SEMIFIELDS

In this chapter, we shail classify all 0 -skew semifields up to isomorphism in Section 1. In Section 2 we shall give partial classifications of ∞-skew semifields.

Section 1. 0-Skew Semifields

Definition 3.1.1. A system $(K,+, \cdot, \leqslant)$ is called an ordered 0-skew semifield iff $(K,+, \cdot)$ is a 0 -skew semifield and \leqslant is an order on K satisfying the following properties:
(i) For any $x, y \in \mathbb{k}, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \varepsilon K$,
(ii) For any $x, y \in K, x \leqslant y$ implies that $x z \leqslant y z$ and $z x \leqslant z y$ for all $z \geqslant 0$ in K and

Proposition 3.1.2 Let Kbe a oskew semifield. If there are $x, y \in K \backslash\{0\}$ such that $x+y=0$, then K is a skew field.

Proof: Assume that $x, y \in K \vee\{0\}$ are such that $x+y=0$, let $z \varepsilon K$ be arbitrary. Since $x \in K \backslash\{0\}, x^{-1}$ exists. Therefore $z x^{-1}(x+y)=\left(z x^{-1}\right) 0=0$, it follows that $z+z^{-1} y=0$. Thus $\mathrm{zx}^{-1} y$ is an additive inverse of z. Since $z \varepsilon K$ is arbitrary, b has an
additive inverse for every $b \varepsilon K$. Hence K is a skew field.\#

Notation : Let K be an ordered 0 -skew semifield. Then we will denote $D_{K}^{+}=\{x \varepsilon K \mid x>0\}$ and $D_{K}^{-}=\{x \in K \mid x<0\}$. Note that $1 \varepsilon D_{K}^{+}$, so $\mathrm{D}_{\mathrm{K}}^{+}$is never the empty set.

The following remarks follow immediately from Definition
3.1.1.

Remarks : 1) $x \in D_{K}^{+}$and $y \in D_{\mathrm{K}}^{-}$imply that $x y \in D_{K}^{-}$,
2) $x \in D_{K}^{-}$implies that $x^{-1} \varepsilon D_{K}^{-}$

Proposition 3.1.3. Let K be a complete ordered 0 -skew semifield which is not a skew field. Then D_{K}^{+}is a complete ordered skew ratio semiring and D_{K}^{-}is a complete ordered semigroup with respect to addition if $D_{K}^{-} \neq \varnothing$.

Proof: First, we shall show that D_{K}^{+}is a complete ordered skew ratio semiring. To prove this, qlet? $x, Y \varepsilon D_{K}^{+}$. So $x>0$ and $y>0$, whichlimplies that $x+y \geqslant 0$. Suppose that $x+y=0$, by Proposition $3.6 \cdot 2, \mathrm{~K}$ is askew field, contrary to fhe assumption. Thus x+y $\& D_{K}^{+}$. We see that $x y \geqslant x \cdot 0=0$. Suppose that $x y=0$. Then $x^{-1}(x y)=x^{-1} \cdot 0$, therefore $y=0$, a contradiction. So $x y \varepsilon D_{K}^{+}$. To show that $x^{-1}>0$, suppose that $x^{-1}<0$. By Definition 3.1.1, $x \cdot x^{-1} \leqslant x 0=0$, so $1 \leqslant 0$, a contradiction. Thus $x^{-1}>0$. This shows that D_{K}^{+}is an ordered skew ratio semiring.

Next, we shall show that D_{K}^{+}is complete. Suppose that $A \subseteq D_{K}^{+}$ is a nonempty set having an upper bound in D_{K}^{+}, it follows that $A \subseteq K$. Since K is complete, A has a least upper bound in K. Let $z=\sup (A)$. So for every $a \in A, a \leqslant z$. Fix $b \in A$. We get that $0<b \leqslant z$. Therefore $z \in D_{K^{+}}^{+}$. Thus D_{K}^{+}is complete, as required.

Finally, suppose that $D_{K}^{-} \neq \varnothing$. To show that D^{-}is a complete ordered semigroup with respect to addition, let $x, y \in D_{K^{-}}^{-}$. Then $x<0$ and $y<0$. Thus $x+y \leqslant 0+y=y<0$. Therefore $x+y \in D_{K}^{-}$. Thus D_{K}^{-}is an ordered semigroup. To show that D_{K}^{-}is complete, suppose that $A \subseteq D_{K}^{-}$ is a nonempty set having a lower bound in D_{K}^{-}, it follows that $A \subseteq K$. Since K is complete, A has a greatest lower bound in K. Let $t=\inf (A)$. Fix $d \in A$. We see that $t \leqslant d<0$. Thus $t \in D_{K}^{-}$. Therefore we get that $\mathrm{D}_{\mathrm{K}}^{-}$is a complete. Thus the proposition is proved.\#

Proposition 3.1.4. Let k be an ordered 0 -skew semifield such that $1+1 \neq 1$. Then the prime 0 -skew semifield of K s isomorphic to \mathbb{Q}_{0}^{+} with the usual addition, multiplication and order.

a prime number Suppose that $P \sim \not Z_{p}$ for some prime p. we shall denote an element in \mathbb{Z}_{p} by ${\underset{n}{n}}$ where $n=1,2,3, \ldots, p$. Since $0<1$, by
induction we get that $0<1<2<\ldots<p$ in P. Thus $\overline{0}<\overline{1}<\overline{2}$
$\overline{0}<\overline{1}<\overline{2}<\ldots<\bar{p}=\overline{0}$, a contradiction. Therefore $P \not \not \not \mathbb{Z}_{p}$ for all prime p. This shows that $(P,+, \cdot) \cong\left(\mathbb{Q}_{0}^{+},+, \cdot\right)$. Using the same arguement as before $(P,+, \cdot, \leqslant) \cong\left(Q_{0}^{+},+, \cdot, \leqslant\right)_{\#}$

Theorem 3.1.5. Let $(K,+, \cdot, \leqslant)$ be a complete ordered 0 -skew semifield such that $1+1 \neq 1$. Suppose that $(K,+, \cdot)$ is not a skew field. Then $(K,+, \cdot, \leqslant) \cong\left(\mathbb{R}_{0}^{+},+, \cdot, \leqslant\right)$.

Proof: By Proposition 3.1.3 and Proposition 3.1.4, ($\left.\mathrm{D}_{\mathrm{K}^{+}}^{+}, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right)$. Now, we shall show that $D_{K}^{-}=\emptyset$. Suppose that $D_{K}^{-} \neq \emptyset$. Let $x \in D_{K}^{-}$be arbitrary. Since $(K \backslash\{0\}, \cdot)$ is a group, $x(K \backslash\{0\})=K \backslash\{0\}$. Therefore $x\left(D_{K}^{+} \cup D_{K}^{-}\right)=D_{K}^{+} \cup D_{K}^{-}$, it follows that $x D_{K}^{+} U x D_{K}^{-}=D_{K}^{+} U D_{K}^{-}$. Since $x D_{K}^{+} \subseteq D_{K}^{-}, x D_{K}^{-} \supseteq D_{K}^{+}$. So $x D_{K}^{-} \supseteq D_{K}^{+}$for all $x \in D_{K^{-}}^{-}$

Case 1: Suppose that $x+y<0$ for all $x \in D_{K}^{-}$for all $y \in K$. Let $y \in D_{K}^{-}$and $z \varepsilon D_{K^{*}}^{+}$By assumption, $y+z \in D_{K^{-}}^{-}$Thus we get that $(y+z) D_{K}^{-} \supseteq D_{K}^{+}$, so there is a t εD_{K}^{-}such that $(y+z) t \varepsilon D_{K}^{+}$. Now, we have that $z t \in D_{K^{-}}^{-}$. By assumption again, $y t+z t \in D_{K^{*}}^{-}$. Therefore $(y+z) t \neq y t+z t$. This shows that K is not distributive, a contradiction, so this case can not occur.

Case 2: Suppose that $a+b \geqslant 0$ for some $a \varepsilon D_{K}^{-}$and for some $b \varepsilon K$. If $a+b=0, p$ then R is askew fiela, $a /$ contradiction. Therefore $a+b>0$. Let $c=\{c \varepsilon K \mid a+c>0\}$. Clearly, $A \neq \emptyset$ since $b \varepsilon A$. Thus $0<a+c \leqslant 0+c \frac{0}{6}$ ofor all $c \in c$. 9Then 0 is a lower bound of c. Since K is complete, C has a greatest lower bound, say z^{*}. Therefore $z^{*} \geqslant 0$. We shall show that $a+z^{*}=0$. To prove this, suppose that $a+z^{*} \neq 0$. Then either $a+z^{*}<0$ or $a+z^{*}>0$.

$$
\text { Subcase 2.1: } a+z^{*}>0 \text {. If } z^{*}=0 \text {, then } a+z^{*}=a+0=a<0
$$

a contradiction. Thus $z^{*}>0$, it follows that $z^{*} \varepsilon D_{K}^{+}$. Since $\left(D_{K}^{+},+, \cdot \leqslant\right)$ ia isomorphic to $\left(\mathbb{R}_{,+}^{+}, \cdot, \leqslant\right),\left(D_{K}^{+}, \leqslant\right)$is densely ordered, which
implies that there exists an $r \in D_{K}^{+}$such that $0<r<a+z^{*}$. Let $0<u<\min \left\{r, z^{*}\right\}$. Again, using the fact that $\left(D_{K}^{+},+, \cdot, \leqslant\right)$ is isomorphic to $\left(R^{+},+, \cdot, \leqslant\right)$, there are $s, t, w \in D_{K}^{+}$such that $r=u+w$, $a+z^{*}=r+s$ and $z^{*}=u+t$. Thus $a+z^{*}=r+s=u+w+s$. Therefore, substiting $u+t$ for z^{*} we have that $a+u+t=u+w+s$ which implies that $a+t=w+s>0$. Then $t \in c$, hence $t \geqslant z^{*}$. Since $z^{*}=u+t$ where u, $t \in D_{K}^{+}, z^{*}>t$, a contradiction.

Subcase 2.2:

Step 1. We shall show that $\left.0=\sup \ln ^{-1} x \mid n \in \mathbf{Z}^{+}\right\}$for all $x \varepsilon D_{K}^{-}$. Let $x \in D_{K}^{-}$be arbitrary and let $B=\left\{n^{-1} x \mid n \in \mathbf{Z}^{+}\right\}$. Then B has 0 as an upper bound. Since $B \subseteq K$ and K is complete, B has a least upper bound. Let $y=\sup (B)$, so $y \leqslant 0$. Assume now that $y<0$. Then $(\mathrm{n} 2)^{-1} \mathrm{x} \leqslant \mathrm{y}$ for all $\mathrm{n} \varepsilon \mathbb{Z}^{+}$, it follows that $\left(2^{-1} \mathrm{n}^{-1}\right) \mathrm{x} \leqslant \mathrm{y}$ for all $n \in \mathbb{Z}^{+}$which implies that $n^{-1} x \leqslant 2 y$ for all $n \varepsilon \mathbb{Z}^{+}$. Therefore $2 y$ is an upper bound of B, so $y \leqslant 2 y$. But we have that $y<0$, this implies that $2 \mathrm{y}=\mathrm{y}+\mathrm{y} \leqslant 0+\mathrm{y}=\mathrm{y}$. Thus $2 \mathrm{y}=\mathrm{y}$, hence $2=1$, a contradiction. Then $0=\sup (B)$. Step 2. We shall show that $a+z>0$ for all $z^{\circ}>z^{*}$. To prove this, let $z>z^{*}$ be arbitrary. Then there exists an $r \varepsilon C$ such that

$z>n>9 z^{*}$? Thus $9 a+z \geqslant a+r>0.99 \cap$? 2 ? ? ? ?

Step 3. We shall show that there is $q>0$ such that $\left(a+z^{*}\right)+q \leqslant 0$. To prove this, suppose not. Then $\left(a+z^{*}\right)+d>0$ for all $d>0$. We claim that $c+d>0$ for $a l l c<0$ and for all $d>0$. To prove the claim, let $c<0$ be arbitrary. If $c \geqslant a+z^{*}$, then $c+d \geqslant\left(a+z^{*}\right)+d>0$ for all $d>0$. If $c<a+z^{*}$, then by the fact that $0=\sup \left\{n^{-1} c \mid n \varepsilon \mathbf{z}^{+}\right\}$,
there exists an $n \in \mathbb{Z}^{+}$such that $a+z^{*}<n^{-1} c$. Thus $n^{-1} c+d \geqslant\left(a+z^{*}\right)+d>0$ for all $d>0$. It follows that $n^{-1}(c+n d)>0$ for all $d>0$. Since $\mathrm{nD}^{+}=\mathrm{D}^{+}, \mathrm{n}^{-1}(\mathrm{c}+\mathrm{d})>0$ for all $\mathrm{d}>0$ which implies that $\mathrm{c}+\mathrm{d}>0$ for all $d>0$, so we have the claim. Let $t<0$ and $s>0$. By the claim $t+s>0$. Since $t^{-1}<0,(t+s) t^{-1}<0$. But we have that $t t^{-1}=1>0$ and $s t^{-1}<0$. Again, by the claim, $t t^{-1}+s t^{-1}>0$. Thus K is not distributive, a contradiction. This shows that there is $q>0$ such that $\left(a+z^{*}\right)+q \leqslant 0$, as required.

By Step 3, there exists an $r>0$ such that $\left(a+z^{*}\right)+r \leqslant 0$. But we have that $z^{*}+r>z^{*}$. By Step $2, a+\left(z^{*}+r\right)>0$. Thus $\left(a+z^{*}\right)+r>0$, a contradiction.

Thus we have shown that $a+z^{*}=0$. By Proposition 3.1.2, K is a skew field, a contradiction. Therefore $D_{K}^{-}=\varnothing$. This shows that $(K,+, \cdot, \leqslant) \cong\left(\mathbb{R}_{0}^{+},+, \cdot, \leqslant\right)$.

Hence, the theorem is proved. \#

Notation: Let K be an ordered 0 -skew semifield and $z \varepsilon K$. Then we will denote $I_{K}(z)=\left\{y(\varepsilon K \mid y+z=z\} d I_{K}^{+}(z)=I_{K}(z) \cap D_{K}^{+}\right.$and

Assume that $(k,+, \cdot, \leqslant)$ is a complete ordered 0 -skew semifield which is not a skew field such that $1+1=1$. Then by Proposition 3.1.3, $\left(D_{K}^{+},+, \cdot \leqslant\right)$ is a complete ordered skew ratio semiring. By Theorem 2.5 and Theorem 2.6, $\left(D_{K}^{+},+, \cdot \leqslant\right)$ is isomorphic to exactly one of the following ratio semirings:
(1) $\left(\mathbb{R}^{+}, \min , \cdot, \leqslant\right)$.
(2) $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\}, \min , \cdot, \leqslant\right)$.
(3) $\left(\mathbb{R}^{+}, \max , \cdot, \leqslant\right)$.

(4) $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\}, \max , \cdot, \leqslant\right)$.
(5) $(\{1\},+, \cdots, \leqslant)$.

Theorem 3.1.6. There does not exist an ordered 0-skew semifield $(K,+, \cdot, \leqslant)$ such that $\left(D_{K^{+}}^{+}, \cdot, \leqslant\right)$ is isomorphic to either of the following two ordered ratio semirings:
(1) $\left(\mathbb{R}^{+}, \min \right.$,
(2) $\left(\left\{2^{n} \mid n \in z\right\}, m i n, \cdots, \leqslant\right.$.

Proof: Assume that there exists an ordered 0-skew semifield $(K,+, \cdot, \leqslant)$ such that $\left(D_{K^{+}}^{+}, \cdot \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right)$ or $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\}, \min , \cdot, \leqslant\right)$. Wi thout loss of generality, suppose that $D_{K}^{+}=\left\{2^{n} \ln \varepsilon \mathbb{Z}\right\}$ or \mathbb{R}^{+}, et $x, y, z \varepsilon K$ be such that $x=0, y=2^{3}$ and $z=2^{4}$. Then $x<y$. By Definition 3.1.1, $x+z \leqslant y+z$. But we have that $x+z=0+z=z=2^{4}$ and $y+z=\min \left\{2^{3}, 2^{4}\right\}=2^{3}$, this implies that $y+z<x+z$ which is a contradiction.

Theorem 3.1.7 Let $(\kappa,+, \because, \leqslant)$ be a domplete ordered 0 -skew semifield. If $\left(D_{K^{+}}^{+}, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+}, \max , \cdot, \leqslant\right)$, then $(K,+, \cdot, \leqslant)$ is

Proof: Assume that $\left(D_{K^{+}}^{+}, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+}, \max , \cdot, \leqslant\right)$. Then for every $a, b \in D_{K}^{+}, a+b=\max \{a, b\}$.

It is clear that $I_{K}^{+}(z)=\left\{t \varepsilon D_{K}^{+} \mid t+z=z\right\}=\left\{t \varepsilon D_{K}^{+} \mid t \leqslant z\right\}$ for all $z \in \mathrm{D}_{\mathrm{K}}^{+}$.

Now, we have that $K=D_{K}^{-} \cup\{0\} U D_{K}^{+}$. To show that $D_{K}^{-}=\varnothing$. To prove this,
suppose not. Then $D_{K}^{-} \neq \emptyset$.

Step 1. We shall show that for every $a, b \varepsilon D_{K}^{+}, a<b$ implies that $z b<z a$ and $b z<a z$ for $a l l z \varepsilon D_{K^{-}}^{-}$To prove this, let $a, b \varepsilon D_{K}^{+}$be arbitrary. Suppose that $a<b$. From (i), we have that $a+b=b$. Let $z \in D_{K}^{-}$be arbitrary. Then $z b=z(a+b)=z a+z b$. Since $z b<0$, $z a+z b \leqslant z a$. Thus $z b \leqslant z a$. If $z a=z b$, then $z^{-1}(z a)=z^{-1}(z b)$ which implies that $a=b, a$ contradiction. Therefore $z b<z a$. Similarly, $\mathrm{bz}<\mathrm{az}$.

Step 2. We shall show that, for every $x, y \in D_{K}^{-}, x \leqslant y$ iff $x+y=x$. To prove this, let $x, y \in D_{K}^{-}$be arbitrary. Suppose that $x \leqslant y$. Then $x=x+x \leqslant x+y$. Since $y<0, x+y \leqslant x+0=x$. Thus $x+y=x$. On the other hand, suppose that $x+y=x$. If $y<x$, then by the first proof in this step shows that $y+x=y$, it follows that $x+y \neq y+x$, a contradiction.

By Step 2 we see that addition in D_{K}^{-}is minimum, therefore it is clear that $I_{K}^{-}(W)=\left\{s \varepsilon D_{K}^{-} \mid s+W=w\right\}=\left\{s \varepsilon D_{K}^{-} \mid w \leqslant s\right\}$ for all $w \in D_{K}^{-}$

Step 3. wejshall show that for every $x, y \in D_{K}^{+}, x<y$ iff $y^{-1}<x^{-1}$. To provecthis, fet $x, y \varepsilon D_{K}^{-}$be arbitrary 0 Suppose that $x<y$. By
Step $2, x+y=x$. Thus $x x^{-1}+\mathrm{yx}^{-1}=\mathrm{xx}^{-1}$, so $1+\mathrm{yx}=1$ which implies that $y^{-1}+x^{-1}=y^{-1}$. By Step $2, y^{-1} \leqslant x^{-1}$. If $y^{-1}=x^{-1}$, then $x=y$, a contradiction. Therefore $y^{-1}<x^{-1}$. On the other hand, suppose that $y^{-1}<x^{-1}$. By the first proof in this step, $x<y$.

Step 4. We shall show that $x+y=x$ or $x+y=y$ for all $x \varepsilon D_{K}^{-}$and for all $y \in D_{K}^{+}$. To prove this, let $x \in D^{-}$and $y \varepsilon D_{K}^{+}$be arbitrary.

Clearly, $x+y \neq 0$.
Case 1: $\quad x+y<0$. Since $x+y=(x+x)+y=x+(x+y), x \in I_{K}^{-}(x+y)$. By (iii), $I_{K}^{-}(x+y)=\left\{s \varepsilon D_{K}^{-} \mid x+y \leqslant s\right\}$. Then $x+y \leqslant x$. But we have that $0<y$, this implies that $x=x+0 \leqslant x+y$. Thus $x+y=x$.

Case 2: $\quad x+y>0$. Since $x+y=x+(y+y)=(x+y)+y, y \in I_{K}^{+}(x+y)$.
By (ii), $I_{k}^{+}(x+y)=\left\{t \in D_{K}^{+} \mid t \leqslant x+y\right\}$. Then $y \leqslant x+y$. Since $x<0$, $x+y \leqslant 0+y=y$. Therefore $x+y=y$.

Step 5. We shall show that $/ I_{K}(x)=x I_{K}(1)$ for all $x \varepsilon K,\{0\}$. To prove this, let $x \in K>\{0\}$ be arbitrary. Suppose that $y \in I_{K}(x)$. Then $y+x=x$ which implies that $x^{-1} y+1=1$. Thus $x^{-1} y \in I_{K}(1)$, hence $y \varepsilon x I_{K}(1)$. Therefore $I_{K}(x) \subseteq x I_{K}(1)$. On the other hand, suppose that $b \in x I_{K}(1)$. Then $b=x t$ for some $t \in I_{K}(1)$, so $b+x=x t+x$ $=x(t+1)$. Since $t \in I_{K}(1), t+1=1$. Hence $b+x=x$. Thus $b \in I_{K}(x)$. Therefore $x I_{K}(1) \subseteq I_{K}(x)$ Hence $I_{K}(x)=x I_{K}(1)$.

Step 6. We shanf show that for every $x \in K \subset\{1\}, x^{n} \neq 1$ for all $\mathrm{n} \in \mathbf{z}^{+}$. To prove this, let $\mathrm{x} \in \mathrm{K} \backslash\{1\}$ be arbitrary. Suppose that $x^{m}=1$ for some $m \in \mathbb{Z}^{+}$. Clearly $m>1$, so $m-1 \varepsilon \mathbb{Z}^{+}$. Therefore $x\left(x^{m-1}+x^{m}-2+\cdot(\cdot+1)=-x^{m}+x^{m-1}+\ldots .+x^{2}+x^{2} \int_{1}+\left(x^{n-1}+x^{m-2}+\ldots+x\right)\right.$ $=\left(x^{m-1}+x^{m-2}+\ldots+x\right)+1=x^{m-1}+x^{m-2}+\ldots+x+1$. Thenex $=1$ which is

Step 7. We shall show that $I_{K}^{-}(1) \neq \varnothing$. To prove this, let $z, t \varepsilon K$ be such that $z<0<t$. By Step $4, z+t=z$ or $z+t=t$.

Case 1: $z+t=z$. Then $z\left(1+z^{-1} t\right)=z$ which implies that $1+z^{-1} t=1$. Since $z^{-1} t \in D_{K}^{-}, z^{-1} t \in I_{K}(1) \cap D_{K}^{-}=I_{K}^{-}(1)$. Thus $I_{K}^{-}(1) \neq \varnothing$.

Case 2: $\quad z+t=t$. Then $t\left(t^{-1} z+1\right)=t$ which implies that $t^{-1} z+1=1$. Since $t^{-1} z \varepsilon D_{K}^{-}, t^{-1} z \varepsilon I_{K}(1) \cap D_{K}^{-}=I_{K}^{-}(1)$. Thus $I_{K}^{-}(1) \neq \emptyset$.

Step 8. We shall show that $I_{K}^{-}(1)$ has a greatest lower bound in D_{K}^{-}. It suffices to show that $I_{K}^{-}(1)$ has a lower bound in $D_{K^{-}}^{-}$To prove this, suppose not. Then $I_{K}^{-}(1)$ has no lower bound in D_{K}^{-}Let $d \in D_{K}^{-}$ be arbitrary, so dis not a lower bound of $I_{K}^{-}(1)$. Then there exists an $r \varepsilon I_{K}^{-}(1)$ such that $r<d$. Therefore $1=1+r \leqslant 1+d$. Since $d<0$, $1+d \leqslant 1+0=1$. Thus $1+d=1$ so $d \in I_{K}^{-}(1)$. Then $D_{K}^{-} \subseteq I_{K}^{-}(1)$. But we have that $I_{K}^{-}(1) \subseteq D_{K}^{-}$this implies that $D_{K}^{-}=I_{K}^{-}(1)$. Therefore for every $a \varepsilon D_{K}^{-}, a+1=1$. Let $a_{0} \varepsilon D_{K}^{-}$, therefore $a_{0}+1=1$. Since $a_{0}^{-1} \varepsilon D_{K}^{-}, a_{0}^{-1}+1=1$ which implies that $1+a_{0}=a_{0}$. Then $a_{0}=1$ which is a contradiction since $a_{0}<0$.

$$
\text { From now on, } \alpha \text { will denote } \inf \left(I_{K}^{-}(1)\right) \text {. }
$$

Step 9. We shall show enat $\alpha \varepsilon I_{K}^{-}(1)$. To prove this, suppose not. Then $\alpha \notin I_{K}^{-}(1)$, so $\alpha+1=\alpha$. Thus $1+\alpha^{-1}=1$. Therefore $\alpha^{-1} \varepsilon I_{K}^{-}(1)$, if follows that $\bar{\alpha}<\alpha^{-1}$. We claim that there exists an $s_{0} \varepsilon I_{K}^{-}(1)$ such that $s_{0}<\alpha^{-1} . \sigma$ To prove this claim, suppose not. Then $\alpha^{-1} \leqslant s$ for all s $\varepsilon I_{K}(1)$. Thus α^{-1} is a lower bound of $\mathrm{J}_{\mathrm{K}}^{-}(1)$, so $\alpha^{-1} \leqslant \alpha$, a contradiction. Hence we have the claim. Let $s \varepsilon I_{k}^{-}(1)$ be such that $s<\alpha^{-1}$. 0 by Step $3, \alpha<s^{-1} \%$ Using a proof similar to the claim of this step, we can show that there exists an $r \varepsilon I_{K}^{-}(1)$ such that $r<s^{-1}$. Thus $1=1+r \leqslant 1+s^{-1}$. Since $s^{-1}<0,1+s^{-1} \leqslant 0+1=1$. Then $s^{-1}+1=1$, so $1+s=s$. Since $s \in I_{K}^{-}(1), s+1=1$. Thus $s=1$, a contradiction.

Step 10. We shall show that $\alpha^{-1}<\alpha$. To prove this, suppose not. Then $\alpha \leqslant \alpha^{-1}$. By Step $9,1=1+\alpha \leqslant 1+\alpha^{-1}$. Since $\alpha^{-1}<0$,
$1+\alpha^{-1} \leqslant 1+0=1$. Thus $1+\alpha^{-1}=1$ which implies that $\alpha+1=\alpha$. Since $\alpha+1=1, \alpha=1$, a contradiction.

Step 11. We shall show that there does not exist y $\varepsilon D_{\mathrm{K}}^{-}$such that $\alpha^{-1}<y<\alpha$. To prove this, suppose not. Let $y \in D_{K}^{-}$be such that $\alpha^{-1}<y<\alpha$. Thus $y+1=y$. By Step $3, y^{-1}<\left(\alpha^{-1}\right)^{-1}=\alpha$. Then $y^{-1}+1=y^{-1}$ which implies that $1+y=1$. Hence $y=1$, a contradiction.

Step 12. We shall show that $a^{n}+1 \equiv 1$ for all $n \in \mathbb{Z}^{+}$. We shall prove this by using mathematfocal induction on $n \in \mathbb{Z}^{+}$. Let $n \in \mathbb{Z}^{+}$. If $n=1$, then by Step $9, \alpha+1=1$. Suppose that $\alpha^{n-1}+1=1$ for some $n-1 \geqslant 1$. Then $\alpha=\alpha\left(\alpha^{n-1}+1\right)=\alpha^{n}+\alpha$, it follows that $1=\alpha+1=\left(\alpha^{n}+\alpha\right)+1$ $=\alpha^{n}+(\alpha+1)=\alpha^{n}+1$. Hence $\alpha^{n}+1=1$ for all $n \in \mathbb{Z}^{+}$.

