

การคํานวณเชงิขนานของปญหาการไหลในน้ําต้ืน

นายไพรินทร สุวรรณศรี

วิทยานิพนธน้ีเปนสวนหน่ึงของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการคณนา ภาควิชาคณิตศาสตร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย
ปการศึกษา 2547

ISBN 974-17-6768-4
ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

PARALLEL COMPUTATION OF SHALLOW WATER FLOW PROBLEMS

 Mr. Pairin Suwannasri

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computational Science

Department of Mathematics
Faculty of Science

Chulalongkorn University
Academic Year 2004
ISBN 974-17-6768-4

Thesis Title PARALLEL COMPUTATION OF SHALLOW WATER FLOW
PROBLEMS

By Mr. Pairin Suwannasri
Field of study Mathematics
Thesis Advisor Associate Professor Jack Asavanant, Ph.D.
Thesis Co-advisor Professor Chidchanok Lursinsap, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master ’s Degree

 ………………………………………………… Dean of the Faculty of Science
 (Professor Dr. Piamsak Menasveta)

THESIS COMMITTEE

 ………………………………………………… Chairman
 (Assistant Professor Pronchai Satravaha, Ph.D.)

 ………………………………………………… Thesis Advisor
 (Associate Professor Jack Asavanant, Ph.D.)

 ………………………………………………… Thesis Co-advisor
 (Professor Chidchanok Lursinsap, Ph.D.)

 ………………………………………………… Member
 (Assistant Professor Vimolrat Ngamaramvaranggul, Ph.D.)

 ………………………………………………… Member
 (Assistant Professor Anusorn Chonwerayuth, Ph.D.)

 iv

ไพรินทร สุวรรณศรี : การคํานวณเชิงขนานของปญหาการไหลในน้ําตื้น. (PARALLEL
COMPUTATION OF SHALLOW WATER FLOW PROBLEMS) อาจารยที่ปรึกษา :
รศ.ดร. จักษ อัศวานันท, อาจารยที่ปรึกษารวม : ศ.ดร ชิดชนก เหลือสินทรัพย ; 93 หนา. ISBN
974-17-6768-4

 วิทยานิพนธน้ีนําเสนอระเบียบวิธีการเชิงตัวเลขแบบขนานสําหรับแกปญหาการไหลในนํ้าต้ืน
แบบสองมิติ โดยการใชแบบจําลองทางคณิตศาสตร วธีิการความละเอียดสูงของ Godunov ซ่ึงอยูบน
พ้ืนฐานของตัวแกปญหาการประมาณคา Riemann ความถูกตองระดับสองจะถูกใชในการแกสมการ
shallow water ปญหา Riemann จะถูกประมาณคาโดยใชวิธีการของ Harten Lax VanLeer(HLL) และ
วิธีการของ Roe โปรแกรมแบบขนานถูกสรางข้ึนบนระบบแบบการกระจายที่ใชหนวยความจาํรวมกัน
โดยใชเทคนิคการแบงโดเมน Message Passing Interface(MPI) จะถูกนํามาชวยในการสื่อสาร
ระหวางเครื่อง งานวจิัยน้ียังไดมีการเปรียบเทียบประสิทธิภาพของการคํานวณแบบขนานดวย

ภาควิชา คณิตศาสตร ลายมือช่ือนิสิต………………………………………………..
สาขาวิชา วิทยาการคณนา ลายมือช่ืออาจารยท่ีปรึกษา……………………………………
ปการศึกษา 2547 ลายมือช่ืออาจารยที่ปรึกษารวม……………………………….

 v

4572429023 : MAJOR Computational Science
KEY WORD: Parallel computation/ Finite volume methods / Dam break problems.

PAIRIN SUWANNASRI : PARALLEL COMPUTATION OF SHALLOW WATER FLOW
PROBLEMS. THESIS ADVISOR : ASSOC.PROF JACK ASAVANANT, Ph.D., THESIS
COADVISOR : PROF. CHICHANOK LURSINSAP, Ph.D., 93 pp. ISBN 974-17-6768-4.

 In this thesis, a parallel numerical method for solving two-dimensional shallow
water flow problems is presented. A mathematical model is described. A high-resolution
Godunov’s method which is based on a second-order approximate Riemann solver is used
to solve the 2-D shallow water equations. The local Riemann problem is solved by using the
Harten, Lax and Van Leer approach (HLL) and by the Roe method. The parallel code
program has been implemented on distributed-shared memory system, by using domain
decomposition techniques. A message passing interface (MPI) is incorporated for inter-
processor data communication. In addition, numerical solutions and performance results are
also presented.

Department Mathematics Student’s signature…………………………………..
Field of study Computational Science Advisor’s signature…………………………………..
Academic year 2004 Co-advisor’s signature……………………………….

 vi

Acknowledgements

First of all, I would like to express my deep gratitude to my supervisor,
Assoc.Dr. Jack Asavanant, who is very kindly read and edited the thesis and offered
many useful suggestion. I would also like to thank my co-supervisor, Prof.Dr.
Chidchanok Lursinsap, who gave me wonderful suggestions.

My thanks also go to the dissertation committee, Assist.Prof.Dr. Pronchai
Satravaha, Assist.Prof.Dr Vimolrat Ngamaramvaranggul and Assist.Prof.Dr. Anusorn
Chonwerayuth, who made helpful comments on the suitability of thesis content.

I want to express my gratitude to Ubon Rajathanee University for their
scholarship in supporting me during my education.

I would also like to thank Dr. Tawun Remsungnen who supported and
advised me for using parallel computer. I would like to thank the Advanced Virtual and
Intelligence Computing Research Center(AVIC) for support in enabling me to
accomplish research and thanks especially to all of my friends in the Department of
Mathematics for providing me constant encouragement .

Finally, my deepest gratitude goes to my parents for their
encouragement love and care that inspire the research.

TABLE OF CONTENTS

 Page

ABSTRACT (THAI)………………………………………………………………………….. iv
ABSTRACT (ENGLISH)…………………………………………………………………….. v
ACKNOWLEDGEMENTS…………………………………………………………………… vi
LIST OF TABLES……………………………………………………………………………. x
LIST OF FIGURES………………………………………………………………………...… xi

CHAPTER

I INTRODUCTION………………………………………………………………………….. 1

II DERIVATION OF SHALOW WATER EQUATIONS….……………………………… 3
 2.1 Conservation of Mass.……………………………………..………………….. 3
 2.2 Conservation of Momentum………………………………………………….. 5

III NUMERICAL METHODS……………………………….……………………………… 10
 3.1 Conservative Finite Volume Method....…………………..………………….. 10
 3.2 Riemann Problem 13
 3.3 Godunov’s Method 15
 3.3.1 The Wave-Propagation form of Godunov’s Method…………………. 16
 3.3.2 The CFL Condition………………………………………………………. 16
 3.4 Approximate Riemann Solver…………………………………………………. 20
 3.4.1 Roe Linearization………………………………………………………… 20
 3.4.2 Roe Riemann Solver…………………………………………………….. 22
 3.4.2.1 Sweep in the x -direction………..…………………………….. 22
 3.4.2.2 Sweep in the y -direction………..…………………………….. 23
 3.4.3 HLL Riemann Solver…………………………………………………….. 25
 3.5 High-resolution Godunov’s Method………………………………………….. 26
 3.5.1 Slope-Limiter…...………………………………………………………… 28
 3.5.1.1 Minmod Slope Limiter………………………………………….. 28
 3.5.1.2 MC Slope Limiter……………………………………………….. 28

 viii
TABLE OF CONTENTS (Continued)

 Page
 3.5.2 Wave Limiter……………………………………………………………... 29
 3.5.3 High-resolution Method with Roe Approximation Riemann Solver… 29
 3.5.4 High-resolution Method with HLL Approximation Riemann Solver… 37
 Flowchart of the Numerical Method………………………………………………. 40

IV PARALLEL COMPUTATION…………………………….…………………………….. 42
 4.1 Parallel Performance Measurements………………………………………… 42
 4.2 Domain Decomposition………………………………………………………... 43
 4.3 Message Passing Interface (MPI)……………………………………………. 46
 Flowchart of the parallel solver…………………………………………………… 47

V RESULTS…………………………………………………………………………………. 49
 5.1 Circular Dam Break Problem…………………………………………………. 49
 5.1.1 Wet bed…………………………………………………………………… 49
 5.1.2 Dry bed…………………………………………………………………… 51
 5.2 Rectangular Dam Break Problem…………………………………………….. 62
 5.2.1 Wet bed…………………………………………………………………… 64
 5.2.2 Dry bed…………………………………………………………………… 66
 5.3 Comparison of the Performance Results Between Roe and HLL Solvers.. 77

VI CONCLUSION.…………………………………………………………………………. 79
REFERENCES……………………………………………………………………………….. 80
VITAE…………………………………………………………………………………………. 82

LIST OF TABLES

Table Page

4.1 Text of serial code for 2D decomposition………………………………………… 45
4.2 Text of parallel code for 2D decomposition……………………………………… 45
5.1 Performance results of circular dam break with wet bed………………………. 50
5.2 Performance results of circular dam break with dry bed………………………. 51
5.3 Performance results of rectangular dam break with wet bed………………….. 64
5.4 Comparison of performance results between 2 differencing domain
 decomposition……………………………………………………………………….. 65
5.5 Performance results of rectangular dam break with dry bed..……………….. 67
5.6 Comparison of performance results between the Roe and the HLL solver for
 solving the circular dam beak ……………………………………………………. 77
5.7 Comparison of performance results between the Roe and the HLL solver for
 solving the rectangular dam break………………………………………………. 77

LIST OF FIGURES

Figure Page
2.1 (a) Control volume (b) Normal velocity……………………………………………. 4
2.2 The directions of all forces and momentum fluxes in x -direction…………… 5
3.1 Finite volume grid cells in two space dimensions, where ijQ represents a
 cell average ………………………………………………………………………….. 10
3.2 Solution of the linear Riemann problem in the x t− plane……………………… 14
3.3 Fluctuations for the Godunov’s method …………………………………………... 19
3.4 Sketch of the linear variable extrapolation at the cell interface………………… 27
3.5 (a) Waves moving normal to the cell interface. (b) The true velocity (,)u v is at
 an angle to the grid, and information form cell (1, 1)i j− − should also affect
 the new value in cell (,)i j …………………………………………………………. 30
3.6 Transverse propagations at the interface (1/ 2,)i j− …………………………... 32
3.7 Flowchart of numerical method……………………………………………………. 41
4.1 Plot of speedup S versus number of processors P ……………………………. 43
4.2 Domain decomposition topologies for 1D (a) 2D (b) decompositions………… 44
4.3 Flow chart of parallel solver………………………………………...………………. 48
5.1 Geometry of circular dam break problem………………………………………… 49
5.2 Relationship between the speedup and the number of processors in the
 cluster ……………………………………………………………………….………... 50
5.3 Relationship between the efficiency and the number of processors in the
 cluster ……………………………………………………………………….………... 51
5.4 Relationship between the speedup and the number of processors in the
 cluster ……………………………………………………………………….………... 52
5.5 Relationship between the efficiency and the number of processors in the
 cluster ……………………………………………………………………….………... 53
5.6 (a1)-(a11) show the circular dam break results in the case of wet bed, the left
 of figure shows water profile and the right of figure shows a contour plot of
 the depth……………………………………………………………………………… 57
5.7 (b1)-(b11) show the circular dam break results in the case of dry bed, the left

