CHAPTER V

SOLUTIONS OF CLASS 2

In this chapter, we shall determine all the solutions of (*) on S of class 2. The main result of this chapter is Theorem 5.10.

Theorem 5.1. (f,g) is a class 2 negative-type solution of (*) if and only if (f,g) is the trivial solution.

<u>Proof.</u> It is clear that the trivial solution is a class 2 negative-type solution of (*)

Conversely, assume that (f,g) is a class 2 negative-type solution of (*), i.e. f,g satisfying the conditions:

(*)
$$g(xy^{-1}) = g(x)g(y) + f(x)f(y)$$

for all x,y in S,

(5.1.1)
$$f(x) = -f(x^{-1})$$

for all x in S,

$$(5.1.2)$$
 g(e) \neq 1

for any e in E(S).

We claim that $f(x) = f(x^{-1})$ for all x in S. To prove this, let x in S. If $f(xx^{-1}) = 0$ then, by (5.1.2) and (3.4.1), we have $g(xx^{-1}) = 0$. Therefore, by (3.4.4) and using (3.4.3), we have that $f(x) = 0 = f(x^{-1})$. In the case $f(xx^{-1}) \neq 0$, it follows from (3.3.3) that

$$f(x) f(xx^{-1}) = g(x) [1-g(xx^{-1})],$$

 $f(x^{-1}) f(x^{-1}x) = g(x^{-1}) [1-g(x^{-1}x)].$

Thus, by (3.3.2) we have that

$$f(x)f(xx^{-1}) = f(x^{-1})f(x^{-1}x) = f(x^{-1})f(xx^{-1}).$$

It follows from $f(xx^{-1}) \neq 0$ that

$$f(x) = f(x^{-1}).$$

Hence we have our claim. From this and (5.1.1) we have that f(x) = 0 for all x in S. Therefore for each x in S, $f(xx^{-1}) = 0$ so, by (3.4.1) and (5.1.2), $g(xx^{-1}) = 0$. Thus, by (3.4.4), we have that g(x) = 0 = f(x). Hence f and g are identically zero, i.e. (f,g) is the trivial solution.

Lemma 5.2. Let (f,g) be any solution of (*) on S. Then the followings hold for all x in S:

(5.2.1) if
$$g(x) = g(xx^{-1})$$
 then $f(x) = f(xx^{-1})$,

(5.2.2) if
$$g(x) = -g(xx^{-1})$$
 then $f(x) = -f(xx^{-1})$,

$$[1-g(xx^{-1})][g(x)^2 - g(xx^{-1})^2] = 0.$$

<u>Proof.</u> Let $x \in S$. To show (5.2.1) we assume that $g(x) = g(xx^{-1})$. Thus, by (3.3.3) and (3.3.1) we have that

$$f(x) f(xx^{-1}) = g(x) - g(x)g(xx^{-1})$$

$$= g(xx^{-1}) - g(xx^{-1})^{2}$$

$$= g(xx^{-1}xx^{-1}) - g(xx^{-1})^{2}$$

$$= f(xx^{-1})^{2}.$$

Hence

$$f(xx^{-1})[f(x) - f(xx^{-1})] = 0.$$

Case 1. Assume that $f(xx^{-1}) \neq 0$. It follows that $f(x) = f(xx^{-1})$.

Case 2. Assume that $f(xx^{-1}) = 0$. By (3.3.1) we have that

$$f(x)^{2} = g(xx^{-1}) - g(x)^{2}$$

$$= g(xx^{-1}) - g(xx^{-1})^{2}$$

$$= g(xx^{-1}xx^{-1}) - g(xx^{-1})^{2}$$

$$= f(xx^{-1})^{2}$$

$$= 0.$$

Hence $f(x) = 0 = f(xx^{-1})$.

To show (5.2.2), we assume that $x \in S$ is such that $g(x) = -g(xx^{-1})$. Thus by (3.3.3) and (3.3.1), we have that

$$f(x) f(xx^{-1}) = g(x) - g(x)g(xx^{-1})$$

$$= -g(xx^{-1}) + g(xx^{-1})^{2}$$

$$= -g(xx^{-1}xx^{-1}) + g(xx^{-1})^{2}$$

$$= -f(xx^{-1})^{2}.$$

Hence

$$f(xx^{-1})[f(x) + f(xx^{-1})] = 0.$$

If $f(xx^{-1}) \neq 0$, then $f(x) = -f(xx^{-1})$. On the other hand, if $f(xx^{-1}) = 0$, it can be verified in the same way as in case 2 that $f(x)^2 = 0$ because $g(xx^{-1})^2 = (-g(xx^{-1}))^2$. Thus $f(x) = 0 = -f(xx^{-1})$. Therefore (5.2.2) holds.

By (3.3.3) we have that

$$f(x) f(xx^{-1}) = g(x) - g(x)g(xx^{-1})$$

= $g(x) [1-g(xx^{-1})].$

Therefore

$$f(x)^2 f(xx^{-1})^2 = g(x)^2 [1-g(xx^{-1})]^2$$
.