Step 13. We shall show that $\alpha^{n}</ 0$ for all $n \in \mathbb{Z}^{+}$. We shall prove thia by using mathematical induction on $n \in \mathbb{Z}^{+}$. Let $n \in \mathbb{Z}^{+}$. If $n=1$, then we are done, Suppose that $n=2$. If $\alpha^{2}>0$, then $\alpha^{2}=d$ for some $0<d<1$. Thus $\alpha=\alpha^{-1} d$. Let $0<d<d<1$. By Step 1, $\alpha^{-1}<\alpha^{-1} d^{\prime}<\alpha^{-1} d=\alpha$ which contradicts Step 11. Then $\alpha^{2}<0$. Let $n-1 \geqslant 2$. Suppose that $\alpha^{k}<0$ foredil $1 \leqslant k \leqslant n-1$. If $\alpha^{n}>0$. then by Step 12 and $(i), \alpha^{n} \leq 1$. By step $6.0<\alpha \alpha_{1}$ 1d Thus $\alpha^{n}=d$ for some 0 G $d<1$ si $\alpha^{2}=\alpha^{-(n-2)}$ d < Det $0<d<d<1$. By Step 1 and $\alpha=(n-2)<0, \alpha^{-(n-2)} d_{1}<\alpha-(n-2)_{d}=\alpha^{2}$. 678 Case 1: $\alpha^{-(n-2)} d_{1}=\alpha$. Then $0<\alpha_{1}=\alpha^{n-2} \alpha=\alpha^{n-1}$ which is a contradiction.
Case 2: $\quad \alpha<\alpha^{-(n-2)} \alpha_{1}$. Then $\alpha<\alpha^{-(n-2)} d_{1}<\alpha^{2}$. By Step 2, $\alpha+\alpha^{-(n-2)} d_{1}=\alpha$. Thus $\alpha^{n-2} \alpha+d_{1}=\alpha^{n-2} \alpha$, so $\alpha^{n-1}+d_{1}=\alpha^{n-1}$. ...(iv) By Step 2 again, $\alpha^{-(n-2)} \alpha_{1}+\alpha^{2}=\alpha^{-(n-2)} d_{1}$, so $\alpha^{-n+2} \alpha_{1}+\alpha^{2}=\alpha^{-n+2} d_{1}$.

Therefore $\alpha^{-1}\left(\alpha^{-n+2} d_{1}+\alpha^{2}\right)=\alpha^{-1}\left(\alpha^{-n+2} d_{1}\right)$. Thus $\alpha^{-n+1} d_{1}+\alpha=\alpha^{-n+1} d_{1}$, so $\alpha^{-(n-1)} d_{1}+\alpha=\alpha^{-(n-1)} d_{1}$. By Step $2, \alpha^{-(n-1)} d_{1} \leqslant \alpha$.

Subcase 2.1: $\quad \alpha^{-(n-1)} d_{1}=\alpha . \quad$ Then $d_{1}=\alpha^{n-1} \alpha=\alpha^{n}=d$, a contradiction.

Subcase 2.2: $\quad \alpha^{-(n-1)} d_{1} \leqslant \alpha$. Then $\alpha^{-(n-1)} d_{1}+1=\alpha^{-(n-1)} d_{1}$.
Thus $d_{1}+\alpha^{n-1}=d_{1}$.
From (iv) and (v), we have that $\alpha^{n-1}=a_{1}>0$, a contradiction.
Case 3. $\quad \alpha^{-(n-2)} d_{1}<\alpha$. Then by Step 11, $\alpha^{-(n-2)} d_{1} \leqslant \alpha^{-1}$. By
Step 2, $\alpha^{-(n-2)} d_{1}+\alpha^{-1}=\alpha^{-(n-2)} d_{1}$.
We claim that $d_{1}+\alpha \neq d_{1}$. Po prove this claim, suppose not. Then $d_{1}+\alpha=d_{1}$, so $1+\alpha d_{1}^{-1}=1$. Thus $\alpha \leqslant \alpha d^{-1}$. Now, we have that $1<d_{1}^{-1}$. By Step $1, \alpha d_{1}^{-1}<\alpha$ whichis a contradiction. Hence we have the claim. Now, we have that $n-2 \geqslant 1$. If $n-2=1$, then by (v),
$\alpha^{-1} d_{1}+\alpha^{-1}=\alpha^{-1} d_{1}$. By Step $2, \alpha^{-1} d_{1} \leqslant \alpha^{-1}$. Since $0<d_{1}<1$ and $\alpha^{-1}<0$, by step $1, \sigma \alpha^{-1}<\alpha^{-1} d$, a contradiction. Therefore $n-2>1$. Hence $n-3 \geqslant 1$. From (v), we have that $d_{1}+\alpha^{n-3}=d_{1}$. If $n-3$, 91 , then by $\left(y^{2}\right), a_{1}+2=99_{1}$, a contradiction. Q Therefore $n-3>1$. Hence $n-4 \geqslant 1$ and $\alpha^{n-3}<0$. From (vi), we have that $1+\alpha^{n-3} d_{1}^{-1}=1$. Then $\alpha \leqslant \alpha^{n-3} d_{1}^{-1}$. By Step $2, \alpha+\alpha^{n-3} d_{1}^{-1}=\alpha$ which implies that $d_{1}+\alpha^{n-4}=d_{1}$. (vii) If $n-4=1$, then $d_{1}+\alpha=d_{1}$, a contradiction. Therefore $n-4>1$. Continue in this way. Since n is finite after a finite number of

Steps, $d_{1}+\alpha=d_{1}$. This is a contradiction.
Hence $\alpha^{n}<0$ for all $n \in \mathbf{Z}^{+}$.

Step 14. We shall show that $\alpha^{n}<\alpha^{n+1}$ for all $n \varepsilon \mathbb{Z}^{+}$. To prove this, Suppose not. Then $\alpha^{m+1}<\alpha^{m}$ for some $m \in \mathbb{Z}^{+}$. By Step 13 and Step $2, \alpha^{m+1}+\alpha^{m}=\alpha^{m+1}$ which implies that $\alpha+1=\alpha$. Then $\alpha \notin I_{K}^{-}(1)$, a contradiction.

Step 15. We shall show that $I_{K}(\alpha)=\{y \in K \mid \alpha \leqslant y<1\}$. To prove this, we first to prove that $I_{K}^{+}(\alpha) \neq \varnothing$. We claim that there exists a $u \in D_{K}^{+}$such that $u+\alpha=\alpha$. Suppose not. Then by Step $4, u+\alpha=u$ for all $u \in D_{K}^{+}$. Thus $1+u^{-1} \alpha=1$ for all $u \varepsilon D_{K}^{+}$, so $u^{-1} \alpha \varepsilon I_{K}^{-}(1)$ for all $u \in D_{K}^{+}$. Then $\alpha \leqslant u^{-1} \alpha$ for all $u \varepsilon D_{K}^{+}$. Let $L=\left\{u^{-1} \alpha \mid u \varepsilon D_{K}^{+}\right\}$, so α is a lower bound of L. Let $B=\inf (L)$. Then $B \leqslant u^{-1} \alpha$ for all $u \varepsilon D_{K}^{+}$Let $1<s$. Therefore $B \leqslant \operatorname{su}^{-1} \alpha$ for all u εD_{K}^{+}, so $s^{-1} B \leqslant u^{-1} \alpha$ for all $u \in D_{K}^{+}$Thus $s^{-1} B$ is a lower bound of, , hence $s^{-1} B \leqslant B$. Since $s^{-1}<1$, by Step $1, B<s^{-1} B$, a contradiction. Hence we have the claim. By the claim, $I_{K}^{+}(\alpha) \neq \emptyset$.
next, we shall show that $I_{\mathbb{K}}^{+}(\alpha)=\left\{t \in D_{K}^{+} \mid t<1\right\}$. To prove this, let a $\varepsilon I_{K}^{+}(\alpha)$. Then $a+\alpha=\alpha$. If $1 \leqslant a$, then $y=1+\alpha \leqslant a+\alpha=\alpha$, a contradiction. Thus $\rho \delta$ a <1, so a $\varepsilon\left\{t\left|\varepsilon D_{K}^{+}\right| t<1\right\}$. Hence $I_{K}^{+}(\alpha) \subseteq\left\{t \in D_{K}^{+} \mid t<1\right\}$. On the other hand, let $b \varepsilon\left\{t \varepsilon D_{K}^{+} \mid t<1\right\}$. If $b+\alpha=b$, then $1+b^{-1} \alpha=1$, so $b^{-1} \alpha \in I_{K}^{-}(1)$. Thus $\alpha \leqslant b^{-1} \alpha$. Since $1<b^{-1}$, by Step $1, \alpha b^{-1}<\alpha$, a contradiction. Then $b+\alpha \neq b$. By Step 4, $b+\alpha=\alpha$. Thus $b \varepsilon I_{K}^{+}(\alpha)$. Therefore $\left\{t \in D_{K}^{+} \mid t<1\right\} \subseteq I_{K}^{+}(\alpha)$. Hence $I_{K}^{+}(\alpha)=\left\{t \varepsilon D_{K}^{+} \mid t<1\right\}$.

Finally, by (iii), $I_{K}^{-}(\alpha)=\left\{s \varepsilon D_{K}^{-} \mid \alpha \leqslant s\right\}$. Then $I_{K}(\alpha)=I_{K}^{-}(\alpha) \cup\{0\} U I_{K}^{+}(\alpha)=\left\{s \varepsilon D_{K}^{-} \mid \alpha \leqslant s\right\} \cup\{0\} \cup\left\{t \varepsilon D_{K}^{+} \mid t<1\right\}=$ ty $\varepsilon K \mid \alpha \leqslant y<1\}$.

Step 16 . We shall show that there does not exist an $\ell \varepsilon D_{K}^{-}$such . that $\alpha^{n}<\ell<\alpha^{n+1}$ for all $n \varepsilon \mathbb{Z}^{+}$. To prove this, let $n \varepsilon \mathbb{Z}^{+}$. Now, we have that $I_{K}\left(\alpha^{n+1}\right)=\left\{y \in K \mid \alpha^{n+1} \leqslant y \leqslant d\right\}$ for some $0<d<1$. By Step $5, I_{K}\left(\alpha^{n+1}\right)=\alpha^{n+1} I_{K}(1)$

 let $T=\left\{\alpha^{n} \mid n \in \mathbb{Z}^{+}\right\}$. By Step 13, 0 is an upper bound of T. Let $\lambda=\sup \left\{\alpha^{n} \mid n \in \mathbb{Z}^{+}\right\}$. Then $\lambda \leqslant 0$. Suppose that $\lambda<0$. Thus $\lambda \varepsilon\{z \in K \mid \alpha \leqslant z<1\}=I_{K}(\alpha) \quad$ (by Step 16)

$$
\begin{aligned}
& =\alpha I_{K}(1) \quad(\text { by Step } 5) \\
& =\alpha\left(I_{K}^{+}(1) \cup\{0\} \cup I_{K}^{-}(1)\right) \\
& =\alpha I_{K}^{+}(1) \cup\{0\} \cup \alpha I_{K}^{-}(1) .
\end{aligned}
$$

Since $\lambda \neq 0, \lambda \varepsilon \alpha I_{K}^{+}(1)$ or $\lambda \varepsilon \alpha I_{K}^{-}(1)$.

Case 1: $\lambda \varepsilon \alpha I_{K}^{+}(1)$. Then $\lambda=\alpha d$ for some $0<d \leqslant 1$. If $d=1$, then $\lambda=\alpha<\alpha^{2} \leqslant \lambda$, a contradiction. Thus $d \neq 1$. Let $0<d<d<1$. By Step 1, $\alpha<\alpha d^{\prime}<\alpha d=\lambda$. By Step $16, \alpha d^{\prime}=\alpha^{m}$ for some $m \in \mathbb{Z}^{+} \backslash\{1\}$. Then $\alpha^{m-1}=\alpha^{\prime}>0$ which contradicts step 13.

Case 2: $\quad \lambda \varepsilon \alpha I_{K}^{-}(1)$. Then $\lambda=\alpha$ for some $u \varepsilon I_{K}^{-}(1)$.

Subcase 2.1: $\quad \lambda=u$. Then $\alpha u=u$, so $\alpha=1$ which is a contradiction.

Subcase 2.2: $\lambda<u .1$ Then $\alpha u<u<0$. By Step 2, $\alpha u+u=\alpha u$. Thus $\alpha+1=\alpha$. By Step $9, \alpha+1=1$. Hence $\alpha=1$, a contradiction.

Subcase 2.3: $u<\chi$. \quad Then $u=\alpha^{m}$ for some $m \in \mathbb{Z}_{0}^{+}$Thus $\lambda=\alpha u=\alpha \alpha^{m}=\alpha^{m+1}$. By step $14 ; \lambda=\alpha^{m+1}<\alpha^{m+2} \leqslant \lambda$, a contradiction.

Hence $0=\sup \left\{\alpha^{n} \mid n \in \mathbb{Z}^{+}\right\}$. From step 14 and Step 16 , we have that $I_{K}^{-}(1)=\left\{\alpha^{n} \mid n \varepsilon \mathbb{Z}^{+}\right\}$. Let $0<r<1$. By Step $1, \alpha<\alpha r<0$. Then $\alpha r=\alpha^{m}$ for some $m \varepsilon \mathbb{Z}^{+} \backslash\{1\}$. Therefore $\alpha^{m-1}=r>0$ which contradicts Step 14. Thus $\mathrm{D}_{\mathrm{K}}^{-}=\varnothing$

нคุุุ
Remark 3.1.8. Let β be a symbol not representing any integer and let p be a positive integer greater than 1 . Let $K_{(p)}=\left\{B^{n} \mid n \in \mathbb{Z}\right\} \cup\{0\}$. Define multiplication on $K(p)$ by $\beta^{n} \cdot 0=0 \cdot \beta^{n}=0=0 \cdot 0$ and $B^{n} B^{m}=\beta^{n+m}$ for all m, $n \in \mathbb{Z}$. Define addition on $K(p)$ by $\beta^{n}+0=0+\beta^{n}=\beta^{n}, 0+0=0$ and $B^{n}+B^{m}=B^{\min \{n, m\}}$ for all m, $n \varepsilon \mathbb{Z}$. Define order \leqslant on $K(p)$ by as follows: Let $m, n \varepsilon \mathbb{Z}$.
(1) If $m \equiv 0(\bmod p)$, then $0<\beta^{m}$.
(2) If $n \neq 0(\bmod p)$, then $B^{n}<0$.
(3) If $n \equiv 0(\bmod p)$ and $m \equiv 0(\bmod p)$, then $\beta^{m} \leqslant \beta^{n}$
iff $n \leqslant m$.
(4) If $n \neq 0(\bmod p)$ and $m \neq 0(\bmod p)$, then $\beta^{m} \leqslant \beta^{n}$
iff $m \leqslant n$. Then $\left(K_{(p)},+, \cdot, \leqslant\right)$ is a complete ordered 0 -skew semifield as is shown below.

Proof: Clearly, $\left(K(p)^{++)}\right.$is a commutative semigroup,
$\left(K_{(p)}, \cdot\right)$ is an abelian group with zero and the distributive law holds. Also, it is clear that $(\mathrm{K}(\mathrm{p}) \leqslant$) is an ordered set. We must first show that $\left(K_{(p)},+, \cdot, \leqslant\right)$ is an ordered 0 -skew semifield.

We must show that for every $\beta^{m}, \beta^{n} \in K_{(p)}, B^{m} \leqslant \beta^{n}$ implies that $\beta^{m}+\beta^{l} \leqslant \beta^{n}+\beta^{l}$ for all $\beta^{\ell} \varepsilon^{\prime}(p)$. To prove this, let B^{m}, $\beta^{n} \varepsilon K_{(p)}$ be such that $\beta^{m}\left\langle\beta^{n}\right.$ Let $\beta^{\ell} \varepsilon K_{(p)}$ be arbitrary.

Case 1: $m, n \equiv 0(\bmod p)$. Then $n<m$.
Subcase 1.1: $\quad \ell<n<m$. Then $\beta^{m}+B^{l}=\beta^{\ell}$ and $B^{n}+B^{\ell}=B^{\ell}$. Thus $\beta^{m}+\beta^{\ell} \leqslant \beta^{n}+\beta^{\ell}$.

Subcase 1.21
Q Subcase 1.2.1: $\ell \equiv 0(\bmod p)$. Then $\beta^{\ell}<\beta^{n}$. Thus
 Subcase 1.2.2: $\ell \neq 0(\bmod p)$. Then $B^{\ell}<B^{n}$. Thus $\beta^{m}+\beta^{l} \leqslant \beta^{n}+\beta^{l}$. Subcase 1.3: $n<m<l$. Then $B^{m}+B^{\ell}=B^{m}$ and $B^{n}+B^{\ell}=\beta^{n}$. Thus $\beta^{m}+\beta^{l} \leqslant \beta^{n}+\beta^{l}$.

Case 2: $m, n \neq 0(\bmod p)$. Then $m<n$.

Subcase 2.1: $\quad \ell<m<n$. Then $\beta^{m}+\beta^{\ell}=\beta^{\ell}$ and $\beta^{n}+\beta^{\ell}=\beta^{\ell}$. Thus $\beta^{m}+\beta^{\ell} \leqslant \beta^{n}+\beta^{\ell}$.

Subcase 2.2: $m<\ell<n$. Then $B^{m}+B^{\ell}=B^{m}$ and $B^{n}+\beta^{\ell}=\beta^{\ell}$
Subcase 2.2.1: $\quad \ell \equiv 0(\bmod p)$. Then $\beta^{m}<\beta^{\ell}$. Thus

$$
\beta^{m}+\beta^{l} \leqslant \beta^{n}+\beta^{l} .
$$

Subcase 2.2.2: $\quad \ell \neq(\bmod p)$. Then $\beta^{m}<\beta^{\ell}$. Thus
$\beta^{m}+B^{\ell} \leqslant \beta^{n}+\beta^{l}$.

$$
\text { Subcase 2.3: } m<h<l \text {. Then } B^{m}+\beta^{l}=\beta^{m} \text { and } \beta^{n}+\beta^{l}=\beta^{n} \text {. }
$$

Thus $\beta^{m}+\beta^{l} \leqslant \beta^{n}+\beta^{l}$.

Case 3:

$$
m \neq 0(\bmod p) \text { and } n=0(\bmod p)
$$

Subcase 3.1: m <n

Subcase 3.1. $: \quad l<m<n$. Then $B^{m}+\beta^{\ell}=\beta^{\ell}$ and
$\beta^{n}+\beta^{\ell}=\beta^{l}$. Then $\beta^{m}+\beta^{l} \leqslant \beta^{n}+\beta^{\ell}$.
Subcase 3.1.2: $m<\ell<n$. Then $\beta^{m}+\beta^{\ell}=\beta^{m}$ and

Subcase 3.1.2.2: $\quad \ell \neq 0(\bmod p)$. Then $B^{m}<B^{\ell}$.
Then $\beta^{m}+\beta^{l} \leqslant \beta^{n}+\beta^{l}$.
Subcase 3.1.3: $n<m<\ell$. Then $B^{m}+\beta^{\ell}=B^{m}$ and
$\beta^{n}+\beta^{l}=\beta^{n}$. Thus $\beta^{m}+\beta^{l} \leqslant \beta^{n}+\beta^{l}$

Subcase 3.2: $n<m$. The proof is similar to the proof of Subcase 3.1.

Next, we must show that for every $B^{m}, \beta^{n} \varepsilon K_{(p)}, \beta^{m} \leqslant \beta^{n}$ implies that $\beta^{m} \beta^{l} \leqslant \beta^{n^{l}}{ }^{l}$ for all $\beta^{l}>0$. To prove this, let β^{m}, $\beta^{n} \varepsilon K_{(p)}$ be such that $\beta^{m} \leqslant \beta^{n}$. Let $\beta^{l}>0$ be arbitrary.

Case 1: $n \equiv 0(\bmod p)$ and $m \equiv 0(\bmod p)$. Then $n \leqslant m$, so $\ell+n \leqslant \ell+m$. Now, we have that $l \equiv 0(\bmod p)$. Then $n+l \equiv 0(\bmod p)$ and $m+\ell \equiv 0$ $(\bmod p)$. Thus $\beta^{m+l} \leqslant \beta^{n+l} / f /$ Therefore $\beta^{m} \beta^{l} \leqslant \beta^{n} \beta^{l}$.

Case 2: $m \neq 0(\bmod p)$ and $\neq 0(\bmod p)$. Thus $m \leqslant n$. Now, we have that $l \equiv 0(\bmod p)$. Thus $m+l(\nexists 0(\bmod p)$ and $n+\ell \nexists 0(\bmod p)$ and $m+\ell \leqslant n+\ell$. Therefore $\beta^{m+\ell} \leqslant \beta^{n+\ell}$. Hence $\beta^{m} \beta^{\ell} \leqslant \beta^{n^{n} l}$.

Case 3: $m \neq 0(\bmod p)$ gnd $n \equiv 0(\bmod p)$. Now, we have that $l \equiv 0(\bmod p)$. Thus $m+l \neq 0(\bmod p)$ and $n+l \equiv 0(\bmod p)$. Hence $\beta^{m+l} \leqslant \beta^{n+l}$. Thas $\beta^{m} \beta^{l} \leqslant \beta^{n} \beta^{l}$.

Lastly, we must show that $\mathrm{K}_{(\mathrm{p})}$ is complete. To prove this, let $H \subseteq K(p)$ be a nonempty set which has an upper bound. Let w be

 upper bound.

Case 2: $0<w$. Then $w=\beta^{n_{1}}$ for some $n_{1} \varepsilon p z$. If w is a least upper bound then we are done. Suppose that w is not a least upper bound of H. Now, we have that $w=\beta^{k p}$ for some $k \in \mathbb{Z}$. If $\beta^{(k+1) p}$ is a least upper bound of H, then we are done. Suppose that $\beta^{(k+1) p}$ is
not a least upper bound of H. Continue in this way.
Subcase 2.1: The process stops at $\beta^{(k+l)}$ for some $\ell \varepsilon \mathbb{Z}^{+}$. Then H has a least upper bound.

Subcase 2.2: The process does not stop. If 0 is a least upper bound, then we are done. Suppose that 0 is not a least upper bound of H. Then there exists an $r<0$ which is an upper bound of H. Using the same proof as in the proof of Case 1 , we obtain that H has a least upper bound in $\mathrm{K}(\mathrm{p})$ \#/

Remark 3.1.9. $K_{(2)}$ is isomorphic to the complete ordered 0-skew semifield $\left(\left\{-\sqrt{2^{m}} \mid m \in \mathbb{Z}\right.\right.$ is odd $\left.\} \cup\{0\} \cup\left\{2^{n} \mid n \in \mathbb{Z}\right\}, \oplus, \cdot, \leqslant\right)$ where \leqslant, - are the usual order and multiplication and $x \oplus y=x$ iff $|x| \geqslant|y|$.

Let $A=\left\{-\sqrt{2^{m}} \mid m \in \mathbb{E}\right.$ is odd $\} \cup\{0\} \cup\left\{2^{n} \mid n \in \mathbb{Z}\right\}$. The isomorphism from $K_{(2)}$ to A is given by $f(0)=0$ and

Theorem 3.1 .10 . Lee $(\kappa,+;, \leqslant)$ be 2 complete ordered $0-$ skew semifield. If $\left(D_{K^{+}}^{+}, \cdot, \leqslant\right)$ is isomorphic to $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\}\right.$, max, $\left.\cdot, \leqslant\right)$. Then $(K,+, \cdot, \leqslant)$ is isomorphic to exactly one of the following 0-semifields:
(1) $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\} \cup\{0\}, \max , \cdot, \leqslant\right)$.
(2) $\left(K_{(p)},+, \cdot, \leqslant\right)$ for some $p>1$ as in Remark 3.1.8.

Proof: Assume that $\left(\mathrm{D}_{\mathrm{K}}^{+},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\}\right.$, max, $\left.\cdot, \leqslant\right)$. Now, we have that $K=D_{K}^{-} \cup\{0\} \cup D_{K}^{+}$. If $D_{K}^{-}=\varnothing$,
then $(K,+, \cdot, \leqslant)$ is isomorphic to $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\} \cup\{0\}\right.$, $\left.\max , \cdot, \leqslant\right)$. Suppose that $D_{K}^{-} \neq \varnothing$. For simplicity, we shall assume that $D_{K}^{+}=\left\{2^{n} \mid n \in \mathbb{Z}\right\}$. Step 1 to Step 12 of Theorem 3.1.7 hold with these hypotheses and the proofs are exactly the same. As in Theorem 3.1.7 α will denote $\inf \left(I_{K}^{-}(1)\right)$.

Step 1. We shall show that $\alpha^{m}>0$ for some $m \in \mathbb{Z}^{+}$To prove this, suppose not. Then $\alpha^{n}<0$ for all $n \varepsilon \mathbb{z}^{+}$. Using the same proof as in the proof of step 14 of Theorem 3.1.7 we get that $\alpha^{n}<\alpha^{n+1}$ for all $n \in \mathbb{Z} \backslash\{0\}$.

Using the same proof given in Step 16 of Theorem 3.1.7 we get that there does not exist a y εD_{K}^{-}such that $\alpha^{n}<y<\alpha^{n+1}$ for all $n \in \mathbb{Z}^{+}$.

We claim that $0=\sup \left\{\alpha^{n} \in \mathbb{Z}^{+}\right\}$. To prove this claim, let $L=\left\{\alpha^{n} \mid n \in \mathbf{z}^{+}\right\}$. By (k), 0 is an upper bound of L. Since $L \subseteq K$ and K is complete, L has a least upper bound. Let $\lambda=\sup (L)$. Then $\lambda \leqslant 0$. Suppose that $\lambda<0$. Using the same argument as given in the proof of Step 15 in ${ }^{\text {Theorem } 3.1 .7}$ we get that $I_{K}(\alpha)=\{y \varepsilon K \mid \alpha \leqslant y<1\}$.

Now, we have that $I_{K}(1)=\{z \in K \mid \alpha \leqslant z \leqslant 1\}$. By Step 5 of Theorem 3 , 1.7 and $(* * *) d$ ty $=\{\mid 12 \leqslant y<1\} \mid=I_{K}(\alpha)=\alpha I_{K}(1)$ $=\alpha\{z \varepsilon K \mid \alpha \leqslant z \leqslant 1\}=\alpha\left(\left\{s \varepsilon D_{K}^{-} \mid \alpha \leqslant \operatorname{s}\right\} \cup\{0\} \cup\left\{t \varepsilon D_{K}^{+} \mid t \leqslant 1\right\}=\right.$ $\alpha\left\{s \in D_{K}^{-} \mid \alpha \leqslant s\right\} \cup\{0\} \cup \alpha\left\{t \in D_{K}^{+} \mid t \leqslant 1\right\}$. (****) Since $\alpha<\lambda<0, \lambda \varepsilon\{y \in K \mid \alpha \leqslant y<1\}$. From (****), we have that $\lambda \varepsilon \alpha\left\{s \varepsilon D_{K}^{-} \mid \alpha \leqslant s\right\} U \alpha\left\{t \in D_{K}^{+} \mid t \leqslant 1\right\}$.

Case 1: $\lambda \varepsilon \alpha\left\{\mathrm{t} \varepsilon \mathrm{D}_{\mathrm{K}}^{+} \mid \mathrm{t} \leqslant 1\right\}$. Then $\lambda=\alpha \mathrm{d}$ for some $0<d \leqslant 1$. Clearly, $d \neq 1$. Suppose that $d=\frac{1}{2}$.. Then $\lambda=\alpha\left(\frac{1}{2}\right)$. Now, we have that $0<\frac{1}{2}<1$ and $\alpha^{-1}<0$. By Step $1, \alpha^{-1}<\alpha^{-1}\left(\frac{1}{2}\right)$

Subcase 1.1: $\quad \alpha^{-1}\left(\frac{1}{2}\right)<\alpha$. Then $\alpha^{-1}<\alpha^{-1}\left(\frac{1}{2}\right)<\alpha$, a.
contradiction.
Subcase 1.2: $\alpha \leqslant \alpha^{-1}\left(\frac{1}{2}\right)$. If $\alpha=\alpha^{-1}\left(\frac{1}{2}\right)$, then $\alpha^{2}=\frac{1}{2}$, a contradiction.

$$
\text { Subcase } 1.2 .1: \quad \alpha^{-1}\left(\frac{1}{2}\right)<\lambda \text {. Then by }(* *), \alpha^{-1}\left(\frac{1}{2}\right)=\alpha^{m}
$$

for some $m \in \mathbb{Z}^{+} \backslash\{1\}$. Thus $\alpha^{\frac{m+1}{(\alpha)}}=\frac{1}{2}$, a contradiction.
Subcase 1.2.2: $\quad \lambda \leqslant \alpha^{-1}\left(\frac{1}{2}\right)$. Then $\alpha\left(\frac{1}{2}\right) \leqslant \alpha^{-1}\left(\frac{1}{2}\right)$, so $\alpha<\alpha^{-1}$, a contradiction .

Therefore $d \neq \frac{1}{2}$ so $\lambda=\alpha d$ for some $d<\frac{1}{2}$. Let $0<d<d^{\prime}<1$. Then by step $1, \alpha<\alpha d^{\prime}<\alpha d=\lambda$. $\operatorname{From}(* *), \alpha d^{\prime}=\alpha^{m}$ for some $m \in \mathbb{Z}^{+} \backslash\{1\}$. Hence $a^{m-1}=d^{\prime}>0$, a contradiction.

Case 2: $\quad \lambda \varepsilon \alpha\left\{s \varepsilon_{R}^{-} \mid \alpha \leqslant s\right\}$. Then $\lambda=\alpha u$ for some $u \varepsilon\left\{s \varepsilon D_{K}^{-} \mid \alpha \leqslant s\right\}$.
Subcase 2.1: $\lambda=u$. Then $\alpha u=u$, so $\alpha=1$ which is a

Subcase 2.2: $\lambda<u$. Then $\alpha u<u<0$. By Step 2 of Theorem 3.1.7, $\alpha u+u=\alpha u$ which implies that $\alpha+1=\alpha$. Since $\alpha+1=1, \alpha=1$, a contradiction.

