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CHAPTER I 

 
INTRODUCTION 

Open-channel flows, flood mitigation, dam break analysis and some 
other related free surface flows are generally considered as shallow water problems. 
These solutions may include the propagation of shock waves or rarefaction waves. 
Mathematical models based on the shallow water equations (SWE) are widely used to 
simulate of this shallow water problems (see example [1] - [9]). The SWE can be derived 
from mass and momentum conservations (de Saint-Venant 1871). For two dimensions 
problem, there are three unknowns: water depth and velocities in x -and y - directions to 
be found. The distinguishing feature of the shallow water equations is that they admit 
both discontinuities and smooth solutions. Even the case in which the initial data is 
smooth can lead to discontinuous solutions at finite time. The nonlinear character of the 
equations suggests that solution to these equations may be limited to only some special 
cases. As and alternative, appropriate numerical methods can be used to obtain 
solution including discontinuities.   

Of all numerical techniques, finite volume methods (FVM) have several 
advantages compared to other approaches. It combines the simplicity of finite 
difference methods with the geometric flexibility of finite element methods. Since FVM 
are based on the integral form of the conservation laws, a numerical scheme in 
conservation form can easily be constructed to capture the discontinuities. The fluid 
domain is subdivided into grid cells. Each cell average is modified in each time step by 
the normal flux through the edges of the grid cells. To approximate the numerical fluxes 
we must use the solution of local Riemann problem at cell interfaces. This approach was 
proposed by Godunov, and the schemes derived from this principle are generally called 
Godunov-type-scheme [3,6,10]. In the well known work of Godunov, the exact solution 
of the Riemann problem was used. For the linear system, the exact Riemann problems 
are mathematically too difficult to solve and the computation is too expensive. Today the 
exact solution of the Riemann problem is replaced with the approximate solutions that 
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are obtained by using approximate Riemann solvers. There have been quite a few 
efficient approximate Riemann solvers developed by various researchers, such as Roe 
(1981), VanLeer (1982), Harten (1983), and many others (see example [2],[3],[11]). 
Since the original Godunov method is first order-accurate, there are serious numerical 
oscillations occurred near the discontinuities. In order to avoid such oscillations, second 
order schemes of the high-resolution Godunov’s methods are developed. In this work 
the high-resolution Godunov’s methods are obtained by using the VanLeer’s Monotonic 
Upstream Schemes for Conservation Laws (MUSCL) approach associated with the 
minmod and the monotonized-central-difference slope limiters.  

In order to reduce the computational time, a parallel computation of the 
numerical method is used to solve the problems. The domain decomposition technique 
is used to divide the physical domain of the shallow water problems into sub-domain [4]. 
The MPI (Massage Passing Interface) is implemented to define each sub-domain 
associated with each processor and is incorporated for inter-processor data 
communication. They also support process topology that is a mapping of processes in a 
communicator to an addressing scheme. The parallel program has been tested on the 
cluster that consists of eight PCs with 1.7 GHz Pentium 8 processors, 256 Mbytes RAM, 
40 Gbytes Hard disk, and Fast Ethernet Switch Interconnection between nodes. 

This thesis is organized as follows. Chapter 2 presents the derivation of 
the shallow water equations. Details of finite volume method and the sequential 
numerical algorithms are given in chapter 3. Chapter 4 introduces the concept of the 
parallel system. Numerical results and performance results of the parallel model are 
discussed in chapter 5. The conclusion of this thesis is in Chapter 6. 



CHAPTER II 
 

DERIVATION OF SHALLOW WATER EQUATIONS 

This chapter concerns the derivation of equations governed the flows in 
shallow water problem. The usual approach that simplifies the mathematical description 
of the problem is to use a depth averaging procedure of the Navier-Stokes equations. 
This leads to the Shallow Water Equations (SWE) model. Alternatively, the SWE can be 
derived from the basic principles of conservations of mass and momentum together with 
a set of constitutive laws related to the driving and resisting forces of fluid properties 
and motion (de Saint-Venant 1871). The SWE is mathematical representation of water 
movement subject to the following assumptions:                
 

i) The fluid is assumed to be incompressible and inviscid. 
ii) The pressure distribution is hydrostatic. 
iii) Turbulence effect is negligible. 

See [12] for a more complete description of the shallow water 
assumptions. 

2.1 Conservation of Mass 

Consider a small rectangular element ( dx dy h× × ) of water when 
( , , )h x y t is water depth as show in figure 2.1. Conservation of mass for this box or 

“control volume” states that:    
             The rate of volume increase in the column is equal to the net volume flux into 
the column from all 4 sides. 
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 Figure 2.1(a) Control volume (b) Normal velocity. 

Since dx  and dy are fixed, the volume of water in the box can change 
only if the depth changes. The corresponding the rate of volume in the column is 

hdxdy
t

∂
∂

. 

Along the boundary, the net volume flux along x -direction is 

                             ( )x x dxhu hu dy+−                                                  (2.1)                          

Using Taylor series expansion and omitting terms of higher orders in dx , 
equation (2.1) becomes 

                              ( )hudxdy
x

∂
−

∂
  

Similarly, the net volume flux along y -direction is 

                                ( )hvdxdy
y

∂
−

∂
 

v  

u  

(a) (b) 

dx  dy

h

x x dx+
y

y dy+
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The conservation of mass can then be expressed quantitatively as 

                        h hu hvdxdy dxdy dxdy
t x y

∂ ∂ ∂
= − −

∂ ∂ ∂
                               (2.2) 

Equation (2.2) can be rewritten 

                        ( ) ( ) 0h hu hv
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
                                             (2.3) 

2.2 Conservation of Momentum  

Conservation of momentum in the x -direction can be stated as follow:    

 The rate of change of momentum in the x -direction in the control 
volume is equal to the net influx of momentum through vertical wall plus the net force 
acting on the control volume in the x -direction. 

Figure 2.2 depicts the directions of all forces and momentum fluxes on 
the control volume. 
 
 
 
 

        

 

Figure 2.2 The directions of all forces and momentum fluxes in x -direction.  

Here  
• xP  and x dxP + are pressure forces on the sides of the box. 
• bP is the pressure force due to a sloping bed. 
• bF  is the friction force at the channel bottom. 

xP  x dxP +  

bP  

bF  

y

y dy+  

x x dx+  
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The rate of change of momentum is 

                        ( )hudxdy
t

ρ ∂
∂

                                                               (2.4) 

The net influx of momentum through four vertical sides is 

                 
2hu hvdxdy dxdy

x y
ρ ρ∂ ∂

− −
∂ ∂

 

The net of pressure force on two vertical sides normal to the x -direction 
is { }x x dxPdA PdA +−∫ ∫ . From the hydrostatic assumption, the pressure P  is ghρ  and 
the net hydrostatic pressure forces becomes  

                             
2

2
gdydx h

x
ρ ∂

−
∂

 

The pressure force due to the sloping bed is 

                            xb yhSxgP 0∆∆= ρ    
 
where xS0 is the bed slope in the x -direction. The resisting force on the bottom can be 
expressed as shear stresses multiplied by surface area as yxF bxb ∆∆= τ . 

Equating these terms, the conservation of momentum is obtained 
 

                                  

2 2

0

( )
2

x bx

hu gdxdy h hudxdy dxdy
t x x

huvdxdy gdxdyhS dxdy
y

ρρ ρ

ρ ρ τ

∂ ∂ ∂
= − −

∂ ∂ ∂
∂

− + −
∂

             (2.5) 

Dividing equation (2.5) by yx∆∆ρ , we have 
              

                              
2 2

0
( ) ( ) ( )

2 x fx
hu g h hu huv ghS ghS
t x x y

∂ ∂ ∂ ∂
= − − − + −

∂ ∂ ∂ ∂
                    (2.6) 

 
which can be written as 
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2 2

0
( ) ( ) ( ) ( )

2 x fx
hu hu g h huv gh S S
t x x y

∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
               (2.7) 

 

where 
gh

S bx
fx ρ

τ
=  is the friction slope in x -direction.  

Similarly, the y -momentum gives 
 

                   )()()(
2

)()(
0

22

fyy SSgh
y

hv
y
hg

x
uvh

t
hv

−=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂                (2.8) 

 

where 
gh

S by
fy ρ

τ
=  is the friction slope in the y -direction. 

Equations (2.3), (2.7) and (2.8) are called the two-dimensional shallow 
water equations. For future references, the SWE are               

                    0)()(
=

∂
∂

+
∂

∂
+

∂
∂

y
hv

x
hu

t
h  

                 )()()(
2

)()(
0

22

fxx SSgh
y

huv
x
hg

x
uh

t
hu

−=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂                (2.9) 

                  )()()(
2

)()(
0

22

fyy SSgh
y

hv
y
hg

x
uvh

t
hv

−=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ . 