LIST OF FIGURES (Continued)

Figure Page
 of figure shows water profile and the right of figure shows a contour plot of
 the depth……………………………………………………………………………… 61
5.8 Geometry of rectangular dam break problem……………………………………. 62
5.9 Appropriate domain decomposition of the rectangular dam break problem,
 (a) for using 2 processors, (b) for using 4 processors, (c) for using 6
 processors and (d) for using 8 processors………………………………………. 63
5.10 Relationship between the speedup and the number of processors in the
 cluster………………………………………………………………………………… 65
5.11 Relationship between the efficiency and the number of processors in the
 cluster………………………………………………………………………………… 66
5.12 Relationship between the speedup and the number of processors in the
 cluster………………………………………………………………………………… 67
5.13 Relationship between the efficiency and the number of processors in the
 cluster………………………………………………………………………………… 68
5.14 (c1)-(c11) show the rectangular dam break results in the case of wet bed,
 the left of figure shows water profile and the right of figure shows a contour
 plot of the depth……………………………………………………………………... 72
5.15 (d1)-(d11) show the rectangular dam break results in the case of dry bed,
 the left of figure shows water profile and the right of figure shows a contour
 plot of the depth……………………………………………………………………... 76
5.16 Comparison of the performance results between the Roe and the HLL
 solvers for solving the dam break problems (a)Circular dam break (b)
 Rectangular dam break …………………………………………………………… 78

CHAPTER I

INTRODUCTION

Open-channel flows, flood mitigation, dam break analysis and some
other related free surface flows are generally considered as shallow water problems.
These solutions may include the propagation of shock waves or rarefaction waves.
Mathematical models based on the shallow water equations (SWE) are widely used to
simulate of this shallow water problems (see example [1] - [9]). The SWE can be derived
from mass and momentum conservations (de Saint-Venant 1871). For two dimensions
problem, there are three unknowns: water depth and velocities in x -and y - directions to
be found. The distinguishing feature of the shallow water equations is that they admit
both discontinuities and smooth solutions. Even the case in which the initial data is
smooth can lead to discontinuous solutions at finite time. The nonlinear character of the
equations suggests that solution to these equations may be limited to only some special
cases. As and alternative, appropriate numerical methods can be used to obtain
solution including discontinuities.

Of all numerical techniques, finite volume methods (FVM) have several
advantages compared to other approaches. It combines the simplicity of finite
difference methods with the geometric flexibility of finite element methods. Since FVM
are based on the integral form of the conservation laws, a numerical scheme in
conservation form can easily be constructed to capture the discontinuities. The fluid
domain is subdivided into grid cells. Each cell average is modified in each time step by
the normal flux through the edges of the grid cells. To approximate the numerical fluxes
we must use the solution of local Riemann problem at cell interfaces. This approach was
proposed by Godunov, and the schemes derived from this principle are generally called
Godunov-type-scheme [3,6,10]. In the well known work of Godunov, the exact solution
of the Riemann problem was used. For the linear system, the exact Riemann problems
are mathematically too difficult to solve and the computation is too expensive. Today the
exact solution of the Riemann problem is replaced with the approximate solutions that

 2

are obtained by using approximate Riemann solvers. There have been quite a few
efficient approximate Riemann solvers developed by various researchers, such as Roe
(1981), VanLeer (1982), Harten (1983), and many others (see example [2],[3],[11]).
Since the original Godunov method is first order-accurate, there are serious numerical
oscillations occurred near the discontinuities. In order to avoid such oscillations, second
order schemes of the high-resolution Godunov’s methods are developed. In this work
the high-resolution Godunov’s methods are obtained by using the VanLeer’s Monotonic
Upstream Schemes for Conservation Laws (MUSCL) approach associated with the
minmod and the monotonized-central-difference slope limiters.

In order to reduce the computational time, a parallel computation of the
numerical method is used to solve the problems. The domain decomposition technique
is used to divide the physical domain of the shallow water problems into sub-domain [4].
The MPI (Massage Passing Interface) is implemented to define each sub-domain
associated with each processor and is incorporated for inter-processor data
communication. They also support process topology that is a mapping of processes in a
communicator to an addressing scheme. The parallel program has been tested on the
cluster that consists of eight PCs with 1.7 GHz Pentium 8 processors, 256 Mbytes RAM,
40 Gbytes Hard disk, and Fast Ethernet Switch Interconnection between nodes.

This thesis is organized as follows. Chapter 2 presents the derivation of
the shallow water equations. Details of finite volume method and the sequential
numerical algorithms are given in chapter 3. Chapter 4 introduces the concept of the
parallel system. Numerical results and performance results of the parallel model are
discussed in chapter 5. The conclusion of this thesis is in Chapter 6.

CHAPTER II

DERIVATION OF SHALLOW WATER EQUATIONS

This chapter concerns the derivation of equations governed the flows in
shallow water problem. The usual approach that simplifies the mathematical description
of the problem is to use a depth averaging procedure of the Navier-Stokes equations.
This leads to the Shallow Water Equations (SWE) model. Alternatively, the SWE can be
derived from the basic principles of conservations of mass and momentum together with
a set of constitutive laws related to the driving and resisting forces of fluid properties
and motion (de Saint-Venant 1871). The SWE is mathematical representation of water
movement subject to the following assumptions:

i) The fluid is assumed to be incompressible and inviscid.
ii) The pressure distribution is hydrostatic.
iii) Turbulence effect is negligible.

See [12] for a more complete description of the shallow water
assumptions.

2.1 Conservation of Mass

Consider a small rectangular element (dx dy h× ×) of water when
(, ,)h x y t is water depth as show in figure 2.1. Conservation of mass for this box or

“control volume” states that:
 The rate of volume increase in the column is equal to the net volume flux into
the column from all 4 sides.

 4

 Figure 2.1(a) Control volume (b) Normal velocity.

Since dx and dy are fixed, the volume of water in the box can change
only if the depth changes. The corresponding the rate of volume in the column is

hdxdy
t

∂
∂

.

Along the boundary, the net volume flux along x -direction is

 ()x x dxhu hu dy+− (2.1)

Using Taylor series expansion and omitting terms of higher orders in dx ,
equation (2.1) becomes

 ()hudxdy
x

∂
−

∂

Similarly, the net volume flux along y -direction is

 ()hvdxdy
y

∂
−

∂

v

u

(a) (b)

dx dy

h

x x dx+
y

y dy+

 5

The conservation of mass can then be expressed quantitatively as

 h hu hvdxdy dxdy dxdy
t x y

∂ ∂ ∂
= − −

∂ ∂ ∂
 (2.2)

Equation (2.2) can be rewritten

 () () 0h hu hv
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2.3)

2.2 Conservation of Momentum

Conservation of momentum in the x -direction can be stated as follow:

 The rate of change of momentum in the x -direction in the control
volume is equal to the net influx of momentum through vertical wall plus the net force
acting on the control volume in the x -direction.

Figure 2.2 depicts the directions of all forces and momentum fluxes on
the control volume.

Figure 2.2 The directions of all forces and momentum fluxes in x -direction.

Here
• xP and x dxP + are pressure forces on the sides of the box.
• bP is the pressure force due to a sloping bed.
• bF is the friction force at the channel bottom.

xP x dxP +

bP

bF

y

y dy+

x x dx+

 6

The rate of change of momentum is

 ()hudxdy
t

ρ ∂
∂

 (2.4)

The net influx of momentum through four vertical sides is

2hu hvdxdy dxdy

x y
ρ ρ∂ ∂

− −
∂ ∂

The net of pressure force on two vertical sides normal to the x -direction
is { }x x dxPdA PdA +−∫ ∫ . From the hydrostatic assumption, the pressure P is ghρ and
the net hydrostatic pressure forces becomes

2

2
gdydx h

x
ρ ∂

−
∂

The pressure force due to the sloping bed is

 xb yhSxgP 0∆∆= ρ

where xS0 is the bed slope in the x -direction. The resisting force on the bottom can be
expressed as shear stresses multiplied by surface area as yxF bxb ∆∆= τ .

Equating these terms, the conservation of momentum is obtained

2 2

0

()
2

x bx

hu gdxdy h hudxdy dxdy
t x x

huvdxdy gdxdyhS dxdy
y

ρρ ρ

ρ ρ τ

∂ ∂ ∂
= − −

∂ ∂ ∂
∂

− + −
∂

 (2.5)

Dividing equation (2.5) by yx∆∆ρ , we have

2 2

0
() () ()

2 x fx
hu g h hu huv ghS ghS
t x x y

∂ ∂ ∂ ∂
= − − − + −

∂ ∂ ∂ ∂
 (2.6)

which can be written as

 7

2 2

0
() () () ()

2 x fx
hu hu g h huv gh S S
t x x y

∂ ∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂
 (2.7)

where
gh

S bx
fx ρ

τ
= is the friction slope in x -direction.

Similarly, the y -momentum gives

)()()(
2

)()(
0

22

fyy SSgh
y

hv
y
hg

x
uvh

t
hv

−=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ (2.8)

where
gh

S by
fy ρ

τ
= is the friction slope in the y -direction.

Equations (2.3), (2.7) and (2.8) are called the two-dimensional shallow
water equations. For future references, the SWE are

 0)()(
=

∂
∂

+
∂

∂
+

∂
∂

y
hv

x
hu

t
h

)()()(
2

)()(
0

22

fxx SSgh
y

huv
x
hg

x
uh

t
hu

−=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ (2.9)

)()()(
2

)()(
0

22

fyy SSgh
y

hv
y
hg

x
uvh

t
hv

−=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂ .

 Here g is the acceleration due to gravity, h is the water depth, u and v
are the flow velocities in the x - and y -directions respectively, 0xS and 0 yS are the bed
slopes in x - and y -directions respectively, the bed frictions fxS and fyS can be
estimated by using the Manning resistance law

2 2 2

4 /3fx
un u vS

h
+

= and
2 2 2

4/3fy
vn u vS

h
+

=
in which n is the Manning roughness coefficient.