Subcase 2.3: $u<\lambda$. Then $u=\alpha^{m}$ for some $m \varepsilon \mathbb{Z}^{+}$. Thus $\lambda=\alpha u=\alpha \alpha^{m}=\alpha^{m+1}<\alpha^{m+2} \leqslant \lambda$, a contradiction.

Hence $\boldsymbol{\lambda}=0$, so we have the claim,
Let $0<s<1$. By Step 1 of Theorem 3.1.7, $\alpha<\alpha<0$.

From (**); we have that $\alpha s=\alpha^{\ell}$ for some $\ell \varepsilon \mathbb{Z}^{+},\{1\}$. Therefore $\alpha^{\ell-1}=s>0$, a contradiction.

This shows that $\alpha^{m}>0$ for some $m \in \mathbb{Z}^{+}$.

Let $B=\left\{n \in \mathbb{Z}^{+} \mid \alpha^{n}>0\right\}$. By Step $1, B \neq \emptyset$. Let $p=\min (B)$.
Then $p>1$.
Step 2. We shall show that $\alpha^{p}=\frac{1}{2}$. To prove this, suppose not. Then $\alpha^{p}<\frac{1}{2}$. Now, we have that $I_{K}(\alpha)=I_{K}^{-}(\alpha) U\{0\} U_{K}^{+}(\alpha)$. By step 5 of Theorem 3.1.7, $I_{K}(\alpha)=\alpha I_{K}(1)=\alpha\left(I_{K}^{-}(1) U\{0\} U I_{K}^{+}(1)\right)$ $=\alpha I_{K}^{-}(1) \cup\{0\} U \alpha I_{K}^{+}(1)$ which implies that $I_{K}^{-}(\alpha) U I_{K}^{+}(\alpha)=\alpha I_{K}^{-}(1) U \alpha I_{K}^{+}(1)$. Since $\alpha I_{K}^{+}(1) \subseteq I_{K}^{-}(\alpha), I_{K}^{+}(\alpha) \subseteq \alpha I_{\mathrm{K}}^{-}(1)$. Hence $\left\{t \in D^{+} \left\lvert\, t \leqslant \frac{1}{2}\right.\right\} \subseteq \alpha\left\{\alpha, \alpha^{2}, \alpha^{3}, \ldots, \alpha^{p-1}, \alpha^{p+1}, \ldots, \alpha^{2 p-1}, \alpha^{2 p+3}, \ldots\right\}$. We see that $\alpha\left(\alpha^{p-1}\right)=\alpha^{p}<\frac{1}{2}$

$$
\alpha\left(\alpha^{n p-1}\right)=\alpha^{n p}=\left(\alpha^{p}\right)^{n}<\left(\frac{1}{2}\right)^{n}=\frac{1}{2^{n}} \text { for all } n \varepsilon \mathbb{Z}^{+}
$$

$\notin \alpha I_{K}^{-}(1)$, a contradiction. $Q 9 N^{2} Q \cap ?$
Hence $\frac{1}{2} \notin \alpha I_{K}^{-}(1)$, a contradiction.
step 3.9 For every $n \varepsilon_{0} z^{+} \cap \neq 09(\bmod p$) and $n+1 \neq 0$ (mod p) implies that there does not exist a $y \in D_{K}^{-}$such that $\alpha^{n}<y<\alpha^{n+1}$. This proof is the same as the proof of step 16 in Theorem 3.1.7.

Step 4. We shall show that for every $n \in \mathbf{z}^{+}, n \neq 0(\bmod p)$ and $n+2 \nexists 0(\bmod p)$ and $n+1 \equiv 0(\bmod p)$ implies that there does not exist $y \in D_{K}^{-}$such that $\alpha^{n}<y<\alpha^{n+2}$. To prove this, let $n \varepsilon \mathbb{Z}^{+}$be such
that $\mathrm{n} \equiv 0(\bmod \mathrm{p})$ and $\mathrm{n}+2 \neq 0(\bmod \mathrm{p})$ and $\mathrm{n}+1 \equiv 0(\bmod \mathrm{p})$. We first claim that $\alpha^{2} I_{K}(1)=\{u \varepsilon K \mid \alpha<u<1\}$.

Using the same proof given in Step 15 of Theorem 3.1.7 we get that $I_{K}(\alpha)=\{u \varepsilon K \mid \alpha \leqslant u<1\}$.

We see that $\alpha^{2} I_{K}(1)=\alpha\left(\alpha I_{K}(1)\right)$

$$
=\alpha I_{K}(\alpha) \text { (by Step } 5 \text { of Theorem 3.1.7) }
$$

$\alpha\{u \varepsilon \mathrm{~K} \mid \alpha \leqslant \mathrm{u}<1\}$ (by (iv))
$\alpha(\operatorname{lu} \in K \mid \alpha \leqslant u<1\} \backslash\{1\})$
$\alpha\{u \in \mathrm{~K} \mid \alpha \leqslant u<1\} \backslash\{\alpha\}\}$
$\alpha I_{K}(\gamma) \leq\{\alpha\}$
$I_{K}(\alpha) \backslash\{\alpha\}$ (by Step 5 of Theorem 3.1.7)
$\{u \in \mathbb{K} \quad a<u<1\} \quad$ (by (iv)).
Hence, we have the claim. Now, we have that
$I_{K}\left(\alpha^{n+2}\right)=\left\{y \in K \mid \alpha^{n+2} \leqslant y \leqslant \alpha^{r}\right\}$ for some $r \varepsilon p \mathbb{Z}_{0}^{+}$.
By Step 5 of Theorem 3.1.7, $I_{K}\left(a^{n+2}\right)=\alpha^{n+2} I(1)$
for some $s \varepsilon p \mathbb{Z}_{0}^{+}$.
By (v) and (vi), $\left\{y \in K \mid \alpha^{n+2} \leqslant y \leqslant \alpha^{r}\right\}=\left\{v \varepsilon K \mid \alpha^{n}<v \leqslant \alpha^{s}\right\},\left\{\alpha^{n+1}\right\}$ for some $r, s \varepsilon p \mathbb{Z}_{0}^{+}$. Hence there does not exist a $y \varepsilon D_{K}^{-}$such that $\alpha^{n}<y<\alpha^{n+2}$.

$$
\begin{aligned}
& \begin{array}{l}
=\alpha^{n}\left(\alpha^{2} I_{K}(1)\right) \\
=\alpha^{n}\{u \in K \mid \alpha<u<1\}
\end{array}
\end{aligned}
$$

Step 5. We shall show that for every $n \in \mathbb{Z}^{+}, n-1 \nexists 0(\bmod p)$ and $(n+1) \nexists 0(\bmod p)$ and $n \equiv 0(\bmod p)$ implies that there does not exist a $y \in D_{K}^{-}$such that $\alpha^{n-1}<y<\alpha^{n+1}$. To prove this, let $n \varepsilon \mathbb{Z}^{+}$be such that $n-1 \nexists 0(\bmod p)$ and $n+1 \equiv 0(\bmod p)$ and $n \equiv 0(\bmod p)$. Now, we have that

$$
\begin{equation*}
I_{K}\left(\alpha^{n+1}\right)=\left\{y \in K \mid \alpha^{n+1} \leqslant y \leqslant \alpha^{r}\right\} \text { for some } r \varepsilon p \mathbb{Z}_{0}^{+} \tag{vii}
\end{equation*}
$$

By Step 6 of Theorem 3.1.7, $I_{K}\left(\alpha^{n+1}\right)=\alpha^{n+1} I_{K}(1) ~=\alpha^{n-1}\left(\alpha^{2} I_{K}(1)\right)$

$$
=a^{n-1}\{u \varepsilon K \mid \alpha<u<1\} \quad \text { (by (iii)) }
$$

$$
=\alpha^{n-1}(\{u \varepsilon K \mid \alpha \leqslant u \leqslant 1\} \backslash\{\alpha, 1\})
$$

$$
=\alpha^{n-1} I_{K}(1) \backslash\left\{\alpha^{n}, \alpha^{n-1}\right\}
$$

$$
=I_{K}\left(\alpha^{n-1}\right) \backslash\left\{\alpha^{n}, \alpha^{n-1}\right\}
$$

$$
\left\{v \in K \mid \alpha^{n-1}<v \leqslant \alpha^{s}\right\} \backslash\left\{\alpha^{n}\right\}
$$

for some $s \in p Z^{+}$
By (vii) and (viij), $\left\{y \in K \mid \alpha^{n+1} \leqslant y \leqslant \alpha^{r}\right\}=\left\{v \varepsilon K \mid \alpha^{n-1}<v \leqslant \alpha^{s}\right\} \backslash\left\{\alpha^{n}\right\}$ for some $r, s_{0} \varepsilon_{0}^{4}$? Therefore there does not exist y εD_{K}^{-}such that $\alpha^{n-1}<l y<\alpha^{n+1}$.

 this, let $T=\left\{\alpha^{n} \mid n \in \mathbb{Z}^{+}, ~ p \mathbb{Z}^{+}\right\}$. Clearly $T \neq \emptyset$ since $\alpha \in T$. Since $\alpha^{n}<0$ for all $n \varepsilon \mathbb{Z} \backslash p \mathbb{Z}, 0$ is an upper bound of T. Since $T \subseteq K$ and K is complete, T has a least upper bound. Let $\lambda=\sup (T)$. Then $\lambda \leqslant 0$. Suppose that $\lambda<0$. We claim that $\lambda \varepsilon I_{K}\left(\alpha^{p}\right)$. To prove the claim, suppose not. Then $\lambda \notin I_{K}\left(\alpha^{p}\right)$. Therefore $\lambda+\alpha^{p}=\lambda$. Thus$1+\lambda^{-1}{ }_{\alpha} p=1$, it follows that $\alpha \leqslant \lambda^{-1}{ }_{\alpha} p<0$. By Step 2 of Theorem 3.1.7, 3.1.7, $\alpha+\lambda^{-1} \alpha^{p}=\alpha$ which implies that $\lambda+\alpha^{p-1}=\lambda$. By Step 2 of Theorem $3.1 .7, \lambda \leqslant \alpha^{p-1}$, a contradiction. Hence we have the claim. By the claim, $\lambda \in I_{K}\left(\alpha^{p}\right)=\alpha^{p} I_{K}(1)=$
$\alpha^{\mathrm{P}}\{y \in K \mid \alpha \leqslant y \leqslant 1\}=\alpha^{p}\left(\left\{\mathrm{~s} \varepsilon \mathrm{D}_{\mathrm{K}}^{-} \mid \alpha \leqslant \mathrm{s}\right\} \cup\{0\} \cup\left\{t \in \mathrm{D}_{\mathrm{K}}^{+} \mid \mathrm{t} \leqslant 1\right\}\right.$ $=\alpha^{p}\left\{s \varepsilon D_{K}^{-} \mid \alpha \leqslant s\right\} \cup\{0\} \cup \alpha^{p}\left\{t \varepsilon D_{K}^{+} \mid t \leqslant 1\right\}$ which implies that $\lambda \varepsilon \alpha^{p}\left\{s \varepsilon D^{-} \mid \alpha<s\right\}$. Therefore $\lambda=\alpha^{p} u$ for some $u \varepsilon\left\{s \varepsilon D_{K}^{-} \mid \alpha \leqslant s\right\}$.

Case 1: $\quad \lambda=u$. Then $u=\alpha^{p} u$, so $\alpha^{p}=1$, a contradiction.

Case 2: $\lambda<u$. Then $\alpha^{p} u<u$. Since $0<\alpha^{p}<1$ and $u<0$, by Step 1, $\mathrm{u}<\alpha^{\mathrm{P}} \mathrm{u}$, a contradiction.

Case 3: $u<\lambda$. Then $u \equiv \alpha^{+}$for some $r \varepsilon \mathbb{Z}^{+} \backslash p \mathbb{Z}^{+}$. Thus
$\lambda=\alpha^{p} u=\alpha^{p} \alpha^{r}=\alpha^{p+r}<\alpha^{2 p+r} \leqslant \lambda$, a contradiction.
This shows that $0=\sup \left\{\alpha^{n} \ln \varepsilon \mathbb{Z}^{+} \downarrow p \mathbb{Z}^{+}\right\}$.
Hence $\bar{D}_{K}^{-}=\left\{\alpha^{n} \mid n \in \mathbb{Z} \backslash p \mathbb{Z}\right\}$. Let $K(p)$ be the complete ordered 0 -semifield given in Remark 3.1.8, Define $f:(K,+, \cdot, \leqslant) \rightarrow\left(K_{(p)},+, \cdot, \leqslant\right)$ in the following way; Define $f(0)=0$. Let $x \in K \backslash\{0\}$. If $x \in D_{K}^{-}$, then $x=\alpha^{m}$ for some $m \in \mathbb{Z} \vee p \mathbb{Z}$. Define $f(x)=\beta^{m}$. If $x \varepsilon D_{K}^{+}$, then $x=2_{2} k$ for some $k \in \mathbb{Z}$. Define $f(x)=B-p k$. Clearly, f is well-defined and f is a bijection.

We shall first show that for every $x, y \in K, x \leqslant y$ implies that $f(x) \leqslant f(y)$. To prove this, let $x, y \in K$ be such that $x \leqslant y$.

Case 1: $\quad x \leqslant 0 \leqslant y$. This case is clear.
Case 2: $x \leqslant y<0$. Then $x=\alpha^{n}$ for some $n \varepsilon \mathbb{Z} \backslash p \mathbb{Z}$ and $y=\alpha^{m}$ for
some $m \in \mathbb{Z} \backslash p \mathbb{Z}$. Suppose that $m<n$. Then $n-m \in \mathbb{Z}^{+}$. By assumption and Step 2 of Theorem 3.1.7, $x+y=x$. Then $\alpha^{n}+\alpha^{m}=\alpha^{n}$ which implies that $\alpha^{n-m}+1=\alpha^{n-m}$. By Step 12 of Theorem 3.1.7 and the fact that $n-m \in \mathbb{Z}^{+}, \alpha^{n-m}+1=1$. Thus $\alpha^{n-m}=1$ which contradicts Step 6 of Theorem 3.1.7. Therefore $n \leqslant m$. Hence $\beta^{n} \leqslant \beta^{m}$. Thus $f(x) \leqslant f(y)$. Case 3: $0<x<y$: Then $x=2^{k}$ for some $k \in \mathbb{Z}$ and $y=2^{l}$ for some $\ell \in z$. Since $2^{k}<2^{\ell}, k<l$. It follows that $-p \ell<-p k$. Thus $\beta^{-p k} \leqslant \beta^{-p l}$. Hence $f(x) \leqslant f(y)$.

Next we shall show that for every $x, y \in K, f(x+y)=f(x)+f(y)$. To prove this, let x, y \& K be arbitrary. If either $x=0$ or $y=0$, then the result is clear. Suppose that $x, y \in K \backslash\{0\}$.

Case 1: $x \in D_{K}^{+}$and $y \in D_{K}^{+}$. Then $x=2^{k}$ for some $k \varepsilon \mathbb{Z}$ and $y=2^{\ell}$ for some $\ell \varepsilon \mathbb{Z}$. Wi thout loss of generality, suppose that $x \leqslant y$. Then $x+y=y$, it follows that $f(x+y)=f(y)$. Now, we have that $k \leqslant \ell$. Then $-p l \leqslant-p k$. Therefore $f(x)+f(y)=B^{-p k}+B^{-p l}=\beta^{-p l}=f(y)$. Hence $f(x+y)=f(x)+f(y)$.
 $y=\alpha^{m}$ forllsome $m \varepsilon \mathbb{Z} \backslash p \mathbb{Z}$. Wi thout loss of generality, suppose that $x \leqslant y .9$ By step 2 of Theorem $3.9 .9, x+y, 9$, therefore $f(x+y)=f(x)$. Since $\alpha^{n}+\alpha^{m}=\alpha^{n}, \alpha^{m-n}+1=1$ which implies that $m-n \geqslant 0$. Therefore $n \leqslant m$. Thus $f(x)+f(y)=\beta^{n}+\beta^{m}=\beta^{n}=f(x)$. Hence $f(x+y)=f(x)+f(y)$. $f(x+y)=f(x)+f(y)$.

Case 3: $\quad x \in D_{K}^{-}$and $y \in D_{K}^{+}$. Then $x=\alpha^{n}$ for some $n \in \mathbb{Z} \backslash p \mathbb{Z}$ and $y=2^{k}$ for some $k \varepsilon \mathbb{Z}$. By assumption and Step 4 of Theorem 3.1.7, $x+y=x$ or $x+y=y$.

Subcase 3.1: $\quad x+y=x$. Thernquatit $=f(x)$. By Step 2, $y=2^{k}=\left(2^{-1}\right)^{-k}=\left(\alpha^{p}\right)^{-k}=\alpha^{-p k}$. Thus $\alpha^{n}+\alpha^{-p k}=\alpha^{n}$, it follows that $\alpha^{-p k-n}+1=1$. Then $-p k-n>0$, so $n<-p k$. Thus $f(x)+f(y)=\beta^{n}+\beta^{-p k}=\beta^{n}=f(x)$. Hence $f(x+y)=f(x)+f(y)$.

Subcase 3.2: $x+y=y$. Then $f(x+y)=f(y)$. By Step 2, $y=2^{k}=\left(2^{-1}\right)^{-k}=\left(\alpha^{p}\right)^{-k}=\alpha^{-p k}$. Thus $\alpha^{n}+\alpha^{-p k}=\alpha^{-p k}$, it follows that $\alpha^{n+p k}+1=1$. Then $n+p k>0$, so $-p k<n$. Thus $f(x)+f(y)=$ $\beta^{n}+\beta^{-p k}=\beta^{-p k}=f(y)$. Hence $f(x+y)=f(x)+f(y)$.

Case 4: $x \in D_{K}^{+}$and $y \in D_{K}^{-}$. The proof is similar to the proof of Case 3.

Lastly, we must show that for every $x, y \in K, f(x y)=f(x) f(y)$. To prove this, let $x, y \in K$ be arbitrary. If either $x=0$ or $y=0$, then the result is clear. Suppose that $x, y \in K \backslash\{0\}$.

Case 1: $x \in D_{K}^{+}$and $y \in D_{K^{*}}^{+}$Then $x=2^{k}$ for some $k \in \mathbb{Z}$ and $y=2^{\ell}$ for some $\ell \in \mathbb{Z}$. Thus $x y=2^{k+\ell}$. Then $f(x y)=\beta^{-p(k+\ell)}$. Now, we have that $f(x)=\beta^{-p k}$ and $f(y)=\beta^{-p l}$. Therefore we get that $f(x) f(y)=\left(\beta^{-p k}\right)\left(\beta^{-p l}\right)=\beta^{-p(k+l)} \cdot$ Henge $f(x y)=f(x) f(y)$. Case 2: $\quad x \in D_{K}^{-}$and $y \in D_{K^{6}}^{-}$Then $x=\alpha^{n}$ for some $n \in \mathbb{Z} \backslash p \mathbb{Z}$ and

Subcase 2.1: $\quad n+m \in \mathbb{Z} \backslash p \mathbb{Z}$. Then $f(x y)=\beta^{n+m}=\beta^{n} B^{m}=f(x) f(y)$ $=f(x) f(y)$

Subcase 2.2: $n+m \in p \mathbb{Z}$. Then $n+m=p l$ for some $\ell \in \mathbb{Z}$.
Thus $x y=\alpha^{n+m}=\alpha^{p l}=\left(\alpha^{p}\right)^{\ell}=\left(2^{-1}\right)^{\ell}=2^{-\ell}$. Therefore $f(x y)=\beta^{-p(-l)}=\beta^{p l}=\beta^{n+m}=B^{n} B^{m}=f(x) f(y)$.

Case 3: $\quad x \in D_{K}^{-}$and $y \in D_{K}^{+}$. Then $x=\alpha^{m}$ for some $m \in \mathbb{Z} \backslash p Z$ and $y=2^{k}$ for some $k \in \mathbb{Z}$. Thus $y=\left(2^{-1}\right)^{-k}=\left(\alpha^{p}\right)^{-k}=\alpha^{-p k}$. Then $x y=\alpha^{m-p k}$ and $m-p k \varepsilon z \backslash p \mathbb{Z}$. Therefore we get that $f(x y)=\beta^{m-p k}=$ $B^{m_{B}-p k}=f(x) f(y)$.

Case 4: $x \in D_{K}^{+}$and $y \in D_{K}^{-}$. The proof is similar to the proof of Case 3.

This shows that $\mathrm{f} 1 \mathrm{~s} /$ an isomorphism.
To finish the proof we must show that if $p, q>1$ are distinct, then $K_{(p)}$ is not isomorphic to $K(q)$. Let $p, q \in \mathbb{Z}^{+},\{1\}$ be such that $p \neq q$. Wi thout loss of generality, suppose that $p<q$. Then $K_{(p)} \backslash\{0\}$ and $K_{(q)} \geqslant\{0\}$ are infinite cyclic group. Let β_{1} and β_{2} be generators of $\left.K_{(p)} \backslash f 0\right\}$ and $K_{(q)} \backslash\{0\}$, respectively. Suppose that there is an isomorphism $F: K_{(p)} \backslash\{0\} \rightarrow K_{(q)} \backslash\{0\}$. Then
$F\left(\beta_{1}\right)=\beta_{2}$ or $E\left(\beta_{1}\right)=\beta_{2}^{-1}$. Now, we have that $\beta_{1}^{p}>0, \beta_{2}^{p}<0$ and $\beta_{2}^{-p}<0$. Then $\theta<F\left(\beta_{1}^{p}\right)=\left(F\left(\beta_{1}\right)\right)^{p}=\beta_{2}^{p}$ or β_{2}^{-p}, a contradiction. Hence $K_{(p)}$ is not isomorphic to $K_{(q)}$ \#

 on C) be the पsual order 6 Definepaddition and multiplidation on c by

$$
\begin{aligned}
& x+y=x \text { if }|x| \geqslant|y| \\
& x \cdot y=\left\{\begin{array}{cc}
1 & \text { if } x=y^{-1} \\
-|x y| & \text { if } x \neq y^{-1}
\end{array} \text { where }|x|\right. \text { is the }
\end{aligned}
$$

absolute value of x. Then $(C,+, \cdot, \leqslant)$ is a complete orderedosemifield as is shown below.

Proof: Clearly, C is closed under + , and (C, \leqslant) is an ordered set.

To show that + is associative, let $x, y, z \varepsilon C$.

Case 1: $|x|<|y|<|z|$. Then $x+(y+z)=x+z=z$ and $(x+y)+z=y+z=z$. Thus $x+(y+z)=(x+y)+z$.

Case 2: $\quad|x|<|z|<|y|$. Then $x+(y+z)=x+y=y$ and $(x+y)+z=y+z=y$. Thus $x+(y+z)=(x+y)+z$.

Case 3: $\quad|y|<|x|<|z|$. Then $x+(y+z)=x+z=z$ and $(x+y)+z=x+z=z$. Thus $x+(y+z)=(x+y)+z$.

Case 4: $\quad|y|<|z|<|x|$. Then $x+(y+z)=x+z=x$ and $(x+y)+z=x+z=x$. Thus $x+(y+z)=(x+y)+z$.

Case 5: $\quad|z|<|x|<|y| \cdot$ Then $x+(y+z)=x+y=y$ and $(x+y)+z=y+z=y$. Thus $x+(y+z)=(x+y)+z$.

Case 6: $\quad|z|<|y|<|x|$. Then $x+(y+z)=x+y=x$ and $(x+y)+z=x+z=x$. Thus $x+(y+z)=(x+y)+z$.

Subcase 7.2: $\quad|z|<|y|$. Then $x+(y+z)=x+y=x$ and $(x+y)+z=x+z=x$. Thus $x+(y+z)=(x+y)+z$.

Case 8: $\quad|y|=|z|$
Subcase 8.1: $|x|<|y|$. Then $x+(y+z)=x+y=y$ and $(x+y)+z=y+z=y$. Thus $x+(y+z)=(x+y)+z$.

Subcase 8.2: $\quad|y|<|x|$. Then $x+(y+z)=x+y=x$ and $x+(y+z)=x+y=x$. Thus $x+(y+z)=(x+y)+z$.

Case 9: $\quad|x|=|z|$.
Subcase 9.1: $|x|<|y|$. Then $x+(y+z)=x+y=y$ and $(x+y)+z=y+z=y$. Thus $x+(y+z)=(x+y)+z$.

Subcase 9.2: $\quad|y|<|x|$. Then $x+(y+z)=x+z=x$ and
$(x+y)+z=x+z=x$. Thus $x+(y+z)=(x+y)+z$.

This shows that + is an associative.
To show that $(C)\{0\} ; \cdot)$ is an abelian group, let $x \in C \backslash\{0\}$. We shall show that x^{-1} \& $c \backslash\{0\}$.

Case 1 $\mathrm{x}=1$. Then we are done.

Case $2 \times \varepsilon\left\{-\left(2^{n}\right) \mid n \varepsilon \underline{Z} \geq\{0\}\right\}$. Then $x=-\left(2^{m}\right)$ for some $m \varepsilon \mathbb{Z} \backslash\{0\}$. Now, we have that $-m \in \mathbb{Z}\left\{\{0\}\right.$, so $x^{-1}=\left(-\left(2^{m}\right)\right)^{-1}=-\left(2^{-m}\right) \in \subset \backslash\{0\}$.

Clearly, multiplication is commutative and associative and $x 1=1 x=x$ for all $x \in C \backslash\{0\}$. Therefore $(C,\{0\}, \cdot)$ is an abelian group.

ศนย์วิทยทรัพยากร

To 1 show that ($C,+, \cdot, \leqslant$) satisfies the distributive law, let

Case 1: $|y|>|z|$. Then $x(y+z)=x y$ and $|x||y|>|x||z|$. Thus $|x y|>|x z|$, so $x y+x z=x y$. Thus $x(y+z)=x y+x z$. Similarly, $(y+z) x=y x+z x$.

Case 2: $\quad|y|<|z|$. This proof is similar to the proof of Case 1.

Case 3: $\quad|y|=|z|$. Then $|x||y|=|x||z|$, so $|x y|=|x z|$.

Therefore $x(y+z)=x y+x z$. Similarly, $(y+z) x=y x+z x$.
we shall show that for every $x, y \in C, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \varepsilon C$. To prove this, let x, y be such that $x \leqslant y$. Let $z \varepsilon C$ be arbitrary. If $z \varepsilon\{0,1\}$, then we are done. Suppose that $z \varepsilon\left\{-\left(2^{n}\right) \mid n \in \mathbb{Z} \backslash\{0\}\right\}$.

Case 1: $x, y \in\{0,1\}$. Then we are done.

Case 2: $\quad x \in\left\{-\left(2^{n}\right) \mid n \varepsilon Z \geqslant\{0\}\right\}$ and $y \in\{0,1\}$.
Subcase 2.1 $x \leqslant z<0 \leqslant y$. Then $|z| \leqslant|x|$, so $x+z=x$.
Thus $x+y \leqslant y+z$.

$$
\text { Subcase } 2,2 \quad z \leqslant x<0 \leqslant y \text {. Then }|x| \leqslant|z| \text {, so } x+z=z
$$

Thus $x+y \leqslant y+z$.

Case 3: $x, y \in\left\{-\left(2^{n}\right) \mid n \varepsilon \mathbb{Z}<\{0\}\right\}$.
Subcase $3.1 \quad x \leqslant z \leqslant y<0$. Then $|z| \leqslant|x|$ and $|y| \leqslant|z|$, so $x+z=x$ and $y+z=z$. Thus $x+z<y+z$

Subcase $3.2 \quad z \leqslant x \leqslant y<0$. Then $|y| \leqslant|x| \leqslant|z|$, so $x+z=z$ and $|y+z| z \curvearrowleft$ Thus $0 x+z /=y+z A \& \cap ?$

Subcase $3.3 \quad x \leqslant y \leqslant z<0$. Then $|z| \leqslant|y| \leqslant|x|$, so $x+z=x$ and $y+z=y \cdot$ Thus $x+z \leqslant y+z$. व 9 ? ? ?

To show that for every $x, y \in C, x \leqslant y$ implies that $x z \leqslant y z$ for all $z \neq x^{-1} \quad$, let $x, y \in C$ be such that $x \leqslant y$. Let $z \varepsilon C \backslash\left\{x^{-1}\right\}$. If $z \varepsilon\{0,1\}$, then we are done. Suppose that $z \varepsilon\left\{-\left(2^{n}\right) \mid n \varepsilon \mathbb{Z} \backslash\{0\}\right\}$.

Case 1: $\quad x=0$ and $y=0$. This case is clear.

Case 2: $x=0$ and $y=1$. This case is clear.

Case 3: $x=1$ and $y=1$. This case is clear.

