

Thesis Title EFFECTS OF INCLUSION SHAPES ON ELECTRIC RESPONSES OF NONLINEAR DIELECTRIC COMPOSITES

By Mr. Jatuporn Thongsri
Field of Study Physics
Thesis Advisor Associate Professor Mayuree Natenapit, Ph.D.
Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements fon the Doctoral Degree

Dean of the Faculty of Science
(Professor Supot Hannongbua, Dr.rer.nat)
THESIS COMMITTEE

(Assistant Prefessor Patcha Chatraphorn, Ph.D.)

(Associate Prifessor/Mayuree Natenapit, Ph.D.)

จตุพร ทองศรี : ผลของรูปร่างสารฝังในต่อการตอบสนองทางไฟฟ้าของไดอิเล็กทริก คอมพอสิตไม่เชิงเส้น (EFFECTS OF INCLUSION SHAPES ON ELECTRIC RESPONSES OF NONLINEAR DIELECTRIC COMPOSITES) อ. ที่ปรึกษา วิทยานิพนธ์หลัก : รศ.ดร.มยุรี เนตรนภิส, 74 หน้า.

ได้ศึกษาผลการตอบสนองทางไฟฟ้าขอมไดอิเล็กทริกคอมพอสิตไม่เชิงเส้นสองชนิด ได้แก่ชนิดที่สารฝังในมีลักษณะรูปร่รงงเหมื่อนกันกับอีกชนิดที่สารฝังในมีการกระจายของ ลักษณะรูปร่าง โดยสารสังในกระจาขไบบสุ่มอยู่ในตัวกลางเชิงเส้นอย่างเบาบาง มีสมบัติไดอิ เล็กทริกความสัมพันธ์ระหว่างการกระจัดทางไฟฟ้า (D) และสนามไฟฟ้าของสารฝังในคือ $D=\varepsilon E+\chi|E|^{\beta} E$ เมื่อ β คือ เลขจำนวนเต็มชี้กำลังความไม่เชิงเส้น และ $\varepsilon \gg \chi|E|^{\beta}$ สำหรับคอมพอสิตไม่เชิงเส้นอย่างอ่ฮน ส่าหรับคอมพอสิต ไม่เชิงเส้นอย่างแรง สมบัติไดอิ เล็กทริก $\boldsymbol{D}=\chi|E|^{2} E$ ถูกพิจารณาทั้งไนสารฝึงในและในตัวกลาง โดยการใช้วิธีการประมาณ แบบแยก สัมประสิทธิ์ไม่เชิงเส้นขังผลวิป $\left(x_{e}\right)$ ได้ถูกคำนวณและรายงานในเทอมของค่า อัตราส่วนรูปร่าง (M) และค่ากอรตระจายลักษณะรูปร่าง (Δ) สำหรับคอมพอสิตชนิดแรก และชนิดหลังตามลำดับ สำหรับฉอมพอสิตไม่เชิงเส้นอย่างอ่อนซึ่งสารฝังในมีลักษณะรูปร่าง เหมือนกัน ผลการคำนวฉแแสดให้เท็มการเพิ่มขึ้มอย่างรวดเร็วของค่า χ_{e} ตามการเพิ่มขึ้นของ ค่า M ในช่วงที่ M มีควต่ำอย่างไรก็ตาม ในช่วงที่ M มีค่าสูงคารเพิ่มขึ้นของค่า M มีผลต่อการ เพิ่มขึ้นของค่า χ_{e} เพียงเล็กน้อย ลักษณะนี้ยังพบได้ในคอมพอสิตไม่เชิงเส้นอย่างแรงด้วย สำหรับคอมพอสิตซึ่งสดรผิงในมีการถระดายบองลักษณะรูมร่าษผลคารคำนวณแสดงการ เพิ่มขึ้นหรือลดลงงอยำงรวดเร็วของค่า χ_{e} เมื่อเพิ่มค่า Δ เฉพาะเมื่อ Δ มีค่าเข้าใกล้ 1 นอกจากนี้ เรายังได้คำนวณค่ว χ_{e} เชิงวิเคราะห์ที่แม่นตรงสำหรับดิอมพอสิตไม่เชิงแส้นอย่างอ่อนในกรณี $\beta=2$ อีกด้วย ซึ่งผลการคำนวนเชิงวิเคราะห์สอดคล้องกับผลครรคำนจิณเชิ่งตัวเลข

ภาควิชา.......ฟิสิกส์์.
สาขาวิชา.... ฟิสิกส์. \qquad
ปีการศึกษา.. 2553. \qquad

กาชมีอชื่อ อ.ที่เรีกษาวิทยานิพนธ์หลัก pon-
\#\# 4973808823 : MAJOR PHYSICS
KEYWORDS: DECOUPLING APPROXIMATION / ELLIPTICAL DIELECTRIC INCLUSIONS / NONLINEAR COMPOSITES

JATUPORN THONGSRI : EFFECTS OF INCLUSION SHAPES ON ELECTRIC RESPONSES OF NONLINEAR DIELECTRIC COMPOSITES. ADVISOR : ASSOC. PROF. MAYUREE NATENAPIT, Ph.D., 74 pp.

The electric field responses of two types of nonlinear dielectric composites consisting of elliptic cylindrical inclusions, one with an identical shape and another with distributed shapes, randomy embedded in the host media in the dilute limit are investigated. The dielectric/property of the inclusions is that the relation between the displacement field (D) and electric field (\mathbf{E}) satisfies a more general form $\mathbf{D}=\varepsilon \mathbf{E}+\chi|\mathbf{E}|^{\beta} \mathbf{E}$, where β is a nonlinear integer exponent and $\varepsilon \gg \chi|\mathbf{E}|^{\beta}$ for weakly nonlinear composites. Fer strongly nonlinear composites, the dielectric property of both inclusion and meatum satisfying $\mathbf{D}=\chi|\mathbf{E}|^{2} \mathbf{E}$ is considered. By using the simple decoupling approximation, the effective nonlinear coefficients $\left(\chi_{e}\right)$ are determined and the effects of inclusion shapes on χ_{e} are reported in terms of the aspect ratio (M), and the shape distribution parameter (Δ) for the former and the latter types of cemposites, respectively. For weakly nonlinear composites with identical inclusion shape, the results show the rapid Increase in χ_{e} with increasing M within the range of lower values of M. However, within the range of higher values of M, increasing \mathscr{M} affects the minceasitig of $\begin{aligned} & \text { every slightly. The similar }\end{aligned}$ behavior is alsd observed for strongly nonlinear composites. For composites with distribyted inclusioneshapes; the resultspreveal the rapid increase or decrease in χ_{e} withincreasing Δ, especially, when Δ near 1 . Furthermore, the exact analytic result of χ_{e} for weakly nonlinear elliptical composites with distributed inclusion shapes for the case of $\beta=2$ is also determined and this is consistent with the numerical result.

Department :Physics.....
Field of Study :Physics.....
Academic Year :2010.....

Student's Signature ...Jatuporn Thongsri
Advisor's Signature Mym. Nut. A.......

Acknowledgements

I would like to express my sincere thank and deep appreciation to my advisor, Assoc. Prof. Dr. Mayuree Natenapit for her excellent instructions, critical comments, guidance, suggestions and support throughout this thesis work. Special thanks also are extended to Asst. Prof. Dr. Patcha Chatraphorn, Dr. Varagorn Hengpunya, Dr. Orapin Wannadelok ând Asst. Prof. Dr. Sutee Boonchui for teaching as thesis committee and for valuable comments.

Sincere thanks are extended to all friends of the Department of Physics for their suggestions, assistance and friendship.

The author would like to thank the Development and Promotion of Science and Technology Talent Project (DPST) for a scholarship support to this graduate study. The financial support of this work by the $90^{\text {th }}$ Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) is gratefully acknowledged.

Finally, the greatest gratitude is expressed to my mother and my family for their love and understanding.

จุหาลงกรณ์มหาวิทยาลัย

Contents

Page
Abstract (Thai) iv
Abstract (English) V
Acknowledgements vi
Contents vii
List of Figures X
List of Symbols xiii
Chapter
I Introduction 1
II Theoretical Background 4
2.1 Dielectric Media. .ança2.1.1 QPolarization (P)4
จะาคงคคซึมหาวิทยาลัย 5
2.1.3 Nonlinear Dielectrics 6
2.2 Basic Equations in Electrostatics 7
2.2.1 Laplace 's Equation 7
2.2.2 Boundary Conditions 8
Chapter Page
III Composites with Identical Inclusion Shape 9
3.1 Linear Dielectric Composites 9
3.1.1 Typical Structure and Model 9
3.1.2 Electric Field inside Elliptic Cylindrical Inclusion 11
3.1.3 Effective Linear Coefficient 15
3.1.4 Results and Discussion 16
3.2 Weakly Nonlinear Dieloctric Composites 20
3.2.1 Typical Structure 20
3.2.2 Effective Nomlinear Coefficient 20
3.2.3 Results and Discussion 25
3.3 Strongly Nonlinear Dietectric Composites 29
3.3.1 Typical Structure 29
3.3.2 Effeetive Nonlinear Coefficient 29
3.3.3 Results and Discussion 31
IV Composites with Distributed Inclusion Shapess. 37
4.1 LinearDielectric Composites 38
 38
4.1.2 Electric Field inside an Elliptic Cylindrical Inclusion 38
4.1.3 Effective Linear Coefficient 40
4.1.4 Results and Discussion 42
4.2 Weakly Nonlinear Dielectric Composite 49
4.2.1 Typical Structure 49
Chapter Page
4.2.2 Effective Nonlinear Coefficient 49
4.2.3 Results and Discussion 53
4.3 Strongly Nonlinear Dielectric Composite 56
4.3.1 Typical Structure 56
4.3.2 Effective Nonlinear Coefficient 56
4.3.3 Results and Discussion 59
V Conclusions 62
References 65
Appendices 69
Appendix A: Improved Decoupling Approximation. 70
Appendix B: Experiences............ 73
Vitae 74

List of Figures

Figure Page
2.1 An unpolarized atom 5
2.2 A polarized atom. 5
2.3 The polar molecules of water in an electric field. 6
3.1 A linear dielectric composite with identical inclusion shape. 10
3.2 The single inclusion model of identical inclusion shape in elliptic cylindrical coordinates. 10
3.3 Elliptic Cylindrical Coordinates. 11
3.4 The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the lin- ear contrast $\left(\varepsilon_{r}\right)$ with the aspect ratio (M) as parameter and an inclusion packing fraction $\left(v_{i}\right)=0.08$ 18
3.5 The relative effective linear coefficients $\left(\varepsilon_{c} / \varepsilon_{m}\right)$ for varying the as- pect ratio (M) with the linear contrast $\left(\varepsilon_{r}\right)$ as parameter and an inclusion packing fraction $\left(v_{i}\right)=0.08$. 19
3.6 A weakly nonlihear dielectie composite vithidentiéal inclusion shape. 203.7 The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{i}\right)$ for varying theasppect ratio with the nonlinear mineger exponent (β Das parameter
of the contrast $\left(\varepsilon_{r}\right)$ equal to a) $\varepsilon_{r}=0.1$ and b) $\varepsilon_{r}=10$. . . .27
3.8 The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{i}\right)$ for varying the contrast $\left(\varepsilon_{r}\right)$ with the aspect ratio (M) as parameter for the non- linear integer exponent (β) equal to a) $\beta=2$, b) $\beta=4$ and c) $\beta=6$. 28
3.9 A strongly nonlinear dielectric composite with identical inclusion shape. 29

Figure

Page
3.10 The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$, with varying inclusion packing fractions $\left(v_{i}\right)$ of $0.04,0.06$ and 0.08 , and an aspect ratio (M) of 2 [21]32
3.11 The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$, with varying aspect ratios (M) between 1 and 10 , and with an inclusion packing fraction $\left(v_{i}\right)$ of 0.08 [21].
3.12 Comparison of the relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$ obtained from the decoupling approximation and the variational method for an aspect ratio (M)) of 1 and an inclusion packing fraction $\left(v_{i}\right)$ of $0.08[21] . F$
3.13 The percentage discrepancy $(\Delta \%)$ between $\left\langle E_{m}^{4}\right\rangle$ and $\left\langle E_{m}^{2}\right\rangle^{2}$ used in the decoupling approximation with an aspect ratio (M) of 1 and inclusion packing fractions $\left(v_{i}\right)$ of $0.04,0.06$ and 0.08 [21].
4.1 A linear dielectric composite with distributed inclusion shapes.
4.2 The single inclusion model for a composite with distributed inclusion shapes?
4.3 The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the contrast (fogre) with the depolarization factop (L) assparameter for inclusion packing fraction $\left(v_{i}\right)$ of 0.08 .
4.4OThe relafive effective fimearcoefficients $\left(\varepsilon_{\ell} / \varepsilon_{m}\right)$ for varying the de-
cpolarization factor (L) with the contrast $\left(\varepsilon_{r}\right)$ as parameter for inclusion packing fraction $\left(v_{i}\right)$ of 0.08 .
4.5 The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the linear contrast $\left(\varepsilon_{r}\right)$ with the shape distribution parameter as parameter. 47
4.6 The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the the shape distribution parameter with the linear contrast $\left(\varepsilon_{r}\right)$ as parameter.

Figure

Page
4.7 A nonlinear dielectric composite with distributed inclusion shapes. . 49
4.8 The relative effective nonlinear coefficient (χ_{e} / χ_{i}) for varying the shape distribution parameter (Δ) with the nonlinear integer exponent (β) equal to a) $\varepsilon_{r}=0.1$, b) $\varepsilon_{r}=0.01$ and c) $\varepsilon_{r}=0.001$.54
4.9 The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{i}\right)$ for varying the contrast $\left(\varepsilon_{r}\right)$ with the the nonlinear integer exponent (β) equal to a) $\beta=2$, b) $\beta=4$ and c) $\beta=6$.
4.10 A strongly nonlinear dielectric composite with distributed inclusion shapes
4.11 The relative effective nonfinear coefficients $\left(\chi_{e} / \chi_{m}\right)$ for varying the nonlinear contrast $\left(\chi_{r}\right)$; with the shape distribution parameter as parameter.
4.12 The relative effective nenfinear coefficients $\left(\chi_{e} / \chi_{m}\right)$ for varying the the shape distribution parameter with the nonlinear contrast $\left(\chi_{r}\right)$ as parameter.

List of Symbols

$\varepsilon_{e} \quad$ effective linear coefficient of composite
$\varepsilon_{i} \quad$ effective linear coefficient of inclusion
$\varepsilon_{m} \quad$ effective linear coefficient of medium
$\varepsilon_{r} \quad$ linear contrast or relative linear coefficient $\left(\varepsilon_{i} / \varepsilon_{m}\right)$
$\chi_{e} \quad$ effective nonlinear coefficient of composite
$\chi_{i} \quad$ nonlinear coefficient of inclusion
$\chi_{m} \quad$ nonlinear coefficient/of host medium
$\chi_{r} \quad$ nonlinear contrast or relative nonlinear coefficient $\left(\chi_{i} / \chi_{m}\right)$
$v_{i} \quad$ inclusion packing fraction (volume fraction)
$\phi \quad$ electric potential
$\mathbf{E}_{i} \quad$ electric field insideteltiptic cylindrical inclusion
$\mathbf{E}_{m} \quad$ electric field inside medium
D electric displacement
$M \quad$ aspect ratio, the ratio between semi major and minor axes of elliptic cylindrical inclusion

(3) 9 nontinear miteger exponenth? 9 ?
$\left\langle E_{i}^{n}\right\rangle$ volume average of electric field inside inclusion to the $n^{\text {th }}$ power
L depolarization factor
$\beta_{j} \quad$ field factor in the direction j
$P(L)$ shape distribution function
$\Delta \quad$ shape distribution parameter

CHAPTER I

Introduction

The physics of nonlinear response of composites subject to an applied electric field has been very much interested because it has many applications in physics and engineering, for instance, developing photonic devices, explaining some physical phenomena, predicting optical responses and using as fundamental information for designing nonlinear optical materials 17. For example, the color of laser light depends on the optical nonlinear response of material used in laser. If we can control the optical nonlinear response then we can control the color of the emitted laser light. Therefore, it is useful to study the electric field responses of these materials. Various methods hafe been used to study the effective responses of nonlinear composites such as the perturbation method [2-4], the variational method [5-8] and the decoupling approximation [9-12]. The decoupling approximation, originally proposed by Stroud and Wood [13], has been widely applied to study nonlinear compositestby many authors [9-12]. We previously have applied this method together with thevariational method to predict the effective third-order nonlinear coefficient (χ_{e}) of strongly nonlinear spherical dielectric composites [14], and confirmed the results with the experimental data of Gehreet al. [15].
 as inclusion packing fraction and inclusion shapes. In the literature search, constituents of spherical and cylindrical geometries have been mostly presented for theoretical models in investigations of effective responses of composites. However, in experimental lab, the realistic constituents of prepared composites may not be perfectly spherical or cylindrical such as those of Kochergin et al.[16] and Piredda et al.[17] with imperfectly spherical and cylindrical nanoinclusions, randomly distributed in dielectric medium. Therefore, the research interests have been devoted
to the elliptical and ellipsoidal composites and also concentrated on the effect of inclusion shapes on nonlinear response.

