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CHAPTER I

Introduction

The physics of nonlinear response of composites subject to an applied elec-

tric field has been very much interested because it has many applications in physics

and engineering, for instance, developing photonic devices, explaining some physi-

cal phenomena, predicting optical responses and using as fundamental information

for designing nonlinear optical materials [1]. For example, the color of laser light

depends on the optical nonlinear response of material used in laser. If we can

control the optical nonlinear response then we can control the color of the emit-

ted laser light. Therefore, it is useful to study the electric field responses of these

materials. Various methods have been used to study the effective responses of non-

linear composites such as the perturbation method [2-4], the variational method

[5-8] and the decoupling approximation [9-12]. The decoupling approximation,

originally proposed by Stroud and Wood [13], has been widely applied to study

nonlinear composites by many authors [9 -12]. We previously have applied this

method together with the variational method to predict the effective third-order

nonlinear coefficient (χe) of strongly nonlinear spherical dielectric composites [14],

and confirmed the results with the experimental data of Gehr et al. [15].

Obviously, the effective response depends on composite microstructures such

as inclusion packing fraction and inclusion shapes. In the literature search, con-

stituents of spherical and cylindrical geometries have been mostly presented for

theoretical models in investigations of effective responses of composites. However,

in experimental lab, the realistic constituents of prepared composites may not be

perfectly spherical or cylindrical such as those of Kochergin et al.[16] and Piredda

et al.[17] with imperfectly spherical and cylindrical nanoinclusions, randomly dis-

tributed in dielectric medium. Therefore, the research interests have been devoted
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to the elliptical and ellipsoidal composites and also concentrated on the effect of

inclusion shapes on nonlinear response.

To obtain the effective nonlinear responses very close to those of realistic

composites, we consider the composite microstructures of two types, composites

with identical inclusion shape and those with distributed inclusion shapes. For

the former, the geometry of all inclusions is the same. For the latter, the inclusion

shapes could deviate from a specific geometry such as cylinder to any possible

shape of elliptic cylinders. For both cases, the inclusions are randomly embedded

in the host medium with parallel axes.

For composites with identical inclusion shape, Hui and Chung [11] studied

the effective nonlinear response in random composites consisting of weakly nonlin-

ear cylindrical (and spherical) inclusions randomly embedded in the host medium.

By using the effective medium approximation, the expression of effective nonlinear

coefficient (χe) was derived. Giordano et al. [18-19] developed alternative proce-

dure to investigate the shape-dependent effects of linear or nonlinear ellipsoidal

dielectric inclusions randomly oriented and embedded in linear dielectric medium

in terms of the eccentricity of the inclusions. Chang et al. [20] have investigated

the effect of host medium and particle shapes on third-order optical nonlinear-

ities of nanocomposites which compose of ZnO nanorods or ZnO nanoparticles

suspended in water or ethanol. Their results are in good agreement with the the-

oretical predictions based on Maxwell-Garnett effective medium theory. Recently,

we have applied the decoupling approximation to investigate the shape effect of

identical inclusions on the effective nonlinear response of strongly nonlinear el-

liptical dielectric composites in the dilute limit [21]. We expect that composite

microstructures of these work relate to those of Kochergin’s experiment.

For composites with distributed inclusion shapes, based on statistical ap-

proach, Goncharenko et al. [22-23] successfully predicted the effect of shape dis-

tribution on light absorption and light scattering of ellipsoidal composites and

their approach has been widely applied to study the electric field response by

many authors [24-31]. The effective linear and nonlinear optical properties of

metal-dielectric composites with inclusion shape distribution [24-26] have been in-
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vestigated including the effective nonlinear response of a two-dimensional strongly

nonlinear elliptic cylindrical composite by the effective medium approximation

[27] and that of nonlinear ellipsoidal composite by Maxwell-Garnet approxima-

tion [28]. Xu and Li proposed that the particle shape has a profound effect on

the optical threshold of metal-insulator composites [29]. Goncharenko et al. have

predicted the shape distribution effect of nonsphericity on linear and nonlinear

optical properties of small particles composites [30] and evaluated the effective

dielectric response of core-shell particle of linear [31] and nonlinear composites

[32]. We expect that the composite microstructures of these work relate to those

of Piredda’s experiment.

Further investigation and analysis of the effects of inclusion shapes on ef-

fective nonlinear responses for the two-dimensional nonlinear elliptical dielectric

composites are presented in this research. The work of Hui and Chung [11] is

extended to weakly and strongly nonlinear elliptic cylindrical composites with

identical and distributed inclusion shapes. In Chapter 2, the brief details of the

dielectric properties, the basic equations are reported. In Chapter 3, we consider

the composites with identical inclusion shape. The dielectric property of the in-

clusions is that the electric displacement (D) and electric field (E) satisfies a more

general relation D = εE + χ|E|βE where β is a nonlinear integer exponent. For

weakly nonlinear composites ε ≫ χ|E|β and ε ≪ χ|E|2 for strongly nonlinear

composites are considered. By using the decoupling approximation, the effective

nonlinear coefficients (χe) are determined, and then the effects of inclusion shapes

on χe are reported for varying the aspect ratios (the ratios between the semi-major

and semi-minor axes for identical inclusions). In Chapter 4, we focus on the com-

posites with distributed inclusion shapes having the same dielectric property as

composites with identical inclusion shape. Based on the statistical approach and

the decoupling approximation, χe and the effects of inclusion shapes on χe are

reported for varying the shape distribution parameter. Finally, discussion and

conclusions of our theoretical results are given in the last section.



CHAPTER II

Theoretical Background

In this chapter, the brief details of the dielectric properties and the basic

equations of composites subject to an external electric field will be reported. These

play important roles in investigation of the electric field responses of dielectric

composites in Chapters 3 and 4.

2.1 Dielectric Media

2.1.1 Polarization (P)

In general, the molecules are classified into two types: polar and nonpolar

molecules. In a polar molecule, the center of the electric charge is permanently

displaced from the center of the nucleus charge so the neutral molecule has a

permanent electric dipole moment. The water molecule is an example of polar

molecule. In contrast, if the centers of positive and negative charges are not

displaced relative to each other, then the molecule does not exhibit a permanent

electric dipole (nonpolar molecule). Examples of nonpolar molecules include O2,

N2, and H2.

Now, we consider the interaction between individual molecules (or atoms)

and the electric field. If the atom is neutral and unpolarized, the dipole moment

is zero as in Figure 2.1. When an external electric field is applied, the electron

cloud becomes slightly displaced or asymmetrical, as in Figure 2.2, and the atom

is polarized having a tiny dipole moment p, which points in the same direction

as the electric field. For polar molecules (or atoms), the external electric field
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rotates the dipole moments to the direction of the external electric field. Figure

2.3 shows the polar molecules of water in an electric field. The electric field creates

the polarization (P) which is the dipole moment per unit volume.

-

+

-
--

-

Negative

charged clound

Positive

nucleus

Figure 2.1: An unpolarized atom.

-

+

-
--
-

E

Figure 2.2: A polarized atom.

2.1.2 Linear Dielectrics

We consider the relation of the electric displacement (D), the electric field

(E) and the polarization (P) as

D = ε0E+P, (2.1)

where ε0 is called the permittivity of free space.

Generally, the dielectric property of linear and isotropic materials is that P

is proportional to E. When E is not too strong, the relation between P and E

can be written by

P = ε0χ
′E, (2.2)
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Figure 2.3: The polar molecules of water in an electric field.

where χ′ is called the electric susceptibility which depends on the microscopic

structure of the medium.

Substituting Eqs. (2.2) into (2.1), the alternative relation between D and E

is given by

D = (1 + χ′) ε0E,

= εE, (2.3)

where ε ≡ ε0(1 + χ′) is called the linear coefficient (or permittivity) of materials.

Therefore, the electric displacement is linearly proportional to the electric

field in linear dielectric media.

2.1.3 Nonlinear Dielectrics

At large field intensities of about 106 V/m or higher, deviation of relation

(2.3) becomes noticeable [33]. The nonlinear effects of the materials occur be-

cause of the interaction of the local field E, with the molecular dipole moment,

which rotates those dipoles and creates a polarization field P. The polarization

field is linearly dependent on the magnitude of the local field so long as they are

small. This linearity eventually breaks down and higher order terms are needed

to describe the polarization field. The polarization in this case is given by [34]

P = ε0χ
′E+ ε0χ

′(3) |E|2 E+ ε0χ
′(5) |E|4E+ ..., (2.4)
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where χ′, χ′(3) and χ′(5) are the nonlinear first, third and fifth order electric sus-

ceptibilities, respectively.

Thus, the nonlinear dielectrics are materials whose polarization is not pro-

portional to the local electric field. Similarly, replacing Eqs. (2.4) into (2.1),

the relation between the electric displacement (D) and the electric field (E) for

nonlinear dielectric is

D = εE+ χ |E|2E+ ..., (2.5)

where ε and χ are called the linear and nonlinear coefficients, respectively.

In this research, we concentrate on the nonlinear dielectric composites in

which the relation between the electric displacement (D) and the electric field (E)

obeys

D = εE+ χ |E|β E, (2.6)

where β is nonlinear integer exponent.

Eq. (2.6) is assumed by ε ≫ χ |E|β for weakly nonlinear composites and

ε ≪ χ |E|β for strongly nonlinear composites.

2.2 Basic Equations in Electrostatics

2.2.1 Laplace ’s Equation

We consider the Maxwell’s equations in electrostatics of dielectric media

without free charge;

∇ ·D = 0 (2.7)

and

∇× E = 0, or E = −∇ϕ, (2.8)

where ϕ is the electric potential.

By using Eqs. (2.3), (2.7) and (2.8), these lead to

∇2ϕ = 0. (2.9)
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This is Laplace’s equation. The solution of Eq. (2.9) depends on the mathematical

coordinates such as the elliptic cylindrical coordinates (u, v). The general solution

is [35]

ϕ(u, v) =
∞∑
n=0

[
(An cosh(nu) +Bne

−nu) cos(nv) + (Cn sinh(nu) +Dne
−nu) sin(nv)

]
.

(2.10)

where u and v are the variables in the elliptic cylindrical coordinates.

The solution of Laplace’s equation in elliptic cylindrical coordinates is em-

ployed to determine the electric field inside the inclusion in Chapter 3.

2.2.2 Boundary Conditions

The boundary conditions are essential to be specified in solving for electric

potentials in Chapter 3. These are as follows:

i) the electric potential in the host medium at remote distance,

ii) the electric field at the line between foci (u = 0) is parallel to the direction of

the external uniform electric field,

iii) the continuity of the tangential component of the electric field at the inclusion

surface,

iv) the continuity of the normal component of the electric displacement at the

inclusion surface.



CHAPTER III

Composites with Identical Inclusion

Shape

In this chapter, we investigate the effects of inclusion shapes on effective non-

linear responses of nonlinear elliptic cylindrical dielectric composites with identical

inclusion shape in two dimensions. Three types of composites, linear, weakly non-

linear and strongly nonlinear, are considered. The effective linear coefficient (εe) of

linear dielectric composites is determined. It is applied to determine the effective

nonlinear coefficient (χe) of weakly and strongly nonlinear composites with the

same microstructures as a linear composite by using the decoupling approxima-

tion. The effects of inclusion shapes on χe are reported for varying the aspect ratio

(the ratios between the semi-major and semi-minor axes for identical inclusions).

