
 2547

ISBN 974-17-6498-7

A TECHNIQUE FOR PREDICTING AN AMBIGUOUS NUCLEOTIDE SYMBOL

IN A DNA SEQUENCE

Miss Kitiporn Plaimas

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science in Computational Science

Department of Mathematics

Faculty of Science

Chulalongkorn University

Academic Year 2004

ISBN 974-17-6498-7

Thesis Title A TECHNIQUE FOR PREDICTING AN AMBIGUOUS NUCLEOTIDE

SYMBOL IN A DNA SEQUENCE

By Kitiporn Plaimas

Field of Study Computational Science

Thesis Advisor Professor Chidchanok Lursinsap, Ph.D.

 Accepted by the Faculty of Science , Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master ’s Degree

 …………………………………………….. Dean of the Faculty of Science

 (Professor Piamsak Menasveta, Ph.D.)

THESIS COMMITTEE

 ……………………………………………….. Chairman

 (Associate Professor Wanida Hemakul, Ph.D)

 ………………………………………….……. Thesis Advisor

 (Professor Chidchanok Lursinsap, Ph.D)

 ……………………………………………….. Member

 (Assistant Professor Paisan Nakmahachalasint, Ph.D)

 ……………………………………………….. Member

 (Rath Pichyangkura, Ph.D)

iv

 : . (A

TECHNIQUE FOR PREDICTING AN AMBIGUOUS NUCLEOTIDE SYMBOL IN A DNA

SEQUENCE) . : . , 67 . ISBN 974-

17-6498-7.

 A, T, C G

 N A, T, C, G

 N

 4

 4

 N

 80%

………………………………………………

………………………………...

 2547 .

v

4572225323 : MAJOR COMPUTATIONAL SCIENCE

KEY WORD: AMBIGUOUS NUCLEOTIDE / NEURAL NETWORKS / BIOINFORMATICS / SEQUENCING /

HIGH PERFORMANCE

KITIPORN PLAIMAS : A TECHNIQUE FOR PREDICTING AN AMBIGUOUS

NUCLEOTIDE SYMBOL IN A DNA SEQUENCE. THESIS ADVISOR : PROFESSOR

CHIDCHANOK LURSINSAP, Ph.D., [67] pp. ISBN 974-17-6498-7.

 DNA sequences obtained from a DNA sequencer usually contain some ambiguous

symbol N, which can be interpreted as either A, or T, or C, or G. This ambiguity can effect the

informative analysis of the DNA sequence. This research focused on transforming this problem

to a problem of recognizing a prefix sequence of symbol N. By our assumption that nucleotides

and their positions may be related to their neighboring nucleotides, the relative positions are

used as the feature of the sequence during the learning and recognizing processes of a neural

network for each nucleotide. However, recognizing these features from a training set may take a

lengthy time. The problem of increasing the training speed in forms of parallel recognition was

also investigated. Experimenting on four Eschericia coli genomes, we selected similar regions

of about 40,000 bases from any regions. Each region can train an artificial neural network to

recognize all similarity and predict the actual symbol of N. From random query testing sets, the

recognition accuracy is more than 80%.

Department Mathematics Student’s signature……………………………………….

Field of study Computational science Advisor’s signature.………………………………………

Academic year 2004 .

vi

ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor, Professor Dr. Chidchanok Lursinsap,

for his suggestions, guidance, cheering up and care, help me to overcome the

necessary difficulties of the process of study and reseach, and make this thesis

possible. Without him my thesis would have never been accomplished. I also

thank Supannika Lursinsap for her care and kindness.

I also wish to express my special thanks to the thesis committee, Associate Pro-

fessor Dr. Wanida Hemakul, Assistant Professor Dr. Paisan Nakmahachalasint,

and Dr. Rath Pichyangkura, for their valuable advise, reading and criticizing the

manuscript. They helped me focus on my reseach activities. And, I would like to

thank Associate Professor Suchada Siripant, who looked after me when I stayed

in AVIC research center to do my research.

Furthermore, this work is partially supported by National Center for Genetic

Engineering and BioTechnology (BIOTECH) and Chulalongkorn University. I

would also like to thank The Development and Promotion of Science and Tech-

nology Talents Project (DPST) for financial aid during my study.

I am also greatful to all my colleagues and friends at the Advanced Virtual and

Intelligent Computing (AVIC) Center, especially Benjamas Panyangam, Bencha-

porn Jantarakongkul, Dussadee Praserttitipong, Kodchakorn Na Nakornphanom,

Maytee Bamrungrajhirun, Wanyok Atisattapong, and Chantarat Polutith for their

care, having encouraged and supported me during my study.

My thanks also go to all my past and present instructors for their valuable

lectures and instructions. Finally, I would like to express my sincere gratitude

to my parents and family members for their love, hearty encouragement, and

unselfish sacrifice, and, especially, to Apichat Suratanee, for his love, wormest

care, and being patient during my confusing and frustrating stage.