 8

We can rewrite (2.9) in the matrix form as

 () ()t x yq f q g q S+ + = (2.10)

where

 2 2

2 2

1, () , ()
2

1
2

huh hv
q hu f q hu gh g q huv

hv huv hv gh

⎡ ⎤⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = + = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥ +⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.11)

and 0

0

0
()

()
x fx

y fy

S g S S

g S S

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎣ ⎦

These equations can be written in quasilinear form as

 () ()t x yq f q q g q q S′ ′+ + = (2.12)

with the of Jacobian matrices

2

2

0 1 0
() 2 0

0 0 1
()

0 2

f q u gh u
uv v u

g q uv v u
v gh v

⎡ ⎤
⎢ ⎥′ = − +⎢ ⎥
⎢ ⎥−⎣ ⎦

⎡ ⎤
⎢ ⎥′ = −⎢ ⎥
⎢ ⎥− +⎣ ⎦

 (2.13)

Let ghc = be the speed of gravity waves. Then the matrix ()f q′ has eigenvalues and
eigenvectors

 cuucu xxx +==−= 321 ,, λλλ

 9

 1 2 3

1 0 1
, 0 ,

1

x x xr u c r r u c
v v

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.14)

The Jacobian ()g q′ has a similar set of eigenvalues and eigenvectors,

 cvucv yyy +==−= 321 ,, λλλ

 1 2 3

1 0 1
, 1 ,

0

y y xr u r r u
v c v c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.15)

CHAPTER III

NUMERICAL METHODS

3.1 Conservative Finite Volume Method

Finite volume methods can be obtained on the basis of the integral form
of conservation laws [11]. The fluid domain is subdivided into grid cells. The calculations
are based on an approximation to the integral of certain quantities over each of these
volumes or specifically, the cell average (i.e., this integral divided by the volume of each
grid cell). These values are modified in each time step by the normal flux through the
edges of the grid cells. The fluxes are determined by solving the Riemann problem for
the two constant states at each side of the boundary edges. The Godunov’s method for
hyperbolic systems is generalized to nonlinear systems. The important step now is how
to find solutions to the nonlinear Riemann problem at each cell interface.

Figure 3.1 Finite volume grid cells in two space dimensions, where ijQ represents a cell
average.

,i jQ

1/ 2ix − 1/ 2ix +

1/ 2jy −

1/ 2jy +

11

In deriving the two-dimensional conservation law () () 0t x yq f q g q+ + = ,
the numerical domain is subdivided into rectangular grid cells of the form

],[],[2/12/12/12/1 +−+− ×= jjiiij yyxxC as shows in Figure 3.1. Let 2/12/1 −+ −=∆ ii xxx and
2/12/1 −+ −=∆ jj yyy . The normal fluxes ()f q and ()g q represent the fluxes along the

left and right edges and along the top and the bottom respectively. Integrating the
conservation law over each grid cell, we obtain

 () () 0

ij ij ij

x y
C C C

d qdxdy f q dxdy g q dxdy
dt

+ + =∫∫ ∫∫ ∫∫

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

((, ,)) ((, ,))

((, ,)) ((, ,)) 0

j j

ij j j

i i

i i

y y

i i
c y y

x x

j j
x x

d qdxdy f q x y t dy f q x y t dy
dt

g q x y t dx g q x y t dx

+ +

− −

+ +

− −

+ −

+ −

+ −

+ − =

∫∫ ∫ ∫

∫ ∫

(3.1)

Integrating (3.1) from nt to 1+nt , yields

1/ 21

1/ 2

1/ 21

1/ 2

1 1/ 2

1/ 2

1/ 2

1 1/ 2

1/ 2

1/ 2

1/ 2

(, ,) (, ,) ((, ,))

((, ,))

((, ,))

((, ,))

jn

ij ij n j

jn

n j

n i

n i

i

yt

n n i
c c t y

yt

i
t y

t x

j
t x

j
x

q x y t dxdy q x y t dxdy f q x y t dydt

f q x y t dydt

g q x y t dxdt

g q x y t dxdt

++

−

++

−

+ +

−

−

+ +

−

+

−

− = −

+

−

+

∫∫ ∫∫ ∫ ∫

∫ ∫

∫ ∫
1 1/ 2n i

n

t x

t

+ +

∫ ∫

 (3.2)

Dividing (3.2) by the cell area yx∆∆ , we obtain

12

1/ 2 1/ 21 1

1/ 2 1/ 2

1 1/ 2

1/ 2

1

1/ 2 1/ 2

1/ 2

1 1(, ,) (, ,)

1 ((, ,)) ((, ,))

1 ((, ,))

ij ij

j jn n

n j n j

n i

n i

n n
c c

y yt t

i i
t y t y

t x

j
t x

q x y t dxdy q x y t dxdy
x y x y

f q x y t dydt f q x y t dydt
x y

g q x y t dxdt
x y

+ ++ +

− −

+ +

−

+

+ −

+

=
∆ ∆ ∆ ∆

⎡ ⎤
⎢ ⎥− −

∆ ∆ ⎢ ⎥⎣ ⎦

− −
∆ ∆

∫∫ ∫∫

∫ ∫ ∫ ∫

∫ ∫
1 1/ 2

1/ 2

1/ 2((, ,))
n i

n i

t x

j
t x

g q x y t dxdt
+ +

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫

(3.3)

Equation (3.3) can be written as

1/ 2 1/ 21 1

1/ 2 1/ 2

1/ 2

1

1/ 2 1/ 2

1/ 2

1 1(, ,) (, ,)

1 1((, ,)) ((, ,))

1 ((, ,))

ij ij

j jn n

n j n j

i

i

n n
c c

y yt t

i i
t y t y

x

j
x

q x y t dxdy q x y t dxdy
x y x y

t f q x y t dydt f q x y t dydt
x t y t y

t g q x y t dxdt
y t x

+ ++ +

− −

+

−

+

+ −

+

=
∆ ∆ ∆ ∆

⎡ ⎤∆ ⎢ ⎥− −
∆ ∆ ∆ ∆ ∆⎢ ⎥⎣ ⎦

∆
−
∆ ∆ ∆

∫∫ ∫∫

∫ ∫ ∫ ∫

1 1/ 2 1 1/ 2

1/ 2

1/ 2
1 ((, ,))

n n i

n n i

t t x

j
t t x

g q x y t dxdt
t x

+ + +

−

−

⎡ ⎤
−⎢ ⎥
∆ ∆⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

(3.4)

or, symbolically,

 1

1/ 2, 1/ 2, , 1/ 2 , 1/ 2
n n n n n n
ij ij i j i j i j i j

t tQ Q F F G G
x y

+
+ − + −

∆ ∆⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦∆ ∆
 (3.5)

where ,

n
i jQ represents a cell average over the ()ji, grid cell at time nt ,

 (, ,)

ij

n
ij n

C

Q q x y t dxdy≈ ∫∫

 with 1/ 2,

n
i jF − is some approximation to the average flux along 1/ 2,i jx x −= ,

1/ 21

1/ 2

1/ 2, 1/ 2
1 ((, ,))

jn

n j

yt
n

i j i
t y

F f q x y t dydt
t y

++

−

− −≈
∆ ∆ ∫ ∫

13

 and , 1/ 2

n
i jG − is some approximation to the average flux along , 1/ 2i jy y −=

1 1/ 2

1/ 2

, 1/ 2 1/ 2
1 ((, ,))

n i

n i

t x
n
i j j

t x

G g q x y t dxdt
t x

+ +

−

− −≈
∆ ∆ ∫ ∫

A numerical flux at the edge of each grid cell is determined, based on
the data at the beginning of each time step. These fluxes are used to update the cell
average over a time step. This brings us to the discussion of solutions to the Reimann
problem.

3.2 Riemann Problem

The Riemann problem in our context consists of the hyperbolic equations
together with initial data which is piecewise constant with a single jump discontinuity at
some point, say ,0=x

 0
(,0)

0
l

r

q if x
q x

q if x
<⎧

= ⎨ >⎩
 (3.6)

 At each cell interface jix ,2/1− , there is a discontinuity with 1,l i jq Q −= to
the left and ,r i jq Q= to the right. We can obtain information that can be used to
compute the numerical flux. Generally, systems solution to the Riemann problem is
written in terms of similarity variable tx / and consists of a finite set of waves that
propagate away from the origin with constant wave speeds. For linear hyperbolic
systems the Riemann problem is easily solved in terms of the eigenvalues and
eigenvectors.

For 2D shallow water equations, a Riemann solution has three states: the
original state to the left lq , the original state to the right rq , and a middle state between
the two discontinuities. This middle state will be denoted as *q . (see Figure 3.2)

14

In solving the 2D shallow water equations we must sweep in each
direction. For example, in the x -direction the Riemann problem consists of

() 0t xq f q+ = together with the initial condition (3.6). Then we solve this Riemann
problem as follows:

1. Determine whether each of the two waves is a shock or a rarefaction wave.
2. Determine the intermediate state *q between the two waves.
3. Determine the structure of the solution through any rarefaction waves.

For finite volume methods, this process is often simplified by using the
approximate Riemann solver discussed in Section 3.4. Computing the exact Riemann
solution can be expensive.

Figure 3.2 Solution of the linear Riemann problem in the tx − plane.

0=x

*q

rq lq

t

x

15

3.3 Godunov’s Method

Godunov (1959) suggested the use of characteristic information of a
hyperbolic system within the framework of a conservative method. He proposed that the
numerical flux could be obtained by solving a local Riemann problem at each interface.

 Godunov’s method can be implemented for a general system of
conservation laws described in the following procedure :

 Algorithm 1

1. Reconstruct a piecewise polynomial function (, ,)n
nq x y t defined for all x and

y , from the cell averages n
ijQ .

2. Compute the numerical fluxes.
3. Apply the flux-differencing formula (3.5) then repeat (1) in the next time step.

In step1 : We reconstruct a function (, ,)n
nq x y t from the discrete cell averages. In the

 simplest case this is a piecewise constant function that takes the value n
ijQ in

 the thij grid cell, i.e.,

 (, ,) n

n ijq x y t Q= for all ijCx∈ (3.7)

 This reconstruction gives only a first-order accurate method. To obtain better
 accuracy one might consider using a better reconstruction, such as a
 piecewise linear function. This idea forms the basis for the high-resolution
 methods considered in Section 3.5.

In step2 : We want to evaluate the flux function using solution from the Riemann
 problem at each cell interface. Let us denote the Riemann solution at the
 interface),2/1(ji − by 1/ 2 1(,)n n

i j i j ijQ q Q Q↓ ↓
− −= . The numerical flux at this

 edge is determined by

16

 1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

(),

(),
i j i j

i j i j

F f Q

G g Q

↓
− −

↓
− −

=

=
 (3.8)

 where 1/ 2,i jQ↓

− is obtained from the local Riemann problem for () 0t xq f q+ =
with data 1,i jQ − and ,i jQ , while , 1/ 2i jQ↓

− is obtained from the local Riemann problem for
() 0t yq g q+ = with data , 1i jQ − and ,i jQ .

In this thesis, the numerical fluxes are calculated using the
 approximate Riemann solvers (e.g., Roe and HLL solvers) described in Section 3.4.

In step3 : We use the numerical value 1/ 2,i jQ↓

− ,etc. from step2 to update the cell
 average by substituting into the Godunov’s scheme.

