CHAPTER II

EXPERIMENTAL

1. Chemicals and Equipment

Acid chlorides were obtained from Fluka and were used as received. S-(2-Aminoethyl) isothiouronium bromide hydrobromide was obtained from Aldrich Chemical Company and used without further purification.

Melting points were measured with cover glass sample holder electrothermal melting point apparatus.

Microanalyses were carried out by AMDEL (Austalia) and by technical staffs at the Scientific and Technological Research Equipment Centre (STREC) of Chulalongkorn University using the elemental analyser, Perkin Elmer, model 240C.

Spectroscopic measurements were obtained by Technical staffs at the (STREC).

The following machines were used to obtain the UV, IR, NMR and Mass spectrometer respectively:-

UV-visible spectrophotometer, Hitachi, model UV-220A.

Infrared spectrophotometer, Shimadzu, model IR-440.

Fourier transform NMR spectrometer, Jeol, model JNM-FX90Q. at 21.1 Tesla.

GC/MS spectrometer, Jeol, model JMS-DX 300/JMA 2000, with electron ionization source.

2. Preparation of 2-Guanidinoethyltrithiocarbonate zwitterion

S-(2-Aminoethyl) isothiouronium bromide hydrobromide 1.4 g. (0.005 mole) was dissolved in water 3.75 ml. and treated with concentrated ammonium hydroxide 0.75 ml. Carbon disulfide 1 ml.was added dropwise with stirring into the resulting solution of 2-mercaptoethylguanidine which was placed in an ice bath. A bright yellow precipitate was isolated and (1) was recrystallized from water and ethanol . The yield was 0.7 g. (72%) m.p. $138-139^{\circ}$ C.

General Preparation of N,S-Diacyl-2-mercaptoethylguanidine hydrochlorides (S-series compounds)

A mixture of the acyl chlorides (5.5 mole) and 2-guanidinoethyltrithiocarbonate zwitterion (1 mole) and pyridine (1-2 drop) was heated on a steam bath for 1 hour. The reaction mixture was cooled, ether was added, then kept refrigerated for 24-48 hours. The resulting crystals were then filtered and washed with cold ether. The product was recrys-(1) tallized from ethanol . The yield and melting points are shown in Table I.

Table I The preparation of N,S-diacyl-2-mercaptoethylguanidine hydrochlorides (S-series compounds)

5.4

٠

S-11

	Acid chlori	des use	d	*GE	Т	Yield	m.p	.(°C)
Compound No.	Structure	ml.	Mole	Mole	wt. (g.)	(%)	Found	Lit.
S-6	н ₃ с-(сн ₂) ₄ -с-с1	1.0	0.007	0.0012	0.23	46	81-82	(1 83-86
S-7	н ₃ с-(сн ₂) ₅ -с-с1	0.5	0.003	0.0005	0.10	71	83-84	87-89
S-8	н ₃ с-(сн ₂) ₆ -с-с1	0.8	0.005	0.0009	0.18	84	92-93	94-95
S-9	н ₃ с-(сн ₂) 7-с-с1	0.7	0.004	0.0009	0.18	82	94-95	95-96
S-10	н ₃ с-(сн ₂) 8-с-с1	0.8	0.004	0.0009	0.18	92	99-100	99-100
	0		1	-	2			(

0.025

+ NH2

0.0064

1.25

69

NH.HC1 0 0 0

GET = 2-guanidinoethyltrithiocarbonate zwitterion; H₂N-C-NH-CH₂-CH₂-CH₂-S-C-S

H₂C=HC-(CH₂)₈-C-C1

26

(2) 85-86

85-86

Optimization of the Thermal Reaction of N, S-Diacy1-2-mercaptoethylguanidine hydrochlorides (S-series compounds)

For this purpose a previously dried (6 hours at 56° C) sample of N,S-diacyl-2-mercaptoethylguanidine hydrochlorides kept at various temperatures (room temperature -200° C) for various times (1-10 hours) in air or under N₂ atmosphere. The solvent was also varied (DMF or DMSO + pyridine) but experiments were also carried out without a solvent. At the end of the experiment, the reaction mixture was examined by TLC using alumina and, as the eluent, 80% hexane and 20% acetone. The conditions and results are displayed in Table II. The reaction products were designated as S (starting material), A, B, C in the order of R_f values from lower to higher and U (unidentified product). Their relative amounts were estimated, by taking the initial as 10, from the densities of the I₂-complex colour on TLC plates whenever trace amount was obtained it was designated as T.

