CHAPTERII
BORN-OPPENHEIMER HAMILTONIAN

The discovery of geometrical phasés'f‘;l'_‘ﬁhysics was not a sudden event. As we
have seen previously, isolated example§ of holohomy have been known in a few areas

of physics for many ye'egylﬁ quantpm mechanics of molecules, and in the analysis

of polarized light, a n}/ ﬁexamplls were analyzed using concepts equivalent to

those we would now regognize as geométncal phases, well before the recent upsurge of

interest. Clearly, Be phas could lq&gve been discovered long before it was, the

relevant quantum meeh had been in"-ﬁlat‘:c for fifty years. The impact of Berry's

paper was prepared by a ‘cadé of i mcr lg interest in geometric and topological

_‘-.. -..--.n',

ideas in physics. This mterest i turn v@ vas stimulated by the rise of fundamentally
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geometric gauge theDnes of elementary parncles, and b)/ mcreasmg recognition of the

¥ I

role of broken symrﬂ(;gy states in physics. et

; .
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The standard Born-Oppenheimer, effective Hamiltonian for nuclei was
incomplete in its_failure to predict this.behavior, and without a proper effective
Hamiltonian, actual computationsswould be difficult. This preblem was solved by
Mead and Truhlar (Mead and Truhlar, 1979) ,;who showed thét, in spite of the lack of
well-defined electronic and nuclear wavefunctions, it is possible to form an effective
Hamiltonian for the nuclei of polyatomic molecules if one introduces an external "gauge
potential” (Sakurai, 1985). The sole effect of the extra term is to create a fictitious
magnetic flux emanating from the crossing point, which produces the requisite phase

change in the nuclear wave function.




The Adiabatic Approximation

The Born-Oppenheimer approximation first arose in the context of molecular
physics (Gasiorowicz, 1974), but more generally applies whenever a system exhibits
two widely separated energy scales. This approximation is often described as a
separation of slow and fast variables. Tﬁesg, are just the vanables associated with the
different energy scales. Quantum mechamcaﬂy, the separation is made possible by the
existence of a large encrgy gap.

In original appysaﬂons 10 mola;cular physies, the gap involved is the spacing
between the electrorue" enzrgy levelsj' ThlS gap is typically much larger than the
separation between le\ge’ls ass?cmteg wxm v1brat10ns and rotations the nuclear degrees
of freedom that do not mvoLJc tb—an‘.an ge}ncnt of electronic orbitals. Now if we want to
describe the spectrum of Iow»encrgy exc1;ahons of the molecule, i.e., the excitations
with energy much less than-rthe electromc épﬁtgy gap, then we should be able to form a
description that involves only thc nuclear degrees of freedom. Indeed, at such low

energies the elec;rons have no mdepcndent dynam1cs* thcre are "enslaved" to the

nuclear degree of f'recdom because only one state is aval‘fablc to them. Therefore, it is
possible to describe tli¢ low-energy excitations by an efféctive Lagrangian involving the
nuclear degrees of freedomalofie;with no-explicitreferenceo the electrons. Of course
the value of the numerical parameters appearing in this Lagrangian will depend

impliCitly uponithe electrons:

We find this way of formulating the Born-Oppenheimer idea much more
appropriate, and easier to generalize, than the usual formulation in terms of fast and
slow variables. The connection between the two is as follows. Transitions to states
separated by a large energy gap require large changes in frequency, and are therefore
associated with fast variables. Rapid oscillations in time accompany such transitions,

and lead to cancellations in processes whose characteristic time scale is much longer,
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that is, in processes associated with motion of the slow vaﬁableé. Towards the end of
this article we shall discuss the relationship between these two approaches more
precisely. It is appropriate to mention one conclusion from that discussion now.
However, we shall find quantum variables can only be slow in a very weak sense. For
example, in a path integral description the important space-time paths are not
differentiable, and the typical velocity is Stl;iqﬂy speaking infinite even for so-called

slow variables. Nevertheless, not being fus'sy; we shall freely refer to fast and slow

o J
variables thoughout this thesis.
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In molecular ghysics, it is useful to treat the electronic and nuclear degrees of

a i :

freedom as fast and slow vaﬁables, eége’ctively This is because the gap between
electronic energy levels is typically much largcr than the gap between nuclear levels, by
a factor of order (M/m) V41 In the Bom»OpPenhexmer approximation, one solves

for the electronic states in a fixed nuclezn background. By the adiabatic theorem,

one expects relatxve!y slow motion of the nuclei. We gap thus obtain an effective

description for ﬁle nuclear motion, relative to a. ﬁ(ed electronic orbital, by
integrating over electronic coordinates. We shall find that the effective nuclear
Lagrangian obtainéd'in thistway'involves both an “ordinary potential term due to
electronic enérgy levels and a background gauge potential which couples to the
nuclear cutrent.. /This gauge potential takes into account the Béiny phase accumulated
by the electronic wave functions when the nuclear coordinates change adiabatically

(Moody, Shapere and Wilczek, 1986).

