CHAPTER II

HISTORICAL

1. The Investigation of Chemical Constituents in the Petrosia

Chemical constituents isolated from the genus *Petrosia* sponges were reported as sterols, fatty acids, aldehydes, alkaloids and acetylenic compounds. The occurrence of these compounds are described as the followings.

1.1 Sterols

Sponges were the first invertebrates shown to contain sterols other than cholesterol. In light of the rich diversity of sponge sterols, their use in chemotaxonomy has been investigated (Kerr and Baker, 1991). For many years the carbon range of sterols extended from C_{27} to C_{29} (Scheuer, 1973), but discoveries of a norcholesterol and of baikalosterol increased the carbon range of sponge sterols from C_{26} to C_{32} (Kerr and Baker, 1991). For *Petrosia* spp., the carbon range of their sterols varied from C_{26} to C_{30} . The most intriguing feature was the presence of cyclopropanes, such as petrosterol (1), initially isolated from *Petrosia ficiformis* (Mattia et al., 1978; Ravi et al., 1978; Sica and Zollo, 1978), 23(R), 24(R)-methylenecholesterol (2) (Proudfoot and Djerassi, 1984), 23,24-dihydrocalysterol (3) from *P. ficiformis* (Siedel, Proudfoot and Djerassi, 1986), 5α -petrostanol (4), hebesterol (5) and 23, 24-dihydro- 5α -calystanol (6) from *P. hebes* (Cho and Djerassi, 1987).

Also, alkylation could occur at all carbons of the cholesterol side chain (C_{22} - C_{27}). For example: ficisterol (7) had a 23-ethyl group, norficisterol (8) (Khalil et al., 1980) and (24R, 25R)-24,26-dimethylcholesta-5,26-dien- 3β -ol (9) (Khalil, Djerassi and Sica, 1980) had two methyl groups at side chain.

Other unconventional sponge sterols included $\Delta^{5,26}$ sterols (9) of *P. ficiformis* (Khalil, Djerassi and Sica, 1980) and 5β -stanols such as coprostanol (5β -cholestan- 3β -ol) (10) of *P. ficiformis* (Seidel, Proudfoot and Djerassi, 1986).

The most interesting sterols from the *Petrosia* spp. were the sulfate esters of polyhydroxylated sterols because of their antiviral activities. These compounds were isolated from *P. weinbergi*: weinbersterol disulfates A (11), B (12) (Sun et al., 1991), and orthosterol disulfates A (13), B (14) and C (15) (Koehn, Gunasekara and Cross, 1991).

Weinbersterol disulfates A and B were active *in vitro* against feline leukemia virus (FELV) (ED $_{50}$ = 4.0 and 5.2 µg/ml, respectively). Only weinbersterol disulfates A showed activity against the human immunodeficiency virus (HIV) (ED $_{50}$ = 1.0 µg/ml) (Sun et al., 1991). Orthosterol disulfates A, B and C showed activity against FELV, mouse influenza virus (PR8) and mouse corona virus (A59) (Koehn, Gunasekera and Cross, 1991). The reports about the sterols of the *Petrosia* were summarized in Table 1.

Table 1 Sterols from Petrosia spp.

hebes	2
	-

Table 1 (continued)

Carbon range	Structural formula	Source	*Ref
C-27	mm. N	P. ficiformis	3
	""" N		
	mm. R		Y
	mm. R		
	"Inn. R		
a se se se	"m. T		
C-27	mm.	P. hebes	2
	เลาสมาริงเลา	าลย	
	"N		
	"N		

Table 1 (continued)

Carbon range	Structural formula	Source	*Ref
C-27	"m	P. hebes	2
C-28	mm. N	P. ficiformis	3
	mm. R		
	mm. T		
	"m. N		
	Winner N	าลัย	
	mm. N		

Table 1 (continued)

Carbon range	Structural formula	Source	*Ref
C-28	mm. N	P. ficiformis	3
C-29	HO OH OH OH OH OH	P. contignata	1
C-29	ทยทรัพยากร	P. ficiformis P. hebes	2, 3

Table 1 (continued)

Carbon range	Structural formula	Source	*Ref.
C-29	mm. N	P. ficiformis P. hebes	2, 3
C-29	mm	P. ficiformis	3
	mm., N		
	mm., R		240
	m _R	ลัย	
	Mm. R		

Table 1 (continued)

Carbon range	Structural formula	Source	*Ref
C-29		P. ficiformis	3
	"InR		
	mm., T		
	mm. T		
	mm, J		
C-29		P. hebes	2
	M. OH	ล์ย	
	"mm. N		

Table 1 (continued)

C-29 Minima N Minima N	*Re
	2
N N	

Table 1 (continued)

Carbon range	Structural formula	Source	*Ref
C-29		P. hebes	2
	Inn	*	
	mm.		
	S		
	mm. S		
C-30		P. hebes	2
	"mm		

*Ref.: 1 Burgoyne, D.L. and Anderson, R.J., 1992 2 Cho and Djerassi, 1987 3 Seidel, Proudfoot, and Djerassi, 1986

1.2 Fatty Acids

Most of fatty acids from the genus *Petrosia* were unbranched acids except some fatty acids from the sponge *Petrosia ficiformis* (Ayanoglu et al., 1982). Typical fatty acids contained straight chains 14 to 22 carbon atoms long, whereas these demospongic acids contained 14-34 carbons. The summary of these compounds were shown in Table 2.

Table 2 Fatty acids in Petrosia spp.

Source	Name	**Ref
Petrosia sp.	12-Methyltridecanoic (i-:14:0)	4
P. pellasarca, P. ficiformis, Petrosia sp.	Tetradecanoic (14:0)	1,3,4
P. pellasarca, P. ficiformis, Petrosia sp.	4,8,12-Trimethyltridecanoic (16:0)	1,3,4
P. pellasarca, P. ficiformis, Petrosia sp.	13-Methyltetradecanoic(i-15:0)	1,3,4
P. pellasarca, P. ficiformis, Petrosia sp.	12-Methyltetradecanoic(a-15:0)	1,3,4
Petrosia sp.	Pentadecanoic (15:0)	4
P. pellasarca, P. ficiformis, Petrosia sp.	14-Methylpentadecanoic (i-16:0)	1,3,4
P. pellasarca, P. ficiformis, Petrosia sp.	9-Hexadecenoic(Δ ⁹ -16:1)	1,3,4
Petrosia sp.	11-Hexadecenoic(16:1)	4

Table 2 (continued)

Source	Name	**Ref
P. pellasarca, P. ficiformis, Petrosia sp.	Hexadecanoic(16:0)	1,3,4
P. ficiformis, Petrosia sp.	15-Methyl-9-hexadecanoic (Δ9-i17:1)	1,4
Petrosia sp.	Methylhexadecanoic(17:0)	4
P. ficiformis	10-Methylhexadecanoic	1
P. ficiformis, Petrosia sp.	15-Methylhexadecanoic(i -17:0)	1,4
P. ficiformis, Petrosia sp.	14-Methylhexadecanoic(a - 17:0)	1,4
Petrosia sp.	2-Methoxy-5-hexadecenoic (16:1)	4
Petrosia sp.	9-Heptadecenoic(Δ9-17:1)	4
Petrosia sp.	11-Heptadecenoic(Δ ¹¹ -17:1)	4
P. pellasarca, Petrosia sp.	Heptadecanoic(17:0)	3,4
P. pellasarca	9-Octadecenoic(Δ ⁹ -18:1)	3
P. pellasarca, P. ficiformis, Petrosia sp.	11-Octadecenoic(Δ ¹¹ -18:1)	1,3,4
P. pellasarca, P. ficiformis, Petrosia sp.	Octadecanoic(18:0)	1,3,4
P. pellasarca, Petrosia sp.	Methyloctadecanoic(19:0)	3,4
P. ficiformis	11-Methyloctadecanoic(19:0)	1
Petrosia sp.	17-Methyloctadecanoic(i -19:0)	4
Petrosia sp.	11-Nonadecenoic(19:1)	4
Petrosia sp.	Nonadecanoic(19:0)	4
P. pellasarca, Petrosia sp.	5,8,11,14-Eicosatetraenoic(20:4)	3,4
Petrosia sp.	8,11,14,17-Eicosatetraenoic(20:4)	4
Petrosia sp.	Methylnonadecanoic(20:0)	4
P. pellasarca, Petrosia sp.	Eicosanoic(20:0)	3,4
Petrosia sp.	19-Methyleicosanoic(i -21:0)	4
Petrosia sp.	18-Methyleicosanoic(ai -21:0)	4
Petrosia sp.	13-Heneicosanoic(Δ ¹³ -ai -21:1)	4
P. ficiformis	7,13,16-Docosatrienoic (Δ7,13,16-22:3)	1
Paragia an	4,7,10,13,16,19-Docosa-	1
Petrosia sp.	hexaenoic(22:6)	4
P. pollosarca Patrosia sp	7,10,13,16,19-Docosa-	
P. pellasarca, Petrosia sp.	tetraenoic(22:4)	3,4