To obtain the effective nonlinear responses very close to those of realistic composites, we consider the composite microstructures of two types, composites with identical inclusion shape and those with distributed inclusion shapes. For the former, the geometry of all inclusions is the same. For the latter, the inclusion shapes could deviate from a specific geometry such as cylinder to any possible shape of elliptic cylinders. For both cases, the inclusions are randomly embedded in the host medium with parallel axes.

For composites with identical inclusion shape, Hui and Chung [11] studied the effective nonlinear response in random composites consisting of weakly nonlinear cylindrical (and spherical) inclusions randomly embedded in the host medium. By using the effective medium approximation, the expression of effective nonlinear coefficient (χ_{e}) was derived. Giordano et al, [18-19] developed alternative procedure to investigate the shape-dependent effects of linear or nonlinear ellipsoidal dielectric inclusions randomly oriented and embedded in linear dielectric medium in terms of the eccentricity of the inclusions. Chang et al. [20] have investigated the effect of host medium and particle shapes on thind-order optical nonlinearities of nanocomposites which compose of ZnO nanerods or ZnO nanoparticles suspended in water of ethanol. Their results are in geod agreement with the theoretical predictions basedon Maxwell-Garnett effective medium theory. Recently, we have applied the decoupling approximation to investigate the shape effect of identical inclusions on the effective nonlinearaesponse of strongly nonlinear ellipticaP ieflectric Compositess in the dilute limit [2n]. We expect that composite microstructures of these work relate to those of Kochergin's experiment.

For composites with distributed inclusion shapes, based on statistical approach, Goncharenko et al. [22-23] successfully predicted the effect of shape distribution on light absorption and light scattering of ellipsoidal composites and their approach has been widely applied to study the electric field response by many authors [24-31]. The effective linear and nonlinear optical properties of metal-dielectric composites with inclusion shape distribution [24-26] have been in-
vestigated including the effective nonlinear response of a two-dimensional strongly nonlinear elliptic cylindrical composite by the effective medium approximation [27] and that of nonlinear ellipsoidal composite by Maxwell-Garnet approximation [28]. Xu and Li proposed that the particle shape has a profound effect on the optical threshold of metal-insulator composites [29]. Goncharenko et al. have predicted the shape distribution effect of nonsphericity on linear and nonlinear optical properties of small particles composites [30] and evaluated the effective dielectric response of core-shell particle of linear [31] and nonlinear composites [32]. We expect that the composite microstructures of these work relate to those of Piredda's experiment.

Further investigation and analysis of the effects of inclusion shapes on effective nonlinear responses for the two-dimensional nonlinear elliptical dielectric composites are presented in this research. The work of Hui and Chung [11] is extended to weakly and strongly nonlinear elliptic cylindrical composites with identical and distributed inclusion shapes. In Chapter 2, the brief details of the dielectric properties, the basic equations are reported. In Chapter 3, we consider the composites with identical inclusion shape. The dielectric property of the inclusions is that the electric displacement (D) and electric field (E) satisfies a more general relation $\mathbf{D}=\bar{E}+\chi|\mathbf{E}|^{\beta} \mathbf{E}$ where β is a nonlinear integer exponent. For weakly nonlinear composites $\varepsilon \gg \chi|\mathbf{E}|^{\beta}$ and $\varepsilon \ll \chi|\mathbf{E}|^{2}$ for strongly nonlinear composites are considered. By using the decoupling approximation, the effective nonlinear coefficients (χ_{e}) are determined and then the effects of inclusion shapes on χ_{e} are reported for varying the aspect ratios (the ratios between the semi-major and semi-minor axesfor identical inclusions). In Chapter 4, we fock on the composites with distributed inclusion shapes having the same dielectric property as composites with identical inclusion shape. Based on the statistical approach and the decoupling approximation, χ_{e} and the effects of inclusion shapes on χ_{e} are reported for varying the shape distribution parameter. Finally, discussion and conclusions of our theoretical results are given in the last section.

CHAPTER II

Theoretical Background

In this chapter, the brief details of the dielectric properties and the basic equations of composites subject to an external electric field will be reported. These play important roles in investigation of the electric field responses of dielectric composites in Chapters 3 and 4.

2.1 Dielectric Media

2.1.1 Polarization (D)

In general, the molecules are classified into two types: polar and nonpolar molecules. In a polar molecule, the center of the electric charge is permanently displaced from the center of the nucleus charge so the neutral molecule has a permanent electric dipolemoment. The water molecule is an example of polar molecule. In contrast, if the centers of positive and negative charges are not displaced relative to each other, then the molecule does not exhibit a permanent electriondipgle (nonpolar molecule). Examples of nonpolar molecules include O_{2}, N_{2}, and ${ }^{\top} \mathrm{H}_{2}$.

Now, we consider the interaction between individual molecules (or atoms) and the electric field. If the atom is neutral and unpolarized, the dipole moment is zero as in Figure 2.1. When an external electric field is applied, the electron cloud becomes slightly displaced or asymmetrical, as in Figure 2.2, and the atom is polarized having a tiny dipole moment \mathbf{p}, which points in the same direction as the electric field. For polar molecules (or atoms), the external electric field
rotates the dipole moments to the direction of the external electric field. Figure 2.3 shows the polar molecules of water in an electric field. The electric field creates the polarization (\mathbf{P}) which is the dipole moment per unit volume.

Positive

Figure 2.2: A polarized atom.

2.1.2 Linear Dielectrics

แน่ยย์วิทยทรัมยาดร

We consider the relation of the electric displacemento(D), the electric field (\mathbf{E}) and the polarization (\mathbf{P}) as
จุห์
where ε_{0} is called the permittivity of free space.
Generally, the dielectric property of linear and isotropic materials is that \mathbf{P} is proportional to \mathbf{E}. When \mathbf{E} is not too strong, the relation between \mathbf{P} and \mathbf{E} can be written by

$$
\begin{equation*}
\mathbf{P}=\varepsilon_{0} \chi^{\prime} \mathbf{E} \tag{2.2}
\end{equation*}
$$

Figure 2.3: The polar molecules of water in an electric field.
where χ^{\prime} is called the electric susceptibility which depends on the microscopic structure of the medium.

Substituting Eqs. (2.2) into (2.1), the alternative relation between \mathbf{D} and \mathbf{E} is given by

where $\varepsilon \equiv \varepsilon_{0}\left(1+\chi^{\prime}\right)$ is called the linear coefficient (or Permittivity) of materials.
Therefore, the electric displacement is linearly-proportional to the electric field in linear dielectric media.

(2.3) becomes noticeable [33]. The nonlinear effects of the materials occur because of the interaction of the local field \mathbf{E}, with the molecular dipole moment, which rotates those dipoles and creates a polarization field \mathbf{P}. The polarization field is linearly dependent on the magnitude of the local field so long as they are small. This linearity eventually breaks down and higher order terms are needed to describe the polarization field. The polarization in this case is given by [34]

$$
\begin{equation*}
\mathbf{P}=\varepsilon_{0} \chi^{\prime} \mathbf{E}+\varepsilon_{0} \chi^{\prime(3)}|\mathbf{E}|^{2} \mathbf{E}+\varepsilon_{0} \chi^{\prime(5)}|\mathbf{E}|^{4} \mathbf{E}+\ldots, \tag{2.4}
\end{equation*}
$$

where $\chi^{\prime}, \chi^{\prime(3)}$ and $\chi^{\prime(5)}$ are the nonlinear first, third and fifth order electric susceptibilities, respectively.

Thus, the nonlinear dielectrics are materials whose polarization is not proportional to the local electric field. Similarly, replacing Eqs. (2.4) into (2.1), the relation between the electric displacement (D) and the electric field (E) for nonlinear dielectric is

$$
\begin{equation*}
\mathbf{D}=\varepsilon \mathbf{E}+\chi|\mathbf{E}|^{2} \mathbf{E}+\ldots, \tag{2.5}
\end{equation*}
$$

where ε and χ are called the linear and nonlinear coefficients, respectively.
In this research, we concentrate on the nonlinear dielectric composites in which the relation between the electric displacement (\mathbf{D}) and the electric field (\mathbf{E}) obeys

$$
\begin{equation*}
\mathrm{D}=\varepsilon \mathrm{E}+\chi|\mathrm{E}|^{\beta} \mathrm{E} \tag{2.6}
\end{equation*}
$$

where β is nonlinear integer exponent:
Eq. (2.6) is assumed by $\varepsilon \gg \chi|\mathbf{E}|^{\beta}$ for weakly nonlinear composites and $\varepsilon \ll \chi|\mathbf{E}|^{\beta}$ for strongly nonlinear composites.

2.2 Basic Equations in Electrostatics

2.2.1 Laplace 's Equation

We consider the Maxwell's equations in electrostatics of dielectric media

and

$$
\begin{equation*}
\nabla \times \mathbf{E}=0, \text { or } \mathbf{E}=-\nabla \phi, \tag{2.8}
\end{equation*}
$$

where ϕ is the electric potential.

By using Eqs. (2.3), (2.7) and (2.8), these lead to

$$
\begin{equation*}
\nabla^{2} \phi=0 . \tag{2.9}
\end{equation*}
$$

This is Laplace's equation. The solution of Eq. (2.9) depends on the mathematical coordinates such as the elliptic cylindrical coordinates (u, v). The general solution is [35]
$\phi(u, v)=\sum_{n=0}^{\infty}\left[\left(A_{n} \cosh (n u)+B_{n} e^{-n u}\right) \cos (n v)+\left(C_{n} \sinh (n u)+D_{n} e^{-n u}\right) \sin (n v)\right]$.
where u and v are the variables in the elliptic cylindrical coordinates.
The solution of Laplace's equation in elliptic cylindrical coordinates is employed to determine the electric field inside the inclusion in Chapter 3.

2.2.2 Boundary Conditions

The boundary conditions are essential to be specified in solving for electric potentials in Chapter 3. These are as follows:
i) the electric potential in the host medium at remote distance,
ii) the electric field at the line between foci $(u=0)$ is parallel to the direction of the external uniform electrie field,
iii) the continuity of the tangential component of the electric field at the inclusion surface,

iv) the continuity of the normal component of the electric displacement at the

จุหาลงกรณ์มหาวิทยาลัย

CHAPTER III

Composites with Identical Inclusion

Shape

In this chapter, we investigate the effects of inclusion shapes on effective nonlinear responses of nonlinear elliptic cylindrical dielectric composites with identical inclusion shape in two dimensions. Three types of composites, linear, weakly nonlinear and strongly nonlinear, are considered. The effective linear coefficient $\left(\varepsilon_{e}\right)$ of linear dielectric composites is determined. It is applied to determine the effective nonlinear coefficient $\left(\chi_{e}\right)$ of weakly and strongly nonlinear composites with the same microstructures as a linearcomposite by using the decoupling approximation. The effects of inclusion shapes on χ are reported for varying the aspect ratio (the ratios between the semi-major and semi-minor axes for identical inclusions).

3.1 Linear Dielectric Composites

ศนยวทยทรพยากร

3.1.1 Typical Structure and Model

จหาดงกรณมหาวทยาลย
We consider a linear composite which consists of linear elliptic cylindrical inclusions with identical shape, having the same aspect ratio, the ratio between major and minor axes $(M=c / b)$, randomly oriented and embedded in a different linear dielectric medium in dilute limit, as shown in Figure 3.1. The linear coefficients of inclusions and medium are ε_{i} and ε_{m}, respectively. The axes of any inclusions are parallel and much longer than the respective semi major axes such that the system is considered as two dimensional.

Figure 3.1: A linear dielectric composite with identical inclusion shape.

In the dilute limit or a low inclusion packing fraction (the ratio of inclusion volume to composite volume), the single inclusion model is assumed. Figure 3.2 shows the single inclusion model presented in elliptic cylindrical coordinates. The elliptic cylindrical inclusion is located at $0 \leq u \leq u_{0}$ and $0 \leq v \leq 2 \pi$, where u and v are the variables in the elliptic eylindrical coordinate. \widehat{u} and \hat{v} present the unit vectors in the normal component and tangential component of ellipse,

Figure 3.2: The single inclusion model of identical inclusion shape in elliptic cylindrical coordinates.

Figure 3.3: Elliptic Cylindrical Coordinates.

3.1.2 Electric Field inside Elliptic Cylindrical Inclusion

The electric field insidetre elliptic cylindrical inclusion is required to determine the effective linear coefficient $\left(\varepsilon_{e}\right)$. In the literature search, the electric field inside elliptic cylindrical inclusion was determined by Yu et al. [4] by using the complex transformation and conformal map. Alternatively, we present the determination of the electric field inside the elliptic eylindrical inclusion by using the elliptic cylindrical coordinates.

The electric potential inside an inclusion ($\bar{\phi}$) satisfies the Laplace equation:
จุหาลงกรณ์มะุดวิทยาลัย

We employ the elliptic cylindrical coordinates (u, v) which are related to the cartesian coordinates (x, y) by:

$$
\begin{aligned}
& x=a \cosh (u) \cos (v) \\
& y=a \sinh (u) \sin (v),
\end{aligned}
$$

where $a=\sqrt{c^{2}-b^{2}}$ is the focal length of ellipse in Figure 3.2.

The general solution of Laplace's equation in elliptic cylindrical coordinates in this case is [35]

$$
\begin{equation*}
\phi(u, v)=\sum_{n=0}^{\infty}\left[\left(A_{n} \cosh (n u)+B_{n} e^{-n u}\right) \cos (n v)+\left(C_{n} \sinh (n u)+D_{n} e^{-n u}\right) \sin (n v)\right] . \tag{3.2}
\end{equation*}
$$

In order to derive for the electric potentials in the inclusion and medium in Figure 3.2, the electric field is separated into two components \widehat{x} and \widehat{y} and the electric potentials are the linear superposition of the responses to both external fields, $E_{0 x}=E_{0} \cos (\alpha)$ and $E_{0 y}=E_{0} \sin$ ($)$. The boundary conditions are given here as follows.
i) The electric potential in the host medium at remote distance $(u \rightarrow \infty)$ becomes $-a E_{0 x} \cosh (u) \cos (v)$. This omits the term of $n \neq 1$ and gives $A_{1}=$ $-a E_{0 x}$.
ii) The electric potential is symmetric with respect to the x axis, $\phi(u, v)=$ $\phi(u,-v)$. This omits the term of $\sin (v)$ because of $\sin (v)=-\sin (-v)$.

By using the two boundary conditions i) and ii), and the mathematical formula $\cosh (n u)-\sinh (n u)=e^{-n u}$, the electric potential in the host medium of the elliptic cylindrical inclusion with a major axis parallel to the external electric field is

$$
\begin{equation*}
\phi_{m}^{x}(u, v)=\left[\sigma a \cosh (u)+B_{1}(\cosh (u)-\sinh (u))\right] \cos (v) E_{0 x} . \tag{3.3}
\end{equation*}
$$

Mathematically, at u 의 0 , it is a rine connecting the two focal points of the cross section of the elliptic cylinder. Physically, when we apply the external electric field $\left(E_{0_{x}}\right)$ ito the elliptic cylindridalinclasion goated at $u=80$, the electric field inside the inclusion occurs in the direction \widehat{v} only. This is the boundary condition for determining the electric potential inside the inclusion.

