

CHAPTER IV

SKEW RINGS OF RIGHT [LEFT] DIFFERENCES OF SEMIRINGS

In [4], some theorems for skew rings of right [left] differences of semirings were prover. In this chapter, we shall prove additional theorems fon skew rings of right [left] differences of semirings.

Definition 4.1. Let S be semining and $(a, b) \varepsilon S x S$. Then (a, b) is called a unitive pair if for all x, y \& S there exist $u, v, u^{\prime}, v^{\prime} \varepsilon S$ such that
and

Example 4.2. Let S be a nonegpty set. Define + and $_{e} ;$ on S by $x+y=$
 $(a, b) \varepsilon S x S,(a, b)$ is a unitive pair. Hence S is a unitive semiring.

Theorem 4.3. Let S be a semiring having $D(S)$ as its skew ring of right [left] differences. Then $D(S)$ has a multiplicative identity 1 if and only if S is a unitive semiring. Furthermore, for all $(a, b) \varepsilon S x S$, $[(a, b)]=1$ if and only if (a, b) is a unitive pair.

CHAPTER IV

SKEW RINGS OF RIGHT [LEFT] DIEFERENCES OF SEMIRINGS

In [4], some theorems flohl skew rings of right [left]
differences of semirings we re proter. In this chapter, we shall prove additional theorems fon skew rings of right [left] differences of semirings.

Definition 4.1. Let S be a semining and $(a, b) \varepsilon S x S$. Then (a, b) is called a unitive paif if for dtl $x, y \in S$ there exist $u, v, u^{\prime}, v^{\prime} \in S$ such that

$\tan +\sqrt{6}+19=x v^{2}$
and

Example 4.2. Let S be a nonempty set. Define + and , on S by $x+y=$
 $(a, b) \varepsilon S x S,(a, b)$ is a unitive pair. Hence S is a unitive semiring.

Theorem 4.3. Let S be a semiring having $D(S)$ as its skew ring of right [left] differences. Then $D(S)$ has a multiplicative identity 1 if and only if S is a unitive semiring. Furthermore, for all $(a, b) \varepsilon S x S$, $[(a, b)]=1$ if and only if (a, b) is a unitive pair.

Proof. Assume that $D(S)$ has a multiplicative identity, say $[(a, b)]$. Let $x, y \in S$. Then $[(x, y)] \varepsilon D(S)$ and $[(a, b)][(x, y)]=$ $[(x, y)]=[(x, y)][(a, b)]$. Therefore $[(a x+b y, a y+b x)]=[(x, y)]=$ $[(x a+y b, x b+y a)]$. There exist $u, v, u^{\prime}, v^{\prime} \in S$ such that $a x+b y+u=x+v$, $a y+b x+u=y+v, x a+y b+u^{\prime}=x+v^{\prime}$ and $x b+y a+u^{\prime}=y+v^{\prime}$. Hence S is unitive.

Conversely, assume that s is a unitive semiring. Then there exists an $(a, b) \varepsilon S x S$ such that $(4, b)$ is a unitive pair. Let $[(x, y)] \varepsilon D(S)$. Then $x, y \& S$ and there exist $u, v, u^{\prime}, v^{\prime} \varepsilon S$ such that $a x+b y+u=x+v, a y+b x+u=y+y / x^{2}++y^{\prime} b+u^{\prime}=x+v^{\prime}$ and $x b+y a+u^{\prime}=y+v^{\prime}$. Thus $(a x+b y, a y+b x) \sim(x, y) / f(x a+y b, x b+y a)$. Therefore $[(a, b)][(x, y)]=$ $[(x, y)]=[(x, y)][(a, b)], s 0[(a, b)]$ is a multiplicative identity of $D(S)$.

Clearly, $[(a, b)]=1$ Al and only if (a, b) is a unitive pair. \#

Corollary 4.4. Let S be semining having $D(S)$ as its skew ring of right or left differences. Then S^{\prime} is additively commutative.

Definition 4.5. Askew ring $(S,+, \cdot)$ is called a skew field if $(S \backslash\{0\}, \cdot)$ is a group.

 any ideel J of $R, J=\{0\}$ or $J=R$.

Remark. Every skew field is a simple skew ring.

Definition 4.7. Let S be a unitive semiring. Then S is called exact if for any unitive pair (a, b) $\varepsilon \mathrm{SxS}$ and for all distinct $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{S}$ there exist $u, v, z, w, z^{\prime}, w^{\prime} \varepsilon S$ such that
and

$$
\begin{aligned}
& x u+y v+z=a+w, \\
& x v+y u+z=b+w, \\
& u x+v y+z^{\prime}=a+w^{\prime} \\
& u y+v x+z^{\prime}=b+w^{\prime} .
\end{aligned}
$$

Theorem 4.8. Let S be a semiring having $D(S)$ as its skew ring of right [left] differences. Then] $D(S)$ is a skew field if and only if S is exact.

Proof. Assume that $D(S)$ is a skew field. Then $D(S)$ has a multiplicative identity 1 and hence S is a unitive semiring. Let $(a, b) \varepsilon S x S$ be a unitive paif. By Theorem 4.3, $[(a, b)]=1$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{S}$ be distinc: Fhen $[(x, y)] \neq 0$. There exist $u, v \in S$ such that $[(x, y)][(u, v)]=[(a, b)]=[(u, v)][(x, y)]$. Therefore $(x u+y v, x v+y u) \sim(a, b) \sim(u x+y \times p y y+v x)$. There exist $z, w, z^{\prime}, w^{\prime} \varepsilon S$ such that $x u+y v+z=a+w, x y+y y z^{2}, b+w, u x+v y+z^{\prime}=a+w^{\prime}$ and $u y+v x+z^{\prime}=b+w^{\prime}$. Hence S is exact.

