5, 3 - c, λ ∈ {2, c−1
2
};

3, otherwise.

Proof. Since r = o(b+ 〈a〉) ≤ o(b) and o(b) ≤ o(a) = c, we have r ≤ c. The lemma

obtains directly from Lemma 3.1.5 and the fact that |H| = rc and r ≤ c.

We shall apply the above lemmas in the following sections.



29

3.2 The case b ∈ 〈a〉

We study the vertex coloring for CH(a, b) when b ∈ 〈a〉 in this section.

Theorem 3.2.1. Let a, b ∈ G r {0} and a 6= ±b be such that b = λa with

2 ≤ λ ≤ c
2
. If λ is even or c is odd, then

χ(CH(a, b)) =


5, if c = 5;

4, if c = 13, λ = 5 or c 6= 5, 3 - c, λ ∈ {2, c−1
2
};

3, otherwise.

Proof. Assume λ is even or c is odd. By Theorem 3.1.1, since r = o(b + 〈a〉) =

o(λa + 〈a〉) = 1, χ(CH(a, b)) > 2. Then CH(a, b) ' CH(a, λa) where H = 〈a, b〉 =

〈a〉 is a cyclic group. We obtain the chromatic number of CH(a, b) from Lemma

3.1.6.

Let S(a, λa) be the pseudo-matrix of the graph CH(a, λa), which will be used

to assign the vertex coloring for CH(a, λa). It can be defined as the following

pseudo-matrix.

0 a . . . (l − 1)a la . . . (λ− 1)a

λa (λ + 1)a . . . (λ + l − 1)a (λ + l)a . . . (2λ− 1)a

2λa (2λ + 1)a . . . (2λ + l − 1)a (2λ + l)a . . . (3λ− 1)a
...

...
. . .

...
...

. . .
...

(q − 1)λa ((q − 1)λ + 1)a . . . ((q − 1)λ + l − 1)a ((q − 1)λ + l)a . . . (qλ− 1)a

qλa (qλ + 1)a . . . (qλ + l − 1)a

From the above pseudo-matrix, S(a, λa) has q + 1 rows where q ≥ 1 and λ

columns, the number of its entries is c = qλ + l where 1 ≤ l ≤ λ. The last row of

S(a, λa) is full if l = λ, otherwise it contains l = c− qλ < λ entries.

0 . . . . . . . . . (λ− l − 1)a (λ− l)a . . . (λ− 1)a

λa (2λ− 1)a
...

...

(q − 1)λa . . . . . . ((q − 1)λ + l)a . . . . . . . . . (qλ− 1)a

qλa . . . (qλ + l − 1)a
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We distinguish the a-edges of S(a, λa) into three types: A0 = {{(iλ+ j)a, (iλ+

(j + 1))a} : 0 ≤ i ≤ q and 0 ≤ j ≤ λ − 2}, which contains ordinary a-edges

connecting consecutive entries in the same row while A1 = {{0, (qλ + l − 1)a}}

and A2 = {{iλa, (iλ − 1)a} : 1 ≤ i ≤ q}, which contain boundary a-edges. On

the other hand, we distinguish the b-edges of S(a, λa) into three types: B0 =

{{(iλ + j)a, ((i + 1)λ + j)a} : 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ λ − 1}, which contains

ordinary b-edges connecting consecutive entries in the same column while B1 =

{{(qλ+(l+j−λ))a, ja} : λ− l ≤ j ≤ λ−1} and B2 = {{((q−1)λ+(l+j))a, ja} :

0 ≤ j ≤ λ− l − 1}, which contain boundary b-edges.

The coloring some entries of S(a, λa) according to the BW -schema, we mean

the assignment BW : 〈a〉 → {B, W} such that

BW ((iλ + j)a) =

B, if i + j is even;

W, if i + j is odd,

for all i ∈ {0, 1, . . . , q} and j ∈ {0, 1, . . . , λ− 1}, while the WB-schema, we mean

the assignment WB : 〈a〉 → {B, W} such that

WB((iλ + j)a) =

W, if i + j is even;

B, if i + j is odd,

for all i ∈ {0, 1, . . . , q} and j ∈ {0, 1, . . . , λ − 1}. Let the chessboard coloring

of S(a, λa), denoted by C2, be a 2-coloring of S(a, λa) for which we color all

its entries according to the BW -schema. The corner complemented chessboard

coloring, denoted by C4, is a 2-coloring such that color entries 0, a, λa of S(a, λa)

according to the WB-schema and color the remaining entries according to the

BW -schema.
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0 a

λa

W B

B

BW -schema

In addition, the coloring some entries of S(a, λa) according to the BWR-schema,

we mean the assignment BWR : 〈a〉 → {B, W, R} such that

BWR(ja) =


B, if j ≡ 0 mod 3;

W, if j ≡ 1 mod 3;

R, if j ≡ 2 mod 3,

for all j ∈ {0, 1, . . . , c−1}. The BWRG-schema is the assignment BWRG : 〈a〉 →

{B, W, R, G} such that

BWRG(ja) =



B, if j ≡ 0 mod 4;

W, if j ≡ 1 mod 4;

R, if j ≡ 2 mod 4;

G, if j ≡ 3 mod 4,

for all j ∈ {0, 1, . . . , c− 1}.

Case 1. c = 5. Since 2 ≤ λ ≤ c
2
, λ = 2, so we have only one graph CH(a, 2a), which

isomorphic to K5, the complete graph on five vertices. The coloring of its

vertices consists of assigning a different color to each vertex.
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Case 2. c = 13 and λ = 5. Since c = 2λ + 3, S(a, λa) has q + 1 = 3 rows and λ = 5

columns. The last row contains l = 3 entries.

0 a 2a 3a 4a

5a 6a 7a 8a 9a

10a 11a 12a

Assign color according to the BWR-schema to entries 0, a, . . . , 11a as shown.

B W R B W

R B W R B

W R

Since {11a, 12a} ∈ A0, {12a, 0} ∈ A1 and {7a, 12a} ∈ B0, we assign the cell

12a in different color from R,B and W . Pick the color G for 12a.

B W R B W

R B W R B

W R G

Case 3. c 6= 5 and λ ∈ {2, c−1
2
}. By Theorem 3.2.1, χ(CH(a, λa)) = 4 if 3 - c

and χ(CH(a, λa)) = 3 if 3 | c. From Lemma 3.1.4, we have the fact that

CH(a, 2a) ' CH(a, ( c−1
2

)a) when c is odd. It suffices to verify the coloring

algorithm for CH(a, 2a) only.

3.1 Assume that 3 | c. Then c = 6k − 3 or 6k for some k ∈ N.

3.1.1 c = 6k − 3. Since c = (3k − 2)λ + 1, S(a, 2a) has q + 1 = 3k − 1

rows and λ = 2 columns. The last row contains l = 1 entry.

0 a

2a 3a

4a 5a

...
...

(6k − 6)a (6k − 5)a

(6k − 4)a

Assign color to all entries of S(a, 2a) according to the BWR-schema.

Since 6k − 6 ≡ 0 mod 3, BWR((6k − 6)a) = B.
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B W

R B

W R

(BRW )k−2 (WBR)k−2

B W

R

3.1.2 c = 6k. Since c = (3k − 1)λ + 2, then S(a, 2a) has q + 1 = 3k rows

and λ = 2 columns. Since l = λ = 2, the last row of S(a, 2a) is full.

0 a

2a 3a

4a 5a

...
...

(6k − 4)a (6k − 3)a

(6k − 2)a (6k − 1)a

Assign color to all entries of S(a, 2a) according to the BWR-schema.

Since 6k − 4 ≡ 2 mod 3, BWR((6k − 4)a) = R as follows.

B W

R B

W R

(BRW )k−2B (WBR)k−2W

R B

W R

3.2 Assume that 3 - c and c ≡ 0 or 3 mod 4. Then

c =

6k − 2 if k is odd;

6k − 4, 6k − 5, 6k − 1 if k is even.

3.2.1 c = 6k − 1 and k is even. Since c = (3k − 1)λ + 1, S(a, 2a) has

q + 1 = 3k rows and λ = 2 columns. The last row contains l = 1

entry.
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0 a

2a 3a

4a 5a

6a 7a

...
...

(6k − 4)a (6k − 3)a

(6k − 2)a

Assign color to all entries of S(a, 2a) according to the BWRG-

schema. Since k is even, k = 2n for some n ∈ N. Then 6k − 4 ≡
12n− 4 ≡ 0 mod 4, so BWRG((6k − 4)a) = B.

B W

R G

B W

R G

(BR)
3k
2 −3 (WG)

3k
2 −3

B W

R

The same argument proves the case c = 6k − 5 and k is even.

3.2.2 6k−2 and k is odd. Since c = (3k−2)λ+2, S(a, 2a) has q+1 = 3k−1

rows and λ = 2 columns. Since l = λ = 2, the last row of S(a, 2a)

is full.