 Here g is the acceleration due to gravity, h  is the water depth, u  and v  
are the flow velocities in the x - and y -directions respectively, 0xS  and 0 yS  are the bed 
slopes in x - and y -directions respectively, the bed frictions fxS  and fyS  can be 
estimated by using the Manning resistance law  
                              

                   
2 2 2

4 /3fx
un u vS

h
+

=    and  
2 2 2

4/3fy
vn u vS

h
+

=  
in which n  is the Manning roughness coefficient. 
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We can rewrite (2.9) in the matrix form as  
                
                                          ( ) ( )t x yq f q g q S+ + =                                                    (2.10) 
               
where          

                       2 2

2 2

1, ( ) , ( )
2

1
2

huh hv
q hu f q hu gh g q huv

hv huv hv gh

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = + = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦

          (2.11) 

and                0

0

0
( )

( )
x fx

y fy

S g S S

g S S

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

 
These equations can be written in quasilinear form as 
 
                                         ( ) ( )t x yq f q q g q q S′ ′+ + =                                               (2.12) 
 
with the of Jacobian matrices 
 

                                           

2

2

0 1 0
( ) 2 0

0 0 1
( )

0 2

f q u gh u
uv v u

g q uv v u
v gh v

⎡ ⎤
⎢ ⎥′ = − +⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤
⎢ ⎥′ = −⎢ ⎥
⎢ ⎥− +⎣ ⎦

                                          (2.13)           

 
Let ghc =  be the speed of gravity waves. Then the matrix ( )f q′ has eigenvalues and 
eigenvectors 

           
                                     cuucu xxx +==−= 321 ,, λλλ  
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                                       1 2 3

1 0 1
, 0 ,

1

x x xr u c r r u c
v v

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                          (2.14) 

 
The Jacobian ( )g q′ has a similar set of eigenvalues and eigenvectors, 
                                   
                                          cvucv yyy +==−= 321 ,, λλλ  

                                

                                        1 2 3

1 0 1
, 1 ,

0

y y xr u r r u
v c v c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                       (2.15) 



CHAPTER III 
 

NUMERICAL METHODS 

3.1 Conservative Finite Volume Method 

Finite volume methods can be obtained on the basis of the integral form 
of conservation laws [11]. The fluid domain is subdivided into grid cells. The calculations 
are based on an approximation to the integral of certain quantities over each of these 
volumes or specifically, the cell average (i.e., this integral divided by the volume of each 
grid cell). These values are modified in each time step by the normal flux through the 
edges of the grid cells. The fluxes are determined by solving the Riemann problem for 
the two constant states at each side of the boundary edges. The Godunov’s method for 
hyperbolic systems is generalized to nonlinear systems. The important step now is how 
to find solutions to the nonlinear Riemann problem at each cell interface. 
              
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 Finite volume grid cells in two space dimensions, where ijQ  represents a cell 
average. 

,i jQ  

1/ 2ix −  1/ 2ix +  

1/ 2jy −  

1/ 2jy +  
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In deriving the two-dimensional conservation law ( ) ( ) 0t x yq f q g q+ + = , 
the numerical domain is subdivided into rectangular grid cells of the form 

],[],[ 2/12/12/12/1 +−+− ×= jjiiij yyxxC   as shows in Figure 3.1. Let 2/12/1 −+ −=∆ ii xxx  and 
2/12/1 −+ −=∆ jj yyy . The normal fluxes ( )f q  and ( )g q  represent the fluxes along the 

left and right edges and along the top and the bottom respectively. Integrating the 
conservation law over each grid cell, we obtain  

         
       ( ) ( ) 0

ij ij ij

x y
C C C

d qdxdy f q dxdy g q dxdy
dt

+ + =∫∫ ∫∫ ∫∫  

 

       

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

( ( , , )) ( ( , , ))

( ( , , )) ( ( , , )) 0

j j

ij j j

i i

i i

y y

i i
c y y

x x

j j
x x

d qdxdy f q x y t dy f q x y t dy
dt

g q x y t dx g q x y t dx

+ +

− −

+ +

− −

+ −

+ −

+ −

+ − =

∫∫ ∫ ∫

∫ ∫
                      

(3.1) 
 
Integrating (3.1) from nt  to 1+nt , yields     

 

         

1/ 21

1/ 2

1/ 21

1/ 2

1 1/ 2

1/ 2

1/ 2

1 1/ 2

1/ 2

1/ 2

1/ 2

( , , ) ( , , ) ( ( , , ))

( ( , , ))

( ( , , ))

( ( , , ))

jn

ij ij n j

jn

n j

n i

n i

i

yt

n n i
c c t y

yt

i
t y

t x

j
t x

j
x

q x y t dxdy q x y t dxdy f q x y t dydt

f q x y t dydt

g q x y t dxdt

g q x y t dxdt

++

−

++

−

+ +

−

−

+ +

−

+

−

− = −

+

−

+

∫∫ ∫∫ ∫ ∫

∫ ∫

∫ ∫
1 1/ 2n i

n

t x

t

+ +

∫ ∫

           (3.2) 

 
Dividing (3.2) by the cell area yx∆∆ , we obtain 
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1/ 2 1/ 21 1

1/ 2 1/ 2

1 1/ 2

1/ 2

1

1/ 2 1/ 2

1/ 2

1 1( , , ) ( , , )

1 ( ( , , )) ( ( , , ))

1 ( ( , , ))

ij ij

j jn n

n j n j

n i

n i

n n
c c

y yt t

i i
t y t y

t x

j
t x

q x y t dxdy q x y t dxdy
x y x y

f q x y t dydt f q x y t dydt
x y

g q x y t dxdt
x y

+ ++ +

− −

+ +

−

+

+ −

+

=
∆ ∆ ∆ ∆

⎡ ⎤
⎢ ⎥− −

∆ ∆ ⎢ ⎥⎣ ⎦

− −
∆ ∆

∫∫ ∫∫

∫ ∫ ∫ ∫

∫ ∫
1 1/ 2

1/ 2

1/ 2( ( , , ))
n i

n i

t x

j
t x

g q x y t dxdt
+ +

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

    

(3.3) 
 

Equation (3.3) can be written as 
   

1/ 2 1/ 21 1

1/ 2 1/ 2

1/ 2

1

1/ 2 1/ 2

1/ 2

1 1( , , ) ( , , )

1 1( ( , , )) ( ( , , ))

1 ( ( , , ))

ij ij

j jn n

n j n j

i

i

n n
c c

y yt t

i i
t y t y

x

j
x

q x y t dxdy q x y t dxdy
x y x y

t f q x y t dydt f q x y t dydt
x t y t y

t g q x y t dxdt
y t x

+ ++ +

− −

+

−

+

+ −

+

=
∆ ∆ ∆ ∆

⎡ ⎤∆ ⎢ ⎥− −
∆ ∆ ∆ ∆ ∆⎢ ⎥⎣ ⎦

∆
−
∆ ∆ ∆

∫∫ ∫∫

∫ ∫ ∫ ∫

1 1/ 2 1 1/ 2

1/ 2

1/ 2
1 ( ( , , ))

n n i

n n i

t t x

j
t t x

g q x y t dxdt
t x

+ + +

−

−

⎡ ⎤
−⎢ ⎥
∆ ∆⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

  

(3.4) 
 

or, symbolically, 
 
       1

1/ 2, 1/ 2, , 1/ 2 , 1/ 2
n n n n n n
ij ij i j i j i j i j

t tQ Q F F G G
x y

+
+ − + −

∆ ∆⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦∆ ∆
          (3.5) 

            
where ,

n
i jQ represents a cell average over the ( )ji, grid cell at time nt ,  

 
                                 ( , , )

ij

n
ij n

C

Q q x y t dxdy≈ ∫∫   

 
 with 1/ 2,

n
i jF − is some approximation to the average flux along 1/ 2,i jx x −= , 

 

                           
1/ 21

1/ 2

1/ 2, 1/ 2
1 ( ( , , ))

jn

n j

yt
n

i j i
t y

F f q x y t dydt
t y

++

−

− −≈
∆ ∆ ∫ ∫  
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 and , 1/ 2

n
i jG − is some approximation to the average flux along , 1/ 2i jy y −=  

 

                       
1 1/ 2

1/ 2

, 1/ 2 1/ 2
1 ( ( , , ))

n i

n i

t x
n
i j j

t x

G g q x y t dxdt
t x

+ +

−

− −≈
∆ ∆ ∫ ∫  

 

A numerical flux at the edge of each grid cell is determined, based on 
the data at the beginning of each time step. These fluxes are used to update the cell 
average over a time step. This brings us to the discussion of solutions to the Reimann 
problem. 

3.2 Riemann Problem 

The Riemann problem in our context consists of the hyperbolic equations 
together with initial data which is piecewise constant with a single jump discontinuity at 
some point, say ,0=x  

                                               0
( ,0)

0
l

r

q if x
q x

q if x
<⎧

= ⎨ >⎩
                                                    (3.6) 

 At each cell interface jix ,2/1− , there is a discontinuity with 1,l i jq Q −=  to 
the left and ,r i jq Q=  to the right. We can obtain information that can be used to 
compute the numerical flux. Generally, systems solution to the Riemann problem is 
written in terms of similarity variable tx /  and consists of a finite set of waves that 
propagate away from the origin with constant wave speeds. For linear hyperbolic 
systems the Riemann problem is easily solved in terms of the eigenvalues and 
eigenvectors. 

For 2D shallow water equations, a Riemann solution has three states: the 
original state to the left lq , the original state to the right rq , and a middle state between 
the two discontinuities. This middle state will be denoted as *q . (see Figure 3.2)  
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In solving the 2D shallow water equations we must sweep in each 
direction. For example, in the x -direction the Riemann problem consists of 

( ) 0t xq f q+ =  together with the initial condition (3.6). Then we solve this Riemann 
problem as follows: 
          
1. Determine whether each of the two waves is a shock or a rarefaction wave. 
2. Determine the intermediate state *q  between the two waves. 
3. Determine the structure of the solution through any rarefaction waves. 
 