TABLE OFCONTENTS

Page

ABSTRACT(THAI) . iv

ABSTRACT(ENGLISH) . v

ACKNOWLEDGEMENTS . vi

TABLE OF CONTENTS . vii

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 INTRODUCTION . 1

1.1 The Problem Identification . 1

1.2 The Objective and Scope . 2

1.3 The Outline of the Thesis . 2

2 BACKGROUND KNOWLEDGES 3

2.1 DNA Structure and DNA Sequences 3

2.1.1 Components of DNA 3

2.1.2 DNA Sequences . 5

2.2 Mutational Changes of DNA Sequences 6

2.3 An Overview of Artificial Neural Networks 8

2.4 Backpropagation Neural Network 10

3 LITERATURE REVIEWS . 16

3.1 The Review of Literature Related to DNA Sequencing Problems 16

3.2 The Review of Literature Related to SPM Predictor Derived

from Information Theory . 21

Administrator
Text Box

viii

TABLE OFCONTENTS (Continued)

CHAPTER Page

4 A PROPOSED TECHNIQUE FOR PREDICTING AMBIGUOUS

NUCLEOTIDE SYMBOL . 24

4.1 Problem Formulation . 24

4.2 Relative Positions . 25

4.2.1 Extended Relative Position with Probability of Mutation

Rate . 26

4.3 Recognition Process . 26

4.3.1 Input Representation 26

4.3.2 Partitioning Training Feature Vectors 29

4.3.3 Network Architecture 35

5 EXPERIMENTAL RESULTS . 38

5.1 Performance of each Recognition Network 41

5.2 The Results of Resolving Method 42

5.3 The Results of Query Sequences 44

5.4 Performance of Parallel Technique 47

6 CONCLUSION . 50

REFERENCES . 52

VITAE . 54

Administrator
Text Box

ix

LIST OF TABLES

TABLE Page

2.1 Uniform mutation rates with 1% probability of change at each

position. 7

2.2 Higher transitions (α) than transversions(β) with 1% probability

of change at each position. 8

3.1 Summary of single-letter code recommendations. 18

4.1 Example of nucleotide sequence. 27

4.2 The feature vectors of the training patterns in Table 4.1. 29

4.3 A table of possible output patterns and the resolved symbols. . . 37

5.1 The results of duplicating process of the original feature vectors

vary in the number of relative positions. 41

5.2 The performance of each classication network on four sample regions. 42

5.3 Experimental results using the conclusion in Table 4.3. 43

5.4 Experimental results using the maximum output value. 44

5.5 Experimental results using the patterns in Table 4.3 of query se-

quence . 46

5.6 Experimental results using the maximum output value of query

sequences . 47

5.7 Experimental results of recognition network comparing with Sam-

pled Pattern Matching(SPM) for 4,000 samples 47

5.8 The performance results of this parallel technique. 48

x

LIST OF FIGURES

FIGURE Page

2.1 The Structure of Deoxyribonucleic Acid (DNA) 4

2.2 Structure of purine and pyrimidine bases 4

2.3 Two DNA strands form a double helix. 5

2.4 Double-stranded DNA. 6

2.5 Nucleic acid substitutions diagram. 7

2.6 Analogy between human and artificial neuron. 9

2.7 Illustrating the sample network that has only one input layer, one

hidden layer, and one output layer. There are q nodes represented

input features in the input layer, many hidden neurons we can

adjust for an applicableneural network, and there are any output

neurons. 11

3.1 The percentage of correct prediction using SPM for E.coli genome

with noncoding and coding region. 22

4.1 Suppose feature vectors have three dimensions and the third fea-

ture in Z-axis is the key feature. Therefore, all feature vectors are

partitioned into three groups denoted by three blocks. Each group

of feature vectors is trained by an individual neural network. . . . 30

xi

LIST OF FIGURES (Continued)

FIGURE Page

4.2 An example of how feature vectors are partitioned. There are 12

feature vectors whose feature values lying in the range [0, 5]. These

feature values are divided into five (n = 5) intervals. The width

of each interval is set to d = 5−0
5

= 1. Step 1 shows the number of

values, Nvalue(i), lying in the i-th interval. The important interval

is the third interval because most of the values lie in it. Step 2

shows the number of feature vectors, Npattern(3, k), having their

feature values lying in the third interval, which is the important

interval. The second feature was used as the key feature to divide

all feature vectors. Step 3 shows three groups of feature vectors

after partitioning. For this example, the number of networks is

set to 3. Each groups must contains less than or equal to avg =

12
3

= 4 patterns. Thus, the last group contains the patterns in the

remaining intervals . 32

4.3 An example of how to recursively apply the partitioning concept.

Each block denotes a group of feature vectors. (a) The original

given feature vectors to be partitioned. (b) The given feature

vectors in (a) are partitioned into four groups. (c) Groups 2 and

3 in (b) are further partitioned into four subgroups. 34

4.4 Network Architecture and the determination by thresholding the

outputs from all networks and comparing them with the patterns

in Table 4.3. 35

4.5 Network Architecture and the determination by selecting maxi-

mum output values. 36

xii

LIST OF FIGURES (Continued)

5.1 The relationship between the number of duplicated patterns and the

number of relative positions. 40

5.2 The relationship between the number of relative positions and the

complexity of unduplicated data set. 40

5.3 (a) Relationship between the speedup and the number of networks.