3.1 Linear Dielectric Composites

3.1.1 Typical Structure and Model

We consider a linear composite which consists of linear elliptic cylindrical

inclusions with identical shape, having the same aspect ratio, the ratio between

major and minor axes (M = c/b), randomly oriented and embedded in a differ-

ent linear dielectric medium in dilute limit, as shown in Figure 3.1. The linear

coefficients of inclusions and medium are εi and εm, respectively. The axes of any

inclusions are parallel and much longer than the respective semi major axes such

that the system is considered as two dimensional.
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em
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Figure 3.1: A linear dielectric composite with identical inclusion shape.

In the dilute limit or a low inclusion packing fraction (the ratio of inclusion

volume to composite volume), the single inclusion model is assumed. Figure 3.2

shows the single inclusion model presented in elliptic cylindrical coordinates. The

elliptic cylindrical inclusion is located at 0 ≤ u ≤ u0 and 0 ≤ v ≤ 2π, where

u and v are the variables in the elliptic cylindrical coordinate. û and v̂ present

the unit vectors in the normal component and tangential component of ellipse,

respectively, as shown in Figure 3.3.

c

b ei

em

a

E
0
=E cos(0 a) x+E sin( ) y0 a

u=u
0

v=0

v=2p

v=p/2

V=p

v=3 2p/

Figure 3.2: The single inclusion model of identical inclusion shape in elliptic cylin-

drical coordinates.
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Figure 3.3: Elliptic Cylindrical Coordinates.

3.1.2 Electric Field inside Elliptic Cylindrical Inclusion

The electric field inside the elliptic cylindrical inclusion is required to de-

termine the effective linear coefficient (εe). In the literature search, the electric

field inside elliptic cylindrical inclusion was determined by Yu et al. [4] by using

the complex transformation and conformal map. Alternatively, we present the

determination of the electric field inside the elliptic cylindrical inclusion by using

the elliptic cylindrical coordinates.

The electric potential inside an inclusion (ϕ) satisfies the Laplace equation:

∇2ϕ = 0. (3.1)

We employ the elliptic cylindrical coordinates (u, v) which are related to the carte-

sian coordinates (x, y) by:

x = a cosh(u) cos(v)

y = a sinh(u) sin(v),

where a =
√
c2 − b2 is the focal length of ellipse in Figure 3.2.
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The general solution of Laplace’s equation in elliptic cylindrical coordinates

in this case is [35]

ϕ(u, v) =
∞∑
n=0

[
(An cosh(nu) +Bne

−nu) cos(nv) + (Cn sinh(nu) +Dne
−nu) sin(nv)

]
.

(3.2)

In order to derive for the electric potentials in the inclusion and medium in

Figure 3.2, the electric field is separated into two components x̂ and ŷ and the

electric potentials are the linear superposition of the responses to both external

fields, E0x = E0 cos(α) and E0y = E0 sin(α). The boundary conditions are given

here as follows.

i) The electric potential in the host medium at remote distance (u → ∞)

becomes −aE0x cosh(u) cos(v). This omits the term of n ̸= 1 and gives A1 =

−aE0x.

ii) The electric potential is symmetric with respect to the x axis, ϕ(u, v) =

ϕ(u,−v). This omits the term of sin(v) because of sin(v) = − sin(−v).

By using the two boundary conditions i) and ii), and the mathematical

formula cosh(nu)− sinh(nu) = e−nu, the electric potential in the host medium of

the elliptic cylindrical inclusion with a major axis parallel to the external electric

field is

ϕx
m(u, v) = [−a cosh(u) +B1(cosh(u)− sinh(u))] cos(v)E0x. (3.3)

Mathematically, at u = 0, it is a line connecting the two focal points of the cross

section of the elliptic cylinder. Physically, when we apply the external electric

field (E0x) to the elliptic cylindrical inclusion located at u = 0, the electric field

inside the inclusion occurs in the direction v̂ only. This is the boundary condition

for determining the electric potential inside the inclusion.

As described above, if u = 0, the result of ∂ϕi(u,v)
∂u

|u=0 = 0 gives the electric

potential in the inclusion of the elliptic cylindrical inclusion with a major axis

parallel to the external electric field:

ϕx
i (u, v) = Ai

1 cosh(u) cos(v)E0x. (3.4)



13

Similarly, when the external electric field E0y = E0 sin(α) is applied per-

pendicular to the major axis of the inclusion, it can be proved that the electric

potential in the host medium is

ϕy
m(u, v) = [−a sinh(u) +D1(cosh(u)− sinh(u))] sin(v)E0y. (3.5)

The electric potential inside the inclusion is

ϕy
i (u, v) = C1 sinh(u) sin(v)E0y. (3.6)

According to Figure 3.2, when the external electric field E0 = E0 cos(α)x̂+

E0 sin(α)ŷ, where α is the angle between E0 and the major axis of the inclusion

aligned in the x̂ direction, is applied to the inclusion. From Eqs. (3.3) - (3.6), the

electric potentials derived previously are modified to become

ϕα
i (u, v) = [A cosh(u) cos(v) cos(α) +B sinh(u) sin(v) sin(α)]E0, 0 ≤ u ≤ u0

(3.7)

ϕα
m(u, v) = [−a cosh(u) + C(cosh(u)− sinh(u))] cos(v) cos(α)E0

+ [−a sinh(u) +D(cosh(u)− sinh(u))] sin(v) sin(α)E0, u0 ≤ u < ∞.

(3.8)

The constants A,B,C and D in Eqs. (3.7) and (3.8) can be determined by

using the following boundary conditions at the inclusion surfaces:

iii) The tangential component of the electric field is continuous (E1t = E2t),

then the electric potential is also continuous,

ϕα
i (u = u0, v) = ϕα

m(u = u0, v).

By using the relations a cosh(u0) = c and a sinh(u0) = b, these lead to

A = −a+ C

(
1− b

c

)
, (3.9)

and

B = −a+D
(c
b
− 1

)
. (3.10)

iv) The normal component of the electric displacement is continuous (Din =

Dmn or εiEin = εmEmn),

εi
∂ϕα

i

∂u
|u=u0= εm

∂ϕα
m

∂u
|u=u0 ,
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hence

εrA = −a+ C(1− c

b
), (3.11)

and

εrB = −a+D(
b

c
− 1), (3.12)

where εr = εi/εm.

From Eqs. (3.9) - (3.12), the constants A,B,C, andD can be solved directly.

The results are

A =
−a (b+ c) εm
bεi + cεm

, (3.13)

B =
−a (b+ c) εm
bεm + cεi

, (3.14)

C =
c (b+ c)

a

[
b(εi − εm)

bεi + cεm

]
, (3.15)

D =
b (b+ c)

a

[
c(εi − εm)

bεn + cεi

]
. (3.16)

Next, the gradient in elliptic cylindrical coordinate is used to calculate the electric

field inside the inclusion Eα
i = −∇ϕα

i (u, v). The gradient is

∇ =
1

ah

[
û
∂

∂u
+ v̂

∂

∂v

]
, (3.17)

where h =
√

cosh(2u)−cos(2v)
2

.

We obtain

Eα
i (u, v) = −E0

ah
[A sinh(u) cos(v) cos(α) +B cosh(u) sin(v) sin(α)] û

−E0

ah
[−A cosh(u) sin(v) cos(α) +B sinh(u) cos(v) sin(α)] v̂.

(3.18)

This is unfamiliar and inappropriate form for determining the effective linear coef-

ficient εe, because the external electric field is applied in the cartesian coordinates

and the major axis of inclusion aligns in x axis. To obtain Eα
i (u, v) in the cartesian

coordinates, the relationships between unit vectors û and v̂ in elliptic cylindrical

coordinates and those of x̂ and ŷ in cartesian coordinates are used. These are

û =
1

h
[sinh(u) cos(v)x̂+ cosh(u) sin(v)ŷ] , (3.19)

v̂ =
1

h
[− cosh(u) sin(v)x̂+ sinh(u) cos(v)ŷ] . (3.20)
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By replacing Eqs.(3.19) and (3.20) into (3.18), we have

Eα
i (x, y) =

−E0

a
[A cosαx̂+B sinαŷ] . (3.21)

Substituting the constants A and B of Eqs. (3.13) and (3.14) into Eq. (3.21), we

get

Eα
i = E0(b+ c)εm

[
cosαx̂

bεi + cεm
+

sinαŷ

cεi + bεm

]
. (3.22)

We note that Eq. (3.22) confirms the electric field inside the elliptic cylindrical

inclusion (Eα
i ) reported by Yu et al. [4].

3.1.3 Effective Linear Coefficient

The average field method proposed by Landau and Lifshitz [40] is used to

determine the effective linear dielectric coefficient (εe) which yields:

1

V

∫
V

[D− εmE] dV = D− εmE, (3.23)

where E is the volume average of electric field in the composite constituents,

E = (1/V )
∫
V
EdV , and V is the composite volume. The effective linear coefficient

is defined as D = εeE, where D is the volume average of electric displacement.

From the boundary condition of electric potential on the composite surface at

−E0 · x where x is the position vector on the composite surface, it can be shown

that E = E0. Thus equation (3.23) becomes

1

V

∫
Vi

(εi − εm)EidV = (εe − εm)E0, (3.24)

where Vi is the inclusion domain. The effective linear coefficient (εe) is therefore

given by

εe = εm +
(εi − εm)

V E2
0

E0 ·
∫
Vi

EidV. (3.25)

Substituting E0 = E0 cos(α)x̂ + E0 sin(α)ŷ and Ei from Eqs. (3.22) into (3.25)

yields

εαe = εm

[
1 + vi(εi − εm)(b+ c)

(
cos2(α)

bεi + cεm
+

sin2(α)

cεi + bεm

)]
, (3.26)

where vi = Vi/V is the inclusion packing fraction.
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Note that from Eq. (3.26), for an applied electric field parallel (α = 00)

or perpendicular (α = 900) to the major axis of inclusion, it leads to Eqs. (21)

and (22), respectively, as reported by Wei et al. [35]. They have investigated the

effective dielectric responses of elliptical graded cylindrical composites in the dilute

limit under the external electric field. Because the electric fields are applied along

x̂ and ŷ directions separately, any elliptic cylindrical inclusions are not randomly

oriented.

For totally randomly oriented elliptical inclusions, the angular average of εαe

in Eq. (3.26) is performed to give

εe/εm =

[
1 +

vi
2
(εr − 1)(1 +M)

(
1

εr +M
+

1

Mεr + 1

)]
, (3.27)

where vi is the volume packing fraction of inclusions, εr = εi/εm and M = c/b.

Moreover, for b = c (M = 1), Eq. (3.27) is also reduced to the well-

known result of a linear cylindrical dielectric composite in the dilute limit of εe =

εm

[
1 + 2vi

(εi−εm)
(εi+εm)

]
. The effective linear coefficient (εe) of Eq. (3.27) is required to

determine the effective nonlinear coefficients (χe) of strongly nonlinear elliptical

composites by using the decoupling approximation in the next section.

3.1.4 Results and Discussion

In Figure 3.4, the relative effective linear coefficients (εe/εm) from Eq. (3.27)

are shown on the logarithmic scale for varying the linear contrast (εr) with the

aspect ratio (M) as parameter for the inclusion packing fraction (vi) of 0.08. The

results show the increase in εe/εm with increasing the aspect ratio (M) within

the range of log(εr) > 0.3 (or εr ≫ 2.0). In contrast, within the range of

log(εr) < −0.3 (or εr ≪ 0.5), increasing the aspect ratio reduces the effective

linear coefficient εe. For small linear contrast (εr), −0.3 ≤ log(εr) ≤ 0.3 (or

0.5 ≤ εr ≤ 2.0), increasing the aspect ratio does not affect εe of linear elliptical

composites.

Figure 3.5 shows the relative effective linear coefficients (εe/εm) for varying

the aspect ratio (M) with the linear contrast (εr) as parameter. The result reveals
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the increase in εe/εm with increasing εr. For εr = 10, increasing M slightly affect

εe/εm within the range of 1 ≤ M ≤ 100. In contrast, for εr = 100 and 1000,

increasing M tremendously affect εe/εm. For higher εr, εe/εm rapidly increases to

the value which depends on varying parameter M . As seen from Eq. (3.27), εe

becomes more dependent on M as high εr.



18

-2 -1 0 1 2

0.6

0.8

1.0

1.2

1.4

e/
m

log(
r
)

 M=1
 M=2
 M=3
 M=10

Figure 3.4: The relative effective linear coefficients (εe/εm) for varying the linear

contrast (εr) with the aspect ratio (M) as parameter and an inclusion packing

fraction (vi) = 0.08.
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Figure 3.5: The relative effective linear coefficients (εe/εm) for varying the aspect

ratio (M) with the linear contrast (εr) as parameter and an inclusion packing

fraction (vi) = 0.08.
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3.2 Weakly Nonlinear Dielectric Composites

3.2.1 Typical Structure

We consider a nonlinear composite with identical inclusion shape in two

dimensions, which has the same microstructure as in linear dielectric composite

described in the previous section. The composite consists of weakly nonlinear

elliptic cylindrical inclusions with identical shape, having the same aspect ratio

(the ratio between semi-major and semi-minor axes, M = c/b), randomly oriented

and embedded in a linear dielectric medium in dilute limit. The relation between

the electric displacement (D) and electric field (E) inside the inclusions has the

form D = εE + χ|E|βE where β is a nonlinear integer exponent and χ|E|β ≪ ε.

The linear and nonlinear coefficients of inclusions and medium are εi, χi and εm,

χm = 0, respectively. Figure 3.6 shows a weakly nonlinear dielectric composite

with identical inclusion shape.

ei i, c

em

e ci i,

e ci i,

e ci i,
e ci i,

e ci i,

Figure 3.6: A weakly nonlinear dielectric composite with identical inclusion shape.

3.2.2 Effective Nonlinear Coefficient

For weakly nonlinear dielectric composite, the nonlinear response is small

compared to the linear response. We consider the work of Hui and Chung [11]
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which has the same basic relation between the electric displacement (D) and elec-

tric field (E) as this thesis. They have studied the effective nonlinear response

in random composites consisting of weakly nonlinear cylindrical (and spherical)

inclusions randomly embedded in the host medium with arbitrary nonlinear inte-

ger exponents. By using the effective medium approximation, the expression of

effective nonlinear coefficient (χe) with arbitrary nonlinear integer exponents was

derived. In this section, we follow their method in deriving the effective nonlinear

coefficient (χe).

The effective nonlinear coefficient (χe) can be defined by using the average

energy method [11]. The energy of effective medium is defined by W =
∫
D ·EdV ,

which equals the sum of the energy of the inclusion and medium.

χeE
β+2
0 V =

∫
Vi

χi(x) |Ei(x)|β+2 dV +

∫
Vm

χm(x) |Em(x)|β+2 dV,

=
viχi

⟨
Eβ+2

i

⟩
i

Eβ+2
0

+
vmχm

⟨
Eβ+2

m

⟩
m

Eβ+2
0

, (3.28)

where vi = Vi/V and
⟨
Eβ+2

i

⟩
= (1/Vi)

∫
Vi
|Ei|β+2dV .

The subscripts i and m outside the brackets denote the average over the in-

clusion and medium regions, respectively. For convenience, we omit them because

the subscripts also appear in the electric field.

For our case of linear medium (χm = 0), the effective nonlinear coefficient

(χe) is

χe =
1

Eβ+2
0

(
viχi⟨Eβ+2

i ⟩
)
, (3.29)

where Ei is the linear electric field inside inclusion and vi is the inclusion volume

packing fractions.

In fact, the problem in calculation the values of χe is that of the determi-

nation of the volume average of electric field to the power β + 2, ⟨Eβ+2
i ⟩ in the

inclusion. There are several methods to obtain ⟨Eβ+2
i ⟩ depending on the nature

of problem and the types of composites. If we determine ⟨Eβ+2
i ⟩ based on the

average energy method and the average field method, we must obtain the ana-

lytical form of the electric field solutions which are more complex and difficult.
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In this research, we are interested in the methods which simplify the calculation.

The simple decoupling approximation, the improved decoupling approximation

and the direct method have been employed.

A. Simple Decoupling Approximation

The (simple) decoupling approximation was originally proposed by Stroud

and Wood [13] and has been widely applied to study nonlinear composites by many

authors [9, 14, 21, 28]. This method directly relates the result of linear response

to the nonlinear one for the composite with the same microstructure. Moreover,

it also give an approximates ⟨Eβ+2
i ⟩ in Eq. (3.29) as

⟨Eβ+2
i ⟩ ≈ ⟨E2

i ⟩(β+2)/2. (3.30)

The effective nonlinear coefficient (χe) in Eq. (3.30) is alternatively derived in

terms of the volume average of electric field to the second power ⟨E2
i ⟩, which

simplifies the calculation. ⟨E2
i ⟩ is evaluated by using the derivative of effective

linear coefficients (εe) with respect to linear coefficient of inclusion,

⟨
E2

i

⟩
=

1

vi

∂εe
∂εi

E2
0 . (3.31)

By using Eq. (3.27) - (3.31), the effective nonlinear coefficients (χe) are obtained

in terms of χi, εr, vi, β and M .

B. Improved Decoupling Approximation

However, the estimate χe from ⟨Eβ+2
i ⟩ ≈ ⟨E2

i ⟩(β+2)/2 by using the simple

decoupling approximation, is less than the exact value. These is confirmed by

our theoretical prediction that χe(exact) ≥ χe(decoupling) reported in reference

[14, 44]. We previously determined the effective nonlinear coefficient χe of strongly

nonlinear spherical dielectric composites by using the simple decoupling approxi-

mation [14]. In order to analyze the validity, our results of χe are compared with

the experimental results by Gehr et al. [15]. They reported the relative effective

nonlinear coefficient (χe/χfluid) of porous-glass-based composites with silica glass
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70 % and spaces 28%. The spaces in the sample were replaced by various nonlin-

ear fluid, such as methanol, carbon tetrachloride and diiodomethane. The relative

nonlinear coefficients of glass (χglass/χfluid) are 0.62, 0.32, and 0.03, respectively.

In comparison, our results which predict the effective nonlinear coefficient are

lower than the experimental results, which also confirm the theoretical prediction

χe(exact) ≥ χe(decoupling).

In this section, we aim to use the improved decoupling approximation pro-

posed by Lu and Li [12] for determining χe. Their work is the extension of the

work of Hui and Chung [11], which proposed the method to improve mathematical

derivation of ⟨Eβ+2
i ⟩. In the improved decoupling approximation, when n is odd

and n ≥ 3,

⟨(Ei − ⟨Ei⟩)n⟩ = 0. (3.32)

For n is even;

⟨(Ei − ⟨Ei⟩)n⟩ ≈
⟨
(Ei − ⟨Ei⟩)2

⟩n/2
. (3.33)

These was applied to derive the effective nonlinear coefficient of cylindrical com-

posites with β = 3, 4, 5 and 6 given in reference [12] by using the effective medium

approximation. In this research, from Eqs. (3.32) and (3.33), the more accurate

expressions of
⟨
Eβ+2

i

⟩
are given in terms of ⟨E2

i ⟩ and ⟨Ei⟩ which the derivation is

shown Appendix A. We obtain

⟨
E3

i

⟩
= 3

⟨
E2

i

⟩
⟨Ei⟩ − 2 ⟨Ei⟩3 , (3.34)

⟨
E4

i

⟩
≈ 4

⟨
E2

i

⟩
⟨Ei⟩2 − 4 ⟨Ei⟩4 +

⟨
E2

i

⟩2
, (3.35)⟨

E5
i

⟩
≈ 5

⟨
E2

i

⟩2 ⟨Ei⟩ − 4 ⟨Ei⟩5 , (3.36)⟨
E6

i

⟩
≈ 12

⟨
E2

i

⟩2 ⟨Ei⟩2 − 12
⟨
E2

i

⟩
⟨Ei⟩4 +

⟨
E2

i

⟩3
, (3.37)⟨

E7
i

⟩
≈ 14

⟨
E2

i

⟩2 ⟨Ei⟩3 − 28
⟨
E2

i

⟩
⟨Ei⟩5 + 7

⟨
E2

i

⟩3 ⟨Ei⟩+ 8 ⟨Ei⟩7 , (3.38)

and

⟨
E8

i

⟩
≈ 24

⟨
E2

i

⟩3 ⟨Ei⟩2− 8
⟨
E2

i

⟩2 ⟨Ei⟩4− 32
⟨
E2

i

⟩
⟨Ei⟩6+16 ⟨Ei⟩8+

⟨
E2

i

⟩4
. (3.39)

Now,
⟨
Eβ

i

⟩
is presented in terms of ⟨E2

i ⟩ and ⟨Ei⟩, which simplifies the calculations

of χe. Eqs. (3.34) - (3.39) are substituted into Eq. (3.29) in order to determine
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the more accurate effective nonlinear coefficient (χe) with the nonlinear integer

exponents β = 2, 4 and 6.

⟨Ei⟩ is evaluated from Eq. (3.22) with the definition ⟨Ei⟩ = (1/Vi)
∫
Vi
|Ei|dV ,

where Vi is the inclusion volume. In addition, ⟨E2
i ⟩ is evaluated by using the simple

decoupling approximation with Eqs. (3.26) and (3.31).

After the calculation described above, the effective nonlinear coefficients (χα
e )

are obtained in terms of χi, εr, vi, β, M and α. For totally randomly oriented

elliptical inclusions, the angular average of effective nonlinear coefficient (χα
e ) is

used

χe =
1

2π

2π∫
0

χα
e dα. (3.40)

We then obtain the effective nonlinear coefficient (χe) in terms of χi, εr, vi, β and

M , as needed.

C. Direct Method

In order to compare the values of χe calculated by using both methods, A

and B, and to check the reliability, we also calculate χe directly by using the direct

method based on reference [4]. This method use the average energy method to

define χe in terms of the close form of electric potential. Therefore, it provides

the accurate result of χe. However, the direct calculation of χe has difficulty in

determination of
⟨
Eβ+2

i

⟩
because of the complicated mathematical process.

In calculation, we also use the information of a linear composite as in section

3.1, which has the same microstructure as considered in weakly nonlinear elliptical

dielectric composite. To determine the volume average of electric field
⟨
Eβ+2

i

⟩
,

the direct integration is

⟨
Eβ+2

i

⟩
= (1/Vi)

∫
Vi

|Eβ+2
i |dV, (3.41)

where Ei = E0(b+ c)εm

[
cos(α)x̂
bεi+cεm

+ sin(α)ŷ
cεi+bεm

]
.

Substituting the result of integration in Eq. (3.41) into Eq. (3.29), we obtain

the effective nonlinear coefficients (χα
e ) in terms of α. Then, the angular average
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results χe are used to predict the effective response of composite in terms of χi,

εr, vi, β and M , as parameters.

3.2.3 Results and Discussion

By using the decoupling approximation, we obtain the relative effective non-

linear coefficients (χe/χi) for the composites consisting of weakly nonlinear elliptic

cylindrical inclusions with nonlinear integer exponents β = 2, 4 and 6, and inclu-

sion packing fraction (vi) of 0.08, as shown in Figure 3.7. For the linear contrast

(εr) less than 1, i.e. εr = 0.1, the results show the increase in χe/χi with increasing

β, in contrast, for εr larger than 1, i.c. εr = 10, increasing β resulting in decreasing

χe/χi. The increase (and decrease) in χe/χi for varying the contrast (εr) is due

to the electric field inside the dielectric inclusion is stronger (and weaker) than

the applied electric field for εr is less (and larger) than 1. For both ranges of εr

smaller and larger than 1, the effect of varying the aspect ratio (M) upon the

relative effective nonlinear coefficients (χe/χi), reveals the rapid increase in χe/χi

with increasing the aspect ratio within the range of M ≤ 50. In contrast, within

the range of M > 50, increasing the aspect ratio affects the slow increasing χe of

the composites.

In Figure 3.8, the effect of varying the linear contrast εr, upon χe/χi is

shown, within the range of 0 ≤ εr ≤ 1, an inclusion packing fraction (vi) of 0.08,

for nonlinear integer exponent (β) = 2, 4 and 6, and the aspect ratio from 1 to 10

as parameter. The results show the significant decrease in χe/χi with increasing

εr. For εr approaches 1, χe/χi slowly decreases to the same value independent

of varying parameter M from 1 to 10. As seen from Eq. (3.27), εe becomes less

dependent on M as εr approaches 1.

We note that for β = 2, our results of χe/χi concur with Eq. (22) of Yu,

Hui and Stroud [4] predicting the effective third order coefficient (χe) of weakly

nonlinear elliptical dielectric composite and confirm their result that χe/χi = vi

at εr = 1. For β = 4, the result of χe/χi is a special case of that proposed by

Potisook and Natenapit (to be published elsewhere) in the studying of higher-
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order weakly nonlinear response of elliptic cylindrical composites. Moreover, we

also determine the relative effective nonlinear coefficients (χe/χi) for β = 2, 4 and

6 by using the improved decoupling approximation which determined χe with the

more accurate mathematical formulae than the simple decoupling approximation

based on reference [12] in part B and the direct method which determines χe

directly without the decoupling approximation based on reference [4] in part C.

These give the same results of χe, as expected, since the electric field in inclusions

is uniform. Therefore, the decoupling approximation is actually exact.
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Figure 3.7: The relative effective nonlinear coefficients (χe/χi) for varying the

aspect ratio with the nonlinear integer exponent (β) as parameter for the contrast

(εr) equal to a) εr = 0.1 and b) εr = 10.
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Figure 3.8: The relative effective nonlinear coefficients (χe/χi) for varying the

contrast (εr) with the aspect ratio (M) as parameter for the nonlinear integer

exponent (β) equal to a) β = 2, b) β = 4 and c) β = 6.
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3.3 Strongly Nonlinear Dielectric Composites

3.3.1 Typical Structure

In this section, we theoretically investigate the effect of variation of the in-

clusion shapes on the effective nonlinear coefficients of strongly nonlinear elliptical

dielectric composites. It is assumed that the relationship between the electric dis-

placement and the electric field for both inclusions and medium obey the form

D = εE + χ|E|2E where ε ≪ χ|E|2 is of interest. The composite consists of

parallel elliptical strongly nonlinear dielectric inclusions having the same aspect

ratio (the ratio between semi major and semi minor axes, M = c/b) with the

cross-sections randomly oriented and embedded in a different strongly nonlinear

dielectric medium in the dilute limit, as shown in Figure 3.9. The axes of any in-

clusions are much longer than the respective semi major axis such that the system

is, therefore, considered as two dimensional.

ci

ci

ci

ci

ci

ci

cm

Figure 3.9: A strongly nonlinear dielectric composite with identical inclusion

shape.

3.3.2 Effective Nonlinear Coefficient

The decoupling approximation has been previously applied to investigate the

effective response of strongly nonlinear cylindrical and spherical composites with
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dilute packing fractions by Gao and Li [38]. In their work, the effective nonlinear

coefficient (χe) of composites has been predicted with the relation between the

electric displacement (D) and electric field (E) of the form D = χ|E|2E. Following

their work, we further determine the effective nonlinear coefficient (χe) of strongly

nonlinear elliptic cylindrical dielectric composites and to investigate the shape

effects of inclusions upon the value of χe.

By using the average energy method, the energy of effective medium equals

the sum of the energy of the inclusion and medium. The effective nonlinear coef-

ficient (χe) of composites is [9]

χe =
1

E4
0V

[

∫
Vi

χi(x) |Ei(x)|4 dV +

∫
Vm

χm(x) |Em(x)|4 dV ]

=
viχi ⟨E4

i ⟩
E4

0

+
vmχm ⟨E4

m⟩
E4

0

. (3.42)

where Ei and Em are the linear electric fields inside the inclusion and medium,

respectively, subject to the same boundary conditions and same microstructure as

considered in linear composites in section 2.1. vi and vm = 1− vi are the inclusion

and medium volume fractions, respectively.

We invoke the simple decoupling approximation as given by Eq. (3.30) for

β = 2, assuming that ⟨E4
i ⟩ ≈ ⟨E2

i ⟩
2
and ⟨E4

m⟩ ≈ ⟨E2
m⟩

2
[9]. The effective nonlinear

coefficients (χe) of composites can be determined from the relationship

χe =
viχi ⟨E2

i ⟩
2

E4
0

+
vmχm ⟨E2

m⟩
2

E4
0

. (3.43)

The relations between the volume average of electric fields to the second

power in the inclusions and host medium and the derivative of the effective linear

coefficients are given as [9]: ⟨
E2

i

⟩
=

1

vi

∂εe
∂εi

E2
0 , (3.44)

⟨
E2

m

⟩
=

1

vm

∂εe
∂εm

E2
0 , (3.45)

where E0 is the external uniform electric field.

Substituting εαe as given by Eq. (3.26) into Eqs. (3.44) and (3.45), we

obtain the equations for determining ⟨E2
i ⟩ and ⟨E2

m⟩ in terms of the aspect ratios
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(M = c/b), inclusion packing fraction (vi), the nonlinear contrast (χr = χi/χm)

and the angle α. By using the relations εe = χeE
2
0 , εi = χi ⟨E2

i ⟩ and εm = χm ⟨E2
m⟩

[9], then ⟨E2
i ⟩ and ⟨E2

m⟩ can be solved self-consistently depending on α. Replacing

the latter ⟨E2
i ⟩ and ⟨E2

m⟩, we obtain χe in terms of α. Then, the angular average

results of χe are used to predict the effective response of composite in terms of χr,

vi, β and M , as parameters.

3.3.3 Results and Discussion

By using the decoupling approximation, we obtain the relative effective non-

linear coefficients (χe/χm) for composites with elliptic cylindrical inclusion with

packing fractions (vi) of 0.04, 0.06 and 0.08, with an aspect ratio (M) of 2, as

shown in Figure 3.10. The results shows the increase in χe/χm with increasing

χr. When the nonlinear contrast is χr = 1 or χi = χm, it gives χe/χm = 1, as ex-

pected. For χr > 1, increasing the volume packing fraction vi having χi more than

χm, enhance the effective nonlinear coefficient (χe) of the composite. In contrast,

for χr < 1, increasing vi having χi less than χm, reduces χe.

To determine the effects of inclusion shapes on χe, we report the variation of

inclusion shapes by varying the nonlinear contrast (χr) upon the relative effective

nonlinear coefficients (χe/χm), with the aspect ratios (M) = 1, 2, 3 and 10, as

parameter, on a logarithmic scale in Figure 3.11 for an inclusion packing fraction

(vi) of 0.08. The results show the increase in χe/χm with increasing M within

the range of log(χr) > 0.4 (or χr ≫ 2.5). On the other hand, within the range

of log(χr) < −0.4 (or χr ≪ 0.4), increasing M reduces the effective nonlinear

coefficient χe of the composite. For χi close to χm, or low nonlinear contrast range

(−0.4 ≤ log(χr) ≤ 0.4 or 0.4 ≤ χr ≤ 2.5), varying the aspect ratio rarely affects

χe/χm of the composites for aspect ratios (M) within the evaluated range of M

from 1 to 10.

In order to confirm the validity of the simple decoupling approximation,

we consider the case of M = 1 that is cylindrical inclusion shape. Our results

determined by using the simple decoupling approximation are compared with those
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Figure 3.10: The relative effective nonlinear coefficients (χe/χm), with varying

inclusion packing fractions (vi) of 0.04, 0.06 and 0.08, and an aspect ratio (M) of

2 [21].
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Figure 3.11: The relative effective nonlinear coefficients (χe/χm), with varying

aspect ratios (M) between 1 and 10, and with an inclusion packing fraction (vi)

of 0.08 [21].
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determined using the simple variational method of Yu and Gu [8], as shown in

Figure 3.12. A good agreement between the two methods throughout was observed

and the discussion was reported in reference [21].

We also estimated the validity of χe by considering the simple decoupling

approximation used in the derivation of the effective nonlinear coefficients (χe),

where we approximate ⟨E4
m⟩ ≈ ⟨E2

m⟩
2
. Because the electric field inside the in-

clusion is exact, it gives ⟨E4
i ⟩ = ⟨E2

i ⟩
2
. Therefore, we considered the validity of

approximation ⟨E4
m⟩ ≈ ⟨E2

m⟩
2
as a percentage of discrepancy (∆%). The percent-

age of discrepancy (∆%) is evaluated from ∆% = [⟨E4
m⟩− ⟨E2

m⟩
2
)/ ⟨E4

m⟩]× 100 by

using the electric fields from the variational method. Figure 3.13 shows the per-

centage discrepancy (∆%) used in the decoupling approximation with an aspect

ratio (M) = 1 and inclusion packing fractions (vi) of 0.04, 0.06 and 0.08. The

percentage of discrepancy reveals that χe are reliable within the illustrated range

of χr and vi. The discussion of ∆% was reported in reference [21].
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Figure 3.12: Comparison of the relative effective nonlinear coefficients (χe/χm)

obtained from the decoupling approximation and the variational method for an

aspect ratio (M)) of 1 and an inclusion packing fraction (vi) of 0.08 [21].
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Figure 3.13: The percentage discrepancy (∆%) between ⟨E4
m⟩ and ⟨E2
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2
used in

the decoupling approximation with an aspect ratio (M) of 1 and inclusion packing

fractions (vi) of 0.04, 0.06 and 0.08 [21].



CHAPTER IV

Composites with Distributed Inclusion

Shapes

In this chapter, we concentrate on elliptic cylindrical dielectric composites

with distributed inclusion shapes in two dimensions. The composites consist of

elliptic cylindrical inclusions, having the variation in shape and the random ori-

entation, which are embedded in a different dielectric media in the dilute limit.

The relation between the electric displacement (D) and electric field (E) of the

inclusions has the form D = εE+χ|E|βE where β is a nonlinear integer exponent

for weakly nonlinear composites. For strongly nonlinear composites, the dielectric

property of both inclusion and medium satisfying D = χ|E|2E is considered. In

this research, three types of the composites, linear, weakly nonlinear and strongly

nonlinear are considered. Firstly, the effective linear coefficient (εe) of linear ellip-

tic cylindrical composite is determined. Secondly, a brief review of the statistical

approach proposed by Goncharenko [22] is presented. Thirdly, it is applied to

determine the effective nonlinear coefficients (χe) of weakly and strongly nonlin-

ear composites with the same microstructure as a linear composite by using the

decoupling approximation. We also determine χe directly without the decoupling

approximation for β = 2 in order to confirm the results. Finally, our results χe

are reported including with the effects of inclusion shapes on χe to be predicted.
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4.1 Linear Dielectric Composites

4.1.1 Typical Structure and Model

We consider a linear composite with distributed inclusion shapes, which

composes of variation in shape of elliptic cylindrical inclusions of the volume pack-

ing fractions vi, randomly oriented and embedded in a different linear dielectric

medium of the volume packing fraction vm = 1− vi. The linear coefficients of the

inclusions and the host medium are εi and εm, respectively. Figure 4.1 shows a

linear dielectric composite with distributed inclusion shapes.

ei

ei

em

ei

ei

ei

ei
ei

Figure 4.1: A linear dielectric composite with distributed inclusion shapes.

In the dilute limit, the single inclusion model is assumed. The external

electric field is applied as shown in Figure 4.2,

E0 = E0 cos(α)x̂+ E0 sin(α)ŷ, (4.1)

where α is the angle between E0 and the major axis of the inclusion aligned in the

x̂ direction. We have to determine the electric field inside the elliptic cylindrical

inclusion as shown in Figure 4.2.

4.1.2 Electric Field inside an Elliptic Cylindrical Inclusion

The electric field inside an ellipsoidal inclusion was solved by Stratton [39]

in 1941, and Landau and Lifshitz [40] in 1960. These are widely applied as a
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Figure 4.2: The single inclusion model for a composite with distributed inclusion

shapes.

basis in the studying of the effective linear and nonlinear responses of ellipsoidal

composites and related fields by many authors such as Yu et al. [4] and Giordano

[18]. Giordano used the effective medium theory to investigate the shape effect

of inclusion on effective linear response of ellipsoidal dielectric composites. The

electric field inside the ellipsoidal inclusion was calculated, and then the explicit

formula of effective linear coefficient (εe) was determined by using the differential

method in terms of eccentricity. In this research, we follow Giordano ’s work to

determine the effective linear coefficient of elliptic cylindrical composites.

Generally, let a uniform electric field (E0) be applied to an elliptic cylindri-

cal inclusion, which has the axes ax and ay aligned in the x and y components,

respectively, as shown in Figure 4.2. The electric field inside inclusion induced by

the external uniform electric field can be written as

Ei = βxE0xx̂+ βyE0yŷ. (4.2)

βj is the field factor (j = x or y) proposed by Stratton [39], and Landau and

Lifshitz [40], which can be expressed by

βj =
εm

εm + Lj(εi − εm)
, (4.3)
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where Lj is the depolarization factor (the ratio of the internal electric field induced

by the charges on the surface of a dielectric when an external electric field is applied

to the polarization of the dielectric). Generally, Lj depends on the inclusion shape

and is restricted by Lx+Ly = 1. The depolarization factor of an elliptic cylindrical

inclusion depends on its shape by [18]

Lj =
axay
2

∫ ∞

0

du

(u+ a2j)
√
(u+ a2x)(u+ a2y)

, (4.4)

where aj is the the axe of elliptic cylinder aligned along j direction. For the

system considered here, the electric field inside the elliptic cylindrical inclusion

can written as the superposition of the responses in x̂ and ŷ directions according

to equation (4.2) by

Ei = βxE0 cos(α)x̂+ βxE0 sin(α)ŷ. (4.5)

This is an important equation to be used to calculate the effective linear coefficient

(εe) by using the average field method in the next section.

4.1.3 Effective Linear Coefficient

By using the average field method as briefly described in section 3.1.3, the

effective linear coefficient is therefore determined by

εe = εm +
(εi − εm)

V E2
0

E0 ·
∫
Vi

EidV. (4.6)

Replacing E0 = E0 cos(α)x̂+E0 sin(α)ŷ and Ei from Eq. (4.5) into (4.6), it leads

to

εαe = εm + vi(εi − εm)
[
βx cos

2 α+ βy sin
2 α

]
. (4.7)

For totally randomly oriented elliptical inclusions, we take the angular av-

erage over angle α to Eq. (4.7) with the integral

εe =
1

2π

2π∫
0

εαe dα. (4.8)

We obtain

εe = εm +
vi
2
(εi − εm) [βx + βy] . (4.9)
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Substituting the expression of βx and βy given by Eq. (4.3) into Eq. (4.9)

and using the relation Ly = 1 − Lx, we obtain the effective linear coefficient (εe)

in terms of the depolarization factor Lx as

εe = εm

[
1 +

vi(εi − εm)

2

(
1

εm + Lx(εi − εm)
+

1

εm + (1− Lx)(εi − εm)

)]
.

(4.10)

For convenience in calculation, we take Lx = L to Eq. (4.10) and obtain

εe = εm

[
1 +

vi(εi − εm)

2

(
1

εm + L(εi − εm)
+

1

εm + (1− L)(εi − εm)

)]
. (4.11)

We note that inclusions are still identical shape. For cylindrical inclusions, the

depolarization factors are L = Lx = Ly = 1/2 (Lz = 0). Eq. (4.11) leads to the

well-known result of a linear cylindrical dielectric composite in the dilute limit of

εe = εm

[
1 + 2vi

(εi−εm)
(εi+εm)

]
, as expected.

For the composite with the elliptic cylindrical inclusions having different

shapes (or distributed inclusion shapes), the effective linear coefficient (εe) is re-

lated to the effective linear coefficient of the equivalent composite with identical

inclusion shape (εidenticale ) based on the statistical approach by [22]

εe =

∫
εidenticale P (L)dL, (4.12)

where P (L) is shape distribution function. P (L)dL is the probability for an in-

clusion to have the depolarization factor L lying within the range between L and

L+ dL. The shape distribution function is considered to be normalized to unity:∫
P (L)dL = 1. (4.13)

The form of P (L) has been assumed as [27]

P (L) =
1

∆
θ

(
L− 1

2
+

1

2
∆

)
θ

(
1

2
+

1

2
∆− L

)
, (4.14)

where ∆ is the shape distribution parameter and θ is the heaviside function. Gen-

erally, ∆ can vary from zero, which all inclusions are cylindrical in shape, to unity,

which any shapes of elliptic cylindrical inclusions are equiprobable. Alternative

distribution such as the gamma distribution [41], binary distribution [42] and log-

normal distribution [42] can be treated similarly. However, P (L) given by Eq.
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(4.14) yields the appropriate results of εe very close to that of realistic composites

[22, 26].

By using Eqs. (4.11) - (4.14), we obtain the effective linear coefficient (εe)

of composite with distributed inclusion shapes

εe = εm

(
1 +

vi
∆
ln

[
(1 + ∆)εi + (1−∆)εm
(1−∆)εi + (1 + ∆)εm

])
. (4.15)

Moreover, for ∆ → 0, all inclusions are cylindrical in shape. Eq. (4.15) is reduced

to the familiar result of a linear cylindrical dielectric composite in the dilute limit

of εe = εm

[
1 + 2vi

(εi−εm)
(εi+εm)

]
, as expected. Because of the same basic field equations

of both the dielectric without free charge and the conductor without free current,

Eq. (4.15) is also consistent with Eq. (17) reported by Gao et al. [27] for the

effective conductivity of the equivalent composite structure with shape distribution

in the dilute limit.

4.1.4 Results and Discussion

In Figure 4.3, the relative effective linear coefficients (εe/εm) are reported

on the logarithmic scale for varying the contrast (εr) within the range from 0.001

to 1000 with the depolarization factor (L) as parameter and the inclusion packing

fraction (vi) of 0.08. The results show the increase in εe/εm with increasing the

depolarization factor (L) within the range of log(εr) > 0.3 (or εr ≫ 2.0). In

contrast, within the range of log(εr) < −0.3 (or εr ≪ 0.5), increasing the depolar-

ization factor(L) reduces the effective linear coefficient εe. For small contrast of εr,

increasing the depolarization factor(L) rarely affect εe of linear elliptic cylindrical

composite with distributed inclusion shapes. These ranges of εr agree with those

in Figure 3.4, which are analyzed in terms of the aspect ratio (M) but now εr

are analyzed in terms of the depolarization factor (L), as expected. In compar-

ison between Figure 4.3 and Figure 3.4, the inclusion shapes such as the aspect

ratio (M) and the depolarization factor (L) rarely affect εe within the range of

−0.3 ≤ log(εr) ≤ 0.3 or 05 ≤ εr ≤ 2.0.

For εr > 1, Figure 4.4 shows the relative effective linear coefficients (εe/εm)

for varying the depolarization factor (L) with the contrast (εr) as parameters for
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inclusion packing fraction (vi) of 0.08. The results reveal the rapid increase in

(χe/χi) with increasing εr for L < 0.3 and L > 0.7. Physically, the deviation of

inclusions from cylinder to elliptic cylinder in this range affects the rapid increase

in εe. In contrast, increasing the depolarization factor within the range of 0.3 ≤

L ≤ 0.7 rarely affects εe of composites.

Moreover, for L = 0.5, the inclusions are circular cylinders or rods. The

results of εe show the symmetry around L = 0.5. This symmetry is observed

because of the restriction of Lx + Ly = 1. In addition, the results of εe concur

with those reported in Figure 4.4 for M = 1 throughout.
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Figure 4.3: The relative effective linear coefficients (εe/εm) for varying the contrast

(εr) with the depolarization factor (L) as parameter for inclusion packing fraction

(vi) of 0.08.
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Figure 4.4: The relative effective linear coefficients (εe/εm) for varying the de-

polarization factor (L) with the contrast (εr) as parameter for inclusion packing

fraction (vi) of 0.08.
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For linear composite with distributed inclusion shapes, in Figure 4.5, the

relative effective linear coefficients (εe/εm) are reported on the logarithmic scale

for varying the linear contrast (εr) within the range from 0.001 to 1000 with the

shape distribution parameter (∆) as parameter and the inclusion packing fraction

(vi) of 0.08. The results show the monotonically increase in εe/εm with increasing

εr. For small εr, −0.3 ≤ log(εr) ≤ 0.3 (or 0.5 ≤ εr ≤ 2.0), increasing ∆ from 0 to

1 slightly affects on εe/εm. Therefore, the shape distribution parameter describing

the variation in shape of inclusions, rarely affects on εe in this range of εr. However,

for large εr, log(εr) < −0.3 (or < 0.5) and log(εr) > 0.3 (or εr > 2.0), ∆ directly

affects on εe. For ∆ = 1, εe linearly increases with increasing ∆ so εe have less

dependent on εr as ∆ near 1.

Figure 4.6 shows the relative effective linear coefficients (εe/εm) for varying

the shape distribution parameter with the linear contrast (εr) as parameters a)

εr < 1 and b) εr > 1. In Figure 4.6 a), the results show that εe/εm monotoni-

cally decreases with increasing ∆. However, for εr > 1 in Figure 4.6 b), εe/εm

monotonically increases with increasing ∆. For small ∆, 0 ≤ ∆ ≤ 0.6, increasing

∆ rarely affects εe. In contrast, for high ∆, 0.6 < ∆ ≤ 1.0, increasing ∆ affects

rapid increase in εe.
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Figure 4.5: The relative effective linear coefficients (εe/εm) for varying the linear

contrast (εr) with the shape distribution parameter as parameter.
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Figure 4.6: The relative effective linear coefficients (εe/εm) for varying the the

shape distribution parameter with the linear contrast (εr) as parameter.
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4.2 Weakly Nonlinear Dielectric Composite

4.2.1 Typical Structure

We now consider a nonlinear composite with distributed inclusion shapes in

two dimensions, which have the same microstructure as a linear dielectric com-

posite described previously. The composite consists of nonlinear elliptic cylin-

drical inclusions with distributed shapes randomly oriented and embedded in a

linear dielectric medium in dilute limit, as shown in Figure 4.7. The relation

between the electric displacement (D) and electric field (E) inside the inclusions

is D = εE + χ|E|βE with χ|E|β ≪ ε. The linear and nonlinear coefficients of

inclusions and medium are εi, χi and εm, χm = 0, respectively.

em

i ie , c

i ie , c

i i
e , c

i ie , c

i ie , c
i i

e , c

i ie , c

Figure 4.7: A nonlinear dielectric composite with distributed inclusion shapes.

4.2.2 Effective Nonlinear Coefficient

Simple Decoupling Approximation

In case of weakly nonlinear dielectric composite, the nonlinear response is

small compared to the linear response. We follow the work of Hui and Chung

[11] which has the same basic relation between the electric displacement (D) and

electric field (E) as this thesis. The effective nonlinear coefficient (χe) can be
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defined by using the average energy method. The energy of effective medium is

defined by W =
∫
D · EdV , which equals the sum of the energy of the inclusion

and medium. The effective nonlinear coefficient (χe) can be expressed as [11]

χe =
1

V Eβ+2
0

(∫
Vi

χi|Ẽi|β+2dV +

∫
Vm

χm|Ẽm|β+2dV

)
,

=
1

Eβ+2
0

(
viχi⟨Ẽβ+2

i ⟩+ vmχm⟨Ẽβ+2
m ⟩

)
,

(4.16)

where Ẽi and Ẽm are the nonlinear electric fields inside the inclusions and medium,

respectively.

By using the simple decoupling approximation, the nonlinear electric fields

of Ẽi and Ẽm required Eq. (4.16) are approximated to be linear field Ei and Em.

The expressions of χe becomes

χe =
1

Eβ+2
0

(
viχi⟨Eβ+2

i ⟩+ vmχm⟨Eβ+2
m ⟩

)
. (4.17)

For our case (χm = 0), the effective nonlinear coefficient (χe) is

χe =
1

Eβ+2
0

(
viχi⟨Eβ+2

i ⟩
)
, (4.18)

where
⟨
Eβ+2

i

⟩
= (1/Vi)

∫
Vi
|Ei|β+2dV , Ei is the linear electric fields and vi is the

inclusion volume packing fractions.

For distributed inclusion shapes, Goncharenko et al. [22-23] successfully pre-

dicted the effect of shape distribution on light absorption and light scattering of

ellipsoidal composites by using statistical approach. Their work has been widely

applied to composite with distributed inclusions shapes in various field of physics

[24-32] such as the work of Gao et al. [27]. In their work, the effective nonlinear

response of a two components in two dimensions of strongly nonlinear composite

media in which one component possesses a shape distribution is investigated. The

inclusions are considered to be elliptic cylinders with distributed inclusion shapes.

Based on the statistical approach, the effective medium model and the decoupling

approximation, the effective nonlinear coefficient (χe) of strongly nonlinear com-

posite is determined for all concentrations of inclusion. In this section, we apply

the statistical approach to elliptic cylindrical composite with distributed inclusion
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shapes and then the effective nonlinear coefficient (χe) is determined by using the

decoupling approximation.

Similar to the process in determination on εe in section 4.1.3, the effective

nonlinear coefficient (χe) of composite with distributed inclusion shapes is related

to the effective nonlinear coefficient of the equivalent composite with identical

inclusion shape (χidentical
e ) based on the statistical approach by [22]

χe =

∫
χidentical
e P (L)dL, (4.19)

By using the shape distribution function P (L) given by Eq. (4.14) and the ex-

pression of χe given by Eq. (4.18), the effective nonlinear coefficient of composite

with distributed inclusion shapes (χe) from equation (4.19) is

χe =
viχi

Eβ+2
0 ∆

1
2
+ 1

2
∆∫

1
2
− 1

2
∆

⟨
Eβ+2

i

⟩
dL. (4.20)

We invoke the simple decoupling approximation which simplifies the calculation

by

⟨Eβ+2
i ⟩ ≈ ⟨E2

i ⟩(β+2)/2. (4.21)

The replacement of Eq. (4.21) into Eq. (4.20) leads to the equation for determining

χe;

χe =
viχi

Eβ+2
0 ∆

1
2
+ 1

2
∆∫

1
2
− 1

2
∆

⟨E2
i ⟩(β+2)/2dL. (4.22)

The volume average of electric fields to the second power in the inclusions ⟨E2
i ⟩ is

evaluated from the derivative of the effective linear coefficients given as [9]:⟨
E2

i

⟩
=

1

vi

∂εe
∂εi

E2
0 . (4.23)

From Eqs. (4.11) , (4.22) and (4.23), we obtain the new results of effective non-

linear coefficient (χ̃e) in terms of vi, εr, χi, β and ∆, as needed.

Direct Method

In order to confirm the effective nonlinear coefficient χe of the simple decou-

pling approximation determined in the previous section, we consider that compos-

ite for β = 2.
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According to the equation for determining χe written in Eq. (4.20), we can

determine
⟨
Eβ+2

i

⟩
directly without using the simple decoupling approximation by

χ̃e =
viχi

E4
0∆

1
2
+ 1

2
∆∫

1
2
− 1

2
∆

⟨
E4

i

⟩
dL, (4.24)

where ⟨E4
i ⟩ = (1/Vi)

∫
Vi
|Ei|4dV .

To calculate ⟨E4
i ⟩, we consider the electric field inside the elliptic cylindrical

inclusion given by Eq. (4.5) Eα
i = βxE0 cos(α)x̂ + βxE0 sin(α)ŷ. For totally

randomly oriented elliptic cylindrical inclusions, the angular average of electric

field inside the inclusion to the forth power (|Ei|4) is used:

|Ei|4 =
1

2π

2π∫
0

|Eα
i |

4 dα,

=
1

4

[
3β4

x + β2
yβ

2
x

]
,

(4.25)

where the field factors βx and βy are given by Eq. (4.3) for j = x and y with the

depolarization factor Ly = 1−Lx. The volume integration of |Ei|4 yields ⟨E4
i ⟩ as a

function of Lx, which is replaced by L. Then we substitute the result of ⟨E4
i ⟩ into

Eq. (4.24). The effective nonlinear coefficient (χe) of elliptic cylindrical composite

with distributed inclusion shapes is obtained as follows:

χe =
1

2∆
viχiε

4
m

[
ln
(

A+∆B
−A+∆B

)2
A3B

− 32∆A2

C3
− 8∆

C2
− 4∆

A2C

]
, (4.26)

where A = εi+εm, B = εi−εm and C = (∆2−1)ε2i −2(∆2+1)εiεm+(∆2−1)ε2m.

The closed form result of χe, as given by equation (4.26), is exact and firstly

reported in this research.
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4.2.3 Results and Discussion

For composites with distributed inclusion shapes, we obtain the relative

effective nonlinear coefficient (χe/χi) with the nonlinear integer exponent (β) as

parameter for an inclusion packing fraction vi = 0.08 and the contrast a) εr = 0.1,

b) εr = 0.01 and c) εr = 0.001, as shown in Figure 3.8 The results in Figure 3.8

a) reveal the rapidly increase in χe/χi with increasing ∆ for 0.4 ≤ ∆ ≤ 1.0 but

for ∆ less than 0.4, increasing the ∆ slightly affect the increase in χe/χi. Similar

behavior also perform with the enhancement of χe/χi for εr = 0.01 and 0.001, as

reported in Figures 3.8 b) and c), respectively.

Figure 3.9 shows the relative effective nonlinear coefficient (χe/χi) for vary-

ing the contrast (εr) with the shape distribution parameter (∆) equal to 0, 0.4 and

0.8 and the nonlinear integer exponents are a) β = 2, b) β = 4 and c) β = 6. For

β = 2, the results reveal the increasing of χe/χi for decreasing εr which are more

pronounced for larger values of ∆ in the range of 0 ≤ εr ≤ 0.6. On the other hand,

for the contrast (εr) near 1 varying of ∆ from 0 to 0.8 affects the slow increase in

χe/χi. The similar analysis as for Figure 3.8 but now εe is from equation (4.11).

Similar behaviors as seen in Figure 3.9 a) are also observed for β = 4 and β = 6

but the enhancement of χe/χi is much more pronounced for larger values of the

nonlinear integer exponent (β).