Hence it follows from (3.3.1) that

$$0 = g(x)^{2} [1-g(xx^{-1})]^{2} - f(x)^{2} f(xx^{-1})^{2}$$

$$= g(x)^{2} [1-g(xx^{-1})]^{2} - [g(xx^{-1}) - g(x)^{2}]$$

$$[g(xx^{-1}xx^{-1}) - g(xx^{-1})^{2}]$$

$$= g(x)^{2} [1-g(xx^{-1})]^{2} - [g(xx^{-1}) - g(x)^{2}]$$

$$[g(xx^{-1}) - g(xx^{-1})^{2}]$$

$$= g(x)^{2} [1-g(xx^{-1})]^{2} - [g(xx^{-1}) - g(x)^{2}]$$

$$g(xx^{-1}) [1-g(xx^{-1})]$$

$$= [1-g(xx^{-1})] [g(x)^{2} - g(x)^{2} g(xx^{-1}) - g(xx^{-1})^{2}]$$

$$= [1-g(xx^{-1})] [g(x)^{2} - g(xx^{-1})^{2}].$$

This proves (5.2.3).

Lemma 5.3. Let (f,g) be any solution of (*) of class 2. For e,e' in E(S), if $g(ee') \neq 0$, then

$$g(e) = g(ee') = g(e')$$
 and $f(e) = f(ee') = f(e')$.

<u>Proof.</u> Assume that (f,g) is a solution of (*) of class 2, i.e. g satisfies

$$(5.3.1)$$
 g(e) \neq 1

for any e in E(S). Let e,e' ϵ E(S). Replacing x,y in (*) by e,ee',

respectively, we find that

$$g(e(ee')^{-1}) = g(e)g(ee') + f(e)f(ee').$$

But

$$g(e(ee')^{-1}) = g(eee') = g(ee').$$

Therefore -

$$(5.3.2)$$
 g(ee') = g(e)g(ee') + f(e)f(ee').

Thus

$$g(ee')[1-g(e)] = f(e)f(ee')$$

 $g(ee')^{2}[1-g(e)]^{2} = f(e)^{2}f(ee')^{2}.$

Consequently, using (3.3.1), we obtain

$$g(ee')^{2}[1-g(e)]^{2} = [g(ee^{-1}) - g(e)^{2}][g(ee'(ee')^{-1}) - g(ee')^{2}].$$

Therefore

$$g(ee')^2 - 2g(ee')^2g(e) + g(ee')^2g(e)^2 = [g(e) - g(e)^2] [g(ee') - g(ee')^2]$$

= $g(e)g(ee') - g(e)g(ee')^2 -$
 $g(e)^2g(ee') + g(e)^2g(ee')^2.$

Hence

$$0 = g(e)g(ee') + g(e)g(ee')^{2} - g(e)^{2}g(ee') - g(ee')^{2}$$
$$= g(ee') [g(e) + g(e)g(ee') - g(e)^{2} - g(ee')].$$

Suppose $g(ee') \neq 0$. Then

$$0 = g(e) + g(e)g(ee') - g(e)^{2} - g(ee')$$

$$= g(e) - g(e)^{2} + g(e)g(ee') - g(ee')$$

$$= g(e) [1-g(e)] - g(ee') [1-g(e)]$$

$$= [1-g(e)] [g(e) - g(ee')].$$

Thus, by (5.3.1) we have that

$$g(e) = g(ee').$$

Substitute g(e) by g(ee') in (5.3.2) we have that

$$g(ee') = g(ee')^2 + f(e)f(ee').$$

But, from (*) we have that

g(ee') =
$$g(ee'(ee')^{-1})$$

= $g(ee')^2 + f(ee')^2$.

Thus

$$f(e)f(ee') = f(ee')^2$$

If $f(ee^i) = 0$ then, by (3.4.2), we have that $g(ee^i) = 0$ or $g(ee^i) = 1$ which is a contradiction. Thus $f(ee^i) \neq 0$, so

$$f(e) = f(ee')$$
.

Hence
$$g(ee') = g(e)$$
 and $f(ee') = f(e)$.

Now, replacing x,y in (*) by e', ee', respectively, we can verify in the same way as above that

$$g(ee') = g(e')$$
 and $f(ee') = f(e')$.

Thus
$$g(e) = g(ee') = g(e')$$
 and $f(e) = f(ee') = f(e')$. #

<u>Definition 5.4</u>. Let A be any subset of S and (f,g) be a solution of (*) on A. We say that (f,g) is one-to-one if

$$(f(x), g(x)) \neq (f(y), g(y))$$

for all x,y in A such that $x \neq y$.

