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 Quantum mechanical calculations have been carried out to investigate 
structural properties and interaction between guest molecules, water and methane, and 
silanol group on the surface of silicalite-1. The (010) surface which perpendicular to 
the straight channel, has been selected and represented by three fragments taken from 
different parts of the surface. Calculations have been performed using different levels 
of accuracy: HF/6-31G(d,p), B3LYP/6-31G(d,p), HF/6-31++G(d,p), and B3LYP/6-
31++G(d,p), including MP2/6-31++G(d,p) for methane. Geometry of the silanol 

groups as well as those of guest molecules have been fully optimized. The results show 
that the most stable conformation takes place when a water molecule forms two 
hydrogen bonds with two silanols, only one lies on the opening pore of the straight 
channel. The corresponding binding energy is -13.84 kcal/mol. These areas are 
supposed to be the first binding sites which have to be covered when water molecule 
approaches the surface. When water loading increases, the next favorable silanols are 
those of the opening pore in which the four possible complex conformations yield the 
binding energy of approximately -8 kcal/mol. In terms of vibrational frequency, 
complexation leads to red shift of the O-H stretching of the silanol group. The 
estimated energy barrier for water molecule to enter into the silicalite-1’s pore is 
amount to 9.08 kcal/mol. For methane molecule, situation is different. The calculated 
binding energies are within thermal fluctuation at room temperature. This leads to a 
clear conclusion that methane molecule does not absorb on the (010) surface of 
silicalite-1. In addition, the entering process for methane molecule is observed to be 
barrier free. 
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CHAPTER 1 

 

INTRODUCTION 
 

1.1. Research Rationale 

 

Zeolites are microporous aluminosilicate materials which have 

numerous properties that are appropriate for catalysis and separation. The high 

porosity and the very regular system of pores lead to beneficial characteristics of these 

materials as for example shape selectivity and catalytic properties. However, before 

the activities in the pore can take place, the guest molecules have to diffuse into the 

pore openning of the zeolite that means they have to interact with the external surface. 

Only very recently the problem of approach and penetration of guest molecules at the 

zeolite surface started to be investigated. There exists experimental evidence which 

shows the significant role of external and internal surfaces and the very complicated 

nature of  their interplay in the shape-size selective catalysis. Turro and coworkers 

used a combination of different spectroscopic techniques to show the very complicated 

nature of the shape-size selected catalysis of photolysis reactions of many ketone 

molecules by FAU and MFI as caused by  the external and internal surface [1,2]. 

Isomerization of 1, 2, 4-trimethylbenzene over zeolite NU-87 was observed to take 

place mainly on the external surface [3] while alkylation of biphenyl over various 

zeolites was observed only on the external surfaces [4,5]. The external surface also 

contributes to adsorption of C6-C9 n-alkanes on Pt/H-ZSM-22 [6]. 

  It is known that the key elements determining the adsorption and 

diffusion behavior of guest molecules on the external surfaces are silanol groups. Most 

of the information regarding characteristics of silanol on the external surface of 

zeolites arises from FTIR experiments [7]. It was found that the open surfaces of most 

of the zeolitic and amorphous silica materials are covered by the silanol groups.  

Non-cationic zeolites, in particular silicalite-1 are widely used in the 

separation of mixtures of light hydrocarbons with water or other polar solvents. It 

should be noted that the internal surface of perfect silicalite-1 is hydrophobic whereas 
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[SiO4]4- or [AlO4]5- 
tetrahedral 

the external surface is hydrophilic attributable to terminal silanol groups which can 

interact with guest molecules. Several FTIR experiments expose that the O-H bond of 

silanol groups is softened when interacting with nitriles [8-11], alcohols [12], water 

[13], pyridine [14] and even with aliphatic and aromatic hydrocarbons [10]. However, 

most of the experimental and theoretical works focus on the internal surface that 

means the pore or channel whereas much less is known about the details of the 

external surface. 

 

1.2. Zeolites 

  

       1.2.1. What is a Zeolite? 

 

  A zeolite was first discovered in 1756s by a Swedish mineralogist, 

named Cronstedt [15]. Zeolites [16-18] are crystalline and micro-porous 

aluminosilicates of the alkali or alkali earth metals (predominantly sodium, potassium, 

magnesium and calcium) that are built up from an infinitely extending three-

dimesional network arising from framework of [SiO4]4- and [AlO4]5- tetrahedral linked 

to each other by the sharing of oxygen atom.  

 

 

 

 

 

 

 

Figure 1.1 From [SiO4]4- or [AlO4]5- tetrahedral to three-dimentional structures of 

zeolites. 

 

 This (-Si-O-Al-) linkages form pores of uniform diameter and enclose 

regular internal cavities and channels of different sizes and shapes, depending on the 

chemical composition and the crystal structure of the specific zeolite involved. These 



 3

cavities can be occupied by cations, water or other molecules. The cations can be 

mobile and may usually be exchanged by other cations.  

The presence of [AlO4]5- tetrahedral in the framework introduces 

negative charges into the structure of zeolites, which are usually compensated by 

protons, metal cations or NH4
+. The presence of different compensation cations leads 

to different redox or acidic and basic properties of zeolites which can be used as 

potential catalytic materials for oxidation, reduction or acid (base)-catalyzed reactions.   

 

       1.2.2. Classification of Zeolites 

 

  Zeolites [19] are a well-defined class of crystalline naturally occurring 

aluminosilicate materials. Approximately 40 natural zeolites have been found and 

more than 150 zeolites were synthesized [20,21]. Originally, zeolites are named by 

Framework Type Codes which are an identification by three capital letters used by the 

International Zeolite Association (IZA). The codes only describe and define the 

framework based on their overall topology. A list of framework codes for zeolites can 

found in the Atlas of Zeolite Structure Types by Meier et al. 1996 [22]. An example of 

framework code was shown in Figure 1.2 where faujasite and all other zeolites that 

have the same topology were named as FAU. 

 

 

 

 

 

 

 

 

 

Figure 1.2 The FAU framework structure. 

 

Principally, zeolites can be classified according to structural building 

units called “secondary building unit” (SBU) with the primary building unit being the 
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tetrahedron. The SBU is the geometric arrangement of the primary unit tetrahedron. 

There are nine such building units, which can be used to describe all of the know 

zeolite structures. These secondary building units consist of 4, 6, and 8-member single 

rings, 4-4, 6-6, and 8-8-member double rings, and 4-1, 5-1, and 4-4-1 branched rings. 

Some topologies of these units are shown in Figure 1.3. The tetrahedron units can be 

arranged in rings, chains, sheets or complex frameworks taking into account various 

types and sizes of cavities that lead to their different properties for each zeolite.   

 

 

 

 
          4                     4-4       4-1                     4=1         4-4=1 
         (61)                  (6)       (3)        (3)       (2)  
 

 

 
           5         5-1         5-2        5-3    spiro-5 
                   (14)       (4)        (8)       (1) 
 

 

 

             6          6-6        6-2          6≡1 
          (39)         (10)        (21)          (2) 
 

 

  

8 8-8 
       (15)             (3)  

   

Figure 1.3 Secondary building units and their symbols where the number in the 

parenthesis stands for frequency of occurrence [23]. 

 

Generally, zeolites can also be classified, according to their pore sizes, 

into small, medium, large and ultralarge pore systems. The corresponding number of 

tetrahedral (membered ring) are 6, 8, 9 for small; 10 for medium; 12 for large; and 14, 
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18, 20 for untralarge structures.  The characteristics of some typical zeolites are listed 

in Table 1.1 [24]. 

 

Table 1.1 Characteristics of some typical porous materials. 

 

        Zeolite Number of rings Pore size (Å2) Pore/channel structure 
8-membered oxygen ring 
     Erionite 
 
10-membered oxygen ring 
     ZSM-5 
 
     ZSM-11 
 
Dual pore system 
     Ferrierite 
 
     Mordenite 
 
 
12-membered oxygen ring 
     ZSM-12 
     Faujasite 
 
 
Mesoporous system 
     VPI-5 
     MCM41-S 

 
8 
 
 

10 
 

10 
 
 

10,8 
 

12 
8 
 
 

12 
12 

 
 
 

18 
- 

 
3.6x5.1 

 
 

5.1x5.6 
5.1x5.6 
5.3x5.4 

 
 

4.2x5.4 
3.5x4.8 
6.5x7.0 
2.6x5.7 

 
 

5.5x5.9 
7.4 

7.4x6.5 
 
 

12.1 
16-100 

 
Intersecting 

 
 

Intersecting 
 

Intersecting 
 
 

One dimensional 
10:8 intersecting 
One dimensional 
12:8 intersecting 

 
 

One dimensional 
Intersecting 

12:12 intersecting 
 
 

One dimensional 
One dimensional 

 

  

       1.2.3. Applications 

 

For comprehensive applications of zeolitic materials, they show 

remarkable advantages over other solid materials: 

(i) Zeolites are well defined structures which can be clearly related to the                 

activity and selectivity. 

(ii) Zeolites have well defined inner pores in which active species can be  

occupied. 

(iii) Zeolites can adjust framework composition and cations associated with 

different stability, hydrophilicity / hydrophobicity and acid-base 

properties. 
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(iv) Zeolites are of various structure types which can be chosen as shape-

selective catalysts for different reactions. 

 

Principally, the comprehensive applications of zeolites regarding to 

their basis properties can be categorized in three groups: 

 

1. Molecular sieve 

 

A “molecular sieve” [25] is a material with selective adsorption 

properties capable of separating components of a mixture on the basis of a difference 

in molecular size and shape. Molecular sieves include clays, porous glasses, 

microporous charcoals, active carbons, etc. Zeolite are selective, high-capacity 

adsorbents because of their high intracrystalline surface area and strong interactions 

with adsorbates. Molecules of different size generally have different diffusion 

properties in the same sieve. Molecules are separated on the basis of size and structure 

relative to the size and geometry of the apertures of the sieve. An example of this is the 

separation of linear hydrocarbons from the mixtures of branch and cyclic hydrocarbons 

as shown in Figure 1.4 [14]. Molecular sieves adsorb molecules, in particular those 

with a permanent dipole moments, and exhibit other interactions not found in other 

sorbents. Different polar molecules have a different interaction with the molecular 

sieve framework and may thus be separated by a particular molecular sieve. This is 

one of the major uses of zeolites. An example is the separation of N2 and O2 in the air 

on zeolite A, by exploiting different polarities of the two molecules [16]. 

 

 

 

 

 

 

   Zeolite A 

 

Figure 1.4 Separation of linear hydrocarbons from the mixtures using zeolite A. 
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2. Ion exchanger 

 

Zeolites with low Si/Al ratios have strongly polar anionic frameworks. 

The exchangeable cations create strong local electrostatic fields and interact with 

highly polar molecules such as water. The cation-exchange behavior of zeolites 

depends on (i) the nature of the cation species, the cation size (both anhydrous and 

hydrated) and cation charge, (ii) the temperature, (iii) the concentration of the cationic 

species in the solution, (iv) the anion associated with the cation in solution, (v) the 

solvent (most exchange has been carried out in aqueous solutions, although some work 

has been done in organics), and (vi) the structural characteristics of the particular 

zeolite.  

Cation exchange in a zeolite is accompanied by an alteration of 

stability, adsorption behavior, catalytic activity and other properties. In some cases, the 

introduction of a larger or smaller cation will decrease or enlarge the pore opening. 

The location of cation within the crystal will also contribute to the size of pore 

opening. For example, the Na+ form of zeolite A has a smaller effective pore 

dimension than would be expected for its 8-membered ring framework opening. This 

is due to sodium ion occupancy of sites where it will partially block the 8-membered 

ring window. When the Na+ is exchanged for the larger K+, the pore diameter is 

reduced so that only the very small polar molecules will be adsorbed. If the divalent 

Ca2+ is used to balance of the framework charge, the effective pore opening widens, as 

only half the number of cations are needed. These ions occupy sites within the voids of 

the zeolite and do not reduce the effective pore diameter of the 8-membered ring. 

Highly and purely siliceous molecular sieves have virtually neutral frameworks, 

exhibit a high degree of hydrophobicity and no ion-exchange capacity. 