Converse $2 y$, assume that S is exact. Then S is a unitive semiring. Let $(a, b) \varepsilon S x S$ be a unitive paid. Then $[(a, b)]$ is a multiplicative idenfify of $D(S)$. Lét $\alpha \varepsilon D(S) \backslash\{0\}$. Choose $(x, y) \varepsilon \alpha$, so $\mathrm{x} \neq \mathrm{y}$. sinceos is exadt, there exist $1, v, \mathrm{Z}_{\mathrm{w}, \mathrm{z}^{\prime}, w^{\prime}} \in \mathrm{S}$ such that
 Therefore (xu+b), xv+yu) \&h $6(a, s) \backslash \sqrt{(u x+v y, ~ u y+v x) . ~ T h u s ~}[(x, y)][(u, v)]=$ $[(a, b)]=[(u, v)][(x, y)]$ and hence $D(S)$ is a skew field.

Corollary 4.9. Let S be a semiring having $D(S)$ as its skew ring of right [left] differences. If S is exact, then $D(S)$ is a simple skew ring.

Definition 4.10. A semiring S is said to be strongly multiplicatively cancellative (S.M.C.) if for all $x, y, z, w \in S$

$$
x z+y w=x w+y z \text { implies that } x=y \text { or } z=w
$$

and

$$
x z+y w=y z+x w \text { implies that } x=y \text { or } z=w .
$$

Example 4.11. \mathbf{Z}^{+}with the usual addition and multiplication is S.M.C.. In [7] the definition gf apmime ring was given. We shall generalize this definition so, skew rings.

Definition 4.12. A skew ripg \mathbb{R} is called a prime skew ring if for any ideals I, J in $R, I J=\{0\}$ implies that $I=\{0\}$ or $J=\{0\}$.

Example 4.13. Z with the usuly adition and multiplication is a prime skew ring.

Definition 4.14 . A skew x 南g $R /$ is called a strongly prime skew ring if for any weak ideehs I, J in $R, I J=\{0\}$ implies that $I=\{0\}$ or $J=\{0\}$.

Remark. Every strongly prime skew ring is a prime skew ring.
 right [left] Thifferences. If S is S.M.C., then $D(S)$ is a strongly prime

Proof. Assume that S is S.M.C.. Let I and J be weak ideals of $D(S)$ such that $I J=\{0\}$. Assume that $I \neq\{0\}$. We must show that $J=\{0\}$. Let $\alpha \in I$ be such that $\alpha \neq 0$ and let $\beta \in J$. Choose $(x, y) \varepsilon \alpha$ and $(z, w) \in \beta$. Then $[(x, y)][(z, w)]=\alpha \beta \varepsilon I J=\{0\}$. Therefore $[(x z+y w, x w+y z)]=0$. Hence $x z+y w=x w+y z$. Since S is S.M.C., $x=y$ or $z=w$. If $x=y$, then $\alpha=0$. This is a contradiction, so $z=w$.

Therefore $\beta=0$ and hence $J=\{0\}$.

Corollary 4.16. Let S be a semiring having $D(S)$ as its skew ring of right [left] differences. If S is S.M.C., then $D(S)$ is a prime skew ring.

Theorem 4.17. Let S be a multipligatively commutative semiring having $D(S)$ as its skew ring of eight [Ieft] differences. If $D(S)$ is a prime skew ring,

Proof. Assume thef $D(S)$ is a prime skew ring. Let $\alpha \in D(S)$ and $\langle\alpha\rangle$ denote the ideal gofienated by α. Let
 $i=1,2, \ldots, n\}$.

Claim that I_{α} Maded cleariy, $\alpha \varepsilon I_{\alpha}$.
Let $\beta, \beta=I_{\alpha}$. Then $\beta=\sum_{i=1}^{n}\left(g_{i}+\frac{1}{2} \alpha-g_{i}\right)$ and $\beta^{\prime}=\sum_{i=1}^{n}\left(g_{i}^{\prime}+r_{i}^{\prime} \alpha-g_{i}^{\prime}\right)$
 Therefore $\beta-g^{\prime}=\left(g_{1}+r_{1} \alpha-g_{1}\right)+\cdots+\left(g_{n}+r_{n} \alpha-g_{n}\right)-\left(g_{n}^{\prime}+r_{n}^{\prime} \alpha-g_{n}^{\prime}\right)-\ldots-\left(g_{1}^{\prime}+r_{1}^{\prime} \alpha-g_{1}^{\prime}\right)=$

Let $\beta \in D(S)$. To show that $\beta+I_{\alpha}-\beta \subseteq I_{\alpha}$, let $\beta^{\prime} \varepsilon \beta+I_{\alpha}-\beta$.
Then $\beta^{\prime}=\beta+\sum_{i=1}^{n}\left(g_{i}+r_{i} \alpha-g_{i}\right)-\beta$ for some $n \varepsilon \mathbf{z}^{+}, g_{i} \varepsilon D(s)$ and
$r_{i} \in D(S) \cup Z$ for all $i=1,2, \ldots, n$. Hence $\beta^{\prime}=\beta+\left(g_{1}+r_{1} \alpha-g_{1}\right)-\beta+\beta+$
$\left(g_{2}+r_{2} \alpha-g_{2}\right)-\beta+\beta+\ldots-\beta+\beta+\left(g_{n}-r_{n} \alpha-g_{n}\right)-\beta=\left(\beta+g_{1}+r_{1} \alpha-g_{1}-\beta\right)+\left(\beta+g_{2}+r_{2} \alpha-g_{2}-\beta\right)+$
$\ldots+\left(\beta+\mathrm{g}_{\mathrm{n}}+\mathrm{r}_{\mathrm{n}} \alpha-\mathrm{g}_{\mathrm{n}}-\beta\right) \varepsilon I_{\alpha}$.
Let $\beta \in D(S)$ and $\beta^{\prime} \varepsilon I_{\alpha}$. Then $\beta^{\prime}=\sum_{i=1}^{n}\left(g_{i}+r_{i} \alpha-g_{i}\right)$ for some $n \varepsilon Z^{+}, g_{i} \varepsilon D(S)$ and $r_{i} \varepsilon D(S) \cup Z$ for all $i=1,2, \ldots, n$. Therefore $\beta \beta^{\prime}=\sum_{i=1}^{n} \beta\left(g_{i}+r_{i} \alpha-g_{i}\right)=\sum_{i=1}^{n}\left(\beta g_{i}+\left(\beta r_{i}\right) \alpha-\beta g_{i}\right) \varepsilon I_{\alpha}$.

Let J be an ideal of $D(S)$ eneh that $\alpha \in J$. We must show that
$I_{\alpha} \subseteq J$. Let $\beta \in I_{\alpha}$. Then $\beta=\sum_{i=1}^{n}\left(g_{i}+r_{i} \alpha-g_{i}\right)$ for some $n \varepsilon z^{+}, g_{i} \varepsilon D(S)$ and $r_{i} \in D(S) \cup \mathbf{z}$ for a14 $;=1,2, \ldots, n$ since $\alpha \varepsilon J, r_{i} \alpha \in J$ for all $i=1,2$, 1. n. sirice $\}$ is an ideal of $D(S), g_{i}+r_{i} \alpha-g_{i} \varepsilon J$ for all $i=1,2$, \ldots, n. Since is closed under addition, $\beta \in J$. Hence $I_{\alpha} \subseteq J$.

So we have the cyatim
Next, chaim that $\langle\alpha<\beta\rangle \leqslant \alpha \beta \beta$ for all $\alpha, \beta \in D(S)$. Let $\alpha, \beta \in D(S)$. Thery $\langle\alpha\rangle\langle\beta\rangle=$ \{uv $\mid u \varepsilon\langle\alpha\rangle$ anc $v \in\langle\beta\rangle\}=$
$\left\{\left(\sum_{i=1}^{1}\left(g_{i}+r_{i} \alpha-g_{i}\right)\right)\left(\sum_{j=1}^{m}\left(g_{j}^{\prime}+r_{j}^{\prime} \beta-g_{j}^{\prime}\right)\right) \mid 1, m \in z^{+}, g_{i}, g_{j}^{\prime} \varepsilon D(S)\right.$ and $i=1$ $r_{i}, r_{j}^{\prime} \in D(S) \cup$ Csordalh $i=\mid 1,2 c .1,0$ and ald $\left.j=1,2, \ldots, m\right\}=$
 $r_{i}, r_{j}^{\prime} \in D(s) \cup Z$ for all $i=1,2, \ldots, 1$ and all $\left.j=1,2, \ldots, m\right\}=$ \{ $\sum_{i=1}^{1} \sum_{j=1}^{m}\left(g_{i} g_{j}^{\prime}+g_{i} r_{j}^{\prime} \beta-g_{i} g_{j}^{\prime}+r_{i} \alpha g_{j}^{\prime}+r_{i} \alpha \cos _{j}^{\prime} \beta-r_{i} \alpha g_{j}^{\prime}-g_{i} g_{j}^{\prime}-g_{i} r{ }_{j}^{\prime} \beta+g_{i} g_{j}^{\prime}\right) \mid 1, m \varepsilon \mathbf{z}^{+}$, $g_{i}, g_{j}^{\prime} \varepsilon D(S)$ and $r_{i}, r_{j}^{\prime} \in D(S) \cup z$ for all $i=1,2, \ldots, 1$ and all $j=1,2, \ldots, m\}=\left\{\sum_{i=1}^{1} \sum_{j=1}^{m} r_{i} r_{j}^{\prime} \alpha \beta \mid 1, m \in \mathbf{z}^{+}\right.$and $r_{i}, r_{j}^{\prime} \in D(S) \cup \mathbf{Z}$
for all $i=1,2, \ldots, 1$ and all $j=1,2, \ldots, m\} \subseteq\langle\alpha \beta\rangle$, so we have the claim.

Now, let $x, y, z, w \in S$ be such that $x z+y w=x w+y z$. Then $[(x z+y w, x w+y z)]=0$. Therefore $\langle[(x, y)][(z, w)]\rangle=\{0\}$. Hence $\langle[(\mathrm{x}, \mathrm{y})]\rangle\langle[(\mathrm{z}, \mathrm{w})]\rangle \subseteq\langle[(\mathrm{x}, \mathrm{y})][(\mathrm{z}, \mathrm{w})]\rangle=\{0\}$ which implies that $\langle[(\mathrm{x}, \mathrm{y})]\rangle\langle[(\mathrm{z}, \mathrm{w})]\rangle=\{0\}$. Since $\mathrm{D}(\mathrm{s})$ is a prime skew ring, $\langle[(\mathrm{x}, \mathrm{y})]\rangle=$ $\{0\}$ or $\langle[(z, w)]\rangle=\{0\}$. Thus $x=f$ or. $z=$ w. Similarly, we can show that if $x z+y w=y z+x w$, then $x=y \quad y^{2}=w$. Hence S is S.M.C..

Corollary 4.18. Let s be f/fultiplicatively commutative semiring having $D(S)$ as its skew/ring ofmight $[1 e f t]$ differences. If $D(S)$ is a strongly prime sked ring, tren S is $S . M C$.

Proposition 4.19. Let S be a unitive semiring having $D(S)$ as its skew ring of right [left] diffepenges, and $(a, b),(c, d) \varepsilon S x S$. If (a, b) and (c, d) are unitive pairs, then/the following statements hold:
(1) There exist $z, w \in S$ such that $a f 2)=c+w$ and $b+z=d+w$.
(2) $(a c+b d, a d+b c)$ is a unitive pais.

Proof. (1) By Theorem 4.3/, $[(a, b)]=1=[(c, d)]$ where 1 is

that $a+z=c+w$ and $b+z=d+w$, so done.
Q_{q}
(2) soncel $[(a, b)\}] d i d(c, a) d,[(a, b)][P d, a)]=1$. Therefore $[(a c+b d, a d+b c)]=1$ and hence $(a c+b d, a d+b c)$ is a unitive pair.

Proposition 4.20. Let S be a semiring with a multiplicative identity 1 having $D(S)$ as its skew ring of right [left] differences. Then $[(1+1,1)]$ is a multiplicative identity of $D(S)$ if and only if S is additively commutative.

Proof. Assume that $[(1+1,1)]$ is a multiplicative identity of $D(S)$. Let $x, y \in S$. Then $[(x, y)][(1+1,1)]=[(x, y)]$. Therefore $(x+x+y, x+y+y) \sim(x, y)$. There exist $u, v \in S$ such that $x+x+y+u=x+v$ and $x+y+y+u=y+v$. Since S is A.C., $x+y=y+x$.