ุศูนย์วิทยทรัพยากร หาลงกรณ์มหาวิทยาลัย ((โก้กิ))

27

Table II The investigation of thermal reaction products from N,S-diacyl-2-mercaptoethylguanidine hydrochlorides O NH·HCl O (R-C-NH-C-NH-CH₂-CH₂-S-C-R) under various conditions

٠

									Cor	diti	ons ar	nd Pr	oducts						
ompound	R					In A	ir		1		Under	: N2		1	Redu	ced P	ressu	re	- ^R f
No.		Temp. (°C)	Heating Time		R	el. A	mount			R	el. An	nount			R	el. A	mount		
			in hr(s)	S	A	в	С	U	S	A	В	С	U	S	A	В	С	U	
S-6 C	C5 ^H 11	160	1 2 3			1		34	<9 5 1	1 2 <3	- <1 1	Т 1 2	- >1 >3						S-6 = 0.57
S-7 C	^C 6 ^H 13	160 170 180 190 200	1 2 3 4 5 6 7 8 9 10 1 2 1 2 1 2 1 2	<1	2	>1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 >>7 <<7 >4 3 <2 <1 T - - 8 >5 <5 >1 3 1 2 T	<1 1 >1 <2 2 >2 <3 3 3 >3 <1 <2 2 3 2 3 2 1	T <1 1 <2 2 >2 >2 <3 <3 <3 <3 <3 1 2 >2 3 2 <3 1 2 <3 1 <1	- <1 1 >1 <2 >2 2 <2 >1 T <1 2 1 2 1 1 <1	- T 1 >1 <2 2 >2 2 >2 <3 - T T <1 1 >2 <3 - T 1 >2 <3 - T 1 >2 <3 - T <1 <2 2 >2 <3 - T 5 - T <1 <2 2 >2 <3 - T <1 <1 >2 <2 <3 - T <1 - - - - - - - - - - - - - - - - - -	>9 >>7 >>6 <5 3 >>1 T	T <1 >1 2 3 3	T <1 <1 1 <1 <1 <1	T <1 <1 1 <1 <1 <1	- T 2 3 4 >5	S-7 = 0.59 A = 0.04 B = 0.46 C = 0.61

>

28

Table II Continued

٨.

									Con	ditio	ns an	d Pro	ducts						
Compound	R					In Ai	r			13	Under	N ₂			Reduc	ced Pr	ressur	e	R _f
No.		Temp. (°C)	Heating Time		Re	el. An	ount		1	Re	el. Am	ount			Re	el. A	mount		
			in hr(s)	S	A	В	С	U	S	A	В	С	U	S	A	в	С	U	
S-8	C7 ^H 15	RT.	48 72	10 10	-	-	-	2					-						S-8 = 0.61 A = 0.04
		80	1	10	-	-	-	-	10.1										B = 0.54 C = 0.65
		110	1	10	-	-	-	-	1										
		140	1	10	-	-	-	-	4000										
		160	1 2 3 4 5 6 7 8 9 10	>9 >>7 <6 <5 <<4 <<2 T	T <1 >1 >>1 >>1 <<2 2	T T <1 >1 >>1 <2	T <<1 <1 >1 >>1 <2	T 1 >1 2 <<3 4 >>4	>9 >>7 <5 4 3 <2 <1 <<1 T	T 1 >1 <2 2 >2 >2 >>2 <3 3 3	T <1 1 2 >2 >>2 3 >3 3 <3	T <1 >1 >>1 <<2 <2 2 2 <2 <2	- - - - - - - - - - - - - - - - - - -	>9 8 <6 <<5 3 >2 T	- T >1 1 2 >2 3	T <1 >1 >1 <1 <1 <1	T <1 >1 >1 <1 <1 <1	- 1 2 3 4 5	
		170	1 2						<8 5	1 <2	1 2	T 1	T			•			
		180	1 2	1	2	1	1	5	5 2	2 3	2 3	<1 <2	T T	01					
		190	1 2	2					4 >1	2 3	2 3	<2 1	т <2	0					
		200	1 2						2 T	2 1	2 1	1 <1	3 7						

-

*

Table II Continued

*

									Con	ditio	ons ar	nd Pro	ducts						
						In Ai	r			2	Under	N2			Redu	ced P	ressu	re] _p
Compound No.	R	Temp. (°C)	Heating Time		Re	1. An	ount		Ĭ.	Re	1. Am	ount			R	el. A	nount		R _f
			in hr(s)	S	A	В	С	U	S	A	В	С	U	S	A	В	С	U	
S-9	C8H17	RT	48 72	10 10	-	-	-	1	(Ca)										S-9 = 0.62 A = 0.04
		80	1	10	-	-	-	-	0										B = 0.59 C = 0.66
		110	1	10	-	-	-	-	1201										10 (3000)
		140	1	10	-	-		-											
		160	1 2 3 4 5 6 7 8 9 10 1	>9 >7 >>6 5 4 >2 T	T <1 1 >1 <<2 2 >2	T T <1 1 >1 <2	T <<1 <1 1 >1 <<2 <2	T 1 >1 2 >2 3 4	>9 >>7 <7 5 <4 3 2 1 <1 T <8 >5	T 1 2 >2 >2 <3 3 >3 >3 >>3 1 <2	T <1 1 <2 2 >2 >>2 <3 3 <3 1 2	T <1 >1 >>1 <<2 <2 <2 <2 <2 <2 <2 <2 <2 <1	- - - - - - - - - - - - - - - - - - -	>9 >>8 <5 <3 <2 T	- T <1 1 <2 >2 3	T <1 >1 >1 >1 <1	- <1 >1 >1 >1 <1	- T 2 3 4 5	
		180	2 1 2	1	2	1	>1	<5	>>5	<2 <2 <3	<2 <3	<1 <1 <2	T T	21					
		190	1 2	1					4 >1	2 3	2 3	<2 1	т <2	1					
		200	1 2						2 T	2 1	2 1	1 <1	3 7						

-

2

Table II Continued

.