Moreover, for β = 2, the exact values of χe/χi given by Eq. (4.26) obtained

without using the decoupling approximation concur with the numerical values

of those obtained by using the decoupling approximation throughout. For ∆

approaches 0 which all inclusions are cylindrical shape, our results agree with

those reported in Figure 3.8 a) for M = 1, as expected.
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Figure 4.8: The relative effective nonlinear coefficient (χe/χi) for varying the shape

distribution parameter (∆) with the nonlinear integer exponent (β) equal to a)

εr = 0.1, b) εr = 0.01 and c) εr = 0.001.
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Figure 4.9: The relative effective nonlinear coefficients (χe/χi) for varying the

contrast (εr) with the the nonlinear integer exponent (β) equal to a) β = 2, b)

β = 4 and c) β = 6.
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4.3 Strongly Nonlinear Dielectric Composite

In the literature search, the effective nonlinear response of a two-components

strongly nonlinear elliptic cylindrical dielectric composite in which one component

possesses a shape distribution was investigated by Gao et al. [27]. In their work,

the numerical results of the effective nonlinear coefficient was determined for arbi-

trary inclusion packing fraction by using the effective medium approximation and

the decoupling approximation, which includes the dilute limit expression. How-

ever, in such work does not discuss more information about the effect of inclusion

shapes on χe. In order to obtain the information of inclusion shape effect on χe

very close to realistic composite as possible, we further analyze that work in case of

dilute limit. Moreover, the more information about the effect of inclusion shapes

on χe have been discussed.

4.3.1 Typical Structure

We consider the strongly nonlinear elliptic cylindrical dielectric composite in

two dimensions, which consists of variation in shape of elliptic cylindrical inclusions

randomly oriented and embedded in a different dielectric medium in the dilute

limit, as shown in Figure 4.10. It is assumed that the relationship between the

electric displacement (D) and the electric field (E) for both inclusions and medium

has the formD = χ|E|2E where ε ≪ χ|E|2 is of interest. The nonlinear coefficients

of inclusion and medium are χi and χm

4.3.2 Effective Nonlinear Coefficient

We begin with a linear composite, which has the same microstructure as

strongly nonlinear composite. The linear coefficients of the inclusions and the

host medium are εi and εm, respectively. The average electric field inside the

inclusion (Ei) subject to a uniform external field (E0) is assumed to be

Ei = βE0, (4.27)
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Figure 4.10: A strongly nonlinear dielectric composite with distributed inclusion

shapes

where β is the average field factor.

Based on the statistical approach [22], the average field factor (β) of com-

posite with distributed inclusion shapes relates to the field factor of the equivalent

composite but with identical inclusion shape (β) by

β =

∫
βP (L)dL. (4.28)

Substituting the the field factor (β) and the shape distribution parameter (P (L)),

as given by Eqs. (4.3) and (4.14), respectively, including with the domain of

integration 1
2
− 1

2
∆ < L < 1

2
+ 1

2
∆ as mention in section 3.2.2, the average field

factor is [27]

β =
εm

∆(εi + εm)
ln

[
(1 + ∆)εi + (1−∆)εm
(1−∆)εi + (1 + ∆)εm

]
. (4.29)

Substituting β from Eq. (4.29) into Eq. (4.27) yields the electric field inside the

inclusion as follow:

Ei =
εm

∆(εi + εm)
ln

[
(1 + ∆)εi + (1−∆)εm
(1−∆)εi + (1 + ∆)εm

]
E0. (4.30)

The average field method proposed by Landau and Lifshitz [40] is used with sim-

ilar processes as proposed in Eq. (4.6). The effective linear coefficient (εe) for

composite with distributed inclusion shapes is

εe = εm

(
1 +

vi
∆
ln

[
(1 + ∆)εi + (1−∆)εm
(1−∆)εi + (1 + ∆)εm

])
. (4.31)
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Eq. (4.31) is consistent with Eq. (4.15), although the approaches of calculation

are different. These confirm the result of εe.

The relations between the volume average of electric fields to the second

power in the inclusions and host medium and the derivative of the effective linear

coefficients are given as [9]:

⟨
E2

i

⟩
=

1

vi

∂εe
∂εi

E2
0 , (4.32)

⟨
E2

m

⟩
=

1

vm

∂εe
∂εm

E2
0 , (4.33)

where E0 is the external uniform electric field, and vi and vm = 1 − vi are the

inclusion and medium volume fractions, respectively.

Substituting εe as given by Eq. (4.31) into Eqs. (4.32) and (4.33), we obtain

the equations for determining ⟨E2
i ⟩ and ⟨E2

m⟩ in terms of the shape distributed

parameter (∆), inclusion packing fraction (vi), and the nonlinear contrast (χr =

χi/χm). By using the relations εe = χeE
2
0 , εi = χi ⟨E2

i ⟩ and εm = χm ⟨E2
m⟩ [9],

then ⟨E2
i ⟩ and ⟨E2

m⟩ can be solved self-consistently depending on ∆, vi and χr

as parameters. The effective nonlinear coefficients (χe) of the composites can be

determined from the relationship

χe =
viχi ⟨E2

i ⟩
2

E4
0

+
vmχm ⟨E2

m⟩
2

E4
0

, (4.34)

with the decoupling approximation, assuming that ⟨E4
i ⟩ ≈ ⟨E2

i ⟩
2
and ⟨E4

m⟩ ≈

⟨E2
m⟩

2
[9].
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4.3.3 Results and Discussion

By using the decoupling approximation, the effect of varying the nonlinear

contrast between the nonlinear coefficients of inclusions and media (χr), with

the shape distribution parameter (∆) as parameter, upon the relative effective

nonlinear coefficients (χe/χm) are shown on a logarithmic scale in Figure 4.11 for

an inclusion packing fraction (vi) of 0.08. Our results confirm the similar work of

Gao et al. [27] which used the effective medium approximation in the dilute limit

to predict the effective nonlinear coefficients (χe). The sigmoidal relationships

shows the increase in χe/χm with increasing the shape distribution parameter

within the range of log(χr) > 1 (or χr ≫ 10) and that χe/χm = 1 when χr = 1

or χi = χm. In contrast, within the range of log(χr) < 1 (or χr ≪ 0.1), increasing

the shape distribution parameter reduces the effective nonlinear coefficient χe of

the composite. For small contrast, the results also show that increasing ∆ rarely

affect on χe of composites within the range of −0.3 ≤ log(χr) ≤ 0.5 (or 0.5 ≤

χr ≤ 3.2). For higher contrast, within the range of log(χr) < −0.3 (or χr ≪ 0.5)

and log(χr) > 0.5 (or χr ≫ 3.2), increasing ∆ strongly affect on χe.

In Figure 4.12, we plot the relative effective nonlinear coefficient (χe/χm)

against the shape distribution parameter (∆) for inclusion packing fraction vi =

0.08, and the nonlinear contrast a) χr = 0.1, 0.01 and 0.001, and b) χr = 10,

100 and 1000. Figure 4.12 a) reveals a monotonically decrease in χe/χm with

increasing ∆. For small ∆, 0 ≤ ∆ ≤ 0.3, increasing ∆ slightly affects on χe/χm.

Therefore, the small deviation of inclusion shapes from circular cylinder rarely

affects on χe. However, for large ∆, 0.3 < ∆ ≤ 1.0, χe strongly depends on ∆,

especially, for high contrast (χr = 0.001) and high ∆ (0.6 ≤ ∆ ≤ 0.1). Similar

behaviors also observed in Figure 4.12 b) but χe/χm monotonically increase with

increasing ∆.

In addition, for ∆ = 0, all elliptic cylindrical inclusions are cylinder. The

results of χe/χm agree with those reported in Figure 3.11 for M = 1 throughout.
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Figure 4.11: The relative effective nonlinear coefficients (χe/χm) for varying the

nonlinear contrast (χr) with the shape distribution parameter as parameter.
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Figure 4.12: The relative effective nonlinear coefficients (χe/χm) for varying the

the shape distribution parameter with the nonlinear contrast (χr) as parameter.



CHAPTER V

Conclusions

We have investigated the electric field responses and the effects of inclusion

shapes on the effective nonlinear coefficient (χe) of weakly and strongly nonlin-

ear elliptic cylindrical dielectric composites. Two types of composites, that with

identical inclusion shape and that with distributed inclusion shapes have been

considered. For both types, the inclusions are randomly oriented and embedded

in the host media. The dielectric property of the inclusions is that the rela-

tion between the displacement field (D) and the electric field (E) satisfies a form

D = εE + χ|E|βE where β is a nonlinear integer exponent with ε ≫ χ|E|β for

weakly nonlinear composites. For strongly nonlinear composites, the dielectric

property of both inclusion and medium satisfying D = χ|E|2E is considered.

Then, the effects of inclusion shapes on the effective nonlinear coefficient (χe)

are investigated in terms of the aspect ratio (the ratio between the semi-major

and semi-minor axes for identical inclusions) and the shape distribution parame-

ter for composites with identical inclusion shape and distributed inclusion shapes,

respectively.

Based on the average energy method, the effective nonlinear coefficient

(χe) relates to the volume average of electric fileds to the power β + 2 in the

inclusion,
⟨
Eβ+2

i

⟩
and in the host media

⟨
Eβ+2

m

⟩
. These are difficult to ob-

tain. In this research, the determinations on
⟨
Eβ+2

i

⟩
and

⟨
Eβ+2

m

⟩
are simpli-

fied by using the simple decoupling approximation. This approximation allows

us to convert the established results on linear composites to nonlinear composites

with the same microstructure. Moreover, it also give an approximate results of⟨
Eβ+2

i

⟩
≈ ⟨E2

i ⟩
(β+2)/2

and
⟨
Eβ+2

m

⟩
≈ ⟨E2

m⟩
(β+2)/2

.
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In the first type of composites with identical inclusion shape, we firstly

consider a linear composite which consists of linear elliptic cylindrical inclusions

with identical shape, having the same aspect ratio, the ratio between major and

minor axes (M), randomly oriented and embedded in a different linear dielectric

medium in dilute limit. The linear coefficients of inclusions and medium are εi

and εm, respectively. The electric filed inside the elliptic cylindrical inclusions

(Ei) is derived by using the elliptic cylindrical coordinates and then applied to

determine the effective linear coefficient (εe) based on the average field method.

The effective linear coefficient (εe) is reported in terms of the aspect ratio (M),

which the effects of inclusion shapes on εe is predicted and reported in section

3.1.4.

Secondly, we consider a weakly nonlinear composites with the same mi-

crostructure as in the linear composites which inclusions are randomly oriented

and embedded in the linear medium. By using the simple decoupling approxima-

tion, the effective nonlinear coefficients (χe) of the weakly nonlinear elliptic cylin-

drical composite are determined for the nonlinear integer exponents (β) equal to

2, 4 and 6. In order to confirm our results of χe, we also determine χe by using the

improved decoupling approximation and the direct method. These give the same

results of χe because the electric field in the inclusions is uniform. The results of

χe and the effects of inclusion shapes on χe are reported in section 3.2.3.

Thirdly, we focus on strongly nonlinear composites with the same microstruc-

ture as the linear composites. The effective nonlinear coefficients (χe) are deter-

mined by using the simple decoupling approximation. These results on χe when

the aspect ratio equals 1 agree well with those of Gu and Yu [8], and also confirm

the work of Gao and Li [38]. The effects of inclusion shapes on χe is reported in

section 3.3.3.