Table 2 (continued)

Source	Name	**Ref	
P. ficiformis	24-Metyhl-5,9-pentacosadienoic-		
	(Δ ^{5,9} - <i>i</i> -26:2)	1	
Petrosia sp.	Docosanoic(22:0)	4	
Petrosia sp.	2-Hydroxydocosanoic(22:0)	4	
Petrosia sp.	21-Methyldocosanoic(i -23:0)	4	
Petrosia sp.	Tricosanoic(23:0)	4	
Petrosia sp.	16-Tetracosenoic(24:1)	4	
Petrosia sp.	17-Tetracosenoic(24:1)	4	
Petrosia sp.	19-Tetracosenoic(24:1)	4	
P. ficiformis	15-Methyldocosanoic(24:0)	1	
Petrosia sp.	Tetracosanoic(24:0)	4	
Petrosia sp.	17-Pentacosenoic(25:1)	4	
P. ficiformis	15-Methyltricosanoic(25:0)	1	
Petrosia sp.	5,9-Hexacosadienoic(26:2)	4	
Petrosia sp.	6-Bromo-5,9-hexacosadienoic		
	(26:2)	4	
Petrosia sp.	17-Hexacosenoic(26:1)	4	
Petrosia sp.	19-Hexacosenoic(26:1)	4	
Petrosia sp.	· Hexacosanoic(26:0)	4	
Petrosia sp.	5,9-Heptacosadienoic(27:2)	4	
Petrosia sp.	6-Bromo-5,9-heptacosadienoic		
69181030	(27:2)	4	
Petrosia sp.	19-Heptacosenoic(27:1)	4	
Petrosia sp.	Heptacosanoic(27:0)	4	
P. pellasarca	25-Methylhexacosanoic(i -27:0)	3	
P. pellasarca	24-Methylhexacosanoic(ai -27:0)	3	
P. ficiformis	Z,Z-25-Methyl-5,9-hexacosa-		
	dienoic (Δ ^{5,9} -i -27:2)	1	
P. ficiformis	Z,Z-24-Methyl-5,9-hexacosa-	166	
and the cutting of the cutting of	dienoic (Δ ^{5,9} -ai -27:2)	1	
Petrosia sp.	5,9-Octacosadienoic(28:2)	4	
Petrosia sp.	5,9,23-Tricontatrienoic(30:3)	4	

Table 2 (continued)

Source	Name	**Ref.
Petrosia sp.	6-Bromo-5,9-octacosadienoic	
	(28:2)	4
P. hebes, P. ficiformis	(5Z,9Z)-6-Bromo-25-methyl-5,9-	
	hexacosadienoic($\Delta^{5,9}$ -i -28:2)	2
P. ficiformis	(5Z,9Z)-6-Bromo-24-methyl-5,9-	
	hexacosadienoic(Δ5,9 -ai -28:2)	2
P. pellasarca	9-Octacosenoic(28:1)	3
P. pellasarca	Octacosanoic(28:0)	3
P. pellasarca	27-Methyloctacosanoic(i -29:0)	3
P. pellasarca	26-Methyloctacosanoic(ai -29:0)	3
P. pellasarca	Nonacosanoic(29:0)	3
P. pellasarca	5,9-Triacontadienoic(30:2)	3
P. pellasarca	Triacontanoic(30:0)	3
P. pellasarca	Hentriacontanoic(31:0)	3
P. pellasarca	Dotriacontanoic(32:0)	3
P. pellasarca	19,22,25,28,31-Tetratriaconta-	
AL TOTAL	pentaenoic(34:5)	3