(b) Relationship between the efficiency and the number of networks. 49

CHAPTER 1

INTRODUCTION

1.1 The Problem Identification

A primary problem arising in molecular biology is how to determine the DNA se-

quence. Presently, genetic scientists have upgraded the process of DNA sequencing

through computer technology [1, 2, 3]. DNA sequences are represented by a set

of four basic nucleotide symbols, A (Adenine), T (Thymine), C (Cytosine), and

G (Guanine), which can be obtained from a DNA sequencing machine. However,

the sequencing techniques are not perfect, and, as a result, ambiguous symbols,

“N” letter, are occasionally presented [4, 5, 6, 7]. This sequence may be complete

or incomplete due to several uncontrollable factors such as the resolution of the gel

degrades and the malfunction of sequencing machine. Several methods to manage

errors from DNA sequencing are focused on the algorithm for solving DNA se-

quencing to get the sequence of symbols from genetic material and oligonucleotides

[4, 5]. Although several existing DNA sequencing algorithms produce good results,

they have not consider the problem of resolving the ambiguous nucleotide from

the sequencing process. This research introduces a new technique to resolve the

ambiguity using computational recogition based on the relative positions of all

2

nucleotides in the prefix sequence of an anmbiguous nucleotide N .

1.2 The Objective and Scope

The goal of this research is or was to develop and validate an algorithm for predict-

ing an ambiguous nucleotide in a DNA sequence. The study focuses or focused on

a single ambiguous nucleotide in any region on a DNA sequence. The experimen-

tal data are or were DNA sequences of four available Eachericia coli genomes from

EMBL database of European Bioinformatics Institute (EBI): E.coli strain CFT073,

strain K12, strain O157 : H7 EDL933, and strain O157 : H7 substrain RIMD

0509952.

1.3 The Outline of the Thesis

The organization of this thesis comprised of the followings: Chapter 2 summa-

rizes the related background of DNA sequences and the methodology of neural

network, the machine learning. Chapter 3 reviews the DNA sequencing literatures

and a related predicting method derived from an information theory. Chapter 4

introduces the proposed technique for predicting an ambiguous nucleotide by the

relative position as a special technique for DNA analysis and explains an architec-

ture of the recognition process to resolve the problem. Experimenting on the four

E.coli genomes, the result correctness are described in Chapter 5. The conclusion

of this thesis is in Chapter 6.

CHAPTER 2

BACKGROUND KNOWLEDGES

2.1 DNA Structure and DNA Sequences

In 1953, James Watson and Francis Crick first described the structure of DNA

(Deoxyribonucleic acid). They found that DNA is a double-stranded molecule

twisted into a helix. The double helix of the DNA is shown in Figue 2.1 along

with details of how the bases, sugars and phosphates form the structure of the

molecule.

2.1.1 Components of DNA

DNA is a polymer. The monomer units of DNA are nucleotides, and the polymer

is known as a “polynucleotide.” Nucleotides are composed of a phosphate group,

a sugar deoxyribose, and a nitrogenous base. Four different bases are commonly

found in DNA: adenine (A), guanine (G), cytosine (C), and thymine (T). The

four bases can be separated into two groups by their chemical structures. A and

G have two rings like the compound purine and, therefore, they are called the

purines or the purine bases. Other two bases, C and T, have one ring and are

similar in structure to the compound pyrimidine and, because of that, they are

4

Figure 2.1: The Structure of Deoxyribonucleic Acid (DNA)

called the pyrimidines or the pyrimidine bases (Figure 2.2).

Figure 2.2: Structure of purine and pyrimidine bases

In their common structural configurations, the nirogenous base linked to the

sugar with the 1’ carbon. Phosphates and the sugar are arranged as a backbone

with the 3’ carbon of one sugar linked through a phosphodiester to the 5’ carbon of

the next sugar (Figures 2.1 and 2.3). The two strands of DNA are linked together

5

by hydrogen bonds between purine bases and pyrimidine bases. A and T form

two hydrogen bonds while C and G form three hydrogen bonds. Because of the

specificity of base pairing, the two strands of DNA are said to be complementary.

Figure 2.3: Two DNA strands form a double helix.

2.1.2 DNA Sequences

Considering both strands of DNA in Figure 2.4, we see that the two strands run in

opposite directions in terms of the 5’ and 3’ ends. That is to say the strands run

antiparallel to each other. Thus this chain in this example described from the 5’

to 3’ end would read C to G to G and so on. Another way to write this out is in a

highly condensed structural formula 5’-CGGAGGACTGTCCT-3’. The sequence

of the complementary strand (whose base order is 3’-GCCTCCTGACAGGA-5’)

6

is shown here. Therefore, a DNA sequence can be considered as a sequence from

the four-letter alphabet A, C, G, T and obtained from a DNA sequencing machine.

Figure 2.4: Double-stranded DNA.

2.2 Mutational Changes of DNA Sequences

Mutational changes in DNA can be classified by type of change caused by the

mutational event into substitutions, deletions, insertions, inversion, and recombi-

nation. Further detail can be found on [8, 9]. Since the model of DNA sequence

evolution which can account for biases in mutation rates that depend on the iden-

tity of neighboring nucleotides [10], the neighboring nucleotides has an influence

on other nucleotides. In this research, we focused on substitution mutation to

modify relative position of nucleotides.