3.3.1 The Wave-Propagation form of Godunov’s Method

In step 2 we can determine the solution of the local Riemann problem
which consists of a set of waves. For a general m m× linear
system, 0t xq Aq+ = (()f q Aq=), the solution of Riemann with arbitrary initial data lq
and rq , consists of m discontinuities traveling with speed 1 2, , , mλ λ λ… which are the
eigenvalue of the m m× matrix A . To solve the Riemann problem we take the initial
data ,()l rQ Q and decompose the jump r lQ Q− into eigenvectors of A .

 1 1 2 2 m m
r lQ Q r r rα α α− = + + +…

(3.9)

This requires solving the linear system of equations

 r lR Q Qα = − (3.10)

for the vector 1()r lR Q Qα −= − and R is the matrix of eigenvectors. Since p prα is the
jump in Q across the thp wave in the solution to the Riemann problem, we introduce
the notation

17

 p p pW rα= (3.11)

for these waves.

The solution of this Riemann problem at the cell interface is

: 0p

p
l

p

Q Q W
λ

↓

<

= + ∑

or
: 0p

p
r

p

Q Q W
λ

↓

>

= − ∑ . (3.12)

We can compute the numerical flux as

1/ 2, 1/ 2, 1/ 2,

1/ 2,
: 0

1/ 2,
: 0

1/ 2, 1/ 2,
1

()

()

()

p

p

i j i j i j

p
ij i j

p

p
ij i j

p

m
p p

ij i j i j
p

F f Q AQ

A Q W

AQ AW

AQ W

λ

λ

λ

↓ ↓
− − −

−
>

−
>

+
− −

=

= =

= −

= −

= −

∑

∑

∑

Similarly, we obtain 1/ 2, 1/ 2, 1/ 2,
1
()

m
p p

i j ij i j i j
p

F AQ Wλ −
+ + +

=

= +∑ .

The solution of the Riemann problem 0t xq Bq+ = (()g q Bq=) is of the
same structure as (3.12). Hence the numerical fluxes in y -direction are obtained by

 , 1/ 2 , 1/ 2 , 1/ 2
1
()

m
p p

i j ij i j i j
p

G AQ Wλ +
− − −

=

= −∑

and , 1/ 2 , 1/ 2 , 1/ 2
1
()

m
p p

i j ij i j i j
p

G AQ Wλ −
+ + +

=

= +∑ .

18

Substituting those numerical fluxes into the flux differencing (3.5), we
obtain

() ()

() ()

1
1/ 2, 1/ 2, 1/ 2, 1/ 2,

1 1

, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2
1 1

-

 -

m m
n n p p p p
ij ij i j i j i j i j

p p

m m
p p p p

i j i j i j i j
p p

tQ Q W W
x

t W W
y

λ λ

λ λ

+ −+
− − + +

= =

+ −

− − + +
= =

⎡ ⎤∆
= +⎢ ⎥∆ ⎣ ⎦

⎡ ⎤∆
+⎢ ⎥∆ ⎣ ⎦

∑ ∑

∑ ∑
 (3.13)

The cell average is affected by the right-going waves from jix ,2/1− , the
left-going waves from jix ,2/1+ , the up-going waves from 2/1, −jiy , and the down-going
waves from 2/1, +jiy . As a shorthand notation, we introduce the following symbols:

()

()

1/ 2, 1/ 2, 1/ 2,
1

1/ 2, 1/ 2, 1/ 2,
1

m
p p

i j i j i j
p

m
p p

i j i j i j
p

Q W

Q W

λ

λ

−−
− − −

=

++
− − −

=

∆ =

∆ =

∑

∑

and

()

()

, 1/ 2 , 1/ 2 , 1/ 2
1

, 1/ 2 , 1/ 2 , 1/ 2
1

m
p p

i j i j i j
p

m
p p

i j i j i j
p

Q W

Q W

λ

λ

−−
− − −

=

++
− − −

=

Β ∆ =

Β ∆ =

∑

∑

 Hence (3.13) can be rewritten in the fluctuation form as

 (3.14)

1
1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

()

()

n n
ij ij i j i j

i j i j

tQ Q Q Q
x
t Q Q
y

+ + −
− +

+ −
− +

∆
= − ∆ + ∆

∆
∆

− Β ∆ +Β ∆
∆

19

Figure 3.3 Fluctuations for the Godunov’s method.

3.3.2 The CFL Condition

The CFL condition was proposed by Courant, Friedrichs and Lewy in
1928. They recognized the following necessary stability condition for any numerical
method:

 CFL condition : A numerical method can be convergent only if its numerical
 domain of dependence contains the true domain of
 dependence of the PDE, at least in the limit as t∆ and x∆ go
 to zero.

It is important to bear in mind that the CFL condition is only a necessary
condition for stability (and hence convergence). It is, of course, not sufficient to
guarantee stability.

For a hyperbolic system of equations there is generally a set of m wave
speeds mλλ ,,1 … . Then we define the Courant number by

mp

p

x
t

,,2,1

max
…=∆

∆
= λν

jix ,2/1−

jix ,2/1+

1,i jQ − ,i jQ 1,i jQ +

1/ 2,i jQ−
−∆

1/ 2,i jQ−
+∆ 1/ 2,i jQ+

−∆ 1/ 2,i jQ+
+∆

20

For a scheme (3.5) and (3.14) the CFL condition leads to a necessary
condition 1≤ν .

3.4 Approximate Riemann Solver

In Godunov’s method we only need to determine Q↓ , the state along
0/ =tx based on the Riemann data lQ and rQ . The process of solving the Riemann

problem is thus often quite expensive for the nonlinear systems of conservation law and
we must use more information to extend to the high-resolution methods. Even so, it is
often true that it is not necessary to compute the exact solution to the Riemann problem
in order to the numerical calculations.

A wide variety of approximate Riemann solvers have been proposed.
Most of them can be applied with much less computational cost than the exact Rimann
solver and yet almost equally good results in many cases when used in the Godunov or
high-resolution methods.

3.4.1 Roe Linearization

To avoid difficultly in solving the nonlinear Riemann problem, we use a
linearized approximate Riemann solver normal to each cell interface. Then this linear
approach is easily extended to the nonlinear case.

From the quasilinear form of shallow water equations (2.12), after
neglecting the source term temporarily, we apply the Roe linearization to obtain the Roe
matrix in form of

 ˆ ˆ 0t x yq Aq Bq′+ + = (3.15)

where the matrix Â (approximation of ()f q′ near the interface) and the Roe averages

û,h and v̂ are

21

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+−=

uvvu
uhguA

ˆˆˆˆ
0ˆ2ˆ
010

ˆ 2 (3.16)

 ()jiji hhh ,,12
1

+= − (3.17)

jiji

jijijiji

hh

uhuh
u

,,1

,,,1,1ˆ
+

+
=

−

−− (3.18)

jiji

jijijiji

hh

vhvh
v

,,1

,,,1,1ˆ
+

+
=

−

−− (3.19)

The matrix Â has eigenvalues and eigenvectors

 cuucu xxx ˆˆˆ,ˆˆ,ˆˆˆ 321 +==−= λλλ

 1 2 3

1 0 1
ˆ ˆ ˆˆ ˆ ˆ ˆ, 0 ,

ˆ ˆ1

x x xr u c r r u c
v v

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

respectively, where hgĉ = is the speed of gravity waves.

Similarly, the matrix B̂ (approximation of ()g q′ near the interface) and
the Roe averages û,h and v̂ can be written as

2

0 0 1
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ2
B uv u v

v gh v v

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− +⎣ ⎦

 (3.20)

 (), 1 ,

1
2 i j i jh h h−= + (3.21)

22

 , 1 , 1 , ,

, 1 ,

ˆ i j i j i j i j

i j i j

h u h u
u

h h
− −

−

+
=

+
 (3.22)

 , 1 , 1 , ,

, 1 ,

ˆ i j i j i j i j

i j i j

h v h v
v

h h
− −

−

+
=

+
 (3.23)

The matrix B̂ has eigenvalues and eigenvectors

 1 2 3ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, ,y y yv c u v cλ λ λ= − = = +

 1 2 3

1 0 1
ˆ ˆ ˆˆ ˆ, 1 ,

ˆ ˆ ˆ ˆ0

y y yr u r r u
v c v c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (3.24)

respectively, where hgĉ = is the speed of gravity waves.

3.4.2 Roe Riemann Solvers

Recalling the wave-propagation form of Godunov’s method, to update
the cell average in next time step we need to compute the wave and the wave speed.
They can be achieved by solving the Riemann problem. In the process to solve the
Riemann problem by Roe solver we start by sweeping in the x -direction along each row
of the grid cell. Then we sweep in the y -direction along each column.

3.4.2.1 Sweep in the x -direction

First we apply the Roe linearization to () 0t xq f q q′+ = , and obtain the
Roe matrix Â as described in Section 3.4.1. At the interface we decompose the jump

r lq q− into eigenvectors of Â :

 1 1 2 2 3 3ˆ ˆ ˆx x x

r lq q r r rα α α− = + +

23

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

v
cu

v
cu

d
d
d

ˆ
ˆˆ

1

1
0
0

ˆ
ˆˆ

1
321

3

2

1

ααα (3.25)

where

.ˆˆ
,ˆˆ
,

,13

,12

,11

jiij

jiij

jiij

vvd
uud

hhd

−

−

−

−=

−=

−=

Solving the linear system (3.25) for α , we obtain

1 1 2

2 1 2

ˆ ˆ()
,

ˆ2
ˆ ˆ()

,
ˆ2

u c d d
c

u c d d
c

α

α

+ −
=

− − +
=

and 31
3 ˆ ddv +−=α .

Consequently, the waves pW are given by

 1 1 2 2 3 3
1/ 2, 1/ 2, 1/ 2,

1 0 1
ˆ ˆ ˆ ˆ, 0 ,

ˆ ˆ1
i j i j i jW u c W W u c

v v
α α α− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 and the corresponding wave speeds are cscus jiji ˆ,ˆˆ 2

,2/1
1

,2/1 =−= −− , and
cus ji ˆˆ3

,2/1 +=− .

 3.4.2.2 Sweep in the y -direction

At the interface)2/1,(−ji , we decompose the jump r lq q− into
eigenvectors of B̂ :

 1 1 2 2 3 3ˆ ˆ ˆy y y

r lq q r r rα α α− = + +

24

1

1 2 3
2

3

1 0 1
ˆ ˆ1

ˆ ˆ ˆ ˆ0

d
d u u

v c v cd
α α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (3.26)

where

.ˆˆ
,ˆˆ
,

1,3

1,2

,1,1

−

−

−

−=

−=

−=

jiij

jiij

jiij

vvd

uud

hhd

 Solving the linear system (3.26) for α , we obtain

1 1 2

2 1 2

ˆ ˆ()
,

ˆ2
ˆ ˆ()

,
ˆ2

u c d d
c

u c d d
c

α

α

+ −
=

− − +
=

 and 31
3 ˆ ddv +−=α .

 The waves pW are given by

 1 1 2 2 3 3
1/ 2, 1/ 2, 1/ 2,

1 0 1
ˆ ˆ, 1 ,

ˆ ˆ ˆ ˆ0
i j i j i jW u W W u

v c v c
α α α− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

and the corresponding wave speeds are 1 2

, 1/ 2 , 1/ 2ˆ ˆ ˆ,i j i js v c s c− −= − = , and
3
, 1/ 2 ˆ ˆi js v c− = + .