** Ref.: 1 Ayanoglu et al., 1982

2 Wijekoon, Ayanoglu, and Djerassi, 1984

3 Carballeira and Reyes, 1990

4 Carbielleira and Shalabi, 1993

1.3 Aldehydes

Carballeira and Shalabi, 1993 investigated six aldehydes from the caribbean sponge *Petrosia* sp. as the following: Hexadecanal (16:0), Heptadecanal (17:0), Octadecanal (18:0), 17-Tetracosenal (24:1), 17-Pentacosenal (25:1), and 17-Hexa-cosenal (26:1).

1.4 Alkaloids

There were a few papers about alkaloids from the genus *Petrosia*. The ichthyotoxicity of *Petrosia seriata* was associated with a group of at least eight alkaloids. Two new bis-quinolizidone alkaloids, petrosin-A (16) and petrosin-B(17), had been shown to be stereoisomers of petrosin (18) (Faulkner, 1986). The other alkaloid isolated from the marine sponge *Petrosia* sp. collected at Belize was

petrosamine (19). It was a novel pigment which showed antimicrobial activity against Staphylococcus aureus and Bacillus subtilis. The colour of the pigment petrosamine was dependent on the polarity of the solvent and varied from blue to purple and green (Molinski et al., 1988).

1.5 Acetylenic compounds

The acetylenic compounds isolated from sponges of the genus *Petrosia* were summarized in Table 3 including other acetylenic compounds from other marine organisms. So far about 30 acetylenic compounds have been isolated from the genus *Petrosia*.

2. The Distribution of Acetylenic compounds in Marine Organisms

The number of acetylenic compounds found in marine organisms which structures were known todays is about seventy compounds. Some of these compounds had previously shown a variety of biological activities such as antibacterial, cytotoxic, and enzyme inhibitors (Bourguet-Kondracki et al., 1992). Acetylenic compounds are divided to five groups by their structures as the followings:

1. Straight chain acetylenes

These compounds are composed of carbon ranging from 9 to 55 atoms. Most acetylenic compounds are members of this group. However, some compounds have substituted groups such as halogens (bromine or chlorine), keto or enol groups, acid or their esters. Consequently, the straight chain acetylenes are divided to three groups by their substitution as described in Table 3.

2. Acetylenes with one or more tetrahydropyran rings.

There were only a few reports of this group. Four compounds (20-22) were isolated from Sea Hare Aplysia dactylomela (Mc Donald et al., 1975; Vanderah and Schmitz, 1976, Gopichand, Schmitz, and Shelly, 1981). The others (23-26) were isolated from Red alga Laurencia majuscula (Wright et al., 1993). Their names and structures are described as below.

21 Isodactylene

Dactomelyne

22.1 3E

22.2 3Z

3. Acetylenes with pyridine ring.

There were three compounds: Niphatyne A (27), Niphatyne B (28) isolated from the sponge *Niphates* sp.(Quinoa and Crews, 1987) and Xestamines A (29) isolated from *Xestospongia weidenmayeri* (Sakemi, Totton and Sun, 1990). Their structures are shown below.

4. Acetylenic glyceryl ethers

Two diyne enol ethers: $3-\{[1Z)-7-hydroxy-13-methyltetradeca-1-ene-3,5-diynyl]oxy\}-1,2-propanediol (30) and <math>3-\{[1Z)-7-hydroxy-hexadeca-1-ene-3,5-diynyl]oxy\}-1,2-propanediol (31) were isolated from sponge$ *Petrosia hebes* $. Both of them were not significantly cytotoxic (P-388, ID50's >6 and >11 <math>\mu$ g/ml, respectively) (Perry et al., 1990).

5. Miscellaneous acetylene

There is only one compound, 12-epiobtusenyne (31) from Sea Hare Aplysia dactylomela (Gopichand, Schmitz, and Shelly, 1981) that differs from other acetylenes. The structure is shown as below.