The nucleotide substitutions can be divided into two classes: transitions (α)

and transversions (β). A transition is the substitution of a purine (A or G) for

another purine or the substitution of a pyrimidine (C or T) for another pyrimidine

(Figure 2.5) [9, 11]. Other types of nucleotide substitutions are called transver-

sions. The mutation matrix or scoring matrix can be divided in uniform mutation

7

rates (α = β) or higher transitions than transversions (α > β). For instance,

the scoring matrix with 1% probability of change at each position is shown as in

Tables 2.1 and 2.2 [9].

Figure 2.5: Nucleic acid substitutions diagram.

Table 2.1: Uniform mutation rates with 1% probability of change at each position.

A C T G

A 0.99 0.00333 0.00333 0.00333

C 0.00333 0.99 0.00333 0.00333

G 0.00333 0.00333 0.99 0.00333

T 0.00333 0.00333 0.00333 0.99

The mutation matrix with higher transitions (α) than transversions(β) are

commonly used to apply the realistic biological data [9, 12]. We applied the

mutation matrix in Table 2.2 to our work discussed in Chapter 4.

8

Table 2.2: Higher transitions (α) than transversions(β) with 1% probability of

change at each position.

A C G T

A 0.99 0.002 0.006 0.002

C 0.002 0.99 0.002 0.006

G 0.006 0.002 0.99 0.002

T 0.002 0.006 0.002 0.99

2.3 An Overview of Artificial Neural Networks

Artificial neural networks were originally designed to model in some small way the

functionality of the biological neural networks which are a part of the human brain.

Our brains contain many neurons. Each biological neuron consists of a cell body,

a collection of dendrites which bring electrochemical information into the cell and

an axon which transmits electrochemical information out of the cell (Figure 2.6).

A neuron produces an output along its axon so it fires when the collective effect

of its inputs reaches a certain threshold. The axon from one neuron can influence

the dendrites of another neuron across junctions called synapses. Some synapses

will generate a positive effect in the dendrite, ie one which encourages its neuron

to fire, and others will produce a negative effect, ie one which discourages the

neuron from firing. A single neuron receives inputs from several synapses. It is

still not clear exactly how our brains learn and remember but it appears to be

associated with the interconnections between the neurons at the synapses.

9

Figure 2.6: Analogy between human and artificial neuron.

Artificial neural networks try to model this low level functionality of the brain.

This contrasts with high level symbolic reasoning in artificial intelligence which

tries to model the high level reasoning processes of the brain. The neural networks

can contain many artificial neurons comparing biological neurons in Figure 2.6.

An artificial neuron consists of a processing element which has a number of input

connections, each with an associated weight, a transfer function (or a threshold

function) which determines the output, given the weighted sum of the inputs,

and the output connection itself. An artificial neural network is a network of

interconnected neurons. The network may be trained by adjusting the weights

associated with the connections in the net to try and obtain the required outputs

for given inputs from a training set. This is an analogy between biological (human

brain) and artificial neural networks.

10

2.4 Backpropagation Neural Network

Artificial neural networks with backpropagation [13] are currently and mostly used

as a classifier or a recognizer. It successfully performs a variety of input-output

mapping tasks for recognition, generalization, and classification [14]. The basis

model of a neural network consists of three parts:

• Nodes connected by links organized in layers by weights. There are three

layers - input layer, hidden layer, and output layer - from a sample network

in Figure 2.7. The total nodes of the constructed neural network are equal

to the summation of the number of input nodes, hidden nodes (or hidden

neurons), and output nodes (or output neurons).

• The output oi of neuron i is computed by an activation function known

as logistic function of activation values of neuron i. The activation values

of neuron i is computed as the dot product between input vector, x =

[x1, . . . , xq]
T , and weight vector, wi = [wi,1, . . . , wi,q]

T . Therfore, the output

oi computed as follow.

oi = fact(

q∑
j=1

wi,jxj) (2.1)

In figure 2.7, each layer has a synaptic weight matrix associated with all the

connections made from the previous layer to the next layer, that is, W(�), for

� = 1, 2. The first layer has the weight matrix W(1) =
[
w

(1)
ji

]
∈ �h×q, the

second layer’s weight matrix is W(2) =
[
w

(2)
rj

]
∈ �m×h, for i = 1, 2, . . . , q; j =

1, 2, . . . , h; and r = 1, 2, . . . , m; . The nonlinear input-output mapping Ω : �q×1 →
�q×1 can be determined directly from Figure 2.7 as follows.

11

Figure 2.7: Illustrating the sample network that has only one input layer, one

hidden layer, and one output layer. There are q nodes represented input features

in the input layer, many hidden neurons we can adjust for an applicableneural

network, and there are any output neurons.

Therefore, we define that f
(1)
act is the nonlinear activation function in the hidden

layer and that f
(2)
act is the nonlinear activation function in the output layer. The

output of hidden neuron r, o
(1)
r , and the output of output neuron s, o

(2)
s , then

computed as

o(1)
r = f

(1)
act (

q∑
j=1

w
(1)
r,j xj) and o(2)

s = f
(2)
act (

h∑
j=1

w
(2)
s,j o

(1)
j) .

