CHAPTER III

FEYNMAN PATH INTEGRAL IN QUANTUM MECHANICS
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In proceeding to evaluate the geo </.ctfl:(c‘jaul- phase by path integral method, the

basic ideas of constructing the Fcy‘r'fman path integral (Feynman, 1961) will be

presented in this chap:;‘,?épﬁsent iuihis chapter the mathematical formulation of the
S

quantum-mechanical /ﬂrﬂ‘nation or the propagator, in the form of a path integral.
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Feynman Propagator LAY
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If a particle mm/ gfom one point o another point there are many possible
) -;.a' ‘.\' L
paths which the particle can ta}ge, in ternxs:gfff:lassical mechanics, when we consider
ddy it

the particle as a point, there is 2 principle of least action which expresses the condition
et S P

that determines a g‘éliticular path from among all the pgssﬁ;}e paths. For simplicity, we

will restrict oursel“l{q's to the case of a particle movin,gf’i'Jn one dimension. Thus the
position at any time ¢dn be specified by a coordinate x, 4 function of time. By the path,
we therefore mean a functionx(it }i

If A particle,starts fromy the pointx; atan initial time t, and \gaes to the final point
Xy, at tifne ty, there will be many possible paths in which the particle can travel. For

each path there exists the action S,

th
S =j Li% x EYdt, (1)
ta
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where L is the lagrangian for the system.

The principle of least action states that the particular path x( t ) in which the
- particle can travel is that for which S is a minimum. That is to say, the value of S is

unchanged in the first order if the path x( 1}15 slightly modified. This particular path

x(t) is called the classical path. _,,f‘ |
J

Quantum mect}_aaiﬁ“

specify the position of &

-

als w1 probabllltles, that is, it states that we cannot

)ﬂ w; ¢ only know the probability of its being found in
a given place. The Pr ab' 19‘ t.hat a pa_rpclc will be found to have a path x( t) lying

somewhere within the rﬁne comr;uum is the absolute square of a probability

p11m‘de is a'§so'cxatcd with the entire motion of a particle

as a function of time, rather than sunply She position of the particle at a particular

yuad
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time. Thus when we consider the path by ﬁmh the particles goes from a to b, we must

specify how much « eéch trajectory contributes to the prglgﬁlyhty amplitude K(b, a). Itis

not just the pameura{path of extreme action which comﬁbJ\JJtes, rather, it is the case that
all the paths contnbu“t’e. The contribution @ [x( t)] from a single path depends on the

classical action fer that path in units jof 7i

A[x Gy £ (const)cxp[-ﬁi—S{x(t)}]

The amplitude K(b,a), is thus the sum over all trajectories between the end points a and

b of contributions @ [x(t)],

K(ba) = 3 i Bl ()]

over all
paths fromatob
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K(ba) = Y constexp[%S{x(t)}].'(Z)

over all
paths fromato b

We have thus described the phys;cal ideas concerned in the construction of the
amplitude for a particle to reach a parucular{oﬁmn space and time by closely following
its motion in getting there. So if wewant to0 find the probability amplitude of the

¢ to carry out the sum in Eq. (2). But the number of

particle going from a g-:we
Wfini ) Eg (2) s very difficult to work with. Another method
and more efficient meth dxpﬂtmg.ﬂie sum over all paths will now be described.
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values t, and t,, where t; . | = 1&6 - | time t1 we select some special point x;

and constructing a pfth by connec‘tmg all fhe pomts SO Sercted to form aline.  This

process is shown mj‘ig 1. Tt is possible to define a sux;g bvcr all paths constructed in
this manner by takmg;a multiple integral over all valucs of x; for i between 1 and n-1,

where

ng =
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By using this method, Eq. (2) then becomes
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K(ba) = ff---Iconstcxp[ﬁiS{x(t)}]dxldxz---dxn-1.

(©)

We do not integrate X or x;, because these are the fixed end points x, and xy. In order

to achieve the correct measur : be taken in the limit € — 0 and some

normalizing factor A™ which r ' rovided in order that the limit of

(4)
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propagator.
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be constructed.
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So farjjwe have ynman s argument in wrmng down the propagator

A R T ML A (S

also be derived directly from the Schrodinger's equation. The time-dependent

Schrodinger's equation is

89 s A
[1ﬁ§;-H]w(r,t) = 0.

We can define the one-electron Green function of this equation as the solution of

N T et e T @ U




21

[ﬁ% - ﬁ]G(r,r’;t,t’) = Slr-2")3(t-t")

Thus the Green function can be written as

Eq. (5) becomes
n fi gt s
£ " factor )
i ©)

According tcmne rules of quantum mechanics'me can insert a complete set of

= HRE TRt Nens
i smhinh Gingher-

' <l‘n-1 (l-iﬂi n-2 >dl'n-2---
#
. dr2<r2 (1-i§f_§_) l'1>dl'1 <l’1 (I-E;i—’:l-) l">
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We now consider the Hamiltonian of the system in the position representation

o 2
2%;+V(r),

where p is the momentum operator. Then

<ri+l I >

i
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| 1 g\ ot V(r) H
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From quantum mechanics e m netions (r!p) for a free particle are

T
RN TUNRINYINY
1-i-ﬁ€ %+V(r)”dp
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e
We now replace 1 - lﬁi‘ %l'* V( l')} by the corresponding exponential; the error

introduced here is O (€?), so that the total error from all the n factors can be neglected.

Eq. (9) thus becomes

P2 (l'1+1 ri)}p }]
2m € "

-exp{-%V(r))

pz_zm(ri+l'ri)'p

_E_ p- 1+l'ri)}2]dp
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(10)
Substituting for Eq. (10) in Eq. (7), we obtain

. AdA, YA
) (11)
where i_ = ( Enl?%")m,r;, =8, rg =ird.

In an obvious notation

g (12)

It can be shown that the time-dependent Green function (11) of Schrédinger's
equation has exactly the same form as the Feynman propagator (4). The latter can be
written in this form by using the argument discussed at the beginning of this chapter.
As a simple example of how to obtain G( iy el % 4d ) written in the form of Eq. (12),

let us consider the case of a free electron.
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For a free electron L = n21 i-2, therefore by using Eq. (11), we obtain

clrrine) = gk [ -f oo £5 m(nepny]

ﬁJ;dJ' "
PG

we have

QWTG\"IﬂiEUlW]’JWEI’]EIEI

(21tﬁ(2£)) e ¢ 2ﬁ(2:-:)('"2 Vi)

ifie \ - 12 -
Multiplying the result by ( 21:;ﬁe ) exp { 5%8’—( r;-rp)? } and integrating over ry,

we obtain
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g

_}\_f j cxp[-ii};—{ (rl—r0)2+(r2-r1)2+(r3-r2)2)]d_;1_

f(zmmze) 2| 33ey 72 770)’]

In this way a reghirring proce S establ . ed by which, after (n-1) steps, we

obtain

= ,[ﬁ?ﬁﬁ(rn-ro)z]

\ :

since ne = t, ¥y

r and ro = therefore

ﬂuﬂﬁﬂﬂﬂ§W81ﬂi
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The method of direct integration can be carried out only for this simple case of a

free electron. For other cases, the path integral is more difficult to work out.
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In the next chapter, we will reviewed Kuratsuji and Iida’s work , in context of
the Born-Oppenheimer approximation, by the Feynman path integration method
(Moody, Shapere, and Wilczek, 1989; Aitchison, 1987) .
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