Results

1. Bacteriological characteristics

Bacteriological characteristics of P. multocida were identified according to the characteristics described by Weavers et al as shorm in table 2 (17).

1.1 physfological characteristics

Colonies (from ninety-one strains of P. multocida on TSB (Tableg 8) were glistening, smooth, entire edge and convex. Colonifes of type A (Figure 2) and D were mucoid. No hemolysis was observed on TSB. They were cultivated aerobically and produced a distinctive smell which was helpful in recognition. The sizes of colonies varied from 0.5 to 2.5 mm in diameter dependent the largest whereas colonies of type B (Figure 3) and E were smaller: qt was gevealed by gram stain that they
wereqgram negative coccobacilli with capsules which were seen as halos around the cells. Their capsules were also demonstrated by Jasmin method (13). With safranin, the organisms were stained dark orange and the capsules were colourless halos around the organisms whereas the background was light pinkish orange. Fewer capsules were seen in most reference somatic strains. They arranged in singly. Pleomorphism in which short rods or
filaments were seen in some type D strains. They were nonmotile and non-spore forming.

They could not be cultivated on MacConkey or SS agar. They could neither be grown in nutrient broth without salt nor with high salt concentration. They could be grown at both 25 C and 37 d . Nose strains especially the strains isolated from -poultry could be grown at 42 C .

1.2 Biocherfical characteristics

The biochemical characteristics of P. multocida strains are shown in table 9 . The reaction on TSI was demonstrated as acid slant and acid butt without producing gas or hydrogen sulfide. Nitrate was reduced to nitrite. Indole and urease here not produced. MR-VP tests were negative. Neither gelatin nor esculin was hydrolysed. Ornithine decarboxylase test was positive. Lysine decarboxylase test and arginine dihydrolase test were negative ${ }^{\text {Citrate was not utilized. Catalase and oxidase }}$ enzymes
 Acid was detected by the fermentation of glucose, mannose, and mannitol without producing gas. Sucrose was fermented by most strains but three strains isolated from pigs were not. Maltose, lactose and 10% lactose were not fermented. Acid from xylose was fermented by all pig strains and some
human strains, but most poultry strains as well as vaccine 8: A strain were not. Arabinose was fermented by almost all poultry strains and a few human strains, but rarely by pig strains. Dulcitol was not fermented by any strains except reference somatic strains type 1 and 14 .
2. Serological typing by the Carter-Heddleston

System

The typings dere performed with those organisms that had already been identified as P. multocida. Any nonP. multocida strains wene fejected from the tests.

2.1 Capsulat types

capsular seedtyping by the IHA test. The antisera for typing capsular serotypes A, B, D and E were produced in pasteurella free rabbits. OTitration of antisera and specificity hof the IhA reaction were determined. Nagative results were obtained when homologous and heterologous
antigens were tested with typing antiseral and D (Table 10). According to these results, it was concluded that the typing antisera A and D could not be produced in any rabbits. The capsular serotype A and D, therefore, could not be determined by means of the IHA test. The non-
serological procedures for capsular typing of type A and D were used instead.

However, antisera type B and E could be produced and the titer of each antiserum was 1:8192 against its homologous antigen (Table 10). No cross-reactions were detected when these antisera were tested against reference type A and D antigens. Theso results proved that antisera type B and E were suitable used as typing antisera in the IHA test since they had high titer and good specificity. Reproducibility was also shown when other lots of antigen extracts were tested.

Capsular type forand D were identified by the nonserological tests ơf staphylococcal hyaluronidase and acriflavine respegkjoly, The hyaluronidase test for typing the P. multofideypy A was examined better on DSA than TSB. The growth of type A gos diminished by the action of enzyme at the intersection= of P. multocida and staphylococcal streak lines (Figure 4), whereas type B, D,
 flocculated and precipitated in the acriflavine solution. This rgaction vas speaifid for typelponny (figure 5).

