CHAPTER V

RESULTS AND DISCUSSION

5.1 Computer-simulated f pigment dispersion
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with sample population size equal to 100.

2) Normal random dispersion

In this case an example of the normal (Guassian) random
dispersion with sample population size equal to 100 is shown in Figure 5.2. In
this figure, it can be seen that the pigment particles were randomly dispersed
around the center of a sample in the fashion of a two-dimensional normal

distribution.
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Figure 5.2 Example of normai random d:sparslnn of pigment particles

obtained from computer simulation

5.1.2 Effect of sample population size on the fractal dimension
To quantify the dispersion of pigment particles in plastic, a novel type
of indices called the fractal dimension, D, was used to guantify the degree of

dispersion in the sample. The fractal dimension may be evaluated by either



69

counting the number, N(r), of subsections that contain at least one pigment particie
(Eq. 3.4) or by calculating the coefficient of variation, Ds, (Terashita's approach). In
this section, the relationship between the sample population size and the observed

fractal dimension is discussed as follows.

e . .
i llw;!ulatmn size and the fractal
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hawrin Figure 5.3.
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From the results of Figure 5.3, it can be seen that the observed fractal
dimension (D). for both the uniform and normal dispersion, increased rapidly when
the sample population size first increased. As the sample population size further

increased, the fractal dmension increased more gradually. Thus theoretically, the
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fractal dimension for the uniform random dispersion (homogeneous mixture) ranged
from nearly zero to almost 2, whereas the fractal dimension for the normal random
dispersion ranged from about 0.07 to 1.70. An apparent contradiction was that the

observed fractal dimension for the normal random dispersion was somewhat greater

than that for the uniform rando when the sample population size was
smaller than 1200. Abov fractal dimension for the uniform
random dispersion was,.as-eapected @1 that for the normal random

dispersion. At the sample population size 41200, the fractal dimensions for
both cases were abo |
small difference in the frz

The actuz C -1 adiction is that even when
the sample populatior si e number of the finely divided

subsections, the fractal digiensier i
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y+ ' ;‘ ‘, dispersion was greater

1200 the observed

than for the uniform rﬂdnm dispersion. It apparently ntradtcts the fractal concept
used to eval ﬁ m tk where the fractal
dimension Shme Itﬂ ﬂs U—In nnfnrm Therefore, in
the foll j ﬁéﬂw the slope in
the amiﬁﬁqﬂamam 1 ﬂ\ﬁ l] e results of the

recalculation were shown in Table 5.2 and Figure 5.4.
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Table 5.2 Computer-simulated results (Fractal dimension is found using

equation (3.4) for the region of n which provides the maximum slope)

Sample Fractal dimensian (D)

population size MNormal random

o dispersion” el _  dispersion

6252 ...

the fractal dimension for both the

uniform and norm f pie) population size increased.

!

And the fractal dlm%ion 0 andom :L. ersion was always greater

than that for the normal apdom dispersien: Therefore, it can be concluded that a
reasonable r%uﬂnlmﬂm%ua@nie region of n which

provides the maximum slope. Noté that the smaller the sampmtglulatinn size, the
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2) Fractal dimension calculated from the coefficient of variation (D,),
(Terashita's approach).
Similarly, the relationship between the sample population size and

Terashita's fractal dimension is shown in Figure 5.5 and listed in Table 5.3.
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From Figure 5.5, it can be seen that the observed Terashita's fractal
dimension for the uniform random dispersion remained essentially constant around
1, while that for the normal random dimension depended remarkably on the sample

population size. Obviously, when only a small number of particles are present in a
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Table 5.3 Computer- 51 l:tal dimension)
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and rnh st measure of dispersibility than the one calculated using Eq 3.4. In the
case of uniform random dispersion, Terashita's fractal dimension remains
essentially unity (between 0.97 to 1.0) regardless of the size of particle population.
In the case of normal random dispersion, Terashita's fractal dimension dropped
rapidly to 0.04 as the sample population size increased. This confirms the common
sense that the larger the sample size, the easier the differentiation between the

normal random and uniform random dispersions.



