CHAPTER VI

GENERAL SOLUTIONS OF g(xy'l) = g(xX)gly) + £X)£(y)

ON COMMUTATIVE INVERSE SEMIGROUPS

All the solutions of the functional equation g(xy ) g(x)gly)+

f(x)f(y) on any commutative TS| group are determined in this

chapter.

Theorem 6.1. The ﬁe"——’ s of (*) on S are those and

only those (f,g) of

4 0 > X €A

(6.1.1) £(x) =Jl ) ={ -
h)+h(x ), x)éA
o e ik

where A is a completely pr me ideal of S or A is the empty set and h
: ,:;JFH s
is a homomorphism A into ]

Proof. By a straiﬁt

£.,82 : 6+ B are of t]ae orm (6.1.1) °?}xen (f,g) is a negative-type

mmmwﬁuﬂﬂﬂ8ﬂ§WHWﬂi
amqm I meay

(*) on §. From 6 we

. mcan be shown that if

f=f1uf2 and B 8, U8,

where (fi,gi) is a class i negative-type solution of (*) on Si(f,g),

for i = 1,2. Therefore, by Remark 4.10, we have
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h(x)-h(x"1)

23
L) W e > g (X w‘)%h’('x_‘)

for all x in Sl(f;g) where h is a homomorphism from Sl (f,g) into M(F).
By Theorem 5.1 we have that (fz,gz) is the trivial solution on Sz(f,g),
i.e, f (x) =0 = gz(x) for all x in Sz(f,g) Thus, if we let A =

2(f,g), then S\A = S (f,g).a \i\\ 2), we have that A is a

completely pr1me 1dea1 g ) ty set. Hence f and g are
— "J

of the form (6.1. 17

Lemma 6.2. Let (f,g i ype solution of (*) on S such that

#

, XEA

(x) » XeS,(£,8) A

(6.2.2) ﬁya ﬁseﬁﬁw% ETﬁ ﬁ;jA or S,(£,g)\A is
pront, b1 1), m L) W%l"ﬂtﬂvﬁlws fron Lemna

3.5 and Theorem 2.3 that A is an ideal of S, Next we shall show that

for x,ye S, if xyeA, then x¢A or ye A. lLet X,y€S are such that xy ¢ A,
Since A¢ Sz(f,g), Xy sSZ(f,g). By Lemma 3.5 we have that Sz(f,g) is a
completely prime ideal of S. Therefore x iSz(f, g) ory esz(f,g)., Let

us assume that XE€ Sz(f,g)., If yeSz(f,g), then x€ A or ye A since A

is a completely prime ideal of Sz(.f,g). On the other hand, if



S0

yisz(f,g), then y¢ Sl(f,g), SO g(yy-l) = 1. Thus, it follows from

(3.4.1) that f(yy'l) = 0., Since A is an ideal, xy(icy)-ls A. Therefore

gxxyyH™h

g Dgy™ + £ax ey

'[y(xx )1 + f(xx )0

Thus, by (3.4.4), we (" : j exeSz(f,g) and g(x) =

0 = gyen™

so xeg A. . There

From (6.2.1), 5 a el 4 we have that Sz(f,g)\A

is a completely prime A is empty. Thus (6.2.2)

holds. : g
s ot A
_‘i‘*,ﬁj _;{ + L/
In what follow ' ~use of the concept of adjoining
a semigroup S' by a sem1ga=qnp:‘$ a;, zeroes, This concept is introduced

I

at the end of Th

Lemma 6.3. Let (f,g be any so utlon of (*) oms Assume that S. (f g)

S VT 6k 11 w%‘wzﬁﬁf

o= Loy T oxyes,(E0) ad g0 2 gy and fexY = £y 1.

men 30 LY ﬁﬂi@mﬂﬁﬂi&m)ﬂ) i

is the semlgroup S (f,g)/n with Sz(f,g)/u adjoined as zeroes.

Proof. Let n be a congruence on Sl(f,g) and

wo= {0GY) / X,yeS,(f,8) and gl = gy ) and £6x7Y) = £y H1.