 

3. Heterogeneous catalysis 

 

The most important application of zeolites is as catalysts. Zeolites 

combine high acidity with shape selectivity, high surface area and high thermal 

stability and have been used to catalyse a variety of  hydrocarbon reactions, such as 

cracking, hydrocracking, alkylation and isomerisation. The reactivity and selectivity of 



 8

zeolites as catalysts are determined by the active sites arising from a charge imbalance 

between the silicon and aluminium atoms in the framework. Each framework 

aluminium atom induces a potential active acid site called Lewis acid site. Moreover, 

there exist also the BrØnsted acid sites which have weak acidity on the external surface 

of the zeolite. 

In addition, shape selectivity, including reactant, product and transition-

state shape selectivity [26], which are described in Figure 1.5, play a very important 

role in zeolite catalysis.  

 

 

                                                                                      

Reactant shape selectivity 

  

 

       Product shape selectivity 

 

 

 

       Transition-state selectivity 

 

 

 

Figure 1.5 Shape selectivity of zeolites. 

 

Different sizes of channels and cages may therefore promote the 

diffusion of different reactants, products and transition-state species. High crystallinity 

and the regular channel structure are the principal features of catalysts. Reactant shape 

selectivity results from the limited diffusivity of some of the reactants, which cannot 

effectively enter and diffuse inside the crystal. Product shape selectivity occurs when 

slowly diffusing product molecules cannot rapidly escape from the crystal, and 

undergo secondary reactions. Restricted transition-state shape selectivity is a kinetic 

effect arising from the local environment around the active site. The rate constant for a 
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certain reaction mechanism is reduced if the necessary transition state is too bulky to 

form readily.   

 

       1.2.4. Silicalite-1 

 

Silicalite-1 is a pure silica analogue of zeolite ZSM-5 which is an MFI 

type material. The symmetry group of silicalite-1 is Pnma with cell parameters a = 

20.07 Å, b = 19.92 Å and c = 13.42 Å. The structure of the ZSM-5 zeolite and its 

analogue, silicalite-1, shown in Figure 1.6, has 10-membered oxygen rings and 

contains two types of channel systems with similar size: straight channels (5.4x5.6 Å2) 

and sinusoidal (zigzag) channels (5.1x5.4 Å2) [27]. The diameters of these channels 

are about 5.4 Å. These two different channels are perpendicular to each other and 

generate intersection areas which have 8.9 Å of diameter. The difference between 

zeolites and silicalite-1 is that zeolite has a SiO2/Al2O3 ratio with at least one 

aluminium per unit cell, whereas, silicalite-1 contains only silica and oxygen atoms. 

Silicalite-1 is thus an effective adsorbent for organic molecules, whereas ZSM-5 is less 

effective in this aspect [28]. Accordingly, silicalite-1 can not be considered as a 

zeolite, by definition, but rather as a silica molecular sieve. Silica molecular sieves 

such as silicalite-1 have a neutral framework which are hydrophobic in nature and 

have no ion exchange or catalytic properties. Silicalite-1 is widely used to separate 

paraffin or aromatics from water or other polar solvent as well as to sieve the 

molecules having different shapes [29-31].  

 

 

 

 

 

 

 

 

 

Figure 1.6 Structure and channel system of ZSM-5 and its analogue, silicalite-1. 
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1.3. Silanols 

        

       1.3.1. What is a Silanol? 

 

  Silanol is a hydroxyl group that is connected with a silicon atom (Si--

OH). Silanols are usually classified into four types [32], namely, (i) the isolated silanol 

groups, (ii) the vicinal pair, where silanol groups can form hydrogen bonds with each 

other, (iii) the geminal species, where two hydroxyls sit on the same Si atom and (iv) 

the silanol groups that can form a hydrogen bond through a bridging water molecule. 

(see Figure 1.7) 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Four types of silanol groups. 

 

For the aluminosilicate zeolite, principally, two types of terminal silanol 

groups are detected, the normal (Si-OH) and bridging silanols (Si-OH-Al).  

 

       1.3.2. Role of Silanol 

 

Many experimental works proposed that the bridging silanols have a 

tendency to exist only inside the pore [3-6]. Trombetta and coworkers suggest a 

scheme demonstrating the preference of normal silanols over the bridging one at the 

external surface which can explain the unusual acidity of these terminal silanol groups 

[8]. In contrast, it is under discussion whether the normal silanols, which usually cover 

(iv) Silanol that bridge with water

(i) Isolated silanol (ii) Vicinal silanol (iii) Geminal silanol 
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the external surface of zeolites and open surface of silica and alumina-silica materials, 

also exist inside the pore too. It must be noted that spectral analysis of the vibrational 

frequencies seem to be the only prime evidence. Therefore, drawing conclusion from 

this limited information resource can be incorrected. For examples, previous 

vibrational spectra of terminal silanols of silicalite even suggest that there is no silanol 

group at the external surface (this was based on the assumption [7] that silanol groups 

of zeolites have the same OH stretching frequency as amorphous silica at 3747 cm-1) 

[33]. In that work, the lower stretching frequency of 3735 cm-1 was assigned to silanol 

groups inside the pore since this peak does not disappear after probing with water. 

However, recent experiment assigns this peak to silanols at the external surface 

according to its disappearance after probing with different nitriles that can not 

penetrate into the pores [9]. The same peak observed in the previous work is therefore 

attributed to the silanols at the extraframework of silicalite, not inside the internal 

pores. Unfortunately, they can not explain why the peak has unusually low frequency 

(3735 cm-1 versus 3747 cm-1 for the amorphous silica). Based on this new perspective, 

there would be no silanol  group inside the pore of pure silica zeolites. 

At this step, the proposal that there is no normal silanol group in the 

internal pores of pure silica zeolites is well supported. In the case of the alumina-

containing zeolites, FTIR studies on H-ZSM5 zeolites observed a small shoulder at 

3730 cm-1 and it was assigned to free silanol in the pores [10,14]. Later, it turns out to 

be only a misinterpretation biased in order to coincide with earlier experiments. In fact, 

this almost negligible band comes from the silanols at the external surface but it is not 

yet clear why this shoulder emerges [9,11]. One of the explanation is according to the 

extraframework defects.  

At this moment, studies on the structure and dynamics of silanol groups 

are rare. Based on the available data, the silanols tend to be flexible and mostly free of 

adsorption. Weak interactions between the adjacent silanol groups via soft H-bonding 

is also observed [9]. Provided a proper geometry, the adjacent silanol groups can form 

hydrophobic hydroxyl nest as those found in a defect Faujasite undergoing 

hydrothermal and acid treatment [34].    

 

 



 12

1.4. Hydrocarbon and Water in Zeolites 

 

  Zeolites are most widely used for catalysts in industry and have become 

extremely successful catalysts for oil refining, petrochemistry and organic synthesis in 

the production of fine and special chemicals especially when dealing with molecules 

having kinetic diameters below 10 Å [35]. The application of zeolites in petrochemical 

processes occurs in two main areas: the production of olefins and derived products and 

the production of aromatics. In many production lines for important commodities such 

as styrene and related polymers, nylon, polyurethane plastics and foams and 

polyesters, zeolite catalysts could help in improving performances and reducing 

environment impact, for instance by substituting mineral acid catalysts [36]. 

  Alkanes in zeolites play an important role in many industrial 

applications [17] because the effectivity of the technical processes is usually limited by 

the slow migration of guest molecules through the channels and cavities of the zeolites. 

Numerous investigations of the diffusive properties of alkanes in zeolites have been 

reported using both experimental and theoretical approaches [17,37-42]. Such studies 

are a challenge to fundamental research because discrepancies between results 

obtained from different experimental methods are not yet understood. 

   Regarding to the fact that even small amounts of water, one of the most 

common substances found in zeolites, can significantly influence properties of zeolite 

like materials during some technological processes [43,44]. Interest in the water-

zeolite interaction arises from the fact that water plays a strong and essential role for 

both adsorption and catalytic properties of zeolites [45,46] as it is known that all 

natural zeolites are hydrated. In addition, water molecules assist the exchange of the 

charge-compensating cations, which are essential for the industrial catalysts.  
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1.5. Aim of this Study 

 

In this study, interaction between silanol group on the external (010) 

surface which is perpendicular to the straight channel of silicalite-1 and guest 

molecules which are water and methane molecules have been investigated. The 

energetic and geometric properties have been calculated using quantum chemical 

methods at the Hartree-Fock (HF), density functional theory (DFT) and second-order 

Møller-Plesset perturbation theory (MP2) levels. The calculated vibrational 

frequencies have been additionally evaluated for water molecules and compared with 

the experimental data. In addition, the energy barrier for guest molecules to enter into 

silicalite-1’s channel have been estimated.                               

 

 The obtained results provide basic knowledge in molecular level on the 

adsorption and transport of guest molecule leading to a clear understanding of 

molecule behavior in moving from the external surface to the pore of zeolite. This will 

benefit directly to the research and development and, hence, an application of zeolite 

in the catalytic as well as separation processes.  

 

 

 



CHAPTER 2 

 

THEORY 
 

2.1. Quantum Mechanics 

 

       2.1.1. Introduction: Basic Molecular Quantum Mechanics 

 

  The classical mechanics, which is founded on the laws of Newton, is 

the laws of motions of macroscopic objects [47]. In the late nineteenth century, the 

physicists found that classical mechanics does not correctly describe the behavior of 

very small particles such as the electrons and nuclei of atoms and molecules. The 

various phenomena, for instance black-body radiation, heat capacity of solids at low 

temperature, atomic spectra, and the structure of the hydrogen atom, could not be 

explained by classical mechanics but they had to be treated by new physics schemes. 

Since the electrons and other microscopic “particles” show wave-like as well as 

particle-like behavior, which implies that electrons do presently obey classical 

mechanics, the fusion of the apparently complementary concepts of waves and 

particles was started by De Broglie and carried to fulfillment in the quantum 

mechanics [48-52] of Heisenberg and Schrödinger. Nevertheless, the uncertainly 

principle of Heisenberg, which is authentically the limitation of the obtained 

microscopic information of a system, seems to be essential as the consequences of the 

wave-particle duality. 

 

 The first part of this chapter provides an introductory overview of the 

theory underlying the Schrödinger equation and the Born-Oppenheimer 

approximation. The second part describes the molecular quantum mechanics methods 

comprising ab initio method and MØller-Plesset perturbation theory. Moreover, the 

density functional theory also has been taken into account within this part.  
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       2.1.2. The Schrödinger Equation 

 

 Quantum mechanics explains how entities like electrons have both 

particle-like and wave-like characteristics. The state of a quantum mechanical system 

is described by a state function or wave function Ψ of the particle, which is a function 

of the coordinates of all the particles in the system as well as the time, t. The state 

function changes with time according to the time-dependent Schrödinger equation, 

which for a one-particle, one-dimensional system is Equation (2.1). 

 

   (2.1) 

 

In this equation, Ψ is the wave function, m is the mass of the particle, h is Planck’s 

constant, and V is the potential field in which the particle is moving. The product of Ψ 

with its complex conjugate (Ψ*Ψ, often written as ׀Ψ2׀) is interpreted as the 

probability distribution of the particle. The energy and many other properties of the 

particle can be obtained by solving the Schrödinger equation for Ψ, subject to the 

appropriate boundary conditions. Many different wavefunctions are solutions to it, 

corresponding to different stationary states of the system.   

 If V is not a function of time, the Schrödinger equation can be 

simplified using the mathematical technique known as separation of variables. 

Frequently, the time-dependent wavefunction can be written as the product of a time-

independent wavefunction, )( rvΨ  and a time function, (t) τ . 

 

   (2.2) 

 

and, then, new functions as in Equation (2.2) are substituted into Equation (2.1), the 

results obtain two equations, one of which depends on the position of the particle 

independent of time and the other of which is a function of time alone. For the 

problems in which this separation is valid, the familiar time-independent Schrödinger 

equation is performed: 
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)(      )( ˆ rr vv Ψ=Ψ E H         (2.3) 

 

Equation (2.3) is an eigenvalue equation in which the Hamiltonian (Ĥ), acts upon the 

wave function (Ψ) and returns the wave function multiplied by the total energy (E) 

corresponding to the different stationary states of the system. Generally, in atomic 

units, for a molecule system, the Hamiltonian operator for N electrons and M nuclei is 
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In the above equation, MA is the ratio of mass of nucleus A to the mass of an electron, 

and ZA is the atomic number of nucleus A. The Laplacian operators 2
i∇  and 2

A∇  

involve differentiation with respect to the coordinates of the ith electron and the Ath 

nucleus. The first term in Equation (2.4) is the operator for the kinetic energy of the 

electrons; the second term is the operator for the kinetic energy of the nuclei; the third 

term represents the coulomb attraction between electrons and nuclei; the fourth and 

fifth terms represent the repulsion between electrons and nuclei, respectively.  