Case 4: $x \leqslant y<0$. Then $x=-\left(2^{n}\right)$ and $y=-\left(2^{m}\right)$ and $z=-\left(2^{\ell}\right)$ for some $m, n, \ell \in \mathbb{Z} \backslash\{0\}$. Therefore we get that $x z=-\left|-\left(2^{n}\right)\left(-\left(2^{\ell}\right)\right)\right|=$ $-\left|2^{\mathrm{n}+\ell}\right|=-\left(2^{\mathrm{n}+\ell}\right)$ and $\mathrm{yz}=-\left|-\left(2^{\mathrm{m}}\right)\left(-\left(2^{\ell}\right)\right)\right|=-\left|2^{\mathrm{m}+\ell}\right|=-\left(2^{\mathrm{m}+\ell}\right)$. Now, we have that $m \leqslant n$, so $m+\ell \leqslant n+\ell$. Thus $2^{m+\ell} \leqslant 2^{n+\ell}$, it follows that $-\left(2^{n+\ell}\right) \leqslant-\left(2^{m+\ell}\right)$ Therefore $x z \leqslant y z$.

Lastly, to show that (C, \leqslant) is complete. Now, we assume that $H \subseteq C$ be a nonempty set which has an upper bound. Let w be an upper bound of H. Now, we shall show that H has a least upper bound in C.

Case 1: $w \geqslant 0$. Then 0 or 1 is a least upper bound of H. Then we are done.

Case 2: $w<0 \%$ Then $a \leqslant w<0$ for all a ε H. Thus $H \subseteq\left\{-\left(2^{n}\right) \mid n \varepsilon \mathbb{Z} \backslash\{0\}\right\}$. We claim that $(\mathbb{Z} \backslash\{0\}, \leqslant)$ is isomorphic to $\left(\left\{-\left(2^{n}\right) \mid n \varepsilon \mathbb{Z} \backslash\{0\}\right\}, \leqslant\right)$. To prove the claim, define
$f:\left\{-\left(2^{n}\right)|n| \varepsilon \mid<\{0\}\right\} \rightarrow \mathbb{Z} \leqslant\{0\}$ in the following way: Let $x \in\left\{-\left(2^{n}\right) \mid n \varepsilon \mathbb{Z} \backslash\{0\}\right\}$. Then $x=-\left(2^{n}\right)$ for some $n \varepsilon \mathbb{Z} \backslash\{0\}$, Define $f(x)=-n$. dearly, fois well-defined cand fis a bi jedtion. To show that f is an order map, let $x, y \in\left\{-\left(2^{n}\right) \mid n \varepsilon \mathbb{Z} \backslash\{0\}\right\}$ be such that $x \leqslant y$. Then $x=-\left(2^{n}\right)$ and $y=-\left(2^{m}\right)$ for some $n, m \in \mathbb{Z} \backslash\{0\}$. Therefore $m \leqslant n$, so $-n \leqslant-m$. Thus $f(x)=-n \leqslant-m=f(y)$, so we have the claim. By the claim $\left(\left\{-\left(2^{n}\right) \mid n \in \mathbb{Z} \backslash\{0\}\right\}, \leqslant\right)$ is complete. Hence H has a least upper bound in C. \#

Theorem 3.1.12. Let $(K,+, \cdot \leqslant)$ be a complete ordered 0-skew semifield. If $\left(D_{K}^{+},+, \cdot, \leqslant\right)$ is isomorphic to $(\{1\},+, \cdot, \leqslant)$, then $(K,+, \cdot, \leqslant)$ is isomorphic to exactly one of the following 0 -semifield:
(1) $(\{0,1\},+, \cdot, \leqslant)$ as in Bootean sernifield.
(2) ($\left.\mathrm{C},+,^{\cdot}, \leqslant\right)$ as in Remark 3.1.11.

Proof: Assume that $\left(D_{K}^{+},+, \cdot, \leqslant\right)$ is isomorphic to $(\{1\},+, \cdot, \leqslant)$. Now, we have that $K=D_{K}^{-} \cup\{0\} \cup D_{K}^{+}$. If $D_{K}^{-}=\varnothing$, then $(K,+, \cdot, \leqslant)$ is isomorphic to (1). Suppose that $D_{K}^{-} \neq \varnothing$. Step 2 to Step 12 of Theorem 3.1.7 hold with these hypotheses and the proofs are exactly the same. As in Theorem $3.1 .7 \quad \alpha$ will denote $\inf \left(I_{K}^{-}(1)\right)$.

Step 1. We shall show that $\alpha^{n}<0$ for all $n \varepsilon \mathbb{Z} \backslash\{0\}$. It suffices to show that $\alpha^{n}<0$ for all $n / \in \mathbb{Z}^{+}$. To prove this, suppose not. Then $0<\alpha^{m}$ for some m, If $\alpha^{m}=0$, then $\alpha=\alpha^{-(m-1)} 0=0$, a contradiction. Thus $0<a^{m}$, so $\alpha^{m}=1$ which contradicts step 6 of Theorem 3.1.7.

Step 2. For every $n \in \mathbb{Z} \backslash\{0\}, \alpha^{n}<\alpha^{n+1}$. This proof is the same as the proof of step 14 in pheorem $3.1 .7 \cdot 8 \cap ?$
Step 3. We shall show that for every $x, y, z \varepsilon D_{K}^{-} x<y$ and $z \neq x^{-1}$ implies that $z x<z y$ and $x z<y z$ To prove this, fet $x, y, z \varepsilon D_{K}^{-}$ be such that $x<y$ and $z \neq x^{-1}$. By Step 2 of Theorem 3.1.7, $x+y=x$. Therefore $z x=z(x+y)=z x+z y$.

Case 1:
$z y \in D_{K}^{+}$. Then $z x+z y \leqslant z y . \quad$ From $(*)$, we have that $z x \leqslant z y \ldots$ If $z x=z y$, then $x=y$ which is a contradiction. Therefore $z x<z y$.
that $z x \leqslant z y$. If $z x=z y$, then $x=y$, a contradiction. Therefore $z x<z y$.

Hence $\mathbf{z x}<\mathrm{zy}$. Similarly; $\mathbf{x z}<\mathrm{yz}$.

Step 4. We shall show that for every $n \in \mathbb{Z} \backslash\{0\}$ there does not exist $y \in D_{K}^{-}$such that $\alpha^{n}<y<\alpha^{n+1}$. To prove this, suppose not. Then $\alpha^{m}<y<\alpha^{m+1}$ for some $m \varepsilon \mathbb{Z} \backslash\{0\}$ and for some $y \varepsilon D_{K}^{-}$. By Step 2 , $\alpha^{m}<y<\alpha^{m+2}$.

Since $\alpha^{-m}=\left(\alpha^{m}\right)^{-1}, \alpha^{-m-1} \neq /\left(\alpha^{m}\right)^{-1}$. From (I) and Step 3, we have that $\left(\alpha^{-m-1}\right) \alpha^{m}<\alpha^{-m-1} y$. Then $\alpha^{-1}<\alpha^{-m-1} y$.

If $\alpha^{-m-1}=y^{-1}$, then $\alpha^{m+1}=y$ a contradiction. Thus $\alpha^{-m-1} \neq y^{-1}$. From (I) and Step 3, $\alpha^{-m-1} y \leqslant\left(\alpha^{-m-1}\right) \alpha^{m+2}$. Then $\alpha^{-m-1} y<\alpha$.(III) From (II) and (III), we have that, $\alpha^{-1}<\alpha^{-m-1} y<\alpha$ which contradicts Step 11 of Theorem 3.1.7.

Step 5. We shall show that $0=\sup \left\{\alpha^{n} \mid n \varepsilon \mathbb{Z}^{+}\right\}$. To prove this, let $L=\left\{\alpha^{n} \ln \varepsilon \mathbb{Z}^{+}\right\} .-$By Step 1,0 is an upper bound of L. Since $L \subseteq K$ and K is complete, L has a least upper bound. Let $\lambda=\sup (L)$. Then $\lambda \leqslant 0$. Suppose that $\lambda<00 \mid$ We?claim that λ is lower discrete. To prove this cllaim, if $\lambda=\alpha^{\text {n }}$ for some $n \in \mathbb{Z} \backslash\{0\}$, then by step 4 , we
 that $\alpha^{-1}<\alpha<0$.

If $\alpha^{-1} \lambda=\left(\alpha^{-1}\right)^{-1}$, then $\alpha^{-1} \lambda=\alpha$. It follows that $\lambda=\alpha^{2}$, a contradiction. Thus $\alpha^{-1} \lambda \neq\left(\alpha^{-1}\right)^{-1}$. From (i) and Step 3 , we have that $\alpha^{-1}\left(\alpha^{-1} \lambda\right)<\alpha\left(\alpha^{-1} \lambda\right)$. Then $\alpha^{-2} \lambda<\lambda$. We shall show that there does not exist y εD_{K}^{-}such that $\alpha^{-2} \lambda<y<\lambda$. To prove this, suppose not. Then there exists a $y \varepsilon D_{K}^{-}$such that $\alpha^{-2} \lambda<y<\lambda$........(ii)

If $\lambda^{-1} \alpha=\left(\alpha^{-2} \lambda\right)^{-1}$, then $\lambda^{-1} \alpha=\lambda^{-1} \alpha^{2}$. Thus $\alpha=\alpha^{2}$ which implies that $\alpha=1$, a contradiction. Therefore $\lambda^{-1} \alpha \neq\left(\alpha^{2} \lambda\right)^{-1}$. From (ii) and Step 3 , we have that $\alpha^{-2} \lambda\left(\lambda^{-1} \alpha\right)<y\left(\lambda^{-1} \alpha\right)$, hence
$\alpha^{-1}<y\left(\lambda^{-1} \alpha\right)$.
If $\lambda^{-1} \alpha=y^{-1}$, then $\alpha=\lambda y^{-1}$. Since $y<\lambda, y<\alpha^{m}<\lambda$ for some $m \in \mathbb{Z} \backslash\{0\}$. Thus $\alpha^{m} y^{-1}<\lambda y^{-1}=\alpha$, it follows that $\alpha^{m} y^{-1}+1=\alpha^{m} y^{-1}$. Then $\alpha^{m}+y=\alpha^{m}$. By Step 2 of Theorem 3.1.7, $\alpha^{m} \leqslant y$, a contradiction. Therefore $\lambda^{-1} \alpha \neq y^{-1}$. From (ii) and Step 3 , we have that $y\left(\lambda^{-1} \alpha\right)<\lambda\left(\lambda^{-1} \alpha\right)$

By (iii) and (iv), $\alpha^{-1}<y\left(\lambda^{-1} \alpha\right)<\alpha$ which contradicts step 11 of Theorem 3.1.7. Then there does not exist y εD_{K}^{-}such that $\alpha^{-2} \lambda<y<\lambda$. Therefore λ is lower discrete, so we have the claim. Since $\lambda^{-}<\lambda$, $\lambda^{-} \leqslant \alpha^{\ell}<\lambda$ for some $\ell \& \neg\{0\}$. If $\lambda^{-}=\alpha^{\ell}$, then $\lambda^{-}<\alpha^{\ell+1}<\lambda$, a contradiction. Thus $\lambda^{-} \leqslant \alpha^{2}<\lambda$, a contradiction. Hence $\lambda=0$.

Step 6. We shell show that $\left\{a^{-n} \mid n \in \mathbb{Z}^{+}\right\}$has no lower bound in D_{K}^{-}. To prove this, suppose not. Then $\left\{\alpha^{-n} \ln \varepsilon \mathbb{Z}^{+}\right\}$has lower bound in D_{K}^{-}. Thus $\left\{\alpha^{-n} \mid n \in \mathbb{Z}^{+}\right\}$has a greatest lower bound. Let $w=\inf \left\{\left.\alpha\right|^{-n} \mid n \in \mathbb{Z}^{+}\right\}$, so $w \leqslant \alpha{ }^{-n}$ for alln $\varepsilon \mathbb{z}^{+}$. Suppose that $w=\alpha^{-m}$ for some $m \in \mathbb{Z}^{+}$. Since $\alpha^{m}<\alpha^{m+1}$, by Step 2 , $\left(\alpha^{m+1}\right)^{-1}<\left(\alpha^{m}\right)^{-1}$. Thus $\alpha-(m+1) \alpha \alpha^{-m} ?=$ w, contradiction. Therefore $w<\alpha^{-n}$ for all $n \in \mathbb{Z}^{+}$. By Step 2 again $\left(\alpha^{-n}\right)^{-1}<w^{-1}$ for all $n \in \mathbb{Z}^{+}$, so $\alpha^{n}<w^{-1}$ for all $n \in \mathbb{Z}^{+}$. Since $0=\sup \left\{\alpha^{n} \mid n \varepsilon \mathbb{Z}^{+}\right\}, 0 \leqslant w^{-1}$ which is a contradiction.

From Step 4, Step 5 and Step 6 , we have that $D_{K}^{-}=\left\{\alpha^{n} \mid n \in \mathbb{Z} \backslash\{0\}\right\}$.
Let C be the complete ordered 0-semifield given in Remark 3.1.11.
Define $f:(K,+, \cdot, \leqslant) \rightarrow(C,+, \cdot, \leqslant)$ in the following way: $f(0)=0$
and $f(1)=1$. Let $x \in D^{-}$be arbitrary. Then $x=\alpha^{n}$ for some a unique $n \in \mathbb{Z} \backslash\{0\}$. Let $f(x)=-2^{-n}$. Clearly, f is well-defined and f is a bijection.

To show that f is an order map, let $x, y \in K$ be such that $x \leqslant y$. We must show that $f(x) \leqslant f(y)$

Case 1: y $\varepsilon\{0,1\}$. Then we are done.

Case 2: $x \leqslant y<0$. Then $x=\alpha^{n}$ and $y=\alpha^{m}$ for some $m, n \in \mathbb{Z} \backslash\{0\}$. Therefore $\alpha^{n} \leqslant \alpha^{m}$, so $n \leqslant m$ which implies that $2^{-m} \leqslant 2^{-n}$. Thus $-\left(2^{-n}\right) \leqslant-\left(2^{-m}\right)$. Hence $\overline{f(x)} \leqslant f(y)$

To show that $f(x+y)=f(x)+f(y)$ for all $x, y \in K$. To prove this, let $x, y \varepsilon k$ be arbitrary.

Case 1: $x=0$ and $y=0$. Then we are done

Case 2: $\quad x=0$ and y E K. Then $f(x+y)=f(0+y)=f(y)=0+f(y)=$ $f(0)+f(y)=f(x)+f(y)$

Case 3: $y=0$ and $x \varepsilon K$. This proof is similar to the proof of
Case 2.

ศนย์วิทยทรัพยากร

Case 4:
$\mathrm{x}=1$ and $\mathrm{y}=0$. Then we are done.

Case 6: $x=1$ and $y \in D_{K}^{-}$. Then $y+1=y$ or $y+1=1$

$$
\text { Subcase 6.1: } y+1=y . \text { Then } f(y+1)=f(y) . \ldots \ldots \ldots \ldots(*)
$$

Since $y \in D_{K}^{-}$and $y+1=y, y<\alpha$. Thus $y=\alpha^{-n}$ for some $n \in \mathbb{Z}^{+}$.
Therefpre $f(y)=-\left(2^{-(-n)}\right)=-\left(2^{n}\right)$, so $|f(y)|=\left|-\left(2^{n}\right)\right|=2^{n}>1=$
$|f(1)|$. Then $f(y)+f(1)=f(y)$.

From (*) and (**), $f(y+1)=f(y)+f(1)$.

Subcase 6.2: $y+1=1$. Then $f(y+1)=f(1)$.
Since $y \in D_{K}^{-}$and $y+1=1, \alpha \leqslant y$. Thus $y=\alpha^{n}$ for some $n \in \mathbb{Z}^{+}$.
Therefore $f(y)=-\left(2^{-n}\right)$, so $|f(y)|=\left|-\left(2^{-n}\right)\right|=2^{-n}<1=|f(1)|$.
Then $f(y)+f(1)=f(1)$
From (I) and (II), $f(y+1)=f(y)+f(1)$.

Case 7: $x \in D_{K}^{-}$and $y=1$. This proof is similar to the proof of
Case 6.

Case 8: $x \in D_{K}^{-}$and $y \varepsilon D_{K}$ Then either $x \leqslant y$ or $y \leqslant x$.
Subcase 8.1: $x \leqslant y$ By Step 2 of Theorem 3.1.7, $x+y=x$.
Then $f(x+y)=f(x)$. Since $x \leqslant y<0$ and f is an order map,
$f(x) \leqslant f(y)<0$ which implies that $0<|f(y)|<|f(x)|$. Thus $f(x)+f(y)=f(x)$. Hence $f(x+y)=f(x)+f(y)$.

Subcase 8.2: $y \leqslant x$. By Step 2 of Theorem 3.1.7, $y+x=y$.
Then $f(y+x)=f(y)$. Since $y \leqslant x<0$ and f is an order map,
$f(y) \leqslant f(x)<0$ which implies that $0<|f(x)| \leqslant|f(y)|$. Thus
$f(x)+f(y)=f(y) Q$ Hence $f(y+y)=f(x)+f(y) \cdot\} \approx$
Lastly, we must show that $f(x y)=f(x) f(y)$ for all $x, y \varepsilon K$. To prove this let x, y \& bedarbitrary. $\%$?

Case 1: $x=0, y \in K$. This case is clear.

Case 2: $y=0, x \in K$. This case is clear.

Case 3: $\mathrm{x}=1, \mathrm{y} \varepsilon \mathrm{K}$. This case is clear.

Case 4: $y=1, x \in K$. This case is clear.

Case 5: $x \in D_{K}^{-}$and $y \in D_{K}^{-}$. Then $x=\alpha^{n}$ and $y=\alpha^{m}$ for some n, $m \in \mathbb{Z} \backslash\{0\}$. Thus $x y=\alpha^{n} \alpha^{m}=\alpha^{n+m}$. Therefore we get that $f(x y)=-\left(2^{-n-m}\right)$. Now, we have that $f(x)=-\left(2^{-n}\right)$ and $f(y)=-\left(2^{-m}\right)$. Then $f(x) f(y)=-\left|-\left(2^{-n}\right)\left(-\left(2^{-m}\right)\right)\right|=-\left|2^{-n-m}\right|=-\left(2^{-n-m}\right)$. Therefore $f(x y)=f(x) f(y)$.

Hence f is an isomorphism

Section 2. \quad-Skew Semifields

Definition 3.2.1. A system $(\mathrm{K},+, \cdot, \leqslant)$ is called an ordered ∞-skew semifield iff $(K,+, \cdot)$ is an ∞ skew semifield and \leqslant is an order on K satisfying the following properties:
(i) For any $x, y-\frac{K}{,}, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \leqslant \infty$ in k.
(ii) For any $x, y \in K, x \leqslant y$ implies that $x z \leqslant y z$ and $z x \leqslant z y$ for all $z \leqslant \infty$ in K.
(iii) $1<\infty$.

Notation: PLet K be an/o-skew/semifield. Then we will denote $\operatorname{cor}_{K}(x)=\{y \in K \mid x+y=\infty\}$ for all $x \in K$.
 properties hold:
(1) For every $x \in K, \infty \in \operatorname{Cor}_{K}(x)$.
(2) $\operatorname{Cor}_{K}(\infty)=K$.
(3) For every $x \in K \backslash\{\infty\}, \operatorname{Cor}_{K}(x)=x \operatorname{Cor}_{K}(1)$.
(4) If $\operatorname{cor}_{K}(1)=\{\infty\}$, then $x+y \neq \infty$ for all $x, y \in K \backslash\{\infty\}$.
(5) If $x \in \operatorname{Cor}_{K}(1)$ and $x \neq \infty$, then $x^{-1} \varepsilon \operatorname{Cor}_{K}(1)$.

Proof: The proof of 1) and 2) are obvious.
To show 3), let $x \in K \backslash\{\infty\}$ be arbitrary. We must show that $\operatorname{Cor}_{K}(x)=x \operatorname{Cor}_{K}(1)$. To prove this, let $y \varepsilon \operatorname{Cor}_{K}(x)$ be arbitrary. Then $y+x=\infty$ which implies that $x^{-1} y+1=\infty$. Therefore $x^{-1} y \in$ Cor ${ }_{K}(1)$. Thus $y \in \times \operatorname{Cor}_{K}(1)$. Hence $\operatorname{Cor}_{K}(x) \subseteq x \operatorname{Cor}_{K}(1)$. On the other hand, let $z \varepsilon \times \operatorname{Cor}_{K}(1)$ be arbitrary. Then $x^{-1} 2+1=\infty$ which implies that $z+x=\infty$. Therefore $z \& \operatorname{Cor}_{K}(x)$. Hence $x \operatorname{Cor}_{K}(1) \subseteq \operatorname{Cor}_{K}(x)$. Thus $\operatorname{Cor}_{K}(x)=x \operatorname{Cor}_{K}(1)$

To show 4), suppose that $\operatorname{Cor}{ }_{K}(1)=\{\infty\}$. Let $x, y \in K \backslash\{\infty\}$ be arbitrary. If $x+y=\infty$, then $y \in \operatorname{Cor}_{K}(x)$. By 3), y $\varepsilon \times \operatorname{Cor}_{K}(1)$ which implies that $x^{-1} y \in \operatorname{Cor}(1)=\{\infty\}$. Thus $x^{-1} y=\infty$. Then $\infty=x^{\infty}=$ $x\left(x^{-1} y\right)=\left(x x^{-1}\right) y=y$, a contradiction. Hence $x+y \neq \infty$.

To show 5), let $x \in \operatorname{cor}{ }_{K}(1) \backslash\{\infty\}$. Then $x+1=\infty$ which implies that $1+x^{-1}=\infty \cdot$ Hence $x^{-1} \varepsilon \operatorname{cor}_{K}(1)$. \#

Notation: Let K be an ordered ∞-skew semifield. Then we will denote
 D_{K}^{f} is never the empty set.

Proposition 3.2.3. Let $(K,+, \cdot, \leqslant)$ be an ordered ∞-skew semifield.
Then the following properties hold:
(1) For every $x, y \in K \backslash\{\infty\}$, $x y \in K \backslash\{\infty\}$.
(2) For every $x, y \in K, x<y$ implies that $x z<y z$ and $z x<z y$ for all $z \in D_{K}^{f}$.
(3) For every $x, y \in D_{K}^{f}, x^{-1} \varepsilon D_{K}^{f}$ and $x y \varepsilon D_{K}^{f}$ and $x+y \leqslant \infty$.
(4) For every $x \in D_{K}^{f}$ and for every $y \in D_{K}^{i}$, xy εD_{K}^{i}.
(5) For every $x, y \in D_{K}^{i}, x+y<\infty$ implies that $x D_{K}^{f} \cap y D_{K}^{i}=\dot{w}$.
(6) Suppose that $\operatorname{Cor}_{K}(1)=\{\infty\} \cup D_{K}^{i}$. Then for every $x, y \in D_{K}^{f}$, $x+y \in D_{K}^{f}$ and $x y^{-1} \varepsilon D_{K}^{f}$.
(7) Suppose that $\operatorname{Cor}_{K}(1)=\{\infty\} \cup D_{K}^{i}$. Then for every $\times \varepsilon D_{F}^{f}$ and for every $y \in D_{K}^{i}, x+y=\infty$.
(8) Suppose that Cor ${ }_{K}(1)=\{\infty\} \cup D_{K}^{i}$. Then for every $x, y \in D_{K}^{i}$, $x+y= \begin{cases}\infty & \text { if } y \notin x D_{K}^{\prime} \\ >\infty & \text { if } y \in \times D_{K}^{f}\end{cases}$
(9) Suppose that $\operatorname{cor} K^{(1)}=\{\infty\} \cup D_{K}^{i}$. Then for every $x, y \in D_{K}^{i}$, $x y= \begin{cases}<\infty & \text { if } y \in x^{-1} \frac{1}{K^{\prime}} \\ >\infty & \text { if } y \& x^{-1} \frac{f}{D_{K}}\end{cases}$
(10) Suppose that $\left.\operatorname{Cor}_{K}(1)=\{\infty\} U D_{K}^{i}\right\}$ Then D_{K}^{f} is a normal subgroup of $K \backslash\{\infty\}$.
(11) Suppose that $\operatorname{cor}_{K}(1) \& K$. Then $x+y=\infty$ for all $\times \varepsilon D_{\text {I }}^{\frac{\sim}{2}}$

Q 9 Proof Gthe proof of (9) is obvious. ?

To show (2), let $x, y \in K$ be such that $x<y$. Let $z \varepsilon D_{K}^{f}$ Ie arbitrary. Then $z<\infty$. By Definition $3: 2.1$ (ii), $x z \leqslant y z$ and $z x \leqslant z y$. If $z x=z y$, then $z^{-1}(z x)=z^{-1}(z y)$ which implies that $x=y$, a contradiction. Thus $x z<y z$. Similarly, $z x<z y$.

To show (3), let $x, y \in D_{K}^{f}$ be arbitrary. Then $x<\infty$ and $y<\infty$. If $\infty \leqslant x^{-1}$, then by Definition 3.2.1 (ii), $\infty=\infty x \leqslant x^{-1} x=$,
a contradiction. Therefore $x^{-1}<\infty$. Thus $x^{-1} \in D_{K}^{f}$. Now, we shall show that $x y<\infty$. Suppose that $\infty \leqslant x y$. By Definition 3.2.1 (i), $\infty=x^{-1} \infty \leqslant x^{-1}(x y)=\left(x^{-1} x\right) y=y$, a contradiction. Therefore $x y<\infty$. Hence $x y \in D_{K}^{f}$. It is clear that $x+y \leqslant \infty$.

To show (4), let $x \in D_{K}^{f}$ and $y \in D_{K}^{i}$ be arbitrary. Then $x<\infty$. and $y>\infty$. By Definition 3.2 .1 (ii),$\infty \leqslant x y$. If $x y=\infty$ then $x^{-1}(x y)=x^{-1} \infty=\infty$ which implies that $y=\infty$, a contradiction. Hence $\infty<x y$. Therefore wy $\& D_{k}$

To show (5), let $x, y \in D_{K}^{1}$ be such that $x+y<\infty$. We shall show that $x D_{K}^{f} \cap y D_{K}^{f}=\varnothing$. To prove this, suppose not. Then $x D_{K}^{f} \cap y D_{K}^{f} \neq \emptyset$. Thus $x D_{K}^{f}=y D_{K}^{f}$ so $y \varepsilon x D_{K}^{f}$. Then $y=x d$ for some $d \in D_{K}^{f}$. Therefore $x+y=x+x d=x(1+d)$. By (4), $x+y>\infty$, a contradiction. Hence $\left\langle D_{\mathrm{K}}^{\mathrm{f}} \mathrm{A}_{\mathrm{K}} \mathrm{yD} \mathrm{K}_{\mathrm{K}}^{\mathrm{f}}=\varnothing\right.$.

To show (6), suppose that $\operatorname{cor}_{K}(1)=\{\infty\} \cup D_{K}^{i}$. Let x, y $\in D_{K}^{f}$ be arbitrary. By (3), $x y^{-1} \varepsilon D_{K}^{f}$ and $x+y \leqslant \infty$. If $x+y=\infty$ then $1+x y^{-1}=\infty$. Thus $x y^{-1} \varepsilon \operatorname{Cor}_{K}(1)$, so $x^{-1} \varepsilon\{\infty\} U D_{K}^{i}$, a contradiction.
 To show (7), suppose that cor $(1)=\{\infty\} \cup D_{K}^{i}$. Let $x \in D_{K}^{f}$ and $y \in D_{K}^{i}$ be arbitrary. By (3), $x^{-1} \varepsilon D_{K^{*}}^{f}$. By (4), $x^{-1} y \in D_{K}^{i}$. Then $x^{-1} y \in \operatorname{Cor}_{K}(1)$, it follows that $x^{-1} y+1=\infty$. Therefore $x+y=\infty$. To show (8), suppose that $\operatorname{Cor}_{K}(1)=\{\infty\} \cup D_{K}^{i}$. Let $x, y \in D_{K}^{i}$ be arbitrary. Now, we have that $K=D_{K}^{f} U \operatorname{Cor}_{K}(1)$. Therefore $K=x K=x\left(D_{K}^{f} U \operatorname{Cor}_{K}(1)\right)=X_{K}^{f} U \operatorname{Cor}_{K}(1)$.

By (*) and Proposition 3.2.2 (3), $K=x D_{K}^{f} \cup \operatorname{Cor}_{K}(x) . \ldots \ldots \ldots$................ If $y \in x D_{K}^{f}$, then $y=x d$ for some $d \varepsilon D_{K}^{f}$. Thus $x+y=x+x d=x(1+d)>\infty$ by (4). If $y \notin x D_{K}^{f}$, then by $(* *), y \in \operatorname{Cor}_{K}(x)$. Thus $x+y=\infty$. To show (9), suppose that $\operatorname{cor}_{K}(1)=\{\infty\} \cup D_{K}^{i}$. Let $x, y \in D_{K}^{i}$ be arbitrary. If $y \in x^{-1} D_{K}^{f}$, then $y=x^{-1} d$ for some $d \varepsilon D_{K}^{f}$. Thus $x y=x\left(x^{-1} d\right)=\left(x x^{-1}\right) d=d$. Therefore $x y<\infty$. Suppose that $y \notin x^{-1} D_{K}^{f}$. To show that $x y>\infty$, suppose not. Then $x y \leqslant \infty$. If $x y=\infty$ then $x^{-1}(x y)=x^{-1} \infty=\infty$. Thus $y=\infty$, a contradiction. If $x y<\infty$, then $x y=s$ for some $s \& D_{K}^{f}$. Thus $y=x^{-1} s \varepsilon x^{-1} D_{K}^{f}$, a contradiction. Therefore $x y>\infty$.