For finite volume methods, this process is often simplified by using the 
approximate Riemann solver discussed in Section 3.4. Computing the exact Riemann 
solution can be expensive. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 Solution of the linear Riemann problem in the tx − plane. 

 
 

 

 

 

0=x  

*q  

rq  lq  

t

x
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3.3 Godunov’s Method 

Godunov (1959) suggested the use of characteristic information of a 
hyperbolic system within the framework of a conservative method. He proposed that the 
numerical flux could be obtained by solving a local Riemann problem at each interface. 

 Godunov’s method can be implemented for a general system of 
conservation laws described in the following procedure : 
 
     Algorithm 1 
 

1. Reconstruct a piecewise polynomial function ( , , )n
nq x y t  defined for all x  and 

y , from the cell averages n
ijQ . 

2. Compute the numerical fluxes. 
3. Apply the flux-differencing formula (3.5) then repeat (1) in the next time step. 
 

In step1 : We reconstruct a function ( , , )n
nq x y t from the discrete cell averages. In the  

                simplest case this is a piecewise constant function that takes the value n
ijQ  in   

                the thij grid cell, i.e., 
 
                                           ( , , ) n

n ijq x y t Q=   for all ijCx∈                                           (3.7) 
 
              This reconstruction gives only a first-order accurate method. To obtain better   
              accuracy one might consider using a better reconstruction, such as a      
              piecewise linear function. This idea forms the basis for the high-resolution  
              methods considered in Section 3.5. 

 
In step2 : We want to evaluate the flux function using solution from the Riemann  
                problem at each cell interface. Let us denote the Riemann solution at the    
                interface ),2/1( ji −  by  1/ 2 1( , )n n

i j i j ijQ q Q Q↓ ↓
− −= . The numerical flux at this  

               edge is determined by  
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                                              1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

( ),

( ),
i j i j

i j i j

F f Q

G g Q

↓
− −

↓
− −

=

=
                                                 (3.8) 

 
            where 1/ 2,i jQ↓

− is obtained from the local Riemann problem for ( ) 0t xq f q+ =  
with data 1,i jQ −  and   ,i jQ , while , 1/ 2i jQ↓

−  is obtained from the local Riemann problem for 
( ) 0t yq g q+ =  with data , 1i jQ −  and   ,i jQ . 

In this thesis, the numerical fluxes are calculated using the    
     approximate Riemann solvers (e.g., Roe and HLL solvers) described in Section 3.4. 
 
In step3 : We use the numerical value 1/ 2,i jQ↓

− ,etc. from step2 to update the cell  
                average by  substituting into the Godunov’s scheme.   

3.3.1 The Wave-Propagation form of Godunov’s Method 

In step 2 we can determine the solution of the local Riemann problem 
which consists of a set of waves. For a general m m×  linear 
system, 0t xq Aq+ = ( ( )f q Aq= ), the solution of Riemann with arbitrary initial data lq  
and rq , consists of m  discontinuities traveling with speed 1 2, , , mλ λ λ…  which are the 
eigenvalue of the m m×  matrix A . To solve the Riemann problem we take the initial 
data ,( )l rQ Q  and decompose the jump r lQ Q−  into eigenvectors of A . 

                    1 1 2 2 m m
r lQ Q r r rα α α− = + + +…                                    

(3.9) 

This requires solving the linear system of equations 

                                r lR Q Qα = −                                                       (3.10) 

for the vector  1( )r lR Q Qα −= −  and R  is the matrix of eigenvectors. Since p prα  is the 
jump in Q  across the thp  wave in the solution to the Riemann problem, we introduce 
the notation 
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                           p p pW rα=                                                              (3.11) 

for these waves. 

The solution of this Riemann problem at the cell interface is 

                        
: 0p

p
l

p

Q Q W
λ

↓

<

= + ∑  

or                     
: 0p

p
r

p

Q Q W
λ

↓

>

= − ∑ .                                                  (3.12) 

We can compute the numerical flux as 

1/ 2, 1/ 2, 1/ 2,

1/ 2,
: 0

1/ 2,
: 0

1/ 2, 1/ 2,
1

( )

( )

( )

p

p

i j i j i j

p
ij i j

p

p
ij i j

p

m
p p

ij i j i j
p

F f Q AQ

A Q W

AQ AW

AQ W

λ

λ

λ

↓ ↓
− − −

−
>

−
>

+
− −

=

= =

= −

= −

= −

∑

∑

∑

 

Similarly, we obtain 1/ 2, 1/ 2, 1/ 2,
1
( )

m
p p

i j ij i j i j
p

F AQ Wλ −
+ + +

=

= +∑ . 

The solution of the Riemann problem 0t xq Bq+ = ( ( )g q Bq= ) is of the 
same structure as (3.12). Hence the numerical fluxes in y -direction are obtained by 

                 , 1/ 2 , 1/ 2 , 1/ 2
1
( )

m
p p

i j ij i j i j
p

G AQ Wλ +
− − −

=

= −∑  

and           , 1/ 2 , 1/ 2 , 1/ 2
1
( )

m
p p

i j ij i j i j
p

G AQ Wλ −
+ + +

=

= +∑ . 

 

 

 



                            
18 

 

 

 

Substituting those numerical fluxes into the flux differencing (3.5), we 
obtain 
 

                   
( ) ( )

( ) ( )

1
1/ 2, 1/ 2, 1/ 2, 1/ 2,

1 1

, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2
1 1

-

 -

m m
n n p p p p
ij ij i j i j i j i j

p p

m m
p p p p

i j i j i j i j
p p

tQ Q W W
x

t W W
y

λ λ

λ λ

+ −+
− − + +

= =

+ −

− − + +
= =

⎡ ⎤∆
= +⎢ ⎥∆ ⎣ ⎦

⎡ ⎤∆
+⎢ ⎥∆ ⎣ ⎦

∑ ∑

∑ ∑
                  (3.13) 

 

The cell average is affected by the right-going waves from jix ,2/1− , the 
left-going waves from jix ,2/1+ , the up-going waves from 2/1, −jiy , and the down-going 
waves from 2/1, +jiy . As a shorthand notation, we introduce the following symbols: 
 

                                              
( )

( )

1/ 2, 1/ 2, 1/ 2,
1

1/ 2, 1/ 2, 1/ 2,
1

m
p p

i j i j i j
p

m
p p

i j i j i j
p

Q W

Q W

λ

λ

−−
− − −

=

++
− − −

=

∆ =

∆ =

∑

∑
 

and 

                                              
( )

( )

, 1/ 2 , 1/ 2 , 1/ 2
1

, 1/ 2 , 1/ 2 , 1/ 2
1

m
p p

i j i j i j
p

m
p p

i j i j i j
p

Q W

Q W

λ

λ

−−
− − −

=

++
− − −

=

Β ∆ =

Β ∆ =

∑

∑
 

 

 Hence (3.13) can be rewritten in the fluctuation form as  
 
                                                                                                                                     
                                                                                                                                     (3.14) 
 
 
 

1
1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

( )

( )

n n
ij ij i j i j

i j i j

tQ Q Q Q
x
t Q Q
y

+ + −
− +

+ −
− +

∆
= − ∆ + ∆

∆
∆

− Β ∆ +Β ∆
∆
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Figure 3.3 Fluctuations for the Godunov’s method.  

3.3.2 The CFL Condition 

The CFL condition was proposed by Courant, Friedrichs and Lewy in 
1928. They recognized the following necessary stability condition for any numerical 
method: 

 
          CFL condition : A numerical method can be convergent only if its numerical  
                                    domain of dependence contains the true domain of  
                                    dependence of the PDE, at least in the limit as  t∆  and x∆ go  
                                    to zero. 
 

It is important to bear in mind that the CFL condition is only a necessary 
condition for stability (and hence convergence). It is, of course, not sufficient to 
guarantee stability. 

For a hyperbolic system of equations there is generally a set of m wave 
speeds mλλ ,,1 … . Then we define the Courant number by 

 

                                                     
mp

p

x
t

,,2,1

max
…=∆

∆
= λν  

jix ,2/1−

 
jix ,2/1+

 

1,i jQ −  ,i jQ  1,i jQ +  

1/ 2,i jQ−
−∆

1/ 2,i jQ−
+∆  1/ 2,i jQ+

−∆  1/ 2,i jQ+
+∆  
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For a scheme (3.5) and (3.14) the CFL condition leads to a necessary 
condition 1≤ν . 

3.4 Approximate Riemann Solver 

In Godunov’s method we only need to determine Q↓ , the state along 
0/ =tx  based on the Riemann data lQ  and rQ . The process of solving the Riemann 

problem is thus often quite expensive for the nonlinear systems of conservation law and 
we must use more information to extend to the high-resolution methods. Even so, it is 
often true that it is not necessary to compute the exact solution to the Riemann problem 
in order to the numerical calculations.  

A wide variety of approximate Riemann solvers have been proposed. 
Most of them can be applied with much less computational cost than the exact Rimann 
solver and yet almost equally good results in many cases when used in the Godunov or 
high-resolution methods. 

3.4.1 Roe Linearization  

To avoid difficultly in solving the nonlinear Riemann problem, we use a 
linearized approximate Riemann solver normal to each cell interface. Then this linear 
approach is easily extended to the nonlinear case.  