The Born-Oppenheimer approximation begins with the full Schrodinger’s

equation

(True + Ter + V) y = Ey 0
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where T, and T . are the electronic and nuclear kinetic energy terms, V(r, R)

contains the potential and interaction energies of the electrons and nucleons, and r
and R are the electronic and nuclear coordinates. The wave Function y (r, R) is

separated into nuclear and electronic components ® | and @, as
{ :
7
V(ER)= X @ (R)De(E.R) @
e J

- |
- _— - |

f r
where the subscript n 1 sthe r;:lec omc energy eigenstates in a fixed nuclear

background. That W ¥, R) stisﬁes the electronic Schrodinger equation at a

e i

i

fixed value of R

[Te+V(ry ) Q’m{r R’!‘ € (R)@n (r, R) )

Y iz -:-:-::_g

= - —

In term of the elecmgnic eigenfunctions, ‘tHc‘ f'ull Schrii?mger equation may now be

> | = =
rewritten as . X

; [Tue + € (R) J®n(R) B, fr, RY-= EZ @, (R) @x (r, R) @)

We may now integrate out the electronic degrees of freedom™to -leave a system of
equations for the nuclear wave function alone. Using bracket notation for the

normalized electronic eigenstates, we get

z (ngTnuc q>n| gn)'*’ en(R) (Dm =E (Dm (5)
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The nuclear kinetic energy operator T, = #V [2m operates on both the nuclear
and electronic wave functions, @ ;(R) and |@,(r, R)). Thus the kinetic energy terms

in Eq.(5) are proportional to

(@R @) B0) = 3 (B Vi + (B[R cak))(sh. Vr+@VR 2:))
k
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ies when the mixing between

different electronic .dlagonal matrix elements in

Eq.(6) can be neglecied. If,+fu 1 ronic states can be chosento be real
for each R, then ) e
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The peculiar extra term may be rewfitten as follows
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Hence, when the energy splittings between level n and the other levels are large, this
term may be neglected. Berry has pointed out that it is proportional to the trace of the

"natural matrix" on projective Hilbert space (Berry, 1989).

However, it is not always possible to form a basis of electronic wave
functions that are everywhere real. Furthermore, corrections to adiabatic evolution
will involve mixing of electronic leveisf To.account for both of these possibilities,

we introduce the "Gauge potential” netation

Wil vk 8) ©)
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Putting together Eq.”(4),,-*ﬁq:(5) gin& Eq;i9)‘, we can write a complete matrix-value
F 4 4,

Schrédinger operator for t},le rmcleaf wave functions

poces. ' N
Ao = - 2 36l i Ak (B) - (Bin Vi - i Ak (R)) + Sa 0 (R)
y b TN
N\ 4ERT (10)
which acts on the ve%.or D, “_a
oeff :
Hpn @n. = ED;, (11)

Eq.(¥1) shows the nuclear-wave funections, change from, eigenstate n to m (the

Schrodinger operator is, of course, associated with an effective Hamiltonian after the

replacement  -iiVg =p g ).

In the Born-Oppenheimer approximation, the effect of the off-diagonal

matrix elements A, which mix different energy levels is ignored . Then for a
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nondegenerate electronic level, the effective nuclear Schrodinger operator in the

Born-Oppenheimer approximation is then simply

~BO n ; 2 ~
T b A -Zﬁ(VR-IA,,(R)) +%a(R) (12)
! F
where A, = A, /7

Eq. (12) looks hke thc Schrovdmger operator of a charged particle in the

presence of a backgr: /n(gnenc pégenual To further strengthen this analogy,
ﬂ‘ansforms hkes a U(1) gauge potential, as we shall now

the vector field A yz}h

explain. The phase ‘(( ;&ciwa-ve Cthl’lS |3, (R)) is arbitrary, and our

description of the dyn, j/ the nucleunust always respect this arbitrariness. The
brin

use of a vector potenti gs out thqr jfact that our description possesses the

freedom of performing gauge n'ansformakions in analogy with electromagnetism

[ Appendix A ]. Thc effect oﬂ&-ﬁdeﬁnmbﬁ;oﬁphases of electronic wave functions

e .‘Ii i'r |
7 A (R) \¥
|Bn (R)) _)"ellA' |Bn (R)) r (13)
is to rotate the'nuclear wave functions oppositely
@R)) 7 A FFR)) (14)

so that the full wave function y (1, R) is preserved. From Eq.(9), we see that the gauge

potential transforms just as it should

Ap(R) » A, (R)+ VRAL(R) (15)
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and it is easy to see that the overall effect of the phase redefinition is to leave the

nuclear Schrodinger equation invariant (including the term (8)).

We conclude that the nuclei behave like charged particles in a magnetic field

B (B =V xA,, Gauss’s law ). Semiclassically speaking, when the nuclei go
around a closed path, the wave. ' ion will accumulate a geometrical phase
' xim phase is nothing but Berry's phase in

quantum mechanical c@e’pl@e ‘ evolving electron wave functions

accumulate when thei

proportional to the enclose
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down to the nuclear wa
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