The capsular typing of p. multocida strains were therefore typed by the methods of non-serological tests for type A and D and the IHA tests for type B and E. Known capsular type A (P-1059), type B (P-1404), type D (P-3881), and type $\mathrm{E}(\mathrm{P}-1235)$ were employed as controls. All
reference somatic and vaccine strains were also included in the tests. Type $1,3,5,9,10,12,14,16, \mathrm{CU}$ strain, and 8:A were typed as type A. Type 2 and $6: B$ were typed as type B. Type 7 was typed as type E. Type $6,8,13$ and 15 were untypable (Table 10). As examined under light microscope, fewer capsules were seen arong these untypable strains. All strains of p. multocida isolated from human, pigs and poulury wefe typed (Table 11). In human, 11 strains ($64,71 \%$) were type $A ; 5$ strains (29.41\%) were type D and 1 strain (5.88%) was untypable. In pigs, 19 strains (82.61\%) were type A and 4 strains (17.39\%) were type D. In poultry, 25 strains 86.22%) were type A and 4 strains (13.78\%) were untypatre, Type D was not found in poultry. All sixty-nine isolatestherefore, were typed as 55 strains (79.71%) of Jtype $A, 9$ strains (13.04%) of type D and 5 strains $(7.25 \%$ of untypable. Neither type B nor E was detected from the isolates. typing antisera of NADC type 1 to 16 except type 8 and 15 . The other was somatic typing antisera type 1,3 , $3 \times 4,12$, and 13 which were produced in pasteurellafree rabbits. The somatic typing antiserum type 3×4 was prepared by the immunization of $C U$ strain. Titration and specificity of both kinds of typing
antisera were performed with homologous heat-stable antigens. The specificity of the test was recorded by the sharp precipitin line which located near and concave toward the corresponding antigen well (Figure 6). Any diffuse precipitin line which was near and concave toward the antiserum well was indicated as non-specificity.

The titers of reference antisera used as typing antisera were as follons: antisera type 1 and 14 were $1: 4$; antisera type 2,3 and $/ 10$ were $1: 2$; and antisera type 4,5 , $6,7,9,11,12,13$ and 16 were undiluted.

The titers of (somatic antisera used as typing antisera were as foftows : antisera type 1 and 3 were undiluted; antisera torpe. $3 \times 4,12$, and 13 were $1: 8,1: 4$, and $1: 8$ respectively

Both typing antisera were shown their specificities with their homologous heat-stable antigens. Known reference somatic antigens type $1(x-73)$, type $2(M-1404)$, type 3 ($\mathrm{P}-1059$, type $5(\mathrm{P}-\mathrm{q} 702)$, type 6 ($\mathrm{P}-2192$), type 7 $(\mathrm{P}-1997)$, type $12(\mathrm{p}-1573)$ type 13 ($\mathrm{p}-159 \mathrm{~A}$) type $14(\mathrm{p}-2225)$, type 15 P -22379 , and dU antigen were Gsed as coontrols. All capsular reference strains and vaccine strains $6: B$ and $8: A$ were also included in the GDPT (Table 12).

2.2.1 Somatic serotypes as determined by reference typing antisera

Using reference typing antisera, type A was type 3 ; type B and E were type 2 ; and type D was type 3,12 . CU strain was type 3,$4 ; 8:$ A strain was type 1 ; and $6: \mathrm{B}$ was type 2 Table

A11 strelms of P. multocida isolated from human, pigs and, poultry were typed by reference typing antisera (Table 13). In human, 6 strains (35.30%) were type $1 ; 4$ straifis: (23.54\%) were type 3,$4 ; 3$ strains (17.64%) were type $3 ; 2$ strajns (11.76\%) were type $3,4,12$; and 2 strains $(11,76 \%)$ were untypable. In pigs, 14 strains (60.88%) were type 3,26 strains (26.08\%) were type 3,4 ; 3 strains (13.04%) wefe type $4,7,12$. In poultry, 27 strains (93.10\%) were type 1 , and 2 strains (6.90%) were type 3,4 .