12

where r = 1, 2, . . ., h., s = 1, 2, . . ., m., q is the number of features used to form

input vectors., h is the number of hidden nodes., and m is the number of output

neurons.

We define the output of output neuron s, o
(2)
s , is ys where s = 1, 2, . . ., m.

In general, there are many input vectors and all input vectors can be captured in

forms of a matrix of size p × q where p is the total number of input vectors (or

patterns). Each input vector has its target.

• The output of output neuron s for the µ-th input vector (or pattern), y
(µ)
s ,

should be equal to the target t
(µ)
s . The learning performance is measured by

the following cost function.

E =
1

p

1

2

p∑
µ=1

m∑
s=1

(t(µ)
s − y(µ)

s)2

To minimize the cost function, the weight in iteration k can be updated by

the learning rule following

∆wi,j(k) = −ηδi(k)oi(k) + α∆wi,j(k − 1)

where η is the learning rate, δi is the error for any node and α is the mo-

mentum constant. Weight adjusting are discussed in a backpropagation

algorithm.

Training a neural network with backpropagation algorithms results in a non-

linear mapping or an association task. Thus, given two sets of data, the meural

network can have its synaptic weights adjusted by backpropagation algorithm to

develop a specific nonlinear mapping. The neural network, with fixed weights

13

after the training process, can provide an association task for classification, pat-

tern recognition, diagnosis, etc. During the training phase of the neural network,

the synaptic weights are adjusted to minimize the disparity between the actual

and desired outputs of the neural network, averaged over all input patterns (or

learning examples).

Standard backpropagation algorithm

Weight Initialization

Each weight is initialized to a small random value.

Calculation of activation function

1. The activation level of an input unit is determined and fed to the network.

2. The activation level Oj of a hidden and output unit is determined by

Oj = F (
∑

WjiOi + θj) (2.2)

where Wji is the weight of an input Oi, θj is the node threshold, and F is

the activation function.

Weight Training

1. Start at the output units and work backward to the hidden layers recursively

to adjust the weights by

Wji(t + 1) = Wji(t) + ∆Wji (2.3)

where Wji(t) is the weight from unit i to unit j at time t (or t the iteration)

and ∆Wji is the weight adjustment.

14

2. The weight change is computed by

∆Wji = ηδjOi (2.4)

where η is a trial-independent learning rate (0< η <1, e.g., 0.3) and δj is

the error gradient at unit j. Convergence is sometimes faster by adding a

momentum term:

Wji(t + 1) = Wji(t) + ηδjOi + α[Wji(t) − Wji(t − 1)] (2.5)

where 0< α <1

3. The error gradient is given by:

- For the output units:

δj = (Tj − Oj)F
′(netj)

where Tj is the desired (target) output activation, Oj is the actual

output activation at output unit j and netj =
∑

i WjiOi .

- For the hidden unit

δj = F ′(netj)
∑

k δkWkj

where unit j is a hidden unit, δk is the error gradient at unit k to

which a connection points from hidden unit j.

4. Repeat iterations until convergence in terms of the selected error criterion

or a maximum number of iterations is reached.

15

The training set is presented iteratively to operate the network, whereby the

weights are updated until their values become stabilized according to the following

criterion: (1) a user-defined error tolerance is achieved, or (2) a maximum number

of iterations is reached.

All input patterns (or vectors) can be captured in forms of a matrix of size

p×q. The computational time for solving the value of each weight depends on the

size of this matrix which is constrained by the values of p and q, where p is the

number of input patterns (or vectors) and q is the dimensions of an input pattern

or the number of input nodes. In addition, the number of hidden neurons are

also important. Too fewer hidden neurons are not enough to provide acceptable

classification. Whereas too many neurons not only spend more training time to

complete the network but also generate the problem of over-fitting the training

data. Specifying the number of hidden neurons prior to the training process is not

easy. The only feasible approach to speed up the training process is by partitioning

the data sets into several smaller data sets and training each small data set with

one individual network. The detail of this partition technique is explained in

Chapter 4.

CHAPTER 3

LITERATURE REVIEWS

3.1 The Review of Literature Related to DNA Sequencing

Problems

Two primary methods of rapid DNA sequencing were developed in 1977, which

could be considered the year that the Human Genome Project was born. Two

groups of researchers, Maxam and Gilbert and Sanger et al, published seminal

papers describing the development of DNA sequencing technologies. Maxam and

Gilbert described a method of chemically cleaving DNA that had been terminally

labeled [15] while the Sanger paper described a sequencing method using chain

terminators [16]. Both methods generate radiolabeled DNA fragments that initi-

ate at a defined point and are random in length but end with a defined type of

base either A, T, C, or G. The random populations of DNA fragments are then

separated on polyacrylamide gels according to size. A high resolution gel is used

to separate fragments that differ in as little as one base. Depending on the type

and percentage of gel it is possible to read almost 500-600 bases of sequence from

a single sample loading. However, the actual number of base pairs in the genome

is longer than that; for example, a human genome consists of approximately 3

17

billion nucleotides. Genetic scientists have upgraded the process of DNA sequenc-

ing through computer technology. The DNA sequencing consists of determining a

sequence of nucleotides of an examined DNA fragment, cut out from a genome by

restriction enzymes or by the shotgun approach. Almost all large scale sequencing

projects employ the shotgun sequencing strategy that assembles the target DNA

sequence from a set of short DNA fragments determined from a set of DNA pieces

randomly sampled from the target sequence [1, 17]. Genome assembly is the job

of computer programs known as “assemblers.” These programs work by finding

and analyzing overlaps, or identical DNA fragments at either end of two different

reads. Eventually, we can get a DNA sequence represented by a set of the four

basic nucleotide symbols from a DNA sequencing machine. But this sequence may

be complete or incomplete. The errors can occur more and more frequently as

the resolution of the gel degrades or genetic material containing allelic mixtures