76

5.2 Effects of kneading conditions on the dispersion of pigments

in polystyrene

Since the pigment median particle size in this investigation was very small,
0.20 pm for the iron oxide pigment and 0.095 um for the carbon black pigment, a
sufficiently high magnifying powsr was r”lﬂt'aiE;&lw to see and distinguish between
the magnified pigment partiglesand smudbes ﬂ'l" Gyen bubbles. It was found that
the magnifying power of the.seafiiing ;:iectroﬂ miciascope should be 5,000X and
15,000X in the case of.imf de pigmant and carboneblack pigment, respectively.
Figure 5.6 shows snmfﬂ;u of _1hé micmph{:mgmnhs of both pigments that

were taken by SEM in thé pré égm,;htudy v

286KV ¥5e00 @@3n Al 20kU  %3.@e8

Figure 5.6 Examples of SEM microphotographs



Table 5.4 Effect of kneading conditions on the dispersion of pigment

in polystyrene
Kneading temp.,| Speed of screw, |  Feed rate, D D

Ts, (°C) R, (rpm) F, (g/min) (iron oxide) | (carbon black)

L\ 1.507 1697

\% 1.528 1676

¥ . 41_ 1.429 1.760

4 1.520 1.746

170 //‘E\k\ 1750

/8% NS \ o | e

\\: 1.760

/ E7 LS e

m\\\X\ 1528 1.721

@ b T\, 1519 1785

G ‘\ 1396 1702

] 1.390 1617

1.592 1.845

190 | ks 1.802

s 1734

4.6 14772 1.836

‘324 27 1.575 1.804

_ } | : 1778

i,ul |H H g i I H I E; I IE EE% 5_ 1.803

R B1  |€ 227 4 1664 1.780

AW BTN YT 1764

q 45 1.740 1.865
210 162 227 1,623 1703

414 1631 1,790

4.5 1.8683 1 868

324 227 1758 1.841

ata | 1532 1.851
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In this study, the effect of kneading conditions on the dispersion of two types
of pigments in polystyrene upon using a continuous kneader was investigated. The
parameters were kneading temperature, rotational speed of screw, and feed rate. A

summary of the experimental results was shown in Table 54. The experimental

5.2.1 Kneading.

Effect of tha

iron oxide and carbon

and 5.8 show the effeci@f ek 4 AN \ e.on the dispersion state of iron
oxide and carbon blagk, fes “". ¢ \ ! '\ evaluated using the fractal
dimension based on the ¢
These figure he iron oxide pigment and carbon
black pigment, the fractal dimer _as the deagree of dispersion tended to

increase as the kneading

| ﬁ- because the higher the

kneading temperatu@ at eaded, the lower the resulting

melt viscosity. In sim'l. the dispersibility of pigme W
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The effect of the rotational speed on the dispersibility of iron oxide

increased as the kneading

pigment and carbon black pigment was investigated at 81, 162, and 324 rpm. The
effect of the rotational speed on the dispersion state was depicted in Figures 5.9

and 5 10, respectively.
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Figure 5.7 Relationship between the kneading temperature (T,) and the
fractal dimension (D) in the case of the iron oxide pigment
(a) at F=4.5 g/min; (b) at F=22.7 g/min; (c) at F=41.4 g/min
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Figure 5.8 Relationship between the kneading temperature (T,) and the
fractal dimension (D) in the case of the carbon black pigment
(a) at F=4.5 g/min, (b) at F=22.7 g/min; (c) at F=41.4 g/min
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Figure 5.9 Relationship between the rotational speed of screw (R) and
the fractal dimension (D) in the case of the iron oxide pigment