All sixty-nine isolates therefore were typed as 33 strains (47.82%) of type $1 ; 17$ strains (24.64%) of type 3 ; 12 strains (17839\%) of type 3,4; 2 strains (2.90\%) of type $3,4,12 ; 3 \sin$ strains(4. 35% of type $\mid 4,2,12$ and 2 strains (2.90%) of untypable (Táble 13). e

Q MPREtypl? 30 Gas opredomitantiy found in pigs and serotype 1 was prevalently found in poultry. Serotype 1 was not found in pigs whereas serotype 3 was not found in poultry but both serotypes were commonly found in human. Serotype 3,4 was the second serotype found among some isolates of human, pigs, and poultry.
2.2 .2 Somatic serotypes as determined by somatic typing antisera

Although somatic antisera type 1,3 , $3 \times 4,12$, and 13 were shown their specificities with homologous strains, non-specific precipitin lines were sometimes observed near and concave toward the antisera wells of type 1 and 3 .

Using somatic typing antisera, type A was type 3 ;
type B and E were uftypable; type D was also untypable with non-specific pregfpitin lines 1 and 3. Vaccine strain $6: B$ was untypable; and $8: A$ was type 1 with non-specific precipitin lines 1 and 3. Other heterologous somatic reference strains were untypable (Table 12).

All strains gf. multocida isolated from human, pigs, and poultry maperyped by somatic typing antisera (Table 14). In human, 6 strains 35.30%) were type 1 ; 4 strains (23.54\%) were type 3,$4 ; 2$ strains (11.76%) were type 3 ; 2 strains (11.76\%) were type 1,3 ; 1 strain (5.88%) was type 3 3,12; 乞乌tpalim 45988%, was type $1,3,12$; and 1 strain (5. 88%) was untypable. In pigs, 11 strains (47.84%)
 (8.69%) were type 3,$4 ; 2$ strains (8.69%) were type $1,3,12$; 1 strain (4.35\%) was type $1,3,4$; and 1 strain was type 12 . In poultry, 26 strains (89.65\%) were type 1 ; 1 strain (3.45\%) was type $3 ; 1$ strain (3. 45%) was type 1,3 and 1 strain (3.45\%) was type $1,3,4$.

All sixty-nine isolates therefore were typed as 32 strains (46.38\%) of type 1; 14 strains (20.29\%) of type 1,3 ; 9 strains (13.04%) of type 3 ; 6 strains (8.69\%) of type 3,$4 ; 3$ strains (4.35\%) of type $1,3,12 ; 2$ strains (2.90\%) of type $1,3,4 ; 1$ strain (1.45\%) of type 12 ; 1 strain (1.45%) of type 3.12 , and 1 strain (1.45%) of untypable (Table 14).

Serotype $1 ; 3 ;$ and 3,4 were commonly found in human whereas serotype 11 pha prevalent in poultry. Similar results were also obtadned as examined by reference typing antisera. But serotype 1,3 in pigs were more common than serotype 3 which was predominant when reference typing antisera were used. The serotype 1,3 were also detected in two human strains angone poultry strain but they were not found in any isolatessmsityped by reference antisera. Serotype 3,4 were detected in pigs butserotype 1 was not. The same results were demonstrated by using reference typing antisera. In poultry, one strain was serotype 3 and
 observed. V On contrary $_{6}$ to the result of reference typing
 serotype 3 and $1,3,4$ were not.

Using both typing antisera, one antigenic component was found in most strains whereas two or three antigenic components were noted in some isolates. If somatic typing antisera were used, the somatic serotypès
that had more than one antigenic component were mostly associated with serotype 1 and 3 (Table 13 and 14).