It should be noted that the Roe Riemann solver works well for many
shallow water flow problems except when there is a dry region. In that case, the Roe
Riemann solver may produce negative depth. In this thesis, the HLL Riemann solver is
used as an alternative to approximate the flux in the dry case.

25

 3.4.3 HLL Riemann Solver

The HLL Riemann solver was proposed by Harten, Lax and Leer in 1983
[2]. Information at the interface must be determined subject to the wave speed of
propagation.

 *

/

(,) /
/

l l

l r l r

r r

q n for x t s

Q n q q q n q n for s x t s
q n for s x t

↓ ↓

⋅ <⎧
⎪

⋅ ≡ ⋅ = ⋅ < <⎨
⎪ ⋅ <⎩

 (3.27)

where n is the outward normal unit vector; the subscripts r and l referred to the right
and left cell interfaces, ls and rs are the smallest and largest wave speeds of
propagation, respectively, and the state *q is determined from

 * () ()r r l l r l

r l

s q s q F n F nq n
s s

− − ⋅ − ⋅
⋅ =

−
 (3.28)

We now turn to the determination of the associated numerical flux. We set

 *

0

0

0.

l l

l r

r r

F n when s

F n F n when s s

F n when s

↓

⎧ ⋅ <
⎪

⋅ = ⋅ < <⎨
⎪ ⋅ <⎩

 (3.29)

Here the numerical flux at the star region is determined by

 * ()r l l r l r r l

r l

s F n s F n s s q qF n
s s

⋅ − ⋅ + −
⋅ =

−
 (3.30)

 where ()r rF f q= or ()rg q and ()l lF f q= or ()lg q .

26

The wave speeds ls and rs can be estimated via the two expansion
approaches due to Toro:

* *

* *

min(,)

max(,)

l l l

r r r

s w n gh u gh

s w n gh u gh

= ⋅ − −

= ⋅ + +
 (3.31)

where),(vuw = and

*

*

1 ()
2
1 1() ()
2 4

l r l r

l r l r

u w w n gh gh

gh gh gh w w n

= + ⋅ + −

= + + − ⋅
 (3.32)

If the cell on the right of the interface is dry, then

 l l ls w n gh= ⋅ − and 2r l ls w n gh= ⋅ + (3.33)

On the contrary, if the cell on the right of the interface is dry, we have

 2l r rs w n gh= ⋅ − and r r rs w n gh= ⋅ + (3.34)

For the homogeneous shallow water equations, if the middle stage *q is
determined from (3.28), using (3.31) for the speeds ls and rs , the depth *h in the
middle state is always non-negative [2].

 3.5 High-resolution Godunov’s Method

In Section 3.3, we introduced the original Godunov’s method that is first
order accurate, giving poor accuracy in smooth region of the flow. Moreover, shocks
tend to be heavily smeared and poorly resolved on the grid. In this section a high-
resolution Godonov’s method is introduced. It is at least second order accurate on
smooth solution and yet give well resolved result, avoiding the nonphysical oscillations.

27

There are various techniques to achieve the high-resolution scheme, for
example MUSCL (Monotonic Upstream-centered Scheme for Conservation Laws). The
MUSCL procedure applied to the Godunov’s method consists of a linear extrapolation of
the corresponding variables at the cell interfaces. In doing this, we introduce a
piecewise linear function of the form.

 1(, ,)
2

n n n
n ij ijq x y t Q xσ= + ∆ .

 where n
ijσ is the slope in thij grid cell. This replaces the first step of the original

Godunov’s method (see Figure 3.4).

In using the slope n
ijσ on a piecewise linear function, we must consider

how to limit the slope for second-order accuracy while guaranteeing that no nonphysical
oscillations will arise.

Figure 3.4 Sketch of the linear variable extrapolation at the cell interface.

1/ 2,
l
i jQ +

2,i jQ +

1−i i 1+i 2+i

1,i jQ −
,i jQ

1,i jQ +

1/ 2,
r
i jQ +

x∆

28

3.5.1 Slope -Limiter

There are many choices of slope that give second-order accuracy for
smooth solutions while still satisfying the TVD property. For examples, the minmod slope
limiter, the superbee slope limiter, the van leer slope limiter, the monotonized-central-
difference limiter (MC limiter), etc. In this work we use the minmod slope limiter and the
MC slope limiter.

 3.5.1.1 Minmod Slope Limiter

 1, 2, , 1,min mod ,i j i j i j i j
ij

Q Q Q Q
x x

σ − − −⎛ ⎞− −
= ⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠

 (3.35)

where the minmod function of two arguments is defined by

⎪
⎩

⎪
⎨

⎧

≤

>≤

>≤

=

00
0

0

),mod(min
abif

abandabifb

abandbaifa

ba (3.36)

The minmod technique compares the two slopes with the choice of a
smaller one. If the two slopes have different sign then ,i jQ must take on a local
maximum or minimum value. It is easy to check in this case and we must set 0ijσ = in
order to satisfy TVD property. In this work, the minmod method is used to reduce the
oscillation of dry bed case.

 3.5.1.2 MC Limiter

 1, 1, , 1, 1, ,min mod , 2 , 2
2

i j i j i j i j i j i j
ij

Q Q Q Q Q Q
x x x

σ + − − +
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −

= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (3.37)

29

The MC limiter increases the slopes in these two cells to twice the value
of the minmod slopes and still have TVD property satisfied. This reconstruction will lead
to sharper resolution of the discontinuity in the next time step than we would obtain with
the minmod slopes.

 3.5.2 Wave limiter

The wave limiter version of 1/ 2,
p

i jW − is determined by

 ()1/ 2, 1/ 2, 1/ 2,

p p p
i j i j i jW Wφ θ− − −= (3.38)

where p

ji ,2/1−θ should be some measure of the smoothness of the thp characteristic
component of solution defined by

 1/ 2,
1/ 2,

1/ 2,

p
I jp

i j p
i j

W

W
θ −

−
−

= (3.39)

The index I here is used to represent the interface on the upwind side of jix ,2/1− , that is

⎪⎩

⎪
⎨
⎧

<+

>−
=

−

−

01

01

,2/1

,2/1

p
ji

p
ji

sifi

sifi
I (3.40)

The function)(θφ is the flux-limiter function.

))2,2,

2
)1(min(,0max(:

),1mod(min)(:modmin

θθ
θθφ

+
=

MC

3.5.3 High-resolution Method with Roe Approximate Riemann Solver

Recall the fluctuation form of Godunov’s method (3.14)

30

1

1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

()

()

n n
ij ij i j i j

i j i j

tQ Q Q Q
x
t Q Q
y

+ + −
− +

+ −
− +

∆
= − ∆ + ∆

∆
∆

− Β ∆ +Β ∆
∆

 (3.41)

To improve the Godonov’s method we introduce the correction terms F
and G into (3.41). This gives

1
1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

1/ 2, 1/ 2, , 1/ 2 , 1/ 2

()

()

() ()

n n
ij ij i j i j

i j i j

i j i j i j i j

tQ Q Q Q
x
t Q Q
y

t tF F G G
x y

+ + −
− +

+ −
− +

+ − + −

∆
= − ∆ + ∆

∆
∆

− Β ∆ +Β ∆
∆

∆ ∆
− + − +
∆ ∆

 (3.42)

In the first-order accurate method (3.41) the update value of 1n
ijQ +

depends on only the three values 1,,ij i jQ Q − and , 1i jQ − shown in Figure 3.5(a). This is not
quite a good representation, since the flow of information is at an angle to the grid, (see
Figure 3.5(b)). The value 1, 1i jQ − − should also affect 1n

ijQ + . This is the principle idea of the
Corner-Transport Upwind method (CTU method) [11]

Figure 3.5 (a) Waves moving normal to the cell interfaces. (b) The true velocity),(vu is
at an angle to the grid, and information from cell)1,1(−− ji should also affect the new

value in cell),(ji .

(a) (b)

31

 To compute the correction fluxes needed for the CTU method, we view
the flow of information as a transversely propagating wave into each of the neighboring
cells (see Figure (3.6)). Instead of giving a single expression for each correction flux, we
will build up these fluxes by adding in any transverse terms arising from each Riemann
problem.

At the beginning of each time step we set 1/ 2, : 0i jF − = and , 1/ 2 : 0i jG − =
for all i and j . After solving each Riemann problem in the x -direction, we set

1/ 2,i jQ±
−∆ at the interface as in (3.41) and then update the nearby correction fluxes by

1, 1/ 2 1, 1/ 2 1/ 2,

1, 1/ 2 1, 1/ 2 1/ 2,

, 1/ 2 , 1/ 2 1/ 2,

, 1/ 2 , 1/ 2 1/ 2,

:
2

:
2

:
2

: .
2

i j i j i j

i j i j i j

i j i j i j

i j i j i j

tG G Q
x
tG G Q
x

tG G Q
x
tG G Q
x

− −
− − − − −

+ −
− + − + −

− +
− − −

+ +
+ + −

∆
= − Β ∆

∆
∆

= − Β ∆
∆

∆
= − Β ∆

∆
∆

= − Β ∆
∆

 (3.43)

 We then sweep in the y -direction, after solving the Riemann problem at
interface ()2/1, −ji . The fluxes are updated by

1/ 2, 1 1/ 2, 1 , 1/ 2

1/ 2, 1 1/ 2, 1 , 1/ 2

1/ 2, 1/ 2, , 1/ 2

1/ 2, 1/ 2, , 1/ 2

:
2

:
2

:
2

: .
2

i j i j i j

i j i j i j

i j i j i j

i j i j i j

tF F Q
x
tF F Q
x

tF F Q
x
tF F Q
x

− −
− − − − −

+ −
+ − + − −

− +
− − −

+ +
+ + −

∆
= − Β ∆

∆
∆

= − Β ∆
∆

∆
= − Β ∆

∆
∆

= − Β ∆
∆

 (3.44)

This is the process of CTU method for computing the transverse
propagations to update the correction fluxes. Although CTU method is first-order
accurate it has better stability than those that exclude the correction fluxes. To achieve
second-order accuracy, we use the correction fluxes as follows:

32

1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,

1

1: 1
2

m
p p p

i j i j i j i j i j
p

tF F s s W
x− − − − −

=

∆⎛ ⎞= + −⎜ ⎟∆⎝ ⎠
∑

, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2

1

1: 1
2

m
p p p

i j i j i j i j i j
p

tG G s s W
y− − − − −

=

⎛ ⎞∆
= + −⎜ ⎟∆⎝ ⎠

∑
 (3.45)

1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,

1

1: 1
2

m
p p p

i j i j i j i j i j
p

tF F s s W
x+ + + + +

=

∆⎛ ⎞= + −⎜ ⎟∆⎝ ⎠
∑

, 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2 , 1/ 2

1

1: 1
2

m
p p p

i j i j i j i j i j
p

tG G s s W
y+ + + + +

=

⎛ ⎞∆
= + −⎜ ⎟∆⎝ ⎠

∑

where 1/ 2,

p
i jW − represents a limited version of the wave 1/ 2,

p
i jW −

Figure 3.6 Transverse propagations at the interface ()ji ,2/1− .