To show (10), suppose that $\operatorname{Cor}_{K}(1)=\{\infty\} U D_{D_{K}}^{i}$. We shall show that D_{K}^{f} is a normal subgroup of $K \backslash\{\infty\}$. Let $x \in K \backslash\{\infty\}$ and $d \varepsilon D_{K}^{f}$ be arbitrary. Now, we have that $D_{K}^{f}=\left(\operatorname{Cor}_{K}(1)\right)^{c}$. We must show that $x d x^{-1} \varepsilon D_{K}^{f}$. If $x \in D_{K}^{f}$, then we are done. Suppose that $x \in D_{K}^{i}$. If $x d x^{-1} \notin D_{K}^{f}$, then $x d x^{-1} \varepsilon$ cor ${ }_{K}(1)$. Thus $x d x^{-1}+1=\infty$, so $d x^{-1}+x^{-1}=\infty$ which implies that $d+1=\infty$, a contradiction. Therefore $x d x^{-1} \in D_{K}^{f}$. Hence $\mathrm{D}_{\mathrm{K}}^{\mathrm{f}}$ is a normal subgroup of $\mathrm{k} \vee\left\{\left\{_{\infty}\right\}\right.$. $\left.?\right\} \approx$
 and $y \neq \infty$. Then $x^{-1} y \in K$, so $x^{-1} y \in \operatorname{Cor}{ }_{K}(1)$. Therefore $x^{-1} y+1=\infty$. Hence $y+x=\infty$. $\#$

Proposition 3.2.4. Let $(K,+, \cdot, \leqslant)$ be a complete ordered ∞-skew semifield. Then the following properties hold:
(1) $\left(D_{K}^{f}, \leqslant\right)$ is a complete ordered set.
(2) If $D_{K}^{f} \neq\{1\}$, then for every $x \in D_{K}^{i}, x D_{K}^{f}$ has no upper bound and has no lower bound in D_{K}^{i}.
(3) If (H, \cdot) is a subgroup of $\left(D_{K}^{f}, \cdot\right)$ and $H \neq\{1\}$, then H has neither a lower bound nor an upper bound in D_{K}^{f}.
(4) If $\left(\operatorname{Cor}_{K}(1)\right)^{c} \neq \emptyset$, then $D_{K}^{f} \subseteq\left(\operatorname{Cor}_{K}(1)\right)^{c}$.

Proof: To show (1), let $A \subseteq D_{K}^{f}$ be a nonempty set having a lower bound in D_{K}^{f}. Then $A \subseteq K$. Since K is complete, A has a greatest lower bound in k. Let $w=\inf (A)$. Fix a εA. Then $w \leqslant a<\infty$. Therefore $w \in D_{K^{\prime}}^{f}$. Hence $\left(D_{K}^{f} \leqslant\right)$ is a complete ordered set.

To show (2), suppose that $D_{K}^{f} \neq\{1\}$. Let $x \in D_{K}^{i}$ be arbitrary. Without loss of generality, suppose that $x \mathrm{D}_{\mathrm{K}}^{\mathrm{f}}$ has an upper bound. Let $z=\sup \left(x D_{K}^{f}\right)$. Then $x d \leqslant z$ for all $d \varepsilon x D_{K}^{f}$. Let $s \varepsilon D_{K}^{f},\{1\}$. Thus $x d s \leqslant z$ for all $d \varepsilon x D_{K}^{f}$ it follows that $x d \leqslant z s^{-1}$ for all $d \varepsilon D_{K}^{f}$. Therefore zs^{-1} is an upper bound of $x \mathrm{D}_{\mathrm{K}} \mathrm{f}^{\text {. }}$. Thus $z \leqslant \mathrm{zs}^{-1}$, so $\mathbf{z s} \leqslant z$.(*)
Similarly, $x d s^{-1} \leqslant z$ for all $d \varepsilon \otimes D_{\mathbb{K}}^{f}$ which implies that $z s$ is an
 From $(*)$ and $(* *)$, we have that $z=2 s$ which implies that $1=s$, a
contradiction.

To show (3), by Proposition 3.2.3 (3), $\left(D_{K}^{f}, \cdot\right)$ is a group. Suppose that (H, \cdot) is a subgroup of $\left(D_{K}^{f}, \cdot\right)$ and $H \neq\{1\}$. By (1) and Proposition $3.2 .3(2),\left(D_{K}^{f}, \cdot, \leqslant\right)$ is a complete ordered group. By Proposition 1.25 , Theorem 1.26 and Theorem $1.28,\left(D_{K}^{f}, \cdot, \leqslant\right)$ is either isomorphic to $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\}, \cdot, \leqslant\right)$ or $\left(\mathbb{R}^{+}, \cdot, \leqslant\right)$. Let $x \in H \backslash\{1\}$ be
arbitrary. Then either $\mathrm{x}<1$ or $1<\mathrm{x}$. Without loss of generality, suppose that $x<1$. Then x^{n} has the property that for every $r \varepsilon D_{K}^{f}$ there exists an $N \varepsilon \mathbb{Z}^{+}$such that $n \geqslant N$ implies that $x^{n}<r$. Therefore H has no lower bound in D_{K}^{f}. Now, we have that $1<x^{-1}$. Then $\left(x^{-1}\right)^{m}$ has the property that for every $s \varepsilon D_{K}^{f}$ there exists an $M \varepsilon \mathbb{Z}^{+}$such that $m>M$ implies that $\left(x^{-1}\right)^{m}>s$. Therefore H has no upper bound in D_{K}^{f}.

To show (4), suppose that $\left(\operatorname{Cor}_{K}(1)\right)^{C} \neq \varnothing$. First, we shall show that $\left(\left(\operatorname{Cor}_{K}(1)\right)^{c}, \cdot\right)$ is a group. To prove this, let $x, y \in\left(\operatorname{Cor}_{K}(1)\right)^{c}$ be arbitrary. Then $x+1 \neq \infty$ and $y+1 \neq \infty$. It follows that $1+x^{-1} \neq \infty$. Thus $x^{-1} \varepsilon\left(\operatorname{Cor}_{K}(1)\right)^{d}$. If $x y+1=\infty$, then $x y+x+y+1=\infty$. Thus $x(y+1)+y+1=\infty$ which implies that $(x+1)(y+1)=\infty$. Since $x+1 \neq \infty$, $y+1=\infty$, a contradiction. Therefore $x y+1 \neq \infty$. Thus xy $\varepsilon\left(\operatorname{Cor}_{K}(1)\right)^{c}$, it follows that $1 \varepsilon\left(\operatorname{Cor}_{\left.\mathcal{K}^{(14}\right)}\right)^{c}$. Hence $\left.\left(\operatorname{Cor}_{K}(1)\right)^{c}, \cdot\right)$ is a group.

Clearly, if $D_{K}^{f}=\{1\}$, then (4) is true. Suppose that $D_{K}^{f} \neq\{1\}$. We claim that $D_{K}^{f} \cap\left(\operatorname{Cor}_{K}(1)\right)^{c} \neq\{1\}$. To prove this claim, let $x \in D_{K}^{f}$ be such that $x<1$. Then $x+1 \leqslant 1+1<\infty$. Thus $x \in D_{K}^{f} \cap\left(\operatorname{Cor}_{K}(1)\right)^{c}$. Hence $D_{K}^{f} \cap\left(\operatorname{cor}_{k}(i)\right)^{c} f \neq\{1\}$ so we have the ciaim.

Let $y \in D_{K}^{f}$ be arbitrary. Now, we have that $\left.\mathcal{D}_{\mathrm{K}}^{f} \cap\left(\operatorname{Cor}_{K}(1)\right)^{c}, \cdot\right)$ is a subgroup of $\left(D_{K}^{f}, 9\right)$. By the claim and (3), x is not an upper bound of $D_{K}^{f} n\left(\operatorname{Cor}_{K}(1)\right)^{c}$. Then there exists a $t \in D_{K}^{f} \cap\left(\operatorname{Cor}_{K}(1)\right)^{c}$ such that $y<t$. Therefore $y+1 \leqslant t+1<\infty$. Thus $y \in\left(\operatorname{Cor}_{K}(1)\right)^{c}$. Hence $D_{K}^{f} \subseteq\left(\operatorname{Cor}_{K}(1)\right)^{C}$. \#

Theorem 3.2.5 Let K be a complete ordered ∞-skew semifield. Then either $\operatorname{cor}_{K}(1)=\{\infty\}$ or $\operatorname{Cor}_{K}(1)=\{\infty\} \cup D_{K}^{i}$ or $\operatorname{Cor}_{K}(1)=K$.

Proof: Assume that $\operatorname{Cor}_{K}(1) \neq\{\infty\}$ and $\operatorname{Cor}_{K}(1) \neq K$. We must show that $\operatorname{cor}_{K}(1)=\{\infty\} \cup D_{K}^{i}$. To prove this, suppose not. Then $\operatorname{Cor}_{K}(1) \neq\{\infty\} \cup D_{K}^{i}$. Therefore $\left(\operatorname{Cor}_{K}(1)\right)^{c} \neq D_{K^{\prime}}^{f}$. By Proposition 3.2.4, $D_{K}^{f} \subset\left(\operatorname{Cor}_{K}(1)\right)^{c}$. Hence $\left(\operatorname{Cor}_{K}(1)\right)^{c} \Omega D_{K}^{i} \neq \varnothing$.

Case 1: $\quad\left(\operatorname{Cor}_{K}(1)\right)^{c} \cap D_{K}^{i}$ has no lower bound in D_{K}^{i}. Let y εD_{K}^{i} be arbitrary. Then there exists a $z \varepsilon\left(\operatorname{Cor}_{K}(1)\right)^{C} \cap D_{K}^{i}$ such that $z<y$. Thus $\infty<1+z \leqslant 1+y$. Then $y \in(\operatorname{Cor} K(1))^{c}$. Therefore $D_{K}^{i} \subseteq\left(\operatorname{Cor}_{K}(1)\right)^{c}$, so $D_{K}^{f} U D_{K}^{i} \subseteq D_{K}^{f} U\left(\operatorname{Cor}_{K}(1)\right)^{c}=\left(\operatorname{Cor}_{K}(1)\right)^{c} \sqsubseteq K \backslash\{\infty\}$. Thus $K \backslash\{\infty\}=\left(\operatorname{Cor}_{K}(1)\right)^{c}$. Hence $\operatorname{Cor}(1)=\{\infty\}$, a contradiction. Case 2: $\quad\left(\operatorname{Cor}_{K}(1)\right)^{C} \cap D_{K}^{i}$ has a lower bound in D_{K}^{i}. Since $\left(\operatorname{Cor}_{K}(1)\right)^{c} \cap_{D_{K}}^{i} \sqsubseteq K$ and K is complete, $\left(\operatorname{Cor}_{K}(1)\right)^{c} \cap D_{K}^{i}$ has a greatest lower bound. LeE $\alpha=\inf \left(\left(\operatorname{Cor}_{K}(1)\right)^{c} \cap D_{K}^{i}\right)$. Then $\alpha>\infty$. We claim that α is an upper bound of $\operatorname{Cor}_{\mathrm{K}}(1)$. To prove this claim, suppose not. Then there exists $\frac{V \varepsilon}{} \mathcal{C o r}_{K}(1)$ such that $\alpha<v$. If $\alpha \varepsilon\left(\left(\operatorname{Cor}_{K}(1)\right)^{c}\right.$, then $\infty<\alpha+1 \leqslant v+1$, acontradiction. Thus $\alpha \notin\left(\operatorname{Cor}_{K}(1)\right)^{2}$. Since $\alpha=\inf \left(\operatorname{Cor}_{K}(1)\right)^{c} \cap D_{K}^{i}$, there exists a
$u \varepsilon\left(\operatorname{Cor}_{K}(1)\right)^{c} \cap D_{K}^{i}$ such that $\alpha<u<v$. Then $\infty<1+\alpha \leqslant u+1 \leqslant v+1=\infty$, a contradiction. Hence we have the claim. Since $\operatorname{Cor}_{K}(1) \subseteq K$ and K is complete, $\operatorname{Cor}_{K}(1)$ has a least upper bound. Let $B=\sup \left(\operatorname{Cor}_{K}(1)\right)$ Then $\beta \leqslant \alpha$. If $\beta \leqslant \infty$, then $\operatorname{Cor}_{K}(1) \subseteq D_{K}^{f} \subseteq\left(\operatorname{Cor}_{K}(1)\right)^{c}$, a contradiction. Therefore $\infty<\beta \leqslant \alpha$

Subcase 2.1: $\beta<\alpha$. Then $\infty<\beta<\alpha$. If there exists a $t \varepsilon K$ such that $\beta<t<\alpha$. Then $\infty<t$ and $t+1 \neq \infty$, so $t \in\left(\operatorname{Cor}_{K}(1)\right)^{c} \cap D_{K}^{i}$. Thus $\alpha \leqslant t$, a contradiction. Therefore there does not exist ater such that $\beta<t<\alpha$.

Let $s \in D_{K}^{f},\{1\}$. Then $\alpha s \neq \alpha$.
Subcase 2.1.1: as ك a. By (*), $\alpha \leqslant \beta<\alpha$. Therefore
$\alpha \leqslant \beta s^{-1}<\alpha s^{-1}$, so $\beta<\alpha \leqslant \beta s^{-1}$. Thus $\beta s^{-1}+1 \neq \infty$. Then $\beta+s \neq \infty$ which implies that $1+\beta^{-1} s \neq 10$. Thus $\alpha \leqslant \beta^{-1} s$, so $\alpha s^{-1} \leqslant \beta^{-1}$. If $\beta+1 \neq \infty$, then $\beta \in\left(\operatorname{cor}_{K}(1)\right)^{c} f D_{K}^{i}$. Therefore $\alpha \leqslant \beta$, a contradiction. Thus $\beta+1=\infty$, so $1+\beta^{-1}=\infty$. Then $\beta^{-1}<\beta$. Therefore $\alpha s^{-1} \leqslant \beta^{-1} \leqslant \beta<\alpha$. Hence $\alpha<\alpha s$, a contradiction.

Subcase 2.1.2; $\alpha<\alpha$. Then $\alpha s^{-1}<\alpha$ and use the same proof a in Subcase 2.1.

Subcase 2.2: $\quad \beta=\alpha$.
Subcase 2.2.1: $\alpha \in\left(\operatorname{Cor}_{K}(1)\right)^{C} \cap D_{K}^{i}$. Then $\beta=\alpha \notin \operatorname{Cor}_{K}(1)$.
Let $t \in D_{K}^{f},\{1\}$. Then $B t \neq \beta$. Suppose that $B t<\beta$. Then there exists
 which implies that $1+u^{-1} t \neq \infty$. Therefore $B \leqslant u^{-1} t$, so $B t^{-1} \leqslant u^{-1}$. But we have that $q+1=\infty$? this jimplies that $q+u^{-} \mid \bigcap_{6}^{\infty}$. Thus $u^{-1}<B$. Therefore $\beta t^{-1}<\beta$. Then $\beta<\beta t$, a contradiction. Therefore $\beta<\beta t$. Then $\beta t^{-1}<\beta$ and use the same proof as the one just given to get a contradiction.

$$
\text { Subcase 2.2.2: } \quad \alpha \notin\left(\operatorname{Cor}_{K}(1)\right)^{c} \cap D_{K}^{i} . \quad \text { Let } w \in D_{K}^{f},\{1\} \text {. }
$$

Then $\alpha w \neq \alpha$. Suppose $\alpha<\alpha w$. Then there exists a $v \varepsilon\left(\operatorname{Cor}_{K}(1)\right)^{C} \cap D_{K}^{i}$ such that $\alpha<v<\alpha w$. Thus $\alpha w^{-1}<\mathrm{vw}^{-1}<\alpha$, so $\mathrm{vw}^{-1}+1=\infty$ which implies
that $\mathrm{v}^{-1} \mathrm{w}+1=\infty$. Therefore $\mathrm{v}^{-1} \mathrm{w} \leqslant \alpha$. Then $\mathrm{v}^{-1} \leqslant \alpha \mathrm{w}^{-1}$. But we have that $v+1 \neq \infty$, this implies that $1+v^{-1} \neq \infty$. Thus $\alpha<v^{-1}$, it follows that $\alpha<v^{-1} \leqslant \alpha w^{-1}$. Hence $\alpha w<\alpha$, a contradiction. Therefore $\alpha w<\alpha$. Then $\alpha<\alpha w^{-1}$ and use the same proof as the one just given to get a contradiction.

Hence $\operatorname{Cor}_{K}(1)=\{\infty\} \cup D_{K}^{i}$

From Theorem $3 \cdot 2.5$ see that there are three type of complete ordered ∞-skew semifields
(1) complete ordered ∞-skew semifield K with $\operatorname{Cor}_{K}(1)=\{\infty\}$,
(2) complete ordered ∞-skew semifield K with $\operatorname{Cor}_{K}(1)=\{\infty\} \quad D_{K}^{i}$,
(3) complete ordered ©-skew semifield K with $\operatorname{Cor}_{K}(1)=K$.

If a complete ordered \boldsymbol{o}^{∞}-skew semifield K satisfies (1) then K is called a type I $\infty_{\text {-skew semifield, if } K} K$ satisfies (2) then K is called a type II m-skew semifield and if K satisfies (3) then K is called a type III ∞-skew semifield.

Proposition 3.2.6. Let $\left(K,+,^{\circ}, \leqslant\right)$ be a type I $\infty^{-s k e w}$ semifield. Then the following properties hold?
(1) $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is a complete ordered skew ratio semiring.

ค $9(2)$ suppose that $1+1 \neq 19$ Then for every $x, y \in D_{K}^{i}, x+y<\infty$

implies that y is the unique element of the $\operatorname{coset} y D_{K}^{f}$ such that $x+y<\infty$.
(3) Suppose that $1+1 \neq 1$. Then for every y εD_{K}^{i} and for every $c, d \varepsilon D_{K}^{f}, y+c=y+d$ implies that $c=d$.
(4) Suppose that $1+1 \neq 1$. Then for every $c, d \varepsilon D_{K}^{f}$ and
for every $y \in D_{K}^{i}, c \neq d$ implies that $(y+c) D_{K}^{f} n(y+d) D_{K}^{f}=\emptyset$.
Proof: To show (1), by Proposition 3.2.4, $\left(D_{K}^{f}, \leqslant\right)$ is a complete ordered set. By Proposition 3.2.2 (4) and Proposition 3.2.3 (3), ($\left.D_{K}^{f},+, \cdot\right)$ is a skew ratio semiring. Hence $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is a complete ordered skew ratio semiring.

To show (2), suppose that $1+1 \neq 1$. By (1) and Theorem 2.18, $\left(D_{K}^{f},+, \cdots, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+},+, \cdots, \leqslant\right)$ or $\left(\mathbb{R}^{+},+, \cdots,{ }_{\mathrm{opp}}\right)$. Let $x, y \in D_{\mathrm{D}_{\mathrm{i}}}^{i}$ be such that $x+y<\infty$. We shall show that y is the unique element of $y D_{K}^{f}$ such that $x+y<\infty$. Suppose not. Then there exists a $z \varepsilon\left(y D_{K}^{f}\right) \backslash\{y\}$ such that $x+z<\infty$. Thus $z=y d$ for some $d \varepsilon D_{K}^{f},\{1\}$.

Case 1: $1<d$. Then $d=1+c$ for some $c \varepsilon D_{K}^{f}$. Therefore $x+z$ $=x+y d=x+y(1+c)=x+y+y c \cdot d / a$

Since $x+y \in D_{K}^{f}$ and yc $\varepsilon D_{K^{\prime}}^{1} x+y+y c \geqslant \infty$. Thus $x+z \geqslant \infty$, a contradiction. Case 2: $d<1$ Then $1=d+a$ for some $a \varepsilon D_{K}^{f}$. Thus $x+z=x(d+a)+y d$ $=x d+x a+y d=(x+y) d+x a$. \qquad Since $(x+y) d \varepsilon D_{K}^{f}$ and xa $\varepsilon D_{K}^{i},(x+y) d+x a \geqslant \infty$. Thus $x+z \geqslant \infty$, a contradiction.

To show (3), suppose that $1+1 \neq 1$. By (1) and Theorem 2.18, $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+},+, \cdots, \leqslant\right)$ or $\left(\mathbb{R}^{+},+, \cdots \leqslant \rho_{o p p}\right)$. Let y εD_{K}^{i} and $c, d \in D_{K}^{f}$ be such that $y+c=y+d$. To show that $c=d$, suppose not. Then $c \neq d$. Without loss of generality, suppose that $c<d$. Then $d=c+a$ for some $a \in D_{K}^{f}$. Thus $y+c=y+d=y+(c+a)=(y+c)+a$.

By $\operatorname{Cor}_{K}(1)=\{\infty\}$ and Proposition 3.2.2 (4), $y+c \neq \infty$. From (i), we have that $(y+c)^{-1}(y+c)=(y+c)^{-1}(y+c)+(y+c)^{-1}$ a which implies that $1=1+(y+c)^{-1} a$.

Since $(y+c)^{-1}>\infty$ and $a<\infty,(y+c)^{-1} a>\infty$. From (ii), we have that. $1>\infty$, a contradiction. Hence $c=d$.

To show (4), suppose that. $1+1 \neq 1$. By (1) and Theorem 2.18, $\left(D_{K^{\prime}}^{f},+, \cdot \leqslant\right)$ is isomorphic $\left(\mathbb{R}^{+},+, \cdot \leqslant\right)$ or $\left(\mathbb{R}^{+},+, \cdot, \leqslant{ }_{\text {opp }}\right)$. Let c, d εD_{K}^{f} be such that $c \neq d$. Let y ε / D_{K}^{i} be arbitrary. To show that $(y+c) D_{K}^{f} \cap(y+d) D_{K}^{f}=\varnothing$, suppose not. Then $(y+c) D_{K}^{f} \cap(y+d) D_{K}^{f} \neq \varnothing$. Thus $(y+c) D_{K}^{f}=(y+d) D_{K}^{f} \quad$ Therefore $\left(y+d=(y+c)\right.$ a for some a εD_{K}^{f}.

Case 1: $c<d$. Then $d=c+b$ for some $b \& D_{K}^{f}$. Thus $(y+c) a=y+d=y+(c+b)=(y+c)+b$

By $\operatorname{Cor}_{K}(1)=\{\infty\}$ and Proposition $3.2 .2(4), y+c \neq \infty$. From (iii), we have that $(y+c)^{-1}(y+c) a=(y+c)^{-1}(y+c)+(y+c)^{-1} b$ which implies that $a=1+(y+c)^{-1} b$

Since $(y+c)^{-1}>\infty$ and $b<\infty,(y+c)-1 b>\infty$. From (iv), we have that
 Case $2: 9 \mathrm{~d}<6$. This proof is similar to/the proof of case 1. Therefore $(y+c) D_{K}^{f} \cap(y+d) D_{K}^{f}=\emptyset$. \#

Theorem 3.2.7. Let. $(K,+, \cdot, \leqslant)$ be a type I $\infty_{- \text {skew }}$ semifield such that $1+1=1 . \quad$ Then $D_{K}^{i}=\varnothing$.

Proof: Assume that $D_{K}^{i} \neq \varnothing$. Let $x \in D_{K}^{i}$ be arbitrary. Since $(K \backslash\{\infty\}, \cdot)$ is a group, $x(K \backslash\{\infty\})=K \backslash\{\infty\}$. Thus

$D_{K}^{i} U D_{K}^{f}=x\left(D_{K}^{f} U D_{K}^{i}\right)=x D_{K}^{f} U x D_{K}^{i}$. \qquad

Ey Proposition 3.2.3 (4), $x D_{K}^{f} \subseteq D_{K}^{i} . \quad B y(*), D_{K}^{f} \subseteq x D_{K}^{i}$. \qquad

Case 1: For every $a \varepsilon D_{K}^{i}$ and for every $b \varepsilon K \backslash\{\infty\}$, $a+b \varepsilon D_{K}^{i}$. Let $y \in D_{K}^{i}$ and $z \varepsilon D_{K}^{f}$. Then $\infty<y$ and $z<\infty$. Thus $\infty \leqslant y+z$. By $\operatorname{Cor}_{K}(1)=\{\infty\}$ and Proposition $3.2 .2(4), \infty<y+z$. Then $y+z \varepsilon D_{K}^{i}$. From (**), we have that $D_{K}^{f} \subseteq(y+z) D_{K}^{i}$. Then there exi sts a $w \varepsilon D_{K}^{i}$ such that $(y+z) w \in D_{K}^{f}$

By Proposition 3.2.2 (4), $\mathrm{ZW} \in \mathrm{D}_{\mathrm{K}}^{1}$. By assumption, we have that $y w+z w \in D_{K}^{i}$. Then $(y+z) w \neq y w+z w$ which is a contradiction.

Case 2: There exist $x \in \underline{D}_{K}^{i}$ and $y / \varepsilon K \backslash\{\infty\}$ such that $x+y \notin D_{K}^{i}$. Let. $a \varepsilon D_{K}^{i}$ and $b \varepsilon K \backslash\{\infty\}$ be such that $a+b \notin D_{K}^{i}$. Then $a+b \leqslant \infty$. By Proposition 3.2.2 (4), $a+b<\infty$.

Subcase 2.2: $\infty<b$. Then $\infty=\infty+(a+b) \leqslant(a+b)+b=a+(b+b)=$

Therefore we get that $\mathrm{D}_{\mathrm{K}}^{\mathrm{i}}=\varnothing$. a 9 ? 9 ?

Theorem 3.2.8. Let $(K,+, \cdot, \leqslant)$ be a type I ∞-skew semifield such that $1+1=1$. Then $(K,+, \cdot, \leqslant)$ is isomorphic to exactly one of the following m-skew semifields:
(1) ∞-skew semifield with the almost trivial addition of order 2.
(2) $\left(\mathbb{R}_{\infty}^{+}, \oplus, \cdots, \leqslant\right)$ where \cdot and \leqslant are the usual multiplication
and order and

$$
x \oplus y= \begin{cases}\min \{x, y\} & \text { if } x \neq \infty \text { and } y \neq \infty \\ \infty & \text { if } x=\infty \text { or } y=\infty .\end{cases}
$$

(3) $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\} \cup\{\infty\}, *_{-}, \cdot, \leqslant\right)$ where and \leqslant are the usual multiplication and order and

(4)
(5) $\left(\left\{2^{\mathrm{n}} \mid\right.\right.$ n $\left.\left.\varepsilon \mathbb{Z}\right\} \cup\{\infty\}_{, \max }, \cdot, \leqslant\right)$.

Proof: The proof of theorem follows from Proposition 3.2.6, Theorem 3.2.7, Theorem 2.5 and Theorem 2.6

Theorem 3.2.9. Let $(K, 4,0, \leqslant)$ be a type I ∞-skew semifield such that $1+1 \neq 1$. Suppose that for every $x, y \in K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$. Then $(K,+, \cdot, \leqslant)$ is isomorphic to $\left(\mathbb{R}_{\infty}^{+},+, \cdot, \leqslant\right)$ or $\left(\mathbb{R}_{\infty}^{+},+, \cdot \leqslant^{*}\right)$ where $\leqslant^{*}=\leqslant \mathrm{opp}$ on R^{+}and $\mathrm{x}<^{*} \infty$ for all $x \in \mathbb{R}^{+}$.

Proof $_{P} \int_{0}^{\text {We have that } K}=D_{K}^{f} U\{\infty\} U D_{K}^{i}{ }^{i}$ Now, we shall show that $D_{K}^{i}=\emptyset$. To prove this, suppose not. Then $D_{K}^{i} \neq \emptyset$. Let $\times \varepsilon D_{K}^{f}$
 Therefore $x+y=\infty$. By Proposition 3.2.2.(4), $x+y \neq \infty$, a contradiction. Hence $D_{K}^{i}=\emptyset$. By Proposition 3.2 .6 (1) and Theorem 2.18, $(K,+, \cdot, \leqslant)$ is is isomorphic to $\left(\mathbb{R}_{\infty},+, \cdot, \leqslant\right)$ or $\left(\mathbb{R}_{\infty}^{+},+, \cdot, \leqslant^{*}\right)$ where $\leqslant^{*}=\leqslant$ opp on \mathbb{R}^{+}and $x<^{*} \infty$ for all $x \in \mathbb{R}^{+}$. \#

Remark 3.2.10. Let $A=\{1, \infty, t\}$. Define \leqslant on A by $1<\infty<t$ and define multiplication - on A by

-	1	∞	t
1	1	∞	t
∞	∞	∞	∞
t	t	∞	1

There are two possible commatative binary operation + on A such that A is an ∞-semifield.