0 a

2a 3a

4a 5a

6a 7a

...
...

(6k − 6)a (6k − 5)a

(6k − 4)a (6k − 3)a

Assign color to all entries of S(a, 2a) according to the BWRG-

schema. Since k is odd, k = 2n + 1 for some n ∈ N. Then 6k− 6 ≡
12n ≡ 0 mod 4, so BWRG((6k − 6)a) = B.
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B W

R G

B W

R G

(BR)
3k−7

2 (WG)
3k−7

2

B W

R G

Similarly, we have the case c = 6k − 4 and k is even.

3.3 Assume that 3 - c and c ≡ 1 mod 4. Then c = 6k − 5 or 6k − 1 where

k is odd. Consider the first case c = 6k − 1. Since c = (3k − 1)λ + 1,

S(a, 2a) has q + 1 = 3k rows and λ = 2 columns. The last row contains

l = 1 entry.

0 a

2a 3a

4a 5a

6a 7a

...
...

(6k − 8)a (6k − 7)a

(6k − 6)a (6k − 5)a

(6k − 4)a (6k − 3)a

(6k − 2)a

Assign color according to the BWRG-schema to entries 0, a, . . . , (c −
6)a = (6k − 7)a. Since k is odd, k = 2n + 1 for some n ∈ N. Then

6k − 8 ≡ 12n− 2 ≡ 2 mod 4, so BWRG((6k − 8)a) = R.

B W

R G

B W

R G

(BR)
3k−9

2 B (WG)
3k−9

2 W

R G
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Since {(6k − 2)a, 0} ∈ A1 and {(6k − 2)a, a} ∈ B1, we assign the cell

(6k−2)a in different color from B and W . Pick the color R for (6k−2)a.

B W

R G

B W

R G

(BR)
3k−9

2 B (WG)
3k−9

2 W

R G

R

Since {(6k − 3)a, (6k − 2)a} ∈ A0 and {(6k − 3)a, 0} ∈ B2, we assign

the cell (6k − 3)a in different color from R and B. We can assign color

W to (6k − 3)a.

B W

R G

B W

R G

(BR)
3k−9

2 B (WG)
3k−9

2 W

R G

W

R

For the last three entries, we assign colors W, R, G to entries (6k −
6)a, (6k − 5)a, (6k − 4)a respectively. This leads to the following table.

B W

R G

B W

R G

(BR)
3k−9

2 B (WG)
3k−9

2 W

R G

W R

G W

R
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A similar argument proves the case c = 6k − 5 and k is odd.

3.4 Assume that 3 - c and c ≡ 2 mod 4. Then

c =

6k − 4, if k is odd;

6k − 2, if k is even.

Consider the first case c = 6k−2 where k is even. Since c = (3k−2)λ+2,

S(a, 2a) has q + 1 = 3k − 1 rows and λ = 2 columns. Since l = λ = 2,

the last row of S(a, 2a) is full.

0 a

2a 3a

4a 5a

6a 7a

...
...

(6k − 6)a (6k − 5)a

(6k − 4)a (6k − 3)a

Assign color according to the BWRG-schema to entries 0, a, . . . , (c −
3)a = (6k − 5)a. Since k is even, k = 2n for some n ∈ N. Then

6k − 6 ≡ 12n− 6 ≡ 2 mod 4, so BWRG((6k − 6)a) = R.

B W

R G

B W

R G

(BR)
3k−7

2 B (WG)
3k−7

2 W

R G

Since {(6k − 5)a, (6k − 4)a} ∈ A0, {(6k − 6)a, (6k − 4)a} ∈ B0 and

{(6k − 4)a, 0} ∈ B1, we assign the cell (6k − 4)a in different color from

G, R and B. Pick the color W for (6k − 4)a.
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B W

R G

B W

R G

(BR)
3k−7

2 B (WG)
3k−7

2 W

R G

W

Since {(6k − 4)a, (6k − 3)a} ∈ A0, {(6k − 5)a, (6k − 3)a} ∈ B0, {(6k −
3)a, 0} ∈ A1 and {(6k − 3)a, a} ∈ B2, we assign the cell (6k − 3)a in

different color from W, G and B. Pick the color R for (6k − 3)a. This

leads to the following table.

B W

R G

B W

R G

(BR)
3k−7

2 B (WG)
3k−7

2 W

R G

W R

Similarly, we have the case c = 6k − 4 and k is odd.

Case 4. 2 < λ ≤ c
2

and λ 6= c−1
2

, except c = 13 and λ = 5. The vertex coloring

algorithm for this case, we use 2-phases method. In the first phase we start

by suitably coloring S(a, λa) with only colors B and W , such as C2, SbC2

and C4, which SbC2 shall be refered after Subcase 4.4. Certainly, since λ is

even or c is odd, the bipartite graphs are excluded from this case, that is, any

2-coloring has to be infeasible. In order to remove infeasibilities we proceed

with the second phase, where we suitably modify into R the color of one

entry of each infeasible edge, which we shall consider from boundary edges

A1, A2, B1 and B2 of S(a, λa) respectively, which these coloring is not make

a and b-edges become infeasible. Thus, we have the approach for CH(a, λa)’s

with 2 < λ ≤ c
2

as folows.
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0 . . . (λ− l − 1)a (λ− l)a . . . (λ− 1)a

λa
...

...

((q − 1)λ + l)a . . . (qλ− 1)a

qλa . . . (qλ + l − 1)a

4.1 Assume that q, λ and l are even. Then λ− l is even.

Phase 1: Assign color to all entries of S(a, λa) according to the C2.

B (WB)
λ−l
2 −1 W B (WB)

l
2−1 W

W (BW )
q
2−1

(BW )
q
2−1

W (BW )
λ−l
2 −1 B

B (WB)
l
2−1 W

We see that A1 is feasible.

Phase 2: Since A2 is infeasible, we can modify by changing B to R in

its left column and W to R in its right column.

B (WB)
λ−l
2 −1 W B (WB)

l
2−1 R

W (BR)
q
2−1

(RW )
q
2−1

W (BW )
λ−l
2 −1 B

R (WB)
l
2−1 W

Since B1 is infeasible and {qλa, (qλ+1)a} ∈ A0 where qλa has color R,

we can modify by changing B to R in its bottom row and W to R in

its top row.

B (WB)
λ−l
2 −1 W B (RB)

l
2−1 R

W (BR)
q
2−1

(RW )
q
2−1

W (BW )
λ−l
2 −1 B

R (WR)
l
2−1 W

We see that B2 is feasible. The coloring completes.

4.2 Assume that q is odd and λ, l are even. Then λ− l is even.

Phase 1: Assign color to all entries of S(a, λa) according to the C2.
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B (WB)
λ−l
2 −1 W B (WB)

l
2−1 W

W (BW )
q−3
2 B

(BW )
q−3
2 B

B (WB)
λ−l
2 −1 W

W (BW )
l
2−1 B

Phase 2: Since A1 is infeasible, we modify the cell 0 into R.

R (WB)
λ−l
2 −1 W B (WB)

l
2−1 W

W (BW )
q−3
2 B

(BW )
q−3
2 B

B (WB)
λ−l
2 −1 W

W (BW )
l
2−1 B

Since A2 is infeasible and {0, λa} ∈ B0 where 0 has color R, we can

modify by changing B to R in its left column and W to R in its right

column.

R (WB)
λ−l
2 −1 W B (WB)

l
2−1 R

W (BR)
q−3
2 B

(RW )
q−3
2 R

B (WB)
λ−l
2 −1 R

W (BW )
l
2−1 B

We see that B1 is feasible. Since some B2 is infeasible and {0, a} ∈ A0

where 0 has color R, we can modify by changing B to R in its top row

and W to R in its bottom row.

R (WR)
λ−l
2 −1 W B (WB)

l
2−1 R

W (BR)
q−3
2 B

(RW )
q−3
2 R

B (RB)
λ−l
2 −1 R

W (BW )
l
2−1 B

The coloring completes.

4.3 Assume that q is odd and λ is even and l is odd. Then λ− l is odd.

Phase 1: Assign color to all entries of S(a, λa) according to the C2.
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B (WB)
λ−l−3

2 W B W (BW )
l−3
2 B W

W (BW )
q−3
2 B

(BW )
q−3
2 B

W (BW )
λ−l−3

2 B W

W (BW )
l−3
2 B W

We see that A1 is feasible.

Phase 2: Since A2 is infeasible, we can modify by changing W to R in

its left column and B to R in its right column.

B (WB)
λ−l−3

2 W B W (BW )
l−3
2 B W

R (RW )
q−3
2 R

(BR)
q−3
2 B

W (BW )
λ−l−3

2 B W

R (BW )
l−3
2 B W

Since some B1 is infeasible and {qλa, (qλ + 1)a} ∈ A0 where qλa has

color R, we can modify by changing W to R in its bottom row and B

to R in its top row.