[4, 6, 18]. An incomplete sequence refers to a sequence that some nucleotide sym-

bols are ambiguous. Table 3.1 denotes the nomenclature for incompletely specified

symbols in DNA sequences provided by IUPAC and IUBMB [7].

An automatic sequencing machine produces what genome scientists call “raw”

sequence. In raw sequence, the reads or short DNA sequences are all jumbled

together, like the pieces of a jigsaw puzzle in a just-opened box. Inevitably,

raw sequence also contains a few gaps, mistakes, and ambiguities. There is no

mechanical substitute for the intuition and intelligence of an experienced finisher,

so finishing is currently a bottleneck in the process of DNA sequencing. Automatic

sequencing machines can churn out a raw sequence much faster than humans can

analyze and polish these sequences.

18

Table 3.1: Summary of single-letter code recommendations.

Symbol Meaning Origin of designation

G G Guanine

A A Adenine

T T Thymine

C C Cytosine

R G or A puRine

Y T or C pYrimidine

M A or C aMino

K G or T Keto

S G or C Strong interaction (3 H bonds)

W A or T Weak interaction (2 H bonds)

H A or C or T not-G, H follows G in the alphabet

B G or T or C not-A, B follows A

V G or C or A not-T (not-U), V follows U

D G or A or T not-C, D follows C

N G or A or T or C aNy Nucleotide

To correct the ambiguous nucleotide from DNA sequenceing in the present,

there are many following:

• Many of these errors and ambiguities can be resolved by inspection of the

traces [4]. In addition, an assembler software compares all the different

reads that cover the same stretch of DNA and generates what is known as

19

a “consensus” sequence. For example, if a certain base comes out as an

A nine times and C the tenth, then chances are the base is really an A.

An assembler is designed to sift through conflicting information and decide

which sequence is likely to be right.

• One method/strategy for eliminating errors is by sequencing the genome

more than once. That is to say, we can reconduct the DNA sequencing

experiment or sequencing the complementary of DNA sequence is a good

way to resolve an ambiguous nucleotide on DNA sequences but may provide

an ambiguous one on other positions again.

• Although computer programs can help resolve gaps and uncertainties in a

genome sequence, much of the final polishing is still done by people known

as finishers. These expert workers identify gaps in the sequence, design

experiments to fill in those gaps, and determine how to collect any additional

information that are necessary.

In 1996, Tao Jiang and Ming Li tried to model the DNA sequencing problem

as learning a string [19] from its randomly drawn substrings and approximated a

shortest common superstring of a set of strings. Under certain restrictions, this

may be viewed as string learning in Valliant’s distribution-free learning model.

In 2002, Jacek Blazewicz, Piotr Formanowicz, Frederic Guinand and Marta

Kasprzak introduced a heuristic technique managing errors for DNA sequencing

by hybridization problem [5]. The new method for rebuilding sequences from a

set of oligonucleotides is simple and fast. Negative error refers to some missing

20

oligonucleotides in the spectrum, and positive error refers to erroneous oligonu-

cleotides. If the coordinates of a point on the chip are not correctly read, two

errors appear simultaneously: a negative one and a positive one.

In 2003, Izydor Apostol, Philippe Jacquet, and Wojciech Szpankowski intro-

duced a novel prediction algorithm called Sampled Pattern Matching (SPM) pre-

dictor [20] that was recently developed in a universal predictor based on pattern

matching [21] to analyze molecular sequences. They have an information theory

told us biological sequences can be predicted.

In 2004, Pawel Gajer, Michael Schatz and Steven L. Salzberg constructed

an automated correction of genome sequence errors by using information from

an assembly of a genome. The new program called AutoEditor [4] significantly

improves base calling accuracy over that achieved by previous algorithms. This

in turn improves the overall accuracy of genome sequences and facilitates the use

of these sequences for polymorphism discovery.

From above points, we can assume that nucleotides and their position may be

related to their neighboring nucleotides. Therefore, we considered DNA sequences

to be the string of letter A, T, C, and G, and applied them to character based

prediction problem on an information theory and recognition problem on an ar-

tificial neural network. Some interesting information theory applied to biological

sequence are explained in the next section.

21

3.2 The Review of Literature Related to SPM Predictor

Derived from Information Theory

The SPM predictor described by Izydor Apostol, Philippe Jacquet, and Wojciech

Szpankowski is a special case of a universal predictor [21] based on pattern match-

ing to analyze biological sequences. By the algorithm of the SPM predictor, it

is assumed that a biological sequence xn = x1, x2, ..., xn is given. Each symbol

xi belongs to a finite alphabet
∑

. For a fixed integer K ≥ 1, the algorithm will

predict the next K symbols, that is, (xn+1, ..., xn+k).

