CHAPTER III

LENZ VECTOR IN THE COULOMB FIELD
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is constant in time. To prove directly the property of this vector,

we may start with Newton's law of motion for a particle in a Coulomb

field,
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This is the equation of a conic section, and it can be seen that U
lies along the major axis of the ellipse and that its magnitude is
equal to the numerical eccentricity of the ellipse (see Appendix A)

Squaring (3.2), one obtains
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where E represents the energy
In the next section it will be shown that in the matrix
A
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of a matrix A with itself are in general different from zero
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are dealing with central force, for which the potential energy
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;—m $2 + F(T) = E (diagonal matrix) (3.11)
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in (3.13). And we now introduce a vector matrix U analogously to

classical mechanics (see (3.2)), defined by
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is constant with time in the special case of a Coulomb field of force

(see Appendix B).

In spite of the differences between the classical and the
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is analognus with (3.9) in form, (3.15d) is analogous to the
classical equation (3.4), the ocurrence of the additional term

LZZI is quantum correction. The proof of Eq. (3.15b), (3.15¢),

::d (3.15d) will be shown in Appendix C, D, and E., respectively.
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From the existence of the vector matrix U, constant in time,
we can infer that the hydrogen atom constitutes a degenerate system.
Namely, we can conclude from the relations derived above that in
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e system is thus in fact ﬁeg;nerate.
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the abovey, nds only on L2 (apart from its
E-dependence), since there exists no preferred direction in Space
here. Further, the perturbation energy of a magnetic field in the
z-direction depends only on the momentum camponent L , which is
parallel to the field. The requirement that L? and L, are to

be diagonal matrices therefore leads to a special solution of




equations (3.15a) to (3.15d), i.e., the energy spectrum. The
fact that the hydrogen atom can be perturbed in such a way that
its degeneracy is removed and its energy eigenvalues are described
by the eigenvalues of the matrices %2 and i‘z play an important
role in our calculation. We will treat this case in the next
chapter.
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