									Con	ditio	ns an	d Pro	ducts						
Compound		Temp.	Heating Time			In Ai	r			2	Under	N ₂			Reduc	ed Pr	essur	ce	
No.	R	(°C)	in hr(s)		Re	el. Am	ount			Re	1. Am	ount			Re	1. Am	ount		Rf
				S	A	В	С	U	S	A	В	С	U	S	A	В	С	U	
S-10	C9H19	RT	48 72	10 10	-	1	-	1											S-10 = 0.63 A = 0.04
		80	1	10	-	-	-	4	01										B = 0.61 C = 0.72
		110	1	10	-	-	-	-											1000 Beautodate
		120	1	10	-	-	-	-											
		140	1	10	-	-	-	-											
		152	1 2	10 10	-	-	1	:	1										
		160	1 2 3 4 5 6 7 8 9 10	>9 >7 6 5 <<4 <2 T	T <1 >1 <2 2 >2	T T <1 1 >1 >>1 >>1 >2	T <<1 1 >1 >>1 <2 <2 <2	T 1 2 2 3 <4	>9 >>7 <7 5 <4 <3 2 1 <<1 T 8	T 1 >1 2 >2 >>2 <<3 <3 3 3 3 1	T <1 1 <2 2 >2 >>2 <3 3 3 <1	T <1 >1 >>1 <2 2 >2 2 2 2 2 2 7	- - T <<1 1 >1 >>1 <2	9 <7	- T	T 1	T 1	ī	
		170	1 2	11					8	1 2	<2	Т 1	- T	۲.					
		180	1 2	1	2	>1	1	< 5	>5 <2	2 3	<2 3	<1 2	T T	<5 T	1 T	T T	T T	4 >9	

Table II Continued

*

									Cor	ditio	ons ar	nd Pro	oducts						
		2				In A	ir				Under	N ₂			Reduc	ed Pr	ressu	ce	D
Compound No.	R	Temp. (°C)	Heating Time		Re	1. An	nount		L.L.	R	el. An	nount			Re	el. An	nount		Rf
			in hr(s)	s	A	В	С	U	S	A	В	С	U	S	А	В	С	U	
S-10		190	1 2						4 >1	23	2 <3	<2 >1	т <2						
		200	1 2						2 T	2 1	2 1	1 <1	3 7						
S-11	H ₂ C = CH-	RT	48 72	10 10	-	-	-	-	120										S-11 = 0.5 A = 0.04
	(CH2)8	80	1	10	-	-	-	-											B = 0.61 C = 0.68
	20	110	1	10	-	-	-	-											A.25-9000
		140	1 .	10	-	-	-	-											
		160	1 2 3 4 5 6 7 8	>9 >>7 >>6 5 <4 2 1 T	T <1 >1 <2 >2 >>2 <2	T T <1 1 >1 <2 2 <2	T T <1) 1 >1 <2 2 >2	T <1 1 <2 2 >2 3 >4	>9 >>7 7 5 <4	T 1 >1 2 >2	T <1 1 >1 <<2	T <1 >1 >>1 >>1	- T <1 1						s = 1
		170	1 2 3 4 5	1					8 >>6 >>4 3 1	<1 1 <2 2 <3	<1 1 <2 2 <3	T <1 1 <2 2	T <1 >1 >1 >>1	Ľ					

+

7

32

Table II Continued

4

						K			Cor	nditic	ons an	d Pro	oducts						
			Washing			In Ai	lr				Under	N2			Reduc	ed Pr	essur	e	
Compound No.	R	Temp. (°C)	Heating Time		Re	el. An	nount		Ĩ	Re	1. An	ount			Re	1. An	nount		R _f
			in hr(s)	S	Α	В	С	U	S	A	В	С	U	S	A	В	С	U	1
S-11		180	1 2 3 4 5	<<1	>2	1	1	>5	>5 <4 2 1 T	2 >2 <3 3 >3	<2 2 >2 <<3 3	<1 1 <2 2 >2	T 1 >1 >>1 <<2						
S-12	C ₁₀ H ₂₁	160	1 2 3 4 5						>9 >8 >7 >5 <4	T <1 1 2 >2	T <1 1 <2 2	T T <1 1 >1	- - T <1						S-12 = 0.67 A = 0.04 B = 0.64 C = 0.74
		170	1 2 3 4 5						>8 >>6 4 <3 1	<1 2 >2 >>2 3	<1 1 <2 2 <3	T <<1 >1 <2 2	T <1 1 >1						
		180	1 2 3 4 5	T	>2	<2	<2	74 5 0	>5 4 >2 1 T	2 <3 3 3 >3	2 >2 < 3 3 3	<1 1 >1 <2 2	T T <1 1 <<2	٤J					

7

5. Preparation of 2-Amino-2-thiazoline hydrochloride (A-series compound) by Thermal Reaction of N.S-Diacyl-2-mercaptoethylguanidine hydrochlorides (S-series compounds)

A previously dried sample of N,S-diacy1-2-mercaptoethylguanidine hydrochlorides (0.05-3.26 g.) were heated at 180° C for various periods of 2-7 hours either under ordinary condition in air or under nitrogen. The cooled reaction mixture was then added with acetone to precipitate a crystalline product which was separated from the solution by rinsing. The separated liquid was repeatedly added with acetone to obtain more cyrstalline product. While the liquid was kept for further separation of other compounds, the crystalline product was collected, dissolved in methanol, and treated with activated carbon for 30 minutes. After filtration of the solution, the solvent was almost completely evaporated then some more acetone was added to yield white needles of 2-amino-2-thiazoline hydrochloride m.p. $194-203^{\circ}$ C R_f = 0.04. It is soluble in methanol and water but insoluble in carbontetrachloride. The results and elemental analysis are shown in Table III.