It follows from the proof of Theorem 5.6 that up is a congruence on
S,(f,g). First, we claim that for all ceS (f,g) and x&5,(f,g) we

have
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(6.3.1) (xc,x) € M

To prove this, let ceSl(f,g) and xeSz(f,g), Since Sz(f,g) is a
completely prime ideal of S (Lemma 3.5), Xxc sS'z(f,g). If g(xc(xc-l))

# 0, then g((xx'l) (xc(xc)‘l) = g(xc(xc)-l) # 0, Hence it follows from

Lemma 5.3 that g(xx-l) = g(xc(xc)'l) and f(xx_l) = f(xc(xc)'l), Thus

(xc,x) € u. On the other han:‘ \T’” (xc)

- oy 1
—_— o '

(xc x) € U,

™

If (x,y), (a,b) enlor (¥
are congruences on ESI(.E.g) and S,(fgg), respectively. Now assume that

(a,b)en anﬂu ’gﬁg‘lﬂ i(%)gn’;]ﬂiz(f,g)- It follows
Zri‘;iflﬁ ASHs AR AEAAY™ ™

xn = x(nyp) and yu = ylgy)

en (x&}yb) € nup since n and. u

for all x in Sl(f,g) and y in Sz(f,g). Thus (Sl(f,g)/n) u (Sz(f,g)/p.)
= S/nup. Next we shall show that S/nyp is the semigroup Sl(f,g)/n

with Sz(f,g)/padjoined as zeroes. Let xeSl(f,g) and yeSz(f,g). Then
Xy € Sz(f,g) since Sz(f,g) is an-ideal of S. By (6.3.1) we have (xy,y)

€ u. Therefore
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(xn) (yw) x(nuwy(nuw
= xy(nuy)

= Xyu

n

Yu.

(xn) (yw) . Thus S/nuy is £,g)/n with S, (£,g)/u

2.

Since S is comutative, (y1) (xn) V(nuu)x(nuu) = x(mupy(uw =

adjoined as zeroes. #
H-
Theorem 6.4. The positive ' /splution )£ (*) on S are those and

dnly those (f,g) of

0 s, XeA

ah(x) , xeB

(6.4.1) £(x) =4 O

ch(x)- , x exyn

where A is a completely prime gl of S oF - —1:-_,‘ he empty 'set and B is

a coﬁpletely prime }l- empty set and n is a uﬁl )

congruence on S\(AUB), where (S\(AUB))/n = {1} or (S\(AuB))/n = {1,

= F-3 L2
et Y I I WIS
(1) :P ¢ 1,0, ‘ ¢ (mc # %1 g
AW IR U R B AR E
1(5) a = ac + bd :
with corresponding homomox;phism h : SvA-» {1,-1)} or a,‘b,c,d e F satisfy

@), 23, 13); (4) and

(5)' -a = ac + bd



with corresponding function h : S\A > {1,-1} such that

>

-h (x)h(y) if (x,y] & Xyn X B,
h(xy) = {
h(x)h(y) otherwise;
or
o X 6.0 0 o
bhz(x) ahz(x) 1o

(6.4.2) f(x) = <-bh2(x) <~(1-a)h2(x), e

: hi'(x) , X

where (I) M is prime ideal

such
(II) nis a_
=@ , and
(I11) ((s\C)/m)

= C/n-1f 1

F——

with CE aloined dm

(VI) a, b, c, .‘d F are such gth

ﬂ»ﬂﬂ’&%’lﬂ'ﬂ‘iﬂ&l’m’i

=a+b(

ammnﬁ@u um'mmaﬂ

h that (S\C)/n =

C

) as the zero or

ot

eu

{1}

-4

with corresponding functions h : S\C » {1,-1} and hz:
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= @, and

: » fo owing: ((S\C)/n) u (C/n).=
- (S\O)/n if piaffy” _(C/w)

‘t e semigroup (S:C)/n

Cs0 » {1,-1} such that h, is a homomorphism and h, is a

homomorphism on ey, e'y such that

= h,(xy) = {
4 h1(x)h2(y) - otherwise;

or a, b, e, & ¢ Fsatisfy (1),:(2),; (3}, (4} and

-h (Oh,(y)  if (X,y) € X;n X e'y,



-

Proof. By a strai
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(5)" -a = ac + bd (6) c = 1- 2a

with corresponding functions h;: S\C » {1,-1} and h,: CrD -+ {1,-1}

such that h1 is a homomorphism and h2 is a homomorphism on eu,

e'u such that

-h. (x)h,(y) if (x,y)s x.nix B
hyGy) - { 1 . 1

1 !/ otherwise.