As described above, if $u=0$, the result of $\left.\frac{\partial \phi_{i}(u, v)}{\partial u}\right|_{u=0}=0$ gives the electric potential in the inclusion of the elliptic cylindrical inclusion with a major axis parallel to the external electric field:

$$
\begin{equation*}
\phi_{i}^{x}(u, v)=A_{1}^{i} \cosh (u) \cos (v) E_{0 x} . \tag{3.4}
\end{equation*}
$$

Similarly, when the external electric field $E_{0 y}=E_{0} \sin (\alpha)$ is applied perpendicular to the major axis of the inclusion, it can be proved that the electric potential in the host medium is

$$
\begin{equation*}
\phi_{m}^{y}(u, v)=\left[-a \sinh (u)+D_{1}(\cosh (u)-\sinh (u))\right] \sin (v) E_{0 y} . \tag{3.5}
\end{equation*}
$$

The electric potential inside the inclusion is

$$
\begin{equation*}
\phi_{i}^{y}(u, v)=C_{1} \sinh (u) \sin (v) E_{0 y} . \tag{3.6}
\end{equation*}
$$

According to Figure 3.2, when the external electric field $\mathbf{E}_{0}=E_{0} \cos (\alpha) \hat{x}+$ $E_{0} \sin (\alpha) \hat{y}$, where α is the angle between E_{0} and the major axis of the inclusion aligned in the \widehat{x} direction, is applied to the inclusion. From Eqs. (3.3) - (3.6), the electric potentials derived previonsly are modified to become

$$
\begin{align*}
\phi_{i}^{\alpha}(u, v) & =[A \cosh (u) \cos (v) \cos (\alpha)+B \sinh (u) \sin (v) \sin (\alpha)] E_{0}, \quad 0 \leq u \leq u_{0} \\
\phi_{m}^{\alpha}(u, v) & =[-a \cosh (u)+C(\cosh (u)-\sinh (u))] \cos (v) \cos (\alpha) E_{0} \tag{3.7}\\
& +[-a \sinh (u)+D(\cosh (u)-\sinh (u))] \sin (v) \sin (\alpha) E_{0}, u_{0} \leq u<\infty . \tag{3.8}
\end{align*}
$$

The constants A, B, C and D in Eqs. (3.7) and (3.8) can be determined by using the following boundary conditions at the inclusion surfaces:
iii) The tangential component of the electric field is continuous $\left(E_{1 t}=E_{2 t}\right)$, then the electric potential is also continuouts,

$$
\begin{equation*}
A=-a+C\left(1-\frac{b}{c}\right) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
B=-a+D\left(\frac{c}{b}-1\right) \tag{3.10}
\end{equation*}
$$

iv) The normal component of the electric displacement is continuous ($D_{\text {in }}=$ $D_{m n}$ or $\left.\varepsilon_{i} E_{i n}=\varepsilon_{m} E_{m n}\right)$,

$$
\left.\varepsilon_{i} \frac{\partial \phi_{i}^{\alpha}}{\partial u}\right|_{u=u_{0}}=\left.\varepsilon_{m} \frac{\partial \phi_{m}^{\alpha}}{\partial u}\right|_{u=u_{0}},
$$

hence

$$
\begin{equation*}
\varepsilon_{r} A=-a+C\left(1-\frac{c}{b}\right), \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{r} B=-a+D\left(\frac{b}{c}-1\right), \tag{3.12}
\end{equation*}
$$

where $\varepsilon_{r}=\varepsilon_{i} / \varepsilon_{m}$.
From Eqs. (3.9) - (3.12), the constants A, B, C, and D can be solved directly. The results are

$$
\begin{align*}
& A=\frac{-a(b+c) \varepsilon_{m}}{b \varepsilon_{i}+c \varepsilon_{m}}, \tag{3.13}\\
& -a(b+c) \varepsilon_{m} \tag{3.14}\\
& B=\sqrt{b \varepsilon_{m}+c \varepsilon_{i}}, \tag{3.15}\\
& \frac{c(b+c)}{2 a}\left[\frac{b\left(\varepsilon_{i}-\varepsilon_{m}\right)}{b \varepsilon_{i}+c \varepsilon_{m}}\right], \tag{3.16}\\
& \frac{b(b+c)}{a}\left[\frac{c\left(\varepsilon_{i}-\varepsilon_{m}\right)}{b \varepsilon_{n}+c \varepsilon_{i}}\right] .
\end{align*}
$$

Next, the gradient in elliptic cylindrical coordinate is used to calculate the electric field inside the inclusion $\mathbf{E}_{i}^{\alpha}=\Rightarrow \nabla \phi_{i}^{\alpha}(v, v)$. The gradient is
where $h=\sqrt{\frac{\cosh (2 u)-\cos (2 v)}{2 f}}$.
We obtain

$$
\begin{equation*}
\left.\frac{\nabla}{=-\frac{1}{-1}\left[\hat{u} \frac{\partial}{\partial u}\right.}+\hat{v} \frac{\partial}{\partial v}\right], \tag{3.17}
\end{equation*}
$$

$$
\begin{align*}
\mathbf{E}_{i}^{\alpha}(u, v) & \text { คि } \frac{E_{0}}{a h}[A \sinh (\hat{L}) \cos (v) \cos (\hat{\alpha}) Q A B \cosh (\hat{\varphi}) \operatorname{sinf}(v) \sin (\alpha)] \hat{u} \tag{3.18}\\
& -\frac{E_{0}}{a h}[-A \cosh (u) \sin (v) \cos (\alpha)+B \sinh (u) \cos (v) \sin (\alpha)] \hat{v} .
\end{align*}
$$

This is unfamilianandinappropriate 9 orm for determing theeffective linear coefficient ε_{e}, because the external electric field is applied in the cartesian coordinates and the major axis of inclusion aligns in x axis. To obtain $\mathbf{E}_{i}^{\alpha}(u, v)$ in the cartesian coordinates, the relationships between unit vectors \hat{u} and \hat{v} in elliptic cylindrical coordinates and those of \hat{x} and \hat{y} in cartesian coordinates are used. These are

$$
\begin{gather*}
\hat{u}=\frac{1}{h}[\sinh (u) \cos (v) \hat{x}+\cosh (u) \sin (v) \hat{y}], \tag{3.19}\\
\hat{v}=\frac{1}{h}[-\cosh (u) \sin (v) \hat{x}+\sinh (u) \cos (v) \hat{y}] . \tag{3.20}
\end{gather*}
$$

By replacing Eqs.(3.19) and (3.20) into (3.18), we have

$$
\begin{equation*}
\mathbf{E}_{i}^{\alpha}(x, y)=\frac{-E_{0}}{a}[A \cos \alpha \hat{x}+B \sin \alpha \hat{y}] . \tag{3.21}
\end{equation*}
$$

Substituting the constants A and B of Eqs. (3.13) and (3.14) into Eq. (3.21), we get

$$
\begin{equation*}
\mathbf{E}_{i}^{\alpha}=E_{0}(b+c) \varepsilon_{m}\left[\frac{\cos \alpha \widehat{x}}{b \varepsilon_{i}+c \varepsilon_{m}}+\frac{\sin \alpha \widehat{y}}{c \varepsilon_{i}+b \varepsilon_{m}}\right] . \tag{3.22}
\end{equation*}
$$

We note that Eq. (3.22) confirms the electric field inside the elliptic cylindrical inclusion $\left(\mathbf{E}_{i}^{\alpha}\right)$ reported by Yu et al

3.1.3 Effective Linear Coefficient

The average field method proposed by Landau and Lifshitz [40] is used to determine the effective linear dielectric coefficient $\left(\varepsilon_{e}\right)$ which yields:

$$
\begin{equation*}
\left[\mathbf{D}-\varepsilon_{m} \mathbf{E}\right] d V=\overline{\mathbf{D}}-\varepsilon_{m} \overline{\mathbf{E}}, \tag{3.23}
\end{equation*}
$$

where $\overline{\mathbf{E}}$ is the volume average of electric field in the composite constituents, $\overline{\mathbf{E}}=(1 / V) \int_{V} \mathbf{E} d V$, and V is the composite volume. The effective linear coefficient is defined as $\overline{\mathbf{D}}=\varepsilon_{e} \overline{\mathbf{E}}$, where $\overline{\mathbf{D}}$ is the volume average of electric displacement. From the boundary condition of electric potential on the composite surface at $-\mathbf{E}_{0} \cdot \mathbf{x}$ where \mathbf{x} is the position vector on the composite surface, it can be shown that $\overline{\mathbf{E}}=\mathbf{E}_{0}$. Thus equation (3.23) becomes
where कis the incusion domain, The effective dinear coefficient $\left(\delta_{e}\right)$ is therefore given by

$$
\begin{equation*}
\varepsilon_{e}=\varepsilon_{m}+\frac{\left(\varepsilon_{i}-\varepsilon_{m}\right)}{V E_{0}^{2}} \mathbf{E}_{0} \cdot \int_{V_{i}} \mathbf{E}_{i} d V . \tag{3.25}
\end{equation*}
$$

Substituting $\mathbf{E}_{0}=E_{0} \cos (\alpha) \widehat{x}+E_{0} \sin (\alpha) \widehat{y}$ and \mathbf{E}_{i} from Eqs. (3.22) into (3.25) yields

$$
\begin{equation*}
\varepsilon_{e}^{\alpha}=\varepsilon_{m}\left[1+v_{i}\left(\varepsilon_{i}-\varepsilon_{m}\right)(b+c)\left(\frac{\cos ^{2}(\alpha)}{b \varepsilon_{i}+c \varepsilon_{m}}+\frac{\sin ^{2}(\alpha)}{c \varepsilon_{i}+b \varepsilon_{m}}\right)\right], \tag{3.26}
\end{equation*}
$$

where $v_{i}=V_{i} / V$ is the inclusion packing fraction.

Note that from Eq. (3.26), for an applied electric field parallel $\left(\alpha=0^{0}\right)$ or perpendicular $\left(\alpha=90^{\circ}\right)$ to the major axis of inclusion, it leads to Eqs. (21) and (22), respectively, as reported by Wei et al. [35]. They have investigated the effective dielectric responses of elliptical graded cylindrical composites in the dilute limit under the external electric field. Because the electric fields are applied along \widehat{x} and \widehat{y} directions separately, any elliptic cylindrical inclusions are not randomly oriented.

For totally randomly oriented elliptical inclusions, the angular average of ε_{e}^{α} in Eq. (3.26) is performed to give

$$
\begin{equation*}
\varepsilon_{e} / \varepsilon_{m}=\left[1+\frac{v_{i}}{2}\left(\varepsilon_{r}-M\right)(1+M)\left(\frac{1}{\varepsilon_{r}+M}+\frac{1}{M \varepsilon_{r}+1}\right)\right], \tag{3.27}
\end{equation*}
$$

where v_{i} is the volume packing fraction of inclusions, $\varepsilon_{r}=\varepsilon_{i} / \varepsilon_{m}$ and $M=c / b$.
Moreover, for $b=c(M=\overline{1})$, Eq. (3.27) is also reduced to the wellknown result of a linear cylindricat dielectric composite in the dilute limit of $\varepsilon_{e}=$ $\varepsilon_{m}\left[1+2 v_{i} \frac{\left(\varepsilon_{i}-\varepsilon_{m}\right)}{\left(\varepsilon_{i}+\varepsilon_{m}\right)}\right]$. The effective , linear coefficient (ε_{e}) of Eq. (3.27) is required to determine the effective nonlinearecoefficients $\left(\chi_{e}\right)$ of strongly nonlinear elliptical composites by using the decoupling approximation in the next section.

3.1.4 Results and Discussion

In Figure 3.4, the reative effective limear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ from Eq. (3.27) are shown on the logarithinic scale for varying the linear contrast $\left(\varepsilon_{r}\right)$ with the aspect ratio (M) as parameter for the inclusionfpacking fraction $\left(v_{i}\right)$ of 0.08 . The results show the increase ind $\varepsilon_{\text {el }}$ en owith increasing the aspeet ratio (M) within the range of $\log \left(\varepsilon_{r}\right)>0.3$ (or $\varepsilon_{r} \gg 2.0$). In contrast, within the range of $\log \left(\varepsilon_{r}\right)<-0.3$ (or $\varepsilon_{r} \ll 0.5$), increasing the aspect ratio reduces the effective linear coefficient ε_{e}. For small linear contrast $\left(\varepsilon_{r}\right),-0.3 \leq \log \left(\varepsilon_{r}\right) \leq 0.3$ (or $0.5 \leq \varepsilon_{r} \leq 2.0$), increasing the aspect ratio does not affect ε_{e} of linear elliptical composites.

Figure 3.5 shows the relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the aspect ratio (M) with the linear contrast $\left(\varepsilon_{r}\right)$ as parameter. The result reveals
the increase in $\varepsilon_{e} / \varepsilon_{m}$ with increasing ε_{r}. For $\varepsilon_{r}=10$, increasing M slightly affect $\varepsilon_{e} / \varepsilon_{m}$ within the range of $1 \leq M \leq 100$. In contrast, for $\varepsilon_{r}=100$ and 1000, increasing M tremendously affect $\varepsilon_{e} / \varepsilon_{m}$. For higher $\varepsilon_{r}, \varepsilon_{e} / \varepsilon_{m}$ rapidly increases to the value which depends on varying parameter M. As seen from Eq. (3.27), ε_{e} becomes more dependent on M as high ε_{r}.

Figure 3.4: The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the linear contrast $\left(\varepsilon_{r}\right)$ with the aspect ratio (M) as parameter and an inclusion packing fraction $\left(v_{i}\right)=0.08$.

Figure 3.5: The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the aspect ratio (M) with the linear contrast $\left(\varepsilon_{r}\right)$ as parameter and an inclusion packing fraction $\left(v_{i}\right)=0.08$.

3.2 Weakly Nonlinear Dielectric Composites

3.2.1 Typical Structure

We consider a nonlinear composite with identical inclusion shape in two dimensions, which has the same microstructure as in linear dielectric composite described in the previous section. The composite consists of weakly nonlinear elliptic cylindrical inclusions with identical shape, having the same aspect ratio (the ratio between semi-major and semi-minor axes, $M=c / b$), randomly oriented and embedded in a linear dielectric medium in dilute limit. The relation between the electric displacement (D) and/electric field (E) inside the inclusions has the form $\mathbf{D}=\varepsilon \mathbf{E}+\chi|\mathbf{E}|^{\beta} \mathbf{E}$ where β is a nonlinear integer exponent and $\chi|\mathbf{E}|^{\beta} \ll \varepsilon$. The linear and nonlinear coefficients of inclusions and medium are $\varepsilon_{i}, \chi_{i}$ and ε_{m}, $\chi_{m}=0$, respectively. Figure 3.6 shows a weakly nonlinear dielectric composite with identical inclusion shape.

Figure $3,6:$ A weakly nonlinear (dielecturic composite with identicalinclusion shape.

3.2.2 Effective Nonlinear Coefficient

For weakly nonlinear dielectric composite, the nonlinear response is small compared to the linear response. We consider the work of Hui and Chung [11]
which has the same basic relation between the electric displacement (D) and electric field (E) as this thesis. They have studied the effective nonlinear response in random composites consisting of weakly nonlinear cylindrical (and spherical) inclusions randomly embedded in the host medium with arbitrary nonlinear integer exponents. By using the effective medium approximation, the expression of effective nonlinear coefficient (χ_{e}) with arbitrary nonlinear integer exponents was derived. In this section, we follow their method in deriving the effective nonlinear coefficient (χ_{e}).

The effective nonlinear coefficient (χ_{e}) can be defined by using the average energy method [11]. The energy of effective medium is defined by $W=\int \mathbf{D} \cdot \mathbf{E} d V$, which equals the sum of the energy of the inclusion and medium.

$$
\begin{align*}
\chi_{e} E_{0}^{\beta+2} V & =\int_{V_{i}} \chi_{i}(x) \mathbf{E}_{i}(x)^{\beta+2} d V+\int_{V_{m}} \chi_{m}(x)\left|\mathbf{E}_{m}(x)\right|^{\beta+2} d V, \\
& =\frac{v_{i} \chi_{i}\left\langle E_{i}^{\beta+2}\right\rangle}{E_{0}^{\beta+2}+\frac{v_{m} \chi_{m}\left\langle E_{m}^{\beta+2}\right\rangle_{m}}{E_{0}^{\beta+2}},} \tag{3.28}
\end{align*}
$$

where $v_{i}=V_{i} / V$ and $\left\langle E_{i}^{\beta+2}\right\rangle E\left(1 / V_{i}\right) \int_{V_{i}}\left|\mathbf{E}_{i}\right|^{\beta+2} d V$.
The subscripts i and m outside the brackets denote the average over the inclusion and medium regions, respeetively. For convenicnce, we omit them because the subscripts also appear in the electric field.

For our case of linfear medium $\left(\chi_{m} \mathcal{F}=0\right)$, the effective nonlinear coefficient $\left(\chi_{e}\right)$ is
where E_{i} is the inaquar electric field inside inclusion and y_{i} is the inclusion volume packing fractions.

In fact, the problem in calculation the values of χ_{e} is that of the determination of the volume average of electric field to the power $\beta+2,\left\langle E_{i}^{\beta+2}\right\rangle$ in the inclusion. There are several methods to obtain $\left\langle E_{i}^{\beta+2}\right\rangle$ depending on the nature of problem and the types of composites. If we determine $\left\langle E_{i}^{\beta+2}\right\rangle$ based on the average energy method and the average field method, we must obtain the analytical form of the electric field solutions which are more complex and difficult.

In this research, we are interested in the methods which simplify the calculation. The simple decoupling approximation, the improved decoupling approximation and the direct method have been employed.