Conversely, assume that S is additively commutative. Let $[(x, y)] \in D(S)$. Then $[(x, y)][(1+1,1)]=[(x+x+y, x+y+y)]=[(x, y)]=$ $[(1+1,1)][(x, y)]$. Hence $[(1+1,4))$ is a multiplicative identity of $D(S)$.

Proposition 4.21. Let S 06 semiring having $D(S)$ as its skew ring of right [left] differences/i: $S \rightarrow D(S)$ the right [left] difference embedding and $K \subseteq S$ ponempty S Then $i(K)-i(K)=\{[(x, y)] / x, y \in K\}$.

Proof. Let x, y of. Neiaim that $[(x+x, x)]+[(y, y+y)]=[(x, y)]$. There exist $u, v \in S$ such thá $x+u=y+v$. Thus $[(x+x, x)]+[(y, y+y)]=$ $[(x+x+u, y+y+v)]$. Since $x+4, y+y, y+x+u+v=y+y+v+v$. Therefore $(x+x+u, y+y+v) \sim(x, y)$, so what have the claim.
Now, $i(K)-i(K)$

ข $=\{[(x, y)] / x, y \in K\}$.
จหาลงกรณมมหาวิทยาลัย
Definition 4.22. Let S be a commutative semiring and $K \subseteq S$ nonempty. Then K is called a quasi-ideal in S if
(1) for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{K}$ there exist $\mathrm{u}, \mathrm{v} \varepsilon \mathrm{K}$ such that
$x+w+v=y+z+u$
and (2) for all $x, y \in K$ and all z,w εS there exist $u, v \in K$ such that $\mathrm{xz}+\mathrm{yw}+\mathrm{v}=\mathrm{xw}+\mathrm{yz}+\mathrm{u}$.

Example 4.23. Let S be a commutative semiring and $x \varepsilon S$. Then S and $\{x\}$ are quasi-ideals in S.

Proposition 4.24. Let S be a commutative semiring and $\mathrm{K}_{1}, \mathrm{~K}_{2} \subseteq \mathrm{~S}$ nonempty. If K_{1} and K_{2} are quasi-ideals in S, then $K_{1}+K_{2}$ is a quasi-ideal in S.

Proof. Let $x, y, z, w \in K_{1}+2$. Then $x=x_{1}+x_{2}, y=y_{1}+y_{2}$, $z=z_{1}+z_{2}$ and $w=w_{1}+w_{2}$ for some $x_{1}, y_{1}, z_{1}, w_{1} \varepsilon K_{1}$ and some $x_{2}, y_{2}, z_{2}, w_{2} \& K_{2}$. Thene getf, u_{1}, v_{1} \& K_{1} such that $x_{1}+w_{1}+v_{1}=y_{1}+z_{1}+u_{1}$. Also, there exist $u_{2}, v_{2} / \mathrm{K}_{2}$ sueh that $\mathrm{x}_{2}+\mathrm{w}_{2}+\mathrm{v}_{2}=\mathrm{y}_{2}+\mathrm{z}_{2}+\mathrm{u}_{2}$. Let $u=u_{1}+u_{2}$ and $v=y_{1}+v 2$ (Then $u, v \in K_{1}+K_{2}$ and $x+w+v=\left(x_{1}+x_{2}\right)+$ $\left.\left(w_{1}+w_{2}\right)+\left(v_{1}+v_{2}\right)=\left(x_{1}+w_{1}+y_{1}\right)+x_{2}+w_{2}+v_{2}\right)=\left(y_{1}+z_{1}+u_{1}\right)+\left(y_{2}+z_{2}+u_{2}\right)=$ $\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right)+\left(\mathrm{z}_{1}+\mathrm{z}_{2}\right)+\left(\mathrm{u}_{1}+\mathrm{u}_{2}\right)$ 5iviz+un

Let $x, y \in K_{1}+K_{2}$ ander, है। Then $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$ for some $x_{1}, y_{1} \in \mathbb{K}_{1}$ and some $x_{2}, y_{2} \varepsilon K_{2}$. Thene exist $u_{1}, v_{1} \varepsilon K_{1}$ such that $x_{1} z+y_{1} w+v_{1}=x_{1} w+y_{1} z+u_{1}$. Also, there exist $u_{2}, v_{2} \varepsilon K_{2}$ such that
 and $x z+y w+v=\left(x_{1}+x_{2}\right) z+\left(y_{1}+y_{2}\right) w+\left(v_{1}+v_{2}\right)=x_{1} z+x_{2} z+y_{1} w+y_{2} w+v_{1}+v_{2}=$ $\left(x_{1} z+y_{4} w+v_{1}\right)+\left(x_{2} z+y_{2} w+v_{2}\right)=\left(x_{1} w+y_{1} z+u_{1} 9+\left(x_{2} w+y_{2} z+u_{2}\right){ }^{2}\left(x_{1}+x_{2}\right) w+\right.$ $\left(y_{1}+y_{2}\right) z+\left(u_{1}+u_{2}\right)=x w+y z+u$.
\#

Conollary 4.25. Let S be a commutative semiring and $K \subseteq S$ nonempty. If K is a quasi-ideal in S, then $K+K$ is a quasi-ideal in S.

Proposition 4.26. Let S_{1} and S_{2} be commutative semirings and $K_{1} \subseteq S_{1}$, $\mathrm{K}_{2} \subseteq \mathrm{~S}_{2}$ nonempty. If K_{1} and K_{2} are quasi-ideals in S_{1} and S_{2}, respectively, then $K_{1} \times K_{2}$ is a quasi-ideal in $S_{1} \times S_{2}$.