From the quasilinear form of shallow water equations (2.12), after 
neglecting the source term temporarily, we apply the Roe linearization to obtain the Roe 
matrix in form of 

 
                                             ˆ ˆ 0t x yq Aq Bq′+ + =                                                        (3.15) 

 
where the matrix Â (approximation of ( )f q′  near the interface) and the Roe averages 

û,h  and v̂  are 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−=

uvvu
uhguA

ˆˆˆˆ
0ˆ2ˆ
010

ˆ 2                                                (3.16) 

 
 

                                                       ( )jiji hhh ,,12
1

+= −                                                (3.17)                   
 

                                                 
jiji

jijijiji

hh

uhuh
u

,,1

,,,1,1ˆ
+

+
=

−

−−                                        (3.18) 

               

                                                 
jiji

jijijiji

hh

vhvh
v

,,1

,,,1,1ˆ
+

+
=

−

−−                                         (3.19)           

              
The matrix Â  has eigenvalues and eigenvectors 

                           
                                 cuucu xxx ˆˆˆ,ˆˆ,ˆˆˆ 321 +==−= λλλ  
 

                                   1 2 3

1 0 1
ˆ ˆ ˆˆ ˆ ˆ ˆ, 0 ,

ˆ ˆ1

x x xr u c r r u c
v v

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
respectively, where hgĉ =  is the speed of gravity waves.  

Similarly, the matrix B̂  (approximation of ( )g q′  near the interface) and 
the Roe averages û,h  and v̂  can be written as 
 

                                                    
2

0 0 1
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ2
B uv u v

v gh v v

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− +⎣ ⎦

                                        (3.20)                         

 
                                                           ( ), 1 ,

1
2 i j i jh h h−= +                                           (3.21)                          
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                                                    , 1 , 1 , ,

, 1 ,

ˆ i j i j i j i j

i j i j

h u h u
u

h h
− −

−

+
=

+
                                     (3.22)                         

               

                                                    , 1 , 1 , ,

, 1 ,

ˆ i j i j i j i j

i j i j

h v h v
v

h h
− −

−

+
=

+
                                      (3.23)                        

          
The matrix B̂  has eigenvalues and eigenvectors 

                           
                                      1 2 3ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, ,y y yv c u v cλ λ λ= − = = +  
 

                                      1 2 3

1 0 1
ˆ ˆ ˆˆ ˆ, 1 ,

ˆ ˆ ˆ ˆ0

y y yr u r r u
v c v c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                         (3.24) 

 
respectively, where hgĉ =  is the speed of gravity waves.  

3.4.2 Roe Riemann Solvers 

Recalling the wave-propagation form of Godunov’s method, to update 
the cell average in next time step we need to compute the wave and the wave speed. 
They can be achieved by solving the Riemann problem. In the process to solve the 
Riemann problem by Roe solver we start by sweeping in the x -direction along each row 
of the grid cell. Then we sweep in the y -direction along each column.  

3.4.2.1 Sweep in the x -direction 

First we apply the Roe linearization to ( ) 0t xq f q q′+ = , and obtain the 
Roe matrix Â  as described in Section 3.4.1. At the interface we decompose the jump 

r lq q−  into eigenvectors of Â : 
           
                                     1 1 2 2 3 3ˆ ˆ ˆx x x

r lq q r r rα α α− = + +  
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⎥
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⎥
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⎢
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++
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⎥
⎥

⎦
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⎢
⎢
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⎡
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

v
cu

v
cu

d
d
d

ˆ
ˆˆ

1

1
0
0

ˆ
ˆˆ

1
321

3

2

1

ααα                                     (3.25) 

  
where 

.ˆˆ
,ˆˆ
,

,13

,12

,11

jiij

jiij

jiij

vvd
uud

hhd

−

−

−

−=

−=

−=

 

 
Solving the linear system (3.25) for α , we obtain 
 

1 1 2

2 1 2

ˆ ˆ( )
,

ˆ2
ˆ ˆ( )

,
ˆ2

u c d d
c

u c d d
c

α

α

+ −
=

− − +
=
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3 ˆ ddv +−=α . 

 
Consequently, the waves pW are given by 
 

                   1 1 2 2 3 3
1/ 2, 1/ 2, 1/ 2,

1 0 1
ˆ ˆ ˆ ˆ, 0 ,

ˆ ˆ1
i j i j i jW u c W W u c

v v
α α α− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

  
 and the corresponding wave speeds are cscus jiji ˆ,ˆˆ 2

,2/1
1

,2/1 =−= −− ,   and 
cus ji ˆˆ3

,2/1 +=− . 
            

           3.4.2.2 Sweep in the y -direction 

At the interface )2/1,( −ji , we decompose the jump r lq q−  into 
eigenvectors of B̂ :              
           
                                              1 1 2 2 3 3ˆ ˆ ˆy y y

r lq q r r rα α α− = + +  
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1

1 2 3
2

3

1 0 1
ˆ ˆ1

ˆ ˆ ˆ ˆ0

d
d u u

v c v cd
α α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

                          (3.26)                         

  
 
where 

                                                  
.ˆˆ
,ˆˆ
,

1,3

1,2

,1,1

−

−

−

−=

−=

−=

jiij

jiij

jiij

vvd

uud

hhd

 

 
 Solving the linear system (3.26) for α , we obtain 
 

                                             
1 1 2

2 1 2

ˆ ˆ( )
,

ˆ2
ˆ ˆ( )

,
ˆ2

u c d d
c

u c d d
c

α

α

+ −
=

− − +
=

 

 and                                      31
3 ˆ ddv +−=α . 

 
 The waves pW  are given by 
 

                   1 1 2 2 3 3
1/ 2, 1/ 2, 1/ 2,

1 0 1
ˆ ˆ, 1 ,

ˆ ˆ ˆ ˆ0
i j i j i jW u W W u

v c v c
α α α− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
and the corresponding wave speeds are 1 2

, 1/ 2 , 1/ 2ˆ ˆ ˆ,i j i js v c s c− −= − = ,   and 
3
, 1/ 2 ˆ ˆi js v c− = + . 

It should be noted that the Roe Riemann solver works well for many 
shallow water flow problems except when there is a dry region. In that case, the Roe 
Riemann solver may produce negative depth. In this thesis, the HLL Riemann solver is 
used as an alternative to approximate the flux in the dry case. 
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 3.4.3 HLL Riemann Solver 

The HLL Riemann solver was proposed by Harten, Lax and Leer in 1983 
[2]. Information at the interface must be determined subject to the wave speed of 
propagation. 
 

                                *

/

( , ) /
/

l l

l r l r

r r

q n for x t s

Q n q q q n q n for s x t s
q n for s x t

↓ ↓

⋅ <⎧
⎪

⋅ ≡ ⋅ = ⋅ < <⎨
⎪ ⋅ <⎩

                      (3.27) 

 
where n  is the outward normal unit vector; the subscripts r  and l  referred to the right 
and left cell interfaces, ls  and rs  are the smallest and largest wave speeds of 
propagation, respectively, and the state *q  is determined from 
 

                                      * ( ) ( )r r l l r l

r l

s q s q F n F nq n
s s

− − ⋅ − ⋅
⋅ =

−
                                (3.28)       

 
We now turn to the determination of the associated numerical flux. We set 
 

                                      *

0

0

0.

l l

l r

r r

F n when s

F n F n when s s

F n when s

↓

⎧ ⋅ <
⎪

⋅ = ⋅ < <⎨
⎪ ⋅ <⎩

                                     (3.29) 

 
Here the numerical flux at the star region is determined by 
  

                                      * ( )r l l r l r r l

r l

s F n s F n s s q qF n
s s

⋅ − ⋅ + −
⋅ =

−
                           (3.30)            

 
 
 where    ( )r rF f q= or ( )rg q  and  ( )l lF f q=  or ( )lg q . 
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The wave speeds ls  and rs can be estimated via the two expansion 
approaches due to Toro: 
 

                                        
* *

* *

min( , )

max( , )

l l l

r r r

s w n gh u gh

s w n gh u gh

= ⋅ − −

= ⋅ + +
                                 (3.31) 

 
where ),( vuw =  and  
 

                                  
*

*

1 ( )
2
1 1( ) ( )
2 4

l r l r

l r l r

u w w n gh gh

gh gh gh w w n

= + ⋅ + −

= + + − ⋅
                             (3.32) 

 
If the cell on the right of the interface is dry, then 
 
                              l l ls w n gh= ⋅ −   and   2r l ls w n gh= ⋅ +                              (3.33)                          
 
On the contrary, if the cell on the right of the interface is dry, we have 
 
                              2l r rs w n gh= ⋅ −   and   r r rs w n gh= ⋅ +                            (3.34) 

For the homogeneous shallow water equations, if the middle stage *q  is 
determined from (3.28), using (3.31) for the speeds ls  and rs , the depth *h  in the 
middle state is always non-negative [2]. 
 

      3.5 High-resolution Godunov’s Method 

In Section 3.3, we introduced the original Godunov’s method that is first 
order accurate, giving poor accuracy in smooth region of the flow. Moreover, shocks 
tend to be heavily smeared and poorly resolved on the grid. In this section a high-
resolution Godonov’s method is introduced. It is at least second order accurate on 
smooth solution and yet give well resolved result, avoiding the nonphysical oscillations.   
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There are various techniques to achieve the high-resolution scheme, for 
example MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws). The 
MUSCL procedure applied to the Godunov’s method consists of a linear extrapolation of 
the corresponding variables at the cell interfaces. In doing this, we introduce a 
piecewise linear function of the form. 