Note that table (1) make $\{1, \infty, t\}$ into an ∞-skew semifield with the trivial addition, table (2) make $\{1, \infty, t\}$ into an ∞-skew semifield with the almost trivial addition.

Remark 3.2.11. Let $B_{1}=\left\{\left(2^{n}, 0\right) \mid n \in \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(2^{m}, 1\right) \mid m \in \mathbb{Z}\right\}$.
Define + and \cdot on B_{1} by as follows:

$$
\int_{\mathrm{z}}^{9}+\infty=\infty=\mathrm{z}_{\infty}=\infty_{z} \text { dor all }\left.\mathrm{z}\right|_{\varepsilon} \text { B). Let }
$$

$$
\begin{aligned}
(x, 1)+(y, 1) & =(\min \{x, y\}, 1) \\
(x, 0)+(y, 1) & =\infty \\
(x, 0)(y, 1) & =(x y, 1) \\
(y, 1)(x, 0) & =(y x, 1) \\
(x, 1)(y, 1) & =(x y, 1) \\
(x, 0)(y, 0) & =(x y, 0)
\end{aligned}
$$

Define \leqslant on B_{1} by as follows: Let $x, y \in\left\{2^{n} \mid n \varepsilon \mathbb{Z}\right\}$

$$
\begin{aligned}
& (x, 0)<\infty<(y, 1) \\
& (x, 0) \leqslant(y, 0) \text { iff } x \leqslant y \\
& (x, 1) \leqslant(y, 1) \text { iff } x \leqslant y
\end{aligned}
$$

Then $\left(B_{1},+, \cdot, \leqslant\right)$ is a complete ordered $\infty_{-s k e w ~ s e m i f i e l d ~ a s ~ i s ~}^{\text {s }}$ shown below.

Proof: Clearly, t and are closed.
We shall show that f is associative. To prove this, let $\left(x, c_{1}\right),\left(y, c_{2}\right),\left(z, c_{3}\right) \varepsilon B{ }_{1}$ where $x, y, z \in\left\{2^{n} \mid n \varepsilon \mathbb{Z}\right\}$ and $c_{1}, c_{2}, c_{3} \varepsilon\{0,1\}$. We must show that $\left(x, c_{1}\right)+\left[\left(y, c_{2}\right)+\left(z, c_{3}\right)\right]=\left[\left(x, c_{1}\right)+\left(y, c_{2}\right)\right]+\left(z, c_{3}\right)$.

Case 1: $\quad c_{1}=c_{2}=c_{3}=0$. Then $(x, 0)+[(y, 0)+(z, 0)]=(x, 0)+(\min \{y, z\}, 0)$
$=(\min \{x, y, z\}, 0)$ and $(x, 0)+(y, 0)]+(z, 0)=(\min \{x, y\}, 0)+(z, 0)$
$=(\min \{x, y, z\}, 0) . \quad$ Thus $(x, 0)+[(y, 0)+(z, 0)]=[(x, 0)+(y, 0)]+(z, 0)$.

Case 2:

$=\infty$ and $[(x, 0)+(y, 0)]+(z, 1)=(\min \{x, y\}, 0)+(z, 1)=\infty$ so $(x, 0)+[(y, 0)+(z, 1)] \equiv[(x, 1)+(y, 0)]+(z, 1)$.

Case 3: $\quad c_{1}=c_{3}=0$ and $c_{2}=1$. Then $(x, 0)+[(y, 1)+(z, 0)]=(x, 0)+\infty$ $=\infty$ and $[(x, 0)+(y, 1)]+(z, 0)=\infty+(z, 0)=\infty$? Thus $\}$ $(x, 0)+[(y, 1)+(z, 0)]=[(x, 0)+(y, 1)]+(z, 0)$.

Case 4: $\quad c_{1}=0$ and $c_{2}=c_{3}=1$. Then $(x, 0)+[(y, 1)+(z, 1)]=$ $(x, 0)+(\min \{y, z\}, 1)=\infty$ and $[(x, 0)+(y, 1)]+(z, 1)=\infty+(z, 1)=\infty$. Thus $(x, 0)+[(y, 1)+(z, 1)]=[(x, 0)+(y, 1)]+(z, 1)$.

Case 5: $\quad c_{1}=c_{2}=c_{3}=1$. Then $(x, 1)+[(y, 1)+(z, 1)]=(x, 1)+(\min \{y, z\}, 1)$
$=(\min \{x, y, z\}, 1)$ and $[(x, 1)+(y, 1)]+(z, 1)=(\min \{x, y\}, 1)+(z, 1)$
$=(\min \{x, y, z\}, 1)$. Thus $(x, 1)+[(y, 1)+(z, 1)]=[(x, 1)+(y, 1)]+(z, 1)$.

Case 6: $\quad c_{1}=1$ and $c_{2}=c_{3}=0$. Then $(x, 1)+[(y, 0)+(z, 0)]=$ $(x, 1)+(\min \{y, z\}, 0)=\infty$ and $[(x, 1)+(y, 0)]+(z, 0)=\infty+(z, 0)=\infty$. Thus $(x, 1)+[(y, 0)+(z, 0)]=[(x, 1)+(y, 0)]+(z, 0)$.

Case 7: $\quad c_{1}=c_{2}=1$ and $c_{3}=0$. Then $(x, 1)+[(y, 1)+(z, 0)]=(x, 1)+\infty$ $=\infty$ and $[(x, 1)+(y, 1)]+(z, 0)=(\min \{x, y\}, 1)+(z, 0)=\infty$. Thus $(x, 1)+[(y, 1)+(z, 0)]=[(x, 1)+(y, 1)]+(z, 0)$.

Case 8: $\quad c_{1}=c_{3}=1$ and $c_{2}=0$. Then $(x, 1)+[(y, 0)+(z, 1)]=(x, 1)+\infty=\infty$ and $[(x, 1)+(y, 0)]+(z, 1)=\infty+(z, 1)=\infty$. Thus $(x, 1)+[(y, 0)+(z, 1)]=$ $[(x, 1)+(y, 0)]+(z, 1)$.

We shall show that is associative. To prove this, let $\left(x, c_{1}\right),\left(x, c_{2}\right),\left(x, c_{3}\right) \in B_{y}\{\infty\}$. Then $x, y, z \in\left\{2^{n} \mid n \in \mathbb{Z}\right\}$ and $c_{1}, c_{2}, c_{3} \varepsilon\{0,1\}$.

Case 1:

$$
c_{1}=c_{2}=c_{3}=0 \text {. Then }(x, 0)[(y, 0)[z, 0)]=(x, 0)(y z, 0)
$$

$=(x y z, 0)$ and $[(x, 0)(y, 0)](z, 0)=(x y, 0)(z, 0)=(x y z, 0)$. Thus $(x, 0)[(y, 0)(z, 0)]=\Omega(x, 0)(y, 0)](z, 0) \cdot Q \cap\} \tilde{\partial}$
Case $2:\left(C_{1}\right)^{c}=0$ and $c_{3}=d \cdot 19$ Then $\left.\{x, 0)\left[(y, 0)(z)^{1}\right)\right]=(x, 0)(y z, 1)$
$=(x y z, 1)$ and $[(x, 0)(y, 0)](z, 1)=(x y, 0)(z, 1)=(x y z, 1)$.
Thus $(x, 0)[(y, 0)(z, 1)]=[(x, 0)(y, 0)](z, 1)$.

Case 3: $\quad c_{1}=c_{3}=0$ and $c_{2}=1$. Then $(x, 0)[(y, 1)(z, 0)]=(x, 0)(y z, 1)$
$=(x y z, 1)$ and $[(x, 0)(y, 1)](z, 0)=(x y, 1)(z, 0)=(x y z, 1)$.
Thus $(x, 0)[(y, 1)(z, 0)]=[(x, 0)(y, 1)](z, 0)$.

Case 4: $\quad c_{1}=0$ and $c_{2}=c_{3}=1$. Then $(x, 0)[(y, 1)(z, 1)]=(z, 0)(y z, 0)$ $=(x y z, 0)$ and $[(x, 0)(y, 1)](z, 1)=(x y, 1)(z, 1)=(x y z, 0)$.

Thus $(x, 0)[(y, 1)(z, 1)]=[(x, 0)(y, 1)](z, 1)$.

Case 5: $\quad c_{1}=1$ and $c_{2}=c_{3}=0$. Then $(x, 1)[(y, 0)(z, 0)]=(x, 1)(y z, 0)$ $=(x y z, 1)$ and $[(x, 1)(y, 0)](z, 0)=(x y, 1)(z, 0)=(x y z, 1)$.

Thus $(x, 1)[(y, 0)(z, 0)]=[(x, 1)(y, 0)](z, 0)$.

Case 6:

$$
c_{1}=c_{3}=1 \text { and } c_{2}=0 . \text { Then }(x, 1)[(y, 0)(z, 1)]=(x, 1)(y z, 1)
$$

$=(x y z, 0)$ and $[(x, 1)(y, 0)](z, 1)=(x y, 1)(z, 1)=(x y z, 0)$.
Thus $(x, 1)[(y, 0)(z, 1)]=[(x, 1)(y, 0)](z, 1)$

Case 7: $\quad c_{1}=c_{2}=1$ and $c_{3}=0$. Then $(x, 1)[(y, 1)(z, 0)]=(x, 1)(y z, 1)$
$=(x y z, 0)$ and $[(x, 1)(y, 1)](z, 0)=(x y, 0)(z, 0)=(x y z, 0)$.
Thus $(x, 1)[(y, 1)(z, 0)]=[(x, 1)(y, 1)](z, 0)$.

Case 8: $\quad c_{1}=c_{2}=c_{3}=1$.. Then $(x, 1)[(y, 1)(z, 1)]=(x, 1)(y z, 0)$
$=(x y z, 1)$ and $[(x, 1)(y, 1)](z, 1)=(x y, 0)(z, 1)=(x y z, 1)$.
Thus $(x, 1)[(y, 1)(z, 1)]=[(x, 1)(y, 1)](z, 1)$.
We shall show that $B_{1} \backslash\{\infty\}$ is distributive. To prove this, let $\left(x, c_{1}\right) p\left(y, c_{2}\right),\left(z, c_{3}\right) \in B_{1} \backslash\{\infty\}$ be arbitrary.. Then $x, y, z \varepsilon\left\{2^{n} \mid n \in Z\right\}$ and $c_{1}, c_{2}, c_{3} \varepsilon\{0,1\}$.

ค $: / c_{1}=c_{2}=c_{3}=0.6$ Then $(x, 0)[(y, 0)+(z, 0)] 6(x, 0)(\min \{y, z\}, 0)$
$=(\min \{x y, x z\}, 0)$ and $(x, 0)(y, 0)+(x, 0)(z, 0)=(x y, 0)+(x z, 0)$
$=(\min \{x y, x z\}, 0)$. Thus $(x, 0)[(y, 0)+(z, 0)]=(x, 0)(y, 0)+(x, 0)(z, 0)$.

Case 2: $\quad c_{1}=c_{2}=0$ and $c_{3}=1$. Then $(x, 0)[(y, 0)+(z, 1)]=(x, 0) \infty=\infty$ and $(x, 0)(y, 0)+(x, 0)(z, 1)=(x y, 0)+(x z, 1)=\infty$. Thus $(x, 0)[(y, 0)+(z, 1)]=(x, 0)(y, 0)+(x, 0)(z, 1)$.

Case 3: $\quad c_{1}=c_{3}=0$ and $c_{2}=1$. Then $(x, 0)\left[(y, 1)+\left(z, 0^{\circ}\right)\right]=(x, 0) \infty=\infty$ and $(x, 0)(y, 1)+(x, 0)(z, 0)=(x y, 1)+(x z, 0)=\infty$. Thus
$(x, 0)[(y, 0)+(z, 1)]=(x, 0)(y, 0)+(x, 0)(z, 1)$.

Case 4: $\quad c_{1}=0$ and $c_{2}=c_{3}=1$. Then $(x, 0)[(y, 1)+(z, 1)]=$ $(x, 0)(\min \{y, z\}, 1)=(\min \{x y, x z\}, 1)$ and $(x, 0)(y, 1)+(x, 0)(z, 1)$
$=(x y, 1)+(x z, 1)=(\min \{x y, x z\}, 1)$.Thus $(x, 0)[(y, 1)+(z, 1)]$
$=(x, 0)(y, 1)+(x, 0)(z, 1)$.

Case 5: $\quad c_{1}=1$ and $c_{2}=c_{3}=0$. Then $(x, 1)[(y, 0)+(z, 0)]=$ $(x, 1)(\min \{y, z\}, 0)=(\min \{x y, x z\}, 1)$ and $(x, 1)(y, 0\}+(x, 1)(z, 0)$
$=(x y, 1)+(x z, 1)=(\min \{x y, x z\}, 1)$. Thus $(x, 1)[(y, 0)+(z, 0)]$
$=(x, 1)(y, 0)+(x, 1)(z, 0)$.

Case 6: $\quad c_{1}=c_{3}=1$ and $c_{2}=0$. Then $(x, 1)[(y, 0)+(z, 1)]=(x, 1) \infty=\infty$ and $(x, 1)(y, 0)+(x, 1)(z, 1)=(x y, 1)+(x z, 0)=\infty$. Thus $(x, 1)[(y, 0)+(z, 1)]=(x, 1)(y, 0)+(x, 1)(z, 1)$.

Case 7: $c_{1}=c_{2}=1$ and $c_{3}=0$. Then $(x, 1)[(y, 1)+(z, 0)]=(x, 1)^{\infty}=\infty$ and $(x, 1)(y, 1)+(x, 1)(z, 0)=(x y, 0)+(x z, 1)=\infty$. Thus $(x, 1)[(y, 1)+(z, 0)]=\sigma(x, 1)(y, 1)+(x, 9)(z, 0) \cdots \backsim \approx$ Case $8, c_{1}=c_{2}=c_{3}=1 . \operatorname{Then}(x, 1)[(y, 1)+(z, 1)]=(x, 1)(\min \{y, z\}, 1)$
$=(\min \{x y, x z\}, 0)$ and $(x, 1)(y, 1)+(x, 1)(z, 1)=(x y, 0)+(x z, 0)$
$=(\min \{x y, x z\}, 0) . \quad$ Thus $(x, 1)[(y, 1)+(z, 1)]=(x, 1)(y, 1)+(x, 1)(z, 1)$

Hence $B_{1},\{\infty\}$ is distributive.

We shall show that $\left(B_{1},\{\infty\}, \cdot\right)$ is a group. To prove this, let $(x, c) \in B_{1},\{\infty\}$ be arbitrary. Now, we have that $(1,0),\left(x^{-1}, c\right) \in B_{1},\{\infty\}$.

Case 1: $\quad c=0$. Then $(x, 0)(1,0)=(x, 0)=(1,0)(x, 0)$ and $(x, 0)\left(x^{-1}, 0\right)=(1,0)=\left(x^{-1}, 0\right)(x, 0)$.

Case 2: $c=1$. Then $(x, 1)(1,0)=(x, 1)=(1,0)(x, 1)$ and $(x, 1)\left(x^{-1}, 1\right)=(1,0)=\left(x^{-1}, 1\right)(x, 1)$.

Thus $(1,0)$ is the identity of $B_{1},\{\infty\}$ and $\left(x^{-1}, c\right)$ is an inverse of (x, c). Since is associative, $\left(B_{1},\{\infty\}, \cdot\right)$ is a croup.

We shall show that for every $(x, c),(y, d) \varepsilon B_{1},(x, c) \leqslant(y, d)$ implies that $(x, c)+(z, b) \leqslant(y, d)+(z, b)$ and $(x, c)(z, b) \leqslant(y, d)(z, b)$ for all $(z, b) \leqslant \infty$. To proye this, let $(x, c),(y, d) \varepsilon B_{1}$ be such that $(x, c) \leqslant(y, d)$. Let $(z, b) \leqslant \infty$. If $(z, b)=\infty$, then we are do=e. Suppose that $(z, b)<\infty$. Then $b=0$. If $(x, c)=\infty$ or $(y, d)=\infty$, then we are done. Suppose that $(x, c),(y, d) \in B_{1}\{\infty\}$.

Case 1: $c=0$. Then $d=0$ or $d=1$

$$
\text { Subcase 1.1: } \quad d=0 . \quad \text { Then } x \leqslant y \text {. }
$$

Subcase 1.1.1: $x \leqslant y \leqslant z$. Then $(x, 0)+(z, 0)=$
$(\min \{x, z\}, 0)=(x, 0)$ and $(y, 0)+(z, 0)=(\min \{y, z\}, 0)=(y, 0)$. Thus $(x, 0)+(z, 0) \leqslant(y, 0)+(z, 0) \cdot$ Now, we have that $(x, 0)(z, 0)=(x z, 0)$ and $(y, 0)(z, 0)=(y z, 0)$. It follows from $x z \leqslant y z$ that
 $(\min \{x, z\}, 0)=(x, 0)$ and $(y, 0)+(z, 0)=(\min \{y, z\}, 0)=(z, 0)$. Thus $(x, 0)+(z, 0) \leqslant(y, 0)+(z, 0)$. The proof that $(x, 0)(z, 0) \leqslant(y, 0)(z, 0)$ is similar to the one given in Subcase 1.1.1.

Subcase 1.1.3: $\quad z \leqslant x \leqslant y$. This proof is similar to the proof of Subcase 1.1.1.

Subbase 1.2: $d=1$. Then $(x, 0)+(z, 0)=(\min \{x, z\}, 0)$ and $(y, 1)+(z, 0)=\infty$. Thus $(x, 0)+(z, 0) \leqslant(y, 1)+(z, 0)$. Now, we have that $(x, 0)(z, 0)=(x z, 0)$ and $(y, 1)(z, 0)=(y z, 1)$. Thus $(x, 0)(z, 0) \leqslant(y, 1)(z, 0)$.

Case 2: $\quad c=1$. Then $d=1$. Therefore $x \leqslant y$. Then $(x, 1)+(z, 0)=$ $=(y, 1)+(z, 0)$. Thus $(x, 1)+(z, 0) \leqslant(y, 1)+(z, 0)$. Now, we have that. $(x, 1)(z, 0)=(x z, 1)$ and $(y, 1)(z, 0)=(y z, 1)$. It follows from $x z \leqslant y z$ that $(x, 1)(z, 0)$

Lastly, a proof semilar to the one given in Remark 3.1.8
shows that B_{1} is a complete. (\#)

The proof of the following remarks is similar to the proof of Remark 3.2.11.

Remark 3.2.12. Let $B_{2}=\left\{\left(2^{n}, 0\right) \mid n \in \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(2^{m}, 1\right) \mid m \in \mathbb{Z}\right\}$. Define + and - on B_{2} as in Remark 3.2 .11 and define \leqslant on B_{2} by as follows: Let $x, y \in\left\{2^{n} \mid n \in \mathbb{Z}\right\}$. Define

คุนยนลดีทยีกกรัพยากร
 Then $\left(B_{2},+, \cdot \leqslant\right)$ is a complete ordered $\infty_{-s k e w ~ s e m i f i e l d . ~}^{\text {s el }}$

Remark 3.2.13. Let $B_{3}=\left\{\left(2^{n}, 0\right) \mid n \in \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(2^{m}, 1\right) \mid m \in \mathbb{Z}\right\}$. Define - and \leqslant as in Remark 3.2.11. Let $x, y \in\left\{2^{n} \mid n \in \mathbb{Z}\right\}$. Define + on B_{3} by follows:

$$
\begin{aligned}
& (x, 0)+(y, 0)=(\max \{x, y\}, 0) \\
& (x, 1)+(y, 1)=(\max \{x, y\}, 1) \\
& (x, 0)+(y, 1)=\infty
\end{aligned}
$$

Then $\left(B_{3},+, \cdot, \leqslant\right)$ is a complete ordered $\infty_{\text {-skew }}$ semifield.

Remark 3.2.14. Let $B_{4}=\left\{\left(2^{n}, 0\right) \mid n \in \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(2^{m}, 1\right) \mid m \in \mathbb{Z}\right\}$. Define + and - on B_{4} as om Remark 3.2 .13 and define \leqslant on B_{4} as in Remark 3.2.12. Then ($B_{4},+, 0, \leqslant$) is a complete ordered ∞-skew semifield.

Remark 3.2.15. Let $C_{1}=\left\{\left(2^{n}, 0\right) \mid n \varepsilon \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(\sqrt{2^{m}}, 1\right) \mid m \in \mathbb{Z}\right.$ is odd . Let $x_{1}, x_{2} \varepsilon\left\{2^{n} \mid n \in \mathbb{Z}\right\}$ and let $y_{1}, y_{2} \in\left\{\sqrt{2^{m}} \mid m \in \mathbb{Z}\right.$ is odd $\}$. Define + and - on C_{1} as follows

$$
\begin{aligned}
& \left(x_{1}, 0\right)+\left(x_{2}, 0\right)=(\min \{x, y\}, 0), \\
& \left(y_{1}, 0\right)+\left(y_{2}, 0\right)=(\min \{x, y\}, 0), \\
& \left(x_{1}, 0\right)+\left(y_{1}, 0\right)=\infty, \\
& \left(x_{1}, 0\right)\left(x_{2}, 0\right)=\left(x_{1} x_{2}, 0\right) \\
& \left(x_{1}, 0\right)\left(y_{1}, 1\right)=\left(x_{1} y_{1}, 1\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(x_{1}, 0\right)<\infty<\left(y_{1}, 1\right) \\
& \left(x_{1}, 0\right) \leqslant\left(x_{2}, 0\right) \text { iff } x_{1} \leqslant x_{2} \\
& \left(y_{1}, 1\right) \leqslant\left(y_{2}, 1\right) \text { iff } y_{1} \leqslant y_{2}
\end{aligned}
$$

Then $\left(C_{1},+, \cdot, \leqslant\right)$ is a complete ordered $\infty_{-s k e w ~ s e m i f e i l d . ~}^{\text {sen }}$.
$\underline{\text { Remark 3.2.16. Let } C_{2}=\left\{\left(2^{n}, 0\right) \mid n \varepsilon \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(\sqrt{2^{m}}, 1\right) \mid m \varepsilon \mathbb{Z} \text { is odd }\right\} . ~}$ Define + and \cdot on C_{2} as in Remark 3.2.15. Let $x_{1}, x_{2} \varepsilon\left\{2^{n} \mid n \varepsilon \mathbb{Z}\right\}$ and let $y_{1}, y_{2} \varepsilon\left\{\sqrt{2^{m}} \mid m \in \mathbb{Z}\right.$ is odd $\}$. Define \leqslant on C_{2} as follows:

$$
\begin{aligned}
& \left(x_{1}, 0\right)<\infty<\left(y_{1}, 1\right) \\
& \left(x_{1}, 0\right) \leqslant\left(x_{2}, 0\right) \text { iff } x_{1} \leqslant x_{2} \\
& \left(y_{1}, 1\right) \leqslant\left(y_{2}, 1\right) \text { iff } y_{2} \leqslant y_{1}
\end{aligned}
$$

Then $\left(C_{2},+, \circ \leqslant\right)$ is a complete ordered ∞-skew semifield.
 Define and \leqslant on C_{3} as in Remark 3.2.15. Let $x_{1}, x \in\left\{2^{n} \mid n \in \mathbb{Z}\right\}$ and let $y_{1}, y_{2} \varepsilon\left\{\sqrt{2^{m}} \mid m \in \mathbb{Z}\right.$ is $o d d$. Define + on C_{3} as follows:

$$
\left(x_{1}, 0\right)+(x, 0)=\left(\max \left\{x_{1}, x_{2}\right\}, 0\right)
$$

$$
\left(y_{1}, 1\right)+\left(y_{2}, 1\right) \neq\left(\max \left\{y_{1}, y_{2}\right\}, 1\right),
$$

$$
\left(x_{1}, 0\right)+\left(y_{1}, 1\right)=\infty \text { and }
$$

```
z+\infty=\infty}\mathrm{ for all z & C C
```

Then $\left(C_{3}, \dagger, \cdot, \leqslant\right)$ is a complete ordered ∞_{-}skew semifield.

ศนยวิทยทรพยากร

Remark 3.2.18. Let $C_{4}=\left\{\left(2^{n}, 0\right) \mid n \in \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(\sqrt{2^{m}}, 1\right) \mid m \in \mathbb{Z}\right.$ is odd $\}$. Define + and. on c. c_{4} as in remark 3,2 . 77 and define \leq on C_{4} as in Remark 3.2.16. Then $\left(C_{4},+, \cdot, \leqslant\right)$ is a complete ordered ∞-skew semi field.

Remark 3.2.19. Let $E_{1}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right)$. Let $x, y \in \mathbb{R}^{+}$. Define + and - by :

$$
\begin{aligned}
& (x, 0)+(y, 0)=(x+y, 0), \\
& (x, 0)+(y, 1)=\infty
\end{aligned}
$$

$$
\begin{aligned}
& (x, 1)+(y, 1)=(x+y, 1) \\
& (x, 0)(y, 0)=(x y, 0) \\
& (x, 0)(y, 1)=(x y, 1) \\
& (y, 1)(x, 0)=(y x, 1) \\
& (x, 1)(y, 1)=(x y, 0)
\end{aligned}
$$

and $z+\infty=\infty=z \infty=\infty$ for all $z \varepsilon E_{1}$.
Define \leqslant on E_{1} as follows

Then $\left(E_{1},+, \cdot, \leqslant\right)$ is a complete ordered ∞_{-}skew semifield.

Remark 3.2.20. Let $\left.E_{2}=\mathbb{\mathbb { R } ^ { + }} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right)$. Define + and. on E_{2} as in Remark 3.2.19, Let, $x, y \in \mathbb{R}^{+}$. Define \leqslanton E_{2} as follows:

$$
(x, 0)<\infty<(y, 1)
$$

$(x, 0) \leqslant(y, 0)$ iff $x \leqslant y$,

Then $\left(E_{2},+, \cdot, \leqslant\right)$ is a complete ordered ∞-skew semifield. จหาลงกรณมมหาวิทยาลัย
Remark 3.2.21. Let $E_{3}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right)$. Define + and \cdot on E_{3} as in Remark 3.2.19. Let $x, y \in \mathbb{R}^{+}$. Define \leqslanton E_{3} as follows:

$$
\begin{aligned}
& (x, 0)<\infty<(y, 1) \\
& (x, 0) \leqslant(y, 0) \text { iff } y \leqslant x \\
& (x, 1) \leqslant(y, 1) \text { iff } x \leqslant y
\end{aligned}
$$

Then $\left(E_{3},+, \cdot, \leqslant\right)$ is a complete ordered $\infty_{-s k e w ~ s e m i f i e l d . ~}^{\text {sel }}$

Remark 3.2.22. Let $E_{4}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right)$. Define + and \cdot on E_{4} as in Remark 3.2.19. Let $x, y \in \mathbb{R}^{+}$. Define \leqslanton E_{4} as follows:

Then $\left(E_{4},+, 0, \leqslant\right)$ is a complete ordered $\infty-$ skew semifield.

Remark 3.2.23. Let $E_{5}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right)$. Define \cdot and \leqslant on E_{5} as in Remark 3.2.19. Let $x, y \in \mathbb{R}^{+}$. Define + on E_{5} as follows:

$$
(x, 0)+(y, 0)=(\max \{x, y\}, 0),
$$

$$
(x, 1)+(y, 1)=(\max \{x, y\}, 1),
$$

Then $\left(E_{5},+, \cdot \leqslant\right)$ is a complete ordered ∞-skew semifield.
 on E_{6} as in Remark 3.2.23 and define \leqslant on E_{6} as in Remark 3.2.20. Then $\left(E_{6},+,, \leqslant\right)$ is a complete ordered ∞-skew semifield.

Remark 3.2.25. Let $E_{7}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right)$. Define \cdot and on E_{7} as in Remark 3.2.19. Let $x, y \in \mathbb{R}^{+}$. Define + on E_{7} as follows:

$$
\begin{aligned}
& (x, 0)+(y, 0)=(\min \{x, y\}, 0), \\
& (x, 1)+(y, 1)=(\min \{x, y\}, 1),
\end{aligned}
$$

$$
(x, 0)+(y, 1)=\infty
$$

and $z^{+\infty}=\infty$ for all $z \varepsilon E_{7}$.

Then $\left(E_{7},+, \cdot, \leqslant\right)$ is a complete ordered $\infty_{-s k e w ~ s e m i f i e l d . ~}^{\text {s }}$.

Remark 3.2.26. Let $E_{8}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right)$. Define + and \cdot on E_{8} as in Remark 3.2.25 and define \leqslant on E_{8} as given in Remark 3.2.20. Then $\left(E_{8},+, \cdot, \leqslant\right)$ is a complete ordered $\infty_{\text {-skew }}$ semifield.

Proposition 3.2 .27 . Let $\left(K, \not,{ }^{\circ}, \leqslant\right)$ be a type II $\infty_{\text {-skew semifield. }}$ Then $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is a complete ordered skew ratio semiring.