A. Simple Decoupling Approximation

The (simple) decoupling approximation was originally proposed by Stroud and Wood [13] and has been widely applied to'study nonlinear composites by many authors $[9,14,21,28]$. This method directly relates the result of linear response to the nonlinear one for the composite with the same microstructure. Moreover, it also give an approximates $\left.\left\langle E_{i}^{\beta+2}\right\rangle^{\prime}\right\rangle$ in Eq. (3.29) as

$$
\begin{equation*}
\left\langle E_{i}^{\beta+2}\right\rangle^{2} \approx\left\langle E_{i}^{2}\right\rangle^{(\beta+2) / 2} \tag{3.30}
\end{equation*}
$$

The effective nonlinear coefficient (χ_{e}) in Eq. (3.30) is alternatively derived in terms of the volume average of electric field to the second power $\left\langle E_{i}^{2}\right\rangle$, which simplifies the calculation. $\left\langle E_{i}^{2}\right\rangle$ is evaluated by using the derivative of effective linear coefficients $\left(\varepsilon_{e}\right)$ with respect to linear coefficient of inclusion,

By using Eq. (3.27) - (3.31), the effective nonlinear coefficients $\left(\chi_{e}\right)$ are obtained in terms of $\chi_{i}, \varepsilon_{r}, v_{i}, \beta$ and M.

ศนย์วิทยทรัพยากร

B. Improved Decoupling Approximation

 decoupling approximation, is less than the exact value. These is confirmed by our theoretical prediction that $\chi_{e}($ exact $) \geq \chi_{e}($ decoupling $)$ reported in reference $[14,44]$. We previously determined the effective nonlinear coefficient χ_{e} of strongly nonlinear spherical dielectric composites by using the simple decoupling approximation [14]. In order to analyze the validity, our results of χ_{e} are compared with the experimental results by Gehr et al. [15]. They reported the relative effective nonlinear coefficient $\left(\chi_{e} / \chi_{\text {fluid }}\right)$ of porous-glass-based composites with silica glass
70% and spaces 28%. The spaces in the sample were replaced by various nonlinear fluid, such as methanol, carbon tetrachloride and diiodomethane. The relative nonlinear coefficients of glass $\left(\chi_{\text {glass }} / \chi_{\text {fluid }}\right)$ are $0.62,0.32$, and 0.03 , respectively. In comparison, our results which predict the effective nonlinear coefficient are lower than the experimental results, which also confirm the theoretical prediction $\chi_{e}($ exact $) \geq \chi_{e}($ decoupling $)$.

In this section, we aim to use the improved decoupling approximation proposed by Lu and $\mathrm{Li}[12]$ for determining \times. Their work is the extension of the work of Hui and Chung [11], which proposed the method to improve mathematical derivation of $\left\langle E_{i}^{\beta+2}\right\rangle$. In the improyed decoupling approximation, when n is odd and $n \geq 3$,

$$
\begin{equation*}
\left\langle\left(E_{i}=\left\langle E_{i}\right\rangle\right)^{n}\right\rangle=0 . \tag{3.32}
\end{equation*}
$$

These was applied to derive the effective nonlinear coefficient of cylindrical composites with $\beta=3,4,5$ and 6 given in reference [12] by using the effective medium approximation. In this research, from Eqs. (3.32) and (3.33), the more accurate expressions of $\left\langle E_{i}^{\beta+2}\right\rangle$ are given in terms of $\left\langle E_{i}^{2}\right\rangle$ and $\left\langle E_{i}\right\rangle$ which the derivation is shown Appendix A. We obtain

$$
\begin{align*}
& \text { 6 }\left\langle E_{i}^{3}\right\rangle=3\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle-2\left\langle E_{i}\right\rangle^{3}, \tag{3.34}
\end{align*}
$$

$$
\begin{align*}
& \left\langle E_{i}^{7}\right\rangle \approx 14\left\langle E_{i}^{2}\right\rangle^{2}\left\langle E_{i}\right\rangle^{3}-28\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{5}+7\left\langle E_{i}^{2}\right\rangle^{3}\left\langle E_{i}\right\rangle+8\left\langle E_{i}\right\rangle^{7}, \tag{3.37}
\end{align*}
$$

and

$$
\begin{equation*}
\left\langle E_{i}^{8}\right\rangle \approx 24\left\langle E_{i}^{2}\right\rangle^{3}\left\langle E_{i}\right\rangle^{2}-8\left\langle E_{i}^{2}\right\rangle^{2}\left\langle E_{i}\right\rangle^{4}-32\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{6}+16\left\langle E_{i}\right\rangle^{8}+\left\langle E_{i}^{2}\right\rangle^{4} . \tag{3.39}
\end{equation*}
$$

Now, $\left\langle E_{i}^{\beta}\right\rangle$ is presented in terms of $\left\langle E_{i}^{2}\right\rangle$ and $\left\langle E_{i}\right\rangle$, which simplifies the calculations of χ_{e}. Eqs. (3.34) - (3.39) are substituted into Eq. (3.29) in order to determine
the more accurate effective nonlinear coefficient $\left(\chi_{e}\right)$ with the nonlinear integer exponents $\beta=2,4$ and 6.
$\left\langle E_{i}\right\rangle$ is evaluated from Eq. (3.22) with the definition $\left\langle E_{i}\right\rangle=\left(1 / V_{i}\right) \int_{V_{i}}\left|\mathbf{E}_{i}\right| d V$, where V_{i} is the inclusion volume. In addition, $\left\langle E_{i}^{2}\right\rangle$ is evaluated by using the simple decoupling approximation with Eqs. (3.26) and (3.31).

After the calculation described above, the effective nonlinear coefficients $\left(\chi_{e}^{\alpha}\right)$ are obtained in terms of $\chi_{i}, \varepsilon_{r}, v_{i}, \beta, M$ and α. For totally randomly oriented elliptical inclusions, the angular average of effective nonlinear coefficient $\left(\chi_{e}^{\alpha}\right)$ is used

We then obtain the effective nonlinear coefficient $\left(\chi_{e}\right)$ in terms of $\chi_{i}, \varepsilon_{r}, v_{i}, \beta$ and M, as needed.

C. Direct Method

In order to compare the vatues of χ_{e} calculated by using both methods, A and B , and to check the reliability, we also calculate χ_{e} directly by using the direct method based on reference [4]. This method use theaverage energy method to define χ_{e} in terms of the close form of electric potential. Therefore, it provides the accurate result of χ_{e}. However, the direct calcutation of χ_{e} has difficulty in determination of $\left\langle E_{i \varrho}^{\beta+2}\right\rangle$ because of the complicated mathematical process.

In calculation, we also use the information of a linear composite as in section 3.1, which has the same microstructure asconsidered in weakly nonlinear elliptical dielectrie composite. To determine the volume average of electric field $\left\langle E_{i}^{\beta+2}\right\rangle$, the direct integration is

$$
\begin{equation*}
\left\langle E_{i}^{\beta+2}\right\rangle=\left(1 / V_{i}\right) \int_{V_{i}}\left|\mathbf{E}_{i}^{\beta+2}\right| d V \tag{3.41}
\end{equation*}
$$

where $\mathbf{E}_{i}=E_{0}(b+c) \varepsilon_{m}\left[\frac{\cos (\alpha) \widehat{x}}{b \varepsilon_{i}+c \varepsilon_{m}}+\frac{\sin (\alpha) \widehat{y}}{c \varepsilon_{i}+b \varepsilon_{m}}\right]$.
Substituting the result of integration in Eq. (3.41) into Eq. (3.29), we obtain the effective nonlinear coefficients $\left(\chi_{e}^{\alpha}\right)$ in terms of α. Then, the angular average
results χ_{e} are used to predict the effective response of composite in terms of χ_{i}, $\varepsilon_{r}, v_{i}, \beta$ and M, as parameters.

3.2.3 Results and Discussion

By using the decoupling approximation, we obtain the relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{i}\right)$ for the composites consisting of weakly nonlinear elliptic cylindrical inclusions with nonlinear integer exponents $\beta=2,4$ and 6 , and inclusion packing fraction $\left(v_{i}\right)$ of 0.08 , as shown in Figure 3.7. For the linear contrast $\left(\varepsilon_{r}\right)$ less than 1, i.e. $\varepsilon_{r}=0.1$, the results show the increase in χ_{e} / χ_{i} with increasing β, in contrast, for ε_{r} larger than 1.f.c. $\varepsilon_{r}=10$, increasing β resulting in decreasing χ_{e} / χ_{i}. The increase (and decrease) in χ_{e} / χ_{i} for varying the contrast $\left(\varepsilon_{r}\right)$ is due to the electric field inside the dielectric inclusion is stronger (and weaker) than the applied electric field for ε_{r} is less (and larger) than 1 . For both ranges of ε_{r} smaller and larger than 1 , the effect of yarying the aspect ratio (M) upon the relative effective nonlinear coefficients (χ_{e} / χ_{i}), reveals the rapid increase in χ_{e} / χ_{i} with increasing the aspect ratio within the range of $M \leq 50$. In contrast, within the range of $M>50$, increasing the aspect ratio affects the slow increasing χ_{e} of the composites.

In Figure 3.8, the effect of varying the linear contrast ε_{r}, upon χ_{e} / χ_{i} is shown, within the range of $0 \leq \varepsilon_{r} \leq 1$, an inclusion packing fraction $\left(v_{i}\right)$ of 0.08 , for nonlinear integer exponent $(\beta)=2,4$ and 6 , and the aspect ratio from 1 to 10 as parameter. The results show the significant decrease in $\chi_{e} \not \chi_{i}$ with increasing ε_{r}. Fon $\varepsilon_{r} 9$ approaches \uparrow, $\chi_{e} \tilde{x}_{3}$ slowly decreases to the same value independent of varying parameter M from 1 to 10 . As seen from Eq. (3.27), ε_{e} becomes less dependent on M as ε_{r} approaches 1 .

We note that for $\beta=2$, our results of χ_{e} / χ_{i} concur with Eq. (22) of Yu, Hui and Stroud [4] predicting the effective third order coefficient (χ_{e}) of weakly nonlinear elliptical dielectric composite and confirm their result that $\chi_{e} / \chi_{i}=v_{i}$ at $\varepsilon_{r}=1$. For $\beta=4$, the result of χ_{e} / χ_{i} is a special case of that proposed by Potisook and Natenapit (to be published elsewhere) in the studying of higher-
order weakly nonlinear response of elliptic cylindrical composites. Moreover, we also determine the relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{i}\right)$ for $\beta=2,4$ and 6 by using the improved decoupling approximation which determined χ_{e} with the more accurate mathematical formulae than the simple decoupling approximation based on reference [12] in part B and the direct method which determines χ_{e} directly without the decoupling approximation based on reference [4] in part C. These give the same results of χ_{e}, as expected, since the electric field in inclusions is uniform. Therefore, the decoupling approximation is actually exact.

Figure 3.7: The qelative effective nonlinear coefficients $\widetilde{\chi}_{e} / \chi_{i}$) for varying the aspect ratio with the nonlinear integer exponent (β) as parameter for the contrast

Figure 3.8: The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{i}\right)$ for varying the contrast $\left(\varepsilon_{r}\right)$ with the aspect ratio (M) as parameter for the nonlinear integer $\operatorname{exponent}(\beta)$ equal to a) $\beta=2$, b) $\beta=4$ and c) $\beta=6$.

3.3 Strongly Nonlinear Dielectric Composites

3.3.1 Typical Structure

In this section, we theoretically investigate the effect of variation of the inclusion shapes on the effective nonlinear coefficients of strongly nonlinear elliptical dielectric composites. It is assumed that the relationship between the electric displacement and the electric field for both inclusions and medium obey the form $\mathbf{D}=\varepsilon \mathbf{E}+\chi|\mathbf{E}|^{2} \mathbf{E}$ where $\varepsilon \ll \chi|\mathbf{E}|^{2}$ is of interest. The composite consists of parallel elliptical strongly nonlinear dielectric inclusions having the same aspect ratio (the ratio between semi major and semi minor axes, $M=c / b$) with the cross-sections randomly oriented and embedded in a different strongly nonlinear dielectric medium in the dilute limit, as shown in Figure 3.9. The axes of any inclusions are much longer than the respective semi major axis such that the system is, therefore, considered as two dimensional.

Figure 3.9% A strongly nondineat dielectric composite with identical inclusion shape.

3.3.2 Effective Nonlinear Coefficient

The decoupling approximation has been previously applied to investigate the effective response of strongly nonlinear cylindrical and spherical composites with
dilute packing fractions by Gao and Li [38]. In their work, the effective nonlinear coefficient $\left(\chi_{e}\right)$ of composites has been predicted with the relation between the electric displacement (\mathbf{D}) and electric field (\mathbf{E}) of the form $\mathbf{D}=\chi|\mathbf{E}|^{2} \mathbf{E}$. Following their work, we further determine the effective nonlinear coefficient (χ_{e}) of strongly nonlinear elliptic cylindrical dielectric composites and to investigate the shape effects of inclusions upon the value of χ_{e}.

By using the average energy method, the energy of effective medium equals the sum of the energy of the inclusion and medium. The effective nonlinear coefficient (χ_{e}) of composites is [9]

$$
\begin{align*}
\chi_{e} & \left.=\frac{1}{E_{0}^{4} V} \int_{V_{i}} \chi_{i}(x)\left|\Psi_{i}(x)\right|^{4} d V+\int_{V_{m}} \chi_{m}(x)\left|\mathbf{E}_{m}(x)\right|^{4} d V\right] \\
& =\frac{v_{i} \chi_{i}\left\langle E_{i}^{4}\right\rangle}{E_{0}^{4}}+\frac{v_{m} \chi_{m}\left\langle E_{m}^{4}\right\rangle}{E_{0}^{4}} . \tag{3.42}
\end{align*}
$$

where E_{i} and E_{m} are the linear electric fields inside the inclusion and medium, respectively, subject to the same boundary conditions and same microstructure as considered in linear composites in section 2.1. v_{i} and $v_{m}=1-v_{i}$ are the inclusion and medium volume fractions, respectively.

We invoke the simple decoupling approximation as given by Eq. (3.30) for $\beta=2$, assuming that $\left\langle E_{i}^{4}\right\rangle \approx\left\langle E_{i}^{2}\right\rangle^{2}$ and $\left\langle E_{m}^{4}\right\rangle \approx\left\langle E_{m}^{2}\right\rangle^{2}=[9]$. The effective nonlinear coefficients (χ_{e}) of composites can be determined from the relationship

$$
\begin{equation*}
\chi_{\mathrm{e}}=\frac{v_{i} \chi_{i}\left\langle E_{E_{i}^{2}}\right\rangle^{2}}{E_{0}^{4}}+\frac{v_{m} \chi_{m}\left\langle E_{m}^{2}\right\rangle^{2}}{E_{0}^{4}} \tag{3.43}
\end{equation*}
$$

The relations between the volume average of electric fields to the second power, in the inclusions and host mediumane the derivative of the effective linear coefficients are given as [9]:

$$
\begin{align*}
& \left\langle E_{i}^{2}\right\rangle=\frac{1}{v_{i}} \frac{\partial \varepsilon_{e}}{\partial \varepsilon_{i}} E_{0}^{2} \tag{3.44}\\
& \left\langle E_{m}^{2}\right\rangle=\frac{1}{v_{m}} \frac{\partial \varepsilon_{e}}{\partial \varepsilon_{m}} E_{0}^{2} \tag{3.45}
\end{align*}
$$

where \mathbf{E}_{0} is the external uniform electric field.
Substituting ε_{e}^{α} as given by Eq. (3.26) into Eqs. (3.44) and (3.45), we obtain the equations for determining $\left\langle E_{i}^{2}\right\rangle$ and $\left\langle E_{m}^{2}\right\rangle$ in terms of the aspect ratios
$(M=c / b)$, inclusion packing fraction $\left(v_{i}\right)$, the nonlinear contrast $\left(\chi_{r}=\chi_{i} / \chi_{m}\right)$ and the angle α. By using the relations $\varepsilon_{e}=\chi_{e} E_{0}^{2}, \varepsilon_{i}=\chi_{i}\left\langle E_{i}^{2}\right\rangle$ and $\varepsilon_{m}=\chi_{m}\left\langle E_{m}^{2}\right\rangle$ [9], then $\left\langle E_{i}^{2}\right\rangle$ and $\left\langle E_{m}^{2}\right\rangle$ can be solved self-consistently depending on α. Replacing the latter $\left\langle E_{i}^{2}\right\rangle$ and $\left\langle E_{m}^{2}\right\rangle$, we obtain χ_{e} in terms of α. Then, the angular average results of χ_{e} are used to predict the effective response of composite in terms of χ_{r}, v_{i}, β and M, as parameters.

