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(A1)

is used in place of A i o . Jere A, aswellas A, is a function of

(A.2)
and

(A3)

tire, as the usual, the norm of

ﬂumﬂﬂ%‘mﬂ’]ﬂ‘ﬁ o5
Wew*mwmw*ﬁ%wa ¢)

@) = Tlo . (A5)
Invariance properties (A.2) and (A.3) are guaranteed if

TExT ='x (A.6)
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. (A7)

We assert that

T = exp [E%c(—x—)] (A.8)

will do the job. First, T is_unitary, so E’q:(.54) is all right. Second, Eq.(A.6) is
obviously  satisfied because X commutes with any function of x. As for Eq.(A.7),

just note that

o } b lipont)
exp|\— Pexp = exp p, €Xp p
,,4 _‘-'ethﬁc )mv[e > (;A) -
' P eVA
' 22288\ .

F

The invariance of quah'tum mech ’;inder gauge transformations can also be

demonstrated by lookmg directly at the Scfubdmgcr equatlon Let |a,tp;t) bea
solution to the Schrgtﬁrgermmﬂmr'nrﬂwpresemofﬁ

WA /c )2 vs
{(P czAm/C) +e¢]|a,t0;t) = iﬁ%la,to;t). (A.10)

The corfesponding solution in the presence of A..must satisfy

(p-eA/c-eVA/c)2 —_ .. 2 :
[ 7m +wumw-m§me. (A.11)

We see that if the new ket is taken be

oG 45ty = exp[ ]Ia to; 1) (A.12)
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in accordance with (A.8), then the new Schrodinger equation (A.11) will be satisfied,

all we have to note is that

T N P R e

¢ fic

(A.14)
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APPENDIX B

MAGNETIC MONOPOLES
e, situated at the origin, of strength g

Suppose there is a pomt pol
analogous to a point electri @wuc field is then given by

"h-.._,
_'-_._-r -.
/ AEN
At first sight it may magneti
‘ i [ ‘

(B.1)

.1) can be derived from

(B.2)

| : > -
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axis (8'= m). In fact, it turns out to be impossible to construct a singularity-free potential

valid everywhere for this problem. To see this we first note "Gauss's law

#B-ds = 4ng
S

(B.4)
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for any surface S boundary enclosing the origin at which the magnetic monopole is

located. On the other hand., if A were nonsingular, we would have

v-(vxA)=0 (B.5)

everywhere, hence,

#B-dS=%V-(VxA)d3x=O (B.6)
S A%

in contradiction with Eq'( B )! :

fr f

However, on€ mxght argue that because the vector potential is just a device for
obtaining B, we need 'not flswt on havmg a smgle expression for A valid every where.
In order to avoid smg’ular vector potehpal Wu and Yang (1976) introduced the
following construction. They éogg_rcd s2 gﬂﬂwo patches ST and S-. And construct a

pair of potentials, et Hd-

Aa)‘;_ [g—(l—ﬂ-g)-] 5, (9 <_1'tg- 8) over S*  (B.7)

and

AD = . [M] $ A (9 > e) oyer S° (B.8)
im0

such that the potential A® can be used everywhere except inside the cone defined by
® = n - € around the negative z-axis, likewise, the potential A™ can be used
everywhere except inside the cone 6 = € around the positive z-axis, see Fig. Bl.

Together they lead to the correct expression for B everywhere.(An alternative approach
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to this problem uses A everywhere, but taking special care of the string of singularities,

known as a Dirac string, along the negative z-axis.)

must be related tq%'h othc;;); zzaugz 3 ;_6 find A appropriate for this
problem we first . - |

¢ Al A0~ (%%—)A - ®9)

AULINETREINT
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;9919 5 oA

VA=%3"+6 4 ae+¢gt§a¢ (B.10)

we deduce that

(B.11)
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Now, we get the relation
AP A® _va . (B.12)

Next, we consider the wave function of an electrically charged particle of charge
e subjected to magnetic field Eq.( B.1 ) . As we emphasized earlier, the particular form
of the wave function depends on the parhwgauge used. In the overlap region where
we may use either A or A(m the corres nﬁgﬁyave function are

= o "
_— -
_ Ziegd] i
L expl 2Bl @, (B.13)
/A fic
Wave function y® , _t : h bc single-valued because once we choose

ion of ﬁfc sﬁaie ket in terms of the position eigenkets must

--.."J' -:,;' -!'
™

mephasmd the wave function is simply an

particular gauge, the

o :l-':.n.
€ Tepea
Iy

st};'ef_-ket in t@gg the position eigenkets.

lj"

.-s +

Let us now e_.z(amme thc behavior of wav-e funcug’n @ on the equator 6 = n/2

be unique. After all, as

expansion coefficient for

with some deﬁmte-u’dlus 1, whichis a constant. When Mnmase the azimuthal angle
along the equator am:laJ go around once, say from ¢ = Q.to ¢ = 2x, y@, as well as y(O,

must return t.its.original value because each.is single-yalued. According to Eq.(B.13),
this is possible only if

2% blap .0 302101 (B.14)

So we reach a very far-reaching conclusion. The magnetic charge must be quantized in
units of

y
5% -~ 3. (B.15)

The smallest magnetic charge possible is 7ic/2lel, where e is the electronic charge.
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