1/ 2,i jQ− −
−Β ∆

1/ 2,i jQ+ −
−Β ∆

1/ 2,i jQ− +
−Β ∆

1/ 2,i jQ+ +
−Β ∆

jix ,2/1−

33

To calculate the transverse propagations in x -direction, we split the
fluctuation *

1/ 2,i jQ −∆ into up-going and down-going fluctuations *
1/ 2,i jQ+
−Β ∆ and

*
1/ 2,i jQ−
−Β ∆ that modify the fluxes , 1/ 2i jG + and , 1/ 2i jG − above and below the cell),(ji ,

respectively. To compute *
1/ 2,i jQ±
−Β ∆ , we decompose the vector *

1/ 2,i jQ −∆ into
eigenvectors of B̂ ,

 * 1 1 2 2 3 3

1/ 2,
ˆ ˆ ˆy y y

i jQ r r rβ β β−∆ = + +

()
()
()

1*
1/ 2,

2* 1 2 3
1/ 2,

3*
1/ 2,

1 0 1
ˆ ˆ1

ˆ ˆ ˆ ˆ0

i j

i j

i j

Q

Q u u
v c v c

Q

β β β

−

−

−

⎡ ⎤∆⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆ = + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦∆⎢ ⎥⎣ ⎦

 (3.46)

 Solving the linear system (3.46) for β , we obtain

 () ()
c

QcvQ jiji

ˆ2
)ˆˆ(1

,2/1
*3

,2/1
*

1 −− ∆++∆−
=β

 () ()1,2/1

*2
,2/1

*2 ˆ jiji QuQ −− ∆+∆−=β

 () ()1 3* *
1/ 2, 1/ 2,3

ˆ ˆ()
ˆ2

i j i jv c Q Q

c
β − −− − ∆ + ∆

=

The transverse waves are given by

 1 2 31 2 3
1/ 2, 1/ 2, 1/ 2,

1 0 1
ˆ ˆ, 1 ,

ˆ ˆ ˆ ˆ0
i j i j i jWb u Wb Wb u

v c v c
β β β− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 and the transverse waves speeds are vsbcvsb jiji ˆ,ˆˆ 2

,2/1
1

,2/1 =−= −− , and
cvsb ji ˆˆ3

,2/1 +=− . The transverse fluctuations are given by

34

()

()

3
*

1/ 2,1/ 2, 1/ 2,
1

3
*

1/ 2,1/ 2, 1/ 2,
1

pp
i ji j i j

p

pp
i ji j i j

p

Q sb Wb

Q sb Wb

−−
−− −

=

++
−− −

=

Β ∆ =

Β ∆ =

∑

∑

where *

1/ 2,i jQ −∆ represent 1/ 2,i jQ+
−∆ or 1/ 2,i jQ−

−∆ .

To calculate the transverse propagations in y-direction, we split the
fluctuation *

, 1/ 2i jQ −Β ∆ into right-going and left-going fluctuations *
, 1/ 2i jQ+
−Β ∆ and

*
, 1/ 2i jQ−
−Β ∆ that modify the fluxes 1/ 2,i jF + and 1/ 2,i jF − right and left the cell),(ji ,

respectively. To compute *
, 1/ 2i jQ±
−Β ∆ , we decompose the vector *

, 1/ 2i jQ −Β ∆ into
eigenvectors of Â ,

 * 1 1 2 2 3 3

, 1/ 2
ˆ ˆx x x

i jQ r r rβ β β−Β ∆ = + +

()
()
()

1*
, 1/ 2

2* 1 2 3
, 1/ 2

3*
, 1/ 2

1 0 1
ˆ ˆ ˆ ˆ0
ˆ ˆ1

i j

i j

i j

Q

Q u c u c
v v

Q

β β β

−

−

−

⎡ ⎤Β ∆⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Β ∆ = − + + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦Β ∆⎢ ⎥⎣ ⎦

 (3.47)

Solving the linear system (3.47) for β , we obtain

 () ()3 1* *
, 1/ 2 , 1/ 21

ˆ ˆ()
ˆ2

i j i jQ u c Q

c
β − −− Β ∆ + + Β ∆

=

 () ()2 12 * *

, 1/ 2 , 1/ 2ˆi j i jQ v Qβ − −= − Β ∆ + Β ∆

 () ()1 3* *
, 1/ 2 , 1/ 23

ˆ ˆ()
ˆ2

i j i ju c Q Q

c
β − −− − Β ∆ + Β ∆

=

The transverse waves are given by

35

 1 2 31 2 3
, 1/ 2 , 1/ 2 , 1/ 2

1 0 1
ˆ ˆ ˆ ˆ, 0 ,

ˆ ˆ1
i j i j i jWb u c Wb Wb u c

v v
β β β− − −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

and the transverse waves speeds are 1 2

, 1/ 2 , 1/ 2ˆ ˆ ˆ,i j i jsb u c sb u− −= − = , and
3
, 1/ 2 ˆ ˆi jsb u c− = + . The transverse fluctuations are given by

()

()

3
*

, 1/ 2, 1/ 2 , 1/ 2
1

3
*

, 1/ 2, 1/ 2 , 1/ 2
1

pp
i ji j i j

p

pp
i ji j i j

p

Q sb Wb

Q sb Wb

−−
−− −

=

++
−− −

=

Β ∆ =

Β ∆ =

∑

∑

where *

1/ 2,i jQ −Β ∆ represents 1/ 2,i jQ+
−Β ∆ or 1/ 2,i jQ−

−Β ∆ .

Implementation of the above method is described in an algorithm as
follows.

 Algorithm 2

1. Initialize 1/ 2, : 0i jF − = and , 1/ 2 : 0i jG − = at each interface.
2. Solve each Riemann problem in the x-direction by sweeping through

the grid. At interface (1/ 2,)i j− between jiC ,1− and 1, −jiC we use
1,i jQ − and ,i jQ to compute the waves 1/ 2,

p
i jW − and the speeds

1/ 2,
p
i js − . Calculate fluctuations 1/ 2,i jQ+

−∆ and 1/ 2,i jQ−
−∆ .

()

()

3

1/ 2, 1/ 2, 1/ 2,
1

3

1/ 2, 1/ 2, 1/ 2,
1

p p
i j i j i j

p

p p
i j i j i j

p

Q s W

Q s W

−−
− − −

=

++
− − −

=

∆ =

∆ =

∑

∑

36

3. Determine 1/ 2,
p

i jW − and use this to update the correction fluxes at the
interface (The Godunov’s method is improved to second-order
accurate)

3

1/ 2, 1/ 2, 1/ 2, 1/ 2, 1/ 2,
1

1: 1
2

p p p
i j i j i j i j i j

p

tF F s s W
x− − − − −

=

∆⎛ ⎞= + −⎜ ⎟∆⎝ ⎠
∑

4. Use right-going fluctuation 1/ 2,i jQ+

−∆ to compute an up-going
transverse fluctuation 1/ 2,i jQ+ +

−Β ∆ and a down-going transverse
fluctuation 1/ 2,i jQ− +

−Β ∆ by solving the transverse Reimann
problem. These are computed by decomposing the fluctuation

1/ 2,i jQ+
−∆ into eigenvectors of B,

3

1/ 2,
1

p yp
i j

p
Q rβ+

−
=

∆ =∑

 and then setting

 ()
3

1/ 2,
1

yp p yp
i j

p
Q rλ β

±± +
−

=

Β ∆ =∑

5. Update the correction fluxes above and below the cell ,i jC by using

the fluctuations 1/ 2,i jQ± +
−Β ∆ :

, 1/ 2 , 1/ 2 1/ 2,

, 1/ 2 , 1/ 2 1/ 2,

:
2

:
2

i j i j i j

i j i j i j

tG G Q
x
tG G Q
x

+ +
+ + −

− +
− − −

∆
= − Β ∆

∆
∆

= − Β ∆
∆

37

6. In a similar manner, the left-going fluctuation 1/ 2,i jQ−
−∆ is

separated into transverse fluctuations 1/ 2,i jQ± −
−Β ∆ , which are then

used to update the fluxes above and below cell 1,i jC − :

1, 1/ 2 1, 1/ 2 1/ 2,

1, 1/ 2 1, 1/ 2 1/ 2,

:
2

:
2

i j i j i j

i j i j i j

tG G Q
x
tG G Q
x

+ −
− + − + −

− −
− − − − −

∆
= − Β ∆

∆
∆

= − Β ∆
∆

7. Steps 2-6 are repeated for each Reimann problem in the y-direction,

at interfaces between cell 1−j,iC and j,iC . The resulting waves
, 1/ 2
p

i jW − are limited by comparisons in the y -direction and used to
update , 1/ 2i jG − . In solving these Reimann problems we also compute
fluctuations , 1/ 2i jQ±

−Β ∆ which are then separated transversely into
, 1/ 2i jQ± +
−Β ∆ and , 1/ 2i jQ± −

−Β ∆ . These four transverse fluctuations
are used to modify the nearby F fluxes.

8. Finally, the updating formula (3.42).

1
1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

1/ 2, 1/ 2, , 1/ 2 , 1/ 2

()

()

() ()

n n
ij ij i j i j

i j i j

i j i j i j i j

tQ Q Q Q
x

t Q Q
y
t tF F G G
x y

+ + −
− +

+ −
− +

+ − + −

∆
= − ∆ + ∆

∆
∆

− Β ∆ +Β ∆
∆
∆ ∆

− − − −
∆ ∆

3.5.4 High-resolution Method with HLL Approximate Riemann Solver

The HLL method can easily be improved to the second-order accuracy
by using the MUSCL procedure. In this thesis, the reconstruction of lQ and rQ are
given by

38

At the interface (1/ 2,)i j−

1/ 2, 1, 1,

1/ 2, , ,

1
2

1
2

l
l i j i j i j

r
r i j i j i j

Q Q Q x

Q Q Q x

δ

δ

− − −

−

≡ = + ∆

≡ = − ∆
 (3.48)

At the interface ()2/1, −ji

, 1/ 2 , 1 , 1

, 1/ 2 , ,

1
2

1
2

l
l i j i j i j

r
r i j i j i j

Q Q Q y

Q Q Q y

δ

δ

− − −

−

≡ = + ∆

≡ = − ∆
 (3.49)

 After the reconstruction of lQ and rQ , these values are used to update
the numerical fluxes in (3.8). The high-resolution HLL approximate Riemann solver can
be described by the following algorithm.