The various solutions to Equation (2.3) correspond to different 

stationary states of the particle (molecule). Equation (2.3) is a non-relativistic 

description of the system. The separation is not valid when the velocities of particles 

approach the speed of light. Thus, Equation (2.3) does not give an accurate description 

of the core electrons in large nuclei.  

 

       2.1.3. Born-Oppenheimer Approximation 

 

  The Born-Oppenheimer (BO) approximation is based on the fact that 

the masses of the nuclei are much greater than that of the electrons, they move more 

slowly. Hence, to a good approximation, one can consider the electrons in a molecule 

to be moving in the field of fixed nuclei. Within this approximation, the second term of 

(2.4), the kinetic energy of the nuclei, can be neglected and the last term of (2.4), the 

repulsion between the nuclei, can be considered to be constant. Any constant added to 
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an operator only adds to the operator eigenvalues and has no effect on the operator 

eigenfunctions. The remaining terms in (2.4) are called the electronic Hamiltonian or 

Hamiltonian describing the motion of N electrons in the field of M point charges which 

becomes to: 
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The solution of the Schrödinger equation with the electronic Hamiltonian (Ĥelec) is the 

electronic wave function Ψelec and the electronic energy Eelec. 

 

elecelecelecelec E H Ψ=Ψ      ˆ     (2.6) 

 

Notice the both Ĥelec and Ψelec depend parametrically on the positions of nuclei. 

Normally the solution of the electronic Schrödinger equation is represented in term of 

the total potential energy which is the sum of the total electronic energy of the 

molecular system Eelec and the nuclear repulsion term Enuc. 

 

nucelectot EEE +=      (2.7) 
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       2.1.4. Ab initio Methods 

 

The term “ab initio” means “from the beginning” in Latin. Ideally, this 

means the integrals implicated in the Schrödinger equation for the system are explicitly 

solved without the use of empirical parameters. An exact solution to the Schrödinger 

equation is not possible for any but the most trivial molecular systems. However, a 

number of simplifying assumptions and procedures do make an approximate solution 

possible for a large size of systems.  
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The first assumption is the Born-Oppenheimer approximation as 

described in the section 2.1.3. which reduces the Schrödinger equation for a molecule 

system to only the electronic motion for a particular nuclear configuration. This 

reduces the number of computational cycles needed to find the equilibrium geometry 

and, then, energy of the molecule. The next step is the Hatree-Fock self consistent field 

(HF-SCF) approximation as first introduced by Hatree and further improved by 

including electron exchange by Fock and Slater. The HF-SCF approach assumes that 

any one electron moves in a potential that is a spherical average due to the other 

electrons and the nucleus. The spherically averaged potential for an electron is 

expressed as a single charge that is centered on the nucleus and varies with the position 

r in the potentially averaged sphere. The Schrödinger equation is then solved 

numerically for that electron in the spherically averaged potential.      

  

       2.1.4.1. Hartree-Fock Theory 

 

  The Hartree-Fock (HF) approximation results in separation of the 

electron motions resulting (together with the Pauli principal) in the ordering of the 

electrons into the molecular orbitals. Therefore, it is assumed that the many-electron 

wavefunction Ψ for N-electron molecule is represented in terms of one-electron space 

wavefunctions, ϕi, and spin functions, α or β. At this stage it is assumed that the N-

electron molecule is a closed-shell molecule (all the electrons are paired in the 

occupied molecular orbitals). 

 

βϕβαϕϕ )()2()1(| 2/21 NN⋅⋅⋅=Ψ    (2.9) 

 

As described for a multi-electron atom, the HF-SCF approach assumes that any one 

electron moves in a potential that is a spherical average due to the other electrons and 

the nuclei of the molecule. The potential from the nuclei is set by the initial 

configuration of the molecule, and the potential from the other electrons is determined 

from initial approximate wavefunctions resulting in the Hartree-Fock Hamiltonian, Ĥeff 

or Fock operator, f̂ . 
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The first two terms in Equation (2.10) correspond to the one-electron part comprising 

the kinetic energy operator of the electron and the attraction between one electron and 

the nuclei of the molecule. These first two terms represent the core Hamiltonian which 

has no interactions from other electrons. Interesting is the last term which is the 

electron-electron interaction, and describes the whole electrons mean potential. Those 

consist of two terms that are respectively Coulomb operator, )1(ˆ
jJ , and Exchange 

operator, )1(ˆ
jK .  

 

∫= 2
12

2 1)2()1(ˆ τϕ d
r

J jj     (2.11) 

 

The Coulomb operator accounts for the smeared-out electron potential with an electron 

density of 2)2(iϕ . The factor of 2 results from two electrons in each spatial orbital. 

 

∫= 2
12

* )2()2(
)1(ˆ τ

ϕϕ
d

r
K ij

j     (2.12) 

 

The exchange operator has no physical interpretation as it takes into account the 

effects of spin correlation. 

 

  The Schrödinger equation is now solved for the one electron, ϕi (1). 

 

)1()1()1(ˆ
iiif ϕεϕ =     (2.13) 

 

The term εi corresponds to the orbital energy of the electron attributed by ϕi (1). The 

molecular orbital wavefunctions, ϕi, are eigenfunctions of the Fock operator, f̂ , and 

can be chosen to be orthogonal causing many integrals in the expression to vanish. 
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  The true Hamiltonian and wavefunction of a molecule include the 

coordinate of all N electrons, but the Hartree-Fock Hamiltonian includes the 

coordinates of only one electron and is a differential equation in terms of only one 

electron. Therefore, in the case of multi-electron atoms, the solution of the Hartree-

Fock equations must be done in an iterative process. The energy of the molecule in 

term of the Hartree-Fock approach, EHF, is resolved like this: 
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The first summation in Equation (2.14) is over all the orbital energies of the occupied 

molecular orbitals. For the factor 2, arises from there exists two electrons in each 

molecular orbital. The term Jij and Kij are determined by operating the Coulomb and 

Exchange operator on ϕi (1) and multiplying the result by ϕi
*

 (1) and integrating over 

the whole space. The last summation term in Equation (2.14) refers to the inter-nuclear 

repulsion potential for a particular nuclear configuration. 

  The spatial one-electron wavefunctions, ϕi, are represented as a linear 

combination of atom-centered functions such as atomic orbitals, φµ, called the linear 

combination of atomic orbitals (LCAO) approximation. The functions φµ constitute a 

basis set.  

 

            ∑
=

=
K

ii c
1µ

µµ φϕ               µ = 1, 2, 3,…, K (2.15) 

 

The index µ refers to the specific atomic orbital wavefunction, whereas index i refers 

to its contribution to a specific molecular orbital. The best representation of the 

molecular orbital arises when an infinite sum of atomic orbitals is made, but 

practically, only a finite K sum is used. The coefficients cµi correspond to the 

contribution of each atomic orbital to the corresponding molecular orbital. 

  The energy of a given electron in a molecular orbital of the molecule, εi, 

is calculated as a function of the coefficients for that molecule orbital, cµi. These 

equations are called the Roothaan-Hall equations.  
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Roothaan-Hall Equations 

 

  Roothaan’s method utilizes the basis set expansion technique to 

represent the spatial orbitals and thus is able to convert the set of Hartree-Fock 

differential equations into a set of algebraic equations. The spatial one-electron 

wavefunctions, ϕi, then can be expanded in terms of basis functions as defined in 

Equation (2.15). Substituting this expansion into the Hartree-Fock equation (Equation 

(2.13)) one obtains: 

 

∑∑ =
ν

νν
ν

νν φεφ iii ccf̂         (2.16) 

 

In order to calculate f̂ , an initial “guess” to the coefficient for the other molecular 

orbitals ϕi must be made. Multiplying Equation (2.16) by φµ
*, where µ = 1, 2, 3,…, K 

and integrating yields the following expression. 

 

∑ ∑=
ν ν

νµννµν ε iii cScF     (2.17) 

 

The terms µνF  form the so called Fock matrix. 

 

                                     νµµν φφ fF ˆ=               (2.18) 

 

The terms µνS  form the overlap matrix. 

 

νµµν φφ=S             (2.19) 

 

The Roothaan-Hall equation as shown in Equation (2.17) can be rewritten in a matrix 

form. 

 



 22

        FC = SCε          (2.20) 

where 

• C is an M×M square matrix of molecular orbital expansion coefficients cνi ;  

• F is the Fock matrix, which is the sum of a term representing the energy of a 

single electron in the field of the bare atomic nuclei and a term describing 

electron–electron repulsion within an averaged field of electron density ; 

• S is a matrix describing the overlap of molecular orbitals and 

• ε is a diagonal matrix of the orbital energies εi containing the one-electron 

energies of each molecular orbital. 

 

Since the terms within the Fock matrix, F, depend upon the electron density, which in 

turn, depends upon molecular wave functions defined by the matrix of molecular 

orbital expansion coefficients, C, the Roothan-Hall equations are nonlinear, and must 

be solved by an iterative procedure and thus the Hartree-Fock theory is also known as 

the self-consistent field (SCF) method. The optimized coefficients for each molecular 

orbital in turn are then compared to the initial “guess” for the coefficients. If there is a 

difference, the computation is repeated with the new optimized coefficients. If there is 

no significant difference or enough computational cycles have been completed so that 

there is no significant difference, the computation is terminated. Upon convergence of 

the SCF method, the minimum-energy molecular orbitals produce the electric field 

which generate the same orbitals (hence, the self-consistency). 

 

      2.1.4.2. Basis Sets 

 

  Ab initio electronic structure computations are almost always carried 

out numerically using a basis set of orbitals. It is important to choose a basis set that is 

large enough to give a good description of the molecular wavefunction. Typically, the 

basis functions are centered on the atoms, and so sometimes they are called “atomic 

orbitals”. A basis set is a set of basis function which is the mathematical description of 

the orbitals within a system which in order combine to approximate the total electronic 

wavefunction used to perform the theoretical calculation.  
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One reasonable choice for a set of basis functions are Slater-type 

orbitals (STO’s) from the hydrogen atom but with different exponents due to different 

nuclear charges. They are described by the function depending on spherical 

coordinates. The radial part of orbital ( re  ς− ) is an exponentially decaying function: 

 

( ) ),(,,;,,,  ς1 φθφθς lm
rn

STO YeNrrmln −−=Φ    (2.21) 

 

where N is a normalization constant, ς is called “exponent”. The r, θ and φ are 

spherical coordinates, and Ylm is the angular momentum part which is a function 

describing the “shape”. The n, l and m are principal, angular momentum and magnetic 

quantum numbers, respectively. Due to using STO’s, two-electron integrals are 

difficult and time consuming to evaluate. In modern practice, these atom-centered 

basis functions are usually chosen to be Gaussian-type orbitals (GTO’s). These orbitals 

decay as functions of 
2re α− . The functional form for GTO’s is expressed as: 

 

( ) cbar zyxNezyxnmlg
2

,,;,,, αα −=              (2.22) 

 

where N is a normalization constant, α is called “exponent”. x, y, z are Cartesian 

coordinates. a, b and c are simply integral exponents at Cartesian coordinates (r2 = x2 + 

y2 + z2). The GTO’s do not have the correct behavior for r approaching zero and 

infinity or it can be said that the GTO’s do not have radial nodes. However, radial 

nodes can be obtained by combining different GTO’s to represent STO’s (STO-nG). 

An example of an acceptable representation of a STO at least 3 GTO’s is shown in 

Figure 2.1. Quite frequently, an atomic basis function is actually a fixed linear 

combination of GTO’s; this is called a contracted Gaussian basis function.  
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Figure 2.1 An acceptable representation of a STO at least 3 GTO’s. 

 

The advantage of such an approach is that two-electron integrals can be 

solved analytically thus reducing the computational time because two Gaussian 

functions centered at two different nuclei are equal to a single Gaussian centered at a 

third point. By the LCAO approximation, not only, the type of function (STO/GTO), 

but also the number of functions to be used need to be determined for an appropriate 

basis set. Below are the descriptions of several widely used basis set.  