Proof. Clearly, $\mathrm{S}_{1} \times \mathrm{S}_{2}$ is a commutative semiring. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{K}_{1} \times \mathrm{K}_{2}$. Then $\mathrm{x}=\left(\mathrm{k}_{1}, \aleph_{2}\right), \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ and $w=\left(w_{1}, w_{2}\right)$ for some $x_{1}, y_{1}, z_{1}, w_{1}$, and some $x_{2}, y_{2}, z_{2}, w_{2} \varepsilon k_{2}$. There exist $u_{1}, v_{1} \varepsilon k_{1}$ and,$v_{2} \varepsilon k_{2}$ such that $x_{1}+w_{1}+v_{1}=y_{1}+z_{1}+u_{1}$ and $x_{2}+w_{2}+v_{2}=y_{2}+z_{2}+u_{2}$, Let $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$. Then $u, v \in K_{1} \times K_{2}$ and $x+w+v=\left(v_{1}, x_{2}+\left(w_{1}, w_{2}\right)+\left(v_{1}, v_{2}\right)=\left(x_{1}+w_{1}+v_{1}, x_{2}+w_{2}+v_{2}\right)=\right.$ $\left(y_{1}+z_{1}+u_{1}, y_{2}+z_{2}+u_{2}\right)=\left(y_{1}, y_{2}\right)+\left(z_{1}, z_{2}\right)+\left(u_{1}, u_{2}\right)=y+z+u$.

Let $x, y \in K_{1} \times K_{2}$ and $R, \mathcal{W} / S_{/} \times S_{2}$. Then $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$, $z=\left(z_{1}, z_{2}\right)$ and $w=\left(w_{1}, w\right.$ for some $x_{1}, y_{1} \varepsilon k_{1}, x_{2}, y_{2} \varepsilon K_{2}, z_{1}, w_{1} \varepsilon S_{1}$ and some $z_{2}, w_{2} \& S_{2}$. There exist $u_{1}, v_{1} \varepsilon K_{1}$ and $u_{2}, v_{2} \varepsilon K_{2}$ such that $x_{1} z_{1}+y_{1} w_{1}+v_{1}=x_{1} w_{1}+y_{1} z_{1}+u_{1}$ and $x_{2} z_{2}+y_{2} w_{2}+v_{2}=x_{2} w_{2}+y_{2} z_{2}+u_{2}$. Let $u=\left(u_{1}, u_{2}\right)$ and $v=\delta\left(y_{1}, v_{2}\right)$. Then $u, v \varepsilon K_{1} \times K_{2}$ and $x z+y w+v=$ $\left.\left(x_{1}, x_{2}\right)\left(z_{1}, z_{2}\right)+k\left(y_{1}, s_{2}\right) d w_{1}, w_{2}\right)+\left(v_{1}, y_{2}\right)=\left(x_{1} z_{1}+x_{1} \tilde{x}_{1}+v_{1}, x_{2} z_{2}+y_{2} w_{2}+v_{2}\right)=$
 $x w+y z+u$.
\#

Corollary 4.27. Let S be a commutative semiring and $K \subseteq S$ nonempty. If K is a quasi-ideal in S, then $K x K$ is a quasi-ideal in $S x S$.

Proposition 4.28. Let S be a commutative semiring and $K \subseteq S$ nonempty. If K is a semiring-ideal of S, then K is a quasi-ideal in S.

Proof. Let $x, y, z, w \in K$. Let $u=x+w$ and $v=y+z$. Then $u, v \in K$ and $x+w+v=x+w+(y+z)=y+z+(x+w)=y+z+u$.

Let $x, y \in K$ and $z, w \in S$. Let $u=x z+y w$ and $v=x w+y z$. Then $u, v \in K$ and $x z+y w+v=x z+y w+(x w+y z)=x w+y z+(x z+y w)=x w+y z+u$. Thus K is a quasi-ideal in S.
\#

The converse of this proposition is not always true as the next example shows.

Example 4.29. \mathbf{z}^{+}with the usual addition and multiplication is a commutative semiring and $\left\{1 /\right.$ is a quasi-ideal in \mathbf{z}^{+}. But $1+1=2 \notin\{1\}$, so $\{1\}$ is not a semiring-ideal of Z^{+}.

Proposition 4.30. Let S be aiconutative semiring having $D(S)$ as its ring of differences, $i=S \geqslant D(S)$ the difference embedding and $J \subseteq D(S)$ nonempty. If J is an idea of $\mathrm{D}(\mathrm{S})$, then $\mathrm{i}^{-1}(\mathrm{~J})$ is a semiring-ideal of S.

Proof.
 $i(x+y)=i(x)+i(y) \& J$. Thus $x+y \varepsilon i^{-1}(J)$.
 ข

Corollary 4.31. Let S be a commutative semiring having $D(S)$ as its ring of differences, $i: S \rightarrow D(S)$ the difference embedding and J an ideal of $D(S)$. Then the following statements hold:
(1) $i^{-1}(J)$ is a quasi-ideal in S.
(2) $\mathrm{i}^{-1}(\mathrm{~J})+\mathrm{i}^{-1}(\mathrm{~J})$ is a quasi-ideal in $\mathrm{S}+\mathrm{S}$.
(3) $i^{-1}(\mathrm{~J}) \times i^{-1}(\mathrm{~J})$ is a quasi-ideal in $S \times S$.

Theorem 4.32. Let S be a commutative semiring having $D(S)$ as its ring of differences, $i: S \rightarrow D(S)$ the difference embedding and $K \subseteq S$ nonempty. Then $i(K)-i(K)$ is an sdeal of $D(S)$ if and only if K is a quasi-ideal in S.

Proof. Assume that $i(K)-i(K)$ is an ideal of $D(S)$. Let $x, y, z, w \in K$. Then $[(x+w, y+z)]=[(x, y)]+[(w, z)]=[(x, y)]-[(z, w)] \in$ $i(K)-i(K)$. Hence there exist $u, v \in K$ such that $[(x+w, y+z)]=[(u, v)]$ which implies that $x+w+v=y+z+u$. Let $x, y \in K$ and $z, w \in S$. Then $[(x, y)] \varepsilon i(K)-i(K)$ and $[(z, N)] \varepsilon D(S)$. Thus $[(x, y)][(z, w)] \varepsilon i(K)-i(K)$. Therefore $[(x z+y w, x w+y z)]$ e, $i(K)-i(K)$. There exist $u, v \varepsilon K$ such that $[(x z+y w, x w+y z)]=[(u, v)]$. Thenefore $x z+y w+v=x w+y z+u$. Hence k is a quasi-ideal in S .