3.3.3 Results and Discussion

By using the decoupling approximation, we obtain the relative effective nonlinear coefficients (χ_{e} / χ_{m}) for composites with elliptic cylindrical inclusion with packing fractions $\left(v_{i}\right)$ of $0.04,0.06$ and 0.08 , with an aspect ratio (M) of 2 , as shown in Figure 3.10. The results shows the increase in χ_{e} / χ_{m} with increasing χ_{r}. When the nonlinear contrast is $\chi_{n}=1$ or $\chi_{i}=\chi_{m}$, it gives $\chi_{e} / \chi_{m}=1$, as expected. For $\chi_{r}>1$, increasing the volume packing fraction v_{i} having χ_{i} more than χ_{m}, enhance the effective nonlinear coefficient (χ_{e}) of the composite. In contrast, for $\chi_{r}<1$, increasing v_{i} having χ_{i} less than χ_{m}, reduces χ_{e}.

To determine the effects of inclusion shapes on χ_{ℓ}, , we report the variation of inclusion shapes by yarying the nonlinear contrast $\left(\chi_{r}\right)$ upon the relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$, with the aspect ratios $(M)=1,2,3$ and 10 , as parameter, on a logarithmic scale in Figure 3.11 for an inclusion packing fraction $\left(v_{i}\right)$ of 0.08 . The results show the increase in $\underline{\chi}_{s} / \chi_{m}$ कuith increasing M within the range of $\log \left(\chi_{r}\right)>0.4$ (or $\chi_{r} \gg 2.5$). On the other hand, within the range
 coefficient χ_{e} of the composite. For χ_{i} close to χ_{m}, or low nonlinear contrast range $\left(-0.4 \leq \log \left(\chi_{r}\right) \leq 0.4\right.$ or $\left.0.4 \leq \chi_{r} \leq 2.5\right)$, varying the aspect ratio rarely affects χ_{e} / χ_{m} of the composites for aspect ratios (M) within the evaluated range of M from 1 to 10 .

In order to confirm the validity of the simple decoupling approximation, we consider the case of $M=1$ that is cylindrical inclusion shape. Our results determined by using the simple decoupling approximation are compared with those

Figure 3.10: The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$, with varying inclusion packing fractions $\left(v_{i}\right)$ of $0.04,0.06$ and 0.08 , and an aspect ratio (M) of 2 [21].

Figure 3.11: The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$, with varying aspect ratios (M) between 1 and 10 , and with an inclusion packing fraction $\left(v_{i}\right)$ of 0.08 [21].
determined using the simple variational method of Yu and Gu [8], as shown in Figure 3.12. A good agreement between the two methods throughout was observed and the discussion was reported in reference [21].

We also estimated the validity of χ_{e} by considering the simple decoupling approximation used in the derivation of the effective nonlinear coefficients $\left(\chi_{e}\right)$, where we approximate $\left\langle E_{m}^{4}\right\rangle \approx\left\langle E_{m}^{2}\right\rangle^{2}$. Because the electric field inside the inclusion is exact, it gives $\left\langle E_{i}^{4}\right\rangle=\left\langle E_{i}^{2}\right\rangle^{2}$. Therefore, we considered the validity of approximation $\left\langle E_{m}^{4}\right\rangle \approx\left\langle E_{m}^{2}\right\rangle^{2}$ as a percentage of discrepancy $(\Delta \%)$. The percentage of discrepancy $(\Delta \%)$ is evaluated from $\left.\Delta \%=\left[\left\langle E_{m}^{4}\right\rangle-\left\langle E_{m}^{2}\right\rangle^{2}\right) /\left\langle E_{m}^{4}\right\rangle\right] \times 100$ by using the electric fields from the yariational method. Figure 3.13 shows the percentage discrepancy $(\Delta \%)$ used in the decoupling approximation with an aspect ratio $(M)=1$ and inclusion packing fractions $\left(v_{i}\right)$ of $0.04,0.06$ and 0.08 . The percentage of discrepancy reyeals that χ_{e} are reliable within the illustrated range of χ_{r} and v_{i}. The discussion of $\Delta \%$ was reported in reference [21].

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

Figure 3.12: Comparison of the relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$ obtained from the decoupling approximation and the variational method for an aspect ratio $(M))$ of 1 and an inclusion packing fraction $\left(v_{i}\right)$ of 0.08 [21].

Figure 3.13: The percentage discrepancy $(\Delta \%)$ between $\left\langle E_{m}^{4}\right\rangle$ and $\left\langle E_{m}^{2}\right\rangle^{2}$ used in the decoupling approximation with an aspect ratio (M) of 1 and inclusion packing fractions $\left(v_{i}\right)$ of $0.04,0.06$ and 0.08 [21].

CHAPTER IV

Composites with Distributed Inclusion

Shapes

In this chapter, we concentrate on elliptic cylindrical dielectric composites with distributed inclusion shapes in two dimensions. The composites consist of elliptic cylindrical inclusions, having the variation in shape and the random orientation, which are embedded in a different dielectric media in the dilute limit. The relation between the electric displacement (D) and electric field (E) of the inclusions has the form $\mathrm{D}=\varepsilon \mathbf{E}+\left.\chi \mathbf{E}\right|^{\beta} \mathbf{E}$ where β is a nonlinear integer exponent for weakly nonlinear composites, For strongly nonlinear composites, the dielectric property of both inclusion and medium satisfying $\mathbf{D}=\chi|\mathbf{E}|^{2} \mathbf{E}$ is considered. In this research, three types of the composites, linear, weakly nonlinear and strongly nonlinear are considered. Firstly, the effective linear coefficient $\left(\varepsilon_{e}\right)$ of linear elliptic cylindrical composite is determined. Secondly, a brief review of the statistical approach proposed by Gencharenko [22]is presented. Thirdly, it is applied to determine the effective nonlinearcoefficients (χ e) of weakly and strongly nonlinear composites with the same microstructure as a linear composite by using the decoupling approximation. We also determine χ directly without the decoupling approximation for $\beta=2$ in order to confirm the results. Finally, our results χ_{e} are reported including with the effects of inclusion shapes on χ_{e} to be predicted.

4.1 Linear Dielectric Composites

4.1.1 Typical Structure and Model

We consider a linear composite with distributed inclusion shapes, which composes of variation in shape of elliptic cylindrical inclusions of the volume packing fractions v_{i}, randomly oriented and embedded in a different linear dielectric medium of the volume packing fraction $v_{m}=1-v_{i}$. The linear coefficients of the inclusions and the host medium are ε_{i} and ε_{m}, respectively. Figure 4.1 shows a linear dielectric composite with distributed inclusion shapes.

Figure 4.1: A linear dielectric composite with distributed inclusion shapes.

In the dilute limit the single inclusion model is assumed. The external electric field is applied as shown in Figure 4.2, d \ ∂
where α is the angle between \mathbf{E}_{0} and the major axis of the inclusion aligned in the \widehat{x} direction. We have to determine the electric field inside the elliptic cylindrical inclusion as shown in Figure 4.2.

4.1.2 Electric Field inside an Elliptic Cylindrical Inclusion

The electric field inside an ellipsoidal inclusion was solved by Stratton [39] in 1941, and Landau and Lifshitz [40] in 1960. These are widely applied as a

Figure 4.2: The single inclusion model for a composite with distributed inclusion shapes.

basis in the studying of the effective linear and nonlinear responses of ellipsoidal composites and related fields by-many authors such as Yu et al. [4] and Giordano [18]. Giordano used the effective medium theory to investigate the shape effect of inclusion on effective linear response of ellipsoidal dielectric composites. The electric field inside the ellipsoidal inclusion was caleutated, and then the explicit formula of effective liñear coefficient $\left(\varepsilon_{e}\right)$ was determined by using the differential method in terms of eccentricity. In this research, we follow Giordano 's work to determine the effective linear coefficient of elliptid cylindrieal composites.

Generally, let a uniform electric field $\left(\mathbf{E}_{0}\right)$ be applied to an elliptic cylindrical inclusion, which has the axes a_{x} and a_{y} afigned in the mand y components, respectively, as shown in Figure 4.2. The electric field inside inclusion induced by the external uniform electric field can be written as

$$
\begin{equation*}
\mathbf{E}_{i}=\beta_{x} E_{0 x} \hat{x}+\beta_{y} E_{0 y} \hat{y} . \tag{4.2}
\end{equation*}
$$

β_{j} is the field factor ($j=x$ or y) proposed by Stratton [39], and Landau and Lifshitz [40], which can be expressed by

$$
\begin{equation*}
\beta_{j}=\frac{\varepsilon_{m}}{\varepsilon_{m}+L_{j}\left(\varepsilon_{i}-\varepsilon_{m}\right)}, \tag{4.3}
\end{equation*}
$$

where L_{j} is the depolarization factor (the ratio of the internal electric field induced by the charges on the surface of a dielectric when an external electric field is applied to the polarization of the dielectric). Generally, L_{j} depends on the inclusion shape and is restricted by $L_{x}+L_{y}=1$. The depolarization factor of an elliptic cylindrical inclusion depends on its shape by [18]

$$
\begin{equation*}
L_{j}=\frac{a_{x} a_{y}}{2} \int_{0}^{\infty} \frac{d u}{\left(u+a_{j}^{2}\right) \sqrt{\left(u+a_{x}^{2}\right)\left(u+a_{y}^{2}\right)}}, \tag{4.4}
\end{equation*}
$$

where a_{j} is the the axe of elliptic cylinder aligned along j direction. For the system considered here, the electric field inside the elliptic cylindrical inclusion can written as the superposition of the responses in \hat{x} and \hat{y} directions according to equation (4.2) by

$$
\begin{equation*}
\mathrm{E}_{i}=\beta_{x} F_{0} \cos (\alpha) \hat{x}+\beta_{x} E_{0} \sin (\alpha) \hat{y} \tag{4.5}
\end{equation*}
$$

This is an important equation to be rised to calculate the effective linear coefficient $\left(\varepsilon_{e}\right)$ by using the average field methoel in the next section.

4.1.3 Effective Linear Coefficient

By using the average fied method as briefly described in section 3.1.3, the effective linear coefficient is therefore determined by
Replacing $\mathbf{E}_{0}=E_{0} \cos (\alpha) \hat{x}+E_{0} \sin (\alpha) \widehat{y}$ and \mathbf{E}_{i} fromEq. (4.5) into (4.6), it leads

For totally randomly oriented elliptical inclusions, we take the angular average over angle α to Eq. (4.7) with the integral

$$
\begin{equation*}
\varepsilon_{e}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varepsilon_{e}^{\alpha} d \alpha \tag{4.8}
\end{equation*}
$$

We obtain

$$
\begin{equation*}
\varepsilon_{e}=\varepsilon_{m}+\frac{v_{i}}{2}\left(\varepsilon_{i}-\varepsilon_{m}\right)\left[\beta_{x}+\beta_{y}\right] . \tag{4.9}
\end{equation*}
$$

Substituting the expression of β_{x} and β_{y} given by Eq. (4.3) into Eq. (4.9) and using the relation $L_{y}=1-L_{x}$, we obtain the effective linear coefficient $\left(\varepsilon_{e}\right)$ in terms of the depolarization factor L_{x} as

$$
\begin{equation*}
\varepsilon_{e}=\varepsilon_{m}\left[1+\frac{v_{i}\left(\varepsilon_{i}-\varepsilon_{m}\right)}{2}\left(\frac{1}{\varepsilon_{m}+L_{x}\left(\varepsilon_{i}-\varepsilon_{m}\right)}+\frac{1}{\varepsilon_{m}+\left(1-L_{x}\right)\left(\varepsilon_{i}-\varepsilon_{m}\right)}\right)\right] . \tag{4.10}
\end{equation*}
$$

For convenience in calculation, we take $L_{x}=L$ to Eq. (4.10) and obtain

$$
\begin{equation*}
\varepsilon_{e}=\varepsilon_{m}\left[1+\frac{v_{i}\left(\varepsilon_{i}-\varepsilon_{m}\right)}{2}\left(\frac{1}{\varepsilon_{m}+L\left(\varepsilon_{i}-+\left(\varepsilon_{m}\right)\right.}+\frac{1}{\varepsilon_{m}+(1-L)\left(\varepsilon_{i}-\varepsilon_{m}\right)}\right)\right] . \tag{4.11}
\end{equation*}
$$

We note that inclusions are still identicalshape. For cylindrical inclusions, the depolarization factors are $L=L_{x} \neq L_{y}=1 / 2\left(L_{z}=0\right)$. Eq. (4.11) leads to the well-known result of a linear cylindrical dielectric composite in the dilute limit of $\varepsilon_{e}=\varepsilon_{m}\left[1+2 v_{i} \frac{\left(\varepsilon_{i}-\varepsilon_{m}\right)}{\left(\varepsilon_{i}+\varepsilon_{m}\right)}\right]$, as expected.

For the composite with the elliptic cylindrical inclusions having different shapes (or distributed inclusion shapes), the effective linear coefficient $\left(\varepsilon_{e}\right)$ is related to the effective linear coefficient of the equivalent composite with identical inclusion shape $\left(\varepsilon_{e}^{i d e n t i c a l}\right)$ based on the statistical approach by [22]

where $P(L)$ is shape distribution function. $P(L) d L$ is the probability for an inclusion to have the depolarization factor L lying within the range between L and $L+d L$. The shape distribution function cis consididered to be normalized to unity:

$$
\begin{equation*}
P(L)=\frac{1}{\Delta} \theta\left(L-\frac{1}{2}+\frac{1}{2} \Delta\right) \theta\left(\frac{1}{2}+\frac{1}{2} \Delta-L\right), \tag{4.14}
\end{equation*}
$$

where Δ is the shape distribution parameter and θ is the heaviside function. Generally, Δ can vary from zero, which all inclusions are cylindrical in shape, to unity, which any shapes of elliptic cylindrical inclusions are equiprobable. Alternative distribution such as the gamma distribution [41], binary distribution [42] and lognormal distribution [42] can be treated similarly. However, $P(L)$ given by Eq.
(4.14) yields the appropriate results of ε_{e} very close to that of realistic composites [22, 26].

By using Eqs. (4.11) - (4.14), we obtain the effective linear coefficient $\left(\varepsilon_{e}\right)$ of composite with distributed inclusion shapes

$$
\begin{equation*}
\varepsilon_{e}=\varepsilon_{m}\left(1+\frac{v_{i}}{\Delta} \ln \left[\frac{(1+\Delta) \varepsilon_{i}+(1-\Delta) \varepsilon_{m}}{(1-\Delta) \varepsilon_{i}+(1+\Delta) \varepsilon_{m}}\right]\right) \tag{4.15}
\end{equation*}
$$

Moreover, for $\Delta \rightarrow 0$, all inclusions are cylindrical in shape. Eq. (4.15) is reduced to the familiar result of a linear cylindrical dielectric composite in the dilute limit of $\varepsilon_{e}=\varepsilon_{m}\left[1+2 v_{i} \frac{\left(\varepsilon_{i}-\varepsilon_{m}\right)}{\left(\varepsilon_{i}+\varepsilon_{m}\right)}\right]$, as expected. Because of the same basic field equations of both the dielectric without free charge and the conductor without free current, Eq. (4.15) is also consistent with/Eq. (17) reported by Gao et al. [27] for the effective conductivity of the equivalent composite structure with shape distribution in the dilute limit.

4.1.4 Results and Discussion

In Figure 4.3 , the relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ are reported on the logarithmic scale for varying the contrast $\left(\varepsilon_{r}\right)$ within the range from 0.001 to 1000 with the depolarization factor (L) as parameter and the inclusion packing fraction $\left(v_{i}\right)$ of 0.08 . The results show the increase in $\varepsilon_{e} / \varepsilon_{m}$ with increasing the depolarization factor (L) within the range of $\log \left(\varepsilon_{r}\right)>0.3$ (or $\varepsilon_{r} \gg 2.0$). In contrast, within the rangeof $\log \left(\varepsilon_{r}\right)$ on -0.3 (or $\varepsilon_{r} \ll 0.5$), increasing the depolarization factor (L) reduces the effective linear coefficient ε_{e}. For small contrast of ε_{r}, increasing the depolarization factor (L) rarely affect ε_{e} of lineareelliptic cylindrical composite with distributed inclusion shapes. These ranges of ε_{r} agree with those in Figure 3.4, which are analyzed in terms of the aspect ratio (M) but now ε_{r} are analyzed in terms of the depolarization factor (L), as expected. In comparison between Figure 4.3 and Figure 3.4, the inclusion shapes such as the aspect ratio (M) and the depolarization factor (L) rarely affect ε_{e} within the range of $-0.3 \leq \log \left(\varepsilon_{r}\right) \leq 0.3$ or $05 \leq \varepsilon_{r} \leq 2.0$.

For $\varepsilon_{r}>1$, Figure 4.4 shows the relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the depolarization factor (L) with the contrast $\left(\varepsilon_{r}\right)$ as parameters for
inclusion packing fraction $\left(v_{i}\right)$ of 0.08 . The results reveal the rapid increase in (χ_{e} / χ_{i}) with increasing ε_{r} for $L<0.3$ and $L>0.7$. Physically, the deviation of inclusions from cylinder to elliptic cylinder in this range affects the rapid increase in ε_{e}. In contrast, increasing the depolarization factor within the range of $0.3 \leq$ $L \leq 0.7$ rarely affects ε_{e} of composites.