   

Minimal Basis Set: The STO-nG basis sets are minimal basis sets, 

where each Slater Type Orbital is approximated by n Gaussian primitive functions. In 

these basis sets, only a minimal number of basis functions for all orbitals in a given 

shell needed to accommodate all electrons in the system as in these examples: 

H: 1s 

C: 1s, 2s, 2px, 2py, 2pz 

The STO-3G basis is a very well-known minimal basis set which contracts 3 Gaussian 

functions to approximate the more accurate Slater type orbitals. For example, the 

minimal basis set for H2O would be a 1s orbital for each hydrogen atom plus a 1s, 2s, 

2px, 2py and 2pz orbitals for oxygen atom. The only advantage of using a minimal 

basis set is its low computational cost. Although a contracted GTO might give a good 

approximation to an atomic orbital, it lacks any flexibility to expand or shrink of the 

orbitals. Hence, a minimal basis set such as STO-3G is not capable of giving highly 

accurate results.  
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  Extended Basis Sets: The first way that a basis set can be made larger 

is to increase the number of basis functions per atom. One solution is adding extra 

basis functions beyond the minimum number required to describe each atom. If each 

orbital is represented by two basis function, this is called a double-zeta basis set which 

is often denoted DZ (the zeta, ς, comes from the exponent in the GTO). Hence, a 

double-zeta basis set for hydrogen would have two functions, and a true double-zeta 

basis set for carbon would have 10 functions as described like this: 

  H: 1s, 1s' 

  C: 1s, 1s', 2s, 2s', 2px, 2py, 2pz, 2px', 2py', 2pz' 

Consequently, for most chemical properties only electrons in the valence shell are 

important. Thus the more cost effective way to improve the basis set is to have more 

flexibility for the valence electrons only. For the carbon atom, only a single orbital for 

the core (1s) and 9 functions (1s, 2s, 2s', 2px, 2py, 2pz, 2px', 2py', 2pz') are used.  This 

basis sets are said to be the double-zeta in the valence and they are also called the split 

valence basis sets. The inner-shell orbitals are represented by minimal basis set 

whereas the valence shell orbitals are represented by more than one basis function such 

as the 3-21G basis set which has one contracted Gaussian function that is a linear 

combination of three primitive Gaussian functions for each inner-shell atomic orbital 

and two basis functions, one contracted Gaussian function that is a linear combination 

of two primitive Gaussians and one primitive Gaussian function, for each valence 

orbital. Similarly, triple split valence basis sets, like 6-311G, use three sizes of 

contracted functions for each orbital-type. 

 

Polarized Basis Sets: Split valence basis sets allow orbitals to change 

size, but not to change shape. Often additional flexibility is built in by adding higher-

angular momentum basis functions which have an l quantum number greater than the 

maximum value of the valence orbitals in the ground state atom. Since the highest 

angular momentum orbital for carbon is a p orbital, the polarization of the atom can be 

described by adding a set of d functions. A hydrogen atom would use a set of 3 p 

functions as polarization functions. A double-zeta plus polarization basis set might be 

designated DZP. The most famous example of a split valence double-zeta plus 

polarization basis set is Pople’s so-called 6-31G* basis. This notation means that the 
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core orbital is described by a contraction of 6 Gaussian orbitals, while the valence is 

described by two orbitals, one made of a contraction of 3 Gaussians, and one a single 

Gaussian function. The star (*) indicates polarization functions which are d functions 

added to each non-hydrogen atom in the second or third row atoms. If for the 

polarization also p functions were added to hydrogen atoms, this basis would be called 

6-31G**. The confusing nature of this nomenclature has caused some chemists to start 

switching to slightly improved notation such as 6-31G(d,p), where the polarization 

functions are listed explicitly. There is no limit on the number of polarization functions 

included in the basis set, however, it does increase the computational demand 

significantly. 

 

  Diffuse Functions: Diffuse functions are large-size versions of s- and 

p-type functions as well as they allow orbitals to occupy a larger region of space. Basis 

sets with diffuse functions are important for systems where electrons are relatively far 

from the nucleus such as molecules with lone pairs, anions and other systems with 

significant negative charge, systems in their excited states, system with low ionization 

potentials, descriptions of absolute acidities and so on. The 6-31+G(d) basis set is the 

6-31G(d) basis set with diffuse functions added to non-hydrogen atoms. The double 

plus version, 6-31++G(d), adds diffuse functions to the hydrogen atom as well. Diffuse 

functions on hydrogen atoms seldom make a significant difference in accuracy. 

 

  It can be noted that the basis sets which are used in this work will be 

perform in Pople-style nomenclature. The example for basis set and its description are 

shown in Scheme 2.1.    

 

 

 

 

 

 

 

Scheme 2.1 

6-31++G(d,p) 

Gaussian-type basis 
1 d-type polarization exponent 

(not for hydrogen) 

1 p-type polarization exponent
for hydrogen

1 diffuse for s-type exponent
for hydrogen

6 contracted PGTOs for 1s 
3 contracted PGTOs for 2s and 2p 
1 additional PGTO each for 2s  and 2p 

1 diffuse exponent of s- and p-type
(not for hydrogen)
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One of the errors arising from limitations of Hatree-Fock method is the 

electron correlation which is the correlation between the motions of the electrons 

within a molecular system, especially that arising between electrons of the opposite 

spin that make the difference in energy between the HF and the lowest possible energy 

in a given basis set. To correct the electron correlation problem, there are many 

different correlated approaches such as Configuration Interaction (CI) and Møller-

Plesset Perturbation (MPn) methods.  

 

       2.1.5. Møller-Plesset Perturbation Theory  

 

   The Møller-Plesset Perturbation theory is the most widely used 

method. Perturbation theory works on the idea that when an exact answer for one 

problem is found, an answer for a closely related problem can also be worked out. 

When the solution of the Schrödinger equation for one problem, i.e. for one 

Hamiltonian operator were known. A problem with a Hamiltonian operator which is 

fairly close to the first one, can be solved by treating the difference between the 

Hamiltonian operators as a small perturbation to the first solution, then, expand the 

solution to the second problem in terms of the first solution or in terms in various 

powers of the perturbation. This approach was originally used for problems such as 

solving for the wave function of an atom in a small electric field where the term in the 

Hamiltonian arising from the electric field is the perturbation.  

Qualitatively, the Møller-Plesset [53] Perturbation theory adds higher 

excitations to the Hartree-Fock theory as a non-iterative correction, drawing upon 

techniques from the many body perturbation theory introduced by Rayleigh and 

Schrödinger. The HF problem is treated as the unperturbated wave function and the 

residual part of the Hamiltonian is treated as a perturbation. Perturbation theory is 

based upon dividing the Hamiltonian into two parts: 

 

H  =  H0 + λH(1)    (2.23) 

 

where H0 is unperturbed Hamiltonian of the exact problem while λH(1) is a 

perturbation applied to H0, a correction which is assumed to be small in comparison to 
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H0. λ is a formal parameter, introduced for technical reasons only. The application of 

the perturbation theory is justified, if the contribution of electron correlation energy 

(the “perturbation”) is small. The usual way to treat a small perturbation to H0 is to 

expresse the perturbed wavefunction and energy as a power series in H(1) in terms of 

the parameter λ. 

From the HF computation, the energy eigenvalues and eigenfunctions 

are known corresponding to the solution of the unperturbated system with H0, Ψ
(0) (HF 

Slater determinant) and E(0): 

 

H0Ψ
(0) = E(0)Ψ(0)    (2.24) 

 

If the perturbation is small, then Ψ(0) and E(0) lie close to the exact wave function, Ψ 

and the energy, E. Assuming these two conditions, a generalized electronic 

Hamiltonian (Hλ ) can be defined as: 

 

Hλ = H0 + λH(1)        (2.25) 

 

Expanding the wave function (Ψλ) and energy as a power series: 

 

(2.26) 

 

 

(2.27) 

 

where λ is an arbitrary parameter to keep track of the orders of perturbation applied. 

Ψλ and Eλ represent the exact (within a given basis set) ground state wave function and 

energy for a system described by the Hamiltonian, Hλ. Note that for λ = 0, Hλ equals 

the unperturbated operator (0th power), H0.  
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Now, the following eigenvalue equation has to be solved: 

 

HλΨλ = EλΨλ     (2.28) 

 

The wave function and energy are substituted by the power series: 

 

(H0 + λH(1))[Ψ(0) + λ1Ψ(1) + λ2Ψ(2) + …] =  

(E(0) + λ1E(1) + λ2Ψ(2) + ...)[Ψ(0) + λ1Ψ(1) + λ2Ψ(2) + …] (2.29) 

 

Expanding the products and collecting terms with the same λn together 

 

H0|Ψ(0)〉 + λH0|Ψ(1)〉 + λ2H0|Ψ(2)〉 + λH(1)|Ψ(0)〉 + λ2H(1)|Ψ(1)〉 + … = 

E(0)|Ψ(0)〉 + λE(0)|Ψ(1)〉 + λ2E(0)|Ψ(2)〉 + … (2.30) 

                     λ0 ;     H0|Ψ(0)〉 = E(0)|Ψ(0)〉      

                     λ1 ;    (H0 – E(0))|Ψ(1)〉 = E(1)|Ψ(0)〉 – H(1)|Ψ(0)〉  

 λ2 ;  (H0 – E(0))|Ψ(2)〉 = E(2)|Ψ(0)〉 – E(1)|Ψ(1)〉 – H(1)|Ψ(1)〉 (2.31)  
 

and, then, equating them (since λ is arbitrary) the energies setting λ = 1 and imposing 

orthogonalisation condition (〈Ψ(1)|Ψ(1)〉= δij), one finally has 

 

E(0) = 〈Ψ(0)|H0|Ψ(0)〉, E(1) = 〈Ψ(0)|H(1)|Ψ(0)〉, E(2) = 〈Ψ(0)|H(1)|Ψ(1)〉, …   (2.32) 

 

All resulting terms can be expressed in terms of E(0), Ψ(0) and the determinable term 

〈Ψ(0)|H(1)|Ψ(0)〉. The unperturbated, ground state wave function and energy can be 

written in terms of the occupied, one-electron spin orbitals, Ψb, and the energy of any 

single spin orbital, εi. 
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          (2.33) 

  

Møller and Plesset introduced the following expression for the perturbation operator. 

 

Hλ = H0 + λH(1) = ( )
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Here, H0 is defined as the sum of the one-electron Fock operators,∑
i

iF .  E(0) is the 

sum of the one-electron energies and therefore, only the sum E(0) + E(1) represents the 

HF energy since Ψ(0) corresponds to the HF wave function. 

 

EHF = E(0) + E(1) = 〈Ψ(0)|Hλ|Ψ(0)〉    (2.35) 

 

To calculate E(2) the first order wave function Ψ(1) has to be known. This is given by: 

 

          (2.36) 

 

The energy, Es, corresponding to a determinant, Ψs, is the sum of one-electron 

energies of those spin-orbitals which are occupied. Ps0 are the matrix elements of the 

perturbation operator. It can be shown that Ps0 does not become zero, if s corresponds 

to a determinant with double substitutions. Thus, only double substitutions contribute 

to the first order wave function. 

 

Due to the good cost (CPU time) to accuracy ratio, the power expansion 

is often truncated after the second order, known as MP2 level, for which the energy is: 

 

EMP2 = E(0) + E(1) + E(2) = EHF + E(2)   (2.37) 
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and the explicit formula for the second-order Møller-Plesset correction when indices, i 

and j, correspond to the occupied orbitals and indices, a and b, correspond to the 

unoccupied orbitals, E(2), is given by: 

 

E(2) = ∑∑
< < −−+

−occ

ji

vir

ba bεaεjεiε

baijabij
2

  (2.38) 

 

  A Møller and Plesset computation to a second-order energy correction 

is called an MP2 computation, and higher-order energy corrections are called MP3, 

MP4, and so on. The MP2 level incorporates contributions from single and double 

substitutions [54,55] whereas at the MP4 level are additional single, double, triple and 

quadruple (MP4; SDTQ) substitutions are included [56,57]. The MPn method is size-

consistent, but not variational. Its principle deficiency is that MP series sometimes 

converges slowly, especially in systems where the effects of correlation are large 

corresponding to a large perturbation. The MP method is practical to fourth order, 

however, it is limited to relatively small systems at MP4 level. The MP2 is relatively 

economic to evaluate and gives a reasonable proportion of the correlation energy and 

has been used extensively even for larger systems. In practice, MP2 must be used with 

reasonable basis sets (e.g. 6-31G* or better). Higher order terms become more 

complicated and much more time-consuming. MP3 is commonly used but does not 

seem to give much improvement over MP2. MP4, with some terms removed to speed 

things up, is often used. MP4 gives reasonable results but it is much more expensive 

than MP2. Higher order terms than 4’th order are rarely evaluated.  

