CHAPTER V

SOLUTIONS OF CLASS 2

In this chapter, we shall determine all the solutions of (*)

on S of class 2. The main re u. f this chapter is Theorem 5.10.

Theorem 5.1. (f,g) is an - ie=type solution of (*) if and
only if (f,g) is the

Proof. It is clear t

solution of (*)

Conversely,

of (*), i.e. f,g sati

* gy h

for all x,y in S, 1\ =~
Y.,
(5.1.1) £(x) m —

foi all x in

Ui panineng
= -QRIINIUNRINY 1Y

We claim that f(x) = f(x-l) for all x in S. To prove this,
let x in S. If f(xx"1) = 0 then, by (5.1.2) and (3.4.1), we have

g(xx'l) = 0. Therefore, by (3.4.4) and using (3.4.3), we have that
f(x) =0 = f(x—l). In the case f(xx'l) # 0, it follows from (3.3.3)

that
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g [1-gexh ],

gl [1-gx 0]

F£xx Y

[}

£ HEE %)

Thus, by (3.3.2) we have that

1

£ £xx ) FeC et e i tirea Y

A
It follows from £(xx ) # 0

f(x)

Hence we have our clai 7 ~ -Lﬂ ) we have that f(x) = 0
for all x in S. 1) = 0 so, by (3.4.1)
and (5.1.2), g(xx'» . ‘have that g(x) = 0 =
f(x). Hence f and (f,g) is the trivial

solution. #

Lemma 5.2. Let (f,g) b 561 tiomuof | . Then the followings
hold for all x in S:
(5.2.1) if g(x

v 77 — e 7_ -
(5.2.2) 1f g(x

(5.2:3) [1-goech)] (g2 qjxx‘lizl . 0.

ﬂ“ﬂ?ﬂgﬂng’]ﬂt g(X) g(xx s

Proof Let qgss To show we assume

9 W’T’Nﬂ?ﬂwﬁ“\‘? ng Y

£(x) £(xx" ) gx) - g(X)glxx" )

g(XX' ) - g(xx' )

goxxxl) - gh?

Foce
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Hence

Fox Y [e0 - for ] =0,

Gt 1. As<inid that B )i # 0. ~1t Eollows ‘that ‘£(x) = £(xx"2).

By (3.3.1) we have that

Case 2. Assume that f(xx'l) = 0.

£(x) 2

: %?ésxj‘igﬁ“

v‘ v.
Ls

is such that g(x) = -g(xx-l).
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If f(xx1) # 0, then £(x) = -£(x"1). On the other hand, if £(xx™ 1) =0,

-1)2

Hence

it can be verified in the same way as in case 2 that f(x)2 =0
because g(xx-l)2 = (-g(xx-l))z. Thus £(x) 2.0 = —f(xx-l). Therefore

{5.2.2) - holds.,

By (3.3.3) we have that




30

£(x) £(xx~1)

g(x) - g®gxxly
g0 [1-gxxb].

n

Therefore

£0 %602 = g2 [1-gx ]2

Hence it follows from (3.3.1

] e@? - g%y -
Zgx 1y )

g B

Lo

[ e —
N
i

This proves (5.2.3). #

s AUHINENINEGNS . ...
. é ﬁﬁ(mﬁm URIANY1A Y

g(e) glee') = g(e') and f£f(e) = f(ee') = f(e').

Proof. Assume that (f,g) is a solution of (*) of class 2, .60 ¢

satisfies

(5:3.1) gle) # 1

for any e in E(S). Let e,e' ¢ E(S). Replacing x,y in (*) by e,ee',
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respectively, we find that

gle(ee)™) = gledglee’) + E(e)E(ee").
But

g(e(eé')'l) = gleee’). = gles').
Therefore -
(5.3.2)  g(ee") 10 e)f(ee').
Thus

Therefore

]
Zﬁ) A e o [g(ﬂ— g(e)?] lgleer) - glee')?’]

o = gle)glee') - gledglee)? -

AUEAINENTNEIRG o
AR AHRLINEIAY e

glee') [gle) + g(e)glee') - g(e)2 - glee")].

gleen)? - 2g(ee)

Then

o
°

Suppose g(ee') #

0 = g(e) + g(e)glee") -'g(e)2 - g(ee')
= g(e) - g(e)2 + g(e)g(ee') - g(ee')
= g(e) [1-g(e)] - glee') l1-g(e))

= [1-g(e)] [gle) - gleeN].
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Thus, by (5.3.1) we have that

g(e) S glee').