Proof: Assume that $(K,+, \cdot, \leqslant)$ is a type II ∞-skew semifield. Then $\operatorname{cor}_{K}(1)=\{\infty\} \cup D_{K^{*}}^{i} \quad$ By Proposition $3.2 .3(6),\left(D_{K^{\prime}}^{f},+, \cdot \leqslant\right)$ is an ordered skew ratio semiring. By Proposition $3.2 .4(1),\left(D_{K}^{f}, \leqslant\right)$ is a complete. Hence $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is a complete ordered skew ratio semiring. \#

Theorem 3.2.28. Let K be a type II ${ }^{\infty}$-skew semifield. Suppose that for every $x, y \in K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \varepsilon K$. If $D_{K}^{i} \neq \emptyset$, then there exists a $t \varepsilon D_{K}^{i}$ such that $K=D_{K}^{f} U\{\infty\} U t D_{K}^{f}$ and $t^{2} \varepsilon D_{K}^{f}$.

Proof: 6 Assume that $D_{K}^{1} \neq \varnothing$. Now, we have that $\operatorname{cor}_{K}(1)=$ $\{\infty\} \cup D_{K}^{i}$. Then $K=D_{K}^{f} U\{\infty\} U D_{K}^{i}=D_{K}^{f} U \operatorname{cor}_{K}(1)$. Let $x \in D_{K}^{i}$ be arbitrary. From (1), we have that $K=x K=x\left(D_{K}^{f} U \operatorname{cor}_{K}(1)\right)$ $=x D_{K}^{f} U \times \operatorname{Cor}_{K}(1)$.

By Proposition 3.2.2 (3) and (2), $K=x D_{K}^{f} U \operatorname{Cor}_{K}(x)$.
Since $D_{K}^{f} \cap \operatorname{Cor}_{K}(1)=\varnothing, \quad x D_{K}^{f} \cap \operatorname{Cor}_{K}(x)=\varnothing$.

Now, we have that $K \backslash\{\infty\}=D_{K}^{f} U D_{K}^{i}=D_{K}^{f} U\left(\underset{x \in D_{K}^{i}}{U} \times D_{K}^{f}\right)$. since $D_{K}^{f} \cap D_{K}^{i}=\varnothing$ and $D_{K}^{f} \cap\left(\underset{x \in D_{K}^{i}}{U_{K}^{i}} \times D_{K}^{f}\right)=\varnothing$ and $\bigcup_{x \in D_{K}^{i}} \times D_{K}^{f} \neq \varnothing, \underset{x \in D_{K}^{i}}{U} \times D_{K}^{f}=D_{K}^{i}$. Suppose that there are two disjoint cosets contained in D_{K}^{i}. Let $v D_{K}^{f}$ and $w D_{K}^{f}$ be distinct cosets of D_{K}^{i}. Then $v<w$ or $w<v . \mid$ without loss of generality, suppose that $w<v$. Let $a \varepsilon D_{K}^{f}$ and let $u=w a$. Thẹn $u \varepsilon w D_{K}^{f}$. Now, we have that $1+a \varepsilon D_{K}^{f}$ and $w \in D_{K}^{i}$. By Proposition 3.2.3, w(1+a) εD_{K}^{i}. Thus $\infty<w(1+a)=w+w a=w+u \leqslant v+u$.

Since $u \varepsilon W D_{K}^{f}$, u $\notin V D_{K}^{f}$. By (4), u $\varepsilon \operatorname{Cor}_{K}(v)$. Therefore $u+v=\infty$ which contradicts (5).

Hence the number of cosets in D_{K}^{i} is 0 or 1 . If the number of coset in D_{K}^{i} is 0 , then $D_{K}^{i}=\varnothing$, a contradiction. Therefore the number of coset in D_{K}^{i} is 1 . Thus $K=D_{K}^{f} U\{\infty\} U t D_{K}^{f}$ for some $t \varepsilon D_{K}^{i}$. Then $K=t K=t D_{K}^{f} \cup\{\infty\} U_{t}^{2} D_{K}^{f}$ which implies that $t^{2} D_{K}^{f}=D_{K}^{f}$. Therefore $\mathrm{t}^{2} \varepsilon \mathrm{D}_{\mathrm{K}}^{\mathrm{f}} . \#$

Suppose that for every $x, y \varepsilon^{\delta} K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all
 ($\mathrm{K},+, \cdot, \leqslant$) is isomorphic to exactly one of the following ∞-skew semifields:
(1) $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\} \cup\{\infty\}, *, \cdot, \leqslant\right)$ as in (3) of Theorem 3.2.8.
(2) $\left(B_{1},+, \cdot, \leqslant\right)$ as in Remark 3.2.11.
(3) $\left(\mathrm{B}_{2},+, \cdot, \leqslant\right)$ as in Remark 3.2.12.
(4) $\left(C_{1},+, \cdot, \leqslant\right)$ as in Remark 3.2.15.
(5) $\left(C_{2},+, \cdot, \leqslant\right)$ as in Remark 3.2.16.

Proof: Assume that $\left(\mathrm{D}_{\mathrm{K}}^{\mathrm{f}},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\left\{2^{n} \mid n \in Z\right\}, \min , \cdot, \leqslant\right)$. Now, we have that $K=D_{K}^{f} U\{\infty\} \cup D_{K}^{i}$. If $D_{K}^{i}=\varnothing$, then $(K,+, \cdots, \leqslant)$ is isomorphic to (1). Suppose that $D_{K}^{i} \neq \varnothing$. By Theorem 3.2.28, there exists a $z \varepsilon D_{K}^{i}$ such that $K=D_{K}^{f} \cup\{\infty\} \cup z D_{K}^{f}$ and $z^{2} \varepsilon D_{K}^{f}$. Thus $D_{K}^{i}=z D_{K}^{f}$. For simplicity, we shall assume that $D_{K}^{f}=\left\{2^{n} \mid n \varepsilon \mathbb{Z}\right\}$. Now, we shall show that $z r=r \mathbb{Z}$ for all $r \varepsilon D_{K}^{f}$. Let $r \in D_{K}^{f}$ be arbitrary. We/shall first show that $z^{2} r^{2} \varepsilon D_{K}^{f}$ and $(z r)^{2} \varepsilon D_{K}^{f}$. Clearly, $z^{2} r^{2} \varepsilon D_{K}^{f}$. We see that $(z r)^{2}=(z r)(z r)=z(r z) z$.

Since $r z \varepsilon D_{K}^{i}=z D_{K}^{f}, r z=z s$ for some $s \varepsilon D_{K}^{f}$. From (*), we have that $(z r)^{2}=z(z s) r=z^{2} s A_{\mathrm{K}}$

Next, we shall show that $(z r)^{2}=z^{2} r^{2}$. To prove this, suppose that $(z r)^{2} \neq z^{2} r^{2}$. If $(z r)^{2}<z^{2} r^{2}$, then $z r z r<z^{2} r^{2}$ which implies that $z r z<z^{2} r$. \qquad Since $r z \varepsilon D_{K}^{i}=z D_{K}^{f}, r z=z s$ for some $s \varepsilon D_{K}^{f}$. From (**), we have that $z(z s)<z^{2} r$. Thus $z_{2}<z^{2} r$, oit follows that $s<r$. Therefore $s+r=s$. Then $z s+z r=z s$. Therefore we get that $r z+z r=r z$. Thus $r z(z r)+z r(z r)=r z(z r)$ which implies that $z^{2} r^{2}+(z r)^{2}=z^{2} r^{2}$. Since $z^{2} r^{2},(z r)^{2} \varepsilon D_{K}^{f}, z^{2} r^{2} \leqslant(z r)^{2}$, a contradiction. If $z^{2} r^{2}<(z r)^{2}$, then $z^{2} r^{2}<z r z r$ which implies that $z^{2} r<z r z$.

$$
\ldots \ldots . . . \omega^{(* * *)}
$$ Since $r z \in D_{K}^{i}=z D_{K}^{f}, r z=z w$ for some $w \in D_{K}^{f}$. From (***), we have that $z^{2} r<z(z w)=(z z) w=z^{2} w$, it follows that $r<w$. Therefore $r+w=r$, so $z r+z w=z r$. Then $z r+r z=z r$. Thus $r z(z r)+r z(z r)=z r(z r)$

which implies that $(z r)^{2}+z^{2} r^{2}=(z r)^{2}$. Since $\left.z^{2} r^{2},(z r)^{2} \varepsilon D_{K}^{f}\right)$, $(z r)^{2} \leqslant z^{2} r^{2}$, a contradiction. Hence $(z r)^{2}=z^{2} r^{2}$.

Finally, from (****), we have that $z r z r=z z r r$. Then
$z^{-1}(z r z r)=z^{-1}(z z r r)$, hence $r z r=\operatorname{zrr}$. Therefore $(r z r) r^{-1}=(z r r) r^{-1}$. Thus $r z=z r$. Therefore we get that $z r=r z$ for all $r \varepsilon D_{K}^{f}$.

Case 1: $\quad z^{2}=2^{2 m}$ for some $m \in z$. Thus $z^{2}\left(2^{2 m}\right)^{-1}=1$. By (i), $\left(z 2^{-m}\right)^{2}=1$. Let $t=z 2^{-m}$. Then $t \in D_{K}^{i}$ and $t^{2}=1$ and $t D_{K}^{f}=\left(z 2^{-m}\right) D_{K}^{f}$ $=z\left(2^{-m_{D}}{ }_{K}^{f}\right)=z D_{K}^{f}=D_{K}^{i}$.

Using a proof similar to the proof of (i) we can show that ts $=s t$ for all $s \varepsilon D_{K}^{f}$.

Now, we have that $\mathrm{t} 2 \neq \mathrm{t}$. Ahen $\mathrm{t} 2 / \mathrm{t}$ or $\mathrm{t} 2<\mathrm{t}$.

Subcase 1.1: t2> Now, we shail show that the following properties hold:
(a) $t 2^{n+1}>t 2^{n}$ for all $n \varepsilon \mathbb{Z}^{+}$,
(b) For every $m, n \in \mathbf{Z}^{+}, m<n$ implies that $t 2^{m}<t 2^{n}$,
(c) PFor eyery $m / \cap n \in \mathbb{Z}$, mhimplies that $t 2^{m}<t 2^{n}$.

To show (a), let $n \in Z^{+}$be arbitrary. We shall prove this by usinginduction on $n_{0} \varepsilon z^{+} .2198 \%$? then we are done. suppose that (a) is true for some $n-1 \geqslant 1$. Then $t 2^{n}>t 2^{n-1}$. Thus $\left(t 2^{n}\right) 2>\left(t 2^{n-1}\right) 2$, so $t 2^{n+1}>t 2^{n}$. Hence $t 2^{n+1}>t 2^{n}$ for all $n \varepsilon \mathbb{Z}^{+}$.

To show (b), let $m, n \in \mathbf{z}^{+}$be such that $m<n$. Then there exists an $\ell \in \mathbb{Z}^{+}$such that $m+\ell=n$. It follows from (a) that $\mathrm{t} 2^{\mathrm{m}}<\mathrm{t} 2^{\mathrm{m}+1}<\ldots<\mathrm{t} 2^{\mathrm{m}+\ell}=\mathrm{t} 2^{\mathrm{n}}$.

To show (c), let $m, n \in \mathbb{Z}^{-}$be such that $m<n$. Now, we have that $t 2^{-1}<t$. A proof similar to the proof of (a) shows that $t 2^{n}<t 2^{n+1}$ for all $n \in \mathbb{Z}^{-}$. Since $m<n, m+\ell=n$ for some $\ell \varepsilon \mathbb{Z}^{+}$. Thus $t 2^{m}<t 2^{m+1}<\ldots<t 2^{m+l}=t 2^{n}$. From (b) and (c), we have that for every $m, n \in \mathbb{Z}, m<n$ implies that $t 2^{m}<t 2^{n}$. (iv)

Let $B_{1}=\left\{\left(2^{n}, 0\right) \mid n \in \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(2^{m}, 1\right) \mid m \in \mathbb{Z}\right\}$. Define + , and \leqslant as are given in Remark 3.2.11. Define $f: K \rightarrow B_{1}$ in the following way: $f(\infty)=\infty$. Let $x \in K \backslash\{\infty\}$. If $x \in D_{K}^{f}$, then $x=2^{n}$ for some $n \in \mathbb{Z}$. Define $f(x)=(x, 0)$. If $x \in D_{K}^{i}$, then by $(i), x=\operatorname{tr}$ for some $r \in D_{K^{\prime}}^{f}$ Define $f(x)=(r, 1)$. Clearly, f is well-defined and f is a bijection.
(I) To show that for every $x, y \in K, x \leqslant y$ implies that $f(x) \leqslant f(y)$, let $x, y \in k$ be such that $x \leqslant y$.

Case I.1: $\quad x \leqslant y<\infty$. This gase is clear.

Case I.2: $x<\infty<y$. Then $y=\operatorname{tr}$ for some $r \varepsilon D_{K}^{f}$. Now, we have that $f(x)=(x, 0)$ and $f(y)=(r, 1)$. Therefore $f(x)=(x, 0)<(r, 1)$ $=f(y)$.

Case I.3: $\rho^{\infty}<x \leqslant 9 \cdot$ Then by $(1), 0 x=$ tr for some $r \varepsilon D_{K}^{f}$ and $y=$ ts for some s ही D_{K}^{f}. Thus $f(x)=(x, 1)$ and $f(y)=(s, 1)$. Then there are $n, m \varepsilon$ z such that $r=2^{n}$ and $s=2^{m}$. Therefore $t 2^{n}=x \leqslant y=t 2^{m}$. If $m<n$, then by (iv), $t 2^{m}<t 2^{n}$, a contradiction. Thus $n \leqslant m$. Therefore $r=2^{n} \leqslant 2^{m}=s$, hence $(r, 1) \leqslant(s, 1)$. Therefore $f(x) \leqslant f(y)$.
(II) To show that $f(x+y)=f(x)+f(y)$ for all $x, y \in K$, let $x, y \in K$ be arbitrary. If $x=\infty$ or $y=\infty$, then we are done. Suppose that $x, y \in K \backslash\{\infty\}$.

Case II.1: $\quad \mathrm{x} \leqslant \mathrm{y}<\infty$. This case is clear.

Case II.2: $x<\infty<y$. Then $y=\operatorname{tr}$ for some $r \in D_{K}^{f}$. Thus
$f(x)=(x, 0)$ and $f(y)=(r, 1)$. Therefore $f(x)+f(y)=(x, 0)+(r, 1)=\infty$. Since $x<\infty<y, \infty \leqslant x+y \leqslant \infty$. Then $x+y=\infty$. Thus $f(x+y)=f(\infty)=\infty$. Hence $f(x+y)=f(x)+f(y)$.

Case II.3: $\quad \infty<x \leqslant y$. Then $x=$ tr for some $r \varepsilon D_{K}^{f}$ and $y=$ ts for some $s \in D_{K^{\prime}}^{f}$. Thus $x+y=t r+t s=t(r+s)=t(\min \{r, s\})$. Thus $f(x+y)=(\min \{r, s\}, 1)$. Now, we have that $f(x)=(r, 1)$ and $f(y)=(s, 1)$. Then $f(x)+f(y)=(r, 1)+(s, 1)=\min \{r, s\}, 1)$. Hence $f(x+y)=f(x)+f(y)$.
(III) To show that $f(x y)=f(x) f(y)$ for all $x, y \in K$, let $x, y \in K$ be arbitrary. If $x=\infty$ or $y=\infty$, then we are done. Suppose that $x, y \in K \backslash\{\infty\}$.

Case III.1: $\quad \mathrm{x} \leqslant \mathrm{y}<\infty$. This case is clear.
Case III.2: $\quad x<\infty<y$. Then $y=\operatorname{tr}$ for somer εD_{K}^{f}. By Proposition 3.2.3 (4), xy $\varepsilon D_{K_{j}^{j}}^{i}$ Thus $x y=\operatorname{tr}_{1}$ for some $r_{1} \varepsilon D_{K^{\prime}}^{f}$. By (iii), $x r=r_{1}$. Then $f(x y)=\left(r_{1}, 1\right)=(x r, 1)=(x, 0)(r, 1)=f(x) f(y)$.

Case III. 4: $\infty<x \leqslant y$. Then $x=\operatorname{tr}$ for some $r \varepsilon D_{K}^{f}$ and $y=$ ts for some $s \varepsilon D_{K}^{f}$. By (iii), $x y=t^{2} r s=r s$. Therefore $f(x y)=(r s, 0)=$ $(r, 1)(s, 1)=f(x) f(y)$.

Therefore f is an isomorphism. Hence $(K,+, \bullet, \leqslant)$ is isomorphic to (2).

Subcase 1.2: t2<t. Now, we shall show that the following
properties hold:
(d) $t 2^{\mathrm{n}+1}<t 2^{\mathrm{n}}$ for all $\mathrm{n} \varepsilon \mathbb{Z}^{+}$,
(e) For every $m, n \in \mathbb{Z}^{+}, m<n$ implies that $t 2^{n}<t 2^{m}$,
(f) For every $m, n \in \mathbf{Z}^{-}, m<n$ implies that $t 2^{n}<t 2^{m}$.

To show (d), let $n \in \mathbb{Z}^{+}$be arbitrary. We shall prove this by using induction on $n \in \mathbb{B}^{+}$. If $n=1$, then we are done. Suppose that (d) is true for some $n-1 \geqslant 1$. Then $t 2^{n}<t 2^{n-1}$. Thus $\left(t 2^{n}\right) 2<\left(t 2^{n-1}\right) 2$, so $t 2^{n+1}<t 2^{n}$. Hence $t 2^{n+1}<t 2^{n}$ for all $n \varepsilon \mathbb{Z}^{+}$.

To show (e), let $m, n \in \mathbb{Z}^{+}$be such that $m<n$. Then there exists an $\ell \in \mathbb{Z}^{+}$such that $m+\ell=n$. From (d), we have that $t 2^{n}=t 2^{m+}<\ldots<t 2^{m+1}<t 2^{m}$.

To show (f), let $m, n \varepsilon \mathbb{Z}^{-}$be such that $m<n$. Now, we have that $t<t 2^{-1}$. A proof is similar to the proof of (d) shows that $t 2^{n+1}<t 2^{n}$ for all $n \varepsilon z^{\text {Lince }} m<n, m+\ell=n$ for some $\ell \in \mathbb{Z}^{+}$. Thus $t 2^{n}=t 2^{m+l}<\ldots<t 2^{m+2}<t 2^{m+1}<t 2^{m}$. From (e) and (f), we have that for every $m, n \in \mathbb{Z}, m<n$ implies that $t 2^{n}<t 2^{m}$.(v)

Let $B_{2}=\left\{\left(2^{n}, 0\right) \mid n \in \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(2^{m}, 1\right) \mid m \in \mathbb{Z}\right\}$. Define + , and \leqslant as are given in Remark 3.2.12 Define $F: K \rightarrow B_{2}$ in the following way: $F(\infty)=\infty$. Let $x \in K\left\{\{\infty\}\right.$. If $X_{\varepsilon} \in_{K}^{f}$, then $x=2^{n}$ for some n ε Z. Define $F(x)=(x, 0)$ If $x \varepsilon D_{K^{\prime}}^{i}$ then $x=\operatorname{tr}$ for some $r \in D_{K}^{f}$. Define $F(x)=(r, 1)$. Clearly, F is well-defined and F is a bijection. To show that for every $x, y \varepsilon K, x \leqslant y$ implies that $F(x) \leqslant F(y)$, let $x, y \in K$ be such that $x \leqslant y$. If $x, y \in D_{K}^{f}$, then we are done. If $x<\infty<y$, then $F(x)<\infty<F(y)$. Suppose that $\infty<x \leqslant y$. Then by (i), $x=\operatorname{tr}$ for some $r \in D_{K}^{f}$ and $y=$ ts for some $s \in D_{K}^{f}$. Thus $F(x)=(r, 1)$ and $F(y)=(s, 1)$. Then there are $n, m \in \mathbb{Z}$ such that $r=2^{n}$ and $s=2^{m}$. Therefore $t 2^{n}=x<y=t 2^{m}$. If $n<m$, then
by (v), $t 2^{m}<t 2^{n}$, a contradiction. Therefore $m \leqslant n$. Thus $s=2^{m}<2^{n}=r$. Then $(r, 1) \leqslant(s, 1)$. Hence $F(x) \leqslant F(y)$.

Using a proof similar to the one used in Subcase 1.1 we can show that F is a homomorphism. Therefore we get that F is an isomorphism. Hence $(K,+, \cdot, \leqslant)$ is isomorphic to (3).

Case 2: $\quad z^{2}=2^{N}$ for some $N \varepsilon \mathbb{Z}_{\text {odd. Then }} z^{2}=2^{2 m-1}$ for some $m \in \mathbb{Z}$. Thus $z^{2}\left(2^{2 m}\right)^{-1}=2^{-1}$. By (i), $\left(z 2^{-m}\right)^{2}=2^{-1}$. Let $w=z 2^{-m}$. Then $w \varepsilon D_{K}^{i}$ and $w^{2}=2^{-1}$ and $W D_{K}^{f}=22^{-m} D_{K}^{f}=z D_{K}^{f}=D_{K}^{i}$. Now, we have that w2 $\neq w$. Then $w 2>w$ or $w<w 2$.

Subcase 2.1: $w 2>w$. Using a proof similar to the proof of (iv) in Subcase 1.1 we get that for every $m, n \in \mathbb{Z}, m<n$ implies that $\mathrm{w} 2^{\mathrm{m}}<\mathrm{w} 2^{\mathrm{n}}$.

Let $C_{1}=\left\{\left(2^{n}, 0\right) \mid n \in \mathbb{Z}\right\} \cup\{\infty\} \cup\left\{\left(\sqrt{2^{m}}, 1\right) \mid m \in \mathbb{Z}\right.$ is odd $\}$. Define + , . and \leqslant as are given in Remark 3.2.15. Define $g: K \rightarrow C_{1}$ in the following way: $g(\infty)=\infty$. Let $x \in K \backslash\{\infty\}$. If $x \in D_{K}^{f}$, then $x=2^{n}$ for some $n \in \mathbb{Z}$. Define $g(x)=(x, 0)$. If $x \in D_{K}^{i}$, then $x=w r$ for some $r \in D_{K}^{f}$. Then $r=2^{m}$ for some $m \in \mathbb{Z}$. Define $g(x)=\left(\sqrt{2^{2 m-1}}, 1\right)$. Clearly, gis well-defined and gis a bijection.
(I) To show that for every $x, y \in K, x \leqslant y$ implies that $g(x) \leqslant g(y)$, let x, y erkbe such that $x \leqslant y \cdot d$?

Case I.1: $\quad x \leqslant y \leqslant \infty$. This case is clear.

Case I. 2: $x<\infty<y$. Then $y=$ wr for some $r \in D_{K}^{f}$. Thus $r=2^{m}$ for some $m \in \mathbb{Z}$. Therefore $g(y)=\left(\sqrt{2^{2 m-1}}, 1\right)$. Now, we have that $x=2^{n}$ for some $n \in \mathbb{Z}$. Thus $g(x)=\left(2^{n}, 0\right)$. Hence $g(x)=\left(2^{n}, 0\right)<\infty<\left(\sqrt{2^{2 m-1}}, 1\right)$ $=g(y)$.

Case I.3: $\infty<x \leqslant y$. Then $x=w r$ for some $r \varepsilon D_{K}^{f}$ and $y=$ ws for some $s \in D_{K^{-}}^{f}$. Thus $r=2^{m}$ for some $s \in D_{K}^{f}$. Thus $r=2^{m}$ for some $m \in \mathbb{Z}$ and $s=2^{n}$ for some $n \varepsilon \mathbb{Z}$. Therefore $g(x)=\left(\sqrt{2^{2 m-1}}, 1\right)$ and $g(y)=\left(\sqrt{2^{2 n-1}}, 1\right)$. Now, we have that $w 2^{m}<w 2^{n}$. If $n<m$, then by (vi), $w 2^{n}<w 2^{n}$, a contradiction. Therefore $m \leqslant n$, it follows that $\sqrt{2^{2 m-1}} \leqslant \sqrt{2^{2 n-1}}$. Hence $g(x)=\left(\sqrt{2^{2 m-1}}, 1\right) \leqslant\left(\sqrt{2^{2 n-1}}, 1\right)=g(y)$.
(II) To show that $g(x+y)=g(x)+g(y)$ for all $x, y \varepsilon K$, let $x, y \in K$. If $x=\infty$ or $y=\infty$, then we are done. Suppose that $x, y \in K \backslash\{\infty\}$.

Case II.1: $x, y \in D_{K^{\prime}}^{f}$. This case is clear

Case II.2: $\quad x \in D_{K}^{f}$ and $y \in D_{K}^{i}$ Then by Theorem 3.2.25, $x+y=\infty$. Now, we have that $x=2^{m}$ for some $m \in \mathbb{Z}$ and $y=$ wr for some $r \in D_{K}^{f}$. Then $r=2^{n}$ for some $n \in \mathbb{Z}$. Thus $g(x)=\left(2^{m}, 0\right)$ and $g(y)=\left(\sqrt{2^{2 n-1}}, 1\right)$.

Thus $g(x)+g(y)=\left(2^{m}, 0\right)+\left(\sqrt{2^{2 n-1}}, 1\right)=\infty$. Hence $g(x+y)=g(\infty)=\infty=\infty$ $g(x)+g(y)$.

Case II.3: $\quad x \in D_{K}^{i}$ and $y \in D_{K}^{f}$. This proof is similar to the proof

Case II.4: $x \in D_{K}^{i}$ and $y \varepsilon D_{\mathrm{K}}^{\mathrm{i}}$. Then $\mathrm{X}=\mathrm{wr}$ for some $r_{\varepsilon} \varepsilon \mathrm{D}_{\mathrm{K}}^{\mathrm{f}}$ and $y=w s$ for some $s \varepsilon D_{K}^{f}$. Thus $r=2^{m}$ for some $m \varepsilon Z^{2}$ and $s=2^{n}$ for some $n \varepsilon \mathbb{Z}$. Without loss of generality, suppose that $m \leqslant n$. Then $x+y=z 2^{m}+z 2^{n}=z\left(2^{m}+2^{n}\right)=z 2^{m}$. Therefore $g(x+y)=\left(\sqrt{2^{2 m-1}}, 1\right)$. Now, we have that $g(x)=\left(\sqrt{2^{2 m-1}}, 1\right)$ and $g(y)=\left(\sqrt{2^{2 n-1}}, 1\right)$. Then $g(x)+g(y)=\left(\sqrt{2^{2 m-1}}, 1\right)+\left(\sqrt{2^{2 n-1}}, 1\right)=\left(\min \left\{\sqrt{2^{2 m-1}}, \sqrt{2^{2 n-1}}\right\}, 1\right)=\left(\sqrt{2^{2 m-1}}, 1\right)$

Hence $g(x+y)=g(x)+g(y)$.
(III) To show that $g(x y)=g(x) g(y)$ for all $x, y \in K$, for $x, y \in K$ be arbitrary. If $x=\infty$ or $y=\infty$, then we are done. Suppose that $x, y \in K \backslash\{\infty\}$.

Case III. 1: $\quad x, y \in D_{K}^{f}$. This case is clear.

Case III. 2: $\quad x \in D_{K}^{f}$ and $y \in D_{K}^{i}$. Then $x=2^{m}$ for some $m \in \mathbb{Z}$ and $y=w 2^{n}$ for some $n \varepsilon \mathbb{Z}$. Using a proof similar to the proof of (i) we can show that $w d=d w f o r / a l 1 d \in D_{K^{\circ}}^{f}$. Thus $x y=w 2^{m+n}$. Thus $g(x y)=\left(\sqrt{2^{2(m+n)-1}}, 1\right)$. Now, we have that $g(x)=\left(2^{m}, 0\right)$ and $g(y)=\left(\sqrt{2^{2 n-1}}, 1\right)$. Therefore we get that $g(x) g(y)=\left(2^{m}, 0\right)\left(\sqrt{2^{2 n-1}}, 1\right)$ $=\left(2^{m} \sqrt{2^{2 n-1}}, 1\right)=\left(\sqrt{2^{2 m+2 n-1}}, 1\right)$. Hence $g(x y)=g(x) g(y)$.

Case III.3: $\quad x \in D_{K}^{i}$ and $y \varepsilon D_{K}^{f}$ This proof is similar to Case III.2.

Case III.4: $\quad x \in D_{K}^{i}$ and $y \in D_{K}^{i}$. Then $x=w 2^{m}$ for some $m \in \mathbb{Z}$ and $y=w 2^{n}$ for some $n \varepsilon \mathbb{Z}$. Using a proof similar to the proof of (i) we can show that $w b=b w$ for $a l l b \in D_{K}^{f}$. Then $x y=w^{2} 2^{m+n}=2^{m+n-1}$. Thus $g(x y)=\left(2^{m+n-1}, 0\right)$ Now, we have that $g(x)=\left(\sqrt{2^{2 m-1}}, 1\right)$ and $g(y)=\left(\sqrt{2^{2 n-1}}, 1\right)$. Then $g(x) g(y)=\left(\sqrt{2^{2 m-1}}, 1\right)\left(\sqrt{2^{2 n-1}}, 1\right)=\left(\sqrt{2^{2 m+2 n-2}}, 0\right)$ $=\left(\sqrt{2^{2(m+n-1}}, 0\right)=\left(2^{m+n-1}, 0\right) \cdot$ Hence $g(x y)=g(x) g(y) \circ$ है

Thus g is an isomorphism. Hence $(K,+, \cdot, \leqslant)$ is isomorphic to (4).