B (WB)
λ−l−3

2 W B W (RW )
l−3
2 R W

R (RW )
q−3
2 R

(BR)
q−3
2 B

W (BW )
λ−l−3

2 B W

R (BR)
l−3
2 B R

We see that B2 is feasible. The coloring completes.

4.4 Assume that q, λ are odd and l is even. Then λ− l is odd.

Phase 1: Assign color to all entries of S(a, λa) according to the C2.

B (WB)
λ−l−3

2 W B W (BW )
l
2−1 B

W (WB)
q−3
2 W

(BW )
q−3
2 B

B (WB)
λ−l−3

2 W B

W (BW )
l
2−1 B

Phase 2: Since A1 is infeasible, we modify the cell 0 into R.
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R (WB)
λ−l−3

2 W B W (BW )
l
2−1 B

W (WB)
q−3
2 W

(BW )
q−3
2 B

B (WB)
λ−l−3

2 W B

W (BW )
l
2−1 B

We see that A2 is feasible. Since B1 is infeasible and {(qλ+ l−1)a, 0} ∈
A1 where 0 has color R, we can modify by changing W to R in its

bottom row and B to R in its top row.

R (WB)
λ−l−3

2 W B W (RW )
l
2−1 R

W (WB)
q−3
2 W

(BW )
q−3
2 B

B (WB)
λ−l−3

2 W B

R (BR)
l
2−1 B

Since some B2 is infeasible and {0, a} ∈ A0 where 0 has color R, we can

modify by changing B to R in its top row and W to R in its bottom

row.

R (WR)
λ−l−3

2 W R W (RW )
l
2−1 R

W (WB)
q−3
2 W

(BW )
q−3
2 B

B (RB)
λ−l−3

2 R B

R (BR)
l
2−1 B

The coloring completes.

In some condition on q, λ and l, the C2 may not be suitable for coloring

of S(a, λa) in Phase 1. We have necessity to introduce the another one

namely S-block chessboard coloring, denoted SbC2. It will be useful for vertex

coloring in Subcases 4.5.2.2 and 4.6.2. S-block sizes and coloring schema

depend on q = 2 and some condition on λ, l.

1 If 2 ≤ l < λ
2

and l is odd, then color the S-block of the first l + (λ

mod l) columns of S(a, λa) according to the BW -schema and partition

the remaining columns into S-blocks of consecutive l columns.

l columns . . . l columns

l + (λ mod l) columns
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1.1 If (λ mod l) is even, then we assign color each S-block according

to the BW -schema.

BW -schema . . . BW -schema

BW -schema

1.2 If (λ mod l) is odd, then we assign color each S-block according

to the WB-schema.

WB-schema . . . WB-schema

BW -schema

2 If λ and l are odd and λ
2

< l < λ, then color the S-block of the first

l − 1 columns of S(a, λa) according to the BW -schema and color the

remaining columns according to the WB-schema.

λ− l + 1 columns

l − 1 columns

WB-schema

BW -schema

4.5 Assume that q, λ are even and l is odd. Then λ− l is odd.

4.5.1 Assume that q > 2.

4.5.1.1 2 < l < λ.

Phase 1: Assign color to all entries of S(a, λa) according to the

C2.

B (WB)
λ−l−3

2 W B W (BW )
l−3
2 B W

W (BW )
q
2−1

(BW )
q
2−1

B (WB)
λ−l−3

2 W B

B (WB)
l−3
2 W B

Phase 2: Since A1 is infeasible, we modify the cell 0 into R.
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R (WB)
λ−l−3

2 W B W (BW )
l−3
2 B W

W (BW )
q
2−1

(BW )
q
2−1

B (WB)
λ−l−3

2 W B

B (WB)
l−3
2 W B

Since A2 is infeasible and {0, λa} ∈ B0 where 0 has color R, we can

modify by changing B to R in its left column and W to R in its

right column.

R (WB)
λ−l−3

2 W B W (BW )
l−3
2 B R

W (BR)
q
2−1

(RW )
q
2−1

B (WB)
λ−l−3

2 W B

R (WB)
l−3
2 W B

We see that B1 is feasible. Since some B2 is infeasible and {0, a} ∈

A0 where 0 has color R, we can modify by changing B to R in its

top row and W to R in its bottom row.

R (WR)
λ−l−3

2 W R W (BW )
l−3
2 B R

W (BR)
q
2−1

(RW )
q
2−1

B (RB)
λ−l−3

2 R B

R (WB)
l−3
2 W B

The coloring completes.

4.5.1.2 l = 1. Since W (BW )
l−3
2 BR = W (BW )−1BR = R and

R(WB)
l−3
2 WB = R(WB)−1WB = R and the above complete col-

oring, we have

R (WR)
λ
2 −2W R R

W (BR)
q
2−1

(RW )
q
2−1

B (RB)
λ
2 −2R B

R

Since {qλa, 0} ∈ A1 and those entries have the same color R, A1

is infeasible. This means, we cannot assign color to all entries of

S(a, λa) according to the C2 in Phase 1. So we renew these assign-

ing color according to C4.
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Phase 1: Assign color to all entries of S(a, λa) according to the

C4.

W B B (WB)
λ
2 −2 W

B B B

B (WB)
q
2−2W

(WB)
q
2−2W

B W (BW )
λ
2 −2 B

B

We see that A0 is feasible.

Phase 2: Since some A2 is infeasible, we can suitably modify by

changing B to R in its left column and W to R in its right column.

W B B (WB)
λ
2 −2 W

B B B

R (RB)
q
2−2R

(WR)
q
2−2W

B W (BW )
λ
2 −2 B

R

We see that B1 is feasible. Since some B2 is infeasible, we can

suitably modify by changing W to R in its bottom row and B to

R in its top row.

W B R (WR)
λ
2 −2 W

B B B

R (RB)
q
2−2R

(WR)
q
2−2W

B W (BR)
λ
2 −2 B

R

Since {λa, 2λa} ∈ B0 where 2λa has color R and {λa, (λ+1)a} ∈ A0

and those entries have the same color B. Pick the color R for

(λ + 1)a.

W B R (WR)
λ
2 −2 W

B R B

R (RB)
q
2−2R

(WR)
q
2−2W

B W (BR)
λ
2 −2 B

R
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The coloring completes.

4.5.2 Assume that q = 2. Since λ 6= c−1
2

, 2λ + l = qλ + l = c 6= 2λ + 1, so

l 6= 1.

4.5.2.1 λ
2
≤ l < λ. Since RW (RW )

q
2
−1R = RW (RW )0R = RWR and

R(BR)
q
2
−1B = R(BR)0B = RB with 4.5.1.1, we have

R (WR)
λ−l−3

2 W R W (BW )
l−3
2 B R

W (BW )
l−3
2 B W B (RB)

λ−l−3
2 R B

R (WB)
l−3
2 W B

These coloring is feasible for this case.

4.5.2.2 2 < l < λ
2
.

R (WR)
λ−l−3

2 W R W (BW )
l−3
2 B R

W (BW )
l−3
2 B W B (RB)

λ−l−3
2 R B

R (WB)
l−3
2 W B

Since there exists at least one consecutive entries in the same col-

umn have color R, the above coloring is infeasible. So we renew

these assigning color in Phase 1 according to the SbC2. Since λ is

even and l is odd, we have the following two cases.

(λ mod l) l columns lb
λ
l
c−2 columns l columns

columns

l columns (λ mod l) lb
λ
l
c−2 columns l columns

columns

l columns
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4.5.2.2.1 (λ mod l) is even. Then l + (λ mod l) is odd.

Phase 1: Assign color to all entries of S(a, λa) according to the SbC2.

B (WB)
λ mod l

2 −1 W B (WB)
l−3
2 W B [B(WB)

l−3
2 WB]b

λ
l c−2 B (WB)

l−3
2 W B

W (BW )
l−3
2 B W B (WB)

λ mod l
2 −1 W [W (BW )

l−3
2 BW ]b

λ
l c−2 W (BW )

l−3
2 B W

B (WB)
l−3
2 W B

Phase 2: Since A1 is infeasible, we modify the cell 0 into R.

R (WB)
λ mod l

2 −1 W B (WB)
l−3
2 W B [B(WB)

l−3
2 WB]b

λ
l c−2 B (WB)

l−3
2 W B

W (BW )
l−3
2 B W B (WB)

λ mod l
2 −1 W [W (BW )

l−3
2 BW ]b

λ
l c−2 W (BW )

l−3
2 B W

B (WB)
l−3
2 W B

We see that A2 is feasible. Since B1 is infeasible and {0, (qλ+ l−1)a} ∈ A1 where 0 has color R, we can modify by changing

W to R in its bottom row and B to R in its top row.

