ค่าพารามิเตอร์อันตรกิริยาคู่ในสมการสถานะกำลังสาม สำหรับระบบคาร์บอนไดออกไซด์-พาราฟิน

นายพงษ์พิศณุ เมืองเจริญ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาปิโตรเคมี

บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ.2537

ISBN 974-584-343-1

ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

BINARY INTERACTION PARAMETERS OF SOME CUBIC EQUATIONS OF STATE FOR CARBON DIOXIDE-PARAFFIN BINARY SYSTEMS

MR. PONGPHISANU MUANGCHAREON

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE PROGRAM OF PETROCHEMISTRY GRADUATE SCHOOL

1994

CHULALONGKORN UNIVERSITY

ISBN 974-584-343-1

Copyright of the Graduate School, Chulalongkorn University

Thesis Tittle Binary Interaction Parameters of Some Cubic Equations of State for Carbon Dioxide-Paraffin Binary Systems

By Mr. Pongphisanu Muangchareon

Department Petrochemistry

Thesis Advisor Assoc. Prof. Pattarapan Prasassarakich, Ph. D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirement for Masters' Degree

Prof. Thavorn Vajrabhaya, Ph. D.)

Thesis committee

K. Sakanjing Chairman

(Assoc. Prof. Kroekchai Sukanjanajtee, Ph. D.)

Harry France L. Thesis Advisor

(Assoc. Prof. Pattarapan Prasassarakich, Ph. D.)

Www.Member

(Mr. Woraphat Arthayukti, Dr. Ing.)

L. Member

(Assist. Prof. Lursuang Mekasut, Dr. Ing.)

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

พงษ์พิศณุ เมืองเจริญ : ค่าพารามิเตอร์อันตรกิริยาคู่ในสมการสถานะกำลังสำหรับระบบ คาร์บอนไดออกไซด์ - พาราฟิน (BINARY INTERACTION PARAMETERS OF SOME CUBIC EQUATIONS OF STATE FOR CARBON DIOXIDE -PARAFFIN BINARY SYSTEMS) อ. ที่ปรึกษา : รศ.คร. ภัทรพรรณ ประศาสน์สารกิจ, 184 หน้า. ISBN 974-584-343-1

งานวิจัยนี้เป็นการทดสอบสมการสถานะห้าสมการ ไต่แก่ สมการสถานะโซฟ-เรดคลิช-กวง (SRK), สมการสถานะเปง-โรบินสัน (PR), สมการสถานะพาเทล-เทจา (PT), สมการสถานะที่ดัดแปลงจาก สมการของโซฟ-เรดคลิช-กวง (MSRK) และสมการ สถานะที่ดัดแปลงจากสมการของเปง-โรบินสัน (MPR) ในการคำนวณสมคุลย์ใอ-ของเหลว ของระบบองค์ประกอบคู่ ได้แก่ ระบบคาร์บอนไคออกไซค์, ระบบ ในโตรเจน และระบบพาราฟินซึ่งมีจำนวนคาร์บอนอะตอมตั้งแต่หนึ่งถึงสิบ สำหรับสัมประสิทธิ์อันตรกิริยาคู่ (Kij) ที่ใช้ในระบบของทั้งห้าสมการได้มาจากการหาค่าที่เหมาะสม โดยสมการวัตถุประสงค์สองสมการ คือ วิธีฟูกาซิตีและความดันจุดบับเบิล

ผลที่ได้จากสองวิธีนี้ พบว่าวิธีแรกให้ค่า K_{ij} สำหรับการคำนวณสมคุลย์ไอ-ของเหลวในเกณฑ์ใช้ ได้โดยใช้เวลาในการคำนวณน้อยมาก ขณะที่วิธีหลังให้ค่าการคำนวณที่ดีกว่า นอกจากนั้นการใช้ค่า K_{ij} ประกอบในการคำนวณได้แสดงให้เห็นว่า สามารถเพิ่มความแม่นยำยิ่งขึ้นสำหรับทุกสมการ โดยสมการ MSRK และ MPR ให้ผลที่ดีกว่าสำหรับระบบไฮโดรคาร์บอน-ไฮโดรคาร์บอน ขณะที่สมการ PR และ PT ให้ ผลที่ดีกว่าสำหรับระบบไฮโดรคาร์บอน

ศูนย์วิทยทรัพยากร เหาลงกรณ์มหาวิทยาลัย

ภาควิชา สนสาขาวิชาปีโพญคมี-โพมิเมอใ	ลายมือชื่อนิสิต
สาขาวิชา ปีโทรคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

##C485080 :MAJOR PETROCHEMISTRY
KEY WORD: VAPOR-LIQUID EQUILIBRIUM / BINARY INTERACTION PARAMETER
/CARBON DIOXIDE-PARAFFIN BINARY SYSTEM

PONGPHISANU MUANGCHAREON : BINARY INTERACTION PARAMETERS
OF SOME CUBIC EQUATIONS OF STATE FOR CARBON DIOXIDE PARAFFIN BINARY SYSTEMS. THESIS ADVISOR : ASSOC. PROF.
PATTARAPAN PRASASSARAKICH, Ph.D. 184 pp. ISBN 974-584-343-1

ะ ละ จะเกิดเหลืออสโตโลสสหหรักรหูในการหลือโทรทัศท์ เล่า และ จะ

The Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), Patel-Teja (PT), Modified Soave (MSRK) and Modified Peng-Robinson (MPR) was applied to the calculation of Vapor-Liquid Equilibrium (VLE) of binary systems containing $\rm CO_2$, $\rm N_2$ and $\rm C_1\text{-}C_{10}$ n-paraffins. The binary interaction parameters, $\rm K_{ij}$ for each equation were evaluated from binary experimental data through the optimization of two objective functions, the fugacity and bubble point pressure criteria.

The results from two criteria showed that the former provided an acceptable VLE prediction with a considerable reduction in computing time requirement while the latter yielded better K_{ij} values. It was also proved that incorporation of the K_{ij} term offered accuracy improvement for all equations. A comparison of the VLE results indicated that the MSRK and MPR equations performed better than the other equations for hydrocarbon-hydrocarbon systems while the PR and PT equations performed better for hydrocarbon - non-hydrocarbon systems.

ภาควิชา สนสาทางิชาปีกรเคมี-โพมิเมต์ ลายมือชื่อนิสิต ปีการศึกษา 4556 ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENTS

The author would like to gratefully acknowledge Assoc. Prof. Dr. Pattarapan Prasassarakich, his advisor, for her continued support, help, advice, and encouragement. The author also wishes to thank the thesis committee for their comments. Many thanks are due to his brother, Pongrat Muangcharoen for his help and encouragement at crucial moments. Finally, the author would like to express special thanks to his parents for their support, encouragement, and understanding, while he was working on his Master's degree program.

CONTENTS

ABST	RAC	T IN THAI	IV
ABST	RAC	T IN ENGLISH	V
ACKI	NOW	LEDGEMENTS	VI
CON	TENT	'S	VII
		ABLES	
		IGURES	
NOT	ATIO	NS	XV
CHA			
I		RODUCTION	
II	THE	EORY	3
	2.1	Equations of State	3
	2.2	The Soave-Redlich-Kwong Equation of State	8
	2.3	The Peng-Robinson Equation of State	
	2.4	The Patel-Teja Equation of State	11
	2.5	The Modified Soave-Redlich-Kwong Equation of State	13
	2.6	The Modified Peng-Robinson Equation of State	14
	2.7	Fugacity and Fugacity Coefficients	15
	2.8	Vapor-Liquid Equilibrium Calculations	18
	2.9	Binary Interaction Parameters	19
	2.10	Mixing Rules	
III	CA	LCULATION PROCEDURES AND PROPOSED WORK	22
	3.1	Calculation Procedures	22
		3.1.1 The Newton-Raphson Method	22

CONTENTS (continued)

		3.1.2	Fibonacci Optimization Technique	23
		3.1.3	The Bubble Point Pressure Calculation	24
		3.1.4	Evaluation Procedures of the Optimum Binary	
			Interaction Parameters	27
			3.1.4.1 Minimization of Deviation in Predicted	
			Bubble Point Pressure	27
			3.1.4.2 Minimization of Deviation between	
			Calculated Vapor and Liquid	
			Component Fugacities	28
	3.2	Propo	sed Work	29
			Selected Experimental Data.	
		3.2.2	Calculation Work	32
			3.2.2.1 Input Data	32
			3.2.2.2 Minimization for K _{ij} Evaluation	32
			3.2.2.3 Vapor-liquid Equilibrium calculation	32
IV	RESI	ULTS C	F CALCULATION	34
	4.1		ptimum Binary Interaction Parameters	
	4.2	Vapor	-Liquid Equilibrium Calculations	47
V	DISC	CUSSIC	ONS	53
	5.1	The B	inary interaction Parameters of Selected Equations	of
		State	from Two Objective Functions	53
		5.1.1	The Average Binary Interaction Parameters	53
		5.1.2	Systems Containing Methane	58

CONTENTS (continued)

5.1.3	Systems Containing Ethane and Systems	
	Containing Propane	58
5.1.4	Systems Containing Nitrogen	59
5.1.5	Systems Containing Carbon Dioxide	60
5.1.6 Signif	ficance of Binary Interaction Parameters in	
Vapor	r-Liquid Equilibrium Calculation	66
5.1.7	Temperature Dependence of Binary Interaction	
	Parameter	79
5.1.8	Comparison of the Optimum Binary Interaction	
,	Parameters of Some Equations of State with	
	Earlier Works	83
VI CONCLUS	IONS AND RECOMMENDATIONS	85
REFERENCES		86
APPENDIX A		93
APPENDIX B	นยวิทยทรัพยากร	150
VITA		184

LIST OF TABLES

Table	2.1	The value of $a(T)$, k_1 , k_2 and k_3 of some cubic	
		equations of state in general form	
Table	2.2	Partial fugacity coefficient expressions for the	
		five EOS	17
Table	3.1	Details of the experimental data for systems containing	
		methane, systems containing ethane and systems	
		containing propane.	30
Table	3.2	Details of the experimental data for systems containing	
		nitrogen and systems containing CO ₂	31
Table	4.1		
		systems containing methane for five equations of state	
		using the fugacity criterion	35
Table	4.2	Binary interaction parameters and percent AAD of	
		systems containing methane for five equations of state	
		using the bubble point pressure criterion	37
Table	4.3	Binary interaction parameters and percent AAD of	
		systems containing ethane for five equations of state	
		using the fugacity criterion.	39
Table	4.4	parameters and percent fulls of	
		systems containing ethane for five equations of state	
12		using the bubble point pressure criterion	40
Table	4.5	portion and percent in the or	
		systems containing propane for five equations of state	
		using the fugacity criterion	41
Table	4.6	portion of the periodic first of	
		systems containing propane for five equations of state	
	9	using the bubble point pressure criterion	42
Fable	4.7	parameters and percent in the or	
		systems containing nitrogen for five equations of state	
		using the fugacity criterion	43
Fable	4.8	Binary interaction parameters and percent AAD of	
		systems containing nitrogen for five equations state	
		using the bubble point pressure criterion	44

LIST OF TABLES (Continued)

Table	4.9	Binary interaction parameters and percent AAD of
		systems containing carbon dioxide for five equations
•		of state using the fugacity criterion
Table	4.10	Binary interaction parameters and percent AAD of
		systems containing carbon dioxide for five equations
		of state using the bubble point pressure criterion
Table	5.1	The average binary interaction parameters, percent AAD
		and computation time of all systems for five equations of
		state using fugacity and bubble point pressure criteria 54
Table	5.2	The computing time of the average Kij calculation
		required by both criteria for systems containing CO2
		with the SRK equation of state56
Table	5.3	Comparison of percent AAD with and without Kij
		for systems containing methane using
		five equations of state
Table	5.4	
		for systems containing ethane using
		five equations of state
Table	5.5	The state without It
		for systems containing propane using
		five equations of state70
Table	5.6	Comparison of percent AAD with and without Kii
		for systems containing nitrogen using
		five equations of state
Table	5.7	Comparison of percent AAD with and without Kij
		for systems containing carbon dioxide using
		five equations of state72
Table	5.8	Kij values in this work and of the SRK equation as
		predicted by Graboski and Daubert [25], Eillott and
		Daubert [56] and of the PR eqation as predicted by
		Nishiumi et al. [57]84

LIST OF FIGURES

Figure 3.1	Graphical depiction of the Newton-Raphson method	22
Figure 3.2	Fibonacci optimization technique diagram	25
Figure 3.3	Diagram of the bubble point pressure calculation	26
Figure 3.4	Diagram of the Kij evaluation procedure	33
Figure 4.1	Comparison of calculated and experimental VLE for	
	Methane - n-Butane system at 227.56 K	
	and 255.36 K	48
Figure 4.2	Comparison of calculated and experimental VLE for	
	Ethane - n-Butane system at 338.72 K	
	and 366.49 K	49
Figure 4.3	Comparison of calculated and experimental VLE for	
	Propane - Isopentane system at 273.16 K	
	and 348.16 K	50
Figure 4.4	Comparison of calculated and experimental VLE for	
	Nitrogen - Ethane system at 149.83 K	
	and 172.05 K	51
Figure 4.5	Comparison of calculated and experimental VLE for	
	Carbon dioxide - Methane system at 250.00 K	
	and 270.00 K	52
Figure 5.1	The graphical depiction of the average Kij values and	
	carbon atom number of n-paraffin for systems containing	
	methane and systems containing CO2 using the SRK	
	equation of state	57
Figure 5.2	The graphical depiction of the average Kij values and	
	carbon atom number of n-paraffin for systems containing	
	methane and systems containing CO2 using the PR	
	equation of state	57
Figure 5.3	Regression results of the optimum Kij values calculated	
	by both criteria for systems containing methane using	
	five equations of state (a) SRK equation, (b) PR equation,	
	(c) PT equation, (d) MSRK equation, (e) MPR equation	61