Subcase 2.2: w2 < w. Using a proof similar to the proof of Subcase 2.1 we get that $(K,+, \cdot, \leqslant)$ is isomorphic to (5). \#

Theorem 3.2.30. Let $(K,+, \cdot, \leqslant)$ be a type II $\infty-$ skew semifield.

Suppose that for every $x, y \varepsilon K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \varepsilon K$. If $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\}, \max , \cdot, \leqslant\right)$. Then $(K,+, \cdot, \leqslant)$ is isomorphic to exactly one of the following ∞-skew semifields:
(1) $\quad\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\} \cup\{\infty\}, \max , \cdot, \leqslant\right)$.
(2) $\left(\mathrm{B}_{3},+, \cdot, \leqslant\right)$ as in Remark 3.2.13.
(3) ($\left.\mathrm{B}_{4},+, \cdot, \leqslant\right)$ as in Remark 3.2 .14 .
(4) $\left(\mathrm{C}_{3},+, \cdot, \leqslant\right)$ as in Remark 3.2.15.
(5) $\left(\mathrm{C}_{4},+, \cdot, \leqslant\right)$ as in Remark 3.2.16.

The proof of Theorem 3.2 .30 is similar to the proof of
Theorem 3.2.29.

Theorem 3.2.31. Let $(K,+\cdots, \leqslant)$ be a type II ∞-skew semifield. Suppose that for every $x, y \varepsilon k, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$. If $\left(\mathrm{D}_{\mathrm{K}}^{\mathrm{f}},+, \cdot, \leqslant\right)$ is isomorphic to $(\{1\},+, \cdot \leqslant)$. Then $(K,+, \cdot, \leqslant)$ is isomorphic to exactly one of the following o-skew semifields:
(1) ∞-skew semifield with the almost trivial addition of order 20% and 9 eskew semifield with the almost trivial addition

Proof: Assume that $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $(\{1\},+, \cdot, \leqslant)$. Now, we have that $K=D_{K}^{f} \cup\{\infty\} \cup D_{K}^{i}$. If $D_{K}^{i}=\varnothing$, then $(K,+, \cdots, \leqslant)$ is isomorphic to (1). Suppose that $D_{K}^{i} \neq \varnothing$. By Theorem 3.2.26, there exists a $t \in D_{K}^{i}$ such that $K=D_{K}^{f} U\{\infty\} U t D_{K}^{f}$ and $t^{2} \varepsilon D_{K}^{f}$. Thus $D_{K}^{i}=t D_{K}^{f}$. Therefore we get that $(K,+, \cdot, \leqslant)$ is isomorphic to (2). \#

Proposition 3.2.32. Let $\left(K,+,^{\circ}, \leqslant\right)$ be a type II $\infty_{-s k e w ~ s e m i f i e l d . ~}^{\text {- }}$ Suppose that for every $x, y \varepsilon K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$ and suppose that $D_{K}^{i} \neq \varnothing$. If $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right)$, then for every $a, b \in D_{K^{\prime}}^{i}, a<a+b$ or for every $c, d \varepsilon D_{K}^{i}$, $c+d<c$.

Proof: Assume that $D_{K}^{i} \neq \varnothing$. By Theorem 3.2.28, $D_{K}^{i}=t D_{K}^{f}$ and $t^{2} \varepsilon D_{K}^{f}$ for some $t \in D_{K}^{i}$. Suppose that $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right)$. For simplicity, we shall assume that $D_{K}^{f}=\mathbb{R}^{+}$. Now, we have that $2 t \neq t$. Then ei ther $2 t<t$ or $t<2 t$.

Case 1: $t<2 t$. We shall show that for every $a, b \varepsilon D_{K}^{i}, a<a+b$.

Step 1.1. We shall show that for every $m, n \in \mathbb{Z}^{+}, m<n$ implies that $m t<n t$. We claim that for every $n \in \mathbb{Z}^{+}$, $n t<(n+1) t$. Let $n \in \mathbb{Z}^{+}$. We shall prove this by usinginduction on $n \in \mathbf{z}^{+}$. If $n=1$, then we are done. Suppose that the elaim is true for some $n-1 \geqslant 1$. Then $(n-1) t<n t$. Therefore $(n-1) t+t \leqslant n t+t$, it follows that $n t \leqslant(n+1) t$. If $n t=(n+1) t$, then $n=n+1$, a contradiction. Thus $n t<(n+1) t$, so we have the claim.
. Suppose that $m, n \in \mathbb{Z}+$ are such that $m<n$. Then $m+\ell=n$ for some $\ell \in \mathbf{z}^{+}$. Therefore $m t<(m+1) t<\ldots<(m+n) t=n t$.
 that $r t<s t$. To prove this, let $r, s \in Q^{+}$be such that $r<s$. Then $r=\frac{m}{n}$ and $s=\frac{p}{q}$ for some $m, n, p, q \in \mathbb{Z}^{+}$. Thus $\frac{m}{n}<\frac{p}{q}$, it follows that $q m<n p$. By Step 1.1, qmt < npt. Therefore $\frac{m}{n} t<\frac{p}{q} t$. Hence $r t<s t$.

Step 1.3. We shall show that $t \Phi^{+}$has no lower bound in D_{K}^{i}. To prove this, suppose not. Then $t \Phi^{+}$has a lower bound in D_{K}^{i}. Since K is complete and $D_{K}^{i} \subseteq K$, $t \Phi^{+}$has an infimum in $D_{K^{*}}^{i}$. Let $z=\inf \left(t Q^{+}\right)$. Then $\infty<z$. Therefore $z \leqslant r t$ for all $r \in Q^{+}$. Thus $z \leqslant \frac{r}{2} t$ for all $r \in \mathbb{Q}^{+}$, so $2 z \leqslant r t$ for all $r \in \mathbb{Q}^{+}$. Then $2 z$ is a lower bound of $t \mathbb{Q}^{+}$. Thus $2 z \leqslant z$.

Similarly, $z \leqslant 2 r t$ for all $r \varepsilon Q^{+}$. It follows that $2^{-1} z \leqslant z$. Thus $z \leqslant 2 z$. From (1), we have that $z=2 z$ which implies that $1=2$, a contradiction. Hence $t Q^{+}$has no lower bound in D_{K}^{i}.

Step 1.4. We shall show that $t<t+d t$ for all $d \varepsilon D_{K}^{f}$. Let $r \in Q^{+}$ be arbitrary. Then $1<1+r$. By Step 1.2, $t<(1+r) t=t+r t$. Hence t < t+rt for all $r \varepsilon Q^{+}$.

Suppose that $d \varepsilon p_{K^{j S}}^{f i}$ arbitrary. Then $d t \varepsilon D_{K}^{i}$. By Step 1.3, dt is not a lower bound of $t Q^{+}$. Then there exists an $r \varepsilon Q^{+}$such that $r_{d} t<d t$. Thus $t+r_{d} t \leqslant t+d t$. From (2) we have that $t<t+d t$.

Now, we shall show that for every $x, y \in D_{K}^{i}, x<x+y$. Let $x, y \in D_{K}^{i}$ be arbitrary. Then $x=c t$ and $y=d t$ for some $c, d \varepsilon D_{K}^{f}$. Thus $c^{-1} \mathrm{~d} \varepsilon_{p_{K}}^{f}$.
 Case 2: $2 t<t$. Using a proof similar to the one used in Case 1 we can show that $x+y<x$ for all $x, y \in D_{K}^{i}$.

Hence, the theorem is proved. \#

Theorem 3.2 .33 . Let $(K,+, \cdot \leqslant)$ be a type II ∞-skew semifield.

Suppose that for every $x, y \in K, x \leqslant y$ implies that $x+z \leqslant y+z$. If $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right)$, then $(K,+, \cdot, \leqslant)$ is isomorphic to exactly one of the following ∞-skew semifields:
(1) $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right)$.
(2) ($\left.E_{1},+, \cdot \leqslant\right)$ as in Remark 3.2.19.
(3) $\left(E_{2},+, \cdot, \leqslant\right)$ as in Remark 3.2.20.

Proof: Assume that $\left(D_{K}^{f},+, \cdot \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right)$. Now, we have that $K=D_{K}^{f} \cup\{\infty\} \cup D_{K}^{i}$. If $D_{K}^{i}=\varnothing$, then $(K,+, \cdot, \leqslant)$ is isomorphic to (1)

Suppose that $D_{K}^{i} \neq \varnothing$. By Theorem 3.2.28, there exists a $z \varepsilon D^{i}$ such that $K=D_{K}^{f} \cup\{\infty\} \cup z D_{K}^{f}$ and $z^{2} \varepsilon D_{K}^{f}$. For simplicity, we shall assume that $D_{K}^{f}=\mathbb{R}^{+} \%$ Then $z^{2}=$ a for some $a \in \mathbb{R}^{+}$. Thus $a=b^{2}$ for some $b \varepsilon \mathbb{R}^{+}$. Therefore $z^{2}=b^{2 /}$. Using a proof similar to the proof of (i) in Theorem 3.2.29 we can show that $\left(z b^{-1}\right)^{2}=1$. Let $t=z b^{-1}$. Then $t \in D_{K}^{i}$ and $t^{2}=1$ and $t D_{K}^{f}=\left(z b^{-1}\right) D_{K}^{f}=z\left(b^{-1} D_{K}^{f}\right)$ $=z D_{K}^{f}=D_{K}^{i}$.

Using a proof similar to the proof of (i) in Theorem 3.2.29 we can
 (**)

Now, we have that $2 t \neq$
, we have that $2 t \neq t$. Then ei ther $t<2 t$ or $2 t<t$.
Case 1: $t<2 t$. Then by the proof of Proposition 3.2.32, $a<a+b$ for all $a, b \in D_{K^{-}}^{i}$ Let $E_{1}=\left(\left(\mathbb{R}^{+} \times\{1\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right),+, \cdot, \leqslant\right)$ be given as in Remark 3.2.19. Define $F: K \rightarrow E_{1}$ in the following way: $F(\infty)=\infty$. Define $F(x)=(x, 0)$ for all $x \in D_{K}^{f}$. Let $y \varepsilon D_{K}^{i}$. By $(*), y=$ ts for some $s \varepsilon D_{K}^{f}$. Define $F(y)=(s, 1)$. Clearly, F is well-defined and F is a bijection.
(1.1) To show that for every $x, y \in K, x \leqslant y$ implies that $F(x) \leqslant F(y)$, let $x, y \varepsilon K$ be such that $x \leqslant y$. If $x=y$, then we are done. Suppose that $x<y$.

```
Subcase 1.1.1: \(x<y \leqslant \infty\). This case is clear.
Subcase 1.1.2: \(x \leqslant \infty<y\). This case is clear.
```

Subcase 1.1.3: $\infty<x<y$. Then $x=\operatorname{tr}$ for some $r \varepsilon D_{K}^{f}$ and $y=$ ts for some $s \varepsilon D_{K}^{f}$. Thus $t r<t s$. If $s<r$, then there exists a $u \varepsilon D_{K}^{f}$ such that $s+u=r$. Therefore $t s+t u=t r$. Then ts+tu <ts and ts, tu $\varepsilon \mathrm{D}_{\mathrm{K}}^{\mathrm{i}}$, a contradiction. Hence $\mathrm{r} \leqslant \mathrm{s}$. Therefore $(r, 1) \leqslant(s, 1)$. Then $F(x) \leqslant F(y)$.

This shows that for every $x, y \varepsilon K, x \leqslant y$ implies that $F(x) \leqslant F(y)$.
(1.2) To show that for every $x, y \in K, F(x+y)=F(x)+F(y)$ and $F(x y)=F(x) F(y)$, let x, y \& k be arbitrary. If $x=\infty$ or $y=\infty$, then we are done. Suppose that $x, y \in K \backslash\{\infty\}$.

Subcase 1.2.1: $x \in D_{K}^{f}$ and $y \in D_{K}^{f}$ This case is clear.
Subcase 1.2.2: $x \in D_{K}^{f}$ and $y \in D_{K}^{i}$. Then by (*), $y=\operatorname{tr}$ for some fo \& $\mathrm{D}_{\mathrm{K}} \cdot$ By proposition $3.2 \cdot 3(7), x+y=\infty$? Thus $F(x+y)=F(\infty)$ $=\infty$ and $F(x)+F(y)=(x, 0)+(r, 1)=\infty$. Hence $F(x+y)=F(x)+F(y)$. From ($* *)$, we have that $x y=t x r$, By Proposition 3.2 .3 (4), xy εD_{K}^{i}. By $(*), x y=\operatorname{tr}$, Hence $x r=r_{1}$. Therefore we get that $F(x y)=$ $\left(r_{1}, 1\right)=(x r, 1)=(x, 0)(r, 1)=F(x) F(y)$.

Subcase 1.2.3: $\quad x \in D_{K}^{i}$ and $y \in D_{K}^{f}$. This proof is similar to the proof of Subcase 1.2.2.

Subcase 1.2.4: $x \in D_{K}^{i}$ and $y \in D_{K}^{i}$. Then $x=\operatorname{tr}$ for some $r \varepsilon D_{K}^{f}$ and $y=t s$ for some $s \varepsilon D_{K}^{f}$. Then $x+y=t(r+s)$. Then
$F(x+y)=(r+s, 1)=(r, 1)+(s, 1)=F(x)+F(y) . \quad B y(* *), x y=t^{2} r s=r s$ Therefore $F(x y)=(r s, 0)=(r, 1)(s, 1)=F(x) F(y)$.

Therefore F is an isomorphism. Hence $\left(K,+,^{\bullet}, \leqslant\right)$ is isomorphic to (2).

Case 2: $2 t<t$. Then by the proof of Proposition $3.2 .32, a+b<a$ for all $a, b \in D_{K^{\prime}}^{i}$ Let $E_{2}=\left(\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right),+, \cdot, \leqslant\right)$ be given as in Remark 3.2.20. Using a proof similar to the proof of Case 1 we can show that $(K,+, \cdot, \leqslant)$ is isomorphic to (3).

Hence, the theorem is proved.

Theorem 3.2.34. Let $(K,+, \cdot \leqslant)$ be a type II ∞-skew semifield. Suppose that for every $x, y \in K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \in K$. If $\left(D_{K}^{f},+, \cdot\right.$, is isomorphic to $\left(\mathbb{R}^{+},+, \cdot, \leqslant{ }_{\mathrm{opp}}\right)$, then $(K,+, \cdot, \leqslant)$ is isomorphic to exactly one of the following m-skew semifields:
(1) $\left.\left(\mathbb{R}_{\infty}^{+}\right)^{+}, \cdot \leqslant^{*}\right)$ where + and are the usual addition and multiplication, respectively and $\leqslant^{*}=\leqslant_{o p p}$ on \mathbb{R}^{+}and $x<\infty$ for all

The proof of Theorem 3.2.34 is similar to the proof of Theorem 3.2.33.

Proposition 3.2 .35 . Let $(K,+, \cdots, \leqslant)$ be a type II m-skew semifield. Suppose that for every $x, y \varepsilon K, x \leqslant y$ implies that $x+z \leqslant y+z$ for
all $z \varepsilon K$ and suppose that $D_{K}^{i} \neq \varnothing$. If $\left(D_{K}^{f},+, \cdot \leqslant\right)$ is isomorphic to $\left(R^{+}, \max , \cdot, \leqslant\right)$, then for every $a, b \varepsilon D_{K}^{i}, a \leqslant a+b$ or for every $c, d \varepsilon D_{K}^{i}$, $c+d \leqslant d$.

Proof: Assume that $D_{K}^{i} \neq \emptyset$ and suppose that $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+}\right.$, max $\left., *, \leqslant\right)$. By Theorem $3.2 .28, D_{K}^{i}=t D_{K}^{f}$ and $t^{2}=1$ for some $t \in D_{K^{\prime}}^{i}$. For simplicity, we shall assume that $D_{K}^{f}=\mathbb{R}^{+}$. Now, we have that $2 t \neq t$. Then either $2 t<t$ or $t<2 t$.

Case 1: $t<2 t$. We shall/show that for every $a, b \varepsilon D_{K}^{i}, a \leqslant a+b$. First, we shall show that $t \leqslant \overrightarrow{t+d t}$ for all $d \varepsilon D_{K}^{f}$. Let $d \varepsilon D_{K}^{f}$ be arbitrary.

Subcase 1.1: $d \leqslant 1$ Then $t=(1+d) t=t+d t$.

Subcase 1.2: 1 <aj. Then there exists an $m \in \mathbf{z}^{+}$be such that $2^{m} \leqslant d<2^{m+1}$. Since $2^{m} t<2^{m+1} t, 2^{m} t+d t \leqslant 2^{m+1} t+d t$. Then $\left(2^{m}+d\right) t \leqslant\left(2^{m+1}+d\right) t$. Thus $d t \leqslant 2^{m+1} t$.

Let $2^{-(m+1)} \leqslant b \leqslant 2^{-m}$ be arbitrary. Then $2^{m} \leqslant 2^{2 m+1} b \leqslant 2^{m+1}$. From (1), we have that $2^{2 m+1} b t \leqslant 2^{m+1} t$, it follows that bt $\leqslant 2^{-m} t$.

Now, we have that $2^{-(m+1)}<d^{-1}<2^{-m}$. By $(2), d^{-1} t \leqslant 2^{-m} t$, so $d^{-1} t_{0}<t \cdot$ Therefore $t<d t$. Hence $t^{2}=t+t \leqslant t+d t ? ?$

Therefore we get that $t \leqslant t+d t$ for all $d \varepsilon D_{K}^{f}$. Now, we shall show that $a \leqslant a+b$ for $a l l a, b \in D_{K}^{i}$. Let $a, b \in D_{K}^{i}$ be arbitrary. Then $a=r t$ for some $r \varepsilon D_{K}^{f}$ and $b=s t$ for some $s \varepsilon D_{K}^{f}$. Since $r^{-1} s \varepsilon D_{K}^{f}, t \leqslant t+r^{-1} s t$. Then $r t \leqslant r t+s t$. Hence $a \leqslant a+b$.

Case 2: $2 t<t$. We shall show that for every $c, d \varepsilon D_{K}^{i}, c+d \leqslant d$.

We shall first show that $t+u t \leqslant u t$ for all $u \varepsilon D_{K}^{f}$. Let $u \varepsilon D_{K}^{f}$ be arbitrary.

Subcase 2.1: $1 \leqslant u$. Then $t+u t=(1+u) t=u t$.
Subcase 2.2: $u<1$. Then there exists an $n \in \mathbf{Z}^{+}$such that $2^{-n-1} \leqslant u<2^{-n}$. Since $2^{-n} t<2^{-(n+1)} t, 2^{-n} t+u t \leqslant 2^{-(n+1)} t+u t$. Thus $\left(2^{-n}+u\right) t \leqslant\left(2^{-(n+1)}+u\right) t$. Therefore $2^{-n} t \leqslant$ ut which implies that $t<2^{-n} t \leqslant u t$. Hence $t+u t \leqslant$

Therefore we get that, $t+u t \leqslant u t$ for all $u \varepsilon D_{K}^{f}$. Now, we shall show that $c+d \leqslant d$ for all $c, d \varepsilon D_{K}^{i}$. Let $c, d \varepsilon D_{K}^{i}$ be arbitrary arbitrary. Then $c=r t$ for some $r \varepsilon D_{K}^{f}$ and $d=s t$ for some $s \varepsilon D_{K}^{f}$. Since $r^{-1} s \in D_{K}^{f}, t+r^{-1} s t \leqslant r^{-1} s t$. Then $r t+s t \leqslant s t$. Hence $c+d \leqslant d$. \#

Proposition 3.2.36. Let $(k,+$, , \leqslant) be a type II ∞-skew semifield. Suppose that for every $x, y \varepsilon K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \varepsilon K$ and suppose that $D_{K}^{i} \neq \varnothing$. If $\left(D_{K}^{f},+, \circ \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+}\right.$, min $\left., \cdot, \leqslant\right)$, then for every $a, b \varepsilon D_{K}^{i}, a+b \leqslant a$ or for every $c, d \varepsilon D_{K}^{i}, c \leqslant c+a$.

6 e थ
The proof of proposition 3.2 .36 is similar to the proof of Proposition 3.2.35.

Theorem 3.2.37. Let $(K,+, 0, \leqslant)$ be a type II ∞-skew semifield. Suppose that $x, y \in K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \varepsilon K$. If $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+}, \max , \cdot, \leqslant\right)$, then $(K,+, \cdot, \leqslant)$ is isomorphic to exactly one of the following ∞-skew semifields:
(1) $\quad\left(\mathbb{R}^{+}, \max , \cdot, \leqslant\right)$.
(2) $\left(E_{5},+, \cdot \leqslant\right)$ as in Remark 3.2.23.
(3) ($\left.E_{6},+, \cdot \leqslant\right)$ as in Remark 3.2.24.

Proof: Assume that $\left(D_{K}^{f},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+}, \min , \cdot, \leqslant\right)$. Now, we have that $K=D_{K}^{f} U\{\infty\} \cup D_{K}^{i}$. If $D_{K}^{i}=\varnothing$, then $(K,+, \cdot, \leqslant)$ is isomorphic to (1).

Suppose that $D_{K}^{i} \neq \varnothing$. For simplicity, we shall assume that $D_{K}^{f}=\mathbb{R}^{+}$. By Theorem 3.2.28, there exists a $t \varepsilon D_{K}^{i}$ such that $D_{K}^{f}=t D_{K}^{f}$ and $t^{2}=1$ for some $t \in D_{K}^{j}$ Using a proof similar to the proof of (i) in Theorem 3.2.29 we can show that $t r=r t$ for all $r \varepsilon D_{K}^{f}$. ...(*) Now, we have that $2 t \neq t$. Then either $t<2 t$ or $2 t<t$.

Case 1: $t<2 t$. Then by the proof of Proposition 3.2.30, $a \leqslant a+b$ for $a l l a, b \in D_{K}^{i}$.

Let $E_{5}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{1\}\right)$ be given as in Remark 3.2.23.
Define $F: K \rightarrow E_{5}$ in the following way: $F(\infty)=\infty . F(x)=(x, 0)$ for all $x \in D_{K}^{f}$. Let $y \in D_{K}^{i}$. Then $y=\operatorname{tr}$ for some $r \varepsilon D_{K}^{f}$. Define $F(y)=(r, 1)$ clearly. F is well-defined and F is a bijection.
(1.1) To show that for every $x, y \varepsilon K, F(x+y)=F(x)+F(y)$ and $F(x y)=F(x) F(g)$, let $x, C y \mid \varepsilon / k$ bearbitrary $\frac{\text { If }}{6} 8=\infty$ or $y=\infty$, then we are done. Suppose that $x, y \in K \backslash\{\infty\}$.

Subcase 1.1.1: $\quad x \in D_{K}^{f}$ and $y \in D_{K}^{f}$. This case is clear.
Subcase 1.1.2: $x \in D_{K}^{f}$ and $y \in D_{K^{*}}^{i}$. Then $y=\operatorname{tr}$ for some $r \in D_{K}^{f}$. ByProposition3 2 2.3(7). $x+y=\infty$. Thus $F(x+y)=\infty$ and $F(x)+F(y)=(x, 0)+(r, 1)=\infty$. Hence $F(x+y)=F(x)+F(y)$. From (*), we have that $x y=$ txr. By Proposition 3.2.3 (4), xy εD_{K}^{i}. By (*),
$x y=t r_{1}$. Hence $x r=r_{1}$. Therefore we get that $F(x y)=\left(r_{1}, 1\right)$
$=(x r, 1)=(x, 0)(r, 1)=F(x) F(y)$.
Sulcase 1.1.3: $x \in D_{K}^{i}$ and $y \in D_{K}^{f}$. This proof is similar to the proof of Subcase 1.1.2.

Subcase 1.1.4: $x \in D_{K}^{i}$ and $y \in D_{K}^{i}$. Then $x=\operatorname{tr}$ for some $r \in D_{K}^{f}$ and $y=t s$ for some $s \varepsilon D_{K}^{f}$. Then $x+y=t(r+s)$. Without loss of generality, suppose that $r \leqslant s$. Thus $x+y=$ ts. Then $F(x+y)=(s, 1)$ $=(\max \{r, s\}, 1)=(r, 1)+(s, 1)=F(x)+F(y) . \quad$ By $(*), x y=t^{2} r s=r s$. Therefore $F(x y)=(r s, 0)=(r, 1)(s, 1)=F(x) F(y)$.
(1.2) To show that for every $x, y \in K, x \leqslant y$ implies that $F(x)<F(y)$, let $x, y \in K$ be such that $x<y$. If $x=y$, then we are done. Suppose that

Subcase 1.2.1: $\quad x<y \leqslant \infty$. This case is clear.
Subcase 1.2.2: $x \leqslant \infty<y$. This case is clear.

Subcase 1.2.3: $\quad \infty \leqslant x<y$. If $x=\infty$, then by Subcase 1.2.2
we are done. Suppose that $\infty<x<y$. Then $x=\operatorname{tr}$ for somere D_{K}^{f} and $y=t s$ for some $s \varepsilon D_{K}^{f}$. Thus tr $<t s$. If $s<r$, then $s+r=r$.
 contradicts $(* *)$. Then $r \leqslant s$, so $(r, 1) \leqslant(s, 1)$. Hence $F(x) \leqslant F(y)$.

9 Therefore we get that F is an i somorphism. Hence ($K,+, \cdot, \leqslant$) is isomorphic to (2).

Case 2: $2 t<t$. Using a proof similar to the proof of Case 1 we can show that $(K,+, \cdot \leqslant)$ is isomorphic to (3). \#

Theorem 3.2.38. Let ($K,+{ }^{\bullet}$, \leqslant) be a type II ∞^{∞}-skew semifield. Suppose that $x, y \in K, x \leqslant y$ implies that $x+z \leqslant y+z$ for all $z \varepsilon K$. If ($\left.\mathrm{D}_{\mathrm{K}}^{\mathrm{f}},+, \cdot, \leqslant\right)$ is isomorphic to $\left(\mathbb{R}^{+}, \min , \cdot, \leqslant\right)$, then $(\mathrm{K},+, \cdot, \leqslant)$ is isomorphic to exactly one of the following ${ }^{\infty}$-skew semifields:
(1) $\left(\mathbb{R}_{\infty}^{+},+, \cdot, \leqslant\right)$ as in (2) of Theorem 3.2.8.
(2) $\left(\mathrm{E}_{7},+, \cdot, \leqslant\right)$ as in Remark 3.2.25.
(3) ($\left.\mathrm{E}_{8},+, \cdot, \leqslant\right)$ as in Remart: 3.2.26.

The proof of Theorem 3.2.38 is similar to the proof of Theorem 3.2.37.

We cannot classify type III ∞-skew semifields. We close this section by giving some examples.

Example 3.2.39. Let $H_{1}=1\left(2^{n}\{n \varepsilon \notin\} \times\{0\}\right) \cup\{\infty\}$. Define + , and \leqslant as follows: Letx,y $\varepsilon\left\{2^{n} \mid n \in \mathbb{Z}\right\}$ be arbitrary. Define

$$
(x, 0)+(y, 0)=\infty,
$$

$$
(x, 0) \infty=\infty=\infty(x, 0) .
$$

Then ($\mathrm{H}_{1},+, \cdot, \leqslant$) is a type III ∞-skew semifield.

Example 3.2.40. Let $H_{2}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\}$. Define + , and \leqslant on H_{2} is as in Example 3.2.24.

Then $\left(\mathrm{H}_{2},+, \cdot, \leqslant\right)$ is a type III ∞_{-}-skew semifield.

Example 3.2.41. Let $H_{3}=\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\} \times\{0\}\right) U\{\infty\} U\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\} \times\{1\}\right)$. Define and \leqslant on H_{3} as are given in Remark 3.2.11. Define + on H_{3} as follows:

Let $x, y \in\left\{2^{n} \mid n \in \mathbb{Z}\right\}$ be arbitrary. Define

Example 3.2.42. Let $H_{4}=\left(\mathbb{R}^{+} \times\{0\}\right) \cup\{\infty\} \cup\left(\mathbb{R}^{+} \times\{\infty\}\right)$. Define + , and < on H_{4} as in Example 3.2.26. $2 / 2 / 2$

Then $\left(\mathrm{H}_{4},+, \cdot\right.$, is a type III ∞-skew semifield.

Example 3.2.43. An ordered ∞-skew semifield with the trivial addition of order 2 and 3 are type III ∞-skew semifield.

ศูนย์วิทยทรัพยากร จุหาลงกรณ์มหาวิทยาลัย