The spectroscopic data of 2-amino-2-thiazoline hydrochloride (A-series compound) are shown in Table IV.

จุฬาลงกรณมหาวทยาลย

	Weig	ht(g.)		ating (hrs.)				2ml d			Produ	uct					
Compound No.	In	Under	In	Under	Yie	ld (%)	m.p.*				Elen	nental A	Analysis	(%)			
	Air	N ₂	Air	N ₂	In Air	Under N2	(°C)	A len le		Found				Calcd	for C ₃	H ₇ N ₂ SC1	
						1		С	H	N	Cl	S	C	Н	N	C1	S
S-7	0.05	2.79	2	3	94	92	200-202	25.98	5.07	20.20	-	21.7					
S-8	0.05	2.67	2	3	89	92	200-202	24.19	5.54	20.07	28.4	-					
S-9	0.05	3.26	2	3	86	90	200-203	24.74	5.17	20.44			25.99	5.09	20.21	25.58	23.13
S-10	0.06	3.05	2	7	89	98	198-201	24.43	5.13	20.11	-						
S-11	0.05	0.66	2	5	88	90	199–201	-	-	-	-						
S-12	0.06	1.06	2	5	89	92	194-196	ยทา	5 91 8	าก	ว						

Table III The preparation of 2-amino-2-thiazoline hydrochloride (A-series compound) by thermal reaction of N,S-diacyl-2-mercaptoethylguanidine hydrochlorides (S-series compounds) at 180°C.

* The m.p. of this compound was previously reported as 196-198 (15) and 198°C (19).

5

A.

I 15775355 .

A.

Table IV Spectroscopic data of 2-amino-2-thiazoline hydrochloride

Spectra from	Signals	Assignments
IR λ_{\max} (KBr)	3260	N-H stretching
(cm^{-1})	130000000000000000000000000000000000000	104 ID RETURN BURNING TO A
(cm)	3000-3100	C-H stretching coupling with N-H streching
	1660	C=N stretching
	1400-1440	C-N stretching and N-H bending
	660-700	N-H bending
UV max (nm)	240.5	double bond
¹³ C NMR	172.73	-C=N-
(DMSO) (ppm)	48.38	- <u>CH</u> 2-N-
(ppm)	30.83	- <u>CH</u> 2-S-
1 _{H NMR} (DMSO)	t 3.46-3.63	-с _{H2} -s-
δ(ppm)	t 3.82-3.98	$-C\underline{H}_2-N-$
	br 9.76	-NH ₂
MS (m/e)	103	M ⁺ -C1
	102	M ⁺ -HCl
	101	M ⁺ -HC1,-H' .s ⁺
·	60	CH2-CH2-S+, CH2-CH2 S+
	59	$CH_2 = CHS^+$, $S-C \equiv NH$, $CH_2 - CH$
	56	$\dot{CH}_{2}^{2}-N=C-NH_{2}^{2}, \dot{CH}_{2}^{2}-N\equiv C-NH_{2}^{2}$
0.980	55 55	$ \begin{array}{c} 2 \\ CH \\ + 2 \end{array} \begin{array}{c} 2 \\ NH \\ + \end{array} \begin{array}{c} 2 \\ H \\ + \end{array}$
าทเ	45	CH=S, NH=CH-NH ₃ +
	44	H=CH-NH, HN=C-NH,
	43	$ \begin{array}{c} \text{NH}=\text{CH}-\text{NH}_{2}, \text{ HN}=\text{C}-\text{NH}_{3} \\ \text{N}\equiv\text{C}-\text{NH}_{3} \\ \text{H} \end{array} $
	42	+· ³ N≡C−NH ₂
		2

(A-series compound)

A

6. <u>The Preparation of Aliphatic primary amides (B-series compounds) and</u> <u>of N,N-Diacyl-cystamines (C-series compounds) by the Thermal Reaction</u> <u>of N,S-Diacyl-2-mercaptoethylguanidine hydrochlorides (S-series</u> <u>compounds</u>)

Procedure 6.1 (in air)

N,S-Diacy1-2-mercaptoethylguanidine hydrochlorides (0.05 g.-0.06 g.) were heated for 2 hours at 180° C. The cooled reaction mixture was then added 2 ml.of acetone to separate the crystalline product of 2-amino-2thiazoline hydrochloride from the solution. The components in the liquid was further separated by preparative layer chromatography (alumina, eluent, 80% hexane: 20% acetone). The bands with $R_f = 0.46-0.64$ (for B-series compounds) and $R_f = 0.61-0.74$ (for C-series compounds) were separately collected and extracted with chloroform, then the volume of each collected solvent was evaporated on water bath and some hexane was added to crystallize the resulting white needles (for B-series compounds) and white amorphous precipitates (for C-series compounds). The products of both series are shown in Table V and VI respectively.