2.3 P. multocida serotypes

The serotype of p. multocida strain was based on the difference an its capsular and somatic antigens. The combination of capsular and somatic serotype data when the isolates were identified by reference typing antisera (Table 15) therefore indicated that P. multocida human serotypes were 5 strains (29.44%) of $A: 1$; 3 strains (17.64\%) of $A: 3 ; 3$ strains (17.64%) of $A: 3,4 ; 2$ strains (11.76\%) of D:3,4, 12; strain (5.88\%) of D:1; 2 strains (11.76\%) of D:untypablejand $1 / \operatorname{strain}(5.88 \%)$ of untypable:3,4. P. multocida pig gerotypes svere 14 strains (60.88\%) of $A: 3 ; 5$ strains (21.74%) of $A: 3,4 ; 3$ strains (13.03\%) of D: 4, 7, 12 and Strain $(4,35 \%)$ of $1,3,4$. P. multocida poultry serotypes were 25 strains (86.20\%) of A:1; 2 strains(6.90\% of untypables 1 ; and 2 strains (6.90\%) of

Total finding of P. multocida serotypes from sixty-
 (24.64\%) of A:3; 8 strains (11.58\%) of A:3,4; 3 strains (4.35\%) of D:4,7,12,; 2 strains (2.90\%) of D:3,4, 12;

```
1 strain (1.45%) of D:1; 1 strain (1.45%) of D:3,4;
2 strains (2.90%) of D : untypable; 3 strains (4.35%) of
untypable : 3,4; and 2 strains (2.90%) of untypable:1
```

When the isolates were identified by somatic typing antisera (Table 16), P. multocida human serotypes were 5 strains (29.44\%) of A:1; 3 strains (17.64\%) of A:3,4; 2 strains (11.76\%) of A:3; 1 strain (5.88\%) of A:1,3; 1 strain (5.88\%) of D:1; 1 strain (5.88\%) of D:1,3 ; 1 strain (5.88\%) of D:3,22, 1/strain (5.88\%) of D:1,3,12; 1 strain (5.88\%) of D: untypable; and 1 strain (5.88\%) of untypable : $3,4 \mathrm{p}$. muleocida pig serotypes were 10 strains (43.48\%) of A:1,3, 5/ strains (21.74\%) of A:3; 2 strains (8.69\%) of $\mathrm{A}: 3,4 ; 2$ sfrains (8.69%) of $\mathrm{D}: 1,3,12 ; 1$ strain (4.35\%) of $A: 1,3,4 ; 1$ (strain (4.35%) of $\mathrm{D}: 3$; 1 strain (4.35%) of D 212 , and ristrain (4.35%) of D: 1,3. P. multocida poultny seropypes were 24 strains (82.75\%) of A:1; 1 strain (3.45%) A 1,$3 ; 2$ strains (6.90%) of untypable: 1 ; 1 strain (3.45%) of untypable: 3 ; and 1 strain (3.45%) of untypable: $1,3,4 \%$

Total finding of p. multocida serotypes from sixtynine isolates were 29 strains (42.02\%) of A:1; 12 strains (17.39\%) Pof (7.25%) of $\mathrm{A}: 3,4 ; 3$ strains (4.35%) of $\mathrm{D}: 1,3 / 12 ; 2$ strains (2.90%) of $6 \mathrm{D}: 1,3,6$ astrain (1.45%) of A, 3 , 4 strain (1.45\%) of D:1; 1 strain (1.45\%) of D:3; $1 \operatorname{strain}$ (1.45\%) of $D: 12 ; 1 \operatorname{strain}(1.45 \%)$ of $D: 3,12 ; 1$ strain (1.45\%) of D:untypable; 2 strains (2.90\%) of Untypable : 1; 1 strain (1.45\%) of untypable:3 ; 1 strain (1.45\%) of untypable:3,4; and 1 strain (1.45%) of untypable : 1, 3,4.