3. Biological Activities of Acetylenic Compounds from Marine Organisms

The acetylenic compounds from marine organisms were reported to have a variety of biological activities. The most interesting compounds were polyacetylenic acids from the sponge $Xestospongia\ muta$ because they showed activity as HIV-1 protease inhibition at IC50 = 6-12 μ M (Patil et al., 1992). Most activities of these acetylenic compounds were antimicrobial and cytotoxic. Other activities of them were antifungal, ichythyotoxic, and enzyme inhibitor. The total biological activities were summarized in Table 4.

Table 3 Summary of straight chain acetylenes

Name and/or Structural formula	Source	Reference
Ordinary acetylenes		
HC C CH ₃	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
33	Red alga: Laurencia majuscula	Wright et al., 1993
34	Red alga: Laurencia majuscula	Wright et al., 1993
35	ทยทรัพยากร	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
. Oxygenated acetylenes		
HO _{III} H	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
HC C 5 CH ₃		
CII	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
HC CH ₃ CH ₃ CH ₃		
37	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
HQ _M , H CH ₃	CILI GIAL CIA GIA P	
HC 13	กรถแท่ทาวทยาลย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
HO, H CH ₃ CH ₃	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
HC 39 8 HO, H CH ₃ CH ₃ CH ₃	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
HO _{Max} H CH ₃	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
HC CH ₃ 41	สณ์มหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
HQ, H	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
HC CH ₃ HO, H	Sponge: Cribrochalina vasculum	Aiello, Fattorusso and Menna, 1992
HC C 43	9	
Br O	Sponge: Reniera fulva	Cimino and Stefano, 1977
44 Renierin-1	ไมหาวิทยาลัย	

Table 3 (continued)

Names and Structural formulae	Sources	References
Br Hand OI	Sponge: Reniera fulva	Cimino and De Stefano, 1977
45 18-Dihydrorenierin-1	Sponge: Reniera fulva	Cimino and De Stefano 1977
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
46 Debrorenierin-1	Sponge: Reniera fulva	Cimino and De Stefano,
	างพยาการพยาการ พรณ์มหาวิทยาลัย	1977
47 Renierin-2	ОН	

Table 3 (continued)

ciera fulva Cimino and De Stefano 1977
Caulerpa prolifera Amico et al., 1978
ากร :

Table 3 (continued)

Name and/or Structural formula	Source	Reference
	OH OH	Paul and Fenical, 1980
он он _{R₁}	Nudibranch: Peldotoris atromaculata and Sponge:Petrosia ficiformis	Castiello et al., 1980
$R_1+R_2 = C_nH_{2n-6}$ 51 n = 25 52 n = 28	วิทยทรัพยากร	
$R_1+R_2 = C_nH_{2n-4}$ 53 n = 28 54 n = 31 55 n = 34	ารณ์มหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
OH R ₁	Sponge: Petrosia ficiformis	Cimino et al., 1981
OH $R_1 + R_2 = C_n H_{2n-4}$ 56 n = 26 57 n = 29		70
OH OH R ₂	Sponge: Petrosia ficiformis	Cimino et al., 1981
$R_1+R_2 = C_nH_{2n-4}$ 58 n = 28 59 n = 31 60 n = 34		
R_1	Sponge: Petrosia ficiformis	Cimino et al., 1981
$R_1+R_2 = C_nH_{2n-4}$ 61 n = 26 62 n = 29	2	

Table 3 (continued)

Name and Structural formula	Source	Reference
OH R ₁ OH R ₂ OH	Sponge: Petrosia ficiformis	Cimino et al., 1985
63 $R_1 + R_2 = C_{24} H_{44}$	Sponge: Petrosia sp.	Fusetani et al., 1987
ÖH 64 Petrosynol	ŌН Sponge: Petrosia sp.	Fusetani et al., 1987
65 Petrosynone	ร่อมมหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
OH OH OH	Sponge: Cribochalina dura	Wright et al., 1987
66 Duryne	Sponge: Xestospongia sp.	Quiñoa and Crews, 1988
OH OH 67 Melyne A: n = 10 68 Melyne B: n = 9 OH OH 69 Melyne C	Sponge: Xestospongia sp.	Quinoa and Crews, 1988

Table 3 (continued)