Subsitute g(e) by g(ee') in (5.3.2) we have that

glee") + f(e)f(ee')

If f(ee') = 0 then, 3.422), we have that g(ee') = 0 or g(ee') = 1

f(e) ¥

Hence gtee' ) m g (é) and f (eeﬁ f (e).

o rotac 1 A% g B3 B T cn e 1

the same way as above that
AR NNIMANINYIAY
q &lee’) = f(ee') = f(e'
Thus gle) = \ g(ee') = g(e') and f(e) = f(ee') = f(e'). #

Definition 5.4. Let A be any subset of S and (f,g) be a solution of

(*) on A. We say that (f,g) is one-to-one if

EX, gx)) # (EO), gO)
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for all x,y in A such that x # y,

Lemma 5.5. Let S be a Kronecker semigroup of order greater than 1

and (f,g) be any one-to-one solution of (*) of class 2. Then we have

(5.5,1) Sl s on = ey

(5,50 o A

for any x in S such thatx#0

5.5.3) g + T and £ + £() = O
|

for all x,y in S\'{Q}/SUCh that X°'# y.

F 4

Proof. Since S i€ a KroheCker semigroup, then xy = 0 for all x,y such
that x # y. Furthefmoye E(S) = S,fégix : % nd xxl - xx=x. To
show (5.5.1), suppose that g(0) # 0. Let x&S<\{0}. Then x0 = 0, so

g(0) # 0. Therefore, it foiiﬁ%% from Lemma 5.3 that g(x) =

g(x0)
g(x0)

that (f,g) is onéiio-one. ThUsS Z(UJ = Uits i%jlows from (3.4.2) that

ST R
g(0) and £(x) = f(x0) = £(0). “This is contrary to the assumption
- 3 - =

£(0) = 0. Therefore (5.5.1) holds" "
To show'/(5.5.2) ; suppose /that ‘there exists x e S\{0} such that
g(x) = 0. Then, by (3.4.2), we have f(x) = 0. Therefore, from (5.5.1)

we héve that g(0y ="0,= g(x) 'and £(0) = 0=f(x),.whichyis-a contradiction.

Thus g(x) # 0 for any x in S~{0}.

To show (5.5.3), assume that x,y € S\{0} are such that x # y.

Thus we have that

glxx 1)

gy ™h

(5.5.4) g%+ £0)2 g(x),

(5.5.5) g%+ t;m? g(y) .
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From (5.5.1) we have that
(5.5.6) 0 = gO) = glm) = gy = gL + EE).

Therefore

g(x)gly) = -f(x)f(y),

g %) 2

o iy
By’using (5.5.4}, (53 arvr ,,.A"/‘J.-ﬂ'
A/ [re0

g e ) g(y)
NN )?
g (y)“. :

g(y)zl
- gx) g(y) +

Therefore ﬁ: \
40
Pl /' ‘ 2" 2
0 g (gl - 8(x)g()” - gx) g
A - ‘
o] 1-g(y) - g(x)1.
Since x,ySS\{O v-ﬁ:-:;::;::;;:‘mz:;-;‘. d g(y) # 0. Therefore

e

0 ID : i 1 g T 3 %
. ‘ﬁ‘ummmwmm

(5.5.7) g = 1-g) o and o 800 = 1-gkx
From ﬂwq(ﬁqﬂjmwmquﬂqaﬂ
£ = g - g2 =g [1-g0] = g)gly)

[1-g)]1 g = g - g2 = £3)2.

Thus  (f(x) - f(y))(f(x) + £(y)) = 0. Suppose that £(x) - f(y) =
Then £(x) = f(y). Therefore by (5.5.6), (5.5.7) we have
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0 = g(x)gly) + £f(X)£(y)
= g0 [1-g®] + £(0)2
= g - g0+ £m)2.
" Thus g(x)2 = g(x) + f(x)%

But from (5.5.4) we have that

g(x)°

Thus £(x) = 0 since theweh&racteristi is different from 2;

It follows from (3.4 afid 't :‘.: xp - th g(e) # 1 for any e in

E(S) =S that g(x). h '+i,;; f:ﬂ‘ t 5.2). Hence f(x) +
£(y) = 0. rinp 1) #
Theorem 5.6. " 2 €lass f Q; i ve-t pe solution of (*) on S if
and only if there exists S and a one-to-one class 2
positive-type and a function h from S into
{1,-1} whose re ay is a

£(x) = £,00h()  and  g(x) = g,Gwh(X)

o AUYINYNINYINT
rroe. AR B AT R UH AT Bhicr o -

on S, i.e. f,g satisfy

(5.6.1) g(e) #.1
for any e in E(S),

(5.6.2) f(x)

BLx ")

for all x in S. Let

T1bBMMTIL
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p = {xy)es x5/ gex D = goy™h and £oxY) = £y H).

It is clear that u is an equivalence relation. To verify that it is
a congruence, let (x,y), (u,v)e u. Then'g(xx-l) = g(yy'l), g(uu'l) =

g(vv_l), ‘f(xx_l) = f(yy_l), f(uu'l) = f(vv'l). Therefore

1) 4 e ey

L+ £y e

"7). Therefore it
follows from (3.4.1) ; ,, 1 ‘1). In the case
v : : v 14 ‘ v e |
g (xu(xu) l) # 0, we have u) 1) # 0, so glyy Loy )
a 5.3 thit £y 2) =
-1 - el -1 -1 £ il
flyy “vw ) = ~uu 7)) = f(uu 7). Since
4 )
f(xx 7) = f(yy

3 1 -1
Hence u is a congr = xx XX T = xx, ‘Hence

gex(xx) ™ = gxx )and £ (xx (xx) L £(xx"7).

G55 @ugawﬂw5WBWﬂi
“W‘fa\mmum'mmaﬂ

ow, we shall show that S/u is a Kronecker semigroup.,

'I'herefore -

Case 1. g(e) # 0 for any e in E(S). Let x,yeS. Then
xx—lyy'lﬁé E(S). Therefore g(xx_lyy—l) # 0. Thus it follows from

Lemma 5.3 that

gD = gxlyy ™) = gy and £oacY) - £eayy ™) = £y ).
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Hence (x,y) ¢ u for all x,y in S, i.e. |S/u|=1, so S/u is a

Kronecker semigroup .

Case 2. g(e) = 0 for some e in E(S). Let e be fixed element
of E(S) such that g(e) = 0. Therefore, by (3.4.2) we have that f(e)= 0.

Claim that if (x, y)fll, ~ then g(xy(xy)'l) = 0. To show this,

',/// It follows from Lemma 5.3

3 - |
g(xx’l) = g(xx-l)"}’(’ : N f(XX—l}’}’-l) = f(}’)’-l).

let x,y ¢S are such that g(xy(

that

Tllls (x’)')e uo

(5.6.4)  glxy ()]

for all (X,y)£ u.

Let x,y€S. : . he | (x,y) e p, so (Xy,yy)e. u. From

(5.6.3), we have i‘ga, y) e (Y4Y)E U, SO Xyu = Y.

In the case xu # ¥, by

Thus @w,e) € MW Therefore

k) wﬂmwmm

(3.4.1), we have tlﬂt f(xy (xy)

EHOW =xyu =

IRIRINTUNAINTIA Y

Hence Sﬁl is a Kronecker semigroup having en (ee E(S)) as the zero
element.

ket us define £, g ¢ S/u > F by
-1 ; -1
) = f(xx') and go(xu) = glxx )

for all x in S. Since (x,y) € u iff g(xx'l) = g(yy"l)and f(xx"l) E f(yy',l),
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we have that f. and g are well-defined and (f.,g,) is one-to-one.
From (5.6.1), g, (x¥) = g(xx'l) # 1 for all xeS. For x€8S, xu =
(xu)'l thus f_(xu) = fe((xu)'l). Hence (f_,g,) is a one-to-one

class 2 positive-type solution of (*) on the Kronecker semigroup S/u.

From (5.2.3) and (5.6.1) we have that g(x)2 = g(xx.l)2 for

all x in S. Thus g(x) = g(xx'l). Since F is a

field of characteristi have that for x¢8S,
g(xx’l) ;é'-‘g(xx'l) conclude that if g(xx'l)

# 0 then either g(:

g(x)

for all x in S, where

7€ carﬂ:onclude that

hwﬂwﬁ W}jw 3 yvmmm g
Thus QW’la\‘lﬂim&JWIW‘&l’]aﬂ

f(x) = ixx )h(x) = f_(xp)h(x)

characteristic of FDS

for all x in §. Now, to show that for each ac¢S, the restriction of h
to apy is a homomorphism. Let a be a fixed element of S. If g(aa'l) =
then for each  x¢ ay, g(xx'l) = g(aa-l) = 0, Therefore h(x) =

for all xcau. Thus the restriction of h to ay is a homomorphism. In
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the case g(aa'l) # 0, assume that X,y € au. Since S/u is a Kronecker
semigroup, so Xy € (a¥)(aM) = au, and so g, (xyu) = gy ™ =
g(aa™}) #0. Thus it follows from (3.3.2) and (5.6.2) that

g, (xyw)h(xy) g(xy)

- ggll D, + fFWEr™
‘ IE()
() + £, Gh ()£, u)h()
o () 268 £. 0w | h(ORE)

4 \\\\;\Xuafo(ynlu)] h()h(y)
’ 1 1 a restriction

I
il }*‘.-ﬂa‘ o
Conversely, assume”tha: - is afi-congruence on S and (f,,g,)

is a one-to-one clas of (*) on S/p and h

is a function from S into {1 'fw ‘to any congruence
class ap is a homo hism m

E ﬁ%ﬂ?%ﬂﬂﬁﬂﬂﬁﬁigﬂmm
for all x in S. Observes thatrx, x , e Xy since S/ue'K. " Thus,

Wm&m1&¢mﬁuﬂﬁﬂﬂﬂﬂﬂaﬂ

h(xx~ x) h(xx~ )h(x) e h()h(x" )h(x)

B =B D

(5.6.6) h()

for all x in S, and
£5.6.7) h(e) =1

for all e in E(S).
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~ Now, to show that (f,g) is a solution of (*) on S, let x,yeS. Therefore

g™ = 8.y Wh(y .
But
gx)gly) + £X)£()= g, xWh(X)g. yWh(y) + £. xWh(X)£, (yWh(y)
' W+ £, () E, 1)) h(h()
ok
The last equality fo 1/ ¢ :3f ‘ \\*:y) e u then (x,y )e s

since S/u is a Krone
so
-1,

gly )

In the case (x,y) ¢ u, we haye that.: "4 = xyu is the zero element.

Therefore, it follows frg%gg%;;;} .

5. ot

Thus we have that ED

ﬂ*ﬁ)ﬂ TR IR R
O e A o

£60 S0 CRNA » £ O = i ahec Yy = sl
for all x in S, and

gle) = g,(eu)hle) = golen) # 1

for all e in E(S). Thus (f,g) is a class 2 positive-type solution of

(*) on S. ' #
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Remark 5.7. By Theorem 5.6 we see that to determine all class 2
positive-type solutions of (*) on S, we need to determine all one-to-
one class 2 positive-type solutions of (*) on a Kronecker semigroup S/u
Hence it is sufficient to look for all one-to-one class 2 poSitive-

type solutions of (*) on a Kronecker semigroup S,

Theorem 5.8. Let S be a K ofsl . Then a one-to-one class 2

\ i

positive-type_solutio iff 1Sl < 3, 1In such these

case any solution m
Case 1: If |S}
(5.8.1) f(x)

where a,be F are su

Case 2;  If |Sl 0 as the zero, then
s Xx=0
(5.8.2) f(x) :{
s X =e

s I HTIE PGN A o oo e

55 AR nmu‘imuﬂ’{ T

where a,b e F are such that a # 1,0 and a = a2 . bz,

Proof. By straight forward verification, it can be shown that (f,2)
in (5.8.1), (5.8.2) and (5.8.3) are one-to-one class 2 positive-type

solutions of (*) on S.
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To show the converse, assume that (f,g) is a one-to-one class 2

positive-type solution of (*) on S, i.e. f,g satisfying the conditions:

(5.8.4) g(e) $# 1

for any e in E(S),
(5.8.5) £(x) = £ 1

for all x in S,

(5.8.6) (£(x), g(X)E: N
for any x # y in S. :!:OF

Let e, e', e"¢ S be

suppose that [S| > 3,
'{"_e'_ t m zero element of S.

Thus, by (5.5.3) w

g(e) j + £(e') =0
and gle) + = {:1 : e) + f(e") =0.
Thus g(e') = g(e") and (g""}"?.ﬁ rary to the assumption that

or (5.8.2) or (ssj) il . .l
=i

and b = £(0).9) It follows from 8 4) that a . Since 0 =

‘ﬁWﬁ’Mﬂ"ﬁﬂé%ﬂﬂ%ﬁl’Tﬁﬂ“"

Thus f,g are of the form (5.8. 1)

Case 2: Assume that |S| =2, say S = {0,e} with 0 as the
zero. It follows from (5.5.1) and (5.5.2) that £(0) = 0 = g(0) and

gle) #0. Therefore, if we let b = f(e) and a = g(e), then it follows

from (5.8.4) and g(e) # 0 that a # 1,0. Since e = e-1 and e = ee = ee-l,

therefore g(e) = g(ee-l) = g(e)g(e) + f(e)f(e), so a = a2+ bz.

f,g are of the form (5.8.2).
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Case 3: Assume that |SI = 3, say S = {0,e,e'} with 0 as the

zero. We can verify in the same way as case 2 that £(0) = 0 = g(0) and

f(e) = b, g(e) = a where a,beF are such that a # 1,0 and a = :;12 + bz.
From (5.5.3) we have that
gle) + gle') " > 1 f(e) + f(e') =0

Thus g(e') = 1-a and f(e')

. '#//ore f,g are of the form

(5:8.5)

e solution of (*) on S

0 s XEA
(5.9.1) f(x) {

ah(x) ', x¢A
where A is a completely p ‘:{ de. 8 or A is the empty set and h

is a homomorphlsmj
\

a=a2+b ; or -

s X€0
ahe fﬁ’u S g o
-bh(x) , xee u (l-a)h(x) , X€e'u

e RSO UURAING AR v

as the zero and h : S\0 » {1,-1} is a homomorphism on ev,e'n and a,be¢

F are such that a # 1,0 and a = a2 + bz.

Proof. By straight forward verification, it can be shown that (f,g)
in (5.9.1) and (f,g) in (5.9.2) are class 2 positive-type solutions of

(*) on S.
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To show the converse, assume that (f,g) is a class 2 positive-

type solution of (*) onS. It follows from Theorem 5.6 that there

exists a'K-congruence H on S and a one-to-one class 2 positive-type
solution (f,,g,) of (*) on S/y and a function h from S into {1,-1}

whose restriction to ap is a homomorphism for all a € S such

that
(5.9.3) f(x) =

: V //v(x) = g, Gh()

for all x in S.

| Wat IS/u ¢ 3. We shall
determine (f,g) ach ' der ©

Theorem 5.8, we have

Case 1:

that

£y (x1) = B
where a,be F are such t t Thus from (5.9.3) we
have that )

f(x) = ah(x)

for all x in S. ngs
)i ) INEARY T

AR AR TREUNVIREIFRH o= or 2

say S/ul {0,eu} with 0 as the zero. By Theorem 5.8 we have that

=0, t&n b = 0 and so f,g are

0 0 ixu =0

! 0 X
£, (xp) ={

b X

38 (xk) ={

ey A, %u= el

2, 4 2

where a,be F are such that a # 1,0 and a = a“+ b”, Therefdre, by (5.9.3)

~we have



0 , Xt0
f(x) ={

bh(x) , Xeeu

Let A = 0. Then ex = S\A. Since Oeu = ep0 = 0 and epep = eu, A is a

completely prime ideal of S. It follows from assumption on h that h

is a homomorphism from eu = S\A into {1,-1}. Thus f,g are of the form

[5.91):;

Case 3: : wr semigroup of order 3,

{0,en,ety} eorem 5.8 we have that

say S/u

J 0 s, xu =20
£, (xu) : = = 8 4o %= 8
l l-a , xp =e'y
where a,b € F are such @, Thus, by (5.9.3) we
have that
0 3 xe0
£(x) ﬂ ) , D = { ah(x) , xeep
» Xxee'y (1-a)h(x), xee'u

where h : sﬂr“uﬂq nﬂnﬁw %‘I aﬂj Therefore f,g
°Q‘W’Tﬁ5€ﬂﬁm URIAINYAY #

Theorem 5 10. The class 2 solutions of (*) on S are those and only those

(f,g) of the forms:

0 , XEA 0 , X EA
(5.10.1)  f(x) ={ ) ={
bh(x) , xf£A ah(x) , xgA

where A is a completely prime ideal of S or A is the empty set and h
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is a hombmorphism from S\A into {1,-1} and a, b € F are such that a #

1,0, a = a2+ b2 s lor

¢ 0 , xe0 '-O 5 xied

(5.10.2) f£(x)

n
o
=
L)
&
]
m
=
-
(o)
TN
ted
~—
n

1 ah (x) , XE el

(1-a)h(x) , xee'H

{0,ep,e'y} with 0

where u is a"l@s-congr
as the zero and h : ism on eu,e'n and a,be

F are such that a

Proof. By straight

in (5.10.1) and (f,g

Conversely, g% (f5g) is a class 2 solution of (¥).
By Theorem 3.9, (f,g) ‘be class 2 solution of negative-type or

positive-type.

If (f,8)

Theorem 5.1, (f,g)"

s "’hﬁﬁﬁl’mﬂﬂ‘i?ﬂﬂm‘i

If f is a class 2 051t1ve-1;me solution of (*), then by

Thoord) ;m aﬁmmmn NneIa g

0 5 i XsESA 0 , XEA
f(x) '_‘{ > g(x) ={
bh(x) , x¢A ah(x) , xfA

Ivtion of (*), then by

Thus f,g are of the form

where A is a completely prime ideal or A is the empty set and h is a

homomorphism from S‘A into {1,-1} and a,be¢ F are such that a # 1,0 and

*
a=a2+b2;or
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0 xe0 0 xe0
f(x) = {bh(x) , XE €U 5 agx) =1ah(x) ., Xeeu

-bh(x) , xee'k (1-a)h(x) , xee'n

where U is a‘lcs-congruence on S such that S/u = {0,ew,e'nw} with 0 as.
the zero and h : S\0 » {1,-1} is ahomomorphism on eu,e'y and a,be F are

such that a # 1,0 and a =_a&§

¥ J
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