Let 0 < α < 1, the SPM prediction algorithm works as follows:

Step1: Find the largest suffix of xn whose copy appears somewhere in the string

xn. We denote this suffix by Dn of length l the largest integer such that

(xn−l+1, ..., xn)=(xn−i−l+1, ..., xn−i) for some 1 ≤ i ≤ n

Step2: Take an α fraction of the maximal suffix of length

dn := [αDn]

That is the suffix xn−dn+1, ..., xn. A fractional suffix defines a marker (i.e., a sub-

string), and the k positions after markers are called the k-tuple marked positions.

Step3: Let now N(x1, ..., xk) be the number of non-overlapping k-tuple (x1, ..., xk)

occurrences in the sampled sequence. The SPM predictor assigns

(xn+1, ..., xn+k) = arg max N(x1, ..., xk)

In words, (xn+1, ..., xn+k) is assigned to the most frequent k-tuple occurring in the

sampled sequence.

22

Consider this example. SPM Predictor for k = 1 is presented as a text string with

the largest suffix (the bold fragments) and its copy framed (defined in Step 1 of

the above algorithm):

SLJZGGDLYGSJSLJZKGSSLJZKLJZJGZYGSJSLJZ

In fact, D40 = 8. Let α = 0.5. Then, the fractional suffix SLJZ is used to find all

markers. They are shown below:

SLJZGGDLYGSJSLJZKGSSLJZKLJZJGZYGSJSLJZ

The sampled sequence is GKK, thus the SPM predicts x41 = K.

Figure 3.1: The percentage of correct prediction using SPM for E.coli genome

with noncoding and coding region.

Their SPM predictor on biological sequences implied that the biological se-

quences can be predicted. The result (Figure 3.1) of their SPM algorithm to a

23

segment of about 1600 bps length of E.coli genome that runs across noncoding

and coding segments showed a change in predictability around 150th base which

agree with the transition from noncoding to coding regions. Although this seems

to be an unimpressive correction, there exist an information theory (Theorem 1

in [21]) confirmed that this is the best one can expect. According to this implicit

prediction, we applied an artificial neural network to construct a predictor of a

single ambiguous nucleotide comparing with SPM predictor of those.

CHAPTER 4

A PROPOSED TECHNIQUE FOR PREDICTING

AMBIGUOUS NUCLEOTIDE SYMBOL

4.1 Problem Formulation

To resolve the ambiguous symbol, N , in a given DNA sequence, we formulate

the problem as a recognition problem of a given nucleotide string. Let
∑

=

{A, T, C, G} be a set of nucleotide symbols and N ∈ ∑
an ambiguous symbol.

Our problem is defined as follows.

Problem: Given a nucleotide string S = (A + T + C + G)nN , where n > 0 is

an integer, resolve the actual symbol of N .

(A + T + C + G) means a string, s, consisting of either symbol A, or T , or C,

or G. Concatenating string s with itself n times is written as sn. The value of n

depends upon the species. String (A+T +C +G)n of length n is the prefix string

of N .

25

4.2 Relative Positions

Our assumptions are that the actual symbol of N must depend upon the other

nucleotides in string S and the position of each nucleotide has the direct influence

to the occurrence of the actual symbol of N . In order to resolve the symbol of N ,

the feature of string S must be extracted based on our assumptions prior to the

recognition process. Let bi be nucleotide symbol b ∈ ∑
at position i in string S.

The sequence of positions can be counted from either left to right or from right to

left. The relative position, rbi,bj
, between two nearest identical nucleotide symbols

bi and bj in string S is defined as

rbi,bj
= j − i; j > i. (4.1)

For example, consider this given nucleotide sequence.

symbol: C T C G A T C G A C T

position: 70 71 72 73 74 75 76 77 78 79 80

There are only two nucleotides A between positions 70 and 80. Thus, the value

of rA74,A78 is equal to 4. To analyze realistic biological data, distance or position,

between pairs of symbols may be based on the δ-function defined in
∑

. We

can rewrite the relative position in equation (4.1) in a new formular by adding

information of mutation rate [9, 12] of δ-function.

δ(bi, bj) =

⎧⎪⎨
⎪⎩

1 if bi = bj

0 otherwise
(4.2)

In this case, the symbols occur independently on their positions with equal prob-

ability. Instead of using rbi,bj
as in equation (4.1), the value of rbi,bj

is replaced by

26

the proposed relative probabilistic position as in equation (4.3).

rbi,bj
= 1 +

j∑
k=i+1

|1 − δ(bi, bk)| ; j > i (4.3)

However, the real-valued matrices or ratios in the mutation case is capable of

representing the frequently using symbols in a sequence.

4.2.1 Extended Relative Position with Probability of Mu-

tation Rate

We defined a mutation-rate function σ in
∑×∑

as a scoring matrix. This

scoring matrix depend on the assigned probability of mutation rate. Obviously,

δ-function is a special case of σ-function when σbibj
equals δ(bi, bj). So it is the

identity matrix. The relative probabilistic position with mutation rates becomes

rbi,bj
= 1 +

j∑
k=i+1

|1 − σbibk
| ; j > i (4.4)

The scoring matrix obtained from the assigned probability of mutation rates

by changing any nucleotides at each position(σbibj
values from Tables 2.1 or 2.2

in Chapter 2).