Moreover, for $L=0.5$, the inclusions are circular cylinders or rods. The results of ε_{e} show the symmetry around $L=0.5$. This symmetry is observed because of the restriction of $L_{x}+L_{y} \neq 1$. In addition, the results of ε_{e} concur with those reported in Figure 4.4 for $M=1$ throughout.

Figure 4.3: The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the contrast $\left(\varepsilon_{r}\right)$ with the depolarization factor (L) as parameter for inclusion packing fraction $\left(v_{i}\right)$ of 0.08 .

Figure 4.4: The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the depolarization factor (L) with the contrast $\left(\varepsilon_{r}\right)$ as parameter for inclusion packing fraction $\left(v_{i}\right)$ of 0.08 .

For linear composite with distributed inclusion shapes, in Figure 4.5, the relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ are reported on the logarithmic scale for varying the linear contrast $\left(\varepsilon_{r}\right)$ within the range from 0.001 to 1000 with the shape distribution parameter (Δ) as parameter and the inclusion packing fraction $\left(v_{i}\right)$ of 0.08 . The results show the monotonically increase in $\varepsilon_{e} / \varepsilon_{m}$ with increasing ε_{r}. For small $\varepsilon_{r},-0.3 \leq \log \left(\varepsilon_{r}\right) \leq 0.3$ (or $0.5 \leq \varepsilon_{r} \leq 2.0$), increasing Δ from 0 to 1 slightly affects on $\varepsilon_{e} / \varepsilon_{m}$. Therefore, the shape distribution parameter describing the variation in shape of inclusions, rarely affects on ε_{e} in this range of ε_{r}. However, for large $\varepsilon_{r}, \log \left(\varepsilon_{r}\right)<-0.3($ or $<0.5)$ and $\log \left(\varepsilon_{r}\right)>0.3$ (or $\left.\varepsilon_{r}>2.0\right), \Delta$ directly affects on ε_{e}. For $\Delta=1, \varepsilon_{e}$ linearly increases with increasing Δ so ε_{e} have less dependent on ε_{r} as Δ near 1

Figure 4.6 shows the relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the shape distribution parameter with the linear contrast $\left(\varepsilon_{r}\right)$ as parameters a) $\varepsilon_{r}<1$ and b) $\varepsilon_{r}>1$. In Figure 46 a), the results show that $\varepsilon_{e} / \varepsilon_{m}$ monotonically decreases with increasing Δ.However, for $\varepsilon_{r}>1$ in Figure 4.6 b), $\varepsilon_{e} / \varepsilon_{m}$ monotonically increases with inereasing Δ. For small $\Delta, 0 \leq \Delta \leq 0.6$, increasing Δ rarely affects ε_{e}. In contrast, for high $\Delta, 0.6<\Delta \leq 1.0$, increasing Δ affects rapid increase in

ศูนย์วิทยทรัพยากร
จุหาลงกรณ์มหาวิทยาลัย

Figure 4.5: The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the linear contrast $\left(\varepsilon_{r}\right)$ with the shape distribution parameter as parameter.

Figure 4.6: The relative effective linear coefficients $\left(\varepsilon_{e} / \varepsilon_{m}\right)$ for varying the the shape distribution parameter with the linear contrast $\left(\varepsilon_{r}\right)$ as parameter.

4.2 Weakly Nonlinear Dielectric Composite

4.2.1 Typical Structure

We now consider a nonlinear composite with distributed inclusion shapes in two dimensions, which have the same microstructure as a linear dielectric composite described previously. The composite consists of nonlinear elliptic cylindrical inclusions with distributed shapes randomly oriented and embedded in a linear dielectric medium in dilute limit, as shown in Figure 4.7. The relation between the electric displacement (D) and electric field (E) inside the inclusions is $\mathbf{D}=\varepsilon \mathbf{E}+\chi|\mathbf{E}|^{\beta} \mathbf{E}$ with $\chi|\mathbf{E}| \beta \mid<\varepsilon$. The linear and nonlinear coefficients of inclusions and medium are $\varepsilon_{i}, \chi_{i}$ and $\varepsilon_{m}, \chi_{m}=0$, respectively.

Figure 4.7: A nonlinear dielectric composite with distributed inclusion shapes.

4.2.2 9 Effective Nonlinear Coefficient

Simple Decoupling Approximation

In case of weakly nonlinear dielectric composite, the nonlinear response is small compared to the linear response. We follow the work of Hui and Chung [11] which has the same basic relation between the electric displacement (D) and electric field (\mathbf{E}) as this thesis. The effective nonlinear coefficient $\left(\chi_{e}\right)$ can be
defined by using the average energy method. The energy of effective medium is defined by $W=\int \mathbf{D} \cdot \mathbf{E} d V$, which equals the sum of the energy of the inclusion and medium. The effective nonlinear coefficient $\left(\chi_{e}\right)$ can be expressed as [11]

$$
\begin{gather*}
\chi_{e}=\frac{1}{V E_{0}^{\beta+2}}\left(\int_{V_{i}} \chi_{i}\left|\widetilde{E}_{i}\right|^{\beta+2} d V+\int_{V_{m}} \chi_{m}\left|\widetilde{E}_{m}\right|^{\beta+2} d V\right), \tag{4.16}\\
=\frac{1}{E_{0}^{\beta+2}}\left(v_{i} \chi_{i}\left\langle\widetilde{E}_{i}^{\beta+2}\right\rangle+v_{m} \chi_{m}\left\langle\widetilde{E}_{m}^{\beta+2}\right\rangle\right),
\end{gather*}
$$

where \widetilde{E}_{i} and \widetilde{E}_{m} are the nonlinear electric fields inside the inclusions and medium, respectively.

By using the simple decoupling approximation, the nonlinear electric fields of \widetilde{E}_{i} and \widetilde{E}_{m} required Eq. (4.16) are approximated to be linear field E_{i} and E_{m}. The expressions of

$$
\begin{equation*}
\chi_{e}=\frac{1}{E_{0}^{\beta+2}}\left(v_{i} \chi_{i}\left\langle E_{2}^{\beta+2}\right\rangle+v_{m} \chi_{m}\left\langle E_{m}^{\beta+2}\right\rangle\right) . \tag{4.17}
\end{equation*}
$$

For our case $\left(\chi_{m}=0\right)$, the effective nomlinear coefficient $\left(\chi_{e}\right)$ is

where $\left.\left\langle E_{i}^{\beta+2}\right\rangle=1 / V_{i}\right) \int_{V_{i}}\left|\mathbf{E}_{i}\right|^{\beta+2} d V, E_{i}$ is the linear electric fields and v_{i} is the inclusion volume packing fractions.

For distributed inclusion shapes, Goncharenko et al. [22-23] successfully predicted the effect of shape distribution on light absorption and light scattering of ellipsoidal composites by using statistical approach. Their work has been widely applied to composite with distributed inchusions shapes in-yarious field of physics [24-32] such as the work of Gao et al. [27]. In their work, the effective nonlinear response of a two components in two dimensions of strongly nonlinear composite media in which one component possesses a shape distribution is investigated. The inclusions are considered to be elliptic cylinders with distributed inclusion shapes. Based on the statistical approach, the effective medium model and the decoupling approximation, the effective nonlinear coefficient $\left(\chi_{e}\right)$ of strongly nonlinear composite is determined for all concentrations of inclusion. In this section, we apply the statistical approach to elliptic cylindrical composite with distributed inclusion
shapes and then the effective nonlinear coefficient $\left(\chi_{e}\right)$ is determined by using the decoupling approximation.

Similar to the process in determination on ε_{e} in section 4.1.3, the effective nonlinear coefficient $\left(\chi_{e}\right)$ of composite with distributed inclusion shapes is related to the effective nonlinear coefficient of the equivalent composite with identical inclusion shape $\left(\chi_{e}^{i d e n t i c a l}\right)$ based on the statistical approach by [22]

$$
\begin{equation*}
\chi_{e}=\int \chi_{e}^{i d e n t i c a l} P(L) d L \tag{4.19}
\end{equation*}
$$

By using the shape distribution function $P(L)$ given by Eq. (4.14) and the expression of χ_{e} given by Eq. (4.18), the effective nonlinear coefficient of composite with distributed inclusion shapes $\left(\chi_{e}\right)$ from equation (4.19) is

$$
\begin{equation*}
\chi_{e}=\frac{v_{i} \chi_{i}^{E_{0}^{\beta+2} \Delta}}{\frac{\sigma^{\frac{1}{2}}-\frac{1}{2} \Delta}{\frac{1}{2}+\frac{1}{2} \Delta}} \int^{\left\langle E_{i}^{\beta+2}\right\rangle d L} \tag{4.20}
\end{equation*}
$$

We invoke the simple decoupling approximation which simplifies the calculation by

$$
\begin{equation*}
\left.\left\langle\frac{E^{\beta+2}}{\sum^{\beta+2}}\right\rangle \approx\left\langle E_{i}^{2}\right\rangle\right\rangle^{(\beta+2) / 2} \tag{4.21}
\end{equation*}
$$

The replacement of Eq. (4.21) into.Eq. (4.20) leads to the equation for determining $\chi_{e} ;$

The volume average of electricgfieldseto the second power in the inclusions $\left\langle E_{i}^{2}\right\rangle$ is evaluated from the derivative of the effective linear coefficients given as [9]:

From Eqs. (4.11) , (4.22) and (4.23), we obtain the new results of effective nonlinear coefficient $\left(\widetilde{\chi}_{e}\right)$ in terms of $v_{i}, \varepsilon_{r}, \chi_{i}, \beta$ and Δ, as needed.

Direct Method

In order to confirm the effective nonlinear coefficient χ_{e} of the simple decoupling approximation determined in the previous section, we consider that composite for $\beta=2$.

According to the equation for determining χ_{e} written in Eq. (4.20), we can determine $\left\langle E_{i}^{\beta+2}\right\rangle$ directly without using the simple decoupling approximation by

$$
\begin{equation*}
\widetilde{\chi}_{e}=\frac{v_{i} \chi_{i}}{E_{0}^{4} \Delta} \int_{\frac{1}{2}-\frac{1}{2} \Delta}^{\frac{1}{2}+\frac{1}{2} \Delta}\left\langle E_{i}^{4}\right\rangle d L \tag{4.24}
\end{equation*}
$$

where $\left\langle E_{i}^{4}\right\rangle=\left(1 / V_{i}\right) \int_{V_{i}}\left|\mathbf{E}_{i}\right|^{4} d V$.
To calculate $\left\langle E_{i}^{4}\right\rangle$, we consider the electric field inside the elliptic cylindrical inclusion given by Eq. (4.5) $\mathbf{E}_{i}^{\alpha}=\beta_{x} E_{0} \cos (\alpha) \hat{x}+\beta_{x} E_{0} \sin (\alpha) \hat{y}$. For totally randomly oriented elliptic cylindrical inclusions, the angular average of electric field inside the inclusion to the forth power $\left(\left|\mathrm{E}_{i}\right|^{4}\right)^{4}$ is used:
where the field factors β_{x} and β_{y} are given by Eq. (4.3) for $j=x$ and y with the depolarization factor $L_{y}=1$ 位. The volume integration of $\left|\mathbf{E}_{i}\right|^{4}$ yields $\left\langle E_{i}^{4}\right\rangle$ as a function of L_{x}, which is replaced by E. Then we substitute the result of $\left\langle E_{i}^{4}\right\rangle$ into Eq. (4.24). The effective nonlinear coefficient (χ_{e}) of etliptic cylindrical composite with distributed inclusion shapes is obtained as follows:
where $A=\varepsilon_{i}+\varepsilon_{m}, B=\varepsilon_{i}-\varepsilon_{m}$ and $C=\left(\Delta^{2}-1\right) \varepsilon_{i}^{2}-2\left(\Delta^{2}+1\right) \varepsilon_{j} \varepsilon_{m}+\left(\Delta^{2}-1\right) \varepsilon_{m}^{2}$.
 reported in this research.

4.2.3 Results and Discussion

For composites with distributed inclusion shapes, we obtain the relative effective nonlinear coefficient $\left(\chi_{e} / \chi_{i}\right)$ with the nonlinear integer exponent (β) as parameter for an inclusion packing fraction $v_{i}=0.08$ and the contrast a) $\varepsilon_{r}=0.1$, b) $\varepsilon_{r}=0.01$ and c) $\varepsilon_{r}=0.001$, as shown in Figure 3.8 The results in Figure 3.8 a) reveal the rapidly increase in χ_{e} / χ_{i} with increasing Δ for $0.4 \leq \Delta \leq 1.0$ but for Δ less than 0.4 , increasing the Δ slightly affect the increase in χ_{e} / χ_{i}. Similar behavior also perform with the enhancement of χ_{e} / χ_{i} for $\varepsilon_{r}=0.01$ and 0.001 , as reported in Figures 3.8 b) and c), respectively.

Figure 3.9 shows the relative effective nonlinear coefficient $\left(\chi_{e} / \chi_{i}\right)$ for varying the contrast $\left(\varepsilon_{r}\right)$ with the shape distribution parameter (Δ) equal to $0,0.4$ and 0.8 and the nonlinear integer exponents are a) $\beta=2$, b) $\beta=4$ and c) $\beta=6$. For $\beta=2$, the results reveal the increasing of χ_{e} / χ_{i} for decreasing ε_{r} which are more pronounced for larger values of Δ in the range of $0 \leq \varepsilon_{r} \leq 0.6$. On the other hand, for the contrast $\left(\varepsilon_{r}\right)$ near 1 varying of Δ from 0 to 0.8 affects the slow increase in χ_{e} / χ_{i}. The similar analysis as for Figure 3.8 but now ε_{e} is from equation (4.11). Similar behaviors as seen in Figure 3.9 a) are also observed for $\beta=4$ and $\beta=6$ but the enhancement of χ_{e} / χ_{i} is much more pronounced for larger values of the nonlinear integer exponent (β).

Moreover, for $\beta=62$, the exact values of χ_{e} / χ_{i} given by Eq. (4.26) obtained without using the deccupling approximation concur with the numerical values of those obtained by using the decoupling approximation throughout. For Δ approaches, 0 whion allincüsions are cyindricalishape, ou results agree with those reported in Figure 3.8 a) for $M=1$, as expected.

Figure 4.8: The relative effective nonlinear coefficient $\left(\chi_{e} / \chi_{i}\right)$ for varying the shape distribution parameter (Δ) with the nonlinear integer exponent (β) equal to a) $\varepsilon_{r}=0.1$, b) $\varepsilon_{r}=0.01$ and c) $\varepsilon_{r}=0.001$.

Figure 4.9: The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{i}\right)$ for varying the contrast $\left(\varepsilon_{r}\right)$ with the the nonlinear integer exponent (β) equal to a) $\beta=2$, b) $\beta=4$ and c) $\beta=6$.

4.3 Strongly Nonlinear Dielectric Composite

In the literature search, the effective nonlinear response of a two-components strongly nonlinear elliptic cylindrical dielectric composite in which one component possesses a shape distribution was investigated by Gao et al. [27]. In their work, the numerical results of the effective nonlinear coefficient was determined for arbitrary inclusion packing fraction by using the effective medium approximation and the decoupling approximation, which includes the dilute limit expression. However, in such work does not discuss more information about the effect of inclusion shapes on χ_{e}. In order to obtain the information of inclusion shape effect on χ_{e} very close to realistic composite as possible, we further analyze that work in case of dilute limit. Moreover, the more information about the effect of inclusion shapes on χ_{e} have been discussed.