 Algorithm 3

1. Sweep through grids in the x-direction. At the cell interface
(1/ 2,)i j− , we compute a piecewise linear function

1/ 2, 1, 1,

1/ 2, , ,

1
2

1
2

l
l i j i j i j

r
r i j i j i j

Q Q Q x

Q Q Q x

δ

δ

− − −

−

≡ = + ∆

≡ = − ∆

2. Compute the numerical fluxes

 () ()*
1/ 2,

() 0

, , 0

() 0.

l l

n
i j l r l r l r

r r

F Q when s

F Q Q F Q Q when s s

F Q when s
−

⎧ <
⎪⎪= < <⎨
⎪

<⎪⎩

39

 Here ()* () () (), r l l r l r r l
l r

r l

s F Q s F Q n s s Q QF Q Q
s s

− ⋅ + −
=

−

 The wave speeds ls and rs can be determined by

),max(

),min(
**

,2/1

**
,2/1

ghughus

ghughus

rjir

ljil

++=

−−=

−

−

 where

*

*

1 ()
2
1 1() ()
2 4

l r l r

l r l r

u w w n gh gh

gh gh gh w w n

= + ⋅ + −

= + + − ⋅

3. Use similar procedure to compute the numerical fluxes at the

interface ()ji ,2/1+ .

4. Sweep through grids in the y-direction and use similar processes 1-2
to compute the numerical fluxes at the interfaces ()2/1, −ji and
()2/1, +ji .

5. Finally, update the cell average at),(ji

() ()

() ()

1
, , 1/ 2, 1/ 2,

, 1/ 2 , 1/ 2

, ,

, ,

n n n n
i j i j i j l r i j l r

n n
i j l r i j l r

tQ Q F Q Q F Q Q
x
t G Q Q G Q Q
y

+
+ −

+ −

∆ ⎡ ⎤= − −⎣ ⎦∆
∆ ⎡ ⎤− −⎣ ⎦∆

40

Flowchart of the Numerical Method

 START

READ parameter data file

Set initial conditions
(Call subroutine initial (mx,my,…))

Write solutions at 0t
(Call subroutine output (mx,my,…))

Ntimen ≤

Update boundary condition
(Call subroutine BC (mx,my,…))

Update source term
(Call subroutine SCT (mx,my,…), Bedslope (mx,my,…)

and Friction (mx,my,…))

 Sweep in x-direction

Compute numerical fluxes
(Call subroutine HLL (mx,my,…) or ROE (mx,my,…))

 A

 B

No

Yes
 STOP

41

Figure 3.7 Flowchart of numerical method.

Write solutions at this time
(Call subroutine output (mx,my,…))

 A

 Sweep in y-direction

Compute numerical fluxes
(Call subroutine HLL (mx,my,…) or ROE (mx,my,…))

 Update all cell averages

Update source term
(Call subroutine SCT (mx,my,…), Bedslope (mx,mym,…)

and Friction (mx,my,…))

1≤CFL

1+= nn

 B

No

Yes

 STOP

 Update all cell averages

CHAPTER IV

PARALLEL COMPUTATION

The computational domain of the shallow water problem tends to be
quite large, with complex geometries. On a single processor the calculation of its
solution would take several hundreds of computational time and would have not enough
a buffer zone for stored data variables. The development of parallel computer can
overcome the limitations of the problem size and space resolution for shallow water
problem simulation. To implement the parallel computation, the domain decomposition
techniques are used to divide the physical domain into a number of smaller domains,
each of which corresponds to a processor. A message passing interface (MPI) is
incorporated for inter-processor data communication.

4.1 Parallel Performance Measurements

We define the execution time of a parallel program as the time that
elapses from when the first processor starts execution. On each processor, the
execution time is spent on computing, communication and idling.

The performance parameters that are commonly used for measuring the
gain of using a parallel code are the speedup (S) and efficiency (E). The speedup S
of a parallel system is defined as the ratio of the execution time 1T of a given application
run on a single processor to the time PT taken to solve the same problem on P
processors.

PT

TS 1= (4.1)

The efficiency is a measure of the time the processor spent in the
computational phase. It is defined as the ratio of speedup S to the number of
processors:

43

P
SE = (4.2)

In principle, we would expect PS = and 1=E . In practice, a parallel
system containing P processors does not usually achieve a speedup of P , because
part of time required by the processors is spent on communication or idling. That is
usually PS <<0 and 10 << E . Figure 4.1 shows a typical relationship between
speedup and the number of processors used.

Figure 4.1 Plot of speedup S versus number of processors P for a fixed problem size.

 Figure 4.1 shows that the speedup does not increase linearly with the
number of processors, instead, it tends to saturate. In other words, the efficiency drops
as the number of processors increase. This is often referred to as Amdahl’s law.

4.2 Domain Decomposition

A domain decomposition scheme is applied for the shallow water
domain that is divided into smaller sub-domains. Each sub-domain is defined as the
local domain of an individual processor which is addressed to as domain

Ideal

Actual

P

s

Speedup

Number of processors

44

decomposition. Several strategies exist within the domain decomposition paradigm for
dividing the physical domain into sub-domains.

 Figure 4.2 shows a 1D and 2D decompositions for a two-dimensional
domain. The 1D decomposition can be achieved by dividing the computational domain
in one direction only, while in the 2D decomposition, the computational domain is
decomposed both in x and y coordinate directions.

Figure 4.2 Domain decomposition topologies for 1D (a) 2D (b) decompositions.

 In this thesis, the 2D decomposition is chosen in the parallel solver for
the shallow water equations. In the 2D decomposition, the physical domain is divided
into rectangular sub-domains that are distributed across the available processors. Let

xm and ym be the number of grid cells in the x and y directions of the physical
domain. The total number of processors is yx PPP ×= , where xP and yP are the
numbers of processors assigned to the x and y directions respectively. So the number

of grid cells in each sub-domain is
y

y

x

x

P
m

P
m

⋅ . In this work
x

x

P
m and

x

x

P
m are integers.

 (a) (b)

45

Table 4.1 Text of serial code for 2D decomposition

Table 4.2 Text of parallel code for 2D decomposition

Consider a loop in the serial code that performs a chunk of computations
for all the interior nodes as shown in Table 4.1. In the parallel code, this loop is
decomposed into blocks divided by the number of processors (see Table 4.2), with one
block assigned to each processor. Hence the loops in the parallel code are smaller than
the loops in the serial code and the computational in the parallel code is less than in the
serial code.

Serial code

 do mxi ,1=
 do myj ,1=

-- code segment --
 end do
 end do

Parallel code

 do
x

x

P
m

i ,1=

 do
y

y

P
m

j ,1=

-- code segment --
 end do
 end do

46

Thus at the end of each time step, each processor must update the
boundaries of the sub-domains because of the spatial discretization by copying the
appropriate values from adjacent processors. The copying procedure will be in the form
of messages exchanged among processors by using MPI.

 4.3 Message Passing Interface (MPI)

MPI was developed in 1993-1994 by a group of researchers from
industry, government, and academia. As such, it is one of the first standards for
programming parallel processors, and it is the first that is based on a message passing.
MPI’s goal is to provide a standard for writing message-passing programs. This
standard defines the syntax and semantics of a core of library routines useful for writing
parallel programs. The standard includes descriptions of various types of
communication including processor to processor or point to point message passing and
global calls for collective communication. The standard also allows process groups and
communication contexts to be defined by the user. This enables a single program to
control several groups of processors, each working on different tasks. There is also
supported for process topologies that is a mapping of processes in a communicator to
an addressing scheme. The addressing scheme is usually chosen for convenience.
More details of MPI can be found in [13].

47

 Flow chart of the parallel solver

START

Master reads the parameters

Master broadcasts values
of parameters to slaves

Using a domain decomposition technique
 Set

xP
mxmxp = and

yP
mymyp =

A

Ntimen ≤≤1
No

Yes
Update boundary condition

(Each processor calls subroutine BC (mxp,myp,…))

Each processor does finite volume process in x-direction
 do i=1,mxp

 - code segment -
 end do

B

Specify initial conditions for each sub-domain
(Each processor calls subroutine initial (mxp,myp,…))

STOP

48

Figure 4.3 Flowchart of parallel solver

STOP

1+= nn

Master writes the global solution

B

A

Slaves send a maximal of CFL
(localCFL) to master

Master computes a maximum CFL(globalCFL)

Yes

No

Slaves send the local solution to master

Each processor does finite volume process in y-direction
 do j=1,myp

 - code segment -
 end do

1≤globalCFL

CHAPTER V

RESULTS

In this chapter, the numerical solution and the performance results of the
parallel computation of the circular dam break and the rectangular dam break are
reported in the following sections.

5.1 Circular Dam Break

The space of the circular dam break is a m200 long square with a
cylindrical dam with radius m50 and centered in the square, as shown in Figure 5.1. In
this thesis, we consider two cases: the wet bed and the dry bed. For both cases, the
computational domain is divided into 200200× square cells and the numerical solution
is computed at time 5t s= using 0.025t s∆ = .

Figure 5.1 Geometry of circular dam break problem.

5.1.1 Wet bed

In wet bed case, the initial water height is m10 inside the dam and m5
outside the dam. Both components of the velocities u and v are set to zero everywhere.

m200

m200

50=r

 50

Typical profiles of surface elevation of Roe solver are shown in Figure 5.6 and the
performances of the parallel computation are shown in Table 5.1.

Table 5.1 Performance results of circular dam break with wet bed.

Number of
processors

Unknowns per
processor

Elapsed time(s) Speedup Efficiency(%)

1 120000 120.502 1.000 100.000
2 60000 64.883 1.857 92.861
4 30000 37.952 3.175 79.378
8 15000 24.594 4.900 61.246

Figure 5.2 shows a relationship between the speedup and the number of
processors. Figure 5.3 shows a relationship between the efficiency and the number of
processors. We can see that they drop when increasing the number of processors.

Figure 5.2 Relationship between the speedup and the number of processors in the
cluster.

Numerical(Roe)
Theory

 51

Figure 5.3 Relationship between the efficiency and the number of processors in the

cluster.

5.1.2 Dry bed

In dry bed case, the initial water height is m10 inside the dam and m0
outside the dam. Both components of the velocities u and v are set to zero everywhere.
We use only the HLL solver to solve this case. Typical profiles of surface elevation of
HLL solver are shown in Figure 5.7 and the performances of the parallel computation are
shown in Table 5.2.

Table 5.2 Performance results of circular dam break with dry bed.

Number of
processors

Unknowns per
processor

Elapsed time(s) Speedup Efficiency(%)

1 120000 49.070 1.000 100.000
2 60000 29.565 1.660 82.987
4 30000 20.388 2.407 60.170
8 15000 16.472 2.979 37.237

Numerical(Roe)
Theory

 52

Figure 5.4 shows a relationship between the speedup and the number of
processors. Figure 5.5 shows a relationship between the efficiency and the number of
processors. We can see that they drop when increasing the number of processors.

Figure 5.4 Relationship between the speedup and the number of processors in the

cluster.

Numerical(HLL)
Theory

 53

Figure 5.5 Relationship between the efficiency and the number of processors in the
cluster.

Numerical(HLL)
Theory

 54

(a1) t=0

(a2) t=0.5

(a3) t=1

 55

(a4) t=1.5

(a5) t=2

(a6) t=2.5

 56

.