Lemma 5.5. Let S be a Kronecker semigroup of order greater than 1 and (f,g) be any one-to-one solution of (*) of class 2. Then we have

$$(5.5.1) g(0) = 0 = f(0),$$

$$(5.5.2)$$
 $g(x) \neq 0$

for any x in S such that $x \neq 0$

(5.5.3)
$$g(x) + g(y) = 1$$
 and $f(x) + f(y) = 0$

for all x,y in $S \setminus \{0\}$ such that $x \neq y$.

<u>Proof.</u> Since S is a Kronecker semigroup, then xy = 0 for all x,y such that $x \neq y$. Furthermore E(S) = S, so $x = x^{-1}$ and $xx^{-1} = xx = x$. To show (5.5.1), suppose that $g(0) \neq 0$. Let $x \in S \setminus \{0\}$. Then x0 = 0, so $g(x0) = g(0) \neq 0$. Therefore, it follows from Lemma 5.3 that g(x) = g(x0) = g(0) and f(x) = f(x0) = f(0). This is contrary to the assumption that (f,g) is one-to-one. Thus g(0) = 0. It follows from (3.4.2) that f(0) = 0. Therefore (5.5.1) holds.

To show (5.5.2), suppose that there exists $x \in S \setminus \{0\}$ such that g(x) = 0. Then, by (3.4.2), we have f(x) = 0. Therefore, from (5.5.1) we have that g(0) = 0 = g(x) and f(0) = 0 = f(x), which is a contradiction. Thus $g(x) \neq 0$ for any x in $S \setminus \{0\}$.

To show (5.5.3), assume that $x,y \in S \setminus \{0\}$ are such that $x \neq y$. Thus we have that

$$(5.5.4) g(x)^2 + f(x)^2 = g(xx^{-1}) = g(x),$$

$$(5.5.5) g(y)^2 + f(y)^2 = g(yy^{-1}) = g(y).$$

From (5.5.1) we have that

$$(5.5.6) 0 = g(0) = g(xy) = g(xy^{-1}) = g(x)g(y) + f(x)f(y).$$

Therefore

$$g(x)g(y) = -f(x)f(y),$$

 $g(x)^{2}g(y)^{2} = f(x)^{2}f(y)^{2}.$

By using (5.5.4), (5.5.5) we have

$$g(x)^{2}g(y)^{2} = [g(x) - g(x)^{2}] [g(y) - g(y)^{2}]$$

$$= g(x)g(y) - g(x)g(y)^{2} - g(x)^{2}g(y) + g(x)^{2}g(y)^{2}.$$

Therefore

$$= g(x)g(y) - g(x)g(y)^{2} - g(x)^{2}g(y)$$

$$= g(x)g(y) [1-g(y) - g(x)].$$

Since $x,y \in S \setminus \{0\}$ and (5.5.2) holds, so $g(x) \neq 0$ and $g(y) \neq 0$. Therefore

$$0 = 1-g(y) - g(x)$$
.

It follows that

(5.5.7)
$$g(x) = 1-g(y)$$
 and $g(y) = 1-g(x)$.

From (5.5.4), (5.5.5), (5.5.7) we have

$$f(x)^{2} = g(x) - g(x)^{2} = g(x) [1-g(x)] = g(x)g(y)$$
$$= [1-g(y)] g(y) = g(y) - g(y)^{2} = f(y)^{2}.$$

Thus (f(x) - f(y))(f(x) + f(y)) = 0. Suppose that f(x) - f(y) = 0. Then f(x) = f(y). Therefore by (5.5.6), (5.5.7) we have

$$g(x)^{2} = g(x)g(y) + f(x)f(y)$$

$$= g(x) [1-g(x)] + f(x)^{2}$$

$$= g(x) - g(x)^{2} + f(x)^{2}.$$

$$g(x)^{2} = g(x) + f(x)^{2}.$$

But from (5.5.4) we have that

 $g(x)^2$

Thus

$$g(x)^2 = g(x) - f(x)^2$$
.

Thus f(x) = 0 since the characteristic of F is different from 2. It follows from (3.4.2) and the assumption that $g(e) \neq 1$ for any e in E(S) = S that g(x) = 0. This is contrary to (5.5.2). Hence f(x) + Cf(y) = 0. Therefore (5.5.3) holds. #

Theorem 5.6. (f,g) is a class 2 positive-type solution of (*) on S if and only if there exists a K-congruence µ on S and a one-to-one class 2 positive-type solution (f_0, g_0) on S/μ and a function h from S into {1,-1} whose restriction to any congruence class au is a homomorphism such that

$$f(x) = f_o(x_\mu)h(x)$$
 and $g(x) = g_o(x_\mu)h(x)$

for all x in S.