4.3.1 Typical Structure

We consider the strongly nonlinear elliptic cylindrical dielectric composite in two dimensions, which consists of variation in shape of elliptic cylindrical inclusions randomly oriented and embedded in a different dielectric medium in the dilute limit, as shown in Figure 4.10. It is assumed that the relationship between the electric displacement (D) and the electric field (E) for both inclusions and medium
 of inclusion and medium are χ_{i} and χ_{m}

จหาลงกรณ์มหาวิทยาลัย
 4.3.2 \uparrow Effective Nonlinear Coefficient

We begin with a linear composite, which has the same microstructure as strongly nonlinear composite. The linear coefficients of the inclusions and the host medium are ε_{i} and ε_{m}, respectively. The average electric field inside the inclusion $\left(\overline{\mathbf{E}}_{i}\right)$ subject to a uniform external field $\left(\mathbf{E}_{0}\right)$ is assumed to be

$$
\begin{equation*}
\overline{\mathbf{E}}_{i}=\bar{\beta} \mathbf{E}_{\mathbf{0}}, \tag{4.27}
\end{equation*}
$$

Figure 4.10: A strongly nonlinear dielectric composite with distributed inclusion shapes
where $\bar{\beta}$ is the average field factor.
Based on the statistical approach [22], the average field factor $(\bar{\beta})$ of composite with distributed inclusion shapes relates to the field factor of the equivalent composite but with identical inclusion shape (β) by
$\beta P(L) d L$.
Substituting the theffeld factor (β) and the shape distribution parameter $(P(L))$, as given by Eqs. (4.3) and (4.14), respectively, including with the domain of integration $\frac{1}{2}-\frac{1}{2} \Delta<L<\frac{1}{2}+\frac{1}{2} \Delta$ as mention in section 3.2.2, the average field

Substituting β from Eq? 4.29 into Eq: 9.9 .27) yields the electric field inside the inclusion as follow:

$$
\begin{equation*}
\overline{\mathbf{E}}_{i}=\frac{\varepsilon_{m}}{\Delta\left(\varepsilon_{i}+\varepsilon_{m}\right)} \ln \left[\frac{(1+\Delta) \varepsilon_{i}+(1-\Delta) \varepsilon_{m}}{(1-\Delta) \varepsilon_{i}+(1+\Delta) \varepsilon_{m}}\right] E_{0} \tag{4.30}
\end{equation*}
$$

The average field method proposed by Landau and Lifshitz [40] is used with similar processes as proposed in Eq. (4.6). The effective linear coefficient $\left(\varepsilon_{e}\right)$ for composite with distributed inclusion shapes is

$$
\begin{equation*}
\varepsilon_{e}=\varepsilon_{m}\left(1+\frac{v_{i}}{\Delta} \ln \left[\frac{(1+\Delta) \varepsilon_{i}+(1-\Delta) \varepsilon_{m}}{(1-\Delta) \varepsilon_{i}+(1+\Delta) \varepsilon_{m}}\right]\right) \tag{4.31}
\end{equation*}
$$

Eq. (4.31) is consistent with Eq. (4.15), although the approaches of calculation are different. These confirm the result of ε_{e}.

The relations between the volume average of electric fields to the second power in the inclusions and host medium and the derivative of the effective linear coefficients are given as [9]:

$$
\begin{equation*}
\left\langle E_{i}^{2}\right\rangle=\frac{1}{v_{i}} \frac{\partial \varepsilon_{e}}{\partial \varepsilon_{i}} E_{0}^{2} \tag{4.32}
\end{equation*}
$$

$=\frac{1}{v_{m}} \frac{\partial \varepsilon_{e}}{\partial \varepsilon_{m}} E_{0}^{2}$,
where \mathbf{E}_{0} is the external uniform electric field, and v_{i} and $v_{m}=1-v_{i}$ are the inclusion and medium volume fractions, respectively.

Substituting ε_{e} as given by Eq. (4.31) into Eqs. (4.32) and (4.33), we obtain the equations for determining $\left\langle E_{i}^{2}\right\rangle$ and $\left\langle E_{m}^{2}\right\rangle$ in terms of the shape distributed parameter (Δ), inclusion packing fraction $\left(v_{i}\right)$, and the nonlinear contrast ($\chi_{r}=$ $\left.\chi_{i} / \chi_{m}\right)$. By using the relations $\varepsilon_{e}=\chi_{e} E_{0}^{2}, \varepsilon_{i}=\chi_{i}\left\langle E_{i}^{2}\right\rangle$ and $\varepsilon_{m}=\chi_{m}\left\langle E_{m}^{2}\right\rangle$ [9], then $\left\langle E_{i}^{2}\right\rangle$ and $\left\langle E_{m}^{2}\right\rangle$ can be solved self-consistently depending on Δ, v_{i} and χ_{r} as parameters. The offective nonlinear coefficients (χ_{e}) of the composites can be determined from the relationship
with the decoupling approximation, assuming that $\left\langle E_{i}^{4}\right\rangle \approx\left\langle E_{i}^{2}\right\rangle^{2}$ and $\left\langle E_{m}^{4}\right\rangle \approx$

4.3.3 Results and Discussion

By using the decoupling approximation, the effect of varying the nonlinear contrast between the nonlinear coefficients of inclusions and media $\left(\chi_{r}\right)$, with the shape distribution parameter (Δ) as parameter, upon the relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$ are shown on a logarithmic scale in Figure 4.11 for an inclusion packing fraction $\left(v_{i}\right)$ of 0.08 . Our results confirm the similar work of Gao et al. [27] which used the effective medium approximation in the dilute limit to predict the effective nonlinear coefficionts $\left(\chi_{e}\right)$. The sigmoidal relationships shows the increase in $\overline{\chi_{e}} / \chi_{m}$ with increasing the shape distribution parameter within the range of $\log \left(\chi_{r}\right) \geqslant 1$ (or $\mid \chi_{r} \gg 10$) and that $\chi_{e} / \chi_{m}=1$ when $\chi_{r}=1$ or $\chi_{i}=\chi_{m}$. In contrast, within the range of $\log \left(\chi_{r}\right)<1$ (or $\chi_{r} \ll 0.1$), increasing the shape distribution parameter reduces the effective nonlinear coefficient χ_{e} of the composite. For small contrast, the results also show that increasing Δ rarely affect on χ_{e} of composites within the range of $-0.3 \leq \log \left(\chi_{r}\right) \leq 0.5$ (or $0.5 \leq$ $\chi_{r} \leq 3.2$). For higher contrast, within the range of $\log \left(\chi_{r}\right)<-0.3$ (or $\chi_{r} \ll 0.5$) and $\log \left(\chi_{r}\right)>0.5$ (or $\chi_{r} \gg 3.2$) mereasing Δ strongly affect on χ_{e}.

In Figure 4.12, we plot the relative effective nonlinear coefficient $\left(\chi_{e} / \chi_{m}\right)$ against the shape distribution parameter (Δ) for inctusion packing fraction $v_{i}=$ 0.08, and the nonlinear contrast a) $\chi_{r}=0.1,0.01$ and 0.001 , and b) $\chi_{r}=10$, 100 and 1000. Figure 4.12 a) reveals a monotonically decrease in χ_{e} / χ_{m} with increasing Δ. For small $\Delta, 0 \& \Delta \leq 9.3$, increasing A slightly affects on χ_{e} / χ_{m}. Therefore, the devall deviation of inclusion shapes from circular cylinder rarely
 especially, for high contrast $\left(\chi_{r}^{6}=0.001\right)$ and high $\Delta(0.6 \leq \Delta \leq 0.1)$. Similar behaviors also observed in Figure 4.12 b) but χ_{e} / χ_{m} monotonically increase with increasing Δ.

In addition, for $\Delta=0$, all elliptic cylindrical inclusions are cylinder. The results of χ_{e} / χ_{m} agree with those reported in Figure 3.11 for $M=1$ throughout.

Figure 4.11: The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$ for varying the nonlinear contrast $\left(\chi_{r}\right)$ with the shape distribution parameter as parameter.

Figure 4.12: The relative effective nonlinear coefficients $\left(\chi_{e} / \chi_{m}\right)$ for varying the the shape distribution parameter with the nonlinear contrast $\left(\chi_{r}\right)$ as parameter.

CHAPTER V

Conclusions

We have investigated the electric field responses and the effects of inclusion shapes on the effective nonlinear coefficient $\left(\chi_{e}\right)$ of weakly and strongly nonlinear elliptic cylindrical dielectric composites. Two types of composites, that with identical inclusion shape and that with distributed inclusion shapes have been considered. For both types, the inctusions are randomly oriented and embedded in the host media. The dielectric property of the inclusions is that the relation between the displacement field (D) and the electric field (E) satisfies a form $\mathbf{D}=\varepsilon \mathbf{E}+\chi|\mathbf{E}|^{\beta} \mathbf{E}$ where β is a montinear integer exponent with $\varepsilon \gg \chi|\mathbf{E}|^{\beta}$ for weakly nonlinear composites for strongly nonlinear composites, the dielectric property of both inclusion and medium satisfying $\mathbf{D}=\chi|\mathbf{E}|^{2} \mathbf{E}$ is considered. Then, the effects of inclusion shapes on the effective nonlinear coefficient $\left(\chi_{e}\right)$ are investigated in terms of the aspect ratio (the ratio between the semi-major and semi-minor axes for identical inclusions) and the shape distribution parameter for composites with identical inclusionshapeand distributed inclusion shapes, respectively. inclusion, $\left\langle E_{i}^{\beta+2}\right\rangle$ and in the host media $\left\langle E_{m}^{\beta+2}\right\rangle$. These are difficult to obtain. In this research, the determinations on $\left\langle E_{i}^{\beta+2}\right\rangle$ and $\left\langle E_{m}^{\beta+2}\right\rangle$ are simplified by using the simple decoupling approximation. This approximation allows us to convert the established results on linear composites to nonlinear composites with the same microstructure. Moreover, it also give an approximate results of $\left\langle E_{i}^{\beta+2}\right\rangle \approx\left\langle E_{i}^{2}\right\rangle^{(\beta+2) / 2}$ and $\left\langle E_{m}^{\beta+2}\right\rangle \approx\left\langle E_{m}^{2}\right\rangle^{(\beta+2) / 2}$.

In the first type of composites with identical inclusion shape, we firstly consider a linear composite which consists of linear elliptic cylindrical inclusions with identical shape, having the same aspect ratio, the ratio between major and minor axes (M), randomly oriented and embedded in a different linear dielectric medium in dilute limit. The linear coefficients of inclusions and medium are ε_{i} and ε_{m}, respectively. The electric filed inside the elliptic cylindrical inclusions $\left(\mathbf{E}_{i}\right)$ is derived by using the elliptic cylindrical coordinates and then applied to determine the effective linear coefficient $\left(\varepsilon_{e}\right)$ based on the average field method. The effective linear coefficient $\left(\varepsilon_{e}\right)$ is reponted in terms of the aspect ratio (M), which the effects of inclusion shapes on $\overline{\varepsilon_{e}}$ is predicted and reported in section 3.1.4.

Secondly, we consider a weakly nonlinear composites with the same microstructure as in the linear composites which inclusions are randomly oriented and embedded in the linear medium.By using the simple decoupling approximation, the effective nonlinear coefficients $\left(\chi_{e}\right)$ of the weakly nonlinear elliptic cylindrical composite are determined for the nonlinear integer exponents (β) equal to 2, 4 and 6. In order to confirm our results of χ_{e}, we also determine χ_{e} by using the improved decoupling approximation and the direct method. These give the same results of χ_{e} because the electric field in the inclusions is uniform. The results of χ_{e} and the effects of inclusion shapes on χ_{e} are reported in section 3.2.3.

Thirdly, we focus onstrongly nonlinear composites with the same microstructure as the linear composites. The effective nonlinear coefficients $\left(\chi_{e}\right)$ are determined by using the simple decoupling approximation. These cesults on χ_{e} when the aspect ratio equalss 1 agree well with those of Gu and Y (88, and also confirm the work of Gao and $\mathrm{Li}[38]$. The effects of inclusion shapes on χ_{e} is reported in section 3.3.3.

In the second type of composites with distributed inclusion shapes, we further consider the composites which have the same microstructure and same dielectric property as described for composites with identical inclusion shape but now the inclusions have variation in shapes. The electric filed inside the elliptic cylindrical inclusions is derived in terms of the depolarization factor (L) and
then applied to determine the effective linear coefficient $\left(\varepsilon_{e}\right)$ in terms of the shape distribution parameter (Δ) based on the average field method and the statistical approach. The effects of inclusion shapes on ε_{e} is analyzed and reported in section 4.1.4.

Next, we extend the work to the weakly nonlinear composites with inclusions having variation in shapes randomly embedded in the linear medium. Based on the statistical approach, the effective nonlinear coefficient of composite with distributed inclusion shapes is related to that of the composites with identical inclusion shape and then the effective nonfinear coefficient $\left(\chi_{e}\right)$ is determined by using the simple decoupling approximation. The effects of inclusion shapes on χ_{e} is investigated and reported in section 4.2.3.

Finally, we concentrate on strongly nonlinear composites with the same microstructure as the linear composites with distributed inclusion shapes. The different approach as that reported for linear composites in section 4.1.2, is employed to determine the effective linear coefficient $\left(\varepsilon_{e}\right)$. However, agreement between the two approach is observed, thisonfirm our work. By using the simple decoupling approximation, the effective nonlinearcoefficient $\left(\chi_{e}\right)$ is determined and the effects of inclusion shapes on χ_{e} is discussed and reported in section 4.3.3.

This work provide fundamental information for evaluating the electric field response of weakly nonlinear elliptical dielectric composite, and also for designing nonlinear optical materias fôy applications in photonie devices or optoelectronic technologies.

Infact, the effective tesponses of honinear composites incexternal AC electric
has received much attention for both strongly nonlinear and weakly nonlinear composites. Therefore, the effects of inclusion shapes on electric responses of nonlinear composites in external AC electric field with arbitrary nonlinear integer exponet is suggested for further study.

References

[1] Boyd, R. W. Nonlinear Optic, $2^{\text {nd }}$ ed. (USA: Acadamic Press, 1992), p 2.
[2] Natenapit, M. Thongboonrithi, C. and Potisook, C. Ninth-order effective responses of nonlinear composites in external DC and AC electric fields. Physica B 403 (2008): 4314-4318
[3] Gu, G. Q. and Yu, K. W.Effective Conductivity of Nonlinear Composite. Phys. Rev. $B 46$ (1992): 4502-4507.
[4] Yu, K., W. Hui, P. M. and Stroud, D. Effective dielectric response of nonlinear composites Phys. Rev. B 47 (1993): 14150-14156.
[5] Castaneda, P. P., deBotton, G. and Li, G. Effective properties of nonlinear inhomogeneous dielectrics Phys. Rev. B 46 (1992): 4387-4394.
[6] Yu, K. W. and Gu, G. Q. Variational calculation of strongly nonlinear composites Phys. Lett. A 193 (1994):/311-314.
[7] Lee, H. C. and u, K. W. Effective medium theory for strongly nonlinear composites: comparison with numerical simulations Phys. Lett. A 197 (1995): 341-344.
[8] Yu, K. Wand Gu, G. Q. Effective conduetivity of strongly nonlinear composites: variational approấch Phys. Left. A 205 (1995) 295-300.
[9] Yu, K. W., Hui, P. M. and Lee, H. C. Decoupling approximation for strongly nonlinear composites Phys. Lett. A 210 (1996): 115-120.
[10] Yu, K. W. and Yuen, K. P. Effective response of strongly nonlinea composites: Exact results against approximate methods Phys. Rev. B 56 (1997): 10740-10742.
[11] Hui, P. M. and Chung, K. H. Effective nonlinear response in random nonlinear granular materials Physica A 231 (1995): 408-416.
[12] Lu, W. G. and Li, Z. Y. An improved decoupling approximation method for nonlinear granular composites Phys. Lett. A 241 (1998): 197-201.
[13] Stroud, D. and Wood, V. E. Decoupling approxiamtion for the nonlinearoptical response of composite media J. Opt. Soc. Am. B 6 (1989): 778786.
[14] Thongsee, J. and Natenapit, M. Effective nonlinear coefficients of strongly nonlinear dielectric composites J. Appl. Phys. 101 (2007): 024303-1-4.
[15] Gehr, R. J., Fischer, G. L. and Boyd, R. W. Nonlinear-optical response of porous-glass-based composite materials J. Opt. Soc. Am. B 14 (1997): 2310-2314.
[16] Kochergin, V., Zaporojtchenko, V., Takele, H., Faupel, F. and Föll, H. Improved effective medium approach: Application to metal nanacomposites J. Appl. Phys. 101 (2007) 024302-024307.
[17] Piredda, G., Smith, D. D. Wendling, B. and Boyd, R. W. Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient J. Opt. Soc. Am. B 25 (2008): 945-950.
[18] Giordano, S. Effective medium theory for dispersions of dieclectric ellipsoids