(a) at T=170°C; (b) at T=190 °C; (¢) at T=210°C
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(c)
Figure 5.10 Relationship between the rotational speed of screw (R) and
the fractal dimension (D) in the case of carbon black pigment
(a) at T=170°C; (b) at T=190 °C; (c) at T=210°C
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From the above figures, it is obvious that, for both pigments, the
fractal dimension tended to increase significantly as the rotational speed increased
This means that as the rotational speed of the screw increased, the dispersion of
the pigment particles in the sample was enhanced. The increase in the rotational

speed resulted in higher inte ar stresses, thus leading to more

breakdown of agglomerate r' dégf ispersion,

The effe ale - jal to the kneader, which was

controlled by the accur £l - : \ pigment was investigated at

the feed rate increased. Thisr '? he feed rate increased, the dispersion

of pigment in the J;-’r"w : :)"' er feed rate, the mean
w."fl 7 : a!'\"

e su!u ng in better d ispersinn

residence time was eaded into the polymer

for a longer time, thus

5.3 Comparisap Eween plgmeﬂtmej W EI‘ ’] ﬂ i
AN AN IS

From the simulation results obtained fo cases, based on both the
counting methed and Terashita's method, it is obvious that the observed fractal
dimension depends significantly on the sample population size. Therefore, because
of the unequal numbers of particles in the samples, a straight-forward comparison
between the cases of the carbon black pigment and the iron oxide pigment at the

same kneading conditions can not be carried out.



19
18 f L f {
1.7
16 4

D .
- ——Z \Y\\\\
3 ////5& \\\\
b [

Se—

QWE\Tﬂ‘iﬂJNWl‘MEﬂﬁE

U D

F {ufmm]
—X—T=170 —A— T=150 —a—T=210

(c)

Figure 5.11 Relationship between the feed rate (F) and the fractal
dimension (D) in the case of the iron oxide pigment
(a) at R=81 rpm; (b) at R=162 rpm; (c) at R=324 rpm
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Figure 5.12 Relationship between the feed rate (F) and the fractal
dimension (D) in the case of the carbon black pigment
(a) at R=8B1 rpm; (b) at R=162 rpm; (c) at R=324 rpm



The problem can be solved, however, if the expenmental result is to be

normalized using the corresponding ideal-case value obtained from the computer

simulation.
(5.1)
where Dy with respect to the uniform
D
Juniform random
3 safple population size

Similarly it can also be dorgialize witn the \\ ot to the fractal dimension of the
ideal normal random dispErsig j‘- der to evaluate the efficiency of the

continuous kneader used F /A T

—

r" {5- 2}

where %u ﬁﬁlm Hﬂimmg to the normal
PRATTEIIINEAY o o

fractal dimension were shown in Table 5.5.
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Table 5.5 Effect of kneading conditions on the dispersion of pigments

in polystyrene in terms of normalized fractal dimension

Kneading temp., | Speed of screw, Feed rate, Iron oxide Carbon black
Tw, (°C) R, (rpm) F. {g/min) o, o;" Dy Dy
\ 0914 | 102 | 0964 | 1095
81 0810 | 1033 | 0958 | 1081
4 851 | 0958 | o084 | 1067
.5 1.034 0.981 1112
170 2.3 1.023 0.967 1.101
444 0.093 0.940 1.057
o 1.086 0.989 1.121
4 L orh| 1052 | oe7s | 11411
Fo | 1025 | o0ses | 1147
1048 | 0981 1.109
| 1004 | oe72 | 1008
4 Sk 869 0.959 0.951 1.078
o 0.931 1.056 0.103 1125
190 1049 | 0995 | 1132
103 | oe7e | 1.1
0.9 1.197 0.993 1120
'3%4& 27 ,, | 0837 1.057 0.986 1107
i . @.pod) 4 +p18 0.971 1.104
y £ 1112
q W . 1.108
q 45 0.986 1.115 1.008 1.137
210 162 227 0.941 1.064 0.990 1128
414 0932 | 1052 | osgse | 1126
45 1,018 1.193 1.027 1.161
324 27 0987 | 1120 | 1017 | 1158
414 0.857 1.057 1.000 1128