Assume that (f,g) is a class 2 positive-type solution of (*) on S, i.e. f,g satisfy

$$(5.6.1)$$
 g(e) \neq 1

for any e in E(S),

$$(5.6.2)$$
 f(x) = f(x⁻¹)

for all x in S. Let

$$\mu = \{(x,y) \in S \times S / g(xx^{-1}) = g(yy^{-1}) \text{ and } f(xx^{-1}) = f(yy^{-1})\}.$$

It is clear that μ is an equivalence relation. To verify that it is a congruence, let (x,y), $(u,v) \in \mu$. Then $g(xx^{-1}) = g(yy^{-1})$, $g(uu^{-1}) = g(vv^{-1})$, $f(xx^{-1}) = f(yy^{-1})$, $f(uu^{-1}) = f(vv^{-1})$. Therefore

$$g(xu(xu)^{-1}) = g(xx^{-1}(uu^{-1})^{-1})$$

$$= g(xx^{-1})g(uu^{-1}) + f(xx^{-1})f(uu^{-1})$$

$$= g(yy^{-1})g(vv^{-1}) + f(yy^{-1})f(vv^{-1})$$

$$= g(yy^{-1}(vv^{-1})^{-1})$$

$$= g(yv(yv)^{-1}).$$

If $g(xu(xu)^{-1}) = 0$. Then $g(xu(xu)^{-1}) = 0 = g(yv(yv)^{-1})$. Therefore it follows from (3.4.1) that $f(xu(xu)^{-1}) = 0 = f(yv(yv)^{-1})$. In the case $g(xu(xu)^{-1}) \neq 0$, we have $g(yv(yv)^{-1}) = g(xu(xu)^{-1}) \neq 0$, so $g(yy^{-1}vv^{-1}) = g(xx^{-1}uu^{-1}) \neq 0$. Thus it follows from Lemma 5.3 that $f(yy^{-1}) = f(yy^{-1}vv^{-1}) = f(vv^{-1})$ and $f(xx^{-1}) = f(xx^{-1}uu^{-1}) = f(uu^{-1})$. Since $f(xx^{-1}) = f(yy^{-1})$, so $f(yy^{-1}vv^{-1}) = f(xx^{-1}uu^{-1})$. Thus $(xu,yv) \in \mu$. Hence μ is a congruence on S. Note that $xx(xx)^{-1} = xx^{-1}xx^{-1} = xx^{-1}$. Hence $g(xx(xx)^{-1}) = g(xx^{-1})$ and $f(xx(xx)^{-1}) = f(xx^{-1})$. Therefore (5.6.3) $(xx, x) \in \mu$

for all x in S.

Now, we shall show that S/μ is a Kronecker semigroup.

<u>Case 1</u>. $g(e) \neq 0$ for any e in E(S). Let x,y ϵ S. Then $xx^{-1}yy^{-1} \epsilon E(S)$. Therefore $g(xx^{-1}yy^{-1}) \neq 0$. Thus it follows from Lemma 5.3 that

$$g(xx^{-1}) = g(xx^{-1}yy^{-1}) = g(yy^{-1})$$
 and $f(xx^{-1}) = f(xx^{-1}yy^{-1}) = f(yy^{-1})$.

Hence (x,y) ε μ for all x,y in S, i.e. $|S/\mu| = 1$, so S/μ is a Kronecker semigroup.

<u>Case 2</u>. g(e) = 0 for some e in E(S). Let e be fixed element of E(S) such that g(e) = 0. Therefore, by (3.4.2) we have that f(e) = 0. Claim that if $(x, y) \notin \mu$, then $g(xy(xy)^{-1}) = 0$. To show this, let $x,y \in S$ are such that $g(xy(xy)^{-1}) \neq 0$. It follows from Lemma 5.3 that

$$g(xx^{-1}) = g(xx^{-1}yy^{-1}) = g(yy^{-1})$$
 and $f(xx^{-1}) = f(xx^{-1}yy^{-1}) = f(yy^{-1})$.

Thus $(x,y) \in \mu$. Hence we prove that

$$(5.6.4)$$
 $g(xy(xy)^{-1}) = 0$

for all $(x,y) \notin \mu$.

Let $x,y \in S$. If $x\mu = y\mu$, then $(x,y) \in \mu$, so $(xy,yy) \in \mu$. From (5.6.3), we have that $(yy,y) \in \tilde{\mu}$. Therefore $(xy,y) \in \mu$, so $xy\mu = y\mu$. In the case $x\mu \neq y\mu$, by (5.6.4), we have $g(xy(xy)^{-1}) = 0$, so, by (3.4.1), we have that $f(xy(xy)^{-1}) = 0$. Thus $(xy,e) \in \mu$. Therefore

$$(x \mu) (y \mu) = xy \mu =$$

$$\begin{cases} y \mu & \text{if } x \mu = y \mu, \\ e \mu & \text{if } x \mu \neq y \mu. \end{cases}$$

Hence S/μ is a Kronecker semigroup having $e\mu$ (e ϵ E(S)) as the zero element.

Let us define f_c , g_c : $S/\mu \rightarrow F$ by

$$f_o(x\mu) = f(xx^{-1})$$
 and $g_o(x\mu) = g(xx^{-1})$

for all x in S. Since $(x,y) \in \mu \text{ iff } g(xx^{-1}) = g(yy^{-1}) \text{ and } f(xx^{-1}) = f(yy^{-1}),$

we have that f_c and g_c are well-defined and (f_c,g_c) is one-to-one. From (5.6.1), $g_c(x\mu) = g(xx^{-1}) \neq 1$ for all $x \in S$. For $x \in S$, $x\mu = (x\mu)^{-1}$ thus $f_c(x\mu) = f_c((x\mu)^{-1})$. Hence (f_c,g_c) is a one-to-one class 2 positive-type solution of (*) on the Kronecker semigroup S/μ .

From (5.2.3) and (5.6.1) we have that $g(x)^2 = g(xx^{-1})^2$ for all x in S. Thus $g(x) = g(xx^{-1})$ or $g(x) = -g(xx^{-1})$. Since F is a field of characteristic different from 2, we have that for $x \in S$, $g(xx^{-1}) \neq -g(xx^{-1})$ if $g(xx^{-1}) \neq 0$, so we can conclude that if $g(xx^{-1}) \neq 0$ then either $g(x) = g(xx^{-1})$ or $g(x) = -g(xx^{-1})$. Thus

$$g(x) = g(xx^{-1})h(x) = g(x\mu)h(x)$$

for all x in S, where

$$h(x) = \begin{cases} 1 & \text{if } g(x) = g(xx^{-1}) \neq 0 \text{ or } g(xx^{-1}) = 0, \\ -1 & \text{if } g(x) = -g(xx^{-1}) \neq 0. \end{cases}$$

By using (5.2.1), (5.2.2), (3.4.1) and (5.6.1) and the fact that characteristic of F is different from 2 we can conclude that

$$h(x) = \begin{cases} 1 & \text{if } f(x) = f(xx^{-1}) \neq 0 \text{ or } f(xx^{-1}) = 0, \\ -1 & \text{if } f(x) = -f(xx^{-1}) \neq 0. \end{cases}$$

Thus

$$f(x) = f(xx^{-1})h(x) = f_o(x_{\mu})h(x)$$

for all x in S. Now, to show that for each a ϵ S, the restriction of h to a μ is a homomorphism. Let a be a fixed element of S. If $g(aa^{-1}) = 0$, then for each $x \epsilon a\mu$, $g(xx^{-1}) = g(aa^{-1}) = 0$. Therefore h(x) = 1 for all $x \epsilon a\mu$. Thus the restriction of h to $a\mu$ is a homomorphism. In

the case $g(aa^{-1}) \neq 0$, assume that $x,y \in a\mu$. Since S/μ is a Kronecker semigroup, so $xy \in (a\mu)(a\mu) = a\mu$, and so $g_*(xy\mu) = g(xy(xy)^{-1}) = g(aa^{-1}) \neq 0$. Thus it follows from (3.3.2) and (5.6.2) that

$$g_{\circ}(xy\mu)h(xy) = g(xy)$$

$$= g(x)g(y^{-1}) + f(x)f(y^{-1})$$

$$= g(x)g(y) + f(x)f(y)$$

$$= g_{\circ}(x\mu)h(x)g_{\circ}(y\mu)h(y) + f_{\circ}(x\mu)h(x)f_{\circ}(y\mu)h(y)$$

$$= [g_{\circ}(x\mu)g_{\circ}(y\mu) + f_{\circ}(x\mu)f_{\circ}(y\mu)]h(x)h(y)$$

$$= [g_{\circ}(x\mu)g_{\circ}(y^{-1}\mu) + f_{\circ}(x\mu)f_{\circ}(y^{-1}\mu)]h(x)h(y)$$

$$= g_{\circ}(xy\mu)h(x)h(y).$$

Since $g_o(xy_\mu) \neq 0$, so h(xy) = h(x)h(y). Thus a restriction of h to $a\mu$ is a homomorphism for all a in S.

Conversely, assume that μ is a NR-congruence on S and (f_{\circ},g_{\circ}) is a one-to-one class 2 positive-type solution of (*) on S/μ and h is a function from S into $\{1,-1\}$ whose restriction to any congruence class a_{μ} is a homomorphism. Let

(5.6.5)
$$f(x) = f_*(x_\mu)h(x)$$
 and $g(x) = g_*(x_\mu)h(x)$ for all x in S. Observes that x, x^{-1} , $xx^{-1}\epsilon x\mu$ since $S/\mu \epsilon K$. Thus, by assumption on h, we have that

(5.6.6)
$$h(x) = h(xx^{-1}x) = h(xx^{-1})h(x) = h(x)h(x^{-1})h(x)$$
$$= h(x)^{2}h(x^{-1}) = h(x^{-1})$$

for all x in S, and

$$(5.6.7)$$
 $h(e) = 1$

for all e in E(S).

Now, to show that (f,g) is a solution of (*) on S, let $x,y \in S$. Therefore

$$g(xy^{-1}) = g.(xy^{-1}\mu)h(xy^{-1}).$$

But

$$\begin{split} g(x)g(y) + f(x)f(y) &= g_{\circ}(x\mu)h(x)g_{\circ}(y\mu)h(y) + f_{\circ}(x\mu)h(x)f_{\circ}(y\mu)h(y) \\ &= [g_{\circ}(x\mu)g_{\circ}(y\mu) + f_{\circ}(x\mu)f_{\circ}(y\mu)] h(x)h(y) \\ &= g_{\circ}(xy^{-1}\mu)h(x)h(y) \\ &= g_{\circ}(xy^{-1}\mu)h(x)h(y^{-1}). \end{split}$$

The last equality follows from (5.6.6). If $(x,y) \in \mu$ then $(x,y^{-1}) \in \mu$ since S/μ is a Kronecker semigroup. Therefore $h(xy^{-1}) = h(x)h(y^{-1})$, so

$$g(xy^{-1}) = g(x)g(y) + f(x)f(y).$$

In the case $(x,y) \notin \mu$, we have that $xy^{-1}\mu = xy\mu$ is the zero element. Therefore, it follows from (5.5.1) that

$$g.(xy\mu) = 0.$$

Thus we have that

$$g(xy^{-1}) = 0 = g(x)g(y) + f(x)f(y)$$
.

Thus (f,g) is a solution of (*) on S. From (5.6.5), (5.6.6), (5.6.7) and the assumption on $(f_{\bullet}, g_{\bullet})$, we have that

$$f(x) = f_o(x\mu)h(x) = f_o(x^{-1}\mu)h(x) = f_o(x^{-1}\mu)h(x^{-1}) = f(x^{-1})$$

for all x in S, and

$$g(e) = g_{o}(e\mu)h(e) = g_{o}(e\mu) \neq 1$$

for all e in E(S). Thus (f,g) is a class 2 positive-type solution of (*) on S.

Remark 5.7. By Theorem 5.6 we see that to determine all class 2 positive-type solutions of (*) on S, we need to determine all one-to-one class 2 positive-type solutions of (*) on a Kronecker semigroup S/μ Hence it is sufficient to look for all one-to-one class 2 positive-type solutions of (*) on a Kronecker semigroup S.

Theorem 5.8. Let S be a Kronecker semigroup. Then a one-to-one class 2 positive-type_solution of (*) on S exists iff | ISI \le 3. In such these case any solution must be of the following forms:

Case 1: If |S| = 1, say $S = \{0\}$, then

$$(5.8.1)$$
 f(x) = b , g(x) = a

where a, b ϵ F are such that $a \neq 1$ and $a = a^2 + b^2$.

Case 2: If |S| = 2, say $S = \{0, e\}$ with 0 as the zero, then

(5.8.2)
$$f(x) = \begin{cases} 0, x = 0 \\ b, x = e \end{cases}$$
, $g(x) = \begin{cases} 0, x = 0 \\ a, x = e \end{cases}$

where a,b ϵ F are such that a, \neq 1,0 and a = $a^2 + b^2$.

Case 3: If |S| = 3, say $S = \{0,e,e'\}$ with 0 as the zero, then

(5.8.3)
$$f(x) = \begin{cases} 0, & x = 0 \\ b, & x = e \end{cases}, \quad g(x) = \begin{cases} 0, & x = 0 \\ a, & x = e \end{cases}$$

where $a,b \in F$ are such that $a \neq 1,0$ and $a = a^2 + b^2$.

<u>Proof.</u> By straight forward verification, it can be shown that (f,g) in (5.8.1), (5.8.2) and (5.8.3) are one-to-one class 2 positive-type solutions of (*) on S.

To show the converse, assume that (f,g) is a one-to-one class 2 positive-type solution of (*) on S, i.e. f,g satisfying the conditions:

$$(5.8.4)$$
 g(e) \neq 1

for any e in E(S),

$$(5.8.5)$$
 $f(x) = f(x^{-1})$

for all x in S,

$$(5.8.6)$$
 $(f(x), g(x)) \neq (f(y), g(y))$

for any $x \neq y$ in S. To show that $|S| \leqslant 3$, suppose that |S| > 3. Let e, e', e'' ϵ S be distinct and different from zero element of S. Thus, by (5.5.3) we have that

$$g(e) + g(e') = 1$$
 and $f(e) + f(e') = 0$

and
$$g(e) + g(e'') = 1$$
 and $f(e) + f(e'') = 0$.

Thus g(e') = g(e'') and f(e') = f(e''), contrary to the assumption that (f,g) is one-to-one. Hence $|S| \le 3$.

Next, we shall show that (f,g) must be of the form (5.8.1) or (5.8.2) or (5.8.3).

Case 1: Assume that |S| = 1. Then $S = \{0\}$. Let a = g(0) and b = f(0). It follows from (5.8.4) that $a \ne 1$. Since $0 = 0^{-1}$ and $0 = 00^{-1}$, $g(0) = g(00^{-1}) = g(0)g(0) + f(0)f(0)$, so $a = a^2 + b^2$. Thus f,g are of the form (5.8.1).

Case 2: Assume that |S| = 2, say $S = \{0,e\}$ with 0 as the zero. It follows from (5.5.1) and (5.5.2) that f(0) = 0 = g(0) and $g(e) \neq 0$. Therefore, if we let b = f(e) and a = g(e), then it follows from (5.8.4) and $g(e) \neq 0$ that $a \neq 1,0$. Since $e = e^{-1}$ and $e = ee = ee^{-1}$, therefore $g(e) = g(ee^{-1}) = g(e)g(e) + f(e)f(e)$, so $a = a^2 + b^2$. Thus f,g are of the form (5.8.2).

Case 3: Assume that |S| = 3, say $S = \{0,e,e'\}$ with 0 as the zero. We can verify in the same way as case 2 that f(0) = 0 = g(0) and f(e) = b, g(e) = a where $a,b \in F$ are such that $a \ne 1,0$ and $a = a^2 + b^2$. From (5.5.3) we have that

$$g(e) + g(e') = 1$$
 and $f(e) + f(e') = 0$

Thus g(e') = 1-a and f(e') = -b. Therefore f,g are of the form (5.8.3)

Theorem 5.9. (f,g) is a class 2 positive-type solution of (*) on S iff f,g are of the forms:

(5.9.1)
$$f(x) = \begin{cases} 0, & x \in A \\ bh(x), & x \notin A \end{cases}, g(x) = \begin{cases} 0, & x \in A \\ ah(x), & x \notin A \end{cases}$$

where A is a completely prime ideal of S or A is the empty set and h is a homomorphism from S \setminus A into {1,-1} and a,b \in F are such that a \neq 1,0, a = $a^2 + b^2$; or

$$(5.9.2) f(x) = \begin{cases} 0 & , x \in \overline{0} \\ bh(x) & , x \in e\mu \\ -bh(x) & , x \in e'\mu \end{cases} g(x) = \begin{cases} 0 & , x \in \overline{0} \\ ah(x) & , x \in e\mu \end{cases} (1-a)h(x) & , x \in e'\mu \end{cases}$$

where μ is a \mathbf{R}_3 -congruence on S such that $S/\mu = \{\bar{0}, e\mu, e^{\dagger}\mu\}$ with $\bar{0}$ as the zero and $h: S\setminus\bar{0} \to \{1,-1\}$ is a homomorphism on $e\mu, e^{\dagger}\mu$ and $a,b\in \mathbb{R}$ are such that $a \neq 1,0$ and $a = a^2 + b^2$.

<u>Proof.</u> By straight forward verification, it can be shown that (f,g) in (5.9.1) and (f,g) in (5.9.2) are class 2 positive-type solutions of (*) on S.

To show the converse, assume that (f,g) is a class 2 positive-type solution of (*) on S. It follows from Theorem 5.6 that there exists a \mathbb{R} -congruence μ on S and a one-to-one class 2 positive-type solution (f_o,g_o) of (*) on S/μ and a function h from S into $\{1,-1\}$ whose restriction to a μ is a homomorphism for all a ϵ S such that

(5.9.3)
$$f(x) = f_o(x\mu)h(x)$$
, $g(x) = g_o(x\mu)h(x)$

for all x in S. It follows from Theorem 5.8 that $|S/\mu| \le 3$. We shall determine (f,g) according to the order of S/μ .

Case 1: Assume that S/μ is trivial. By Theorem 5.8, we have that

$$f_o(x\mu) = b$$
 and $g_o(x\mu) = a$

where $a,b \in F$ are such that $a \ne 1$ and $a = a^2 + b^2$. Thus from (5.9.3) we have that

$$f(x) = bh(x)$$
 and $g(x) = ah(x)$

for all x in S. Thus, we see that if a = 0, then b = 0 and so f,g are of the form (5.9.1) where A = S, and if $a \neq 0$, then f,g are of the form (5.9.1) where $A = \emptyset$.

Case 2: Assume that S/μ is a Kronecker semigroup of order 2, say $S/\mu = \{\bar{0}, e\mu\}$ with $\bar{0}$ as the zero. By Theorem 5.8 we have that

$$f_{o}(x_{\mu}) = \begin{cases} 0 & , x_{\mu} = \overline{0} \\ b & , x_{\mu} = e_{\mu} \end{cases}$$
, $g_{o}(x_{\mu}) = \begin{cases} 0 & , x_{\mu} = \overline{0} \\ a & , x_{\mu} = e_{\mu} \end{cases}$

where a,b ϵ F are such that a \neq 1,0 and a = a^2 + b^2 . Therefore, by (5.9.3) we have

$$f(x) = \begin{cases} 0 & , & x \in \overline{0} \\ bh(x) & , & x \in e_{\mu} \end{cases}, g(x) = \begin{cases} 0 & , & x \in \overline{0} \\ ah(x) & , & x \in e_{\mu}. \end{cases}$$

Let $A = \overline{0}$. Then $e\mu = S \setminus A$. Since $\overline{0}e\mu = e\mu\overline{0} = \overline{0}$ and $e\mu e\mu = e\mu$, A is a completely prime ideal of S. It follows from assumption on h that h is a homomorphism from $e\mu = S \setminus A$ into $\{1,-1\}$. Thus f,g are of the form (5.9.1).

Case 3: Assume that S/μ is a Kronecker semigroup of order 3, say $S/\mu = \{\bar{0}, e\mu, e^{i}\mu\}$ with $\bar{0}$ as the zero. By Theorem 5.8 we have that

$$f_{o}(x\mu) = \begin{cases} 0 & , & x\mu = \bar{0} \\ b & , & x\mu = e\mu \end{cases}, \quad g_{o}(xu) = \begin{cases} 0 & , & x\mu = \bar{0} \\ a & , & x\mu = e\mu \end{cases}$$

$$1-a & , & x\mu = e^{\dagger}\mu$$

where a,b ϵ F are such that $a \neq 1,0$ and $a = a^2 + b^2$. Thus, by (5.9.3) we have that

$$f(x) = \begin{cases} 0 & , x \in \overline{0} \\ bh(x) & , x \in e^{\mu} \end{cases}, g(x) = \begin{cases} 0 & , x \in \overline{0} \\ ah(x) & , x \in e^{\mu} \end{cases}$$
$$(1-a)h(x), x \in e^{\mu}$$

where h: $S\setminus \tilde{0} \to \{1,-1\}$ is a homomorphism on eµ and e'µ. Therefore f,g are of the form (5.9.2).

Theorem 5.10. The class 2 solutions of (*) on S are those and only those (f,g) of the forms:

(5.10.1)
$$f(x) = \begin{cases} 0, x \in A \\ bh(x), x \notin A \end{cases}, g(x) = \begin{cases} 0, x \in A \\ ah(x), x \notin A \end{cases}$$

where A is a completely prime ideal of S or A is the empty set and h

is a homomorphism from SNA into $\{1,-1\}$ and a, b ϵ F are such that a \neq 1,0, a = $a^2 + b^2$; or

$$(5.10.2) \quad f(x) = \begin{cases} 0 & , x \in \overline{0} \\ bh(x) & , x \in e\mu \\ -bh(x) & , x \in e'\mu \end{cases} , \quad g(x) = \begin{cases} 0 & , x \in \overline{0} \\ ah(x) & , x \in e\mu \\ (1-a)h(x) & , x \in e'\mu \end{cases}$$

where μ is a \Re_3 -congruence on S such that $S/\mu = \{\bar{0}, e\mu, e'\mu\}$ with $\bar{0}$ as the zero and $h: S\setminus\bar{0} \to \{1,-1\}$ is a homomorphism on $e\mu, e'\mu$ and $a,b\in F$ are such that $a \neq 1,0$ and $a = a^2 + b^2$.

<u>Proof.</u> By straight forward verification, it can be shown that (f,g) in (5.10.1) and (f,g) in (5.10.2) are class 2 solutions of (*).

Conversely, assume that (f,g) is a class 2 solution of (*).

By Theorem 3.9, (f,g) must be class 2 solution of negative-type or positive-type.

If (f,g) is a class 2 negative-type solution of (*), then by Theorem 5.1, (f,g) is the trivial solution. Thus f,g are of the form (5.10.1) where A = S.

If (f,g) is a class 2 positive-type solution of (*), then by Theorem 5.9, f,g are of the forms:

$$f(x) = \begin{cases} 0, x \in A \\ bh(x), x \notin A \end{cases}, g(x) = \begin{cases} 0, x \in A \\ ah(x), x \notin A \end{cases}$$

where A is a completely prime ideal or A is the empty set and h is a homomorphism from SNA into $\{1,-1\}$ and $a,b \in F$ are such that $a \ne 1,0$ and $a = a^2 + b^2$; or

$$\mathbf{f}(\mathbf{x}) \ = \ \begin{cases} 0 & \text{, } x \in \overline{0} \\ bh(x) & \text{, } x \in e\mu \\ -bh(x) & \text{, } x \in e^{\dagger}\mu \end{cases} \quad , \quad g(x) \ = \ \begin{cases} 0 & \text{, } x \in \overline{0} \\ ah(x) & \text{, } x \in e\mu \\ (1-a)h(x) & \text{, } x \in e^{\dagger}\mu \end{cases}$$

where μ is a \mathbf{R}_3 -congruence on S such that $S/\mu = \{\bar{0}, e\mu, e^{\dagger}\mu\}$ with $\bar{0}$ as the zero and $h: S\setminus\bar{0} \to \{1,-1\}$ is a homomorphism on $e\mu, e^{\dagger}\mu$ and $a,b \in F$ are such that $a \neq 1,0$ and $a = a^2 + b^2$.

ิ์ ศูนยวทยทรพยากร จุฬาลงกรณ์มหาวิทยาลัย