REFERENCES

- [1] Somporn Malangpoo. "On the Functional Equation $g(xy^{-1}) = g(x)g(y) + f(x)f(y)$." Master's Thesis, Department of Mathematics,

 Graduate School, Chulalongkorn University, 1976.
- [3] Howie, J.M. An Introduction to Semigroup Theory. Academic Press,
 London, 1976.

APPENDIX

Theorem 2.3. Let A be an ideal of an inverse semigroup S and B be an ideal of A. Then B is an ideal of S.

<u>Proof.</u> Let $b \in B$ and $s \in S$. Then $b \in A$ since $B \subseteq A$. Since A is an ideal of S, $b^{-1}bs$ and sbb^{-1} belong to A. Thus $bs = bb^{-1}bs$ and $sb = sbb^{-1}b$ belong to B since B is an ideal of A. Thus B is an ideal of S.

Theorem 2.4. Let S be a semigroup and ASBS such that A and B are completely prime ideals of S. Then BA is either a completely prime ideal of SA or an empty set.

<u>Proof.</u> Assume that $B \setminus A \neq \emptyset$. Let $x \in B \setminus A$ and $y \in S \setminus A$. Then xy, $yx \in B$ since B is an ideal of S. If $xy \in A$ or $yx \in A$ then $x \in A$ or $y \in A$ since A is a completely prime ideal of S, which is a contradiction. Thus xy, $yx \in B \setminus A$. Hence $B \setminus A$ is an ideal of $S \setminus A$.

To show B'A is completely prime, let $x,y \in S$ 'A such that $xy \in B$ 'A. Since B is a completely prime ideal, $x \in B$ or $y \in B$. If $x \in A$ or $y \in A$, then $xy \in A$ since A is an ideal, a contradiction. Thus $x \in B$ 'A or $y \in B$ 'A. Hence B'A is a completely prime ideal of S'A.

Theorem 2.5. For a subset A of a semigroup S, A is a filter of S if and only if S\A is either a completely prime ideal of S or an empty set.

<u>Proof.</u> Assume that A is a filter of S and S\A $\neq \emptyset$. Let $x \in S \setminus A$ and $y \in S$. If $xy \in A$, then $x, y \in A$ since A is a filter of S, which is a contardiction. Therefore $xy \in S \setminus A$. Similarly, we can be show that $yx \in S \setminus A$.

Now we let $x,y \in S$ such that $xy \in S \setminus A$. If $x \in A$ and $y \in A$ then $xy \in A$, since A is a subsemigroup, which is a contradiction. Thus $x \in S \setminus A$ or $y \in S \setminus A$. Hence $S \setminus A$ is a completely prime ideal.

Conversely we assume that SA is a completely prime ideal of S or an empty set. If SA = \emptyset ., then A = S which is a filter of S. Assume SA is a completely prime ideal of S and x,y & S such that xy & SA. If x,y & A, then xy & A since A is a subsemigroup of S, a contradiction. Hence x & SA or y & SA.

Theorem 2.6. Let (S,•) and (S', •') be disjoint semigroup. Then S U S' with a binary operation * defined by

$$x * y = x \cdot y$$
 if $x,y \in S$
 $x * y = x \cdot y$ if $x,y \in S'$
 $x * y = y * x = x$ if $x \in S$ and $y \in S'$

is a semigroup.

<u>Proof.</u> Let x,y,z belong to S U S'. We shall show that (x*y)*z = x*(y*z). This is clearly true for the case x,y,z \(\varepsilon\) or x,y,z \(\varepsilon\) Since a * b = b * a for all a \(\varepsilon\), b \(\varepsilon\) S', it remains to show that this holds for the case x,y \(\varepsilon\), z \(\varepsilon\) S' and the case x \(\varepsilon\), y,z \(\varepsilon\) S'. If x,y \(\varepsilon\) S', then

$$(x * y) * z = x * y = x * (y * z).$$

If x & S, y, z & S', then

50

$$(x * y) * z = x * z = x,$$

 $x * (y * z) = x,$
 $(x * y) * z = x * (y * z).$

Lemma 2.7. Let S be an inverse semigroup, F be a field of characteristic different from 2 such that $a^2 \neq -1$ for any a in F. Let h be a homomorphism from S into $C(F)^*$. Then for each x in S, $\frac{h(x) - h(x^{-1})}{2i}$ and $\frac{h(x) + h(x^{-1})}{2}$ belong to F if and only if h(x) belongs to $\Delta(F)$. Proof. Let Ψ be the automorphism of C(F) fixing all elements of F and taking i into -i.

Assume that $h: S \to C(F)^*$ is a homomorphism such that $\frac{h(x) - h(x^{-1})}{2i}$ and $\frac{h(x) + h(x^{-1})}{2}$ belong to F. Therefore

$$\frac{h(x) + h(x^{-1})}{2} = \Psi(\frac{h(x) + h(x^{-1})}{2}) = \Psi(h(x)) + \Psi(h(x^{-1}))$$

Thus

(1)
$$h(x) + h(x^{-1}) = \Psi(h(x)) + \Psi(h(x^{-1}))$$
.

Also,

$$\frac{h(x) - h(x^{-1})}{2i} = \psi(\frac{h(x) - h(x^{-1})}{2i}) = \frac{\psi(h(x)) - \psi(h(x^{-1}))}{2i}.$$

Thus

(2)
$$h(x) - h(x^{-1}) = \Psi(h(x^{-1})) - \Psi(h(x))$$
.

If follows from (1),(2) that $2h(x) = 2\Psi(h(x^{-1}))$. Hence $h(x) \Psi(h(x))$ = 1. Therefore h(x) belongs to $\Delta(F)$.

Conversely, assume that h is a homomorphism from S into $\Delta(F)$. Hence h(x) $\Psi(h(x))$ = 1 for all x in S. It follows that

$$\Psi(h(x)) = h(x)^{-1} = h(x^{-1}).$$

Let h(x) = a + bi where $a,b \in F$. Therefore,

$$\frac{h(x) + h(x^{-1})}{2} = \frac{h(x) + \Psi(h(x))}{2} = \frac{(a+bi) + (a-bi)}{2} = a$$

and

$$\frac{h(x) - h(x^{-1})}{2i} = \frac{h(x) - \Psi(h(x^{-1}))}{2i} = \frac{(a+bi) - (a-bi)}{2i} = b$$

Hence
$$\frac{h(x) + h(x^{-1})}{2}$$
 and $\frac{h(x) - h(x^{-1})}{2i}$ belong to F.

คูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย

VITA

Name

: Miss Prisana Sayvarin.

Degree

: B.S. (Education), Hons, 1981.

Chiangmai University, Chiangmai, Thailand.

Scholarship

University Development Commission (U.D.C.),

Thai Government.

์ ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย