
2547

ISBN  974-17-6540-1 



IDENTIFYING NON-BINDING CONSTRAINTS IN LINEAR PROGRAMMING PROBLEMS 

USING SUPERVISED LEARNING NEURAL NETWORKS 

Miss Wanyok Atisattapong 

A Thesis Submitted in Partial Fulfillment of the Requirements 

for the Degree of Master of Science in Computational Science 

Department of Mathematics 

Faculty of Science 

Chulalongkorn University 

Academic Year 2004 

ISBN 974-17-6540-1 



Thesis Title IDENTIFYING NON-BINDING CONSTRAINTS

IN LINEAR PROGRAMMING PROBLEMS

USING SUPERVISED LEARNING NEURAL NETWORKS

By Miss Wanyok Atisattapong

Field of study Computational Science

Thesis Advisor Assistant Professor Krung Sinapiromsaran, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University, in Partial

Fulfillment of the Requirements for the Master’s Degree.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

Thesis Committee

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Chairman

(Associate Professor Wanida Hemakul, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Thesis Advisor

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Member

(Professor Chidchanok Lursinsap, Ph.D.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . Member

(Assistant Professor Vimolrat Ngamaramvaranggul, Ph.D.)



��������	
����������������������������������������
���� !���"�������#
��$%�&���#%
&��� '����$�(�( )�*+, � �* )��� )��- % ���� "�� ��� -�./�012345167148�494:;142148
<94=5>?145= � 14 � @143?> � A>98>?BB148 � A>9;@3B= � C=148 � =CA3>D1=32
@3?>4148�43C>?@�435E9>F=G���/�()��,������H�/��/�����$
��I
*��$�!J��KL���%�/
1=;4�KMN:OM:PQNL:O/

�
(���
��R��)S�$����
R)������������������������������
���� !���"�������#
��$%��&���"�
&���'����$�(�()�*+,��*)���)��-%����"�����-�.�*������	��#%����S�	����("������������������
�%�*-.�"���%����&���'����$�(�()�*������%����'�$�*��$
(R
 T���U ���# ��V����$�����'�
$�*��$
(R
T�������������������.��'���()�(�����*������ !���"�������#
��$%��$"�����'���W��*��
�����)��-%���&���'����$�(�()�*V��"������%��X��O��*�������������������S���X���������
���.���%
��X��L��*�������������������S���X������������
����&������
V���)SV��
V�Y��Z���� !���"�������#
�
�$%�()�*)H.�Z.���)���"�	����)����.�*)�����[�\�]�*
	
�&���]�*)�'�	�S��	'�^�_,��N��.��[�*)�'�	�S��	'�]�_,�
]`^��.��.����#%��S�	���
R)������������#������ab�$��&���'����$�(�()�*��H.�������
V��
V��"��$����-���������+c�	����*_-�	%������("������� ����������������������
����&���'��
��$�(�()�*

I���
#���/////////�Y
	��$	�/////////////////�.��*��#����
$
	/////////////////////////////////////////////////////////
$����
#��////////�
(�����Y��////////////�.��*��#�����V���()��,���////////////////////////////////////////
�d���,����/////^QNM///////////////////////////���������������������������������



e�e�NQM^NffL^g���������B?h9>���<9BAC5?5194?@�=<134<3
F37�E9>2���@143?>�A>98>?BB148�i�43C>?@�435E9>F=�i�494:;142148�<94=5>?145=�

E?479F�?51=?55?A948���12345167148�494:;142148�<94=5>?145=�14�@143?>
A>98>?BB148�A>9;@3B=�C=148�=CA3>D1=32�@3?>4148�43C>?@�435E9>F=/
� �5j3=1=�?2D1=9>���?==5/�A>96/�2>/�F>C48�=14?A1>9B=?>?4J�� ��KL�kk/�1=;4
KMN:OM:PQNL:O/

5lmn�olpnmn�kqrkrnps�t]�tkkqrtul�vrq�msp]omvwm]x�]r]:ym]sm]x�ur]noqtm]on�m]�t�zm]ptq
kqrxqt[[m]x�kqryzp[�0@AG/�?�n{kpq|mnps�zptq]m]x�]p{qtz�]po}rq~�044G�}tn�tkkzmps�m]�olp
kqpsmuomr]�[polrs/�5lp�m]k{on�rv�]p{qtz�]po}rq~�}pqp�ur[krnps�rv�olp�urpvvmump]on�rv�olp
ry�puom|p� v{]uomr]J� olp�urpvvmump]on�rv� olp�ur]noqtm]on�t]s�olp�qmxlo:lt]s:nmsp�ur]not]on�rv
zm]ptq�kqrxqt[[m]x�kqryzp[/�6rq�ptul�otqxpo�rv�]p{qtz�]po}rq~J�mo�npo�or�����O��mv�olp�ur]noqtm]o
}tn�ym]sm]x�t]s��L��mv�olp�ur]noqtm]o�}tn�]r]:ym]sm]x/�Ep�ur]nmspqps�nkpumvmutzzw�olp�@A�olto
ltn�t�{]m�{p�rkom[tz�nrz{omr]�t]s�vm�ps�olp�kqryzp[�nm�p�or�[���]�sm[p]nmr]n�}lpqp�]�}tn
|tqmps�vqr[�^�or�N�t]s�[�}tn�|tqmps�vqr[�]�or�]`^/�Brqpr|pqJ�olp�ytu~�kqrktxtomr]�0;AG
tzxrqmol[�}tn�npzpuops�vrq�oqtm]m]x�]p{qtz�]po}rq~n/�5lp�qpn{zo�rv�olmn�qpnptqul�nlr}ps�olp
tuu{qtuw�rv�]p{qtz�]po}rq~n�olto�msp]omvmps�]r]:ym]sm]x�ur]noqtm]on/

2pktqo[p]o�//////////�Btolp[tomun////////////////////=o{sp]o�n�nmx]to{qp////////////////////////////////////����������
6mpzs�rv�no{sw�////////<r[k{otomr]tz�=ump]up////?s|mnrq�n�nmx]to{qp////////////////////////////////////����������
?utsp[mu�wptq�////�^LLN//////////////////////////////////����������������



vi

Acknowledgment

I am deeply indebted to my thesis advisor, Assistant Professor Dr. Krung

Sinapiromsaran, for his valuable guidance, great encouragement and untiring help.

Without his constant support and attention, this thesis would have never been

written.

I am also grateful to the thesis committee, Associate Professor Dr. Wanida

Hemakul, Professor Dr. Chidchanok Lursinsap, and Assistant Professor Dr.

Vimolrat Ngamaramvaranggul, for their constructive criticism and invaluable

advise.

I would like to thank all my teachers for their great contributions and my

friends for their encouragement and support during my study.

Finally, words are insufficient to express my gratitude towards my parents who

always are a source of unconditional love and support for me.



Contents

Abstract in Thai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . 1

1.2 The Objective of Research . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Scope of Study . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 BACKGROUND KNOWLEDGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Background on Linear Programming Problems . . . . . . . . . . . 4

2.1.1 The Canonical Form . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Feasible Region, Optimal Solution and Extreme Point . . . 7

2.1.3 Binding and Non-binding Constraints . . . . . . . . . . . . 11

2.1.4 The Normalized Linear Programming Form . . . . . . . . 14

2.2 Background on Neural Networks . . . . . . . . . . . . . . . . . . . 17

2.2.1 Multilayer Perceptron . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Back propagation Algorithm . . . . . . . . . . . . . . . . . 20



viii

3 IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 The Algorithm for Generating Patterns . . . . . . . . . . . . . . . 23

3.2 The Architecture of Neural Networks . . . . . . . . . . . . . . . . 31

4 RESULT AND CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

APPENDICES

Appendix A GNU Linear Programming Kit: GLPK . . . . . . . . . . . 69

Appendix B Stuttgart Neural Network Simulator: SNNS . . . . . . 73

Appendix C Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

VITAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



List of Figures

2.1 Example of convex and nonconvex sets. . . . . . . . . . . . . . . 8

2.2 Feasible region (F) and extreme points (a,b,c,d,e). . . . . . . . . 10

2.3 Binding constraints. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The original LP and the reduced LP. . . . . . . . . . . . . . . . . 13

2.5 A biological neuron. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 A basic artificial neuron. . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Three-layer feed forward multilayer perceptron. . . . . . . . . . . 19

2.8 Flow chart for training the MLP by BP. . . . . . . . . . . . . . . 22

3.1 Flowchart for the program main.c . . . . . . . . . . . . . . . . . . 23

3.2 Flow chart for generating an LP. . . . . . . . . . . . . . . . . . . 24

3.3 Flow chart for the sorting process. . . . . . . . . . . . . . . . . . 26

3.4 Flow chart for the encoding step. . . . . . . . . . . . . . . . . . . 29

3.5 m + n NNs for the LP in (m × n) dimensions. . . . . . . . . . . . 31

3.6 The kth NN for the kth constraint. . . . . . . . . . . . . . . . . . 32

3.7 Five NNs for the problem (P). . . . . . . . . . . . . . . . . . . . 33

3.8 The structure of the 1st NN for the constraint 0.5y1 + 0.2y2 ≤ 1. . 34

3.9 The structure of the 2nd NN for the constraint −0.1y1 + 0.3y2 ≤ 1. 35

3.10 The structure of the 3rd NN for the constraint 0.1y1 + 0.1y2 ≤ 1. 36

3.11 The structure of the 4th NN for the nonnegative constraint x1 ≥ 0. 37

3.12 The structure of the 5th NN for the nonnegative constraint x2 ≥ 0. 38

4.1 Both accuracies decreases according to problem size . . . . . . . 64

A.1 The output from GLPK . . . . . . . . . . . . . . . . . . . . . . . 72

B.1 Bignet for a network creation . . . . . . . . . . . . . . . . . . . . 81



List of Tables

4.1 NNs for the LP in m = 2,n = 2 . . . . . . . . . . . . . . . . . . . 43

4.2 Selected NNs for the LP in m = 2,n = 2 . . . . . . . . . . . . . . 44

4.3 NNs for the LP in m = 3,n = 2 . . . . . . . . . . . . . . . . . . . 45

4.4 Selected NNs for the LP in m = 3,n = 2 . . . . . . . . . . . . . . 46

4.5 NNs for the LP in m = 4,n = 2 . . . . . . . . . . . . . . . . . . . 47

4.6 Selected NNs for the LP in m = 4,n = 2 . . . . . . . . . . . . . . 48

4.7 NNs for the LP in m = 3,n = 3 . . . . . . . . . . . . . . . . . . . 49

4.8 Selected NNs for the LP in m = 3,n = 3 . . . . . . . . . . . . . . 50

4.9 NNs for the LP in m = 4,n = 3 . . . . . . . . . . . . . . . . . . . 51

4.10 Selected NNs for the LP in m = 4,n = 3 . . . . . . . . . . . . . . 52

4.11 NNs for the LP in m = 5,n = 3 . . . . . . . . . . . . . . . . . . . 53

4.12 Selected NNs for the LP in m = 5,n = 3 . . . . . . . . . . . . . . 54

4.13 NNs for the LP in m = 4,n = 4 . . . . . . . . . . . . . . . . . . . 55

4.14 Selected NNs for the LP in m = 4,n = 4 . . . . . . . . . . . . . . 56

4.15 NNs for the LP in m = 5,n = 4 . . . . . . . . . . . . . . . . . . . 58

4.16 Selected NNs for the LP in m = 5,n = 4 . . . . . . . . . . . . . . 59

4.17 NNs for the LP in m = 6,n = 4 . . . . . . . . . . . . . . . . . . . 61

4.18 Selected NNs for the LP in m = 6,n = 4 . . . . . . . . . . . . . . 62

4.19 The average accuracy . . . . . . . . . . . . . . . . . . . . . . . . 63

4.20 The overall accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 64



CHAPTER I

INTRODUCTION

1.1 Motivation and Problem Description

Linear programming is one of the active research areas in optimization. It has im-

pact on economics, industry, military and science, such as the inventory problem,

the scheduling problem and the transportation problem [1].

Although there are several methods to solve the linear programming problem

(LP), such as the simplex method [2] and the interior point method [3], their

computational time depends on the problem size which mainly varies according

to the number of constraints and the number of variables. In the last 40 years,

researchers have proposed various neural network models for solving linear pro-

gramming problem [4]. Because the models are implemented on RC-circuits, their

computational time is insensitive to the problem size [5].

In this research, we consider the canonical form of linear programming problem

(LP) [6]:

maximize c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

...

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0



2

where aij are the coefficients of the constraints, cj are the coefficients of the

objective function, xj are the decision variables and bi are the right-hand-side

constants, for i = 1, 2, . . . , m and j = 1, 2, . . . , n.

The LP in the canonical form involves m constraints and n nonnegative con-

straints. At the optimal solution, the constraints can be classified into two groups:

binding and non-binding constraints [7].

Theoretically, the group of binding constraints is used to obtain the optimal

solution, while the other group can be omitted. Therefore, if we can identify only

binding constraints and eliminate the others, the time for solving this reduced

problem should not be slower than the time for solving the original problem.

A supervised learning neural network (NN) is chosen as the constrained iden-

tification tool because of its capability of learning arbitrary nonlinear input pat-

terns. We select a widely popular algorithm known as the back propagation (BP)

algorithm in training multilayer perceptron (MLP).

This algorithm is based on adjusting the synaptic weights in accordance with

an error between the actual response of the neural network and the desired (target)

response. The learning process is maintained on an epoch-by-epoch basis until

the synaptic weights of the network stabilize and the average squared error over

the entire training set converges to a minimal value [8].

We will generate input patterns for NNs from all coefficients of LP based on

assumption that they have an effect on determining the binding constraints of the

optimal solution. For output patterns for NNs, we use the following setting:

target =

⎧⎪⎪⎨
⎪⎪⎩

1, if the constraint is binding;

0, otherwise.



3

1.2 The Objective of Research

The objective of this research is to predict the non-binding constraints in a linear

programming problem using a supervised learning neural network. The result will

be presented in terms of the accuracy of NN.

1.3 The Scope of Study

In this research, we consider specifically the LP that have a unique optimal so-

lution because at least the number of binding constraints are fixed to be equal

to the number of decision variables. To compare the accuracy of trained NNs in

different dimensions of LPs, the problem size are fixed to m×n dimensions where

n is varied from 2 to 4 and m is varied from n to n + 2.

Any LP can be transformed into the canonical form where the objective co-

efficient and the right-hand-side constants are not equal to zero, the coefficients

of the constraints (aij). In addition, the coefficients of the objective function (cj)

and the right-hand-side constants (bi) are randomly generated where cj �= 0 and

bi �= 0 for i = 1, . . . , m and j = 1, . . . , n.

For training each NN, the number of maximum epochs is set to 50,000. Gener-

ally, we use the heuristic method to determine the number of nodes in the hidden

layer. In this research, hidden neurons are increased by the exponential function,

2i, where 2i is equal to or larger than the dimension of input patterns. This

method help us find the appropriate the number of hidden neurons faster than

increasing them by the linear function.

This thesis is organized as follows. Chapter II provides the theoretical back-

ground. Chapter III describes the implementation of the proposed method. The

result and conclusion are summarized in Chapter IV.



CHAPTER II

BACKGROUND KNOWLEDGE

This chapter provides a summary of important theoretical backgrounds that are

required in this research. It contains two main sections: linear programming

problems (LPs) and neural networks (NNs).

First, we give definitions of related terms in LPs. We also introduce the new

form called the normalized linear programming form and explain how any LP can

be converted into this new form.

Second, we provide an elementary introduction to the concept of NNs. A

standard back propagation (BP) learning algorithm and multilayer perceptron

(MLP) are used in this research.

2.1 Background on Linear Programming Problems

Mathematical programming problems are concerned with the use or allocation

of limited resources like labor, materials and capital in the best possible manner

so that costs are minimized or profits are maximized. We will mainly consider

a subclass of mathematical programming problems called a linear programming

problem (LP) [1]. An LP is an optimization problem in which the objective

function and constraints are expressed as linear function.



5

2.1.1 The Canonical Form

There are various forms to represent an LP. In this research, we consider the

canonical form of LP with m constraints and n nonnegative constraints as:

maximize c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

... (2.1)

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

where aij, for i = 1, 2, . . . , m and j = 1, 2, . . . , n, are the coefficients of the con-

straints. c1, c2, . . . , cn are the coefficients of the objective function for nonnegative

unknown (decision) variables, x1, x2, . . . , xn, respectively. b1, b2, . . . , bm are the

right-hand-side constants.

In matrix-vector notation, the above canonical LP can be written in a compact

form as:

maximize cTx

subject to Ax ≤ b (2.2)

x ≥ 0

where A is an (m×n) matrix called the coefficient matrix, c is an (n×1) column

vector called the cost vector, x is an (n × 1) column vector called the decision

vector and b is an (m × 1) column vector called the right-hand-side vector [9].

In general, we can convert any LP to the canonical form (2.2). Note that the

canonical form requires maximizing the objective function. For the minimized op-

timization direction, we will multiply the objective function by −1 to reverse its



6

direction, changing the minimizing problem to the maximizing problem. The op-

timal solutions of both the maximization problem and the minimization problem

are the same, while their optimal values will differ by a negative sign.

−maximize (−cTx) = minimize (cTx).

Any linear inequality constraint of the form ≥ can be converted into the form

≤ by multiplying −1 on both sides of that constraint. For any linear equality

constraint, we can express it using two inequality constraints. Consider the con-

version of a constraint to the form ≤.

If the kth constraint is of the form

ak1x1 + ak2x2 + . . . + aknxn ≥ bk,

then we multiply both sides of this constraint by −1 to get

−ak1x1 − ak2x2 − . . . − aknxn ≤ −bk.

If the kth constraint is of the form

ak1x1 + ak2x2 + . . . + aknxn = bk,

it can be rewritten using two inequality constraints:

ak1x1 + ak2x2 + . . . + aknxn ≤ bk,

and −ak1x1 − ak2x2 − . . . − aknxn ≤ −bk.

Now, we can convert any LP into the canonical form (2.2). In the next part,

we will introduce some terminology for finding the solution of the LP.



7

2.1.2 Feasible Region, Optimal Solution and Extreme Point

For any linear programming problem, we are interested in determining the values

of the decision variables that satisfy all restrictions and give the optimal value

for the objective function. The necessary standard definitions for solving LPs are

described as follows [10]:

Definition 2.1.1 (Feasible Region).

Given an LP in its canonical form (2.2), the feasible region is the set of all non-

negative solutions that satisfy all the constraints of the LP.

F = {x ∈ IRn |Ax ≤ b,x ≥ 0} ,

where F is the feasible region.

Any solution in the feasible region of the LP is said to be the feasible solution.

Suppose that there are feasible solutions, the goal of the LP is to find the

optimal feasible solution, as measured by the value of the objective function.

Definition 2.1.2 (Optimal Solution).

Consider an LP in its canonical form (2.2), if the feasible region is not empty, an

optimal solution is a feasible solution that has the largest value of the objective

function for the maximization problem. Let x∗ be an optimal solution to the LP.

cTx∗ ≥ cTx, ∀x ∈ F

The value of the objective function corresponding to an optimal solution is

called the optimal value.

The definition of convex set and extreme point that relevant in finding the

optimal solution to the LP will be summarized as follows [6]:



8

Definition 2.1.3 (Convex Set).

A set S in IRn is called a convex set if given any two points x1 and x2 in S, then

λx1 + (1 − λ)x2 ∈ S for each λ ∈ [0, 1].

Note that λx1 + (1 − λ)x2 for λ in the interval [0, 1] represents a point on

line segment joining x1 and x2. Any point of the form λx1 + (1 − λ)x2 where

λ ∈ [0, 1] is called a convex combination of x1 and x2. If λ ∈ (0, 1), then the

convex combination is called strict.

Hence convexity of S can be interpreted geometrically as follows. For each pair

of points x1 and x2 in S, the line segment joining them must belong to S.

Figure 2.1: Example of convex and nonconvex sets.

In the latter case, we see that not all points on the line segment joining x1

and x2 belong to S.

For the feasible region of any LP in its canonical form (2.2), we can show that

it is a convex set.

Definition 2.1.4 (Extreme Point).

A point x in a convex set S is called an extreme point of S, if x cannot be

represented as a strict convex combination of two distinct points in S. In other

words, if x = λx1 + (1 − λ)x2 with λ ∈ (0, 1) and x1,x2 ∈ S, then x = x1 = x2.



9

Any LP in its canonical form (2.2) must be in one of the following four cases:

1. LP has the unique optimal solution.

This unique optimal solution must be an extreme point.

2. LP has alternative optimal solutions.

If there are two extreme points x∗
1 and x∗

2 being optimal, then any convex

combination of x∗
1 and x∗

2 is optimal.

3. LP is unbounded.

For a maximization problem, the feasible region is unbounded and the plane

cTx = z can be increased along the unbounded direction of the feasible re-

gion. In this case, the objective value is unbounded and no optimal solution

exists.

4. LP has an empty feasible region.

In this case, the system of equations and/or inequalities defining the feasible

region is inconsistent. This means there is no point satisfying all constraint

of the LP. Therefore, no optimal solution exists.

In this research, we considered specifically the LP that has a unique optimal

solution. To clarify the concept of optimal solution and extreme point, consider

the following example.



10

Example 2.1. Consider the following LP:

maximize 40x1 + 36x2

subject to x1 ≤ 8

x2 ≤ 10

5x1 + 3x2 ≤ 45

x1 ≥ 0

x2 ≥ 0

The intersection of the five halfspaces give the feasible region as follows:

F =
{
x ∈ IR2 |x1 ≤ 8, x2 ≤ 10, 5x1 + 3x2 ≤ 45, x1 ≥ 0, x2 ≥ 0

}

Clearly the set is a convex set and its extreme points are given as:

a =

⎡
⎢⎣

0

0

⎤
⎥⎦ , b =

⎡
⎢⎣

8

0

⎤
⎥⎦ , c =

⎡
⎢⎣

8

5
3

⎤
⎥⎦ , d =

⎡
⎢⎣

3

10

⎤
⎥⎦ , and e =

⎡
⎢⎣

0

10

⎤
⎥⎦ .

Figure 2.2: Feasible region (F) and extreme points (a,b,c,d,e).

After solving this LP, we get the unique optimal solution at x1 = 3 and x2 = 10

(the extreme point d).



11

In the next part, we will describe the type of constraints that is the main point

of this research.

2.1.3 Binding and Non-binding Constraints

When the optimal solution to an LP has been found, we will classify each con-

straint as being a binding constraint or a non-binding constraint using the follow-

ing definitions [7]:

Definition 2.1.1 (Binding Constraints).

For an LP in its canonical form (2.2), a constraint is binding at x if the left-hand

side and the right-hand side of the constraint are equal when the feasible solution,

x, are substituted into the constraint.

Definition 2.1.2 (Non-binding Constraints).

For an LP in its canonical form (2.2), a constraint is non-binding at x if the left-

hand side and the right-hand side of the constraint are unequal when the feasible

solution, x, are substituted into the constraint.

Example 2.2. Consider the previous LP. The optimal solution of this problem

is x1 = 3 and x2 = 10. When we substitute the optimal values of the decision

variables into the left-hand side of the constraints, we obtain

maximize 40x1 + 36x2

subject to x1 ≤ 8 3 ≤ 8 (1)

x2 ≤ 10 10 = 10 (2)

5x1 + 3x2 ≤ 45 45 = 45 (3)

x1 ≥ 0 3 ≥ 0 (4)

x2 ≥ 0 10 ≥ 0 (5)



12

Figure 2.3: Binding constraints.

From the above definition, we can identify that the 2nd and 3rd constraints are

binding at the optimal solution while the others are non-binding at the optimal

solution. The point of optimal solution (3, 10) results from the intersection of two

binding constraints (Figure 2.3).

From the canonical form of LP (2.2), the concept of extreme points and the

definition of binding and non-binding constraints, if there is a unique optimal

solution, we can show that the optimal solution must be an extreme point that

results from the intersection of at least n binding constraints.

Therefore, we want to find an approach for identifying only necessary con-

straints (binding constraints) and eliminating the others to reduce the problem

size. The following theorem indicates that the optimal solution of the eliminated

non-binding LP is the same as the original LP.



13

Theorem 2.1.1. For an LP in its canonical form (2.2) with a unique optimal

solution x∗, define

J = { j | Aj:x
∗ = bj } ∪ { j | x∗

j = 0 }

as a set of indices of binding constraints at x∗ from the set of inequalities from

Ax ≤ b and x ≥ 0. The reduced LP that is eliminated non-binding constraints

maximize cTx

subject to Ai:x ≤ bi

xi ≥ 0 for i ∈ J

has the same optimal solution x∗ as the original LP.

Observe that if x∗ is the optimal solution for the original LP, then there cannot

be any improving feasible directions at x∗. Therefore, x∗ is also the optimal

solution for the reduced LP.

Conversely, suppose that FR is the feasible region of the reduced LP. If x∗ is

the optimal solution for the reduced LP, then there cannot be any point in FR

giving the optimal value better than x∗. Obviously, F ⊆ FR. Thus x∗ must be

the optimal solution for the original LP.

Figure 2.4: The original LP and the reduced LP.



14

2.1.4 The Normalized Linear Programming Form

In this research, we consider LPs in the canonical form (2.2) where ci �= 0 for

i = 1, 2, . . . , n and bi �= 0 for i = 1, 2, . . . , m.

To simplify our notation, the decision vector (x) and the coefficient matrix

(A) will be divided into a subvector and a submatrix as:

x =
[
x+ | x− ]

,

where x+ is a column vector whose the objective coefficient is equal to 1,

x− is a column vector whose the objective coefficient is equal to −1.

A =

⎡
⎢⎣

A+

A−

⎤
⎥⎦ ,

where

A+ is the coefficient matrix whose the right-hand-side constant is equal to 1,

A− is the coefficient matrix whose the right-hand-side constant is equal to −1.

The new form of LPs called the normalized LP form can be defined as follows:

maximize 1Tx+ − 1Tx−

subject to A+[ x+ | x− ] ≤ 1

A−[ x+ | x− ] ≤ −1 (2.3)

x+,x− ≥ 0

where 1 is the sum vector with all element equal to 1.



15

The coefficients of the objective function and the right-hand-side constants in

the LP has been reduced from the real value in the canonical form (2.2) to 1 or

−1 in the normalized LP form (2.3). By fixing that values to 1 or −1, the LP in

the new form have been simplified.

The process for converting any LP into the normalized LP form (2.3) can

divided into three steps:

1. Covert any LP into its canonical form (2.2) and check the assumption that

ci �= 0, for i = 1, 2, . . . , n and bi �= 0, for i = 1, 2, . . . , m.

2. Rename decision variables so that the coefficients of objective function (ci,

for i = 1, . . . , n) of the LP are equal to 1 or −1.

3. Divide each constraint by the absolute value of its right-hand-side constant

(|bi|, for i = 1, . . . , m).

Example 2.3. The LP is given by:

maximize 5x1 − 2x2

subject to 5x1 − 6x2 ≤ 2

− 3x1 + x2 ≤ −1

− 6x1 + 12x2 ≤ 3

x1, x2 ≥ 0

We apply the conversion steps to the above problem to get the normalized LP

form of (2.3):



16

1. The LP is already in its canonical from(2.2) and also satisfies the assumption

ci �= 0 for i = 1, 2, . . . , n and bi �= 0 for i = 1, 2, . . . , m.

2. Let y1 = 5x1 and y2 = 2x2 so that the coefficients of the objective function

from real values are set to 1 or −1.

maximize y1 − y2

subject to y1 − 3y2 ≤ 2

− 0.6y1 + 0.5y2 ≤ −1

− 1.2y1 + 6y2 ≤ 3

y1, y2 ≥ 0

3. Divide the first constraint by 2 and the third constraint by 3 to get:

maximize y1 − y2

subject to 0.5y1 − 1.5y2 ≤ 1

− 0.6y1 + 0.5y2 ≤ −1

− 0.4y1 + 2y2 ≤ 1

y1, y2 ≥ 0

Now, we can convert any LP in the canonical form (2.2) to the normalized LP

form (2.3). We can solve any LPs in this form using the software GNU Linear

Programming Kit: GLPK∗.

∗Appendix A



17

2.2 Background on Neural Networks

A neural network (NN) is widely used machine learning methodology in many

diverse fields, including engineering, physics and mathematics. It is a network

designed to model the way in which the human brain processes information, such

as pattern recognition, data classification and image processing [8].

The human brain consists of a large number (approximately 1011) of highly

connected elements (approximately 104 connections per element) called neurons

[11]. As shown in Figure 2.5, each neuron has four principal components: a cell

body, an axon, dendrites and synapses.

Figure 2.5: A biological neuron.

The dendrites act as a neuron’s input receptors for signals coming from other

neurons. The cell body effectively evaluates these incoming signal and determines

the output. The axon is a single long fiber that carries the signal from the cell

body out to other neurons as the neuron’s output channel. The gap between an

output axon of one neuron and the input dendrites of another is the location of

the synapses. The information are transferred across a synapse by electrochemical

voltage.



18

An artificial neuron simulates the four basic functions of the biological neuron:

accepts inputs, combines them, performs an operation and outputs a result (Figure

2.6). The inputs to the network are represented by the mathematical symbol xi.

These are multiplied by their corresponding weights, wi. In the simplest case,

these products and bias are simply summed, fed through an activation or transfer

function to generate an output. The bias acts as a threshold in that it serves to

vary the activity of the neuron.

Figure 2.6: A basic artificial neuron.

The output of this model can be denoted by

output = f(
n∑

i=1

xiwi + b)

where xi is the input signal, wi is the synaptic weight, for i = 1, 2, . . . , n, b is

the bias, and f is the activation function, which is typically a sigmoidal function

having a value range from 0 to 1.

f(neti) =
1

1 + e−neti



19

2.2.1 Multilayer Perceptron

In this part, we focus on a certain type of NN called the standard feed forward

multilayer perceptron (MLP). It is a valuable learning tool when one has little or

no knowledge about the form of the relationship between input vectors and their

corresponding outputs.

This model consists of a network of neurons organized into several layers. The

degree of non-linearity of the MLP network can be changed by varying the number

of layers and the number of units in each layer.

Generally, it requires three layers: an input layer, hidden layer and output

layer. However, the input layer does not perform any computations. It is only

used to distribute the input signal to the hidden layer.

A neuron in any layer of the network is connected to all the neurons in the

previous layer by links or weights. The input signal propagates though the network

in a forward direction, from left to right and on a layer-by-layer basis [8].

Figure 2.7: Three-layer feed forward multilayer perceptron.



20

Suppose that the number of neurons in the input layer, hidden layer, and

output layer are equal to n1, n2, and n3 respectively. The output of neuron j from

the hidden layer, hj, is computed as:

hj = fj(netj)

netj =

n1∑
i=1

xiwji + bj

where xi is the input signal, wji, for i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2, represents

the synaptic weight connecting between the neuron i in the input layer and the

neuron j in the hidden layer, bj is the bias at neuron j and f is a sigmoidal

function.

The output from the hidden layer is the input to the output layer. The output

of neuron k from the output layer, ok, is computed as:

ok = fk(netk)

netk =

n2∑
j=1

hjwkj + bk

where wkj, for j = 1, 2, . . . , n2 and k = 1, 2, . . . , n3, represents the synaptic weight

connecting between the neuron j in the hidden layer and the neuron k in the

output layer and bk is the bias at neuron k.

2.2.2 Back propagation Algorithm

Back propagation (BP) algorithm is one of the most popular used algorithm for

training neural network [12]. It is based on a feed forward multilayer perceptron

with supervised learning. Training the MLP with BP is adapting the synaptic

weights until the error between the actual output of the NN and the desired

response (target) over all training patterns is minimized.



21

Let p be the total number of training patterns. The cost function or the total

error energy [8] is obtained by:

E =
1

2

p∑
µ=1

n3∑
k=1

(tµk − oµ
k)2

where tµk is the desired response (target) for the kth dimension of the training

pattern µ. oµ
k is the output of the kth neuron in the output layer of the training

pattern µ.

In this research, we focus on a neural network training technique called the

steepest descent method. Mathematically, this technique is accomplished by min-

imizing a suitable error function with respect to all network weights [12].

Let η ∈ (0, 1) be a learning rate and δ be the error gradient. We can compute

the weight adjustment, ∆w, to update the synaptic weight, w(t), at iteration t as

follows:

• For the weight between hidden and output layers:

wkj(t + 1) = wkj(t) + ∆wkj,

∆wkj = ηδkhj,

δk = (tk − ok)f
′
(netk).

• For the weight between input and hidden layers:

wji(t + 1) = wji(t) + ∆wji,

∆wji = ηδjxi,

δj = f
′
(netj)(

n3∑
k=1

δkwkj).



22

Training procedures for the MLP by BP are presented in Figure 2.8.

Figure 2.8: Flow chart for training the MLP by BP.

We will use the back propagation algorithm from the software Stuttgart Neural

Network Simulator: SNNS†.

†Appendix B



CHAPTER III

IMPLEMENTATION

This chapter describes the implementation of the proposed method. It contains

two main sections: the algorithm for generating patterns of NNs from LPs and

the architecture of NNs used in this research.

3.1 The Algorithm for Generating Patterns

The input-output training and testing patterns for NNs are generated by the main

program (main.c‡). The flowchart of the program main.c is shown in Figure 3.1.

Figure 3.1: Flowchart for the program main.c

‡Appendix C



24

Let n be the number of decision variables and m be the number of constraints.

In the first step, the LPs are randomly created in the normalized LP form

(2.3) by the subprogram Gen_LP()‡.

Figure 3.2: Flow chart for generating an LP.

To detect different patterns from the same LP, the generated LP is sorted

according to the coefficient matrix (A) by the subprogram Sort()‡. To clarify

the sorting process, we add the notation of the submatrix as follows:

Ai = [ars], for r = i, . . . ,m and s = i, . . . , n,

and let ahk be the largest elements in Ai.

‡Appendix C



25

The sorting process can be separated into two cases:

• Case 1: A has m ≤ n + 1

At iteration i, ahk of Ai will be interchanged to the top left corner of the

main diagonal position (aii) of A, for i = 1, . . . , n. When A has m = n + 1,

only n steps are required because an+1,n are already smaller than ann.

• Case 2: A has m > n + 1

For the first i = 1, . . . , n, it is sorted as in case 1. However, we need to

add the step of interchanging the remaining rows of A so that the elements

in rows n + 1, . . . , m are sorted in descending order according to the last

column n.

The flowchart of the subprogram Sort()‡ is shown in Figure 3.3.

‡Appendix C



26

Figure 3.3: Flow chart for the sorting process.



27

Example 3.1. Consider the following LP:

maximize − x1 + x2

subject to 0.3x1 − 0.1x2 ≤ 1

0.2x1 + 0.5x2 ≤ 1

0.1x1 + 0.1x2 ≤ 1 P(1)

x1, x2 ≥ 0

The cost vector, coefficient matrix and right-hand-side vector can be written

as

c(1) =

⎡
⎢⎣
−1

1

⎤
⎥⎦ , A(1) =

⎡
⎢⎢⎢⎢⎣

0.3 −0.1

0.2 0.5

0.1 0.1

⎤
⎥⎥⎥⎥⎦

, and b(1) =

⎡
⎢⎢⎢⎢⎣

1

1

1

⎤
⎥⎥⎥⎥⎦

.

Additional different five matrices of A(1) which interchange rows of the coeffi-

cient matrix A(1) are
⎡
⎢⎢⎢⎢⎣

0.3 −0.1

0.1 0.1

0.2 0.5

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0.2 0.5

0.3 −0.1

0.1 0.1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0.2 0.5

0.1 0.1

0.3 −0.1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0.1 0.1

0.3 −0.1

0.2 0.5

⎤
⎥⎥⎥⎥⎦

, and

⎡
⎢⎢⎢⎢⎣

0.1 0.1

0.2 0.5

0.3 −0.1

⎤
⎥⎥⎥⎥⎦

.

These matrices still represent the constraints of the same LP.

If we consider the column interchange of the problem P(1), its cost vector and

coefficient matrix can be written by

c(2) =

⎡
⎢⎣

1

−1

⎤
⎥⎦ , A(2) =

⎡
⎢⎢⎢⎢⎣

−0.1 0.3

0.5 0.2

0.1 0.1

⎤
⎥⎥⎥⎥⎦

, and b(2) =

⎡
⎢⎢⎢⎢⎣

1

1

1

⎤
⎥⎥⎥⎥⎦

.



28

Similarly, there are the other five matrices which are the results of interchang-

ing rows of the coefficient matrix A(2)

⎡
⎢⎢⎢⎢⎣

−0.1 0.3

0.1 0.1

0.5 0.2

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0.5 0.2

−0.1 0.3

0.1 0.1

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0.5 0.2

0.1 0.1

−0.1 0.3

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0.1 0.1

−0.1 0.3

0.5 0.2

⎤
⎥⎥⎥⎥⎦

, and

⎡
⎢⎢⎢⎢⎣

0.1 0.1

0.5 0.2

−0.1 0.3

⎤
⎥⎥⎥⎥⎦

.

We can see that one LP can be represented by different patterns of various

cost vectors, right-hand-size vectors and coefficient matrices. However, we need

to identify the unique LP before we encode it into an input pattern of NNs.

Sorted by subprogram Sort(), the above problem (P(1)) can be represented

by:

maximize y1 − y2

subject to 0.5y1 + 0.2y2 ≤ 1

− 0.1y1 + 0.3y2 ≤ 1 (P)

0.1y1 + 0.1y2 ≤ 1

y1, y2 ≥ 0

where y1 = x2 and y2 = x1,

c =

⎡
⎢⎣

1

−1

⎤
⎥⎦ , A =

⎡
⎢⎢⎢⎢⎣

0.5 0.2

−0.1 0.3

0.1 0.1

⎤
⎥⎥⎥⎥⎦

, and b =

⎡
⎢⎢⎢⎢⎣

1

1

1

⎤
⎥⎥⎥⎥⎦

.



29

In the last step, we encode the LP into a input-output pattern of NNs as

follows:

xn = [c1 . . . cn a11 . . . a1n b1 . . . am1 . . . amn bm]T

t = [t1 . . . tn tn+1 . . . tm+n]T

where

xn is the ((m+n+mn)×1) vector called the input vector and its ith dimension

represents the input signal of neuron i in the input layer of NNs.

t is ((m+n)×1) vector called the target vector and its ith dimension represents

the output signal that is

ti =

⎧⎪⎪⎨
⎪⎪⎩

1, if the ith constraint is binding;

0, otherwise.

We solve the LP by the subprogram Solve_LP()‡ to identify the binding and

non-binding constraints using the subprogram Binding()‡. This construct the

vector t. In this research, the number of binding constraints is fixed to the number

of decision variables, so we ignore the LPs that do not have a unique solution.

Figure 3.4: Flow chart for the encoding step.

‡Appendix C



30

For a testing set generations, we also solve LP so that we can compare the

target with the output from trained NNs and compute the accuracy of trained

NNs.

Example 3.2. From the previous problem P, the (11 × 1) input vector can be

written as follows:

xn = [1 − 1 0.5 0.2 1 − 0.1 0.3 1 0.1 0.1 1]T

After we solve the LP, we get the only one optimal solution which is y1 = 2

and y2 = 0. When we substitute the optimal values of the decision variables into

the left-hand side of the constraints, we obtain

maximize y1 − y2

subject to 0.5y1 + 0.2y2 ≤ 1 1 = 1 (1)

−0.1y1 + 0.3y2 ≤ 1 −0.2 ≤ 1 (2)

0.1y1 + 0.1y2 ≤ 1 0.2 ≤ 1 (3)

y1 ≥ 0 2 ≥ 0 (4)

y2 ≥ 0 0 = 0 (5)

The 1st and 5th constraints are binding and the others are non-binding. Therefore,

the targets for NNs can be written in the vector form as:

t = [1 0 0 0 1]T

The training and testing sets for NNs are generated this way. In the next part,

we will describe the design of NNs.



31

3.2 The Architecture of Neural Networks

In this research, the back-propagation (BP) learning algorithm is used to train

the three-layer multilayer perceptron (MLP).

The input patterns for training NNs (xn) are composed of the coefficient of the

objective function, the coefficient of constraints and the right-hand-side constants

of LP. Therefore, the number of input neurons is specified by the dimension of

the input vector (xn).

To identify that each constraint of the LP in (m×n) dimensions is binding or

non-binding, we use m+n NNs with one output to adjust the weight in accordance

with an error from only one constraint instead of all m+n constraints. By reducing

the target size for training NNs, the network error can converge to an acceptable

threshold faster.

Figure 3.5: m + n NNs for the LP in (m × n) dimensions.



32

The number of hidden nodes is a crucial parameter of a feed forward multilayer

perceptron. An NN with too many hidden neurons may over fit the data, causing

poor classification on unseen data, while too few hidden units under fit the model,

and is not sufficiently accurate.

In this research, we determine the appropriate number of hidden neurons by

increasing them based on the exponential function, 2j where 2j is equal to or

larger than the number of input nodes.

Suppose that the input, hidden, output neurons are equal to n1, n2 and n3

respectively. Therefore, one NN has

n1 = |xn| = m + n + mn,

n2 = 2j, where j ≥ log2(m + n + mn) and n3 = 1.

Figure 3.6: The kth NN for the kth constraint.



33

Example 3.3. For our previous example (P), the input and target vectors can

be written as:

xn = [1 − 1 0.5 0.2 1 − 0.1 0.3 1 0.1 0.1 1]T

and t = [1 0 0 0 1]T

From the above LP, the problem involves five constraints. We also need five

corresponding NNs where the kth NN identifies that the kth constraint is binding

or non-binding, for k = 1, . . . , 5.

Figure 3.7: Five NNs for the problem (P).

For the hidden neurons, 2j, j starts from 4 because 24 = 16 is larger than the

dimension of input patterns (|xn| = 11).



34

Figure 3.8: The structure of the 1st NN for the constraint 0.5y1 + 0.2y2 ≤ 1.

The target of the 1st NNs is equal to 1 which means the first constraint (0.5y1+

0.2y2 ≤ 1) is binding.



35

Figure 3.9: The structure of the 2nd NN for the constraint −0.1y1 + 0.3y2 ≤ 1.

The target of the 2nd NNs is equal to 0 which means the second constraint

(−0.1y1 + 0.3y2 ≤ 1) is non-binding.



36

Figure 3.10: The structure of the 3rd NN for the constraint 0.1y1 + 0.1y2 ≤ 1.

The target of the 3rd NNs is equal to 0 which means the third constraint

(0.1y1 + 0.1y2 ≤ 1) is non-binding.



37

Figure 3.11: The structure of the 4th NN for the nonnegative constraint x1 ≥ 0.

The target of the 4th NNs is equal to 0 which means the nonnegative constraint

(x1 ≥ 0) is non-binding.



38

Figure 3.12: The structure of the 5th NN for the nonnegative constraint x2 ≥ 0.

The target of the 5th NNs is equal to 1 which means the nonnegative constraint

(x2 ≥ 0) is binding.



39

As for the activation function, we use the sigmoidal function because the target

of our patterns is only 0 or 1. After the training process, its performance and

classification capabilities are evaluated. Before comparing with its target, the

output from the trained NNs is rounded by the threshold value 0.5 as:

output(net) =

⎧⎪⎪⎨
⎪⎪⎩

1, if net ≥ 0.5.

0, otherwise.

The predicted results are shown in terms of the accuracy of trained NNs in

the next chapter .



CHAPTER IV

RESULT AND CONCLUSION

4.1 Result

In the thesis, we perform our experiments based on Linux operating system with

the CPU Intel Pentium IV 2 GHz and RAM 256 MB using the SNNS software.

The problem size of LP is fixed to m × n dimensions where n is the number

of decision variables varied from 2 to 4 and m is the number of constraints varied

from n to n + 2. Therefore, we have nine different LP sizes, namely 2 × 2, 3 × 2,

4 × 2, 3 × 3, 4 × 3, 5 × 3, 4 × 4, 5 × 4, and 6 × 4.

For training NNs, the training sets contain 10,000 input vectors. The maxi-

mum epochs and the acceptable error (sum square error: SSE) are set to 50,000

and 10−6, respectively.

The learning process of the back propagation algorithm is terminated when

either the iteration exceeded (learning at the maximum iteration) or the network

error was below acceptable threshold (learning successfully).

If NN can learn successfully, the newly 1,000 generated patterns will be simu-

lated to estimate the accuracy of the unseen data of the NN.

In our experiment, each binding and non-binding constraint at the optimal

solution is treated differently. Since our aim of the research is to identify non-

binding constraints, the accumulated error is defined as the incorrectly classifying

the binding constraint as the non-binding output.

To clarify this concept, consider the following example.



41

Example 4.1. Consider the previous problem P,

maximize y1 − y2

subject to 0.5y1 + 0.2y2 ≤ 1 (1)

−0.1y1 + 0.3y2 ≤ 1 (2)

0.1y1 + 0.1y2 ≤ 1 (3)

y1 ≥ 0 (4)

y2 ≥ 0 (5)

xn = [1 − 1 0.5 0.2 1 − 0.1 0.3 1 0.1 0.1 1]T

t = [1 0 0 0 1]T

This problem involves five constraints, we thus have five corresponding NNs.

At the optimal solution, the 1st and 5th constraints are binding and the others are

non-binding.

The output after xn is fed to the NNs of the 1st and 5th NNs must not be

equal to 0, otherwise the optimal solution of the original LP may not reach the

actual optimal solution. The NN is said to be incorrectly classified.

In contrast, the output of the other NNs can be equal to 0 or 1 because the

other constraints are non-binding. Whether we eliminate them or not, the optimal

solution of this updated problem will be the same as the original problem.



42

The accuracy of the jth NN can be denoted by

Accuracy(NNj) =
The number of correctly predicted patterns

Total number of testing patterns
.

If our experiment, we train NNs with the different number of hidden nodes.

Since the accuracy of trained NNs on testing data is more important than the

training time, the NN with the appropriate hidden nodes that has the best accu-

racy will be selected. If there are two or more NNs having the same accuracy, the

NN with the shortest running time is selected.

Suppose that the selected NN for the kth constraint is denoted by NNk, for

k = 1, . . . , m + n.

The average accuracy of the m + n NNs is evaluated as:

Average accuracy =

∑m+n
k=1 Accuracy(NNk)

m + n

Note that if all m + n NNs predict the correct non-binding constraints then

the optimal solution of the eliminated non-binding LP is the same as the original

problem.

However, if one of the NNs misclassifies the binding constraint as the non-

binding one then the optimal solution of the eliminated non-binding LP does not

guarantee to be the same as the original LP.

Therefore, we define the overall accuracy of all m + n NNs as

Overall accuracy =
The number of LP that all m + n selected NNs predict correctly

Total number of testing patterns



43

Our first learned NNs composes 2 +2 NNs for the LP in the 2× 2 dimensions.

The input and target vectors can be represented by

xn = [c1 c2 a11 a12 b1 a21 a22 b2]
T

t = [t1 t2 t3 t4]
T

The problem involves 4 constraints, we thus have 4 corresponding NNs. Each

of them has 8 inputs (|xn|) and one output. As for the number of hidden neuron,

it is varied from 23 to 26.

The experimental results is presented in Table 4.1.

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)

1 8 50,000 - 4.48369 -

16 15,217 1,154.40 - 99.80

*32 4,198 591.89 - 99.90

64 2,315 632.95 - 99.70

2 *8 19,890 960.68 - 99.90

16 3,807 291.88 - 99.60

32 2,527 363.75 - 99.60

64 1,732 467.80 - 99.50

x1 ≥ 0 8 50,000 - 9.80923 -

16 10,004 759.08 - 99.80

32 3,523 491.70 - 99.70

*64 2,279 606.59 - 100.00

x2 ≥ 0 8 2,369 *119.07 - 99.90

16 1,769 144.46 - 99.90

32 1,409 207.07 - 99.60

64 1,135 306.05 - 99.90

* marks the selected NNk for k = 1, . . . , 4.

Table 4.1: NNs for the LP in m = 2, n = 2



44

Table 4.1 shows that the accuracy of the NNs with 8 hidden neurons for the 1st

and x1 ≥ 0 constraints are not evaluated (-) because the NNs learn unsuccessfully.

They reach the maximum iteration (50,000 epochs) due to having too few hidden

neurons to capture the complexity of training patterns.

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 4,

is selected from Table 4.1 as shown in Table 4.2

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 32 591.89 99.90

2 NN2 8 960.68 99.90

x1 ≥ 0 NN3 64 606.59 100.00

x2 ≥ 0 NN4 8 119.07 99.90

Average accuracy 99.93

Table 4.2: Selected NNs for the LP in m = 2, n = 2

After checking the number of LP that all four selected NNs predict correctly,

we get the overall accuracy is equal to 99.7%. This means that there are 0.03% of LP

in testing patterns missclassified the binding constraint, which causes inaccurate

optimal solution of the original LP.



45

The second learned NN composes of 3 + 2 NNs for the LP in the 3× 2 dimen-

sions. The input and target vectors can be represented by

xn = [c1 c2 a11 a12 b1 a21 a22 b2 a31 a32 b3]
T

t = [t1 t2 t3 t4 t5]
T

The problem involves 5 constraints, we thus have 5 corresponding NNs. Each

of them has 11 inputs (|xn|) and one output. As for the number of hidden neuron,

it is varied from 24 to 27.

The experimental results is presented in Table 4.3.

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)

1 16 50,000 - 68.51823 -

32 50,000 - 16.12836 -

*64 2,780 948.61 - 98.20

128 1,345 881.92 - 97.80

2 16 50,000 - 59.77855 -

32 50,000 - 9.67427 -

*64 5,603 1,887.96 - 98.60

128 1,763 1,147.47 - 98.10

3 16 50,000 - 44.51794 -

*32 13,447 2,401.58 - 99.50

64 4,064 1,374.76 - 99.20

128 1,432 941.20 - 99.40

x1 ≥ 0 16 50,000 - 8.08606 -

32 15,960 2,734.58 - 98.90

64 2,526 833.11 - 98.90

*128 1,005 589.71 - 99.10

x2 ≥ 0 *16 2,760 273.82 - 99.80

32 1,805 311.08 - 99.40

64 1,398 470.16 - 99.60

128 1,139 743.05 - 99.50

* marks the selected NNk for k = 1, . . . , 5.

Table 4.3: NNs for the LP in m = 3, n = 2



46

Table 4.3 shows that the NNs with 16 hidden neurons for all constraint except

the x2 ≥ 0 constraint and 32 hidden neurons for the 1st and 2nd constraints reach

the maximum iteration (learning unsuccessfully). Therefore, their accuracy is not

evaluated (-).

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 5,

is selected from Table 4.3 as shown in Table 4.4

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 64 948.61 98.20

2 NN2 64 1,887.96 98.60

3 NN3 32 2,401.58 99.50

x1 ≥ 0 NN4 128 589.71 99.10

x2 ≥ 0 NN5 16 273.82 99.80

Average accuracy 99.04

Table 4.4: Selected NNs for the LP in m = 3, n = 2

After checking the number of LP that all five selected NNs predict correctly, we

get the overall accuracy is equal to 95.20%. This means that there are 4.80% of LP

in testing patterns missclassified the binding constraint, which causes inaccurate

optimal solution of the original LP.

Next, we train the 4 + 2 NNs for the LP in the 4 × 2 dimensions. The input

and target vectors can be represented by

xn = [c1 c2 a11 a12 b1 a21 a22 b2 a31 a32 b3 a41 a42 b4]
T

t = [t1 t2 t3 t4 t5 t6]
T

The problem involves 6 constraints, we thus have 6 corresponding NNs. Each

of them has 14 inputs (|xn|) and one output. As for the number of hidden neuron,

it is varied from 24 to 27.

The experimental results is presented in Table 4.5.



47

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)

1 16 50,000 - 220.01929 -

32 50,000 - 90.70090 -

64 22,158 8081.71 - 96.80

*128 2,162 1,564.69 - 96.90

2 16 50,000 - 144.23007 -

32 50,000 - 42.77959 -

64 10,053 3,711.40 - 97.50

*128 2,335 1,719.71 - 97.80

3 16 50,000 - 101.22366 -

32 50,000 - 28.36635 -

64 2,831 *1,041.43 - 97.90

128 7,520 5,482.10 - 97.90

4 16 50,000 - 51.59223 -

32 21,346 4,030.50 - 98.20

64 5,272 1,945.18 - 98.30

*128 2,183 1,574.30 - 98.70

x1 ≥ 0 16 50,000 - 96.61501 -

32 50,000 - 15.81535 -

*64 2,781 1,033.00 - 98.20

128 1,281 932.60 - 97.50

x2 ≥ 0 16 1,677 *173.11 - 99.50

32 963 182.12 - 99.40

64 904 384.64 - 99.50

128 485 357.78 - 99.50

* marks the selected NNk for k = 1, . . . , 6.

Table 4.5: NNs for the LP in m = 4, n = 2



48

Table 4.5 shows that the NNs with 16 hidden neurons for all constraint except

the x2 ≥ 0 constraint and 32 hidden neurons for all constraint except the 4th

and x2 ≥ 0 constraints reach the maximum iteration (learning unsuccessfully).

Therefore, their accuracy is not evaluated (-).

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 6,

is selected from Table 4.5 as shown in Table 4.6

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 128 1,564.69 96.90

2 NN2 128 1,719.71 97.80

3 NN3 64 1,041.43 97.90

4 NN4 128 1,574.30 98.70

x1 ≥ 0 NN5 64 1,033.00 98.20

x2 ≥ 0 NN6 16 173.11 99.50

Average accuracy 98.17

Table 4.6: Selected NNs for the LP in m = 4, n = 2

After checking the number of LP that all six selected NNs predict correctly, we

get the overall accuracy is equal to 89.40%. This means that there are 10.60% of LP

in testing patterns missclassified the binding constraint, which causes inaccurate

optimal solution of the original LP.

The next learned NNs composes of 3+3 NNs for the LP in the 3×3 dimensions.

The input and target vectors can be represented by

xn = [c1 c2 c3 a11 a12 a13 b1 a21 a22 a23 b2 a31 a32 a33 b3]
T

t = [t1 t2 t3 t4 t5 t6]
T

The problem involves 6 constraints, we thus have 6 corresponding NNs. Each

of them has 15 inputs (|xn|) and one output. As for the number of hidden neuron,

it is varied from 24 to 28.

The experimental results is presented in Table 4.7.



49

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)
1 16 50,000 - 323.92490 -

32 50,000 - 201.72466 -
64 50,000 - 33.36899 -

*128 3,688 2,659.00 - 95.80
256 3,023 4,204.74 - 95.30

2 16 50,000 - 302.52875 -
32 50,000 - 201.60039 -
64 50,000 - 26.59995 -
128 2,992 2,127.22 - 94.80

*256 2,097 2,881.96 - 95.00
3 16 50,000 - 302.52875 -

32 50,000 - 180.22064 -
64 50,000 - 26.13642 -
128 2,751 1,941.99 - 95.20

*256 1,545 2,168.17 - 95.70
x1 ≥ 0 16 50,000 - 346.91119 -

32 50,000 - 224.78435 -
64 50,000 - 27.86832 -

*128 2,397 1,699.12 - 95.10
256 688 965.54 - 94.30

x2 ≥ 0 16 50,000 - 312.15701 -
32 50,000 - 192.91785 -
64 50,000 - 9.30723 -

*128 2,493 1,771.57 - 95.90
256 2,799 4,025.36 - 94.60

x3 ≥ 0 16 50,000 - 203.40755 -
32 50,000 - 76.81271 -
64 10,898 3,959.65 - 96.40
128 3,181 2,245.13 - 95.80
256 2,104 *2,993.36 - 96.40

* marks the selected NNk for k = 1, . . . , 6.

Table 4.7: NNs for the LP in m = 3, n = 3



50

Table 4.7 shows that the NNs with 16, 32, and 64 hidden neurons for all

constraint except the NNs with 64 hidden neurons for the x3 ≥ 0 constraint reach

the maximum iteration (learning unsuccessfully). Therefore, their accuracy is not

evaluated (-).

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 6,

is selected from Table 4.7 as shown in Table 4.8

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 128 2,659.00 95.80

2 NN2 256 2,881.96 95.00

3 NN3 256 2,168.17 95.70

x1 ≥ 0 NN4 128 1,699.12 95.10

x2 ≥ 0 NN5 128 1,771.57 95.90

x3 ≥ 0 NN6 256 2,993.36 96.40

Average accuracy 95.65

Table 4.8: Selected NNs for the LP in m = 3, n = 3

After checking the number of LP that all six selected NNs predict correctly, we

get the overall accuracy is equal to 74.90%. This means that there are 25.10% of LP

in testing patterns missclassified the binding constraint, which causes inaccurate

optimal solution of the original LP.

The next learned NNs composes of 4+3 NNs for the LP in the 4×3 dimensions.

The input and target vectors can be represented by

xn = [c1 c2 c3 a11 a12 a13 b1 a21 a22 a23 b2

a31 a32 a33 b3 a41 a42 a43 b4]
T

t = [t1 t2 t3 t4 t5 t6 t7]
T

The problem involves 7 constraints, we thus have 7 corresponding NNs. Each

of them has 19 inputs (|xn|) and one output. As for the number of hidden neuron,

it is varied from 25 to 28.



51

The experimental results is presented in Table 4.9.

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)
1 32 50,000 - 313.71573 -

64 50,000 - 92.86191 -
128 2,426 1,950.49 - 91.50

*256 2,223 3,602.47 - 92.50
2 32 50,000 - 294.47223 -

64 50,000 - 64.82623 -
128 1,846 *1,499.14 - 91.20
256 1,325 2,135.12 - 91.20

3 32 50,000 - 250.20413 -
64 50,000 - 50.28577 -

*128 1,817 1,477.70 - 94.40
256 1,207 1,933.6 - 94.30

4 32 50,000 - 159.51068 -
64 50,000 - 1.04256 -
128 1,232 991.65 - 94.50

*256 1,202 1,938.42 - 95.30
x1 ≥ 0 32 50,000 - 308.46732 -

64 50,000 - 61.96968 -
*128 2,314 1,858.59 - 92.20
256 2,080 3,332.15 - 91.40

x2 ≥ 0 32 50,000 - 267.73502 -
64 50,000 - 54.29050 -

*128 1,581 1,280.21 - 95.90
256 1,372 2,241.31 - 91.80

x3 ≥ 0 32 50,000 - 80.38234 -
64 4,176 1,704.03 - 95.70
128 1,062 861.76 - 95.20

*256 1,083 1,714.70 - 96.10

* marks the selected NNk for k = 1, . . . , 7.

Table 4.9: NNs for the LP in m = 4, n = 3



52

Table 4.9 shows that the NNs with 32, and 64 hidden neurons for all constraint

except the NNs with 64 hidden neurons for the x3 ≥ 0 constraint reach the

maximum iteration (learning unsuccessfully). Therefore, their accuracy is not

evaluated (-).

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 7,

is selected from Table 4.9 as shown in Table 4.10

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 256 3,602.47 92.50

2 NN2 128 1,499.14 91.20

3 NN3 128 1,477.70 94.40

4 NN4 256 1,938.42 95.30

x1 ≥ 0 NN5 128 1,858.59 92.20

x2 ≥ 0 NN6 128 1,280.21 95.90

x3 ≥ 0 NN7 256 1,714.70 96.10

Average accuracy 93.94

Table 4.10: Selected NNs for the LP in m = 4, n = 3

After checking the number of LP that all seven selected NNs predict correctly,

we get the overall accuracy is equal to 59.30%. This means that there are 40.70%

of LP in testing patterns missclassified the binding constraint, which causes inac-

curate optimal solution of the original LP.

The next learned NNs composes of 5+3 NNs for the LP in the 5×3 dimensions.

The input and the target vectors can be represented by

xn = [c1 c2 c3 a11 a12 a13 b1 a21 a22 a23 b2 a31 a32 a33 b3

a41 a42 a43 b4 a51 a52 a53 b5]
T

t = [t1 t2 t3 t4 t5 t6 t7 t8]
T

The problem involves 8 constraints, we thus have 8 corresponding NNs. Each

of them has 23 inputs (|xn|) and one output. As for the number of hidden neuron,

it is varied from 25 to 28.



53

The experimental results is presented in Table 4.11.

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)

1 32 50,000 - 395.51593 -
64 50,000 - 120.07862 -
128 1,652 1,504.46 - 88.40

*256 1,040 1,841.59 - 90.00
2 32 50,000 - 334.06140 -

64 50,000 - 101.96539 -
128 2,685 2,440.01 - 91.20

*256 1,248 2,210.47 - 91.80
3 32 50,000 - 315.96420 -

64 50,000 - 75.28999 -
128 1,483 1,346.76 - 91.10

*256 835 1,517.04 - 92.10
4 32 50,000 - 240.11996 -

64 50,000 - 4.20835 -
128 1,374 1,236.81 - 94.00

*256 756 1,371.65 - 95.40
5 32 50,000 - 92.58267 -

*64 4,067 1,867.23 - 96.70
128 893 806.19 - 95.40
256 485 879.64 - 95.80

x1 ≥ 0 32 50,000 - 335.90030 -
64 50,000 - 81.96362 -

*128 1,930 1,737.46 - 91.60
256 1,167 2,093.19 - 91.10

x2 ≥ 0 32 50,000 - 285.33115 -
64 50,000 - 53.00173 -
128 1,243 1,127.71 - 93.40

*256 1,004 1,812.19 - 93.60
x3 ≥ 0 32 50,000 - 42.98532 -

*64 1,136 522.56 - 96.10
128 516 467.45 - 95.60
256 337 607.67 - 95.90

* marks the selected NNk for k = 1, . . . , 8.

Table 4.11: NNs for the LP in m = 5, n = 3



54

Table 4.11 shows that the NNs with 32 ,and 64 hidden neurons for all constraint

except the NNs with 64 hidden neurons for the 5th and x3 ≥ 0 constraints reach

the maximum iteration (learning unsuccessfully). Therefore, their accuracy is not

evaluated (-).

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 8,

is selected from Table 4.11 as shown in Table 4.12

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 256 1,841.59 90.00
2 NN2 256 2,210.47 91.80
3 NN3 256 1,517.04 92.10
4 NN4 256 1,371.65 95.40
5 NN5 64 1,867.23 96.70

x1 ≥ 0 NN6 128 1,737.46 91.60
x2 ≥ 0 NN7 256 1,812.19 93.60
x3 ≥ 0 NN8 64 522.56 96.10

Average accuracy 93.41

Table 4.12: Selected NNs for the LP in m = 5, n = 3

After checking the number of LP that all eight selected NNs predict correctly,

we get the overall accuracy is equal to 54.90%. This means that there are 45.10%

of LP in testing patterns missclassified the binding constraint, which causes inac-

curate optimal solution of the original LP.

The next learned NNs composes of 4+4 NNs for the LP in the 4×4 dimensions.

The input and target vectors can be represented by

xn = [c1 c2 c3 c4 a11 a12 a13 a14 b1 a21 a22 a23 a24 b2

a31 a32 a33 a34 b3 a41 a42 a43 a44 b4]
T

t = [t1 t2 t3 t4 t5 t6 t7 t8]
T

The problem involves 8 constraints, we thus have 8 corresponding NNs. Each

of them has 24 inputs (|xn|) and one output. As for the number of hidden neuron,

it is varied from 25 to 28.



55

The experimental results is presented in Table 4.13.

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)

1 32 50,000 - 351.40891 -
64 50,000 - 47.71244 -
128 1,488 1,422.90 - 88.90

*256 877 1,669.31 - 91.20
2 32 50,000 - 334.82507 -

64 50,000 - 99.72289 -
*128 1,501 1,429.86 - 90.00
256 877 1,669.31 - 91.20

3 32 50,000 - 353.66815 -
64 50,000 - 76.27777 -
128 1,578 1,505.59 - 91.40

*256 729 1,391.13 - 92.50
4 32 50,000 - 324.51324 -

64 50,000 - 55.45377 -
128 793 761.57 - 90.60

*256 830 1,585.39 - 92.60
x1 ≥ 0 32 50,000 - 334.82507 -

64 50,000 - 69.87735 -
*128 1,367 1,342.07 - 92.50
256 840 1,600.71 - 92.10

x2 ≥ 0 32 50,000 - 360.21011 -
64 50,000 - 69.50634 -

*128 1,154 1,220.00 - 90.60
256 804 1,570.97 - 88.80

x3 ≥ 0 32 50,000 - 328.40054 -
64 50,000 - 51.65095 -

*128 1,011 968.51 - 91.20
256 829 1,579.03 - 90.50

x4 ≥ 0 32 50,000 - 244.22375 -
64 50,000 - 7.52560 -

*128 999 952.96 - 91.30
256 944 1,818.33 - 90.20

* marks the selected NNk for k = 1, . . . , 8.

Table 4.13: NNs for the LP in m = 4, n = 4



56

Table 4.13 shows that the NNs with 32 and 64 hidden neurons for all constraint

reach the maximum iteration (learning unsuccessfully). Therefore, their accuracy

is not evaluated (-).

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 8,

is selected from Table 4.13 as shown in Table 4.14

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 256 1,669.31 91.20

2 NN2 128 1,429.86 90.00

3 NN3 256 1,391.13 92.50

4 NN4 256 1,585.39 92.60

x1 ≥ 0 NN5 128 1,342.07 92.50

x2 ≥ 0 NN6 128 1,220.00 90.60

x3 ≥ 0 NN7 128 968.51 91.20

x4 ≥ 0 NN8 128 952.96 91.30

Average accuracy 91.48

Table 4.14: Selected NNs for the LP in m = 4, n = 4

After checking the number of LP that all eight selected NNs predict correctly,

we get the overall accuracy is equal to 44.20%. This means that there are 55.80%

of LP in testing patterns missclassified the binding constraint, which causes inac-

curate optimal solution of the original LP.



57

The next learned NNs composes of 5+4 NNs for the LP in the 5×4 dimensions.

The input and target vectors can be represented by

xn = [c1 c2 c3 c4 a11 a12 a13 a14 b1 a21 a22 a23 a24 b2

a31 a32 a33 a34 b3 a41 a42 a43 a44 b4

a51 a52 a53 a54 b5]
T

t = [t1 t2 t3 t4 t5 t6 t7 t8 t9]
T

The problem involves 9 constraints, we thus have 9 corresponding NNs. Each

of them has 29 inputs (|xn|) and one output. As for the number of hidden neuron,

it is varied from 25 to 28.

The experimental results is presented in Table 4.15.



58

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)
1 32 50,000 - 402.96899 -

64 50,000 - 71.98686 -
128 983 1,063.28 - 87.50

*256 665 1,430.42 - 89.00
2 32 50,000 - 434.57349 -

64 50,000 - 114.58553 -
128 1,895 2,054.32 - 89.60

*256 815 1,761.21 - 91.70
3 32 50,000 - 399.22968 -

64 50,000 - 92.48386 -
128 1,053 1,145.90 - 89.00

*256 558 1,207.57 - 89.30
4 32 50,000 - 339.72290 -

64 50,000 - 40.49747 -
128 760 832.19 - 83.7

*256 565 1,224.02 - 88.90
5 32 50,000 - 189.69020 -

64 9,453 5,213.91 - 92.10
*128 498 536.48 - 92.40
256 553 1,194.48 - 91.40

x1 ≥ 0 32 50,000 - 380.92621 -
64 50,000 - 97.01405 -
128 1,085 1,178.07 - 88.90

*256 582 1,251.37 - 89.70
x2 ≥ 0 32 50,000 - 405.59177 -

64 50,000 - 66.69518 -
*128 855 928.62 - 90.80
256 705 1,527.03 - 88.60

x3 ≥ 0 32 50,000 - 367.77017 -
64 50,000 - 77.19629 -
128 850 922.95 - 90.10

*256 655 1,408.90 - 90.80
x4 ≥ 0 32 50,000 - 207.37527 -

64 50,000 - 1.04151 -
128 571 620.28 - 90.60

*256 513 1,112.52 - 91.80

* marks the selected NNk for k = 1, . . . , 9.

Table 4.15: NNs for the LP in m = 5, n = 4



59

Table 4.15 shows that the NNs with 32 and 64 hidden neurons for all constraint

except the NNs with 64 hidden neurons for the 5th constraint reach the maximum

iteration (learning unsuccessfully). Therefore, their accuracy is not evaluated (-).

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 9,

is selected from Table 4.15 as shown in Table 4.16

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 256 1,430.42 89.00

2 NN2 256 1,761.21 91.70

3 NN3 256 1,207.57 89.30

4 NN4 256 1,224.02 88.90

5 NN5 128 536.48 92.40

x1 ≥ 0 NN6 256 1,251.37 89.70

x2 ≥ 0 NN7 128 928.62 90.80

x3 ≥ 0 NN8 256 1,408.90 90.80

x4 ≥ 0 NN9 256 1,112.52 91.80

Average accuracy 90.49

Table 4.16: Selected NNs for the LP in m = 5, n = 4

After checking the number of LP that all nine selected NNs predict correctly,

we get the overall accuracy is equal to 36.00%. This means that there are 64.00%

of LP in testing patterns missclassified the binding constraint, which causes inac-

curate optimal solution of the original LP.



60

The last learned NNs composes of 6+4 NNs for the LP in the 6×4 dimensions.

The input and target vectors can be represented by

xn = [c1 c2 c3 c4 a11 a12 a13 a14 b1 a21 a22 a23 a24 b2

a31 a32 a33 a34 b3 a41 a42 a43 a44 b4

a51 a52 a53 a54 b5 a61 a62 a63 a64 b6]
T

t = [t1 t2 t3 t4 t5 t6 t7 t8 t9 t10]
T

The problem involves 10 constraints, we thus have 10 corresponding NNs.

Each of them has 34 inputs (|xn|) and one output. As for the number of hidden

neuron, it is varied from 26 to 28.

The experimental results is presented in Table 4.17.



61

Constraint# #Hidden Epochs Times(sec) Error(sse) Accuracy(%)

1 64 50,000 - 78.91619 -
*128 696 820.74 - 87.30
256 429 1,125.77 - 87.10

2 64 50,000 - 96.64111 -
*128 967 1,139.89 - 89.80
256 417 975.09 - 88.70

3 64 50,000 - 53.38405 -
128 681 799.97 - 86.60

*256 427 1,015.72 - 87.30
4 64 50,000 - 13.29587 -

128 601 715.08 - 88.6
*256 472 1,097.12 - 90.9

5 64 50,000 - 0.53562 -
128 483 567.42 - 89.60

*256 390 919.06 - 91.10
6 64 985 591.98 - 92.30

128 352 *413.09 - 92.70
256 326 759.98 - 92.70

x1 ≥ 0 64 50,000 - 52.79285 -
128 1,013 1,186.10 - 88.00

*256 533 1,258.20 - 88.40
x2 ≥ 0 64 50,000 - 54.08652 -

128 879 1,030.46 - 87.20
*256 328 790.87 - 88.70

x3 ≥ 0 64 50,000 - 1.51025 -
128 574 673.88 - 88.70

*256 391 975.63 - 89.50
x4 ≥ 0 64 1,863 1,119.96 - 92.80

128 376 444.15 - 93.90
*256 334 791.43 - 94.40

* marks the selected NNk for k = 1, . . . , 10.

Table 4.17: NNs for the LP in m = 6, n = 4



62

Table 4.17 shows that the NNs with 64 hidden neurons for all constraint except

the 6th and x4 ≥ 0 constraints reach the maximum iteration (learning unsuccess-

fully). Therefore, their accuracy is not evaluated (-).

The NN with the appropriate hidden nodes for the kth constraint, k = 1, . . . , 10,

is selected from Table 4.17 as shown in Table 4.18

Constraint# Network #Hidden Times(sec) Accuracy(%)

1 NN1 128 820.74 87.30

2 NN2 128 1,139.89 89.80

3 NN3 256 1,015.72 87.30

4 NN4 256 1,097.12 90.90

5 NN5 256 919.06 91.10

6 NN6 128 413.09 92.70

x1 ≥ 0 NN7 256 1,258.20 88.40

x2 ≥ 0 NN8 256 790.87 88.70

x3 ≥ 0 NN9 256 975.63 89.50

x4 ≥ 0 NN10 256 791.43 94.40

Average accuracy 90.01

Table 4.18: Selected NNs for the LP in m = 6, n = 4

After checking the number of LP that all ten selected NNs predict correctly, we

get the overall accuracy is equal to 27.90%. This means that there are 72.10% of LP

in testing patterns missclassified the binding constraint, which causes inaccurate

optimal solution of the original LP.



63

4.2 Conclusion

The aim of this research is to use a supervised learning neural network for iden-

tifying non-binding constraints in linear programming problems. The back prop-

agation algorithm is selected to train three layer MLPs.

We considered specifically nine different LP sizes: 2 × 2, 3 × 2, 4 × 2, 3 × 3,

4 × 3, 5 × 3, 4 × 4, 5 × 4, and 6 × 4.

For the LP in the m×n dimensions, the problem consists of m+n constraints,

we thus use m + n NNs with one input to identify each constraint where the kth

NNs identifies the kth constraints.

After the training process, the NNs will be measured their classification capa-

bilities as the average accuracy and the overall accuracy.

The average accuracy for nine different LP is summarized in Table 4.19.

LP size (m × n) #Input (|xn|) Average accuracy(%)

2 × 2 8 99.93

3 × 2 11 99.04

4 × 2 14 98.17

3 × 3 15 95.65

4 × 3 19 93.94

5 × 3 23 93.41

4 × 4 24 91.48

5 × 4 29 90.49

6 × 4 34 90.01

Table 4.19: The average accuracy

Table 4.19 shows the decreasing of the average accuracy varied by the number

of input nodes. The 90% or above means using the NNs to learn individual non-

binding constraint shows acceptable accuracy.



64

The overall accuracy for nine different LP is summarized in Table 4.20.

LP size (m × n) #NNs Overall accuracy(%)

2 × 2 4 99.70

3 × 2 5 95.20

4 × 2 6 89.40

3 × 3 6 74.90

4 × 3 7 59.30

5 × 3 8 54.40

4 × 4 8 44.20

5 × 4 9 36.00

6 × 4 10 27.90

Table 4.20: The overall accuracy

Table 4.20 shows the decreasing of the overall accuracy varied by the number

of NNs. The small accuracy of NNs shows that the large number of NNs does not

help to apply the non-binding elimination of the original LP.

Figure 4.1: Both accuracies decreases according to problem size

The results indicate the impact of this method to both accuracies. The in-

dividual accuracy of NNs is slowly decrease while the overall accuracy of NNs is

sharply decrease as the problem size becomes larger as shown in Figure 4.1.



65

An unacceptable overall accuracy of the larger LP shows an inappropriate

naive construction of input of the LP cannot be trained for all constraints, only

individual one is possible.

This shows that the use of the NN to learn the non-binding constraints is

possible. However, the appropriate structure of inputs of the LP is required in

order to reach the acceptable overall accuracy.

Note that for our input vector, no interrelationship between coefficients from

different rows has been identified. In addition, the distinctions among the objec-

tive coefficient and the right-hand-side constant are given according to the index

of the input.

In this research, NNs are used as classification tool for identifying non-binding

constraints. The back propagation algorithm may be unsuitable for training NNs.

Therefore, the future work of this research may concentrate on selecting other al-

gorithms in the training process, such as Radial Basis Function (RBF) or Support

Vector Machine (SVM).

However, this method is suitable to use in the small problem size. Moreover,

the time for predicting non-binding constraints does not depend on the number

of LPs. If we have a lot of LPs with two decision variables and less than four

constraints, this method can help us predict non-binding constraints correctly

more than 89%.



References

[1] Hiller, F. S., and Lieberman, G. J. Introduction to mathematical pro-

gramming. New York: McGraw-Hill, 1991.

[2] Dantzig, G. B. Linear programming and extensions. New Jersey:

Prentice-Hall, 1963.

[3] Karmarkar, N. A new polynomial time algorithm for linear programming.

Combinatorica 4, pp. 373 - 395, 1984.

[4] Zak, S. H., Upatising, V., and Hui, S. Solving linear programming

problems with neural networks: a comparative study. IEEE Trans.

Neural Networks, vol. 6, pp. 94 - 104, Jan. 1995.

[5] Yuan, J. L., and Chiang, H. D. A neural net linear programming solver

IEEE Trans. Circ. Syst., vol. 2, pp. 1117 - 1120, June. 1991.

[6] Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D. Linear programming

and network flow. New York: John Wiley and Sons, 1990.

[7] Winston, W. L. Operations research: Applications and algorithms.

Boston: PWS-Kent, 1991.

[8] Haykin, S. S. Neural networks: A comprehensive foundation. New

Jersey: Prentice-Hall, 1999.

[9] Philips, D. T., Ravindran, A., and Solberg, J. Operations research:

Principles and practice. New York: John Wiley and Sons, 1976.

[10] Gass, S. I. Linear programming. 5th ed. New York: McGraw-Hill, 1994.

[11] Hagan, M. T., Demuth, H. B., and Beale, M. Neural network design.

Boston: PWS Pub. Co., 1995.

[12] Chester, M. Neural networks: A tutorial. New Jersey: PTR Prentice

Hall, 1993.



67

[13] Makhorin, A. GNU linear programming kit. Moscow: Moscow Aviation

Institute, Russia, 2001.

[14] Zell, A., and others. Stuttgart neural network simulator. German: The

Institute for Parallel and Distributed High Performance Systems, The Uni-

versity of Stuttgart, 1998.



APPENDICES



Appendix A

GNU Linear Programming Kit: GLPK

GLPK (GNU Linear Programming Kit) is a set of routines written in the ANSI-C

programming language and organized in the form of a callable library [13]. It is

intended for solving mathematical programming problems. The GLPK package

can be downloaded from http://www.gnu.org/gnu/glpk.

In order to understand how GLPK can solve the LP, consider the following

example:

Example A.1. Suppose that we have an LP in the normalized LP form as:

maximize x1 − x2

subject to 0.5x1 + −1.5x2 ≤ 1

− 0.6x1 + 0.5x2 ≤ −1

− 0.4x1 + 2x2 ≤ 1

x1,x2 ≥ 0

We can solve this LP using GLPK API routines by the following C program.



70

/***An example code C for solving the LP that has m=3,n=2***/

/***Declare the relevant libraries***/

#include <stdio.h>

#include <stdlib.h>

#include "glpk.h"

int main(void)

{

/***Declare the relevant variables***/

LPX *lp;

int rn[1+6], cn[1+6];

double a[1+6], Z, x1, x2;

/***Create a LP object that initially is empty***/

s1: lp=lpx_create_prob();

/***Add rows and set upper bounds to the problem object***/

s2: lpx_add_rows(lp,3);

s3: lpx_set_rows_bnds(lp, 1, LPX_UP, 0.0, 1.0);

s4: lpx_set_rows_bnds(lp, 2, LPX_UP, 0.0, -1.0);

s5: lpx_set_rows_bnds(lp, 3, LPX_UP, 0.0, 1.0);

/***Add columns and set lower bounds to the problem object***/

s6: lpx_add_cols(lp,2);

s7: lpx_set_cols_bnds(lp, 1, LPX_LO, 0.0, 0.0);

s8: lpx_set_cols_bnds(lp, 2, LPX_LO, 0.0, 0.0);



71

/***Assign the constraint coefficients to three arrays***/

s9: rn[1]=1, cn[1]=1, a[1]= 0.5;

s10: rn[2]=1, cn[2]=2, a[2]=-1.5;

s11: rn[3]=2, cn[3]=1, a[3]=-0.6;

s12: rn[4]=2, cn[4]=2, a[4]= 0.5;

s13: rn[5]=3, cn[5]=1, a[5]=-0.4;

s14: rn[6]=3, cn[6]=2, a[6]= 2.0;

/***Load information into the problem object***/

s15: lpx_load_mat3(lp, 6, rn, cn, a);

/***Set the optimization direction***/

s16: lpx_set_obj_dir(lp, LPX_MAX);

/***Set the coefficients of the objective function***/

s17: lpx_set_cols_coef(lp, 1, 1.0);

s18: lpx_set_cols_coef(lp, 2, -1.0);

/***Solve the Lp***/

s19: lpx_simplex(lp);

/***Get the optimal value and optimal solution***/

s20: Z=lpx_get_obj_val(lp);

s21: lpx_get_col_info(lp, 1, NULL, &x1, NULL);

s22: lpx_get_col_info(lp, 2, NULL, &x2, NULL);



72

/***Print the output***/

s23: printf("Z = %lf; x1 = %lf, x2 = %lf\n", Z, x1, x2);

/***Delete the problem object***/

s24: lpx_delete_prob(lp);

return 0;

}

After we get the C program (LP.c), the next step is to link the relevant libraries

and compile it by the following command:

>>gcc -g -o2 -Iinclude LP.c ../libglpk.a -lm -o LP.out

The LP.out can be executed using the following command:

>> ./LP.out

The result is shown in the following figure:

Figure A.1: The output from GLPK

The optimal value (z) is 6.5 and the optimal solution of this problem is x1 =

8.75 and x2 = 2.25.



Appendix B

Stuttgart Neural Network Simulator: SNNS

SNNS (Stuttgart Neural Network Simulator) is a software simulator for research

on and application of NNs [14]. The SNNS package can be obtained from

http://www-ra.informatik.uni-tuebingen.de/SNNS/

To train an NN, we have to prepare data files using the SNNS format. SNNS

supports five file types as follows:

1. Pattern files (.pat)

The pattern file can divided into two components: a header and a data.

The header defines how many patterns the file contains and the dimension

of the input and target vectors. An example of the pattern file (xor.pat)

for the XOR problem is given as:

# Header

SNNS pattern definition file V1.4-3D

generated at Thu Sep 16 10:00:20 2004

No. of patterns : 4

No. of input units : 2

No. of output units : 1

# Data

# Pattern 1:



74

1 1

0

# Pattern 2:

0 1

1

# Pattern 3:

1 0

1

# Pattern 4:

0 0

0

2. Network file (.net)

The network file consists of the information about the weight, bias and

the link between neurons of NN. An example of the network file (xor.net)

is given as follows:

SNNS network definition file V1.4-3D

generated at Thu Sep 16 10:10:19 2004

network name : xor

source files :

no. of units : 8

no. of connections : 15

no. of unit types : 0

no. of site types : 0

learning function : Std_Backpropagation



75

update function : Topological_Order

unit default section :

act |bias |st|subnet|layer|act func |out func

-------|-------|--|------|-----|------------|------------

0.00000|0.00000|h | 0| 1|Act_Logistic|Out_Identity

-------|-------|--|------|-----|------------|------------

unit definition section :

no. | typeName | unitName | act | bias | st | ...

1 | | | 1.00000 | -1.00000 | i |

....

7 | | | 0.03148 | -1.96954 | h |

8 | | | 0.09881 | -2.13637 | o |

----|----------|----------|----------|----------|----| ...

connection definition section :

target | site | source:weight

-------|------|------------------

3 | | 1:-3.24972, 2:-2.69466

...

8 | | 3:-3.09026, 4:-1.59093, ... , 7: 5.77850

-------|------|------------------------------------------



76

3. Configuration files (.cfg)

The configuration file defines the location of relevant files and the value

of all parameters, such as, the maximum iteration, maximum error and

learning rate. An example of the configuration file (xor.cfg) is given as

follows:

Type: SNNSBATCH_2

# If a key is given twice, the second appearance is taken.

# Keys that are not required for a special run maybe omitted.

# If a key is omitted but required, a default value is assumed.

# The lines may be separated with comments.

#

# Please note the mandatory file type specification at

# the beginning and the colon following the key.

#

NetworkFile: xor.net

InitFunction: Randomize_Weights

NoOfInitParam: 2

InitParam: -1.0 1.0

#

LearnPatternFile: xor.pat

#

NoOfLearnParam: 2

LearnParam: 0.8 0.1

MaxLearnCycles: 10000

MaxErrorToStop: 0.001

Shuffle: YES



77

TrainedNetworkFile: xor.net

ResultFile: xor.res

ResultMinMaxPattern: 1 4

ResultIncludeInput: YES

ResultIncludeOutput: YES

4. Result file (.res)

The result file is the output of the trained NN written after the SNNS

finished processing. An example of the result file (xor.res) is given as

follow:

SNNS result file V1.4-3D

generated at Thu Sep 16 10:10:19 2004

No. of patterns : 4

No. of input units : 2

No. of output units : 1

startpattern : 1

endpattern : 4

input patterns included

teaching output included

#1.1

0 0

0

0.09794



78

#2.1

0 1

1

0.90076

#3.1

1 0

1

0.90016

#4.1

1 1

0

0.09881

5. Log file (.log)

The log file created automatically reports the statistical data about the

process of training an NN, such as, the error in each iteration, CPU time

used in learning and the number of learned cycles. An example of the log

file (snnsbat.log) is given as follow:

SNNS 3D-Kernel V4.20 Batchlearning Program

Configuration file: ’xor.cfg’

Log file : ’snnsbat.log’

######## SNNS batch execution run. Loop 1 ########

Networkfile ’xor.net’ loaded.

Patternfile ’xor.pat’ loaded.

No. of patterns: 4



79

No. of cycles: 100000

Max. network error to stop: 0.001000

Patterns are shuffled

Network name : xor

No. of units : 8

No. of sites : 0

No. of links : 15

Learning Function : Std_Backpropagation

Update Function : Topological_Order

Learning Parameter #1 : 0.800000

Learning Parameter #2 : 0.100000

Init Function: Randomize_Weights

Init Parameter #1 : -1.000000

Init Parameter #2 : 1.000000

Result File : ’xor.res’

Result File Start Pattern: 1

Result File End Pattern : 4

Result File Input Pattern included

Result File Output Pattern included



80

********************************************************

SNNS 3D-Kernel V4.20 Batchlearning started

at Thu Sep 16 10:11:27 2004

Network initialized with

Randomize_Weights -1.00 1.00

Result file saved.

Network saved to xor.net.

SNNS 3D-Kernel V4.20 Batchlearning terminated

at Thu Sep 16 10:11:29 2004

Node: unknown

********************************************************

---- STATISTICS ----

No. of learned cycles: 611

No. of units updated : 19552

No. of sites updated : 0

No. of links updated : 36660

CPU Time used: 0.06 seconds

User time: 2 seconds

No. of connection updates per second (CUPS): 6.110000e+05



81

The process for using SNNS can be divided into three steps:

1. Network Creation

The network file for xor.net can be created by the SNNS tool called

Bignet using the following command: >> ./bignet The number of nodes

in input, output and hidden layers must be entered, respectively. We also

need to enter the name of the network and the file name that we want to

save the network.

Figure B.1: Bignet for a network creation

Bignet will create a file in our directory with the name xor.net. This

network has 2 input neurons, 5 hidden neurons and one output unit. How-

ever, we must also have a pattern file before we proceed with the simulation.

2. Pattern Creation

A pattern files is a text file with the .pat extension. It contains a header

and a data. The header is composed of a number of training patterns and



82

the number of input and output units. Then, we append training patterns

after the header information. An example of the pattern file has shown in

xor.pat.

3. Simulation

After we have a network file (xor.net) and a pattern file (xor.pat), the

next step is to create the configuration file that defines the location of rele-

vant files and the value of all parameters. An example of the configuration

file has shown in xor.cfg.

The configuration file can be executed using the following command:

>> ./snnsbat xor.cfg

This execution loads a network and pattern files, initializes the weights,

trains it for 10000 cycles (or stops, if the error is less than 0.001), and finally

generates the result file (xor.res).

In order to measure the accuracy of our testing patterns, the configura-

tion file will be change as follows:

NetworkFile: xor.net

LearnPatternFile: xor_test.pat

ResultFile: xor_test.res

ResultMinMaxPattern: 1 4

ResultIncludeInput: YES

ResultIncludeOutput: YES

We can see our results and network file in xor_test.res and xor.net.

For any statistical data, we can see it in the log file (snnsbat.log) that is

automatically created when we train an NN.



Appendix C

Coding

The program main.c is written in the ANSI-C programming language following

the algorithm for generating patterns for NNs from LPs in chapter III. Its coding

can be shown as follows:

/***Declare the relevant libraries***/

#include <stdio.h>

#include <stdlib.h>

#include <glpk.h>

/***Declare the relevant variables***/

int m,n;

int Max_pat,LP;

int h,k;

/***Declare subprograms***/

void Set_problemsize();

void Gen_LP();

void Sort(double c[n+1],double aa[m+1][n+1],double b[m+1]);

void Find_max(double aa[m+1][n+1],int sr,int sc);

void Switch_row(double b[m+1],double aa[m+1][n+1],int r1,int r2);

void Switch_col(double c[n+1],double aa[m+1][n+1],int c1,int c2);

void Solve_LP(double c[n+1],double aa[m+1][n+1],double b[m+1]);



84

void Binding(double c[n+1],double aa[m+1][n+1],double b[m+1],

double x[n+1]);

void Print_output(double c[n+1],double aa[m+1][n+1],double b[m+1],

int t[m+n+1]);

/***Program main.c for generating input patterns***/

int main(void)

{

Set_problemsize(); //Set problem sizes and maximum patterns.

for(LP=1;LP<=Max_pat;LP++)Gen_LP();

return 0;

}

void Set_problemsize()

{

/***Set problem sizes and maximum patterns***/

printf("Enter the number of constraints (m): ");

scanf("%d",&m);

printf("Enter the number of variables (n): ");

scanf("%d",&n);

/*Set the number of training + testing patterns*/

printf("Enter the maximum patterns (Max_pattern): ");

scanf("%d",&Max_pat);

}



85

void Gen_LP()

/***Random Matrix A, vector c and vector b***/

/***in the normalized LP from***/

/***c!=0 and b!=0)***/

{

double aa[m+1][n+1];

double c[n+1],b[m+1];

double temp;

int i,j;

for(i=1;i<=m;i++){

for(j=1;j<=n;j++){

aa[i][j]=2.0*(rand()/(double)RAND_MAX)-1.0;

temp=rand()/(double)RAND_MAX;

if(temp<=0.5)c[j]=1;

else c[j]=-1;

}

temp=rand()/(double)RAND_MAX;

if(temp<=0.5)b[i]=1;

else b[i]=-1;

}

Sort(c,aa,b); //Sort the LP according to the matrix A

Solve_LP(c,aa,b); //Solve the LP to get the optimal solution

}



86

void Sort(double c[n+1],double aa[m+1][n+1],double b[m+1])

/***Sort the LP according to the matrix A***/

{

int sr,sc,i;

for(i=1;i<=n;i++){

Find_max(aa,i,i);

if(h!=i)Switch_row(b,aa,i,h);

if(k!=i)Switch_col(c,aa,i,k);

}

if(m>n+1){

for(i=1;i<m-n;i++){

Find_max(aa,n+i,n);

if(h!=n+i)Switch_row(b,aa,n+i,h);

}

}

}

void Find_max(double aa[m+1][n+1],int sr,int sc)

{

int i,j; double max=aa[sr][sc];

h=sr,k=sc;

for(i=sr;i<=m;i++){

for(j=sc;j<=n;j++){

if(max<aa[i][j]){max=aa[i][j];h=i;k=j;}

}

}

}



87

void Switch_row(double b[m+1],double aa[m+1][n+1],int r1,int r2)

{

double temp;

int i;

for(i=1;i<=n;i++){temp=aa[r1][i];

aa[r1][i]=aa[r2][i];

aa[r2][i]=temp;}

if(b[r1]!=b[r2]){temp=b[r1];

b[r1]=b[r2];

b[r2]=temp;}

}

void Switch_col(double c[n+1],double aa[m+1][n+1],int c1,int c2)

{

double temp;

int i;

for(i=1;i<=m;i++){temp=aa[i][c1];

aa[i][c1]=aa[i][c2];

aa[i][c2]=temp;}

if(c[c1]!=c[c2]){temp=c[c1];

c[c1]=c[c2];

c[c2]=temp;}

}



88

void Solve_LP(double c[n+1],double aa[m+1][n+1],double b[m+1])

{

LPX *lp;

int i,j,cu=1,rz=0,rn[m*n+1],cn[m*n+1];

double a[m*n+1],x[n+1];

s1: lp=lpx_create_prob();

s2: lpx_add_rows(lp,m);

s3: for(i=1;i<=m;i++)lpx_set_row_bnds(lp,i,LPX_UP,0.0,b[i]);

s4: lpx_add_cols(lp,n);

s5: for(i=1;i<=n;i++)lpx_set_col_bnds(lp,i,LPX_LO,0.0,0.0);

s6: for(i=1;i<=m;i++){

for(j=1;j<=n;j++,cu++){

if(fabs(aa[i][j])>=1E-6){

rn[cu-rz]=i, cn[cu-rz]=j, a[cu-rz]=aa[i][j];}

else rz++;} }

s7: lpx_load_mat3(lp,m*n-rz,rn,cn,a);

s8: lpx_set_obj_dir(lp,LPX_MAX);

s9: for(i=1;i<=n;i++)lpx_set_col_coef(lp,i,c[i]);

s10: lpx_simplex(lp);

s11: if(lpx_get_status(lp)==LPX_OPT){

for(i=1;i<=n;i++)lpx_get_col_info(lp,i,NULL,&x[i],NULL);

Binding(c,aa,b,x);}

else LP--;

s12: lpx_delete_prob(lp);

}



89

void Binding(double c[n+1],double aa[m+1][n+1],double b[m+1],

double x[n+1])

{

int i,j,t[m+n+1];

double sum;

for(i=1;i<=n;i++){if(fabs(x[i])<=1E-6)t[i]=1;else t[i]=0;}

for(i=1;i<=m;i++){sum=0.0;

for(j=1;j<=n;j++)sum+=(aa[i][j]*x[j]);

if(fabs(sum-b[i])<=1E-6)t[n+i]=1;

else t[n+i]=0;}

Print_output(c,aa,b,t);

}

void Print_output(double c[n+1],double aa[m+1][n+1],double b[m+1],

int t[m+n+1])

{

int i,j;

FILE *fpat;

fpat=fopen("Lp.pat","a+");

for(i=1;i<=n;i++)fprintf(fpat,"%.0lf\t",c[i]);

for(i=1;i<=m;i++){for(j=1;j<=n;j++)fprintf(fpat,"%lf\t",aa[i][j]);

fprintf(fpat,"%.0lf\t",b[i]);}

for(i=1;i<=m+n;i++)fprintf(fpat,"%d\t",t[i]);

fprintf(fpat,"\n");

fclose(fpat);

}



90

Vitae

Wanyok Atisattapong was born in March 5, 1982, in Bangkok. She obtained

her Bachelor’s degree in Applied Mathematics from the Faculty of Science and

Technology, Thammasat University in 2002.


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgement
	Content
	Chapter 1 Introduction
	1.1 Motivation and Problem Description
	1.2 The Objective of Research
	1.3 The Scope of Study

	Chapter 2 Background knowledge
	2.1 Background on Linear Programming Problems
	2.2 Background on Neural Networks

	Chapter 3 Implementation
	3.1 The Algorithm for Generating Patterns
	3.2 The Architecture of Neural Networks

	Chapter 4 Result and conclusion
	4.1 Result
	4.2 Conclusion

	References
	Appendix
	Vita