Dy® = DVDmiteern

D2* = DVDpormsi
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Figure 5.13 Relationship between the kneading temperature (T) and the
normalized fractal dimension (Dy*) in the case of the iron oxide

pigment (a) at R=81; (b) at R=162, (c) at R=324
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Figure 5.14 Relationship between the kneading temperatureand the
normalized fractal dimension (D;*) in the case of carbon black
pigment (a) at R=81; (b) at R=162; (c) at R=324
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5.3.1 Kneading temperature
Figures 5.13 and 5.14 show the effect of kneading temperature on
the dispersion state of iron oxide and carbon black, respectively. It can be seen that

the normalized values of the fractal dimension in the case of the carbon black were

ari stwsen £ " anﬁ 5.16 reveals that the
normalized values of the f@@ctal dime * ase of the carbon black was

greater. This is becausaft! 1 black pigment was smaller,

carbon black being 0.095 2 0.20 um, and absorbed moisture was
greater. Therefore, it has hig 10 agglomerate, From the theoretical
discussion on dispefsio ¢ igglomerates would disperse

e T

more easily than that the carbon black

I
pigment dispersed mﬂ untfnrmly than iron oxide pigry H nt.

mq,ymmmwmm
o AR T S R e

because of pigment properties as mentioned in 5.3.1.
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Figure 5.15 Relationship between the rotational speed of screw (R) and
the normalized fractal dimension (D;*) in the case of the iron oxide
pigment (a) at F=4.5 g/min; (b) at F=22.7 g/min; (c) at F=41.4 g/min
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Figure 516 Relationship between the rotational speed of screw (R) and the
fractal normalized dimension (D;*) in the case of carbon black pigment

(a) at F=4.5 g/min; (b) at F=22.7 g/min; (c) at F=41.4 g/min
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Figure 5.17 Relationship between the feed rate (F) and the normalized
fractal dimension (D+*) in the case of the iron oxide pigment
(a) at R=81 rpm; (b) at R=162 rpm; (c) at R=324 rpm
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Figure 518 Relationship between the feed rate (F) and the normalized
fractal dimension (Dy*) in the case of carbon black pigment

(a) at R=81 rpm; (b) at R=162 rpm; (c) at R=324 rpm



95

From the above sections 5.2 and 5.3, the experimental results for bath the
iron oxide pigment and carbon black pigment, it may be concluded that at a higher
kneading temperature dispersibility of the pigment in the polymer was enhanced.
Regarding the rotational speed of the twin screws, a higher rotational speed yielded

'tensity of energy input and led to an

e 11 ough the kneaded material. The

highest rotational speedwo ‘ ,&uﬂable And when feed rate
ng s0 the dispersibility was

enhanced.

It can be seengfayftdr botmof tha pigmen! ts, the effects of the kneading
conditions showed the garié fre : ic ohsenred values of the fractal
dimension in the case arbo °r8 greater because the numbers of
particles in the samples .-::‘.,f_,..= { ere greater, which corresponded the
simulated ideal-case results._ -- Ahe experimental values of the fractal
dimension were ndmalized v “ ' ponding /ideal values obtained from

e

the fractal dimension in the
case of the carbor U

¢ o
e o L8 D 9 W%NW'E NSRS

those of iron

s ol INIUUNINYNEE

black were still greater. his may be because the

iciency eader

The fractal dimension obtained experimentally and by ideal-case computer

simulation are compared here and a summary of the comparison was also shown in

Table 5.5.



From the table, it was found that |, for both pigments, the values of Dy*, which
were obtained by normalizing the experimental result with the corresponding ideal-
case values with respect to the uniform random dispersion are slightly smaller than
1. On the other hand, almost all values of D;* which where normalized with the

corresponding ideal-case values v

_\ , spect to the normal random dispersion are
greater than 1, in some case 1.7 This means the continuous kneading
used in the present ' material with dispersibility of

pigments not truly unifoga® o_better than in the case of the

\\\

normal random dispe f the fractal dimension (D,* and

D,* ) in the case of ca on rally greater than in the case of
iron oxide pigment, ‘ hat carbon black dispersibility is

better than iron oxide.
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