(a7) t=3

(a8) t=3.5

(a9) t=4

 57

(a10) t=4.5

(a11) t=5

Figure 5.6 (a1)-(a11) show the circular dam break results in the case of wet bed, the left
of figure shows water profile and the right of figure shows a contour plot of the depth.

 58

(b1) t=0

(b2) t=0.5

(b3) t=1

 59

(b4) t=1.5

(b5) t=2

(b6) t=2.5

 60

(b7) t=3

(b8) t=3.5

(b9) t=4

 61

(b10) t=4.5

(b11) t=5

Figure 5.7 (b1)-(b11) show the circular dam break results in the case of dry bed, the left
of figure shows water profile and the right of figure shows a contour plot of the depth.

 62

5.2 Rectangular Dam Break

We consider the dam-break problem in a square domain mm 200200 × .
The domain is separated into two zones by an infinitesimally thin wall. The breach is

m75 wide, as shown in Figure 5.8. Again we consider two cases: the wet bed and the
dry bed. For both cases, the computational domain is divided into 200200× square
cells and the numerical solution is computed at time 5t s= using 0.025t s∆ = . The
rectangular dam break is a special problem and it has more complex computation than
a circular dam break or other problems. We present the appropriate domain
decomposition technique for using 2,4,6 and 8 processors as shown in Figure 5.9.

Figure 5.8 Geometry of rectangular dam break problem

m200

m200

m30

m95

Upstream Downstream

 63

 (a) (b)

 (c) (d)

Figure 5.9 Appropriate domain decomposition technique of the rectangular dam break
problem, (a) for using 2 processors, (b) for using 4 processors, (c) for using 6

processors and (d) for using 8 processors.

0 0

 64

For this domain decomposition technique, we obtained a regular sub-
domain. Hence, solving on a sub-domain can reduce a complexly computational.
Moreover, there is no sending and no receive across the boundaries on dam region
because of the dam wall is a boundary of sub-domain.

5.2.1 Wet bed

Initially, the water depth upstream of the dam is m10 and the
downstream water depth is assumed to be m5 , both components of the velocity u and
v are set to zero everywhere. Typical profiles of surface elevation of Roe solvers are
shown in Figure 5.14. The performances of the parallel computation are shown in Table
5.3.

Table 5.3 Performance results of rectangular dam break with wet bed.

Number of
processors

Unknowns per
processor

Elapsed time(s) Speedup Efficiency(%)

1 120000 165.890 1.000 100.000
2 60000 82.085 2.021 101.048
4 30000 54.945 3.019 75.480
8 15000 36.567 4.537 56.708

We see that the speedup and the efficiency drop when increasing the
number of processors, except when running on 2 processors due to using different
code when running on 1 and 2 processors (see Figure 5.10 and Figure 5.11). The code
that is used to run on 2 processors doesn’t have complex computation and
intercommunicating at dam wall because of the optimal domain decomposition. Table
5.4 shows the comparison of performance results between the optimal domain
decomposition and the other. We can see that the first domain decomposition is more
efficient that the other.

 65

Table 5.4 Comparison of performance results between 2 differencing domain
decomposition.

Number of processors Unknowns per
processor

Elapsed
time(s)

Speedup Efficiency(%)

1 120000 165.890 1.000 100.000
2 with appropriate domain decomposed 60000 82.085 2.021 101.048

2 with the other domain decomposed 60000 98.611 1.682 84.113

 Figure 5.10 Relationship between the speedup and the number of processors in
the cluster.

Numerical(Roe)
Theory

 66

Figure 5.11 Relationship between the efficiency and the number of processors in the

cluster.

5.2.2 Dry bed

In dry bed case, the initial water depth upstream of the dam is m10 and
the downstream water depth is assumed to be m0 and both components of the velocity
u and v are set to zero everywhere. Typical profiles of surface elevation of HLL solvers
are shown in Figure 5.15 and the performances of the parallel computation are shown in
Table 5.5. Figure 5.12 shows the relationship between the speedup and the number of
processors and Figure 5.13 shows the relationship between the efficiency and the
number of processors.

Numerical(Roe)
Theory

 67

Table 5.5 Performance results of rectangular dam break with dry bed.

Number of
processors

Unknowns per
processor

Elapsed time(s) Speedup Efficiency(%)

1 120000 54.931 1.000 100.000
2 60000 29.633 1.854 92.686
4 30000 20.627 2.663 66.577
8 15000 16.589 3.311 41.391

 Figure 5.12 Relationship between the speedup and the number of processors in the
cluster.

Numerical(HLL)
Theory

 68

Figure 5.13 Relationship between the efficiency and the number of processors in the

cluster.

Numerical(HLL)
Theory

 69

(c1) t=0

(c2) t=0.5

(c3) t=1

 70

(c4) t=1.5

(c5) t=2

(c6) t=2.5

 71

(c7) t=3

(c8) t=3.5

(c9) t=4

 72

(c10) t=4.5

(c11) t=5

Figure 5.14 (c1)-(c11) show the rectangular dam break results in the case of wet bed,
the left of figure shows water profile and the right of figure shows contour plot of the

depth.

 73

(d1) t=0

(d2) t=0.5

(d3) t=1

 74

(d4) t=1.5

(d5) t=2

(d6) t=2.5

 75

(d7) t=3

(d8) t=3.5

(d9) t=4

 76

(d10) t=4.5

(d11) t=5

Figure 5.15 (d1)-(d11) show the rectangular dam break results in the case of dry bed,
the left of figure shows water profile and the right of figure shows contour plot of the

depth.

 77

5.3 Comparison of the Performance Results Between Roe and HLL Solvers

From Tables 5.6 and 5.7 we see that the HLL solver requires less
computational time than the Roe solver. This is mainly due to the fact that Roe solver has
to first calculate the wave propagation in both directions before evaluating the fluxes.
Hence the Roe solver has more operations as compared with the HLL solver.
Surprisingly, the Roe solver can achieved better performance results than the HLL
solver (see Figure 5.15).

Table 5.6 Comparison of performance results between the Roe and the HLL solver for
solving the circular dam break.

Elapsed time(s) Speedup Efficiency(%) Number of
processors

Unknowns per
 processor HLL Roe HLL Roe HLL Roe

1 120000 49.070 120.502 1.000 1.000 100.000 100.000
2 60000 29.565 64.883 1.660 1.857 82.987 92.861
4 30000 20.388 37.952 2.407 3.175 60.170 79.378
8 15000 16.472 24.594 2.979 4.900 37.237 61.246

Table 5.7 Comparison of performance results between the Roe and the HLL solver for
solving the rectangular dam break.

Elapsed time(s) Speedup Efficiency(%) Number of
processors

Unknowns per
 processor HLL Roe HLL Roe HLL Roe

1 120000 54.931 165.890 1.000 1.000 100.000 100.000
2 60000 29.633 82.085 1.854 2.021 92.686 101.048
4 30000 20.627 54.945 2.663 3.019 66.577 75.480
8 15000 16.589 36.567 3.311 4.537 41.391 56.708

 78

(a)

(b)

Figure 5.16 Comparison of the performance results between the Roe and the HLL
solvers for solving the dam break problems (a) Circular dam break (b) Rectangular dam

break.

CHAPTER VI

CONCLUSION

In this thesis, we use the shallow water equations to simulate the shallow
water flow problems for the rectangular and the circular dam break problems. We use
the finite volume methods to approximate the solution. A high-resolution Godunov’s
method is used to compute the numerical fluxes by using solution of the local Riemann
problem at each cell interface. The Roe and the HLL approximate Riemann solvers are
used to approximate the solution of this local Riemann problem. Our numerical results of
dam break problems are in good agreement with the previous works [1,3,7,9].

We also present a parallel algorithm for solving the dam break problems.
The domain decomposition technique is used to divide a physical domain into a number
of smaller sub-domains. MPI is incorporated for inter-processor data communication.
We find that a parallel computer can reduce the computational time. However, the
efficiency decreases when there are too many processors in the cluster due to the
imbalanced usage of resources. We analyze the performance results between Roe and
HLL solvers and present the appropriate domain decomposed for the rectangular dam
break.

REFERENCES

[1] C. Zoppou and S. Roberts. Numerical solution of two-dimensional unsteady dam
 break. Applied Mathematical Modelling. 24(2000) : 457-475.
[2] David L. George. Numerical Approximation of the Nonlinear Shallow Water Equation
 with Topography and Dry Beds: A Godunov-Type Scheme. Master’s thesis
 Applied Mathematics Science University of Washington, 2004.
[3] Jin-Wen Wang and Ru-Xun Liu. A comparative study of finite volume methods on
 unstructured meshes for simulation of 2D shallow water wave problems.
 Mathematics and Computers in Simulation. 53(2000) : 171-184.
[4] P. Rao. A parallel hydrodynamic model for shallow water equations. Applied
 Mathematics and Computation. 150(2004) : 291-302.
[5] R.J. LeVeque. Balancing Source Terms and Flux Gradients in High-Resolution
 Godunov Methods: The Quasi-Steady Wave-Propagation Algorithm. Journal of
 Computational Physic. 146(1998) : 346-365
[6] S. Chippada, C. N. Dawson, M. L. Martinez and M. F. Wheeler. A Godunov-type
 finite volume method for the system of Shallow water equations. Computer
 Methods in Applied Mechanics and Engineering. 151(1998) : 105-129
[7] S. Roberts and C. Zoppou. Robust and efficient solution of the 2D shallow water
 equation with domain containing dry bed. ANZIAM Journal. 4(2000) : c1260-
 c1282.
[8] V. Guinot. An approximate two-dimensional Riemann solver for hyperbolic system
 of conservation laws. Journal of Computational Physics. (2004)
[9] V. Caleffi, A. Valiani and A. Zanni.Finite volume method for simulating extreme
 flood events in natural channels. Jorunal of Hudraulic Research. 2(2003) : 167-
 177
[10] A. Harten, P.D. Lax and B. Van Leer. On upstream differencing and Godunov-type
 scheme for hyperbolic conservation laws. SIAM Review. 25(1983) : 235-261.
[11] R.J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts in
 Applied Mathematics: Cambridge University Press, Cambridge, United Kingdom
 2002.

81

[12] Tan Weiyan. Shallow water hydrodynamics : mathematical theory and numerical
 solution for a two-dimensional system of shallow water equations. 1992.
[13] P.S. Pacheco and Woo Chat Ming. MPI User Guide in FORTRAN.
 http://www.hku.hk/cc/sp2/ftp/mpi/MPI_ug_in_FORTRAN.doc

 82

VITAE

Pairin Suwannasri was born in February 22, 1980. He received a
bachelor’s degree in Science (Mathematics) from Faculty of Science, KhonKhan
University in 2001.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Chapter I Introduction
	Chapter II Derivation of Shalow Water Equations
	Chapter III Numerical Methods
	Chapter IV Parallel Computation
	Chapter V Results
	Chapter VI Conclusion
	References
	Vita