Procedure 6.2 (under N2)

In those experiments which were carried out in the absence of air (under N₂). After the addition of acetone to separate the cyrstalline product of 2-amino-2-thiazoline hydrochloride the liquid portion was further separated to obtain the desired products of aliphatic primary amides (B-series compounds) and N,N-diacyl-cystamines (C-series compounds) by column chromatography on alumina and using mixed hexane: acetone as eluent. Conditions for the preparation are also shown in Table V and VI. Details of the separation are shown in Table VII.

All of the products are soluble in chloroform and slightly soluble in hexane. However, the products of B-series compounds are slightly soluble in hexane and water while the products of C-series compounds are slightly soluble in hexane and insoluble in water.

The elemental analysis of both aliphatic primary amides (B-series compounds) and N,N-diacyl-cystamines (C-series compounds) are shown in Table VIII and Table XIV respectively. Those spectroscopic data of UV, IR, ¹³C NMR, ¹H NMR, MS for the B-series compounds are displayed in Table IX to Table XIII. While those for the C-series compounds are shown in Table XV to Table XIX.

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Startin	ng Materia	ls	Heating	Time (hrs)			Products		
Compound	Wei	ght(g.)			Designated	Yie	ld (%)		m.p. (⁰ C)
No.	In Air	Under N ₂	In Air	Under N2	B-Series Compounds	In Air	Under N2	Found	Lit.
S-7	0.05	2.79	2	3	B-7	13	57	90-92	93-94 ^(151,152) 95-96 ⁽⁵⁷⁾
S-8	0.05	2.67	2	3	В-8	14	49	100-102	106.5-107.5 ⁽¹⁵³⁾ 107-108 ⁽⁹⁰⁾ 104-105 ⁽¹⁵⁴⁾
S-9	0.05	3.26	2	3	B-9	14	49	93-95	98.7-99.1 ⁽¹⁵⁵⁾ 92-94 ⁽¹⁵⁶⁾
S-10	0.06	3.05	2	7	B-10	36	51	93–95	97.6-98.2 ⁽¹⁵⁵⁾ 99.5-100 ⁽⁷⁵⁾ 103 ⁽¹⁵⁷⁾
S-11	0.05	0.66	2	ร	B-11	34	46	81-83	87.0-87.5 ⁽¹⁵³⁾ 87 ⁽¹⁵⁸⁾ 85-86 ⁽⁷²⁾
S-12	0.06	1.06	2	5	B-12	32	49	91-93	98.0-98.7 ⁽¹⁵⁵⁾ 97.5-99 ⁽⁷⁵⁾

Table V The preparation of aliphatic primary amides (B-series compounds) by the thermal reaction of N,S-diacyl-2mercaptoethylguanidine hydrochlorides (S-series compounds) at 180°C

.

~

7

×.

Star	ting Mate	rials	Heating	Time (hrs)		Pr	oducts		4
Compound	Weig	ht(g.)	/		Designated	Yie	1d (%)	m.p.	(°C)
No.	In Air	Under N ₂	In Air	Under N2	C-Series Compounds	In Air	Under N ₂	Found	Lit.
S-7	0.05	2.79	2	3	C-7	28	14	108-110	-
S-8	0.05	2.67	2	3	C-8	18	22	114-116	-
S-9	0.05	3.26	2	3	C-9	18	16	115-117	-
S-10	0.06	3.05	2	7	C-10	20	46	119-121	-
S-11	0.05	0.66	2	5	C-11	30	12	101-103	-
S-12	0.06	1.06	2	5	C-12	22	10	98-100	-

Table VI The preparation of N,N-diacyl-cystamines (C-series compounds) by the thermal reaction of N,S-diacyl-2-mercaptoethylguanidine hydrochlorides (S-series compounds) at 180°C

>

จุฬาลงกรณ์มหาวิทยาลัย

40

×

Starting	Materials	Heating Time (hrs.)		Separation	for those U	nder N ₂ (Proce	dure 6.2)
Compound No.	Weight(g.)		Eluent Hexane:Acetone	Separated Fractions	Flow Rates ml./min.	Total Volume (ml.)	Fractions obtaining the products
S-7	2.79	3	100:0 90:10 90:10	1-9 10-14 15-70	1.7 1.4 1.4	900 500 2800	- 15-18 (C-7) 21-70 (B-7)
S-8	2.67	3	100:0 90:10 90:10	1-9 10-13 14-71	2.3 1.5 1.5	9 00 400 2 850	 14-20 (C-8) 22-71 (B-8)
S-9	3.26	3	100:0 90:10 75:25	1-9 10-13 14-24	3.5 3.7 3.9	900 400 550	- 14-17 (C-9) 18-23 (B-9)
S-10	3.05	7	100:0 90:10 75:25 0:100	1-3 4-7 8-12 13	2.3 2.5 2.5 2.5	1300 800 1380 1600	8 (C-10) 9-10 (B-10)
S-11	0.66	5	100:0 90:10	1 1-26	2.7 3.0	300 1250	4-6 (C-11) 9-25 (B-11)
S-12	1.06	5	100:0 90:10	1 2-12	1.8	300 550	3 (C-12) 4-11 (B-12)