Conversely, assuréthet Kis a quasi-ideal in S. Let $x, y \in i(K)-i(K)$. Then $x=\left[\left(x_{1}, x_{2}\right)\right]$ and $y=\left[\left(y_{1}, y_{2}\right)\right]$ where $x_{1}, x_{2}, y_{1}, y_{2} \varepsilon K$. There exist $u, v \varepsilon K$ such that $x_{1}+y_{2}+v=x_{2}+y_{1}+u$. Thus $x-y=\left[\left(x_{1}+y_{2}, x_{2}+y_{1}\right)\right]=[(u, v)] \varepsilon i(K)-i(K)$.
 $r_{1}, r_{2} \varepsilon S$, there exist u, $v \varepsilon_{6} K$ such that $x_{1} r_{1}+x_{2} r_{2}+v=x_{1} r_{2}+x_{2} r_{1}+u$. Thus $\left[\left(x_{1} r_{1}+x_{2} r_{2}, x_{1} n_{2}+x_{2} r_{1}\right)\right]=\left[\left(\frac{1}{n}, v\right)\right], 0$ so $\left[\left(x_{1}, x_{2}\right)\right]\left[\left(n_{1}, r_{2}\right)\right] \varepsilon i(k)-i(k)$. Hence $i(K)-i(K)$ is an ideal of $D(S)$.

\#

Conollary 4.33. Let S be a commutative semiring having $D(S)$ as its ring of differences and $i: S \rightarrow D(S)$ the difference embedding. Then :
(1) If J is an ideal of $D(S)$, then $i\left(i^{-1}(J)\right)-i\left(i^{-1}(J)\right)$ is an ideal of $D(S)$.
(2) If K is a quasi-ideal in S, then $i^{-1}(i(K)-i(K))$ is a quasi-ideal in S.

In [6]the concept of a C-set for a distributive ratio seminear-ring was given. For a ratio semiring (which is commutative) this definition is equivalent to the one given below :

Definition 4.34. Let D be a dohmytative ratio semiring and $C \subseteq D$ nonempty. Then C is called a C-set in D ifl
(1)

and
(2) for ail x \& \subset \&ha all $\mathrm{d} \in D_{0},(\mathrm{x}+\mathrm{d})(1+\mathrm{d})^{-1} \varepsilon c$.

Example 4.35. Let phe qomputative ratio semiring and 1 the identity of (D, \cdot). Then D and $\{1\}$ athe (C-sets in D.

Definition 4.36. Let S be angonmutative semiring and $K \subseteq S$ nonempty. Then K is called a quasifçabe in S if
(1) for all $a, b s c d e x$ there exist $e, f \varepsilon k$ such that adf $=b c e$
and
(2) foh sil a, εK and anl $c, d \in$ Senere exist e,f $\in K$ süch that $a d^{2} f+b c d f=b d^{2} e+b c d e$.

 $\{x\}$ are quas $q-c-s e t s$ in S.
 Let K_{1} and K_{2} be quasi-C-sets in S_{1} and S_{2}, respectively. Then $K_{1} \times K_{2}$ is a quasi-C-set in $S_{1} \times S_{2}$.

Proof. Clearly, $\mathrm{S}_{1} \times \mathrm{S}_{2}$ is a commutative semiring. Let $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w} \in \mathrm{K}_{1} \times \mathrm{K}_{2}$. Then $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right), \mathrm{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ and
$w=\left(w_{1}, w_{2}\right)$ for some $x_{1}, y_{1}, z_{1}, w_{1} \varepsilon K_{1}$ and some $x_{2}, y_{2}, z_{2}, w_{2} \varepsilon K_{2}$. There exist $u_{1}, v_{1} \varepsilon \mathrm{~K}_{1}$ and $\mathrm{u}_{2}, \mathrm{v}_{2} \varepsilon \mathrm{~K}_{2}$ such that $\mathrm{x}_{1} \mathrm{w}_{1} \mathrm{v}_{1}=\mathrm{y}_{1} \mathrm{z}_{1} \mathrm{u}_{1}$ and $x_{2} w_{2} v_{2}=y_{2} z_{2} u_{2}$. Let $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$. Then $u, v \in K_{1} \times K_{2}$ and $x w v=\left(x_{1}, x_{2}\right)\left(w_{1}, w_{2}\right)\left(v_{1}, v_{2}\right)=\left(x_{1} w_{1} v_{1}, x_{2} w_{2} v_{2}\right)=\left(y_{1} z_{1} u_{1}, y_{2} z_{2} u_{2}\right)=$ $\left(y_{1}, y_{2}\right)\left(z_{1}, z_{2}\right)\left(u_{1}, u_{2}\right)=y z u$.

Let $x, y \in K_{1} x K_{2}$ and $z, \forall \& S_{2}$. Then $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$, $z=\left(z_{1}, z_{2}\right)$ and $w=\left(w_{1}, w_{2}\right)$ for son $x_{1}, y_{1} \in k_{1}, x_{2}, y_{2} \in K_{2}, z_{1}, w_{1} \in S_{1}$ and some $z_{2}, w_{2} \varepsilon S_{2}$. Therg gxist $u_{1}, v_{1} \varepsilon K_{1}$ and $u_{2}, v_{2} \varepsilon K_{2}$ such that $x_{1} w_{1}{ }^{2} v_{1}+y_{1} z_{1} w_{1} v_{1}=y_{1}{ }_{1}{ }^{2}+y_{2} z_{1} w_{1} u_{1}$ and $x_{2}{ }_{2}{ }^{2} v_{2}+y_{2} z_{2} w_{2} v_{2}=y_{2} w_{2}{ }^{2} u_{2}+y_{2} z_{2} w_{2} u_{2}$. Let $u=\left(u_{1}, u_{2}\right)$ and $y=(y, v 2)$ Then $u, v k_{1} \times K_{2}$ and $x w^{2} v+y z w v=$ $\left(x_{1}, x_{2}\right)\left(w_{1}, w_{2}\right)\left(w_{1}, w_{2}\right)\left(v_{1}, v_{2}\right)$ $\left(x_{1} w_{1}{ }^{2} v_{1}, x_{2} w_{2}{ }^{2} v_{2}\right)+\left(y_{1} z_{1} w_{1}\right.$ $\left.y_{2} z_{2} w_{2} v_{2}\right)=\left(y_{1} w_{1}{ }^{2} u_{1}+y_{1}{ }_{1} 11 y_{2} w_{2}{ }^{2} u_{2}+y_{2} z_{2} w_{2} u_{2}\right)=\left(y_{1} w_{1}{ }^{2} u_{1}, y_{2} w_{2}{ }^{2} u_{2}\right)+$ $\left(y_{1} z_{1} w_{1} u_{1}, y_{2} z_{2} w_{2} u_{2}\right)=\left(y_{1}, y_{2}\right)\left(w_{1}, w_{2}\right)\left(w_{1}, w_{2}\right)\left(u_{1}, u_{2}\right)+$ $\left(y_{1}, y_{2}\right)\left(z_{1}, z_{2}\right)\left(w_{1} w_{2}\right)\left(u_{1}, u_{2}\right)=y w^{2} u+y z w u$.
4.39. Wet \& be accomutative semiring and k_{1}, k_{2} quasigq-stistins.g Then $y_{1} \times k_{2}$ isha quasinctset incoss.
Proposition 4.40. Let S be a commutative semiring and $\mathrm{K} a$ semiring-ideal of S. Then K is a quasi-C-set in S.