R (WB)
λ mod l

2 −1 W B (WB)
l−3
2 W B [B(WB)

l−3
2 WB]b

λ
l c−2 R (WR)

l−3
2 W R

W (BW )
l−3
2 B W B (WB)

λ mod l
2 −1 W [W (BW )

l−3
2 BW ]b

λ
l c−2 W (BW )

l−3
2 B W

B (RB)
l−3
2 R B

Since some B2 is infeasible and {0, a} ∈ A0 where 0 has color R, we can modify by changing B to R in its top row and W

to R in its bottom row.

R (WR)
λ mod l

2 −1 W B (WB)
l−3
2 W B [B(WB)

l−3
2 WB]b

λ
l c−2 R (WR)

l−3
2 W R

W (BW )
l−3
2 B W B (RB)

λ mod l
2 −1 R [W (BW )

l−3
2 BW ]b

λ
l c−2 W (BW )

l−3
2 B W

B (RB)
l−3
2 R B

Modify the remain infeasible A0 into R.

R (WR)
λ mod l

2 −1 W B (WB)
l−3
2 W B [R(WB)

l−3
2 WB]b

λ
l c−2 R (WR)

l−3
2 W R

W (BW )
l−3
2 B W B (RB)

λ mod l
2 −1 R [W (BW )

l−3
2 BR]b

λ
l c−2 W (BW )

l−3
2 B W

B (RB)
l−3
2 R B
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The coloring completes.

4.5.2.2.2 (λ mod l) is odd. Then l + (λ mod l) is even.

Phase 1: Assign color to all entries of S(a, λa) according to the SbC2.

B (WB)
(λ mod l)−3

2 W B W (BW )
l−3
2 B W [W (BW )

l−3
2 BW ]b

λ
l c−2 W (BW )

l−3
2 B W

W (BW )
l−3
2 B W B (WB)

(λ mod l)−3
2 W B [B(WB)

l−3
2 WB]b

λ
l c−2 B (WB)

l−3
2 W B

B (WB)
l−3
2 W B

Phase 2: Since A1 is infeasible, we modify the cell 0 into R.

R (WB)
(λ mod l)−3

2 W B W (BW )
l−3
2 B W [W (BW )

l−3
2 BW ]b

λ
l c−2 W (BW )

l−3
2 B W

W (BW )
l−3
2 B W B (WB)

(λ mod l)−3
2 W B [B(WB)

l−3
2 WB]b

λ
l c−2 B (WB)

l−3
2 W B

B (WB)
l−3
2 W B

Since A2 is infeasible and {0, λa} ∈ B0 where 0 has color R, we can modify by changing B to R in its left column and W

to R in its right column.

R (WB)
(λ mod l)−3

2 W B W (BW )
l−3
2 B W [W (BW )

l−3
2 BW ]b

λ
l c−2 W (BW )

l−3
2 B R

W (BW )
l−3
2 B W B (WB)

(λ mod l)−3
2 W B [B(WB)

l−3
2 WB]b

λ
l c−2 B (WB)

l−3
2 W B

R (WB)
l−3
2 W B

We see that B1 is feasible. Since some B2 is infeasible and {0, a} ∈ A0 where 0 has color R, we can modify by changing B

to R in its top row and W to R in its bottom row.

R (WR)
(λ mod l)−3

2 W R W (BW )
l−3
2 B W [W (BW )

l−3
2 BW ]b

λ
l c−2 W (BW )

l−3
2 B R

W (BW )
l−3
2 B W B (RB)

(λ mod l)−3
2 R B [B(WB)

l−3
2 WB]b

λ
l c−2 B (WB)

l−3
2 W B

R (WB)
l−3
2 W B

Modify the remain infeasible A0 into R.
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R (WR)
(λ mod l)−3

2 W R W (BW )
l−3
2 B R [W (BW )

l−3
2 BR]b

λ
l c−2 W (BW )

l−3
2 B R

W (BW )
l−3
2 B W B (RB)

(λ mod l)−3
2 R B [R(WB)

l−3
2 WB]b

λ
l c−2 R (WB)

l−3
2 W B

R (WB)
l−3
2 W B

The coloring completes.
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4.6 Assume that q is even and λ, l are odd. Then λ− l is even.

4.6.1 Assume that q > 2.

Phase 1: Assign color to all entries of S(a, λa) according to the C2.

B (WB)
λ−l
2 −1 W B (WB)

l−3
2 W B

W (WB)
q
2−1

(BW )
q
2−1

B (WB)
λ−l
2 −1 W

B (WB)
l−3
2 W B

Phase 2: Since A1 is infeasible, we modify 0 into R.

R (WB)
λ−l
2 −1 W B (WB)

l−3
2 W B

W (WB)
q
2−1

(BW )
q
2−1

B (WB)
λ−l
2 −1 W

B (WB)
l−3
2 W B

We see that A2 is feasible. Since B1 is infeasible and {(qλ+ l−1)a, 0} ∈
A1 where 0 has color R, we can modify by changing W to R in its

bottom row and B to R in its top row.

R (WB)
λ−l
2 −1 W R (WR)

l−3
2 W R

W (WB)
q
2−1

(BW )
q
2−1

B (WB)
λ−l
2 −1 W

B (RB)
l−3
2 R B

Since some B2 is infeasible and {0, a} ∈ A0 where 0 has color R, we can

modify by changing B to R in its top row and W to R in its bottom

row.

R (WR)
λ−l
2 −1 W R (WR)

l−3
2 W R

W (WB)
q
2−1

(BW )
q
2−1

B (RB)
λ−l
2 −1 R

B (RB)
l−3
2 R B

The coloring completes.

4.6.2 Assume that q = 2. Since λ 6= c−1
2

, 2λ + l = qλ + l = c 6= 2λ + 1, so

l 6= 1. For the reason, RW (BW )
q
2
−1B = RW (BW )0B = RWB and
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R(WB)
q
2
−1R = R(WB)0R = RR and the above complete coloring, we

have

R (WR)
λ−l
2 −1 W R (WR)

l−3
2 W R

W (BW )
l−3
2 B W B (RB)

λ−l
2 −1 R

B (RB)
l−3
2 R B

If l = λ, then the above coloring completes, otherwise does not because

{(λ− 1)a, (2λ− 1)a} ∈ B0 and those entries have the same color R. So

we cannot assign color to all entries of S(a, λa) according to the C2 in

Phase 1.

4.6.2.1 l = λ.

R (WR)
l−3
2 W R

W (BW )
l−3
2 B W

B (RB)
l−3
2 R B

4.6.2.2 2 < l < λ
2
. Since λ and l are odd, we have the following two cases.

4.6.2.2.1 If (λ mod l) is even, then the coloring same as 4.5.2.2.1.

4.6.2.2.2 If (λ mod l) is odd, then the coloring same as 4.5.2.2.2.
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4.6.2.3 λ
2

< l < λ, except l = 3 and λ = 5. Then 2l−λ−3
2

6= −1.

λ− l 2l − λ− 1 (l − 1)a λ− l − 1 (λ− 1)a

columns columns columns

l − 1 (λ + l − 1)a λ− l

columns columns

2l − λ− 1 (λ + 2l − 1)a λ− l − 1 (2λ + l − 1)a

columns columns

Phase 1: Assign color to all entries of S(a, λa) according to the SbC2.

B (WB)
λ−l
2 −1 W B (WB)

2l−λ−3
2 W W B (WB)

λ−l
2 −2W B W

W (BW )
l−3
2 B B W (BW )

λ−l
2 −1 B

B (WB)
2l−λ−3

2 W B W (BW )
λ−l
2 −2B W W

We see that A1 is feasible.

Phase 2: Since A2 is infeasible, we can modify by changing B to R in its left column and W to R in its right column.

B (WB)
λ−l
2 −1 W B (WB)

2l−λ−3
2 W W B (WB)

λ−l
2 −2W B R

W (BW )
l−3
2 B B W (BW )

λ−l
2 −1 B

R (WB)
2l−λ−3

2 W B W (BW )
λ−l
2 −2B W W

Since some B1 is infeasible in the first 2l − λ − 1 columns, we can suitably modify by changing B to R in its bottom row

and W to R in its top row.

B (WB)
λ−l
2 −1 W B (RB)

2l−λ−3
2 R W B (WB)

λ−l
2 −2W B R

W (BW )
l−3
2 B B W (BW )

λ−l
2 −1 B

R (WR)
2l−λ−3

2 W B W (BW )
λ−l
2 −2B W W

We see that B2 is feasible. Modify the remain infeasible A0 into R.
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B (WB)
λ−l
2 −1 W B (RB)

2l−λ−3
2 R W B (WB)

λ−l
2 −2W B R

W (BW )
l−3
2 B R W (BW )

λ−l
2 −1 B

R (WR)
2l−λ−3

2 W B W (BW )
λ−l
2 −2B R W

The coloring completes.
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We illustrate Theorem 3.2.1 by the following examples.