٣

>

Table VII The separations of aliphatic primary amides (B-series compounds) and N,N-diacyl-cystamines (C-series

,

compounds) by column chromatography

*

ฉหาลงกรณมหาวทยาลย

Table VIII The elemental analysis of aliphatic primary amides (B-series

Compound No.	Calcd. and Found	C (%)	H (%)	N (%)	0 (%)
B-7	Calcd. for C7H15NO	65.07	11.70	10.84	12,38
	Found	65.08	11.77	10.83	12.10
B-8	Calcd. for C8H17NO	67.07	11.96	9.78	11.17
	Found	67.45	11.96	9.84	11.04
B-9	Calcd. for C ₉ H ₁₉ NO	68.74	12.18	8.91	10.17
	Found	68.68	12.18	8.96	10.25
B-10	Calcd. for C ₁₀ H ₂₁ NO	70.12	12.33	8.18	9.34
	Found	70.02	12.42	8.01	9.51
B-11	Calcd. for C ₁₁ H ₂₁ NO	72.08	11.54	7.64	8.73
	Found	71.34	11.45	7.57	9.03
B-12	Calcd. for C ₁₁ H ₂₃ NO	71.29	12.51	7.56	8.63
	Found	71.21	12.45	7.66	8.59
	าย่าวิทยุทรัพย	125			

compounds)

Compound No.	λ _{max} (nm)	Assignments
B-7	239.5	
B-8	240.0	S
В-9	239.5	double bond
B-10	239.5	double bond
B-11	239.5	
B-12	240.0	

Table IX The UV spectra of aliphatic primary amides (B-series compounds)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Absorption KBr peaks max (cm ⁻¹) pound No.	3398-3198	2950-2850	1668-1618	1428-1410	705–695	645-630
B-7	3365, 3199	2920, 2880	1660, 1630	1420-1410	695	635
B-8	3360, 3198	2910, 2850	1660, 1630	1425-1415	702	640
B-9	3350, 3198	2905, 2850	1660, 1635	1415-1410	698	638
B-10	3360, 3199	2905, 2850	1665, 1635	1425-1415	705	645
B-11	3360, 3199	2920, 2850	1630, 1618	1422-1416	700	630
B-12	3398, 3205	2950, 2895	1668, 1640	1428-1419	701	639
Assignments	antisymmetric N-H stretching, and symmetric N-H stretching	antisymmetric C-H stretching, and symmetric C-H stretching	C=O stretching (amide I band) was coupling with N-H bending (amide II band), and N-H in plane bending (amide II band)	1112	N-H out of-plane bending (amide V band)	0-C-N bending (amide IV, VI band)

>

.

۶.

Table X The IR spectra of aliphatic primary amides (B-series compounds)

2

*

Carbon positions Compound No.	C-1	C-2	C-3	C-4	C-5	C _{t-4}	C _{t-3}	C _{t-2}	c _{t-1}	C _t
B-7	175.87	36.03	25.57	28.99	-	-	-	31.59	22.49	13.92

29.26

29.10

29.31

29.31

29.09

28.87

29.15

29.31

-

-

29.31

Table XI The ¹³C NMR spectra in ppm of aliphatic primary amides (B-series compounds) in CDC1₃

25.63

25.48

25.63

25.59

36.03

35.87

36.03

36.03

175.70

175.93

175.92

175.79

B-8 Found

B-9

B-10

B-8 Lit.⁽¹⁵⁹⁾

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

45

,

13.98

13.93

13.98

14.10

22.59

22.48

22.65

22.72

31.75

31.55

31.86

31.92

-

29.15

29.31

Signals (δ) Compound No.	0.88 (br t)	1.27-1.30 (br s)	1.61-1.79	2.14-2.31 (t)	5.60-6.11 (br)
в-7	0.88	1.30	1.62	2.14-2.31	6.11
в-8	0.88	1.30	1.61	2.14-2.31	6.10
в-9	0.88	1.27	1.63	2.14-2.31	5.60
B-10	0.88	1.27	1.79	2.14-2.30	5.60
Assignments	-CH3	$ \begin{array}{c} 0 \\ \parallel \\ -C-CH_2-CH_2-(CH_2)_n^{-CH_3} \\ n = 3-6 \text{ respectively} \end{array} $	о " -С-СН ₂ -С <u>Н</u> 2-	о " -С-С <u>н</u> 2-	- <u>NH</u> 2

ศูนยวิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Compound No.	peaks (m/e)	Assignments
	40	on on th
	43	CH ₃ -CH ₂ -CH ₂
	0.000	0+ III
	44	C-NH2
		:0-H
B-7, B-8, B-9, B-10, B-11, B-12	59 (base peak)	^{CH} 2 ^{=C-NH} 2
		+ 0
	72	⁺ _{CH2} -CH2-C-NH2
	0.200	OH
	73	сн ₂ -сн ₂ -с-мн ₂
	86	$H_2 N - CH_2 - CH_2 - CH_2 - CH_2 = 0$
		0
B-8, B-9, B-10, B-11, B-12	114	$\left[-\left(CH_{2}\right)_{5}-C-NH_{2}\right]^{+}$
	with the second second	0 +
B-7	129 (M ⁺)	(CH ₃ -(CH ₂) ₅ -C-NH ₂) [†]
		(CH ₃ -(CH ₂) ₆ -C-NH ₂) ⁺
B-8	143 (M ⁺)	$[CH_3 - (CH_2)_6 - C - NH_2]$
B-9	157 (M ⁺)	[CH ₃ -(CH ₂) ₇ -C-NH ₂] ⁺
B-10	DIAND	
B-10	128	$(M^{+}) - \dot{c}_{3}^{H} $
	in at	[CH ₃ -(CH ₂) ₈ − ^U _{C−NH₂]⁺}
	171 (M ⁺)	$\left[\left[\left[CH_{3}^{-} \left(CH_{2} \right)_{8}^{-C-NH} \right] \right] \right] \cdot$
B-11	140	(M ⁺)-c ₃ H ₇
	1	(CH2=CH-(CH2)8-C-NH2) ⁺
	183 (M ⁺)	
B-12	142	$(M^{+}) - \dot{c}_{3}H_{7}$
		0
	185 (M ⁺)	(cH ₃ -(CH ₂) ₉ -C-NH ₂] ⁺

Table XIII The MS spectra aliphatic primary amides (B-series compounds)

Table XIV The elemental analysis of N,N-diacyl-cystamines (C-series

Compound No.	Calcd. and Found	C (%)	H (%)	N (%)	0 (%)	S (%)
C-7	Calcd. for C ₁₈ H ₃₆ N ₂ O ₂ S ₂	57.40	9.63	7.44	8.50	17.03
	Found	57.59	9.90	7.90		22.50
C-8	Calcd. for $C_{20}H_{40}N_2O_2S_2$	59.36	9.96	6.92	7.91	15.85
	Found	59.11	10.08	6.82		15.60
C-9	Calcd. for $C_{22}H_{44}N_2O_2S_2$	61.06	10.25	6.47	7.39	14.82
	Found	60.89	10.24	6.77		
C-10	Calcd. for $C_{24}H_{48}N_2O_2S_2$	62.56	10.50	6.08	6.94	13.94
	Found	62.77	10.40	5.99		
C-11	Calcd. for $C_{26}H_{48}N_2O_2S_2$	64.42	9.98	5.78	6.60	13.23
	Found	63.84	9.95	5.53		
C-12	Calcd for $C_{26}H_{52}N_2O_2S_2$	63.88	10.72	5.73	6.55	13.12
	Found	63.06	10.29	6.48		1

compounds)

Compound No.	^λ max (nm)	Assignments
C-7	248.5	
C-8	241.5	double bond
C-9	242.5	
C-10	241.0	

Table XV The UV spectra of N, N-diacyl-cystamines (C-series compounds)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Absorption peaks max (cm ⁻¹) Com- pound No.	3320-3300	2940-2845	1640-1635	1545-1540	1205-1198	705–675	585-425
C-7	3301	2920, 2850	1638	1542	1205	700, 682	580
C-8	3300	2910, 2845	1638	1540	1201	702, 678	580, 425
C-9	3305	2920, 2885	1638	1545	1200	705, 680	585
C-10	3301	2920, 2850	1635	1545	1198	700, 675	578, 445
C-11	3320	2940, 2880	1640	1545	1199	705, 680	585
C-12	3310	2930, 2870	1639	1545	1199	705, 680	585
Assignments	N-H stretching of secondary amine group	antisymmetric C-H stretching and symmetric C-H stretching			C-N stretching and N-H bending (amide III band)	N-H out of - plane bending (amide V band), and O-C-N bending (amide IV, VI band)	C-S stretching and S-S stret- ching of disulfide

Table XVI The IR spectra of N,N-diacyl-cystamines (C-series compounds)

MUMUTERSTAL

Carbon positions Compound No.	C-1 C-1	C-2 C-2	C-3 C-3	C-4 C-4	C-5 C-5	C _{t-4} C _{t-4}	C _{t-3} C _{t-3}	^C t-2 C _{t-2}	^C t-1 C _{t-1}	C _t	C-N C-N	C-S C-S
C-7	173.65	36.73	25.74	29.08	-	-	-	31.64	22.54	13.98	38.58	38.3
C-8	173.54	36.68	25.74	29.31	29.04	-	-	31.75	22.59	13.98	38.52	38.2
C-9	173.48	36.73	25.79	29.42	29,20	-	29.20	31.91	22.70	14.03	38.58	38.3
C-10	173.65	36.73	25.79	29.42	29.42	29.42	29.42	31.91	22.70	14.03	38.58	38.2

1

Table XVII The ¹³C NMR spectra in ppm of N, N-diacyl-cystamines (C-series compounds)

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Table XVIII T	he ¹ H NMR spectra	of N,N-diacyl-cystamines	(C-series compounds)	in CDCl ₃
---------------	-------------------------------	--------------------------	----------------------	----------------------