                  1( , , )
2

n n n
n ij ijq x y t Q xσ= + ∆ . 

 where n
ijσ  is the slope in thij  grid cell. This replaces the first step of the original 

Godunov’s method (see Figure 3.4). 

In using the slope n
ijσ  on a piecewise linear function, we must consider 

how to limit the slope for second-order accuracy while guaranteeing that no nonphysical 
oscillations will arise.  
 
 
 
 
 
 
 
 
 
 
               
 

Figure 3.4 Sketch of the linear variable extrapolation at the cell interface. 

 

 

1/ 2,
l
i jQ +  

2,i jQ +  

1−i  i  1+i  2+i  

1,i jQ −  
,i jQ  

1,i jQ +  

1/ 2,
r
i jQ +  

x∆  
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3.5.1 Slope -Limiter  

There are many choices of slope that give second-order accuracy for 
smooth solutions while still satisfying the TVD property. For examples, the minmod slope 
limiter, the superbee slope limiter, the van leer slope limiter, the monotonized-central-
difference limiter (MC limiter), etc. In this work we use the minmod slope limiter and the 
MC slope limiter. 
 

          3.5.1.1 Minmod Slope Limiter 
 

                              1, 2, , 1,min mod ,i j i j i j i j
ij

Q Q Q Q
x x

σ − − −⎛ ⎞− −
= ⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠

                   (3.35) 

 
where the minmod function of two arguments is defined by  
 

                             
⎪
⎩

⎪
⎨

⎧

≤

>≤

>≤

=

00
0

0

),mod(min
abif

abandabifb

abandbaifa

ba                                   (3.36) 

 

The minmod technique compares the two slopes with the choice of a 
smaller one. If the two slopes have different sign then ,i jQ  must take on a local 
maximum or minimum value. It is easy to check in this case and we must set 0ijσ =  in 
order to satisfy TVD property. In this work, the minmod method is used to reduce the 
oscillation of dry bed case.        

 3.5.1.2 MC Limiter 
 
             

         1, 1, , 1, 1, ,min mod , 2 , 2
2

i j i j i j i j i j i j
ij

Q Q Q Q Q Q
x x x

σ + − − +
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −

= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
         (3.37) 
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The MC limiter increases the slopes in these two cells to twice the value 
of the minmod slopes and still have TVD property satisfied. This reconstruction will lead 
to sharper resolution of the discontinuity in the next time step than we would obtain with 
the minmod slopes.                  

 3.5.2 Wave limiter 

The wave limiter version of  1/ 2,
p

i jW −  is determined by 
 
                                              ( )1/ 2, 1/ 2, 1/ 2,

p p p
i j i j i jW Wφ θ− − −=                                          (3.38) 

 
where p

ji ,2/1−θ  should be some measure of the smoothness of the thp  characteristic 
component of solution  defined by  
 

                                                  1/ 2,
1/ 2,

1/ 2,

p
I jp

i j p
i j

W

W
θ −

−
−

=                                                     (3.39) 

                           
The index I here is used to represent the interface on the upwind side of jix ,2/1− , that is 
                     

                                              
⎪⎩

⎪
⎨
⎧

<+

>−
=

−

−

01

01

,2/1

,2/1

p
ji

p
ji

sifi

sifi
I                                                (3.40) 

 
The function )(θφ  is the flux-limiter function. 
 

                                          
))2,2,

2
)1(min(,0max(:

),1mod(min)(:modmin

θθ
θθφ

+
=

MC
 

3.5.3 High-resolution Method with Roe Approximate Riemann Solver  

Recall the fluctuation form of Godunov’s method (3.14) 
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1

1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

( )

( )

n n
ij ij i j i j

i j i j

tQ Q Q Q
x
t Q Q
y

+ + −
− +

+ −
− +

∆
= − ∆ + ∆

∆
∆

− Β ∆ +Β ∆
∆

                        (3.41) 

To improve the Godonov’s method we introduce the correction terms F  
and G  into (3.41). This gives 
 

                       

1
1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

1/ 2, 1/ 2, , 1/ 2 , 1/ 2

( )

( )

( ) ( )

n n
ij ij i j i j

i j i j

i j i j i j i j

tQ Q Q Q
x
t Q Q
y

t tF F G G
x y

+ + −
− +

+ −
− +

+ − + −

∆
= − ∆ + ∆

∆
∆

− Β ∆ +Β ∆
∆

∆ ∆
− + − +
∆ ∆

                     (3.42) 

In the first-order accurate method (3.41) the update value of 1n
ijQ +  

depends on only the three values 1,,ij i jQ Q −  and , 1i jQ −  shown in Figure 3.5(a). This is not 
quite a good representation, since the flow of information is at an angle to the grid, (see 
Figure 3.5(b)). The value 1, 1i jQ − −  should also affect 1n

ijQ + . This is the principle idea of the 
Corner-Transport Upwind method (CTU method) [11] 
 
 
 
 
 
 
 
 

Figure 3.5  (a) Waves moving normal to the cell interfaces. (b) The true velocity ),( vu  is 
at an angle to the grid, and information from cell )1,1( −− ji should also affect the new 

value in cell ),( ji . 

(a) (b) 
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 To compute the correction fluxes needed for the CTU method, we view 
the flow of information as a transversely propagating wave into each of the neighboring 
cells (see Figure (3.6)). Instead of giving a single expression for each correction flux, we 
will build up these fluxes by adding in any transverse terms arising from each Riemann 
problem. 

At the beginning of each time step we set 1/ 2, : 0i jF − =  and , 1/ 2 : 0i jG − =  
for all i  and j . After solving each Riemann problem in the x -direction, we set 

1/ 2,i jQ±
−∆  at the interface as in (3.41) and then update the nearby correction fluxes by  

 

                                     

1, 1/ 2 1, 1/ 2 1/ 2,

1, 1/ 2 1, 1/ 2 1/ 2,

, 1/ 2 , 1/ 2 1/ 2,

, 1/ 2 , 1/ 2 1/ 2,

:
2

:
2

:
2

: .
2

i j i j i j

i j i j i j

i j i j i j

i j i j i j

tG G Q
x
tG G Q
x

tG G Q
x
tG G Q
x

− −
− − − − −

+ −
− + − + −

− +
− − −

+ +
+ + −

∆
= − Β ∆

∆
∆

= − Β ∆
∆

∆
= − Β ∆

∆
∆

= − Β ∆
∆

                           (3.43) 

 We then sweep in the y -direction, after solving the Riemann problem at 
interface ( )2/1, −ji . The fluxes are updated by       

                                      

1/ 2, 1 1/ 2, 1 , 1/ 2

1/ 2, 1 1/ 2, 1 , 1/ 2

1/ 2, 1/ 2, , 1/ 2

1/ 2, 1/ 2, , 1/ 2

:
2

:
2

:
2

: .
2

i j i j i j

i j i j i j

i j i j i j

i j i j i j

tF F Q
x
tF F Q
x

tF F Q
x
tF F Q
x

− −
− − − − −

+ −
+ − + − −

− +
− − −

+ +
+ + −

∆
= − Β ∆

∆
∆

= − Β ∆
∆

∆
= − Β ∆

∆
∆

= − Β ∆
∆

                           (3.44) 

This is the process of CTU method for computing the transverse 
propagations to update the correction fluxes. Although CTU method is first-order 
accurate it has better stability than those that exclude the correction fluxes. To achieve 
second-order accuracy, we use the correction fluxes as follows: 
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1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,

1

1: 1
2

m
p p p

i j i j i j i j i j
p

tF F s s W
x− − − − −

=

∆⎛ ⎞= + −⎜ ⎟∆⎝ ⎠
∑

 
  

                    
, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2

1

1: 1
2

m
p p p

i j i j i j i j i j
p

tG G s s W
y− − − − −

=

⎛ ⎞∆
= + −⎜ ⎟∆⎝ ⎠

∑
                 (3.45) 

 

                         
1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,

1

1: 1
2

m
p p p

i j i j i j i j i j
p

tF F s s W
x+ + + + +

=

∆⎛ ⎞= + −⎜ ⎟∆⎝ ⎠
∑

 
 

                        
, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2

1

1: 1
2

m
p p p

i j i j i j i j i j
p

tG G s s W
y+ + + + +

=

⎛ ⎞∆
= + −⎜ ⎟∆⎝ ⎠

∑
 

 
where 1/ 2,

p
i jW −  represents a limited version of the wave 1/ 2,

p
i jW −  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6 Transverse propagations at the interface ( )ji ,2/1− . 