LIST OF FIGURES (Continued)

Figure 5.4	Regression results of the optimum Kij values calculated
	by both criteria for systems containing ethane using
	five equations of state (a) SRK equation, (b) PR equation,
	(c) PT equation, (d) MSRK equation, (e) MPR equation62
Figure 5.5	
	by both criteria for systems containing propane using
	five equations of state (a) SRK equation, (b) PR equation,
	(c) PT equation, (d) MSRK equation, (e) MPR equation63
Figure 5.6	Regression results of the optimum Kij values calculated
	by both criteria for systems containing nitrogen using
	five equations of state (a) SRK equation, (b) PR equation,
	(c) PT equation, (d) MSRK equation, (e) MPR equation64
Figure 5.7	Regression results of the optimum Kij values calculated by
	both criteria for systems containing carbon dioxide using
	five equations of state (a) SRK equation, (b) PR equation,
	(c) PT equation, (d) MSRK equation, (e) MPR equation65
Figure 5.8	(a) Comparison of the VLE results calculated with and
	without Kij (of PT equation) for CO ₂ - Methane system
	at 250.00 K and 270.00 K74
Figure 5.8	(b) Comparison of the VLE results calculated with and
	without Kij (of PT equation) for CO2 - Ethane system
	at 250.00 K75
Figure 5.8	(c) Comparison of the VLE results calculated with and
	without Kij (of PT equation) for CO2 - Propane system
	at 244.27 K and 266.49 K76
Figure 5.8	(d) Comparison of the VLE results calculated with and
	without K _{ij} (of PT equation) for CO ₂ - n-Butane system
	at 368.16 K and 393.16 K
Figure 5.8	(e) Comparison of the VLE results calculated with and
	without Kij (of PT equation) for CO2 - n-Pentane system
	at 344.16 K and 408.16 K
Figure 5.9	Kij value as a function of temperature for systems
	containing methane80

LIST OF FIGURES (Continued)

Figure	5.10	Kij value as a function of temperature for systems	
		containing ethane	. 80
Figure	5.11	Kij value as a function of temperature for systems	
		containing propane	. 81
Figure	5.12	Kij value as a function of temperature for systems	
		containing nitrogen	81
Figure	5.13	Kij value as a function of temperature for systems	
J		containing carbon dioxide	82

NOTATIONS

a,b,c	= equation of state constants
A,B,C	= equation of state constants
	= fugacity of component i
\hat{f}_i	= partial fugacity of component i
F	= PT characteristic parameter
g, h	= MSRK parameters
Ki	= equilibrium ratio
K _{ij}	= binary interaction parameter
m	= characteristic constant
MSRK	= modified Soave equation of state
MPR	= modified Peng-Robinson equation of state
$P_{\mathbf{c}}$	= critical pressure
PR	= Peng-Robinson equation of state
PT	= Patel-Teja equation of state
R	= universal gas constant
SRK	= Soave-Redlich-Kwong equation of state
SW	= Schmidt-Wenzel equation of state
T	= temperature
$T_{\mathbf{c}}$	= critical temperature
V	= molal volume
x_i	= mole fraction of component in the liquid phase
yi	= mole fraction of component in the gas phase
z _i	= mole fraction of component in the gas or liquid phase
Z	= gas compressibility factor
Z_c	= critical compressibility factor
α	= correction factor for EOS constant a
ϕ_i	= fugacity coefficient of component i
$\hat{\phi}_i$	= partial fugacity coefficient of component i
Ω_a , Ω_b , Ω_c	= EOS constants
ω .	= acentric factor
β , η	= MPR parameters
ξ	= PT compressibility factor

NOTATIONS (Continued)

Superscripts

L = liquid phase

V = vapor phase

EXP = experimental value CAL = calculated value

Subscripts

c = critical

i = component identifier

j = component identifier

m = mixture