By using both typing antisera, P. multocida serotype $A: 1 ; A: 3$; and $A: 3,4$ were commonly found in human whereas serotype $A: 1$ was prevalent in poultry. With reference typing antisera, predominant serotype in pigs was $A: 3$ but incidence of serotype $A: 1,3$ was higher when somatic typing antisera were used. Type D which associated with other somatic serotypes were detected in some human and pig strains but not in poultry. There were no detection of serotype $A: 1$ and $D: 2$ in pigs, or $A: 3$ and $D: 3$ in poultry (Table 15,16 and Figure 2 . Type B and E were not detected from any isolates of human, pigs and poultry. However, serotype $B: 2$ was foypd in reference strains type B and type 2 , and vaccineistrain $6: B$ whereas serotype $E: 2$ was found in type E and type 7 was typed as type E:7 (Table 10 and 12).

3. The analysis of piotein patterns of P. multocida whole cell sonicated extradts by SDS-PAGE

ค9ค ค 9 The protein concentration op sonicated

from seventeen P. multocida strains were ranged from $286.47 \mathrm{mg} \%$ to $1718.75 \mathrm{mg} \%$ (Table 17). The electrophoretic patterns of protein of all strains tested, regardless of serotypes and origins, are displayed in figure 8. The molecular weights of the protein bands were estimated from
the calibration curve. Approximately 46-56 protein bands were directly visible among these strains and at least twelve major protein bands were common (Figure 8). These similar protein bands were located at the MWs $150 \mathrm{~K}, 140 \mathrm{~K}$, $100 \mathrm{~K}, 85 \mathrm{~K}, 76 \mathrm{~K}, 72 \mathrm{~K}, 58 \mathrm{~K} ; 49.5 \mathrm{~K}, 46 \mathrm{~K}, 40 \mathrm{~K}, 36.5 \mathrm{~K}$ and 29.5 K respectively. However, some/differences in the position of minor protein bands were particularly apparent among strains: The SDS-PAGE pygfiles of P_{\cdot} multocida regarding to serotypes showed wat certain serotypes had different protein patterns.

For serotype B, 2 (type B and $6: B$ strains (Figure 8, lanes K and Erespectivelyh, their differences were seen at the electrophoreticimailities of 150 K to 100 K range, 58 K to 40 K range and 36.5 K to 29.5 K range respectively. In addition, type B possessed an atypical band at the 122.5 K (Figure 9, land K) which could not be found in any other strains.
and
 were shown at the electrophoretich mopilifigs of 72 K to respectively, CU strain had a dense band at MW 32 K (Figure 9, lane I). PM 1002 (Figure 8, lane 0) and PM 3011 (Figure 8, lane R) were another two strains of somatic serotype 3,4 . Their protein patterns exhibited the
differences at the same electrophoretic mobilities as those serotype $A: 3,4$. However, PM 1002 possessed a dense band at MW 32.5 K (Figure 9, lane 0).

For serotype D:3,12; type D had serotype D:3,12 (Figure 8, lane N) and TECH-2 had serotype D:3,4,12 (Figure 8, lane P). Thbugh their serotypes were not exactly the same, they sharer two somatic antigen 3 and 12 in common. They both possessed dense bands at the same MWs 66 K and 30.5 K (Figure 9, lanes N and P respectively), but the differences between them were demonstrated at the electrophoretic mobilities of 58 K to 49.5 K range and 36.5 K to 29.5 K range respectively (Figure 8, lanes N and purespectively).

In addition, those strains which possessed somatic serotype 3 associatec with serotype 4 or 12 or 4 and 12 (Figure 8, lanes N through R) except CO strain (Figure 8, lane I) had a dense band at MW 66 K . This band of other serotypes were seen as a diffuse or less dense band.
$N O$ csignifighty differgnces? were found among the protein pqofiles of serotype 1 and 3 (Figure 9, lanes B
 proteịn bands could be seen.