1/ 2,i jQ− −
−Β ∆  

1/ 2,i jQ+ −
−Β ∆  

1/ 2,i jQ− +
−Β ∆  

1/ 2,i jQ+ +
−Β ∆  

jix ,2/1−  
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To calculate the transverse propagations in x -direction, we split the 
fluctuation *

1/ 2,i jQ −∆  into up-going and down-going fluctuations *
1/ 2,i jQ+
−Β ∆  and 

*
1/ 2,i jQ−
−Β ∆  that modify the fluxes , 1/ 2i jG +  and , 1/ 2i jG −  above and below the cell ),( ji , 

respectively. To compute *
1/ 2,i jQ±
−Β ∆ , we decompose the vector *

1/ 2,i jQ −∆  into 
eigenvectors of B̂ , 
 
                              * 1 1 2 2 3 3

1/ 2,
ˆ ˆ ˆy y y

i jQ r r rβ β β−∆ = + +  
 

                  
( )
( )
( )

1*
1/ 2,

2* 1 2 3
1/ 2,

3*
1/ 2,

1 0 1
ˆ ˆ1

ˆ ˆ ˆ ˆ0

i j

i j

i j

Q

Q u u
v c v c

Q

β β β

−

−

−

⎡ ⎤∆⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆ = + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∆⎢ ⎥⎣ ⎦

                               (3.46) 

 Solving the linear system (3.46) for β , we obtain 
 

                  ( ) ( )
c

QcvQ jiji

ˆ2
)ˆˆ( 1

,2/1
*3

,2/1
*

1 −− ∆++∆−
=β  

                   
                  ( ) ( )1,2/1

*2
,2/1

*2 ˆ jiji QuQ −− ∆+∆−=β  
 

                 ( ) ( )1 3* *
1/ 2, 1/ 2,3

ˆ ˆ( )
ˆ2

i j i jv c Q Q

c
β − −− − ∆ + ∆

=  

The transverse waves are given by  
 

            1 2 31 2 3
1/ 2, 1/ 2, 1/ 2,

1 0 1
ˆ ˆ, 1 ,

ˆ ˆ ˆ ˆ0
i j i j i jWb u Wb Wb u

v c v c
β β β− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
 and the transverse waves speeds are vsbcvsb jiji ˆ,ˆˆ 2

,2/1
1

,2/1 =−= −−  ,  and 
cvsb ji ˆˆ3

,2/1 +=− . The transverse fluctuations are given by  
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( )

( )

3
*

1/ 2,1/ 2, 1/ 2,
1

3
*

1/ 2,1/ 2, 1/ 2,
1

pp
i ji j i j

p

pp
i ji j i j

p

Q sb Wb

Q sb Wb

−−
−− −

=

++
−− −

=

Β ∆ =

Β ∆ =

∑

∑
 

 
where *

1/ 2,i jQ −∆  represent  1/ 2,i jQ+
−∆  or  1/ 2,i jQ−

−∆ .  

To calculate the transverse propagations in y-direction, we split the 
fluctuation *

, 1/ 2i jQ −Β ∆  into right-going and left-going fluctuations *
, 1/ 2i jQ+
−Β ∆  and 

*
, 1/ 2i jQ−
−Β ∆  that modify the fluxes 1/ 2,i jF +  and 1/ 2,i jF −  right and left the cell ),( ji , 

respectively. To compute *
, 1/ 2i jQ±
−Β ∆ , we decompose the vector *

, 1/ 2i jQ −Β ∆  into 
eigenvectors  of Â , 
 
                              * 1 1 2 2 3 3

, 1/ 2
ˆ ˆx x x

i jQ r r rβ β β−Β ∆ = + +  
 

                  
( )
( )
( )

1*
, 1/ 2

2* 1 2 3
, 1/ 2

3*
, 1/ 2

1 0 1
ˆ ˆ ˆ ˆ0
ˆ ˆ1

i j

i j

i j

Q

Q u c u c
v v

Q

β β β

−

−

−

⎡ ⎤Β ∆⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Β ∆ = − + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦Β ∆⎢ ⎥⎣ ⎦

                            (3.47) 

Solving the linear system (3.47) for β , we obtain   
 

                  ( ) ( )3 1* *
, 1/ 2 , 1/ 21

ˆ ˆ( )
ˆ2

i j i jQ u c Q

c
β − −− Β ∆ + + Β ∆

=  
                   
                  ( ) ( )2 12 * *

, 1/ 2 , 1/ 2ˆi j i jQ v Qβ − −= − Β ∆ + Β ∆  
 

                 ( ) ( )1 3* *
, 1/ 2 , 1/ 23

ˆ ˆ( )
ˆ2

i j i ju c Q Q

c
β − −− − Β ∆ + Β ∆

=  

The transverse waves are given by  
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            1 2 31 2 3
, 1/ 2 , 1/ 2 , 1/ 2

1 0 1
ˆ ˆ ˆ ˆ, 0 ,

ˆ ˆ1
i j i j i jWb u c Wb Wb u c

v v
β β β− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
and the transverse waves speeds are 1 2

, 1/ 2 , 1/ 2ˆ ˆ ˆ,i j i jsb u c sb u− −= − = ,   and 
3
, 1/ 2 ˆ ˆi jsb u c− = + . The transverse fluctuations are given by  

 

                          
( )

( )

3
*

, 1/ 2, 1/ 2 , 1/ 2
1

3
*

, 1/ 2, 1/ 2 , 1/ 2
1

pp
i ji j i j

p

pp
i ji j i j

p

Q sb Wb

Q sb Wb

−−
−− −

=

++
−− −

=

Β ∆ =

Β ∆ =

∑

∑
 

 
where *

1/ 2,i jQ −Β ∆  represents 1/ 2,i jQ+
−Β ∆  or 1/ 2,i jQ−

−Β ∆ . 

 

Implementation of the above method is described in an algorithm as 
follows. 
 
                             Algorithm 2 

          
1. Initialize 1/ 2, : 0i jF − = and , 1/ 2 : 0i jG − =  at each interface.   
2. Solve each Riemann problem in the x-direction by sweeping through 

the grid. At interface ( 1/ 2, )i j−  between jiC ,1−  and 1, −jiC  we use 
1,i jQ −  and ,i jQ  to compute the waves 1/ 2,

p
i jW −  and the speeds 

1/ 2,
p
i js − . Calculate fluctuations 1/ 2,i jQ+

−∆  and 1/ 2,i jQ−
−∆ .    

            

                                                      
( )

( )

3

1/ 2, 1/ 2, 1/ 2,
1

3

1/ 2, 1/ 2, 1/ 2,
1

p p
i j i j i j

p

p p
i j i j i j

p

Q s W

Q s W

−−
− − −

=
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3. Determine 1/ 2,
p

i jW −  and use this to update the correction fluxes at the 
interface (The Godunov’s method is improved to second-order 
accurate)    

                 

                                             
3

1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,
1

1: 1
2

p p p
i j i j i j i j i j

p

tF F s s W
x− − − − −

=

∆⎛ ⎞= + −⎜ ⎟∆⎝ ⎠
∑  

 
4. Use right-going fluctuation 1/ 2,i jQ+

−∆  to compute an up-going 
transverse fluctuation 1/ 2,i jQ+ +

−Β ∆  and a down-going transverse 
fluctuation 1/ 2,i jQ− +

−Β ∆  by solving the transverse Reimann 
problem. These are computed by decomposing the fluctuation 

1/ 2,i jQ+
−∆  into eigenvectors of B, 

                             

                                                          
3

1/ 2,
1

p yp
i j

p
Q rβ+

−
=

∆ =∑  

                              and then setting  
                     

                                               ( )
3

1/ 2,
1

yp p yp
i j

p
Q rλ β

±± +
−

=

Β ∆ =∑  

  
5. Update the correction fluxes above and below the cell ,i jC  by using 

the fluctuations 1/ 2,i jQ± +
−Β ∆ : 
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6. In a similar manner, the left-going fluctuation 1/ 2,i jQ−
−∆  is 

separated into transverse fluctuations 1/ 2,i jQ± −
−Β ∆ , which are then 

used to update the fluxes above and below cell 1,i jC −  : 
 

                                                    
1, 1/ 2 1, 1/ 2 1/ 2,

1, 1/ 2 1, 1/ 2 1/ 2,

:
2

:
2

i j i j i j

i j i j i j

tG G Q
x
tG G Q
x

+ −
− + − + −

− −
− − − − −

∆
= − Β ∆

∆
∆

= − Β ∆
∆

 

 
7. Steps 2-6 are repeated for each Reimann problem in the y-direction, 

at interfaces between cell 1−j,iC and j,iC . The resulting waves 
, 1/ 2
p

i jW − are limited by comparisons in the y -direction and used to 
update , 1/ 2i jG − . In solving these Reimann problems we also compute 
fluctuations , 1/ 2i jQ±

−Β ∆  which are then separated transversely into 
, 1/ 2i jQ± +
−Β ∆ and , 1/ 2i jQ± −

−Β ∆ .  These four transverse fluctuations 
are used to modify the nearby F  fluxes. 

 
 

8. Finally, the updating formula (3.42). 
 

                                     

1
1/ 2, 1/ 2,
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x y
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+ −
− +

+ − + −

∆
= − ∆ + ∆

∆
∆

− Β ∆ +Β ∆
∆
∆ ∆

− − − −
∆ ∆

  

3.5.4 High-resolution Method with HLL Approximate Riemann Solver 

The HLL method can easily be improved to the second-order accuracy 
by using the MUSCL procedure. In this thesis, the reconstruction of lQ  and rQ  are 
given by 
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At the interface ( 1/ 2, )i j−  
 

                                        
1/ 2, 1, 1,

1/ 2, , ,

1
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1
2

l
l i j i j i j

r
r i j i j i j

Q Q Q x

Q Q Q x
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−
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≡ = − ∆
                                       (3.48) 

 
At the interface ( )2/1, −ji  
 

                                         
, 1/ 2 , 1 , 1

, 1/ 2 , ,

1
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1
2

l
l i j i j i j

r
r i j i j i j

Q Q Q y

Q Q Q y

δ

δ

− − −

−

≡ = + ∆

≡ = − ∆
                                      (3.49) 

 After the reconstruction of lQ  and rQ , these values are used to update 
the numerical fluxes in (3.8). The high-resolution HLL approximate Riemann solver can 
be described by the following algorithm.       
                       