 

2.2. Density Functional Theory 

 

Density functional theory (DFT) is a powerful formally exact theory 

proved by Hohenberg and Kohn [58]. The DFT approach makes approximations in 

both the Hamiltonian and the wavefunction. However, it takes a completely different 

approach than the HF-based methods. The DFT approach is based upon a strategy of 

modeling electron correlation via general functionals of the electron density.  
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 DFT has become the most widely used methods in the last decade due 

to its accuracy and cost effective. In the first stage of DFT, the energy is expressed as a 

functional of the density of a uniform electron gas (E(ρ)) and, then, modified to 

express the electron density around molecules. Despite its simple origins, DFT works 

very well in most cases. For about the same cost of doing a Hartree-Fock calculation, 

DFT includes a significant fraction of the electron correlation. Note that DFT is not a 

Hartree-Fock method, nor it is a post-Hartree-Fock method. The wave function is 

constructed in a different way such as the spin and spatial parts are different to those 

developed in the Hartree-Fock theory and the resulting orbitals are often referred to as 

“Kohn-Sham” orbitals [59]. Nevertheless, the same SCF procedure is used as in the 

Hartree-Fock theory.  

 The advantage of using electron density is that the integrals for 

Coulomb repulsion need be done only over the electron density, which is a three-

dimensional function, thus scaling as N3. Furthermore, at least some electron 

correlation can be included in the calculation. These results in faster calculations than 

HF calculations (which scale as N4) and computations those are a bit more accurate as 

well. The better DFT functionals give results with an accuracy similar to that of and 

MP2 calculation. 

 

       2.2.1 Basic theory 

 

The Hohenberg-Kohn Theorems 
 

In 1964, Hohenberg and Kohn proved two theorems that provide the 

basis for the development of modern DFT.  

Theorem-I:   “For a given external potential Vext(r), the electron density ρ(r) of the 

ground state of a system uniquely determines the ground state wave function and hence 

all properties of the ground state.” 

To prove this theorem, it is assumed that two external potentials, Vext(r) 

and V′ext(r) differ by more than a constant and both give the same ρ(r) for their 
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respective ground state forming two Hamiltonians, Ĥ and Ĥ′ whose ground state 

densities were the same while the normalized wave functions ψ and ψ′ would be 

different. Taking ψ′ as a trial wave function for the Ĥ problem,   

                             ψψψψψψ ′′−′+′′′=′′< HHHHE ˆˆˆˆ
0  

            [ ]∫ ′−+′= drrVrVrE extext  )()()(0 ρ                      (2.39) 

 

where E0 and E0′ are the ground-state energies for the Ĥ and Ĥ′, respectively. 

Similarly, taking ψ as a trial function for the Ĥ′ problem, 

 

                               ψψψψψψ HHHHE ˆˆˆˆ
0 −′+′=′<′  

                                                        [ ]∫ ′−+= drrVrVrE extext  )()()(0 ρ            (2.40) 

 

when sum of equation (2.39) and (2.40), it performs, 

 

0000 EEEE +′<′+      (2.41) 

 

Equation (2.41) shows a contradiction and so there cannot be two different Vext(r) that 

give the same ρ(r) for their ground state.  

 

  Therefore, ρ(r) determines N and Vext(r) and hence all the properties of 

the ground state, for instance the kinetic energy T(ρ), the potential energy V(ρ) and the 

total energy E(ρ). The total energy can be written as 

 

[ ] [ ] [ ] [ ] [ ]∫ +=++= ρρρρρρ HKNEeeNE FdrrVrETEE )()(     (2.42) 

 

where [ ] [ ] [ ]ρρρ eeHK ETF += , ENE[ρ] is the potential energy due to the electron-nuclei 

attraction, Eee[ρ] represents the electron-electron repulsion energy and T[ρ] is the 

kinetic energy of the electron. The functional FHK is an universal functional. If it is 
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known, the Schrödinger equation can be solved exactly. FHK includes the functional for 

the kinetic energy, T[ρ] and the electron-electron interaction, Eee[ρ]. The explicit form 

of both of these functionals is unclear. However, the classical part of J[ρ] can be 

extracted from the Eee[ρ]. 
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Encl is the non-classical contribution to the electron-electron interaction including self-

interaction correction, exchange and coulomb correlation. 

 

Theorem-II:   “The functional FHK[ρ] delivers the ground state energy leading the 

lowest energy of the system if the input density is the true ground state density.” 

 

[ ] [ ] [ ] [ ]ρρρρ ~~~~
0 eeNE EETEE ++=≤              (2.44) 

 

when ρ~ is trial density. The ground state density can be calculated using the 

variational principal involving the density. 

 

The Kohn-Sham Equation  

 

  The Kohn-Sham formulation provides for the system of interacting 

particles to an ensemble of electrons which only interact through their total density. 

The ground state energy of the system can be rewritten as 

 

[ ]( )∫+= → drVrFE NEN )(min0 ρρρ     (2.45) 

 

where the universal functional F[ρ] contains the contribution of the kinetic energy, the 

classical Coulomb interaction and the non-classical portion. 

 

[ ] [ ] [ ] [ ]ρρρρ nclEJTF ++=     (2.46) 
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Only J[ρ] is known whereas the expression for T[ρ] and Encl[ρ] are not known. 

According to the solution that Kohn and Sham proposed in 1965, the unknown terms 

could be described by two following approaches. The first one is calculating the 

largest component of the kinetic energy by using the non-interacting reference system. 

 

∑ ∇−=
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2
1     (2.47) 
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where ψi are the orbitals of the non-interacting system. TS is not equal to the true 

kinetic energy of the system. The second approach introduces the separation of the 

F[ρ] as following: 

 

[ ] [ ] [ ] [ ]ρρρρ XCS EJTF ++=    (2.49) 

 

where EXC is called “exchange-correlation energy” and which is the functional 

containing everything that is unknown. 

 

[ ] [ ]( ) [ ] [ ]( )ρρρρ JETTE eeSXC −+−=    (2.50) 

 

Thus, the expression for the energy of the interacting system can be defined in term of 

EXC as following: 
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Equation (2.51) can be rewritten as 
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The only term for which no explicit form can be given is EXC. The variational principle 

(the second Hohenberg-Kohn theorem) is applied in order to minimize this energy 

expression under the constraint ijji δψψ = . The resulting equations are the Kohn-

Sham equations. 
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where the exchange correlation potential is given by the functional derivative. 
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The exact ground-state density ρ(r) of an N-electron system is, 
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where the single-particle wave function ψi (r) are the N lowest-energy of the Kohn-

Sham equation. The theorem of Kohn and Sham can now be formulated as follows: 

 

iiiKSH ψψ ε=ˆ      (2.57) 

 

Note that VKS depends on the density corresponding to a self-consistency problem and 

therefore the Kohn-Sham equations have to be solved iteratively. 
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  According to the Kohn-Sham scheme, it was totally apart from the 

Born-Oppenheimer approximation and no other approximations were made. However, 

the exact functional form for the exchange-correlation is unknown. Several 

approximations have been introduced for approximate forms of the exchange-

correlation functional. 

  

       2.2.2 Local Density Methods 

 

  In the Local Density Approximation (LDA) is the simplest of all 

approximate exchange-correlation functionals. It is assumed that the density locally 

can be treated as a uniform electron gas, or equivalently that the density is a slowly 

varying function in space. The exchange energy for a uniform electron gas is given by 

the Dirac formula. 
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In the more common case, where the α and β densities are not equal, LDA (where the 

sum of the α and β densities is raised to the 4/3 power) has been virtually abandoned 

and replaced by the Local Spin Density Approximation (LSDA) (which is given as the 

sum of the individual densities raised to the 4/3 power), Equation (2.59). 
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LSDA may also be written in terms of the total density and the spin polarization. 
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  The correlation energy of a uniform electron gas has been determined 

by Monte Carlo methods for a number of different densities. In order to use these 

results in DFT calculations, it is desirable to have a suitable analytic interpolation 

formula. This has been constructed by Vosko, Wilk and Nusair (VWN) [60] and is in 

general considered to be a very accurate fit. It interpolates between the unpolarized (ζ 

= 0) and spin polarized (ζ = 1) limits by the following functional. 

 

( ) ( ) ( ) ( )
( ) [ ] ( ) ( )[ ] ( ) 4

scsc
4

sascs
VWN
c 011

0
r0 ζζε−ε+ζ−⎥

⎦

⎤
⎢
⎣

⎡ ζ
ε+ε=ζε f,r,r

f"
f,r,r  

( ) ( ) ( )
( )122

211f 31

3434

−
−ζ−+ζ+

=ζ    (2.61) 

 

 The LSDA approximation in general underestimates the exchange 

energy by ~10%, thereby creating errors which are larger than the whole correlation 

energy. Electron correlation is furthermore overestimated, often by a factor close to 2, 

and bond strengths are, as a consequence, overestimated. Despite the simplicity of the 

fundamental assumptions, LSDA methods are often found to provide results with 

accuracy similar to that obtained by wave mechanics HF methods. 

 

       2.2.3. Gradient Corrected Methods 

 
  Improvements over the LSDA approach have to consider a non-uniform 

electron gas.  A step in this direction is to make the exchange and correlation energies 

dependent not only the electron density, but also on derivatives of the density. Such 

methods are known as Gradient Corrected or Generalized Gradient Approximation 

(GGA) methods (a straightforward Taylor expansion does not lead to an improvement 

over LSDA, it actually makes things worse, thus the name generalized gradient 

approximation). GGA methods are also sometimes referred to as non-local methods, 

although this is somewhat misleading since the functionals depend only on the density 

(and derivatives) at a given point, not on a space volume as for example the Hartree-

Fock exchange energy. 
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  Perdew and Wang (PW86) [61] proposed to modify the LSDA 

exchange expression to the form shown in Equation (2.62), where x is a dimensionless 

gradient variable, and a, b and c being suitable constants (summation over equivalent 

expressions for the α and β densities is implicitly assumed). 

 

( ) 151642LDA86PW 1 /
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        34x
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=                (2.62) 

 

Becke [62] proposed a widely used correction to the LSDA exchange 

energy, with has the correct –r-1 asymptotic behavior for the energy density (but not 

for the exchange potential). 
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The β parameter is determined by fitting to known atomic data and x is defined in 

Equation 2.62. 

Perdew and Wang have proposed an exchange functional similar to B88 

to be used in connection with the PW91 correlation functional given below. 
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 There have been various gradient corrected functional forms proposed 

for the correlation energy. One popular functional (not a correction) is due to Lee, 

Yang and Parr (LYP) [63] and has the form:  
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where the a, b, c and d parameters are determined by fitting to data for the helium 

atom. The tW functional is known as the local Weizsacker kinetic energy density. Note 

that the γ-factor becomes zero when all the spins are aligned (ρ = ρα, ρβ = 0), i.e. the 

LYP functional does not predict any parallel spin correlation in such a case (e.g. The 

LYP correlation energy in triplet He is Zero).  The appearance of the second derivative 

of the density can be removed by partial integration to give Equation (2.66). 
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       2.2.4. Hybrid Methods 

 

 From the Hamiltonian and the definition of the exchange-correlation 

energy an exact connection can be made between the exchange-correlation energy and 
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the corresponding potential connecting the non-interacting reference and the actual 

system. The resulting equation is called the Adiabatic Connection Formula (ACF) and 

involves an integration over the parameter λ which “turns on” the electron-electron 

interaction. 