hen all condition of c and

h (x}h.

can be shown that if
f,g : S > F are o , then (f,g) is a

positive-type sol

To show the ' @ . 6 g) is a positive-type

solution of (*) , i.e. in S and f(x) = f(x'l)

for all x.in S. Thus, FERTRT “We Mave that g(x) = g(x'l) and g(y) =
P [

g(y-'l) for all

(6.4.3) gly) = g(fjg v X_E(y) + f(x)f(y)

for all x,y in S. Léte€ = S, (f,g).alt follows from Lemma 3.5 that
e complﬁlu;ﬂ ANHUNTNELDI e o snc -

1( y8) s & filter of S or

ama\aﬂimymﬁ‘mnaﬂ

From C = s (f g) we have that (f,g) is a class 2 positive-type
solution of (*) on C. If C # @#, then by the proof of Theorem 5.9, we

have that f,g are of the forms:

(6.4.4) f(x) =

0 sXEA 0 s XEA
{ > g(x) = {

bhz(x) s X EENA ahz(x) A ol 0.
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where A is a completely prime ideal of C or A is the empty'se-t and
h,is a homomorphism from C\A into {1, -1} and a,be F are such that a #
150, a=a2+b2 ; or

G e g y Xe

(6.4.5] £0) ‘= bh (x) , Xeeu , gx) = ahz(x) , Xeeu
~bh (x) (l-a)hz(x) 2 x'aé'u

which is a K,-congr

3
as thé zero and h

€ F are such that

From S\C = S

h'(x) ,xei
(6.4.6) f(x) {

dh_(x) , ek ch (x) _, X £xyn

- Brucns SO ;
iy f;"lﬂﬁl zamﬁ‘%"w gt A
QW'F@N‘F] ﬁéfﬂs%%ﬂ@gﬂﬂ?@r%lf class 1 nor

of clas 2. For such (f,g) we have that C # @ and S\C # #. Let f

that E\C)/n {1} 0

where nis a‘fl

1°81

be the restrictions of (f,g) on S\C, and f2,g2 be the restrictions of

f,g on C. It is clear that (fl,gl) and (fz,gz) are solutions of (*)
on S\C and on C, respectively. By Theorem 5.9, we see that (f2,g2)
can be of the forms (6.4.4) or (6.6.5). So, there are two cases to be

considered.
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Case 1. (fz?gz) is of the form (6.4.4). Since (fl,gl) is a
class 1 positive-type solution, by Theorem 4.10, we have (fl,gl) is of

‘ the form (6.4.6). It follows from Theorem 3.6 and C = Sz(f,g) that

0 , XEA - 0 3 X EA

£f(x) = bhz(x) s X€CONA = J ahz(x) , X €EC\A

hl(x) , xel

-chl(x) b xexln
Let B = C\A By (M .2.2) (f,g) we have that A
is a completely pri or mpty set and B is a

(6.4.7) ah,y(y) = g0 %EEIE0) # BEIEGY) = (ac + bd)h, (Oh, ().

In the same way we can

From (6 4.7) we have that

ﬂz%)&i{% RENTHBANT

for all x in 1 andﬂll y in B.

i ?ih"iﬁ"w NSy

There are two case to be considered

(1) a

= ac + bd ,
or
(ii) -a = ac + bd.
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First, we assume that (i) holds. From (6.4.7) and (6.4.8) and a # 0

we conclude that

hyGy) = h OhE)

S (f,g) = S\C and yeB. Thus h Uh

W holds. From (6.4.7) and (6.4.8)

for all x in iuxln

homomorphism. Now, assume that

and a # 0 we conclude tha

h, (xy)

Thus, if we put h the form (6.4.1).

Case 2. (f Then we have
(0 o R0
ahz(x) . X € el
£ix)" B T (l-a)hz(x) s Xee'y
hl(x) 5 X/
dh(x) ,xexn '~ch(x) > X EXqM.