Proof. Let $a, b, c, d \in K$. Let $f=b c$ and $e=a d$. Then $\mathrm{f}, \mathrm{e} \varepsilon \mathrm{K}$ and $\mathrm{adf}=\mathrm{bce}$.

Let $a, b \in K$ and $c, d \in S$. Let $e=a d^{2}+b c d$ and $f=b d^{2}+b c d$.

Then $e, f \in K$ and $a d^{2} f+b c d f=\left(a d^{2}+b c d\right) f=\left(a d^{2}+b c d\right)\left(b d^{2}+b c d\right)=$ $e\left(b d^{2}+b c d\right)=b d^{2} e+b c d e$.
\#

Proposition 4.41. Let S be a commutative semiring having $Q(S)$ as its commutative ratio semiring of quotients, $i: S \rightarrow Q(S)$ its quotient embedding and $K \subseteq S$ nonempty. Thon $i(K) \cdot i(K)^{-1}=\{[(a, b)] / a, b \varepsilon K\}$. Proof. $i(K) \cdot i(K)^{-1}=\left\{x y^{-1} / x, y \in i(K)\right\}$
(i $\left.(a)(i(b))^{-1} / a, b \in k\right\}$
$\left.\left.2=\underset{K}{k}\left(a^{2}, a\right)\right]\left(\left[\left(b^{2}, b\right)\right]\right)^{-1} / a, b \in k\right\}$
$=\left(d\left[\left(a^{2}, a\right)\right]\left[\left(b, b^{2}\right)\right] / a, b \in k\right\}$
2 化 $f\left[\left\{\left(a^{2} b, a b^{2}\right)\right] / a, b \in k\right\}$
น16 $[\{(a, b)] / a, b \in K\}$.
\#

Theorem 4.42 .
Let S be a commutative semiring having $Q(S)$ as its commutative ratio/semiring of quotients, i $: S \rightarrow Q(S)$ the quotient embedding and $K \subseteq S$ nonempty. Then $i(K) \cdot i(K)^{-1}$ is a C-set in $Q(S)$ if and only if β 解 aquasioq-set9/in $5.9 N ? \cap ? \approx$

9

Let $a, b, c, d \in K$. Then $[(a, b)],[(c, d)] \varepsilon i(K) \cdot i(K)^{-1}$. Therefore $[(a, b)][(d, c)] \varepsilon i(K) \cdot i(K)^{-1}$. There exist e,f εK such that $[(a, b)][(d, c)]=[(e, f)]$. Thus $[(a d, b c)]=[(e, f)]$, so $a d f=b c e$. Let $a, b \in K$ and $c, d \in S$. Then $[(a, b)] \varepsilon i(K) \cdot i(K)^{-1}$ and $[(c, d)] \varepsilon Q(S)$. Thus $[((a d+b c) d, b d(d+c))]=([(a d+b c, b d)])([(d+c, d)])^{-1}=$
$([(a, b)]+[(c, d)])([(a, a)]+[(c, d)])^{-1} \varepsilon i(K) \cdot i(K)^{-1}$. There exist e,f εK such that $[(a d+b c) d, b d(d+c)]=[(e, f)]$. Therefore $a d^{2} f+b c d f=$ $b d^{2} e+b c d e$ and hence K is a quasi-c-set in S.

Conversely, assume that K is a quasi-c-set in S .
Let $x, y \in i(K) \cdot i(K)^{-1}$. Then $x=[(a, b)]$ and $y=[(c, d)]$ for some $a, b, c, d \in k$. There exist $e, f \in \mathbb{K}$ sueb that $a d f=b c e$. Thus $x^{-1}=$ $[(a, b)][(c, d)]^{-1}=[(a, b)][(d, c)]=[(a d, b c)]=[(e, f)] \varepsilon i(K) \cdot i(K)^{-1}$. Let $x \in i(K) \cdot i(K)^{-1}$ and f \&/gys). Then $x=[(a, b)]$ and $y=[(c, d)]$ for some $a, b \in K$ and some q, d \& . There exist $e, f \varepsilon K$ such that $a d^{2} f+b c d f=b d^{2} e+b c d e$. Thas $\left(2 d^{2}+b c d, b c^{2}+b c d\right) \sim(e, f)$. Therefore $\left.\left.(x+y)(1+y)^{-1}=[(a d+b c, b d)](\sqrt{2} q, c)\right]+[(c, d)]\right)^{-1}=$ $[(a d+b c, b d)]([(d+c, d)])^{-1}=$ $\left[\left(\mathrm{ad}^{2}+\mathrm{bcd}, \mathrm{bd}{ }^{2}+\mathrm{bcd}\right)\right]=\left[(\operatorname{s}, 5) 3 / E: i(\mathrm{~K}) \cdot \mathrm{i}(\mathrm{K})^{-1}\right.$ and hence $i(\mathrm{~K}) \cdot i(\mathrm{~K})^{-1}$ is a C-set in $Q(S)$.