In the second type of composites with distributed inclusion shapes, we fur-

ther consider the composites which have the same microstructure and same di-

electric property as described for composites with identical inclusion shape but

now the inclusions have variation in shapes. The electric filed inside the ellip-

tic cylindrical inclusions is derived in terms of the depolarization factor (L) and
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then applied to determine the effective linear coefficient (εe) in terms of the shape

distribution parameter (∆) based on the average field method and the statistical

approach. The effects of inclusion shapes on εe is analyzed and reported in section

4.1.4.

Next, we extend the work to the weakly nonlinear composites with inclusions

having variation in shapes randomly embedded in the linear medium. Based

on the statistical approach, the effective nonlinear coefficient of composite with

distributed inclusion shapes is related to that of the composites with identical

inclusion shape and then the effective nonlinear coefficient (χe) is determined by

using the simple decoupling approximation. The effects of inclusion shapes on χe

is investigated and reported in section 4.2.3.

Finally, we concentrate on strongly nonlinear composites with the same mi-

crostructure as the linear composites with distributed inclusion shapes. The dif-

ferent approach as that reported for linear composites in section 4.1.2, is employed

to determine the effective linear coefficient (εe). However, agreement between the

two approach is observed, this confirm our work. By using the simple decoupling

approximation, the effective nonlinear coefficient (χe) is determined and the effects

of inclusion shapes on χe is discussed and reported in section 4.3.3.

This work provide fundamental information for evaluating the electric field

response of weakly nonlinear elliptical dielectric composite, and also for designing

nonlinear optical materials for applications in photonic devices or optoelectronic

technologies.

In fact, the effective responses of nonlinear composites in external AC electric

field has received much attention for both strongly nonlinear and weakly nonlinear

composites. Therefore, the effects of inclusion shapes on electric responses of

nonlinear composites in external AC electric field with arbitrary nonlinear integer

exponet is suggested for further study.
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Appendix A

Improved Decoupling Approximation

For weakly nonlinear composite with identical inclusion shape in section

3.2.2, we use the more accurate expression
⟨
Eβ+2

i

⟩
to determine the effective

nonlinear coefficient (χe). For better understanding, in this Appendix, we have to

show the process of derivation
⟨
Eβ+2

i

⟩
in terms of ⟨E2

i ⟩ and ⟨Ei⟩.

A.1 Derivation of ⟨E5
i ⟩

In order to improve the results of χe, Lu and Li [12] proposed a new decou-

pling approximation to express ⟨En
i ⟩. When n is odd and n ≥ 3, it requires

⟨(Ei − ⟨Ei⟩)n⟩ = 0, (A.1)

and also n is even;

⟨(Ei − ⟨Ei⟩)n⟩ ≈
⟨
(Ei − ⟨Ei⟩)2

⟩n/2
. (A.2)

For n = 3, it can be proved that⟨
E3

i

⟩
= 3

⟨
E2

i

⟩
⟨Ei⟩ − 2 ⟨Ei⟩3 , (A.3)

and also for n = 4 ⟨
E4

i

⟩
≈ 4

⟨
E2

i

⟩
⟨Ei⟩2 − 4 ⟨Ei⟩4 +

⟨
E2

i

⟩2
. (A.4)

For more n, by using Eq. (A.1) with n = 5, we have to calculate ⟨E5
i ⟩ and obtain

⟨(Ei − ⟨Ei⟩)5⟩ = 0⟨
E5

i − 5E4
i ⟨Ei⟩+ 10E3

i ⟨Ei⟩2 − 10E2
i ⟨Ei⟩3 + 5Ei ⟨Ei⟩4 − ⟨Ei⟩5

⟩
= 0

⟨Ei⟩5 − 5 ⟨E4
i ⟩ ⟨Ei⟩+ 10 ⟨E3

i ⟩ ⟨Ei⟩2 − 10 ⟨E2
i ⟩ ⟨Ei⟩3 + 5 ⟨Ei⟩ ⟨Ei⟩4 − ⟨Ei⟩5 = 0

⟨Ei⟩5 = 5 ⟨E4
i ⟩ ⟨Ei⟩ − 10 ⟨E3

i ⟩ ⟨Ei⟩2 + 10 ⟨E2
i ⟩ ⟨Ei⟩3 − 5 ⟨Ei⟩ ⟨Ei⟩4 + ⟨Ei⟩5 .

(A.5)
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Substituting ⟨E3
i ⟩ and ⟨E4

i ⟩ from Eqs. (A.3) - (A.4) into (A.5), we get ⟨E5
i ⟩ as

proposed in Eq. (3.36)

⟨Ei⟩5 ≈ 5
⟨
E2

i

⟩2 ⟨Ei⟩ − 4 ⟨Ei⟩5 . (A.6)

A.2 Derivation of ⟨E6
i ⟩

For n = 6, the left hand side (L.H.S) of Eq. (A.2) gives

⟨(Ei − ⟨Ei⟩)6⟩ = ⟨E6
i − 6E5

i ⟨Ei⟩+ 15E4
i ⟨Ei⟩2 − 20E3

i ⟨Ei⟩3 + 15E2
i ⟨Ei⟩4

−6Ei ⟨Ei⟩5 + ⟨Ei⟩6⟩

= ⟨E6
i ⟩ − 6 ⟨E5

i ⟩ ⟨Ei⟩+ 15 ⟨E4
i ⟩ ⟨Ei⟩2 − 20 ⟨E3

i ⟩ ⟨Ei⟩3 + 15 ⟨E2
i ⟩ ⟨Ei⟩4

−6 ⟨Ei⟩ ⟨Ei⟩5 + ⟨Ei⟩6 .
(A.7)

Replacing ⟨E3
i ⟩, ⟨E4

i ⟩ and ⟨E6
i ⟩ from Eqs. (A.3), (A.4) and (A.6) into (A.7), we

obtain⟨
(Ei − ⟨Ei⟩)6

⟩
=

⟨
E6

i

⟩
− 15

⟨
E2

i

⟩2 ⟨Ei⟩2 + 15
⟨
E2

i

⟩
⟨Ei⟩4 − ⟨Ei⟩6 . (A.8)

The right hand side (R.H.S) of Eq. (A.2) leads to

⟨(Ei − ⟨Ei⟩)2⟩6/2 =
⟨
E2 − 2E ⟨E⟩+ ⟨E⟩2

⟩3
=

(
⟨E2⟩ − 2 ⟨E⟩ ⟨E⟩+ ⟨E⟩2

)3
⟨(Ei − ⟨Ei⟩)2⟩3 = ⟨E2⟩3 − 3 ⟨E2⟩2 ⟨E⟩2 + 3 ⟨E2⟩ ⟨E⟩4 − ⟨E⟩6 .

(A.9)

From Eqs. (A.8) - (A.9), we rearrange ⟨E6
i ⟩ and get the expression of ⟨E6

i ⟩ as

given in Eq. (3.37) by⟨
E6

i

⟩
≈ 12

⟨
E2

i

⟩2 ⟨Ei⟩2 − 12
⟨
E2

i

⟩
⟨Ei⟩4 +

⟨
E2

i

⟩3
. (A.10)

A.3 Derivation of ⟨E7
i ⟩

We take n = 7 to Eq. (A.1) and get

⟨(Ei − ⟨Ei⟩)7⟩ = 0

= ⟨E7
i − 7E6

i ⟨Ei⟩+ 21E5
i ⟨Ei⟩2 − 35E4

i ⟨Ei⟩3 + 35E3
i ⟨Ei⟩4 − 21E2

i ⟨Ei⟩5

+7Ei ⟨Ei⟩6 − ⟨Ei⟩7⟩

0 = ⟨E7
i ⟩ − 7 ⟨E6

i ⟩ ⟨Ei⟩+ 21 ⟨E5
i ⟩ ⟨Ei⟩2 − 35 ⟨E4

i ⟩ ⟨Ei⟩3 + 35 ⟨E3
i ⟩ ⟨Ei⟩4

−21 ⟨E2
i ⟩ ⟨Ei⟩5 + 7 ⟨Ei⟩ ⟨Ei⟩6 − ⟨Ei⟩7 .

(A.11)
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Eqs. (A.3), (A.4), (A.6) and (A.10) are substituted into Eq. (A.11); therefore,

⟨E7
i ⟩ can be written as given in Eq. (3.38) by

⟨
E7

i

⟩
≈ 14

⟨
E2

i

⟩2 ⟨Ei⟩3 − 28
⟨
E2

i

⟩
⟨Ei⟩5 + 7

⟨
E2

i

⟩3 ⟨Ei⟩+ 8 ⟨Ei⟩7 . (A.12)

A.4 Derivation of ⟨E8
i ⟩

For n = 8, L.H.S of Eq. (A.2) leads to

⟨(Ei − ⟨Ei⟩)8⟩ = ⟨E8
i − 8E7

i ⟨Ei⟩+ 28E6
i ⟨Ei⟩2 − 56E5

i ⟨Ei⟩3 + 70E4
i ⟨Ei⟩4 − 56E3

i ⟨Ei⟩5

+28E2
i ⟨Ei⟩6 − 8Ei ⟨Ei⟩7 + ⟨Ei⟩8⟩

= ⟨E8
i ⟩ − 8 ⟨E7

i ⟩ ⟨Ei⟩+ 28 ⟨E6
i ⟩ ⟨Ei⟩2 − 56 ⟨E5

i ⟩ ⟨Ei⟩3 + 70 ⟨E4
i ⟩ ⟨Ei⟩4

−56 ⟨E3
i ⟩ ⟨Ei⟩5 + 28 ⟨E2

i ⟩ ⟨Ei⟩6 − 8 ⟨Ei⟩ ⟨Ei⟩7 + ⟨Ei⟩8 .
(A.13)

We substitute Eqs. (A.3), (A.4), (A.6), (A.10) and (A.12);

⟨
(Ei − ⟨Ei⟩)8

⟩
=

⟨
E8

i

⟩
+14

⟨
E2

i

⟩2 ⟨Ei⟩4+28
⟨
E2

i

⟩
⟨Ei⟩6−28

⟨
E2

i

⟩3 ⟨Ei⟩2−15 ⟨Ei⟩8 .

(A.14)

For the R.H.S of Eq. (A.2), we also obtain

⟨(Ei − ⟨Ei⟩)2⟩8/2 =
⟨
E2

i + 2Ei ⟨Ei⟩+ ⟨Ei⟩2
⟩4

=
(
⟨E2

i ⟩+ 2 ⟨Ei⟩ ⟨Ei⟩+ ⟨Ei⟩2
)4

⟨(Ei − ⟨Ei⟩)2⟩4 = ⟨E2
i ⟩

4 − 4 ⟨E2
i ⟩

3 ⟨Ei⟩2 + 6 ⟨E2
i ⟩

2 ⟨Ei⟩4 − 4 ⟨E2
i ⟩ ⟨Ei⟩6 + ⟨Ei⟩8 .

(A.15)

Eqs. (A.14) and (A.15) are solved for ⟨E8
i ⟩ given in Eq. (3.39) by

⟨
E8

i

⟩
≈ 24

⟨
E2

i

⟩3 ⟨Ei⟩2−8
⟨
E2

i

⟩2 ⟨Ei⟩4−32
⟨
E2

i

⟩
⟨Ei⟩6+16 ⟨Ei⟩8+

⟨
E2

i

⟩4
. (A.16)
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