                          Algorithm 3 
 

1. Sweep through grids in the x-direction. At the cell interface 
( 1/ 2, )i j− , we compute a piecewise linear function 
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l
l i j i j i j

r
r i j i j i j
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2. Compute the numerical fluxes 
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                               Here ( )* ( ) ( ) ( ), r l l r l r r l
l r

r l

s F Q s F Q n s s Q QF Q Q
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−
                                              

 
                               The wave speeds ls  and rs can be determined by 
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                              where 
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2 4
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3. Use similar procedure to compute the numerical fluxes at the 

interface ( )ji ,2/1+ . 
 

4. Sweep through grids in the y-direction and use similar processes 1-2 
to compute the numerical fluxes at the interfaces ( )2/1, −ji  and 
( )2/1, +ji . 

 
5. Finally, update the cell average at ),( ji  
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Flowchart of the Numerical Method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

  START 

READ parameter data file 

Set initial conditions 
(Call subroutine initial (mx,my,…) ) 

Write solutions at 0t  
(Call subroutine output (mx,my,…)) 

Ntimen ≤  

Update boundary condition 
(Call subroutine BC (mx,my,…)) 

Update source term 
(Call subroutine SCT (mx,my,…), Bedslope  (mx,my,…)  

and Friction (mx,my,…)) 

     Sweep in x-direction 

Compute numerical fluxes 
(Call subroutine HLL (mx,my,…) or ROE (mx,my,…)) 

  A 

  B 

No 
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Figure 3.7 Flowchart of numerical method. 

Write solutions at this time 
(Call subroutine output (mx,my,…)) 

  A 

     Sweep in y-direction 

Compute numerical fluxes 
(Call subroutine HLL (mx,my,…) or ROE (mx,my,…)) 

    Update all cell averages 

Update source term 
(Call subroutine SCT (mx,my,…), Bedslope  (mx,mym,…) 

and Friction (mx,my,…)) 

1≤CFL  

1+= nn  

    B 

No 

Yes 

    STOP 

    Update all cell averages 



CHAPTER IV 
 

PARALLEL COMPUTATION 

The computational domain of the shallow water problem tends to be 
quite large, with complex geometries. On a single processor the calculation of its 
solution would take several hundreds of computational time and would have not enough 
a buffer zone for stored data variables. The development of parallel computer can 
overcome the limitations of the problem size and space resolution for shallow water 
problem simulation. To implement the parallel computation, the domain decomposition 
techniques are used to divide the physical domain into a number of smaller domains, 
each of which corresponds to a processor. A message passing interface (MPI) is 
incorporated for inter-processor data communication. 

4.1 Parallel Performance Measurements 

We define the execution time of a parallel program as the time that 
elapses from when the first processor starts execution. On each processor, the 
execution time is spent on computing, communication and idling. 

The performance parameters that are commonly used for measuring the 
gain of using a parallel code are the speedup ( S ) and efficiency ( E ). The speedup S  
of a parallel system is defined as the ratio of the execution time 1T  of a given application 
run on a single processor to the time PT  taken to solve the same problem on P  
processors. 

 

                                                      
PT

TS 1=                                                                     (4.1) 

The efficiency is a measure of the time the processor spent in the 
computational phase. It is defined as the ratio of speedup S  to the number of 
processors: 
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P
SE =                                                                       (4.2) 

 

In principle, we would expect PS =  and 1=E . In practice, a parallel 
system containing P  processors does not usually achieve a speedup of P , because 
part of time required by the processors is spent on communication or idling. That is 
usually PS <<0  and 10 << E . Figure 4.1 shows a typical relationship between 
speedup and the number of processors used. 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Plot of speedup S versus number of processors P  for a fixed problem size. 

 Figure 4.1 shows that the speedup does not increase linearly with the 
number of processors, instead, it tends to saturate. In other words, the efficiency drops 
as the number of processors increase. This is often referred to as Amdahl’s law. 

4.2 Domain Decomposition 

A domain decomposition scheme is applied for the shallow water 
domain that is divided into smaller sub-domains. Each sub-domain is defined as the 
local domain of an individual processor which is addressed to as domain 

Ideal 

Actual 

P  

s   

Speedup 

Number of processors 
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decomposition. Several strategies exist within the domain decomposition paradigm for 
dividing the physical domain into sub-domains.  

  Figure 4.2 shows a 1D and 2D decompositions for a two-dimensional 
domain. The 1D decomposition can be achieved by dividing the computational domain 
in one direction only, while in the 2D decomposition, the computational domain is 
decomposed both in x and y coordinate directions. 
 
 
 
 
 
  
         
 
 
 
 
 

Figure 4.2 Domain decomposition topologies for 1D (a) 2D (b) decompositions. 

 

 In this thesis, the 2D decomposition is chosen in the parallel solver for 
the shallow water equations.  In the 2D decomposition, the physical domain is divided 
into rectangular sub-domains that are distributed across the available processors. Let 

xm  and ym  be the number of grid cells in the x  and y directions of the physical 
domain. The total number of processors is yx PPP ×= , where xP and yP  are the 
numbers of processors assigned to the x  and y  directions respectively. So the number 

of grid cells in each sub-domain is 
y

y

x

x

P
m

P
m

⋅ . In this work 
x

x

P
m  and 

x

x

P
m  are integers. 

  (a) (b) 
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Table 4.1 Text of serial code for 2D decomposition 

 
 
 
 
 
 

     

Table 4.2 Text of parallel code for 2D decomposition 

 
 
 
 
 
 
 
 
 
 

Consider a loop in the serial code that performs a chunk of computations 
for all the interior nodes as shown in Table 4.1. In the parallel code, this loop is 
decomposed into blocks divided by the number of processors (see Table 4.2), with one 
block assigned to each processor. Hence the loops in the parallel code are smaller than 
the loops in the serial code and the computational in the parallel code is less than in the 
serial code.  

Serial code 
        
   do mxi ,1=  
         do myj ,1=  

-- code segment -- 
         end do 
  end do 

Parallel code 
        

   do 
x

x

P
m

i ,1=  

         do 
y

y

P
m

j ,1=  

-- code segment -- 
         end do 
  end do 
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Thus at the end of each time step, each processor must update the 
boundaries of the sub-domains because of the spatial discretization by copying the 
appropriate values from adjacent processors. The copying procedure will be in the form 
of messages exchanged among processors by using MPI.        

 4.3 Message Passing Interface (MPI) 

MPI was developed in 1993-1994 by a group of researchers from 
industry, government, and academia. As such, it is one of the first standards for 
programming parallel processors, and it is the first that is based on a message passing. 
MPI’s goal is to provide a standard for writing message-passing programs. This 
standard defines the syntax and semantics of a core of library routines useful for writing 
parallel programs. The standard includes descriptions of various types of 
communication including processor to processor or point to point message passing and 
global calls for collective communication. The standard also allows process groups and 
communication contexts to be defined by the user. This enables a single program to 
control several groups of processors, each working on different tasks. There is also 
supported for process topologies that is a mapping of processes in a communicator to 
an addressing scheme. The addressing scheme is usually chosen for convenience. 
More details of MPI can be found in [13]. 
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                             Flow chart of the parallel solver 
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Figure 4.3 Flowchart of parallel solver 

STOP 

1+= nn  

Master writes the global solution 

B 

A 

Slaves send a maximal of CFL 
( localCFL ) to master 

Master computes a maximum CFL( globalCFL ) 

Yes 

No 

Slaves send the local solution to master 

Each processor does finite volume process in y-direction 
                                  do j=1,myp 

         - code segment - 
                           end do 

1≤globalCFL



CHAPTER V 
 

RESULTS 

In this chapter, the numerical solution and the performance results of the 
parallel computation of the circular dam break and the rectangular dam break are 
reported in the following sections.  

5.1 Circular Dam Break 

The space of the circular dam break is a m200  long square with a 
cylindrical dam with radius m50  and centered in the square, as shown in Figure 5.1. In 
this thesis, we consider two cases: the wet bed and the dry bed.  For both cases, the 
computational domain is divided into 200200×  square cells and the numerical solution 
is computed at time 5t s= using 0.025t s∆ = . 

 

 

 

 

 

 

        

Figure 5.1 Geometry of circular dam break problem. 

5.1.1 Wet bed 

In wet bed case, the initial water height is m10 inside the dam and m5  
outside the dam. Both components of the velocities u and v  are set to zero everywhere. 

m200  

m200  
 

50=r  
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Typical profiles of surface elevation of Roe solver are shown in Figure 5.6  and the 
performances of the parallel computation are shown in Table 5.1. 

Table 5.1 Performance results of circular dam break with wet bed. 

Number of 
processors 

Unknowns per 
processor 

Elapsed time(s) Speedup Efficiency(%) 

1 120000 120.502 1.000 100.000 
2 60000 64.883 1.857 92.861 
4 30000 37.952 3.175 79.378 
8 15000 24.594 4.900 61.246 

 

Figure 5.2 shows a relationship between the speedup and the number of 
processors. Figure 5.3 shows a relationship between the efficiency and the number of 
processors. We can see that they drop when increasing the number of processors. 