Example 3.2.2. The graph CZ5×Z5((0, 1), (0, 2)) has |Z5×Z5|
|〈(0,1),(0,2)〉| = 25

5
= 5 con-

nected components, each of which isomorphic to CH((0, 1), (0, 2)) where H =

〈(0, 1), (0, 2)〉. Since (0, 2) = 2(0, 1), λ = 2. Since c = o((0, 1)) = 5 = 2λ + 1,

S(a, 2a) has 3 rows and 2 columns. The last row contains 1 entry.

(0, 0) (0, 1)

(0, 2) (0, 3)

(0, 4)

(1, 0) (1, 1)

(1, 2) (1, 3)

(1, 4)

(2, 0) (2, 1)

(2, 2) (2, 3)

(2, 4)

(3, 0) (3, 1)

(3, 2) (3, 3)

(3, 4)

(4, 0) (4, 1)

(4, 2) (4, 3)

(4, 4)

By Case 1, we have the vertex coloring for CH((0, 1), (0, 2)) and the other compo-

nent in the following table.

B W

R G

Y

Example 3.2.3. The graph CZ26(2, 10) has |Z26|
|〈2,10〉| = 26

13
= 2 connected components,

each of which isomorphic to CH(2, 10) where H = 〈2, 10〉. Since 10 = 5(2), λ = 5.

Since c = o(2) = 13 = 2λ + 3, S(a, 5a) has 3 rows and 5 columns. The last row

contains 3 entries.

0 2 4 6 8

10 12 14 16 18

20 22 24

1 3 5 7 9

11 13 15 17 19

21 23 25

By Case 2, we have the vertex coloring for CH(2, 10) and the another component

in the following table.

B W R B W

R B W R B

W R G

Example 3.2.4. The graph CZ2×Z8((1, 1), (0, 2)) has |Z2×Z8|
|〈(1,1),(0,2)〉| = 16

8
= 2 con-

nected components, each of which isomorphic to CH((1, 1), (0, 2)) where H =

〈(1, 1), (0, 2)〉. Since (0, 2) = 2(1, 1), λ = 2. Since c = o((1, 1)) = 8 = 3λ + 2,

S(a, 2a) has 4 rows and 2 columns. Since l = λ = 2, the last row of S(a, 2a) is full.
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(0, 0) (1, 1)

(0, 2) (1, 3)

(0, 4) (1, 5)

(0, 6) (1, 7)

(1, 0) (0, 1)

(1, 2) (0, 3)

(1, 4) (0, 5)

(1, 6) (0, 7)

Since 3 - c and c ≡ 0 mod 4, by Subcase 3.3.2, we have the vertex coloring for

CH((1, 1), (0, 2)) and the another component in the following table.

B W

R G

B W

R G

Example 3.2.5. Since Z13 = 〈1, 2〉, the graph CZ13(1, 2) is connected. Since

2 = 2(1), λ = 2. Since c = o(1) = 13 = 6λ + 1, S(a, 2a) has 7 rows and 2 columns.

The last row contains 1 entry.

0 1

2 3

4 5

6 7

8 9

10 11

12

Since 3 - c and c ≡ 1 mod 4, by Subcase 3.3, we have the vertex coloring for

CZ13(1, 2) in the following table.

B W

R G

B W

R G

W R

G W

R

Example 3.2.6. Since Z25 = 〈1, 11〉, the graph CZ25(1, 11) is connected. Since

11 = 11(1), λ = 11. Since c = o(1) = 25 = 2λ + 3, q = 2 and l = 3, so (λ

mod l) = 2 and bλ
l
c = 3. We obtain S(a, 11a) has q + 1 = 3 rows and λ = 11

columns. The last row contains l = 3 entries.
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0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20 21

22 23 24

Since 2 < λ < c
2
, S(a, 11a) is in Case 4. Since q = 2 and λ, l are odd where

2 < l < λ
2

and (λ mod l) is even, by Subcase 4.6.2.2.1, we have the vertex coloring

for CZ25(1, 11) in the following table.

R W B W B R W B R W R

W B W B R W B R W B W

B R B

Example 3.2.7. The graph CZ5×Z25((3, 1), (3, 6)) has |Z5×Z25|
|〈(3,1),(3,6)〉| = 125

25
= 5 con-

nected components, each of which isomorphic to CH((3, 1), (3, 6)) where H =

〈(3, 1), (3, 6)〉. Since (3, 6) = 6(3, 1), λ = 6. Since c = o((3, 1)) = 25 = 4λ + 1,

q = 4 and l = 1, that is, S(a, 6a) has q + 1 = 5 rows and λ = 6 columns. The last

row contains l = 1 entry.

(0, 0) (3, 1) (1, 2) (4, 3) (2, 4) (0, 5)

(3, 6) (1, 7) (4, 8) (2, 9) (0, 10) (3, 11)

(1, 12) (4, 13) (2, 14) (0, 15) (3, 16) (1, 17)

(4, 18) (2, 19) (0, 20) (3, 21) (1, 22) (4, 23)

(2, 24)

(1, 0) (4, 1) (2, 2) (0, 3) (3, 4) (1, 5)

(4, 6) (2, 7) (0, 8) (3, 9) (1, 10) (4, 11)

(2, 12) (0, 13) (3, 14) (1, 15) (4, 16) (2, 17)

(0, 18) (3, 19) (1, 20) (4, 21) (2, 22) (0, 23)

(3, 24)

(2, 0) (0, 1) (3, 2) (1, 3) (4, 4) (2, 5)

(0, 6) (3, 7) (1, 8) (4, 9) (2, 10) (0, 11)

(3, 12) (1, 13) (4, 14) (2, 15) (0, 16) (3, 17)

(1, 18) (4, 19) (2, 20) (0, 21) (3, 22) (1, 23)

(4, 24)
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(3, 0) (1, 1) (4, 2) (2, 3) (0, 4) (3, 5)

(1, 6) (4, 7) (2, 8) (0, 9) (3, 10) (1, 11)

(4, 12) (2, 13) (0, 14) (3, 15) (1, 16) (4, 17)

(2, 18) (0, 19) (3, 20) (1, 21) (4, 22) (2, 23)

(0, 24)

(4, 0) (2, 1) (0, 2) (3, 3) (1, 4) (4, 5)

(2, 6) (0, 7) (3, 8) (1, 9) (4, 10) (2, 11)

(0, 12) (3, 13) (1, 14) (4, 15) (2, 16) (0, 17)

(3, 18) (1, 19) (4, 20) (2, 21) (0, 22) (3, 23)

(1, 24)

Since 2 < λ < c
2
, S(a, 11a) is in Case 4. Since q, λ are even with q > 2 and l = 1,

by Subcase 4.5.1.2, we have the vertex coloring for CZ5×Z25((3, 1), (3, 6)) and the

other component in the following table.

W B R W R W

B R W B W B

R W B W B R

W B W B R B

R

3.3 The case b /∈ 〈a〉

When b /∈ 〈a〉, we have χ(CH(a, b)) = 2 (Theorem 3.1.1) and χ(CH(a, b)) = 3 with

vertex coloring algorithm in the next theorem.

Theorem 3.3.1. Let a, b ∈ G r {0} be such that a 6= ±b, o(b) ≤ o(a) and b /∈ 〈a〉.

If r + λ is odd or c is odd, then χ(CH(a, b)) = 3.

Proof. Assume that r + λ is odd or c is odd. Then χ(CH(a, b)) > 2 by Theorem

3.1.1. We can prove this theorem by to finding an assignment of three colors to

the vertices of graph CH(a, b).

Next we shall describe the vertex coloring algorithm for the graph CH(a, b)

with b /∈ 〈a〉, we use 2-phases method. In Phase 1, we start by suitably coloring

MG(a, b) with C2 and BC2. After that we suitably modify into R the color of one
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entry of each infeasible edge, which we shall consider from boundary edges A1, B1

and B2 of MG(a, b) respectively, which these coloring do not make the other a and

b-edges become infeasible. Thus, we have an approach for CH(a, b) as follows.

0 . . . (λ − 1)a λa . . . (c − 1)a

...
...

(r − 1)b . . . (r − 1)b (r − 1)b . . . (r − 1)b

+(c − λ − 1)a +(c − λ)a +(c − 1)a

Case 1. r is odd and c, λ are even. Then c− λ is even.

Phase 1: Assign color to all entries of MG(a, b) according to the C2.

B (WB)
λ
2 −1 W B (WB)

c−λ
2 −1 W

(WB)
r−3
2 W (BW )

r−3
2 B

B (WB)
c−λ

2 −1 W B (WB)
λ
2 −1 W

We see that A1 is feasible.

Phase 2: Since B1 is infeasible, we can modify by changing B to R in its

bottom row and W to R in its top row.

B (WB)
λ
2 −1 W B (RB)

c−λ
2 −1 R

(WB)
r−3
2 W (BW )

r−3
2 B

R (WR)
c−λ

2 −1 W B (WB)
λ
2 −1 W

Since B2 is infeasible and {(r− 1)b + (c− 1)a, (r− 1)b} ∈ A1 where (r− 1)b

has color R, we can modify by changing B to R in its bottom row and W to

R in its top row.

B (RB)
λ
2 −1 R B (RB)

c−λ
2 −1 R

(WB)
r−3
2 W (BW )

r−3
2 B

R (WR)
c−λ

2 −1 W R (WR)
λ
2 −1 W

The coloring completes.

Case 2. r, c are odd and λ is even. Then c− λ is odd.

Phase 1: Assign color to all entries of MG(a, b) according to the C2.

B (WB)
λ
2 −1 W B (WB)

c−λ−3
2 W B

(WB)
r−3
2 W (WB)

r−3
2 W

B (WB)
c−λ−3

2 W B W (BW )
λ
2 −1 B
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Phase 2: Since A1 is infeasible, we can modify by changing B to R in its

left column and W to R in its right column.

R (WB)
λ
2 −1 W B (WB)

c−λ−3
2 W B

(WR)
r−3
2 W (RB)

r−3
2 R

R (WB)
c−λ−3

2 W B W (BW )
λ
2 −1 B

Since some B1 is infeasible and {(c − 1)a, 0} ∈ A1 where 0 has color R, we

can modify by changing W to R in its top row and B to R in its bottom

row.

R (WB)
λ
2 −1 W B (RB)

c−λ−3
2 R B

(WR)
r−3
2 W (RB)

r−3
2 R

R (WR)
c−λ−3

2 W R W (BW )
λ
2 −1 B

We see that B2 is feasible. The coloring completes.

Case 3. r, c and λ are odd. Then c− λ is even.

Phase 1: Assign color to all entries of MG(a, b) according to the C2.

B (WB)
λ−3

2 W B W (BW )
c−λ

2 −1 B

(WB)
r−3
2 W (WB)

r−3
2 W

B (WB)
c−λ

2 −1 W B (WB)
λ−3

2 W B

Phase 2: Since A1 is infeasible, we can modify by changing B to R in its

left column and W to R in its right column.

R (WB)
λ−3

2 W B W (BW )
c−λ

2 −1 B

(WR)
r−3
2 W (RB)

r−3
2 R

R (WB)
c−λ

2 −1 W B (WB)
λ−3

2 W B

We see that B1 is feasible. Since some B2 is infeasible and {0, a} ∈ A0 where

0 has color R, we can modify by changing B to R in its top row and W to

R in its bottom row.

R (WR)
λ−3

2 W R W (BW )
c−λ

2 −1 B

(WR)
r−3
2 W (RB)

r−3
2 R

R (WB)
c−λ

2 −1 W B (RB)
λ−3

2 R B

The coloring completes.
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Case 4. r is even, c is odd and λ is even. Then c− λ is odd.

4.1 Assume that r > 2.

Phase 1: Assign color to all entries of MG(a, b) according to the C2.

B (WB)
λ
2 −1 W B (WB)

c−λ−3
2 W B

(WB)
r
2−1 (WB)

r
2−1

W (BW )
c−λ−3

2 B W B (WB)
λ
2 −1 W

Phase 2: Since A1 is infeasible, we can modify by changing B to R in

its left column and W to R in its right column.

R (WB)
λ
2 −1 W B (WB)

c−λ−3
2 W B

(WR)
r
2−1 (RB)

r
2−1

W (BW )
c−λ−3

2 B W B (WB)
λ
2 −1 R

We see that B1 is feasible. Since some B2 is infeasible and {0, a} ∈ A0

where 0 has color R, we can modify by changing B to R in its top row

and W to R in its bottom row.

R (WR)
λ
2 −1 W B (WB)

c−λ−3
2 W B

(WR)
r
2−1 (RB)

r
2−1

W (BW )
c−λ−3

2 B W B (RB)
λ
2 −1 R

The coloring completes.
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4.2 Assume that r = 2.

4.2.1 λ < c
2
. Since R(WR)

r
2
−1W = R(WR)0W = RW and B(RB)

r
2
−1R = B(RB)0R = BR and the above complete coloring,

we have

R (WR)
λ
2 −1 W B (WB)

c−λ−3
2 W B

W (BW )
c−λ−3

2 B W B (RB)
λ
2 −1 R

These coloring is feasible for this case.

4.2.2 λ > c
2
.

R (WR)
λ
2 −1 W B (WB)

c−λ−3
2 W B

W (BW )
c−λ−3

2 B W B (RB)
λ
2 −1 R

Since there exists at least one consecutive entries in the same column have color R, the above coloring is infeasible. So we

adjust these assigning color in Phase 1 according to the BC2. Since c is odd and o(a + 〈b〉) | c, o(a + 〈b〉) is odd.

Phase 1: Assign color to all entries of MG(a, b) according to the BC2.

B (WB)
o(a+〈b〉)−3

2 W B [B(WB)
o(a+〈b〉)−3

2 WB]
c

o(a+〈b〉)−2 B (WB)
o(a+〈b〉)−3

2 W B

W (BW )
o(a+〈b〉)−3

2 B W [W (BW )
o(a+〈b〉)−3

2 BW ]
c

o(a+〈b〉)−2 W (BW )
o(a+〈b〉)−3

2 B W

Phase 2: Since A1 is infeasible, we can modify by changing B to R in its left column and W to R in its right column.

R (WB)
o(a+〈b〉)−3

2 W B [B(WB)
o(a+〈b〉)−3

2 WB]
c

o(a+〈b〉)−2 B (WB)
o(a+〈b〉)−3

2 W B

W (BW )
o(a+〈b〉)−3

2 B W [W (BW )
o(a+〈b〉)−3

2 BW ]
c

o(a+〈b〉)−2 W (BW )
o(a+〈b〉)−3

2 B R

We see that B1 and B2 are feasible. Since A0 is infeasible and {(r − 1)b + (c− 1)a, (λ− 1)a} ∈ B2 and (r − 1)b + (c− 1)a

has color R, we can suitably modify by changing W to R in the last column of a block and B to R in the first column of

consecutive block.

R (WB)
o(a+〈b〉)−3

2 W B [R(WB)
o(a+〈b〉)−3

2 WB]
c

o(a+〈b〉)−2 R (WB)
o(a+〈b〉)−3

2 W B

W (BW )
o(a+〈b〉)−3

2 B R [W (BW )
o(a+〈b〉)−3

2 BR]
c

o(a+〈b〉)−2 W (BW )
o(a+〈b〉)−3

2 B R

The coloring completes.
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Case 5. r is even, c and λ are odd. Then c− λ is even.

5.1 Assume that r > 2.

Phase 1: Assign color to all entries of MG(a, b) according to the C2.

B (WB)
λ−3

2 W B W (BW )
c−λ

2 −1 B

(WB)
r
2−1 (WB)

r
2−1

W (BW )
c−λ

2 −1 B W (BW )
λ−3

2 B W

Phase 2: Since A1 is infeasible, we can modify by changing B to R in

its left column and W to R in its right column.

R (WB)
λ−3

2 W B W (BW )
c−λ

2 −1 B

(WR)
r
2−1 (RB)

r
2−1

W (BW )
c−λ

2 −1 B W (BW )
λ−3

2 B R

Since B1 is infeasible, we can modify by changing B to R in its bottom

row and W to R in its top row.

R (WB)
λ−3

2 W B R (BR)
c−λ

2 −1 B

(WR)
r
2−1 (RB)

r
2−1

W (RW )
c−λ

2 −1 R W (BW )
λ−3

2 B R

We see that B2 is feasible. The coloring completes.

5.2 Assume that r = 2.

5.2.1 λ > c
2
. Since R(WR)

r
2
−1W = R(WR)0W = RW and B(RB)

r
2
−1R =

B(RB)0R = BR and the above complete coloring, we have

R (WB)
λ−3

2 W B R (BR)
c−λ

2 −1 B

W (RW )
c−λ

2 −1 R W (BW )
λ−3

2 B R

These coloring is feasible for this case.

5.2.2 λ < c
2
.

R (WB)
λ−3

2 W B R (BR)
c−λ

2 −1 B

W (RW )
c−λ

2 −1 R W (BW )
λ−3

2 B R

Since there exists at least one consecutive entries in the same col-

umn have color R, the above coloring is infeasible. So we adjust

these assigning color in Phase 1 according to the BC2. Since c is

odd and o(a + 〈b〉) | c, o(a + 〈b〉) is odd. The feasible coloring for

this case is same as 4.2.2.

Case 6. r, c are even and λ is odd. Then c− λ is odd.
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6.1 Assume that r > 2.

Phase 1: Assign color to all entries of MG(a, b) according to the C2.

B (WB)
λ−3

2 W B W (BW )
c−λ−3

2 B W

(WB)
r
2−1 (BW )

r
2−1

W (BW )
c−λ−3

2 B W B (WB)
λ−3

2 W B

We see that A1 is feasible.