 

( )∫=
1

0 λxcλxc dλΨλΨ VΕ                                       (2.67) 

 

In the crudest approximation (taking Vxc to be linear in λ) the integral is given as the 

average of the values at the two end-points. 
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In the λ = 0 limit, the electrons are non-interacting and there is consequently no 

correlation energy, only exchange energy. Furthermore, since the exact wave function 

in this case is a single Slater determinant composed of KS orbitals, the exchange 

energy is exactly that given by the Hartree-Fock theory. If the KS orbitals are identical 

to the HF orbitals, the “exact” exchange is precisely the exchange energy calculated by 

HF wave mechanics methods.   
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Models which include exact exchange are often called hybrid methods, the names 

Adiabatic Connection Model (ACM) and Becke 3 parameter functional (B3) are 

examples of such hybrid models defined by Equation (2.69). The a, b and c parameters 

are determined by fitting to experimental data and depend on the form chosen for 
GGA
cΕ , typical values are a ~ 0.2, b ~ 0.7 and c ~ 0.8. Owing to the substantially better 

performance of such parameterized functionals the Half-and-Half model is rarely used 

anymore.  The B3 procedure has been generalized to include more fitting parameters, 

however, the improvement is rather small.  

 

           



CHAPTER 3 

 

CALCULATION DETAILS 
 

In this chapter, the investigated models representing interaction 

between silanol groups on the external surface of silicalite-1 and guest molecules were 

described. The detailed method and the basis set used in the geometrical optimizations 

and energetic calculations as well as in the evaluation of spectroscopic frequency were 

also illustrated. 

 

3.1 Naked Cluster Models 

 

The (010) surface of the silicalite-1 which is perpendicular to the 

straight channel, was selected and cut from the crystal lattice using the Cerius2 

program. Silanol groups on the surface were generated by adding hydrogen atoms to 

the cutted O-Si bonds. Due to the size of the silicalite-1 lattice with a crystallographic 

cell Pnma consisting of 96 Si and 192 O atoms, it is not possible to take into account 

the whole lattice in the quantum chemical calculations. Therefore, the silicalite-1 was 

represented by three clusters taken from different parts of the (010) surface. 

They were, then, named, for simplification, as single silanol (Figure 

3.1b, Single), double silanol bridged by -O- group (Figure 3.1c, Double-near) and 

double silanol bridged by -O-Si-O- group (Figure 3.1d, Double-far). They were, 

respectively, used to model interactions with the isolated (single) silanol and two 

possible configurations of the two (double) contacted silanols on the (010) surface. 

The hydrogen atoms were added to SiO- groups on the surface of the selected fragment, 

by replacing silicon atoms of the lattice. All O-H bond lengths and Si-O-H angles as 

well as the rotation of the isolated silanol group around the Si-O bond were optimized, 

using different levels of quantum chemical calculation. Their chemical compositions, 

after filling up the remaining valence orbitals of the silicon atoms by the hydrogen 

atoms, are Si4O13H10, Si7O22H16 and Si9O27H18, respectively.  
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Figure 3.1   The (010) surface of silicalite-1 (a) and the three Si4O13H10 (b), Si7O22H16 

(c) and Si9O27H18 (d) clusters, used to represent the surface in the quantum chemical 

calculations to evaluate interactions between guest molecules and single (S1), double-

near and double-far silanol groups (S1 and S2), respectively (details see text).  

 

3.2. Geometries, Interaction Energies and Vibrational Frequencies of the 

       Complexes 

 

       3.2.1. Water Molecules 

 

Four possible configurations of a water molecule were assigned to bind 

to a single silanol group to form mono- (Figures 3.2a-3.2c) and di-hydrated (Figure 

3.2d) complexes. They are, then, denoted as Single-I to Single-IV as shown in Figure 

3.2.  

 

(b) Single

(a)(d) Double-far 

(c) Double-near S1 

S1 
S2 

S1 
S2 

S3 
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Figure 3.2 Four investigated conformations representing interaction between single 

silanol and one (a-c) and two (d) water molecules. 

 

For the case that two silanols with O-O distance of 3.86 Å are bridged 

by one water molecule, three possible binding configurations, Double-near-I to 

Double-near-III as in Figures 3.3a-3.3c, were proposed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Investigated conformations representing interaction between water 

molecule and double silanol group: Double-near (a-c) and Double-far (d-e). 

 

 

       (a) Single-I                    (b) Single-II            (c) Single-III                   (d) Single-IV 

           (d) Double-far-I                      (e) Double-far-II 

 (a) Double-near-I                (b) Double-near-II               (c) Double-near-III 
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The situation is different for the Double-far complex where the O-O distance between 

the two contacted silanols of 5.75 Å is large enough to accumulate two water 

molecules. Therefore, the two possible complexes shown in Figures 3.3d-3.3e were 

examined. Note that the distance between the two silanols in the Double-far system is 

too large to form complexes with one water molecule as in the configurations shown in 

Figures 3.3b-3.3c (details were discussed chapter 4). 

The intramolecular geometry of the water molecule (O-H bonds and H-

O-H angle) and of the silanol group (O-H bond) as well as the intermolecular 

parameters (distances and orientation of water molecules relative to the silanol group) 

were fully optimized, using different levels of accuracy. Then, the interaction energy 

and the vibrational frequencies of the OH stretching of the water molecule and the 

silanol group were investigated and reported in comparison to the experimental data. 

The following two procedures were applied for the quantum chemical calculations: (i) 

optimize the geometry of the complex using the Hartree Fock method with 3-21G* 

basis set, HF/3-21G*, then, performation of the single point calculation using different 

levels of accuracy, HF/6-31G(d,p), HF/6-31++G(d,p), B3LYP/6-31G(d,p) and 

B3LYP/6-31++G(d,p), to get the energy and spectroscopic properties of the complexes. 

(ii) the same method and level of accuracy were applied for both steps, geometry 

optimizations and energies as well as spectroscopic calculations. For simplification, 

abbreviations were used, for example HF/3-21G*//HF/6-31++G(d,p), the HF/3-21G* 

and the HF/6-31++G(d,p) were used in the geometry optimization and the single point 

calculation, respectively. 

Binding energies (∆Ebind) for the single silanol cluster are described by 

the summation of the two terms, 

 

       ∆Ebind = ∆Edeform + ∆Einteract    (3.1) 

 

where ∆Edeform is the deformation energy required to change the geometry of water and 

silanol from their equilibrium configuration in free forms, (water-free) and (cluster-

free), to those suitable for complexation, (water-cpx) and (cluster-cpx), defined as 
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for cluster:   ∆Edeform = E(cluster-cpx) – E(cluster-free)             (3.2a) 

 

for water:         ∆Edeform = E(water-cpx) – E(water-free)                             (3.2b) 

 

where E(cluster-cpx) and E(cluster-free) are the total energy of the clusters in the 

configuration given in parenthesis. The same method was also applied for the E(water-

cpx) and E(water-free). For the second term in equation (3.1), ∆Einteract was defined 

based on supermolecular approach according to equation (3.3), 

 

∆Einteract = E(cluster-cpx/water) – E(cluster-cpx) – E(water-cpx)      (3.3) 

 

here, E(cluster-cpx/water) stands for the total energy of the complex in its optimal 

configuration where as E(cluster-cpx) and E(water-cpx) are the total energies of the 

silanol cluster and of the water molecule at the complex configuration obtained from 

quantum chemical calculations, respectively.  

For the double silanol groups complexed with water molecule, the two 

silanols have to be rotated to the configuration suitable for complexation. The 

rotational energy required for this process was included into the ∆Edeform which defined 

in equation (3.2a). 

 

       3.2.2. Methane Molecules 

  

  Interaction between methane molecule and the (010) surface of the 

silicalite-1 was calculated in a similar manner as that of water molecule. As it is known 

for a weak interaction system such as hydrocarbon that major contribution to the 

molecular interaction is dispersion forces. Therefore, beside the B3LYP/6-31++G(d,p) 

calculation which was considered as the appropriate method for water molecule, the 

second-order Møller-Plesset perturbation (MP2) method which was successfully used 

in the previous works [64], was also examined. The same method was applied for both 

geometry optimization and the single point calculation. 
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  Interactions with methane molecule was evaluated in the two 

configurations, Single and Double-near, shown in Figures 3.4a-3.4b. The same reason 

as for the water molecule, interaction between methane and surface of the silicalite-1 

in the Double-far (see Figure 3.3d or 3.3e) configuration was not taken into 

consideration.  

 

 

 

 

 

 

 

 

   (a)      (b) 

 

Figure 3.4 Investigated conformations representing interaction between methane 

molecules and the single (a) and double (b) silanol groups on the silicalite-1’s surface. 

 

As in the case of water, observed geometry changes via complexation 

were insignificant. In addition, the molecular geometries were assumed to be much 

less induced by the hydrophobic molecule, such as hydrocarbons, than by the 

hydrophilic one. Therefore, intramolecular geometries were kept constant via the 

optimizations. However, position and orientation of guest molecules as well as their 

rotation of the OH groups of the silanols were fully optimized. This means that the 

∆Edeform for the hydrocarbon-surface complex consists of only the energy required to 

rotate O-H groups of the silanol from their free form to those suitable for complexation. 
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3.3. Estimated Energy Barrier 

 

  To estimate the energy barrier for guest molecules to enter into the 

silicalite-1’s pore, details of investigation are based on Figure 3.5 taken from Ref. [65]. 

Here, interaction energies were calculated for a water molecule moving through the 

straight channel of the silicalite-1. Numerous configurations of water molecules were 

generated along the vector pointing through the center of the ring and parallel to the 

inner wall of the straight channel, varying the water orientation around the x, y and z 

axes. The rotational step was 15o and the translational step was 1 Å. The interaction 

energies for the four configurations were given in Figure 3.5a where the optimal route 

was represented by the dot solid-line. The calculations were based on the HF method 

with the 6-31G* basis set. The plot for the optimal route shows very clear that at the 

distance 4 Å before entering and after leaving to the ring, the average interaction 

energy is ~ -2.5 kcal/mol. In addition, binding of water molecule to the inner wall of 

the straight channel of the silicalite-1 leads to the stabilization energy of ~ -0.95 

kcal/mol, which is higher than that of ~ -2.5 kcal/mol when water moves along the 

optimal route (see Ref. [65] for more details). 

 

  Based on the above data, guest molecules were placed at the center of 

the ring. The same fragment as in Ref. [65] was used. The binding energy was 

calculated using the B3LYP/6-31++G(d,p) method. The obtained data were used as the 

optimal binding energy when guest molecules locate inside the straight channel of the 

silicalite-1, ∆Ebind-in. In addition, the optimal binding energy outside the channel, 

∆Ebind-out, was represented by that obtained from section 3.2, for the binding energy 

between guest molecules and silanol groups. With this criteria, the energy barrier 

(∆Ebarrier) for guest molecules to enter the straight channel via the adsorption due to the 

silanol groups on the (010) surface of the silicalite-1 can be estimated from the 

energetic difference (∆∆E) between the ∆Ebind-in and the ∆Ebind-out as defined in Figure 

3.6.  
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Figure 3.5 Interaction energy versus water-silicalite-1 distance (a) when a water 

molecule moves through the center of the straight channel (b) in the four 

configurations shown in the insert. The dot solid-line represents the optimal route. The 

results were calculated using the HF method with the 6-31G* basis set and BSSE 

corrections and taken from Ref. [65]. 
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Figure 3.6 Binding energy when the guest molecule coordinates to the silanol group 

outside the channel (∆Ebind-out) and at the center of the channel (∆Ebind-in) as well as 

their differences (∆∆E) which were used to estimate the energy barrier (∆Ebarrier) for 

guest molecule to enter into the straight channel of the silicalite-1 via the (010) surface 

(see text for more details).  
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CHAPTER 4 

 

RESULTS AND DISCUSSION 
 

4.1. Water-Silanol Complexes 

 

       4.1.1. Complexes with Single Silanol 

 

                 4.1.1.1. Optimal Method, Basis Set and Interaction Energies 

 

For the four selected configurations (Figures 3.2a-3.2d) of the 

complexes between water molecules and single silanol groups and the surface 

geometry yielded from the HF/3-21G* optimization, interactions between a water 

molecule and a single silanol group were calculated using different levels of accuracy. 