.wmmwﬂﬂﬂ@%EWQWﬂﬂﬂiwmwm

is a sem1group (SNC)/n with O/y adjoined. as zeroes.@.Thus, we can

mm&wwammmuuquwawaﬂ

(6.4.9) ahz(xy) = (ac + bd)hl(x)hz(y)

for all x in x40 and all y in ep, and

(6.4.10) ah,(xy) = ah (x)h,(y)
for all x in I and all y in eu, and
(6.4.11) (l-a)hz(xy) = ((l—a)c-bd)hl(x)hz(y) = (c-ac-bd)hl(x)hz(y)

for all x 'in xqn and all y in e'u, and
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(6.4.12) (l-a)hz(xy) = (l-a)hl(x)hz(y)

for all x in 1 and all y in e'M.
Since image hl’ image h2 are subsets of {1,-1}, it follows from (6.6.9)
that

‘+a =

There are two cases to

(1) : a

or

(iij -a

First, we assume th _‘ ‘:*' . .11), we have that c-a =
+(1-a). Therefore c . ,5‘55 ;l ce c #1, so ¢ = 2a -1,

bl ::m ??Tﬁffﬂ“mﬂjfl“i’ffi"i i

" ARIEN Str RS g g o

—hICx)hz(y) 1f.(x,y)s,xln X ey,
- hl(x)hz(y) otherwise.
Thus f,g are of the form (6.4.2). S

We know, from Theorem 3.9 , that a solution of (*) on S must

be of positive-type 'or of negative-type. Hence any solution of (")



$(6.5.2) " f(x) =

59 .

on S must be of the form given in Theorem 6.1 or Theorem 6.4. Therefore
Theorem 6.1 and Theorem 6.4 give us all the solutions of (*) on S. By
combining Theorem 6.1 and Theorem 6.4 we have our main result as

follows:

Theorem 6.5. The solutions of | on S are those and only those (f,g)

of the forms:

0 s, XEA.
(6.5.1) - £(%)

h(x)+121(x'1) , xdA

where A is a complét js the empty set and h is

a homomorphism from

where A is a compll ely prime ideal of S or AE]S the empty set and B

b 12 12\ T
(S‘“ﬁ)maﬁmmmqwm” Wi

that
(el 100 @ e g
@) 4 = 45b (4 cudt =1
(5) a = ac + bd

with corresponding homomorphism h : S‘A + {1,-1} or a,b,c,d € F satisfy

(1)’ (2), (3), (4) and
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(5)" -a = ac+bd

with corresponding function h : S\A - {1,-1} such that

{-h(x)h(y) if (x,y)e.xln x B,
h(x)h(y) otherwise;

\ la)hCX),
1(x) , x e

-
>
™

=

{6.5:3) f(x)

=<
m
(0]
_:.

»

1(x) » X € XM
where (I) v is a'Kg-cong : | complet ly prime ideal C of S such
that C/u {0 €, e'y h 0 as the zero or u = ¢, and
(IT) n 15 M g such that (S°C)/n = {i} or

(=t ar R T or g and
V; . .

(II11) ((S Cy#n ing: ((8~C)/n) v (C/w)

(S\C)/‘n ifu=9¢, (SS)C)/TI) u (C/n) =C/uif n=§0

ﬂ"uﬂ’“é LT R

th C/u adJomed‘ as zeroes and

| ’Q(W’%Mﬂ‘md%m%ﬂmﬂﬂ

@) a - # 1,0 (. & 11
R 3% B° 4 S
(5) a = ac+bd 6) ¢ = 2a-1°-

with corresponding functions hl: S\C » {1,-1} and hz:
C\0 » {1,-1} such that h; is a homomorphism and h, is a

homomorphism on ek, e'u such that
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-hl(x)hz(y) Rt vyl € xqn x e'y,
h,(xy) = { :
. hy (Oh, ) otherwise;

or a, b, c, d ¢ Fsatisty-{1), (2),'(8), (4) and

(5)* - a = ac+bd (6)' c = 1-2a
with correspond' .l L '.~ > {1,-1} and hZ: C\0 ~» {1,—1}
such that h; isw ~homomorphism hy is a homomorphism on ey,

- ‘ S — .
e'y such tﬁ:ﬁi—-"”" | -

€ Xy0 X en,

In this theorem, if n all conditions of c and

xqn are omitted.

ﬂUEJ’JVIEJVI?WEJ’]ﬂ?
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