Phase 2: Since B1 is infeasible, we can modify by changing W to R in

its bottom row and B to R in its top row.

B (WB)
λ−3

2 W B W (RW )
c−λ−3

2 R W

(WB)
r
2−1 (BW )

r
2−1

R (BR)
c−λ−3

2 B R B (WB)
λ−3

2 W B

Since B2 is infeasible and {(r−1)b+(c−λ−1)a, (r−1)b+(c−λ)a} ∈ A0

and (r− 1)b + (c− λ− 1)a has color R, we can modify by changing W

to R in its bottom row and B to R in its top row.

R (WR)
λ−3

2 W R W (RW )
c−λ−3

2 R W

(WB)
r
2−1 (BW )

r
2−1

R (BR)
c−λ−3

2 B R B (RB)
λ−3

2 R B

The coloring completes.

6.2 Assume that r = 2. Since R(WB)
r
2
−1R = R(WB)0R = RR and

W (BW )
r
2
−1B = W (BW )0B = WB and the above complete coloring,

we have

R (WR)
λ−3

2 W R W (RW )
c−λ−3

2 R W

R (BR)
c−λ−3

2 B R B (RB)
λ−3

2 R B

Since {0, b} ∈ B0 and those entries have the same color R, the above

coloring is infeasible. So we adjust these assigning color in Phase 1

according to the BC2. Since λ is odd and o(a + 〈b〉) | λ, o(a + 〈b〉) is

odd. The feasible coloring for this case is same as 4.2.2.

This completes Theorem 3.3.1 and the coloring algorithm.

We give three examples to demonstrate Theorem 3.3.1.

Example 3.3.2. The graph CZ6×Z18((0, 2), (3, 3)) has |Z6×Z18|
|〈(0,2),(3,3)〉| = 108

18
= 6 con-

nected components, each of which isomorphic to CH((0, 2), (3, 3)) where H =
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〈(0, 2), (3, 3)〉. Since r = o((3, 3) + 〈(0, 2)〉) = 2 and (0, 6) = r(3, 3) = λG(0, 2), we

have λ = 3. Since c = o((0, 2)) = 9, MG(a, b) has r = 2 rows and c = 9 columns.

(0, 0) (0, 2) (0, 4) (0, 6) (0, 8) (0, 10) (0, 12) (0, 14) (0, 16)

(3, 3) (3, 5) (3, 7) (3, 9) (3, 11) (3, 13) (3, 15) (3, 17) (3, 1)

(1, 0) (1, 2) (1, 4) (1, 6) (1, 8) (1, 10) (1, 12) (1, 14) (1, 16)

(4, 3) (4, 5) (4, 7) (4, 9) (4, 11) (4, 13) (4, 15) (4, 17) (4, 1)

(2, 0) (2, 2) (2, 4) (2, 6) (2, 8) (2, 10) (2, 12) (2, 14) (2, 16)

(5, 3) (5, 5) (5, 7) (5, 9) (5, 11) (5, 13) (5, 15) (5, 17) (5, 1)

(3, 0) (3, 2) (3, 4) (3, 6) (3, 8) (3, 10) (3, 12) (3, 14) (3, 16)

(0, 3) (0, 5) (0, 7) (0, 9) (0, 11) (0, 13) (0, 15) (0, 17) (0, 1)

(4, 0) (4, 2) (4, 4) (4, 6) (4, 8) (4, 10) (4, 12) (4, 14) (4, 16)

(1, 3) (1, 5) (1, 7) (1, 9) (1, 11) (1, 13) (1, 15) (1, 17) (1, 1)

(5, 0) (5, 2) (5, 4) (5, 6) (5, 8) (5, 10) (5, 12) (5, 14) (5, 16)

(2, 3) (2, 5) (2, 7) (2, 9) (2, 11) (2, 13) (2, 15) (2, 17) (2, 1)

Since r is even and c, λ are odd, MG(a, b) is in Case 5. Since r = 2, λ < c
2

and

o(a + 〈b〉) = o((0, 2) + 〈(3, 3)〉) = 3, by Subcase 5.2.2, we have the vertex coloring

for CZ6×Z18((0, 2), (3, 3)) and the other component in the following table.

R W B R W B R W B

W B R W B R W B R

Example 3.3.3. The graph CZ6×Z12((0, 2), (3, 9)) has |Z6×Z12|
|〈(0,2),(3,9)〉| = 72

12
= 6 con-

nected components, each of which isomorphic to CH((0, 2), (3, 9)) where H =

〈(0, 2), (3, 9)〉. Since r = o((3, 9) + 〈(0, 2)〉) = 2 and (0, 6) = r(3, 9) = λG(0, 2), we

have λ = 3. Since c = o((0, 2)) = 6, MG(a, b) has r = 2 rows and c = 6 columns.
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(0, 0) (0, 2) (0, 4) (0, 6) (0, 8) (0, 10)

(3, 9) (3, 11) (3, 1) (3, 3) (3, 5) (3, 7)

(1, 0) (1, 2) (1, 4) (1, 6) (1, 8) (1, 10)

(4, 9) (4, 11) (4, 1) (4, 3) (4, 5) (4, 7)

(2, 0) (2, 2) (2, 4) (2, 6) (2, 8) (2, 10)

(5, 9) (5, 11) (5, 1) (5, 3) (5, 5) (5, 7)

(3, 0) (3, 2) (3, 4) (3, 6) (3, 8) (3, 10)

(0, 9) (0, 11) (0, 1) (0, 3) (0, 5) (0, 7)

(4, 0) (4, 2) (4, 4) (4, 6) (4, 8) (4, 10)

(1, 9) (1, 11) (1, 1) (1, 3) (1, 5) (1, 7)

(5, 0) (5, 2) (5, 4) (5, 6) (5, 8) (5, 10)

(2, 9) (2, 11) (2, 1) (2, 3) (2, 5) (2, 7)

Since r, c are even and λ is odd, MG(a, b) is in Case 6. Since r = 2 and o(a +

〈b〉) = o((0, 2) + 〈(3, 9)〉) = 3, by Subcase 6.2, we have the vertex coloring for

CZ6×Z12((0, 2), (3, 9)) and the other component in the following table.

R W B R W B

W B R W B R

Example 3.3.4. The graph CZ6×Z18((0, 2), (2, 4)) has |Z6×Z18|
|〈(0,2),(2,4)〉| = 108

27
= 4 con-

nected components, each of which isomorphic to CH((0, 2), (2, 4)) where H =

〈(0, 2), (2, 4)〉. Since r = o((2, 4)+ 〈(0, 2)〉) = 3 and (0, 12) = r(2, 4) = λG(0, 2), we

have λ = 6. Since c = o((0, 2)) = 9, MG(a, b) has r = 3 rows and c = 9 columns.
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(0, 0) (0, 2) (0, 4) (0, 6) (0, 8) (0, 10) (0, 12) (0, 14) (0, 16)

(2, 4) (2, 6) (2, 8) (2, 10) (2, 12) (2, 14) (2, 16) (2, 0) (2, 2)

(4, 8) (4, 10) (4, 12) (4, 14) (4, 16) (4, 0) (4, 2) (4, 4) (4, 6)

(0, 1) (0, 3) (0, 5) (0, 7) (0, 9) (0, 11) (0, 13) (0, 15) (0, 17)

(2, 5) (2, 7) (2, 9) (2, 11) (2, 13) (2, 15) (2, 17) (2, 1) (2, 3)

(4, 9) (4, 11) (4, 13) (4, 15) (4, 17) (4, 1) (4, 3) (4, 5) (4, 7)

(1, 0) (1, 2) (1, 4) (1, 6) (1, 8) (1, 10) (1, 12) (1, 14) (1, 16)

(3, 4) (3, 6) (3, 8) (3, 10) (3, 12) (3, 14) (3, 16) (3, 0) (3, 2)

(5, 8) (5, 10) (5, 12) (5, 14) (5, 16) (5, 0) (5, 2) (5, 4) (5, 6)

(1, 1) (1, 3) (1, 5) (1, 7) (1, 9) (1, 11) (1, 13) (1, 15) (1, 17)

(3, 5) (3, 7) (3, 9) (3, 11) (3, 13) (3, 15) (3, 17) (3, 1) (3, 3)

(5, 9) (5, 11) (5, 13) (5, 15) (5, 17) (5, 1) (5, 3) (5, 5) (5, 7)

Since r, c are odd and λ is even, by Case 2, we have the vertex coloring for

CZ6×Z18((0, 2), (2, 4)) and the other component in the following table.

R W B W B W B R B

W B W B W B W B R

R W R W B W B W B
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3.4 Conclusions

Let r = o(b + 〈a〉), c = o(a) and λ ∈ {0, 1, . . . , c− 1} be such that rb = λa. We shall conclude the vertex coloring algorithm for

CH(a, b) developing in the previous sections in the following table.

Theorem 3.1.1 : r + λ and c are even.

Conditions Assignments

Case 1. r and λ are even

B (WB)
λ
2 −1 W B (WB)

c−λ
2 −1 W

(WB)
r
2−1 BW -schema (BW )

r
2−1

W (BW )
c−λ

2 −1 B W (BW )
λ
2 −1 B

Case 2. r and λ are odd

B (WB)
λ−3

2 W B W (BW )
c−λ−3

2 B W

(WB)
r−3
2 −1W BW -schema (BW )

r−3
2 B

B (WB)
c−λ−3

2 W B W (BW )
λ−3

2 B W
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Theorem 3.2.1 : λ is even or c is odd with 2 ≤ λ ≤ c
2

Conditions Assignments

Case 1. c = 5

B W

R G

Y

Case 2. c = 13 and λ = 5

B W R B W

R B W R B

W R G

Case 3. c 6= 5 and λ ∈ {2, c−1
2 }

3.1 3 | c

3.1.1 c = 6k − 3 where k ∈ N

B W

R B

W R

(BRW )k−2 (WBR)k−2

B W

R

3.1.2 c = 6k where k ∈ N

B W

R B

W R

(BRW )k−2B (WBR)k−2W

R B

W R
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Conditions Assignments

3.2 3 - c and c ≡ 0 or 3 mod 4

3.2.1 c = 6k − 1 or 6k − 5 where k is even

B W

R G

B W

R G

(BR)
3k
2 −3 (WG)

3k
2 −3

B W

R

3.2.2 c =

6k − 2 if k is odd;

6k − 4 if k is even.

B W

R G

B W

R G

(BR)
3k−7

2 (WG)
3k−7

2

B W

R G

3.3 c = 6k − 5 or 6k − 1 where k is odd

B W

R G

B W

R G

(BR)
3k−9

2 B (WG)
3k−9

2 W

R G

W R

G W

R

3.4 c =

6k − 4, if k is odd;

6k − 2, if k is even.

B W

R G

B W

R G

(BR)
3k−7

2 B (WG)
3k−7

2 W

R G

W R
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Conditions Assignments

Case 4. 2 < λ ≤ c
2 and λ 6= c−1

2 , except c = 13 and λ = 5

4.1 q, λ and l are even

B (WB)
λ−l
2 −1 W B (RB)

l
2−1 R

W BW -schema (BR)
q
2−1

(RW )
q
2−1

W (BW )
λ−l
2 −1 B

R (WR)
l
2−1 W

4.2 q is odd and λ, l are even

R (WR)
λ−l
2 −1 W B (WB)

l
2−1 R

W BW -schema (BR)
q−3
2 B

(RW )
q−3
2 R

B (RB)
λ−l
2 −1 R

W (BW )
l
2−1 B

4.3 q, l are odd and λ is even

B (WB)
λ−l−3

2 W B W (RW )
l−3
2 R W

R BW -schema (RW )
q−3
2 R

(BR)
q−3
2 B

W (BW )
λ−l−3

2 B W

R (BR)
l−3
2 B R
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Conditions Assignments

4.4 q, λ are odd and l is even

R (WR)
λ−l−3

2 W R W (RW )
l
2−1 R

W BW -schema (WB)
q−3
2 W

(BW )
q−3
2 B

B (RB)
λ−l−3

2 R B

R (BR)
l
2−1 B

4.5 q, λ are even and l is odd

4.5.1 q > 2

4.5.1.1 2 < l < λ

R (WR)
λ−l−3

2 W R W (BW )
l−3
2 B R

W BW -schema (BR)
q
2−1

(RW )
q
2−1

B (RB)
λ−l−3

2 R B

R (WB)
l−3
2 W B

4.5.1.2 l = 1

W B R (WR)
λ
2 −2 W

B R B

R BW -schema (RB)
q
2−2R

(WR)
q
2−2W

B W (BR)
λ
2 −2 B

R
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Conditions Assignments

4.5.2 q = 2

4.5.2.1 λ
2 < l < λ

R (WR)
λ−l−3

2 W R W (BW )
l−3
2 B R

W (BW )
l−3
2 B W B (RB)

λ−l−3
2 R B

R (WB)
l−3
2 W B

4.5.2.2 2 < l < λ
2

4.5.2.2.1 (λ mod l) is even

R (WR)
λ mod l

2 −1 W B (WB)
l−3
2 W B [R(WB)

l−3
2 WB]b

λ
l c−2 R (WR)

l−3
2 W R

W (BW )
l−3
2 B W B (RB)

λ mod l
2 −1 R [W (BW )

l−3
2 BR]b

λ
l c−2 W (BW )

l−3
2 B W

B (RB)
l−3
2 R B

4.5.2.2.2 (λ mod l) is odd

R (WR)
(λ mod l)−3

2 W R W (BW )
l−3
2 B R [W (BW )

l−3
2 BR]b

λ
l c−1

W (BW )
l−3
2 B W B (RB)

(λ mod l)−3
2 R B [R(WB)

l−3
2 WB]b

λ
l c−1

R (WB)
l−3
2 W B
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Conditions Assignments

4.6 q is even and λ, l are odd

4.6.1 q > 2

R (WR)
λ−l
2 −1 W R (WR)

l−3
2 W R

W BW -schema (WB)
q
2−1

(BW )
q
2−1

B (RB)
λ−l
2 −1 R

B (RB)
l−3
2 R B

4.6.2 q = 2

4.6.2.1 l = λ

R (WR)
l−3
2 W R

W (BW )
l−3
2 B W

B (RB)
l−3
2 R B

4.6.2.2 2 < l < λ
2

4.6.2.2.1 (λ mod l) is even same as 4.5.2.2.1

4.6.2.2.2 (λ mod l) is odd same as 4.5.2.2.2

4.6.2.3 λ
2 < l < λ

B (WB)
λ−l
2 −1 W B (RB)

2l−λ−3
2 R W B (WB)

λ−l
2 −2W B R

W (BW )
l−3
2 B R W (BW )

λ−l
2 −1 B

R (WR)
2l−λ−3

2 W B W (BW )
λ−l
2 −2B R W
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Theorem 3.3.1 : r + λ is odd or c is odd with b /∈ 〈a〉

Conditions Assignments

Case 1. r is odd and c, λ are even

B (RB)
λ
2 −1 R B (RB)

c−λ
2 −1 R

(WB)
r−3
2 W BW -schema (BW )

r−3
2 B

R (WR)
c−λ

2 −1 W R (WR)
λ
2 −1 W

Case 2. r, c are odd and λ is even

R (WB)
λ
2 −1 W B (RB)

c−λ−3
2 R B

(WR)
r−3
2 W BW -schema (RB)

r−3
2 R

R (WR)
c−λ−3

2 W R W (BW )
λ
2 −1 B

Case 3 r, c and λ are odd

R (WR)
λ−3

2 W R W (BW )
c−λ

2 −1 B

(WR)
r−3
2 W BW -schema (RB)

r−3
2 R

R (WB)
c−λ

2 −1 W B (RB)
λ−3

2 R B
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Case 4. r, λ are even and c is odd

4.1 r > 2

R (WR)
λ
2 −1 W B (WB)

c−λ−3
2 W B

(WR)
r
2−1 BW -schema (RB)

r
2−1

W (BW )
c−λ−3

2 B W B (RB)
λ
2 −1 R

4.2 r = 2

4.2.1 λ < c
2

R (WR)
λ
2 −1 W B (WB)

c−λ−3
2 W B

W (BW )
c−λ−3

2 B W B (RB)
λ
2 −1 R

4.2.2 λ > c
2

R (WB)
o(a+〈b〉)−3

2 W B [R(WB)
o(a+〈b〉)−3

2 WB]
c

o(a+〈b〉)−2 R (WB)
o(a+〈b〉)−3

2 W B

W (BW )
o(a+〈b〉)−3

2 B R [W (BW )
o(a+〈b〉)−3

2 BR]
c

o(a+〈b〉)−2 W (BW )
o(a+〈b〉)−3

2 B R
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Conditions Assignments

Case 5. r is even and c, λ are odd

5.1 r > 2

R (WB)
λ−3

2 W B R (BR)
c−λ

2 −1 B

(WR)
r
2−1 BW -schema (RB)

r
2−1

W (RW )
c−λ

2 −1 R W (BW )
λ−3

2 B R

5.2 r = 2

5.2.1 λ > c
2

R (WB)
λ−3

2 W B R (BR)
c−λ

2 −1 B

W (RW )
c−λ

2 −1 R W (BW )
λ−3

2 B R

5.2.2 λ < c
2 same as 4.2.2

Case 6. r, c are even and λ is odd

6.1 r > 2

R (WR)
λ−3

2 W R W (RW )
c−λ−3

2 R W

(WB)
r
2−1 BW -schema (BW )

r
2−1

R (BR)
c−λ−3

2 B R B (RB)
λ−3

2 R B

6.2 r = 2 same as 4.2.2
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