CHAPTER III

REDUCTION THEOREMS

Let S be a commutative inverse semigroup and F a field. We

are interested 1n finding functions f, g from S to F such that
) g0y 1’2/ )E(y)

The ‘ is to provide theorems

for all x in S.

tative inverse semigroup

We say that (f,g) is

all x,y in A such that

into F such that (f,g)

(E.g)is a solution of (*).

pair (f,g), where Ij

: f(x) =m0
for all x 1nﬂ,u ﬂwgsmgnﬁ w%,l q ﬂ iuch a solution is
said to be tr1v1a1 soluﬂ[on of (*)#mn A which islinot trivial is

sond &M\ﬂﬂ‘im AA1INEINE

Lemma 3.3. Let A be an inverse subsemigroup of S and (f,g) a solution

of (*) on A. Then for any x in A we have

(3.3.2) £ % g2 glxhy,

(3.3.2) ‘ g(x) gixhy,
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(3.3.3) £(x) £(xx"1) g(x) - ggkxx),

(3.3.4) £(x) = £(x 1) or £(x) = -£(x D).

Proof. By hypothesis, we have

oy gy Y = g)gl) + £GOEY)

for all x, y in A such that .

Thus we have (3.3

By using element wverse semigroups togther

with (*), we see t

(3.3.5) g() = g™ x (gl + £ ExD,

(3.3.6) g1y e XY = glx 1) £(x).
il ‘
T Y

It follows that -V @

g.(x .= g(x )

e Z)mumnm ‘5’ WYNT
%fm AN ﬂﬁ‘fﬁﬁﬂ"ﬁﬂm ) a

F(x) £(xx = g(X) - g(x)glxx” )
Hence, we have (3.3.3).

By using (3.3.1) we have

£(x) 2 gl - g2,

-1,2

£(x7h) g1 - gxh
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It follows from (3.3.2) that

£(x) % R oy
Therefore,
; <1 A
Flx)© "= f% ) or C3 L e e e e
Thus (3.3.4) holds for all x ir : : #

Lemma 3.4. Let A be , @of S and (f,g) a solution

(3.4.1) For any x i

(3.4.2) For any e im" =90 iff g(e)\= 0 or g(e) = 1,

: (3.4.3)‘ For any x in

(3.4.4) For any x in T gxx") Aol = 0 = £(x).

Prook. Let x be oy clenent of A Xd s by 7L,

we have B ,

Theref z(nﬁum wymw Elqﬂiux B = glah.
A BT TR B

foxl) =0 iff g‘(xx'l) =0 or g(xx'l) = 1.

Thus we have (3.4.1). By specializing x = e in (3.4.1) we have (3.4.2).
From (3.3.4) we have that f(x) = f(x-l) or f(x) = -f(x—l) . Hence for

all x in A,
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£(x) =o iff £(x'1) =o0.

Hence (3.4.3) holds for all x in A. To show (3.4.4), we assume that
g(xx-l) = 0. From (3.4.1) we have f(xx'l) = 0. Therefore, by (3.3.3),

we have

g(x) g@glx ) + FEET = 0.

But, by using (3.3.1), w

= 0.
Therefore,
Thus (3.4.4) holds £ #
Notation For any soluti _';_:fv’,A ciate a pair of disjoint

subsets of S as follows.

and

¢

S,(f,8) = {xg§ /gl £ 1),

i mum mms ;L1 |2 b PIRICRAD
ARNANTNANINYIA Y

Lemma 3.5. Let (f,g) be any solution of (*). Then

(3.5.1) If S (f,g) # 6 , then S, (f,g) is a filter of S, and hence

it is an inverse subsemigroup of S.

(8:8.2) . 1If Sz(f,g) # ¢ , then Sz(f,g) is a completely prime ideal

of S, and hence it is an inverse subsemigroup of S.



Proof. To show (3.5.1), we assume that Sl(f,g) # . Let x,ye

S,(f,g). Then g(xx™)) = 1 and g(yy™ 1) = 1. Hence it follows from

(3.4.1) that £ixx™1) = 0 and £(yy™ 1) = 0. ‘Therefore

gox Ty Hh
= gxx Dgy ™ ¢ foxHegy ™y

Thus xy&Sl(f,g), SO @bup of S. Now suppose
——

g) we shall show that

g(xy )™ H

that x,y are eleme
X, VE 'Sl(f,g). Si = 1. Therefore it

follows from (3.4. y)serve that

xy Gyt

Hence we have

D00y £0y con e
AuEIngineTng
reAHAAININLNAAN LAY o .

Sl(f,'g). Thus x,y éSl(f,g) 3280 Sl(f,g) is a filter of S. Therefore
(3.5.1) holds. Hence, from Theorem 2.5 , it follows that Sz(_f,g) =
S\Sl(f,g) is either a completely prime ideal of S or an empty set.

Thus' (3.5.2) holds. . : #

Theorem 3.6. Let (f,g) be any solution of (*). Then f,g must be of
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the forms

f = fl U f2 and g = gL ve, A

wherg (fl,gl),(fz, gz) are solutions of (*) on Sl(f,g), Sz(f,g)

respectively.

Proof. FPFor-i s AER | e restictions of f,g on Si(f,g),

2, (fi, gi) is a solution

of (*) on S is ei of class 1= be written as a

union of a class 1~E11ut10n-0 on a filterELnd a class 2 solution

o B TS
e Ay T‘f"ﬁgﬂj’mﬁ?ﬁﬁﬁﬁ’ﬂm -

follow1nq roblems:

Problem 1: Find all solutions of (*) of class 1,
Problem 2: Find all solutions of (*) of class 2,
From now on, we shall assume that F is a field of characteristic

different from 2, With this restriction on F, we shall be able to

classifly the solutions of (*) into two types. The classification will be
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based on the following theorem.

Theorem 3.9. Let (f,g) be a solution of (*)., Then f satisfies either

£l

(3.9.1) f(x)

for all x in S, or

3:9.2) f(x)

for all x in S.

Proof. Suppose that

£(

and

,?-;.“
\t‘:%if;%“|gh,

= Lk ‘1& L s

o |

Hence, by (3.4.3), itjfo oﬁi nd £f(y) # 0. By (3.3.4),

it follows from the above f?“'

[t

=11
¥

=, 7_737 -1

-t

).

f(x) = -f(x = f(y

T —

g()ml) = EAXjgly) # fﬂf(y),

5 ﬂUEJ’JVIEWﬁWEﬂﬂ‘i
# gl )g& ) + f(y

QW’]ﬁNﬂiﬂlNJﬁ'}QYlﬂ&ﬂﬂ

The last equality follows from (3.3.2). Hence

Therefore

gx)gly) - ££0),
0.

gX)gly) + £(X)£(y)
- 2f(x)£(y)

Therefore f(x) =0 or f(y) = 0, which is a contradiction. #

009771
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Definition 3.10. Let (f,g) be a solution of (*) on S. If f satisfies

(3.9.1) for all x in S we say that (f,g) is of positive-type. In

the case f satisfies (3.9.2) for all x in S we say that (f,g) ié of

negative-txpe.

%.
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