[19] Giordano, S. and Rocchia, W, Shape-dependent effects of dielectrically non-

[20] Chang, Q. Ye, H. and Song, Y. Effect of host and particle shape on the optical nonlinearities of nanocomposites Colloid Surface A 298 (2007): 58-62.
[21] Natenapit, M. and Thongsri, J. Shape effect on strongly nonlinear response of elliptical composites Eur. Phys. J. Appl. Phys. 46 (2009): 20701-1-5.
[22] Goncharenko, A. V., Venger, E. F. and Zavadskii, S. N. Effective absorption cross section of an assembly of small ellipsoidal particles J. Opt. Soc. Am. B 13 (1996): 2392-2395.
[23] Goncharenko, A. V., Semanov, Y. G. and Venger, E. F. Effective scattering cross section of an assembly of small ellipsoidal particles J. Opt. Soc. Am. A 16 (1999): 517-522.
[24] Gao, L., Yu, K. W., Li, Z. Y. and Hu, B. Effective nonlinear optical properties of metal-dielectric composite media with shape distribution Phys. Rev. E 64 (1997): 036615-1-8.
[25] Gao, L. and Huang, Y. Effective nonlinear optical properties of shape distributed composite media Eur. Phys. J. B 33 (2003): 165-171.
[26] Gao, L. Effective mediumapproximation for weakly nonlinear metal/dielectric composite with shape distribution Phys. Lett. A 309 (2003): 407-414.
[27] Gao, L., Huang, Y. and Li,Z. Y. Effective medium approximation for strongly nonlinear composite mectia with shape distribution Phys. Lett. A 306 (2003): 337-343.
[28] Gao, L. Maxwell-Garnett type approximation for nonlinear composites with shape distribution Phys. Lett. A 309 (2003): 435-442.
[29] Xu, P. and Li, Z.Y. Effect of particle shape on the effective to the percolation a threshold Physica $B 348(2004): 101-107.9 \% ?$ Q $\%$
[30] Gon̨charenko, A. V., popelnukh, V. V. and Venger, E. F. Effect of weak non sphericity on linear and nonlinear optical properties of small particle composites J. Phys. D: Appl. Phys. 35 (2002): 1833-1838.
[31] Goncharenko, A. V. Optical properties of core-shell particle composites. I. Linear response Chem. Phys. Lett. 386 (2004): 25-31.
[32] Goncharenko, A. V. and Chang, Y. C. Optical properties of core-shell particle composites. II. Nonlinear response Chem. Phys. Lett. 439 (2007): 121-126.
[33] Griffiths, D. J. Introduction to Electrodynamics, $3^{\text {rd }}$ ed. (USA: Prentice Hall International, 1999), p 135.
[34] Bottcher, C. J. F. Theory of Electric Polarization, 2 ${ }^{\text {rd }}$ ed. vol. 1. (Amsterdam: Elsevier Scientific Publishing Company, 1973), p 100.
[35] Wei, E. B., Gu, G. Q. and Poon, Y. M. Effective properties of graded elliptical cylindrical composites Physica B 392, (2007): 327-331.
[36] Stroud, D. and Hui, P. M. Nonlinear susceptibilities of granular matter Phys. Rev. B 37 (1988): 8719-8724.
[37] Kraus, J. D. Electromagnetios, $4^{\text {rd }}$ ed., (USA: McGraw-Hill International, 1991), p 123.
[38] Gao, L. and Li, Z. Effective respense of a strongly nonlinear composite: comparison with variational approach Phys. Lett. A 222 (1996): 207-211.
[39] Stratton, J. A. Electromagnetić Théory, (London: McGraw-Hill, 1941), p 230.
[40] Landau, L. D. and Lifshitz, E. M. Electrodynamics of Continuous Medium, (Oxford: Pergamon, 1984).
[41] Zakri, T., Laurent, J. P. and Vauclin, M. Theoretical evidence for "Lichtennecker's mixture formulae" based on effective medium theory J. Phys. D: Appl. Phys. 31 (1998): 1589-1594. $9 N E \cap ? \approx$
[42] Gao, L., Wan, J. T. K., Yu, K. W. and Li, Z. Y. Effects of highly conducting anterface and pacticle size distribation/on optical nontinearity in granular composites J. Appl. Phys. 88 (2000): 1893-1899.
[43] Spiegel, M. R. and Lue, J. Mathematical handbook of formulas and tables, $2^{\text {nd }}$ ed., (USA: Schaum's outline series, 1999), p 127.
[44] Thongsri, J. "Effective Nonlinear Coefficient of Strongly Nonlinear Spherical Dielectric Composites," (Master's Thesis, Department of Physics, Graduate School, Chulalongkorn University, 2005), p 76.

Appendix A

Improved Decoupling Approximation

For weakly nonlinear composite with identical inclusion shape in section 3.2.2, we use the more accurate expression $\left\langle E_{i}^{\beta+2}\right\rangle$ to determine the effective nonlinear coefficient (χ_{e}). For betfer understanding, in this Appendix, we have to show the process of derivation $\left\langle E_{i}^{\beta+2}\right\rangle$ in terms of $\left\langle E_{i}^{2}\right\rangle$ and $\left\langle E_{i}\right\rangle$.

A. 1 Derivation of $\left\langle E_{i}^{5}\right\rangle$

In order to improve the resulfs of χ_{e}, Lu and $\mathrm{Li}[12]$ proposed a new decoupling approximation to express F_{i}^{n}. When n is odd and $n \geq 3$, it requires

$$
\begin{equation*}
\left\langle\left(\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{n}\right\rangle=0,\right. \tag{A.1}
\end{equation*}
$$

and also n is even;

$$
\begin{equation*}
\left\langle E_{i}^{4}\right\rangle \approx 4\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{2}-4\left\langle E_{i}\right\rangle^{4}+\left\langle E_{i}^{2}\right\rangle^{2} . \tag{A.4}
\end{equation*}
$$

For more n, by using Eq. (A.1) with $n=5$, we have to calculate $\left\langle E_{i}^{5}\right\rangle$ and obtain

$$
\begin{align*}
& \left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{5}\right\rangle=0 \\
& \left\langle E_{i}^{5}-5 E_{i}^{4}\left\langle E_{i}\right\rangle+10 E_{i}^{3}\left\langle E_{i}\right\rangle^{2}-10 E_{i}^{2}\left\langle E_{i}\right\rangle^{3}+5 E_{i}\left\langle E_{i}\right\rangle^{4}-\left\langle E_{i}\right\rangle^{5}\right\rangle=0 \\
& \left\langle E_{i}\right\rangle^{5}-5\left\langle E_{i}^{4}\right\rangle\left\langle E_{i}\right\rangle+10\left\langle E_{i}^{3}\right\rangle\left\langle E_{i}\right\rangle^{2}-10\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{3}+5\left\langle E_{i}\right\rangle\left\langle E_{i}\right\rangle^{4}-\left\langle E_{i}\right\rangle^{5}=0 \\
& \left\langle E_{i}\right\rangle^{5}=5\left\langle E_{i}^{4}\right\rangle\left\langle E_{i}\right\rangle-10\left\langle E_{i}^{3}\right\rangle\left\langle E_{i}\right\rangle^{2}+10\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{3}-5\left\langle E_{i}\right\rangle\left\langle E_{i}\right\rangle^{4}+\left\langle E_{i}\right\rangle^{5} . \tag{A.5}
\end{align*}
$$

Substituting $\left\langle E_{i}^{3}\right\rangle$ and $\left\langle E_{i}^{4}\right\rangle$ from Eqs. (A.3) - (A.4) into (A.5), we get $\left\langle E_{i}^{5}\right\rangle$ as proposed in Eq. (3.36)

$$
\begin{equation*}
\left\langle E_{i}\right\rangle^{5} \approx 5\left\langle E_{i}^{2}\right\rangle^{2}\left\langle E_{i}\right\rangle-4\left\langle E_{i}\right\rangle^{5} . \tag{A.6}
\end{equation*}
$$

A. 2 Derivation of $\left\langle E_{i}^{6}\right\rangle$

For $n=6$, the left hand side (L.H.S) of Eq. (A.2) gives

$$
\begin{align*}
\left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{6}\right\rangle= & \left\langle E_{i}^{6}-6 E_{i}^{5}\left\langle E_{i}\right\rangle+15 E_{i}^{4}\left\langle E_{i}\right\rangle^{2}-20 E_{i}^{3}\left\langle E_{i}\right\rangle^{3}+15 E_{i}^{2}\left\langle E_{i}\right\rangle^{4}\right. \\
& \left.-6 E_{i}\left\langle E_{i}\right\rangle^{5}+\left\langle E_{i}\right\rangle^{6}\right\rangle \\
= & \left\langle E_{i}^{6}\right\rangle-6\left\langle E_{i}^{5}\right\rangle\left\langle E_{i}\right\rangle+15\left\langle E_{i}^{4}\right\rangle\left\langle E_{i}\right\rangle^{2}-20\left\langle E_{i}^{3}\right\rangle\left\langle E_{i}\right\rangle^{3}+15\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{4} \\
& -6\left\langle E_{i}\right\rangle\left\langle E_{i}\right\rangle^{5}+\left\langle E_{i}\right\rangle^{6} . \tag{A.7}
\end{align*}
$$

Replacing $\left\langle E_{i}^{3}\right\rangle,\left\langle E_{i}^{4}\right\rangle$ and $\left\langle E_{i}^{6}\right\rangle$ from Eqs. (A.3), (A.4) and (A.6) into (A.7), we obtain

$$
\begin{equation*}
\left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{6}\right\rangle=\left\langle E_{i}^{6}\right\rangle-15\left\langle E_{i}^{2}\right\rangle^{2}\left\langle E_{i}\right\rangle^{2}+15\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{4}-\left\langle E_{i}\right\rangle^{6} . \tag{A.8}
\end{equation*}
$$

The right hand side (R.H.S) of Ed. (A.2) leads to

$$
\begin{align*}
\left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{2}\right\rangle^{6 / 2} & =\left\langle E^{2}-2 E\langle E\rangle+\langle E\rangle^{2}\right\rangle^{3} \\
& =\left(\left\langle E^{2}\right\rangle-2\langle E\rangle\langle E\rangle+\langle E\rangle^{2}\right)^{3} \tag{A.9}\\
\left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{2}\right\rangle^{3}= & =\left\langle E^{2}\right\rangle^{3}-3\left\langle E^{2}\right\rangle^{2}\langle E\rangle^{2}+3\left\langle E^{2}\right\rangle\langle E\rangle^{4}-\langle E\rangle^{6} .
\end{align*}
$$

From Eqs. (A.8) - (A.9), we rearrange $\left\langle E_{i}^{6}\right\rangle$ and get the expression of $\left\langle E_{i}^{6}\right\rangle$ as given in Eq. (3.37) by

$$
\begin{equation*}
\left.\int_{थ 1}^{0}\left\langle E_{i}^{6}\right\rangle^{9} \approx 12\left\langle E_{i}^{2}\right\rangle^{2}\left\langle E_{i}\right\rangle^{2} \stackrel{C}{2} 12\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{\uparrow}\right\rangle\left\langle\left\langle E_{i}^{2}\right\rangle^{3} .\right. \tag{A.10}
\end{equation*}
$$

We take $n=7$ to Eq. (A.1) and get

$$
\begin{align*}
\left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{7}\right\rangle= & 0 \\
= & \left\langle E_{i}^{7}-7 E_{i}^{6}\left\langle E_{i}\right\rangle+21 E_{i}^{5}\left\langle E_{i}\right\rangle^{2}-35 E_{i}^{4}\left\langle E_{i}\right\rangle^{3}+35 E_{i}^{3}\left\langle E_{i}\right\rangle^{4}-21 E_{i}^{2}\left\langle E_{i}\right\rangle^{5}\right. \\
& \left.+7 E_{i}\left\langle E_{i}\right\rangle^{6}-\left\langle E_{i}\right\rangle^{7}\right\rangle \\
0= & \left\langle E_{i}^{7}\right\rangle-7\left\langle E_{i}^{6}\right\rangle\left\langle E_{i}\right\rangle+21\left\langle E_{i}^{5}\right\rangle\left\langle E_{i}\right\rangle^{2}-35\left\langle E_{i}^{4}\right\rangle\left\langle E_{i}\right\rangle^{3}+35\left\langle E_{i}^{3}\right\rangle\left\langle E_{i}\right\rangle^{4} \\
& -21\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{5}+7\left\langle E_{i}\right\rangle\left\langle E_{i}\right\rangle^{6}-\left\langle E_{i}\right\rangle^{7} . \tag{A.11}
\end{align*}
$$

Eqs. (A.3), (A.4), (A.6) and (A.10) are substituted into Eq. (A.11); therefore, $\left\langle E_{i}^{7}\right\rangle$ can be written as given in Eq. (3.38) by

$$
\begin{equation*}
\left\langle E_{i}^{7}\right\rangle \approx 14\left\langle E_{i}^{2}\right\rangle^{2}\left\langle E_{i}\right\rangle^{3}-28\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{5}+7\left\langle E_{i}^{2}\right\rangle^{3}\left\langle E_{i}\right\rangle+8\left\langle E_{i}\right\rangle^{7} . \tag{A.12}
\end{equation*}
$$

A. 4 Derivation of $\left\langle E_{i}^{8}\right\rangle$

For $n=8$, L.H.S of Eq. (A.2) leads to

$$
\begin{align*}
\left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{8}\right\rangle= & \left\langle E_{i}^{8}-8 E_{i}^{7}\left\langle E_{i}\right\rangle+28 E_{i}^{6}\left\langle E_{i}\right\rangle^{2}-56 E_{i}^{5}\left\langle E_{i}\right\rangle^{3}+70 E_{i}^{4}\left\langle E_{i}\right\rangle^{4}-56 E_{i}^{3}\left\langle E_{i}\right\rangle^{5}\right. \\
& \left.+28 E_{i}^{2}\left\langle E_{i}\right\rangle^{6}-8 E_{i}\left\langle E_{i}\right\rangle^{7}+\left\langle E_{i}\right\rangle^{8}\right\rangle \\
= & \left\langle E_{i}^{8}\right\rangle-8\left\langle E_{i}^{7}\right\rangle\left\langle E_{i}\right\rangle+28\left\langle E_{i}^{6}\right\rangle\left\langle E_{i}\right\rangle^{2}-56\left\langle E_{i}^{5}\right\rangle\left\langle E_{i}\right\rangle^{3}+70\left\langle E_{i}^{4}\right\rangle\left\langle E_{i}\right\rangle^{4} \\
& \left.-56\left\langle E_{i}^{3}\right\rangle\left\langle E_{i}\right\rangle^{5}\right\rangle+28\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{6}-8\left\langle E_{i}\right\rangle\left\langle E_{i}\right\rangle^{7}+\left\langle E_{i}\right\rangle^{8} . \tag{A.13}
\end{align*}
$$

We substitute Eqs. (A.3), (A.4), (A.6), (A.10) and (A.12);

$$
\begin{equation*}
\left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{8}\right\rangle=\left\langle E_{i}^{8}\right\rangle+14\left\langle E_{i}^{2}\right\rangle^{2}\left\langle E_{i}\right\rangle^{4}+28\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{6}-28\left\langle E_{i}^{2}\right\rangle^{3}\left\langle E_{i}\right\rangle^{2}-15\left\langle E_{i}\right\rangle^{8} . \tag{A.14}
\end{equation*}
$$

For the R.H.S of Eq. (A.2), we also obtain

$$
\begin{aligned}
& \left.\begin{array}{l}
\left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{2}\right\rangle^{8 / 2}
\end{array}\right\rangle\left\langle E_{i}^{2}+2 E_{i}\left\langle E_{i}\right\rangle+\left\langle E_{i}\right\rangle^{2}\right\rangle^{4} \\
& \\
& \left\langle\left(E_{i}-\left\langle E_{i}\right\rangle\right)^{2}\right\rangle^{4}=\left\langle E_{i}^{2}\right\rangle^{4}-4\left\langle\left\langle E_{i}^{2}\right\rangle^{3}\left\langle E_{i}\right\rangle^{2}+6\left\langle E_{i}^{2}\right\rangle^{2}\left\langle E_{i}\right\rangle^{4}-4\left\langle E_{i}^{2}\right\rangle\left\langle E_{i}\right\rangle^{6}+\left\langle E_{i}\right\rangle^{8}\right.
\end{aligned}
$$

Eqs. (A.14) and $\left(A, 1\right.$) are solyed for $\left\langle E_{i j}^{8}\right\rangle$ given in Eq. $(\widetilde{3} 39)$ by

Appendix B

Experiences

National Presentations:

Vitae

Mr. Jatuporn Thongsri was born on January 10, 1979 in Surin province, Thailand. He has obtained a scholarship from the Development and Promotion of Science and Technology Talent Project (DPST) since 1995. He graduated with the Bachelor Degree of Science in Physics from Khonkaen University in 2001 and with the Master Degree in the same field from Chulalongkorn University in 2005.

Publications:

2007 J. Thongsee and M. Natenapit. Effective nonlinear coefficients of strongly nonlinear djelectric composites J. Appl. Phys. 101 (2007): 024303-1

2009 M. Natenapit and J. Thongsri. Shape Effect on Strongly Nonlinear Response of Ellipticat Composites Eur. Phys. J. Appl. Phys. 46 (2009): 20701-1-5.

2011 J. Thongsri and AI. Natenapit. Shape Effect on Weakly Nonlinear Elliptical Composites (to be published).

International Presentations:

2008 J. Thongsee and M. Natenapit. Effective Response of Nonlinear Elliptical Dielectric Composites $4^{\text {th }}$ Mathematics and Physical Sciences Graduatel Congress, National University of Singapore, Singa-

Weakly Nonlinear Elliptical Dielectric Composites $5^{\text {th }}$ Mathematics and Physical Sciences Graduate Congress, Chulalongkorn University, Bangkok, Thailand (7-9 December 2009): PM 517.