The results were summarized in Table 4.1. The calculated results lead to the following 

conclusions: (i) No significant difference was found in terms of deformation energy of 

the four complexes, due to  the change of the geometry of water and silanol via 

complexation. However,  the Single-IV complex requires higher deformation energy 

than those of the three configurations. (ii) With the same basis set, the interaction 

energies obtained from the B3LYP method are significantly lower than those of the HF 

one. (iii) Among the four calculations, the interaction energies in the four 

configurations are in the following order: B3LYP/6-31G(d,p) << B3LYP/6-

31++G(d,p) < HF/6-31G(d,p) << HF/6-31++G(d,p). (iv) Among the three 

configurations complexed with one water molecule, the B3LYP/6-31G(d,p) predicts 

the Single-II (Figure 2a) as the most stable conformation and the stability is in the 

following order: Single-II < Single-I << Single-III while the other calculations indicate 

that the Single-I is more stable than the Single-II. The only reason that can be found 

for such a discrepancy is that the optimal geometry of the surface yielded from the 

HF/3-21G* and used for the single point calculation, is not the optimal form for the 

other calculations.  
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Table 4.1 Interaction and deformation energies (kcal/mol) representing complexation between water and single silanol groups in the 

configurations shown in Figure 3.2 where the surface geometry (Figure 3.1b) was optimized using the HF/3-21G* while the energy was 

calculated using different levels of accuracy (see calculation details). 

 

HF/3-21G*// 
HF/6-31G(d,p) 

HF/3-21G*// 
HF/6-31++G(d,p) 

HF/3-21G*// 
B3LYP/6-31G(d,p) 

HF/3-21G*// 
B3LYP/6-31++G(d,p) Cluster type 

∆Edeform ∆Einteract ∆Ebind ∆Edeform ∆Einteract ∆Ebind ∆Edeform ∆Einteract ∆Ebind ∆Edeform ∆Einteract ∆Ebind 
Single-I 1.11 -7.38 -6.27 0.96 -6.26 -5.30 0.76 -9.73 -8.97 0.54 -7.66 -7.12 
Single-II 0.45 -6.05 -5.60 0.34 -3.69 -3.35 0.44 -10.30 -9.86 0.26 -5.71 -5.45 
Single-III 0.17 -1.10 -0.93 0.13 -0.58 -0.45 0.13 -2.62 -2.49 0.07 -1.42 -1.35 

Single-IV* 2.22 -15.00 -12.78 1.95 -11.38 -9.43 1.54 -22.04 -20.50 1.11 -15.13 -14.02 
  (-7.50) (-6.39)  (-5.69) (-4.72)  (-11.02) (-10.25)  (-7.56) (-7.01) 

    *the interaction and binding energy per water molecule are given in parenthesis, respectively. 
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  In order to examine the above mentioned discrepancy, different 

methods were applied to optimize the geometry of the silanol cluster. The calculated 

geometry of the single silanol in the free form (Figure 3.1b) as well as the 

corresponding atomic net charges were given in Table 4.2.  

 

Table 4.2 Optimal geometry, O-H bond length (Å) and Si-O-H bond angle (in degree), 

and atomic net charges (in atomic unit), qi where i denotes H, O and Si atoms, of the 

single silanol in free form yielded from different calculations.  

 

Parameter HF/3-21G* HF/6-31G(d,p) HF/ 
6-31++G(d,p) 

B3LYP/ 
6-31G(d,p) 

B3LYP/ 
6-31++G(d,p) 

O-H 0.9557 0.9396 0.9399 0.9600 0.9599 
< Si-O-H 130.3 121.5 122.5 119.3 121.4 

qH 0.426 0.362 0.417 0.330 0.398 
qO -0.778 -0.719 -1.294 -0.568 -1.132 
qSi 1.573 1.497 3.454 0.990 2.879 

 

The calculated data support the assumption on the discrepancy in the prediction of the 

most stable configuration of the complexes between the single silanol and the water 

molecule (Figure 3.2) shown in Table 4.1. The O-H bond length obtained from the HF 

method of ~ 0.94 Å is slightly shorter than that of ~ 0.96 Å from the B3LYP 

calculation. The Si-O-H angle of the silanol group of 130.3o yielded from the HF 

optimization with the small basis set (3-21G*) is significantly bigger than those 

between 119o - 123o obtained from the other calculations. Note that the experimental 

O-H bond length based on the neutron diffraction method [66] and the calculated Si-O-

H bond angle based on the coupled pair functional method employing large basis sets, 

[6s,5p,2d,1f/5s,3p,2d,1f/3s,2p] [67], are 0.969 Å and 117.7o, respectively. These data 

are in good agreement with the B3LYP results. In addition, it was found also that the 

atomic net charges, especially on the O and Si atoms of the silanol, depend strongly on 

the method and the basis set used. The calculated atomic net charges shown in Table 

4.2 are too acidic. This leads consequently to a red shift of the O-H vibrational 

frequency (details in section 4.1.1.2).  
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 To overcome the difficulty due to the surface geometry which is not in 

the optimal configuration for each calculation, the same method and the same level of 

accuracy were applied to the optimization of the geometry as well as the single point 

energy calculations. The results were shown in Table 4.3. It can be clearly seen that the 

data are more reliable than those shown in Table 4.1. Among the three configurations 

where one water molecule binds to a single silanol group (Figures 3.2a-3.2c), 

stabilization energies yielded from all models are in the same trend, which is Single-I 

< Single-II << Single-III. Based on thermal fluctuation at room temperature (T), i.e., 

kT ~ 0.6 kcal/mol where k denotes Boltzmann’s constant, it can be concluded that all 

models, except B3LYP/6-31G(d,p) suggest Single-I (Figure 3.2a) and Single-IV 

(Figure 3.2d) as the preferential conformations for the silanol-water complex. The 

calculated binding energy is ranging between -7 and -10 kcal/mol. However, the 

B3LYP/6-31++G(d,p) binding energy is proposed to be the optimal value because of 

the following reasons. (i) The B3LYP method is superior to the HF calculation because 

the electron correlation was included. (ii) The 6-31++G(d,p) basis set is more reliable 

than the 6-31G(d,p) because the electron diffusion is taken into account. This leads to 

the conclusion that the two predicted conformations where one water forms hydrogen 

bonding by pointing the O atom to the silanol (Figure 3.2a) and two water molecules 

bind to one silanol in the configuration shown in Figure 3.4d yield the binding energy 

of ~ -8 kcal/mol (Table 4.3). 

  In terms of the deformation energy, the data for all models in Table 4.3 

are roughly higher than those in Table 4.1. This indicates clearly that in comparison to 

the conformations yielded from the HF/3-21G* optimization (Table 4.1), the 

equilibrium geometry of the water molecule and the cluster in the free forms, (water-

free) and (cluster-free), shown in Table 4.2 are closer to those suitable for 

complexation, (water-cpx) and (cluster-cpx). 
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Table 4.3 Interaction and deformation energies (kcal/mol) representing complexation between water and single silanol groups in the 

configurations shown in Figure 3.2 where the surface optimization and the energy calculations were performed using the same levels of 

accuracy (see calculation details). 

 

HF/6-31G(d,p)// 
HF/6-31G(d,p) 

HF/6-31++G(d,p)// 
HF/6-31++G(d,p) 

B3LYP/6-31G(d,p)// 
B3LYP/6-31G(d,p) 

B3LYP/6-31++G(d,p)// 
B3LYP/6-31++G(d,p) Cluster type 

∆Edeform ∆Einteract ∆Ebind ∆Edeform ∆Einteract ∆Ebind ∆Edeform ∆Einteract ∆Ebind ∆Edeform ∆Einteract ∆Ebind 
Single-I 0.11 -8.34 -8.23 0.05 -7.43 -7.38 0.62 -10.76 -10.14 0.14 -8.39 -8.25 
Single-II 0.05 -6.33 -6.28 0.02 -4.78 -4.76 0.45 -10.11 -9.66 0.03 -6.03 -6.00 
Single-III 0.02 -1.91 -1.89 0.01 -1.54 -1.53 0.39 -3.31 -2.92 0.01 -2.04 -2.03 

Single-IV* 0.20 -16.05 -15.85 0.11 -13.54 -13.43 0.85 -22.39 -21.54 0.28 -16.15 -15.87 
  (-8.02) (-7.92)  (-6.77) (-6.72)  (-11.20) (-10.77)   (-8.08) (-7.94) 

   *the interaction and binding energy per water molecule is given in parenthesis, respectively. 
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      4.1.1.2. Geometries and Vibrational Frequencies 

 

Table 4.4 Bond length, bond angle and stretching frequency (ν) of water, naked 

surface and complex between water and single silanol group (Figure 2) using different 

methods of calculation where subscript “s” and “w” stand for surface and water 

molecule, respectively. The B3LYP/6-31++G(d,p) data, bold line, were proposed to be 

the optimal values. 

 

 

 

 

Structure Method r(Os-Hs) 
(Å) 

r(Os…Ow) 
(Å) 

r(Ow-Hw) 
(Å) 

<Hw-Ow-Hw 
(degree) 

νOs-Hs 
(cm-1) 

sym. νOw-Hw 
(cm-1) 

Water:        
Exp. Ref. [68] - - 0.9576 104.48 - 3345 
Calc. HF/6-31G(d,p) - - 0.9431 106.04 - 3732 

 B3LYP/6-31G(d,p) - - 0.9653 103.71 - 3420 
 HF/6-31++G(d,p) - - 0.9433 107.12 - 3731 
 B3LYP/6-31++G(d,p) - - 0.9652 105.73 - 3426 

Naked 
Surface:        

Exp. Ref. [7] - - - - 3750 - 
Calc. HF/6-31G(d,p) 0.9396 - - - 3834 - 

 B3LYP/6-31G(d,p) 0.9600 - - - 3545 - 
 HF/6-31++G(d,p) 0.9399 - - - 3833 - 
 B3LYP/6-31++G(d,p) 0.9599 - - - 3551 - 

Complex:        

Exp. Ref. [69] 0.956-1.000 2.70-2.90 - - - - 
Calc.        

Single-I HF/6-31G(d,p) 0.9494 2.8477 0.9434 107.45 3664 3734 
 B3LYP/6-31G(d,p) 0.9758 2.7464 0.9640 106.56 3271 3441 
 HF/6-31++G(d,p) 0.9485 2.8883 0.9441 107.87 3681 3726 
 B3LYP/6-31++G(d,p) 0.9736 2.7958 0.9651 107.34 3310 3434 

Single-II HF/6-31G(d,p) 0.9417 2.9459 0.9442 107.40 3807 3713 
 B3LYP/6-31G(d,p) 0.9620 2.8933 0.9675 105.87 3522 3380 
 HF/6-31++G(d,p) 0.9422 2.9405 0.9445 107.97 3804 3707 
 B3LYP/6-31++G(d,p) 0.9623 2.8772 0.9679 106.91 3524 3371 

Single-III HF/6-31G(d) 0.9438 2.8900 0.9428 106.34 3786 3738 
 B3LYP/6-31G(d) 0.9651 2.7200 0.9646 104.67 3489 3430 
 HF/6-31++G(d,p) 0.9439 2.9470 0.9432 107.17 3783 3735 
 B3LYP/6-31++G(d,p) 0.9649 2.8090 0.9652 106.03 3495 3430 
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In Table 4.5, intra- and intermolecular geometries as well as 

spectroscopic properties of water, naked surface and surface-water complexes in the 

four configurations shown in Figure 3.2 were summarized. Here, the same method was 

used to optimize water, naked surface and complex geometries. 

For the free water molecule, the geometry yielded from the four 

models, HF and B3LYP methods with 6-31G(d,p) and 6-31++G(d,p) basis sets,  is in 

good agreement with the experimental measurements [66]. The Hartree-Fock O-H 

bond length of ~ 0.943 Å is slightly shorter than the experimental one while the 

B3LYP value of ~ 0.965 Å is longer than the experimental data. (This shorter one 

arises from lacking of electron correlation of the HF method.)  

In addition, no significant difference of the O-H bond was found among 

the two basis sets used. In terms of the H-O-H angle, the B3LYP method is slightly 

better than the HF in representing the experimental data (104.48 Å). The values for the 

frequencies corresponding to two symmetrical O-H stretchings of the water molecule 

obtained from the B3LYP calculations (3420 and 3426 cm-1) are in  good agreement 

with the 3345 cm-1 obtained experimentally. This is not the case for the HF method 

from which a frequency of more than 3700 cm-1 was calculated. The above finding 

leads to the conclusion that the B3LYP method is appropriate for geometry 

optimization and still good enough to reproduce the experimental frequency.  