Name and/or Structural formula	Source	Reference
(CH ₂) ₁₀ (CH ₂) ₉	OH Sponge: Xestospongia sp.	Quiñoa and Crews, 1988
70 70	Hard coral: Pectinia lactuca and Montipora mollis	Higa et al., 1990
71	Hard coral: Pectinia lactuca and Montipora mollis	Higa et al., 1990
	OCH ₃	2
72		

Table 3 (continued)

Name and/or Structural formula	Source	Reference
	Hard coral: Pectinia lactuca	Higa et al., 1990
73	OH Hard coral: Montipora mollis	Higa et al., 1990
74	OCH ₃ Sponge: Siphonochalina truncata	Fusetani et al., 1987
75 Siphonodiol	OH OH OH	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
	Sponge: Siphonochalina trunc	ata Fusetani et al., 1987
76 Dihydrosiphonodiol	Sponge: Siphonochalina trunc	Fusetani et al., 1987
77 Tetrahydrosiphonodiol	ŠH Sponge: Petrosia ficiform	is Cimino et al., 1989
78 Petroformyne-1	างเมหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
OH OH	Sponge: Petrosia ficiformis	Cimino et al., 1989
79 Petroformyne-2	Sponge: Petrosia ficiformis	Cimino et al., 1989
80 Petroformyne-3	Sponge: Petrosia ficiformis	Cimino et al., 1989
81 Petroformyne-4	E CONTRACTOR DE	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
OH OH	Sponge: Petrosia ficiformis	Cimino et al., 1990
82 Petroformyne-5a	Sponge: Petrosia ficiformis	Cimino et al., 1990
83 Petroformyne-5b	Sponge: Petrosia ficiformis	Cimino et al., 1990
84 Petroformyne-6	ณ่มหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
o the things	Sponge: Petrosia ficiformis	Cimino et al., 1990
85 Petroformyne-7	Sponge: Petrosia ficiformis	Cimino et al., 1990
86 Petroformyne-8a	Sponge: Petrosia ficiformis	Cimino et al., 1990
87 Petroformyne-8b	เมหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
OH OH	Sponge: Petrosia ficiformis	Cimino et al., 1990
88 Petroformyne-9a	Sponge: Petrosia ficiformis	Cimino et al., 1990
OH OH		
89 Petroformyne-9b	Sponge: Petrosia sp.	Fusetani et al., 1983
OII OII OII	Sponge: Petrosta sp.	rusciani et al., 1903
90		

Table 3 (continued)

Name and/or Structural formula	Source	Reference
. Acetylenic acids or esters		3
3.1 2-yne system		
	Sponge:Petrosia ficiformis	Cimino et al., 1990
C ₃₁ H ₅₆ COOCH ₃		
OH	(COMO) VIVIONO	
91 Petroformyne A		0: : 1 1000
	Sponge:Petrosia ficiformis	Cimino et al., 1990
C ₃₃ H ₆₀ COOCH ₃	ทิทยทรัพยากร	
OH O2 Patroformuna P		
92 Petroformyne B	501911111111111111111111111111111111111	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
	Sponge: Petrosia ficiformis	Cimino et al., 1981
R COOCH ₃		
$R_1+R_2 = C_nH_{2n-2}$ 93 n = 16 94 n = 18		
	Sponge: Petrosia ficiformis	Cimino et al., 1985
OH R ₁ COO	5 1 2 1 5 1 2 1 1 5 1 2 1 1 5 1 2 1 1 5 1 2 1 1 5 1 2 1 1 5 1 2 1 1 5 1 1 1 1	-
95 $R_1 + R_2 = C_{25}H_{48}$	กรณ์มหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
2 5-yne system Br	Sponge:Xestospongia muta	Schmitz and Gopichand, 1978
Вг		
96	OH Red alga: Liagora farinosa	Paul and Fenical, 1980
97 ศูนย์วิท	ยทรัพยากร	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
	—COOH Red alga: Liagora farinosa	Paul and Fenical, 1980
98 OH	Sponge: Xestospongia sp. and Xestospongia muta	Hirsh, Carmely, and Kashman, 1987; Patil et al., 1992
99	Sponge: Xestospongia muta	Patil et al., 1992
100 R = 11 101 R = CH ₃	กรณ์มหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
15 COO	Sponge: Xestospongia muta	Patil et al., 1992
102	Sponge: Xestospongia muta	Patil et al., 1992
103 R = H 104 R = CH ₃	Sponge: Xestospongia muta	Patil et al., 1992
105 R = H 106 R = CH ₃	ลม์มหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
COOR	Sponge: Xestospongia muta	Patil et al., 1992
107 R = H 108 R = CH ₃		
СООН	Sponge: Xestospongia muta	Patil et al., 1992
Br 109	Sponge:Xestospongia sp.	Hirsh, Cannely, and Kashman, 1987
Br COOH	หาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
coc	Sponge:Xestospongia sp.	Hirsh, Carmely, and Kashman, 1987
1111 COO	OCH ₃ Sponge: Xestospongia testudinaria	Quinn and Tucker, 1991
112	Sponge: Xestospongia testudinaria	Bourguet-Kondracki et al.
Br 113 R = II; Xestospongic acid 114 R = CH ₂ CH ₃	มมหาวิทยาลัย	