 

Figure 5.2 Relationship between the speedup and the number of processors in the 
cluster.                   

Numerical( Roe) 
Theory 
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Figure 5.3 Relationship between the efficiency and the number of processors in the 

cluster. 

5.1.2 Dry bed 

In dry bed case, the initial water height is m10 inside the dam and m0  
outside the dam. Both components of the velocities u and v  are set to zero everywhere. 
We use only the HLL solver to solve this case. Typical profiles of surface elevation of 
HLL solver are shown in Figure 5.7 and the performances of the parallel computation are 
shown in Table 5.2. 

Table 5.2 Performance results of circular dam break with dry bed. 

Number of 
processors 

Unknowns per 
processor 

Elapsed time(s) Speedup Efficiency(%) 

1 120000 49.070 1.000 100.000 
2 60000 29.565 1.660 82.987 
4 30000 20.388 2.407 60.170 
8 15000 16.472 2.979 37.237 

Numerical( Roe) 
Theory 
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Figure 5.4 shows a relationship between the speedup and the number of 
processors. Figure 5.5 shows a relationship between the efficiency and the number of 
processors. We can see that they drop when increasing the number of processors. 

 

 

 
                                      

 
Figure 5.4 Relationship between the speedup and the number of processors in the 

cluster.                   
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Figure 5.5 Relationship between the efficiency and the number of processors in the 
cluster. 
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(a10) t=4.5 

 
(a11) t=5 

 
 

Figure 5.6 (a1)-(a11) show the circular dam break results in the case of wet bed, the left 
of figure shows water profile and the right of figure shows a contour plot of the depth. 
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(b1) t=0 
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(b4) t=1.5 

 
(b5) t=2 
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(b7) t=3 

 
(b8) t=3.5 

 
(b9) t=4 
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(b10) t=4.5 

 
(b11) t=5 

 

Figure 5.7 (b1)-(b11) show the circular dam break results in the case of dry bed, the left 
of figure shows water profile and the right of figure shows a contour plot of the depth. 
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5.2 Rectangular Dam Break 

We consider the dam-break problem in a square domain mm 200200 × . 
The domain is separated into two zones by an infinitesimally thin wall. The breach is 

m75  wide, as shown in Figure 5.8. Again we consider two cases: the wet bed and the 
dry bed. For both cases, the computational domain is divided into 200200×  square 
cells and the numerical solution is computed at time 5t s= using 0.025t s∆ = . The 
rectangular dam break is a special problem and it has more complex computation than 
a circular dam break or other problems. We present the appropriate domain 
decomposition technique for using 2,4,6 and 8 processors as shown in Figure 5.9.   

 

 

 

 

 

 

 

 

Figure 5.8 Geometry of rectangular dam break problem 
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        (a)                                                             (b) 

 

 

 

 

 

 
                                 (c)                                                             (d) 

Figure 5.9 Appropriate domain decomposition technique of the rectangular dam break 
problem, (a) for using 2 processors, (b) for using 4 processors, (c) for using 6 

processors and (d) for using 8 processors.  
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For this domain decomposition technique, we obtained a regular sub-
domain.  Hence, solving on a sub-domain can reduce a complexly computational. 
Moreover, there is no sending and no receive across the boundaries on dam region 
because of the dam wall is a boundary of sub-domain.  

5.2.1 Wet bed 

Initially, the water depth upstream of the dam is m10  and the 
downstream water depth is assumed to be m5 , both components of the velocity u and 
v  are set to zero everywhere. Typical profiles of surface elevation of Roe solvers are 
shown in Figure 5.14. The performances of the parallel computation are shown in Table 
5.3. 

Table 5.3 Performance results of rectangular dam break with wet bed. 

Number of 
processors 

Unknowns per 
processor 

Elapsed time(s) Speedup Efficiency(%) 

1 120000 165.890 1.000 100.000 
2 60000 82.085 2.021 101.048 
4 30000 54.945 3.019 75.480 
8 15000 36.567 4.537 56.708 

 

We see that the speedup and the efficiency drop when increasing the 
number of processors, except when running on 2 processors due to using different 
code when running on 1 and 2 processors (see Figure 5.10 and Figure 5.11).  The code 
that is used to run on 2 processors doesn’t have complex computation and 
intercommunicating at dam wall because of the optimal domain decomposition. Table 
5.4 shows the comparison of performance results between the optimal domain 
decomposition and the other. We can see that the first domain decomposition is more 
efficient that the other. 
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Table 5.4 Comparison of performance results between 2 differencing domain 
decomposition. 

Number of processors Unknowns per 
processor 

Elapsed 
time(s) 

Speedup Efficiency(%) 

1 120000 165.890 1.000 100.000 
2 with appropriate domain decomposed 60000 82.085 2.021 101.048 

2 with the other domain decomposed 60000 98.611 1.682 84.113 

 

 

 

          Figure 5.10 Relationship between the speedup and the number of processors in 
the cluster.     

               
 

Numerical( Roe) 
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Figure 5.11 Relationship between the efficiency and the number of processors in the 

cluster.              

5.2.2 Dry bed 

In dry bed case, the initial water depth upstream of the dam is m10  and 
the downstream water depth is assumed to be m0  and both components of the velocity 
u and v  are set to zero everywhere. Typical profiles of surface elevation of HLL solvers 
are shown in Figure 5.15 and the performances of the parallel computation are shown in 
Table 5.5. Figure 5.12 shows the relationship between the speedup and the number of 
processors and Figure 5.13 shows the relationship between the efficiency and the 
number of processors. 

 

 

Numerical( Roe) 
Theory 
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Table 5.5 Performance results of rectangular dam break with dry bed. 

Number of 
processors 

Unknowns per 
processor 

Elapsed time(s) Speedup Efficiency(%) 

1 120000 54.931 1.000 100.000 
2 60000 29.633 1.854 92.686 
4 30000 20.627 2.663 66.577 
8 15000 16.589 3.311 41.391 

 

 

 

   Figure 5.12 Relationship between the speedup and the number of processors in the 
cluster.                   
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Figure 5.13 Relationship between the efficiency and the number of processors in the 

cluster. 
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(c4) t=1.5 
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(c7) t=3 

 
(c8) t=3.5 
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(c10) t=4.5 

 
(c11) t=5 

Figure 5.14 (c1)-(c11) show the rectangular dam break results in the case of wet bed, 
the left of figure shows water profile and the right of figure shows contour plot of the 

depth. 
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(d10) t=4.5 

 
(d11) t=5 

 

Figure 5.15 (d1)-(d11) show the rectangular dam break results in the case of dry bed, 
the left of figure shows water profile and the right of figure shows contour plot of the 

depth. 
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5.3 Comparison of the Performance Results Between Roe and HLL Solvers 

From Tables 5.6 and 5.7 we see that the HLL solver requires less 
computational time than the Roe solver. This is mainly due to the fact that Roe solver has 
to first calculate the wave propagation in both directions before evaluating the fluxes. 
Hence the Roe solver has more operations as compared with the HLL solver. 
Surprisingly, the Roe solver can achieved better performance results than the HLL 
solver (see Figure 5.15). 

Table 5.6 Comparison of performance results between the Roe and the HLL solver for 
solving the circular dam break. 

Elapsed time(s) Speedup Efficiency(%) Number of 
processors 

Unknowns per 
  processor HLL Roe HLL Roe HLL Roe 

1 120000 49.070 120.502 1.000 1.000 100.000 100.000 
2 60000 29.565 64.883 1.660 1.857 82.987 92.861 
4 30000 20.388 37.952 2.407 3.175 60.170 79.378 
8 15000 16.472 24.594 2.979 4.900 37.237 61.246 

Table 5.7 Comparison of performance results between the Roe and the HLL solver for 
solving the rectangular dam break. 

Elapsed time(s) Speedup Efficiency(%) Number of 
processors 

Unknowns per 
  processor HLL Roe HLL Roe HLL Roe 

1 120000 54.931 165.890 1.000 1.000 100.000 100.000 
2 60000 29.633 82.085 1.854 2.021 92.686 101.048 
4 30000 20.627 54.945 2.663 3.019 66.577 75.480 
8 15000 16.589 36.567 3.311 4.537 41.391 56.708 
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Figure 5.16 Comparison of the performance results between the Roe and the HLL 
solvers for solving the dam break problems (a) Circular dam break (b) Rectangular dam 

break. 

 



CHAPTER VI 
 

CONCLUSION 

In this thesis, we use the shallow water equations to simulate the shallow 
water flow problems for the rectangular and the circular dam break problems. We use 
the finite volume methods to approximate the solution. A high-resolution Godunov’s 
method is used to compute the numerical fluxes by using solution of the local Riemann 
problem at each cell interface. The Roe and the HLL approximate Riemann solvers are 
used to approximate the solution of this local Riemann problem. Our numerical results of 
dam break problems are in good agreement with the previous works [1,3,7,9]. 

We also present a parallel algorithm for solving the dam break problems. 
The domain decomposition technique is used to divide a physical domain into a number 
of smaller sub-domains. MPI is incorporated for inter-processor data communication. 
We find that a parallel computer can reduce the computational time. However, the 
efficiency decreases when there are too many processors in the cluster due to the 
imbalanced usage of resources. We analyze the performance results between Roe and 
HLL solvers and present the appropriate domain decomposed for the rectangular dam 
break. 
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