Corollary 4.43. Let, S be a commutative semiring having $Q(S)$ as its commutat ive patio seminiof of oqotiepts? i? $\beta \rightarrow \underset{\rho}{ }(s)$ the quotient embedding and $K \subseteq S$ nonempty. If K is a semiring-ideal of S, then

Proof. It follows immediately from Proposition 4.40 and Theorem 4.42.
\#

Definition 4.44. Let S be a commutative semiring with a multiplicative identity 1 and $A \subseteq S$ nonempty. Then A is called a c-set in S if
(1) for all $\mathrm{x}, \mathrm{y} \in \mathrm{A}, \mathrm{xy} \in \mathrm{A}$
and (2) for all $x \in A$ and all $s \varepsilon S, x+s \in A(1+s)$.

Remark. Let S be a commutative ratio semiring and $A \subseteq S$ a C-set in S. Then A is a c-set in S.

Example 4.45. \mathbb{R}_{0}^{+}with the usual addition and multiplication is a commutative semiring with a multiplacetive identity 1.

Claim that $[1, \infty)$ is a cse in R_{0}^{+}, let $\mathrm{x}, \mathrm{y} \in[1, \infty)$. Then $\mathrm{x} \geqslant 1$ and $y \geqslant 1$. Therefore $x y \geqslant 1$. that is, $x y \in[1, \infty)$.

Let $x \in[1, \infty)$ anc,$s \in \mathbb{R}^{+}$. Then $x+s \geqslant 1+s$, so $\frac{x+s}{1+s} \geqslant 1$.
Hence $x+s=\frac{x+s}{1+s} \cdot(1+s) \varepsilon[7, \bar{\infty})(1+s)$, so we have the claim.

Remark. \mathbf{Z}^{+}with the usual addition and multiplication is not a c-set in \mathbf{Z}^{+}because $3+2=5 \notin \frac{(1)+2) \text {. } 13318}{}$

Proposition 4.46. Let S be a commutative semiping with a multiplicative identity having $\mathrm{Q}(\mathrm{S})$ as its commutative ratio semiring of quotients, $i: S \rightarrow Q(S)$ the quotient embedding and $C \subseteq S$ nonempty. If $i(C)$ is a

Let $x \in C$ and $s \in S$. Then $i(x) \varepsilon i(c)$ and $i(s) \varepsilon Q(S)$.
Therefore $(i(x)+i(s))(1+i(s))^{-1} \varepsilon i(c)$ which implies that $i(x)+i(s) \varepsilon i(c)(1+i(s))$. Thus $i(x+s) \varepsilon i(c(1+s))$. Hence
$x+s \varepsilon i^{-1}(i(c(1+s)))=c(1+s)$.

Proposition 4.47. Let S_{1} and S_{2} be commutative semirings with a multiplicative identity. Let C_{1} and C_{2} be c -sets in S_{1} and S_{2}, respectively. Then $C_{1} \times C_{2}$ is a c-set in $S_{1} \times S_{2}$.

Proof. Let $x, y \in C_{1} \times C_{2}$. Then $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ for some $x_{1}, y_{1} \in C_{1}$ and some $x_{2}, y_{2} \in C_{2}$. Therefore $x_{1} y_{1} \in C_{1}$ and $x_{2} y_{2} \in C_{2}$. Thus $x y=\left(x_{1} y_{1}, x_{2} y_{2}\right)$ \& $e_{1} x_{2}$.

Let $x=\left(x_{1}, x_{2}\right) \varepsilon \times C_{2}$ and $s=\left(s_{1}, s_{2}\right) \varepsilon s_{1} \times s_{2}$. Then $x_{1}+s_{1} \varepsilon c_{1}\left(1+s_{1}\right)$ and $x_{2}+s_{2} / \varepsilon_{2}\left(1+s_{2}\right)$. Therefore $x_{1}+s_{1}=c_{1}\left(1+s_{1}\right)$ and $x_{2}+s_{2}=c_{2}\left(1+s_{2}\right)$ fon some q1 e c. 1 and some $c_{2} \in C_{2}$. Thus $\left(x_{1}+s_{1}, x_{2}+s_{2}\right)=$ $\left(c_{1}\left(1+s_{1}\right), c_{2}\left(1+s_{2}\right)\right)$ Hencè $x+8=\left(x_{1}, x_{2}\right)+\left(s_{1}, s_{2}\right)=$

Corollary 4.48 . Let S bec avomutative semiring with a multiplicative identity and A ars-set in S. Then $A \times A$ is a goset in $S \times S$.

Proposition 4.49 .
Let S be a commutative M.C. semiring with a multiplicative identity and $C_{1}, C_{2} O$-sets in S such that $C_{1} \cap C_{2} \neq \phi$.

Also, xy $\in C_{2}$. Thus xy $\in C_{1} \cap C_{2}$.
Let $x \in C_{1} \cap C_{2}$ and $s \in s$. Then $x+s \in C_{1}(1+s)$ and
$x+s \in c_{2}(1+s)$. Therefore $c_{1}(1+s)=x+s=c_{2}(1+s)$ for some $c_{1} \& C_{1}$ and some $c_{2} \in C_{2}$. Since S is M.C., $c_{1}=c_{2}$. Hence $x+s \varepsilon\left(c_{1} \cap c_{2}\right)(1+s)$.

Proposition 4,50 , Let S be a commutative semiring with a multiplicative identity 1, Then $\{1\}$ is a c-set in S. Furthermore, if S is both A.C. and M,C, and there exists an element $x \varepsilon S$ such that $\{x\}$ is a coset in S, then $x=1$.

Proof. Let $a, b \in\{1\}$. Then $a=b=1$. Therefore $a b \varepsilon\{1\}$. Let $a \varepsilon\{1\}$ and $s \varepsilon s, \quad T h e n a=1$ and $a+s=1+s=1(1+s) \varepsilon\{1\}(1+s)$. Hence $\{1\}$ is a coset in S.

Furthermore, assume that S is A, C. and M, C, and there exists an $x \in S$ such that $\{x\}$ is $\varepsilon / \notin-\operatorname{set}$ in S. Then $x+x \in\{x\}(1+x)$. Thus $x+x=x(1+x)=x 1+x x$. Since Sis $A . C ., x=x x$. Since S is $M, C, x=1$.