Considering the naked (010) surface (Table 4.4) represented by the 

Si4O13H10 fragment as shown in Figure 3.1b, the predicted O-H bond of the silanol 

group is in the range 0.94-0.96 Å. The OH stretchings of 3545 cm-1 and 3551 cm-1 

determined from the B3LYP method are significantly lower than the experimental 

vibrational frequencies of the stretching mode of the isolated OH groups located on the 

external surface of  nonporous silica (Aerosil) of 3750 cm-1 [7]. This discrepancy can 

be due to a too acidic atomic charges of the silicon atom in the framework shown in 

Table 4.2. Note that there is no significant difference in the vibrational frequencies 

arising from the same method using different basis sets. 

For the silanol-water complex, the attention focused to the Single-I 

complex where the most stable conformation of the complex was detected. The 

experimental O-H bond length of the silanol (0.956-1.000 Å) and the intermolecular 

distance between oxygen atoms of silanol and water molecule, Os---Ow, (2.70-2.90 Å) 



 

 

         58
 

cover broad ranges, that include all calculated data. The calculated O-H bond length of 

the silanol in free form was detected to be slightly larger than that in the complex. This 

fact is true for all calculated methods and basis sets used. However, such change was 

not clearly observed for the O-H bond length and the H-O-H angle of the water 

molecule. In terms of the stretching frequency, the complexation leads to red shift of 

the O-H stretching of the silanol group, approximately 150 cm-1 and 270 cm-1 for the 

HF and B3LYP calculations, respectively. This event was not detected for the O-H 

bond of the water molecule. Taking into account the data and conclusions summarized 

above including the discrepancy among the methods and the basis sets used, the data 

obtained from the B3LYP/6-31++G(d,p) were proposed to be the optimal values. 

 

       4.1.2. Double Complexes 

 

                 4.1.2.1. Interaction Energies 

 

   For the sake of accuracy, as stated in the case of Single-I, only the 

B3LYP/6-31++G(d,p)//B3LYP/6-31++G(d,p) calculations were applied to investigate 

interaction and optimal configuration between water and the two nearest silanol groups 

(Figure 3.2). The optimal values are summarized in Table 4.5. Note that binding 

between two silanols and one water molecule requires an additional step in rotating of 

the silanol groups to the configuration suitable for complexation. The rotational energy 

was included in the ∆Edeform of the cluster, defined in Equation (3.2a) which was added 

to the interaction energy in equation (3.1). 

  Some comments could be made concerning the final geometry of the 

Double-far-I complex. With the initial configuration shown in Figure 3.3d, the 

B3LYP/6-31++G(d,p) fully optimization procedure brings the water molecule to the 

configuration shown in Figure 4.1 where the water molecule prefers to coordinate to 

S3 (see Figure 3.1d) rather than to S2. Here, the distance from the O atom of water to 

the O atom of silanol S1 or S3 is 2.90 Å while that of S2 is 3.75 Å. This result supports 

our assumption made in section 3.2 (Calculation details) that the distance between the 

two silanols, S1 and S2, in the Double-far is too large to be coordinated by a single 

water molecule.    
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  In terms of complex stability, the most stable complex takes place via 

the Double-far-I complex. The corresponding binding energy is -13.84 kcal/mol. This 

value is significantly lower than those of -9.05 kcal/mol for the Double-far-II and -7.82 

kcal/mol for the Double-near-III complexes. In addition, the deformation energies for 

the double silanol complexes shown in Table 4.5 are higher than those of the single 

silanol one in Table 4.3 due to the addition of the rotational energy into the ∆Edeform 

term, as defined in equation (3.2a). 

  The rotational energy for the Double-far configurations is much lower 

than that of the Double-near complexes due to a larger O-O distance between the two 

silanols which amount to 5.75 Å and 3.86 Å, respectively. Strong repulsion between 

the two OH groups leads to the ∆Edeform in the Double-near-I configuration (Figure 

3.3a) of 8.36 kcal/mol. This energy decreases to 5.68 kcal/mol when the two OH 

groups turn away from each other (Double-near-II, Figure 3.3b). In addition, the 

repulsion is lower when the H atom of one OH points toward the O atom of the other 

OH groups (Figure 3.3c). 

 

Table 4.5 The deformation energy and binding energy (kcal/mol) representing 

interaction between water and two silanol groups in the configurations shown in Figure 

3 where the surface optimization and the energy calculations were performed using 

B3LYP/6-31++G(d,p) (see calculation details). 

 

Cluster type ∆Edeform ∆Einteract ∆Ebinding 
Double-near-I 8.36 -14.02 -5.66 
Double-near-II 5.68 -3.65 2.03 
Double-near-III 2.28 -10.10 -7.82 

Double-far-I 0.62 -14.45 -13.84 
Double-far-II* 0.25 -17.85 -18.10 (-9.05) 

 

*with the initial configuration shown in Figure 3.3d, the optimal structure in Figure 

4.1b was yielded. 
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Figure 4.1 (a) The (010) surface of  silicalite-1 and (b) with the initial configuration 

shown in Figure 3d, the B3LYP/6-31++G(d,p) fully optimization procedure brings the 

water molecule to the new configuration where water molecule prefers more to 

coordinate to S3 (see Figure 1d) than that to S2. 

 

Taking into account all the data summarizing above, the B3LYP/6-

31++G(d,p) binding energies are in the following order: Double-far-I < Double-far-II 

~ Single-I ~ Single-IV ~ Double-near-III. Since the stability of -13.84 kcal/mol for the 

Double-far-I complex (Figure 3d) is significantly lower than the other configurations, 

therefore, these areas on the (010) surface of the silicalite-1 are supposed to be the first 

binding sites which have to be covered when water molecule approaches the surface. 

In the other words, the most stable conformation takes place when a water molecule 

forms two hydrogen bonds with two silanols, only one lies on the opening pore of the 

straight channel. When the water loading increases, the next favorable silanols are 

those of the pore opening in which the complex conformations are Double-far-II, 

Single-I, Single-II and Double-near-III where the corresponding binding energy for 

those coordinations are ~ -8 kcal/mol. 
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4.2. Methane-Silanol Complexes  

 

Table 4.6 The deformation energy and binding energy (kcal/mol) representing 

interaction between methane and silanol groups in the configurations are shown in 

Figure 3.2 where the surface optimization and the energy calculations were performed 

using  HF/6-31++G(d,p), B3LYP/6-31++G(d,p) and MP2/6-31++G(d) (see calculation 

details).  

 

HF/6-31++G(d,p)// 
HF/6-31++G(d,p) 

B3LYP/6-31++G(d,p)// 
B3LYP/6-31++G(d,p) 

MP2/6-31++G(d)// 
MP2/6-31++G(d) Cluster 

type 
∆Edeform ∆Einteract ∆Ebind ∆Edeform ∆Einteract ∆Ebind ∆Edeform ∆Einteract ∆Ebind 

Single - -0.30 - - -0.26 - - -1.28 - 
Double - -0.16 - 5.68 -0.10 5.58 5.40 -0.67 4.73 

 

For the same reason as in the case of water, the orientation of the silanol 

group was not taken into consideration for the single silanol group. In contrast to the 

water/ligand system, the interaction energy for the hydrocarbon/ligand system where 

the dispersion forces are dominant is very low. The ∆Ebind yielded from the HF/6-

31++G(d,p) and B3LYP/6-31++G(d,p) calculations are within thermal fluctuation, kT, 

at room temperature. No significant difference was found for the interaction energy 

obtained from the two methods. The MP2/6-31++G(d,p) energy for both single and 

double clusters are slightly lower than the other two methods.  

For the methane-surface interaction in the double-near configuration 

(Figure 3.4b), the rotational energy of 5.68 kcal/mol and 5.40 kcal/mol obtained from 

B3LYP/6-31++G(d,p) and MP2/6-31++G(d,p) are much higher than the corresponding 

interaction energy of -0.10 kcal/mol and -0.67 kcal/mol, respectively. These lead to a 

strong positive binding energy. 

The results mentioned above for both single and double silanol clusters 

lead to a clear conclusion that the methane molecule does not absorb on the (010) 

surface of the silicalite-1.  
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4.3. The Energy Barrier for Guest Molecules to Enter into Silicalite-1’s channel 

 

  Corresponding to the calculation details given in section 3.3, the 

optimal binding energy on the surface (∆Ebind-out), the optimal binding energy inside 

the pore (∆Ebind-in) and the energy barrier (∆Ebarrier), estimated from the ∆∆E in Figure 

3.6, yielded from the B3LYP/6-31++G(d,p) calculations were summarized in Table 

4.7 and shown in Figure 4.2a and 4.2b for water and methane molecule, respectively. It 

can be seen that strong silanol/water binding leads to a high barrier of 9.08 kcal/mol 

for water molecules to enter into the straight channel via the (010) surface. In contrast, 

methane molecule moves from higher energy state (-0.26 kcal/mol) on the (010) 

surface to the lower energy one (-3.87 kcal/mol) inside the pore. Therefore, the 

entering process for methane molecules is barrier free. 

 

Experimentally, the sample has to be activated by keeping under high 

vacuum at 473 K for 20 hours in order to bring water molecules into the pore of 

silicalite-1 [68]. This fact supports the data shown in Table 4.7 where the energy 

barrier, due to the silanol/water binding on the (010) surface, of 9.08 kcal/mol was 

required. 

 

Table 4.7 Optimal binding energy (kcal/mol) on the surface (∆Ebind-out), optimal 

binding energy inside the pore (∆Ebind-in), ∆∆E (see Figure 3.6) and the estimated 

energy barrier (∆Ebarrier) for H2O and CH4 molecules to enter into the straight channel 

via the (010) surface of the silicalite-1 (see section 3.3 for more details). 

 

Guest molecule ∆Ebind-out ∆Ebind-in ∆∆E ∆Ebarrier 
H2O -13.84 -4.76 9.08 9.08 
CH4 -0.26 -3.87 -3.61  0.00 (barrier free) 
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Figure 4.2 Binding energy when the guest molecule coordinates to the silanol group 

outside the channel (∆Ebind-out) and at the center of the channel (∆Ebind-in) as well as 

their differences (∆∆E) which were used to estimate the energy barrier (∆Ebarrier) for 

water (a) and methane molecule (b) to enter into the straight channel of the silicalite-1 

via the (010) surface (see text for more details).  

∆Ebind-out 
-13.84 kcal/mol

∆Ebind-in 
-4.76 kcal/mol

           ∆∆E 
9.08 kcal/mol

∆Ebind-out 
-0.26 kcal/mol

∆Ebind-in 
-3.87 kcal/mol

∆∆E 
-3.61 kcal/mol

(a) H2O 

(b) CH4 



CHAPTER 5 

 

CONCLUSION 
 

It was known that the key elements determining the adsorption and 

diffusion behaviors of guest molecules on the external surfaces are silanol groups. Aim 

of this study is to investigate role of the silanol group in preventing guest molecule to 

enter into the pore of silicalite-1. Interest is focused on the silanol groups lying around 

the pore of the straight channel. Therefore, the (010) surface which is perpendicular to 

the straight channel, was selected. Interaction as well as spectroscopic properties of the 

systems were calculated for different conformations of guest molecules on the (010) 

surface of silicalite-1. Quantum chemical calculations were performed using different 

levels of accuracy.  

 

Based on the B3LYP method with the 6-31++G(d,p) basis set, water 

molecule was observed to bind tightly by forming 2 hydrogen bonds with the two 

silanols, one O-H bond of water binds to the silanol located on the open pore of the 

straight channel while the other one points away from the pore. The corresponding 

interaction energy is -13.84 kcal/mol. The next preferential binding sites cover broad 

regions consisting of 4 possible configurations of the complex with the interaction 

energy of 8 kcal/mol, approximately.  

 

The calculated O-H bond length of the silanol in free form was detected 

to be slightly larger than that in the complex. However, such change was not clearly 

observed for the O-H bond length and the H-O-H angle of the water molecule. 

 

In terms of the stretching frequency, the complexation leads to red shift 

of the O-H stretching of the silanol group, approximately 150 cm-1 and 270 cm-1 for 

the HF and B3LYP calculations, respectively. This event was not detected for the O-H 

bond of the water molecule. 
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For the methane/silicalite-1 complex, the methane-surface interaction is 

within thermal fluctuation. This is much lower than the energy required to rotate the 

silanol group. This event leads to a clear conclusion that methane molecule does not 

absorb on (010) surface of silicalite-1. 

 

The strong silanol/water binding leads to the energy barrier of 9.08 

kcal/mol for water molecule to enter into the straight channel via the (010) surface. In 

contrast, the entering process for methane molecule is barrier free. 
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