Table 3 (continued)

Sponge: Xestospongia sp. Hirsh, Carmely, and Kashman, 1987 Sponge: Petrosia volcano Fusetani et al.,1993	Source	Reference
Br Sponge: Petrosia volcano Fusetani et al.,1993		Hirsh, Carmely, and Kashman, 1987
Вг		
		Fusetani et al.,1993
	101201000	
จฬาลงกรถ		Sponge: Xestospongia sp. Sponge: Petrosia volcano

Table 3 (continued)

Name and/or Structural formula	Source	Reference
17	Sponge: Petrosia volcano	Fusetani et al., 1993
	СООН	
117 17Z 118 17E		
	Sponge: Petrosia volcano	Fusetani et al.,1993
17 = 13	ย์วิทยทรัพยากร	
119 R = H 120 R = H; 13Z 121 R = H; 17Z	งกรณ์มหาวิทยาลัย	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
	Sponge: Petrosia volcano	Fusetani et al.,1993
17	СООН	
122	Sponge: Petrosia volcano	Fusetani et al.,1993
	COOCH ₃	
9/19/18/18	างขนางพยากา ารณ์มหาวิทยาลัย	
123 9E 124 9Z	100000111101110111	

Table 3 (continued)

Name and/or Structural formula	Source	Reference
	Sponge: Petrosia volcano	Fusetani et al.,1993
125		
7-yne system COOCH ₃	Sponge: Xestospongia testudinaria	Quinn and Tucker, 1991
126	Sponge: Xestospongia testudinaria; Xestospongia sp.	Quinn and Tucker, 1985; Hirsh, Carmely, and Kashman, 1987
127	เหาวทยาลย	

<u>Table 4</u> Summary of biological activities of acetylenic compounds from marine organisms.

Compound	Biological activity	Reference
96	Cytotoxic to PS in vivo	Schmitz and Gopichand, 1978
66	Cytotoxic to P-388 murine leukemia and human tumor cell lines	Wright et al., 1987
27-28	Cytotoxic to P-388	Quiñoa and Crews, 1987
- 90	Inhibit cell division of fertilized sea urchin egg	Fusetani et al., 1983
64	Inhibit cell division of starfish egg; Antifungal against Mortierella ramannianus	Fusetani et al., 1987
78-85	Inhibit cell division of starfish egg; Active in brine shrimp assay	Cimino et al., 1989; Cimino et al., 1990
91-92	Active in brine shrimp assay	Cimino et al., 1990
97	Toxic toward the reef-dwelling fish	Paul and Fenical, 1980
65	Antimicrobial against Bacillus subtilis	Fusetani et al., 1987
67	Active against Giardia (an intestinal protozoan)	Quinoa and Crews, 1988

Table 4 (continued)

Compound	Biological activity	Reference
72, 74	Antimicrobial against Bacillus subtilis, Staphylococcus aureus, Aspergillus sp., and Cladosporiium sp.	Higa et al., 1990
113	Antimicrobial against Staphylococcus aureus; Na+/K+ ATPase inhibitor; Antifungal against Mortierella ramannianus	Bourguet-Kondracki et al., 1992, Fusetani et al., 1993
75-77	H,K-ATPase inhibitor	Fusetani et al., 1987
100, 102 103, 105, 107-109	HIV-1 protease inhibitors	Patil et al., 1992