Signals δ(ppm) Compound No.	0.88(br t)	1.26-1.29 (br s)	1.61-1.72	2.13-2.31(t)	2.75-2.90(t)	3.46-3.68(q)	6.29-6.81(br
C-7	0.88	1.29	1.62	2.14-2.31	2.76-2.90	3.46-3.68	6.47
C-8	0.88	1.28	1.61	2.13-2.30	2.75-2.90	3.46-3.67	6.37
C-9	0.88	1.27	1.69	2.13-2.28	2.76-2.90	3.46-3.67	6.29
C-10	0.88	1.26	1.72	2.13-2.29	2.75-2.90	3.46-3.67	6.81
Assignments	- <u>CH</u> 3	$ \begin{array}{c} 0 \\ \parallel \\ -C-CH_2-CH_2-(CH_2)_n-CH_3 \\ n = 3-6 \text{ respectively} \end{array} $	о " -С-СН ₂ -С <u>Н</u> 2-	о " -С-С <u>Н</u> 2-	-S-CH_2-	-NH-CH ₂ -	-N <u>H</u> -

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย

Compound No.	peaks (m/e)	Assignments	
	(Mas)	+ 0	
	43	C-NH, CH ₃ -CH ₂ -CH ₂	
	44	NH=C=O-H	
C-7,C-8,C-9,C-10 C-11,C-12	55	CH ₃ -CH-CH=CH ₂	
	57	+ ". HN-C-CH ₂ , CH ₃ -CH ₂ -CH ₂ +CH ₂ +	
	119	CH2-C-NH-CH2-CH2-SH	
C-7	156 (base peak)	CH ₃ -(CH ₂) 5-C-NH-CH ₂ -CH ₂	
6	188 (½ M)	CH ₃ -(CH ₂) ₅ -C-NH-CH ₂ -CH ₂ -s	
	189 (½ M + H)	CH ₃ -(CH ₂) ₅ -C-NH-CH ₂ -CH ₂ -SH	
	376 (M ⁺)	(CH ₃ -(CH ₂) ₅ -C-NH-CH ₂ -CH ₂ -S-) ⁺ ₂	
	งกรณ์บา	การิทยุกลัย	
C-8	170 (base peak)	CH ₃ -(CH ₂) ₆ -C-NH-CH ₂ -CH ₂	
	202 (½ M)	сн ₃ -(сн ₂) 6 ^{-с-NH} 2-сн ₂ -сн ₂ - [±]	
	203 (¹ ₂ M + H)	CH ₃ -(CH ₂) ₆ -"-NH-CH ₂ -CH ₂ -SH	
	404 (M ⁺)	(CH ₃ -(CH ₂) ₆ -C-NH-CH ₂ -CH ₂ -S-) ⁺ ₂	

Table XIX The MS spectra of N, N-diacyl-cystamines (C-series compounds)

Table XIX Continued

*

-4

Compound No.	peaks (m/e)	Assignments
C-9	184 (base peak)	сн ₃ -(сн ₂) ₇ -с-NH-сн ₂ -сн ₂
	216 (½ M)	сн ₃ -(сн ₂) ₇ -с-мн-сн ₂ -сн ₂ -s
	217 (¹ ₂ M + H)	СH ₃ -(CH ₂) ₇ -С-NH-CH ₂ -CH ₂ -SH
	432 (M ⁺)	⁰ ["] ["] (CH ₃ -(CH ₂) ₇ - ["] C-NH-CH ₂ -CH ₂ -S-] ⁺ ₂
C-10	198 (base peak)	CH ₃ -(CH ₂) ₈ -C-NH-CH ₂ -CH ₂
	230 (½ M)	сн ₃ -(сн ₂) ₈ -с-NH-сн ₂ -сн ₂ -т
	231 (¹ ₂ M + H)	СH ₃ -(CH ₂) ₈ -С-NH-CH ₂ -CH ₂ -SH
	460 (M ⁺)	СH ₃ -(CH ₂) ₈ -С-NH-CH ₂ -CH ₂ -S-] [†] ₂
C-11	210 (base peak)	CH ₂ =CH-(CH ₂) ₈ -C-NH-CH ₂ ++ +C-NH-CH ₂ +2
	242 (½ M)	сн ₂ =сн-(сн ₂) ₈ -с-NH-сн ₂ -сн ₂ -s
	243 (½ M + H)	CH ₂ =CH-(CH ₂) ₈ -C-NH-CH ₂ -CH ₂ -CH ₂ +.
	484 (M ⁺)	СH ₂ =CH-(CH ₂) ₈ -С-NH-CH ₂ -CH ₂ -S-

Table XIX Continued

Compound No.	peaks (m/e)	Assignments	
C-12	212 (base peak)	СH ₃ -(CH ₂)9-С-NH-CH ₂ -СH ₂	
	244 (¹ 2 M)	СH ₃ -(CH ₂) ₉ -С-NH-CH ₂ -CH ₂ -S	
	245 (½ M + H)	СH ₃ -(CH ₂) ₉ -С-NH-CH ₂ -CH ₂ -SH	
	488 (M ⁺)	$[CH_3 - (CH_2)_9 - C - NH - CH_2 - CH_2 - S -]^{+}_{2}$	

ศูนย์วิทยทรัพยากร จุฬาลงกรณ์มหาวิทยาลัย