4.3 Recognition Process

4.3.1 Input Representation

The feature vector of string S, vS, consists of four sets of relative positions of

each nucleotide in
∑

. These four sets are concatenated to form a feature vector.

27

Since the number of relative positions of different nucleotides in string S may

not be equal, according to the amount of each nucleotide, it would be better to

equally set the number of relative positions of each nucleotide. Suppose k is the

number of relative positions. The feature vector, vS, of string S is formed by

concatenating the inversely relative positions for each nucleotide as shown in the

following format.

vS =

(
Πi,j∈PA;

j>i

1

rAi,Aj

) (
Πi,j∈PT ;

j>i

1

rTi,Tj

) (
Πi,j∈PC ;

j>i

1

rCi,Cj

) (
Πi,j∈PG;

j>i

1

rGi,Gj

)
(4.5)

where PA, PT , PC , PG are the set of positions having nucleotides A, T , C, and G,

respectively, in string S. |PA| = |PT | = |PC | = |PG| = k+1. The symbol Π means

concatenating. The inversely relative position is used to handle the significance

of the neighboring nucleotides of symbol N .

Table 4.1: Example of nucleotide sequence.

symbols: A A T C C T G G A G T G C C T C

position: 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

For example, consider the given sequence S in Table 4.1. The selected position

is at position 55, where symbol C appears. Suppose that it is an ambiguous

nucleotide and can be represented A or T or C or G. Thus, the target of this

given sequence is C. If k is equal to 3 then the feature vector with relative-position

equation in (4.1) or (4.3) is

28

A T C G

vS = 1
7

1
7

1
1

1
1

1
4

1
5

1
2

1
1

1
8

1
4

1
2

1
2

= 0.143 0.143 1 1 0.25 0.2 0.5 1 0.125 0.25 0.5 0.5

Thus, the feature vector is used as the input representation into the backprop-

agation network for each sequence. However, if the length of a DNA sequences is

selected within fixed window size then this length may create a problem of some

missing relative positions. Given a number of relative positions k, it is possible

that the number of relative positions of some nucleotide symbols may be less than

k. The corresponding feature vector cannot be completely formed. For this sit-

uation, any missing relative position is, then, set to the large value because this

feature value means the distance between the same type of nucleotides is too far

to consider. Obviously, its inversely relative position is closed to 0 that means less

significant. The example of input representations for training the neural network

are displayed in Table 4.2 with k = 3. The appropriate number of relative posi-

tions to form a feature vector is set by an acceptable tolerance (τ). The tolerence

is a thershold for the error ratio of the number of duplicated vectors being in

different classes to the number of unduplicated vectors as data set. For example,

suppose that our original data set contains 10,000 feature vectors with a relative

number k = c, where c is a constant. Approximately 60% of these vectors are

duplicated in the same class and only 15 vectors are duplicated in differnce classes.

So, there are 3,985 remaining vectors as a new data set for being training set. The

error ratio is, then, 15
3985

≈ 0.00376. If the tolerance is equal to 0.005 that means

the percentage of covering information of data set is up to 99.5 percent, then k = c

29

in this example is an appropriate number of relatvie positions for these data set.

Therefore, the appropriate number of relative positions are the number of those

that can extract enough features of prefix sequences covering mostly information

of data set and having the least complexity. Because of increasing the number

of relative positions, the number of features are also increased. The size of input

pattern matrix is very large and complex. Consequently, there are four neural

networks for all nucleotides, A, C, G, and T , in the recognition process.

Table 4.2: The feature vectors of the training patterns in Table 4.1.

Target Position Input representation

A 48 1
7

1
1

0
1
3

1
3

0
1
4

1
1

0
1
1

1
1

0

G 51 1
3

1
7

1
1

1
1

1
5

1
3

1
7

1
1

0
1
2

1
2

1
1

T 54 1
6

1
7

1
1

1
4

1
5

1
3

1
1

1
1

1
8

1
3

1
2

1
2

C 55 1
7

1
7

1
1

1
1

1
4

1
5

1
2

1
1

1
8

1
4

1
2

1
2

4.3.2 Partitioning Training Feature Vectors

In Chapter 3, we introduced the problem of training large set of input vectors

(known as feature vectors) by a neural network. For fast trainging time [22, 23],

30

Figure 4.1: Suppose feature vectors have three dimensions and the third feature

in Z-axis is the key feature. Therefore, all feature vectors are partitioned into

three groups denoted by three blocks. Each group of feature vectors is trained by

an individual neural network.

the data sets must be partitioned into several smaller data sets and trained with

one individual network in parallel. In this section, we considered the feature

vectors as the input vectors for neural networks. Each feature vector discussed in

the previous section can be viewed as a vector in q dimensions. Thus, the value of

each feature xi is the location in the ith dimension. Consider the example shown

in Figure 4.1. Here, all feature vectors are in a 3-dimensional space comprising

of three basic axes, X-axis, Y -axis, and Z-axis. Suppose that Z-axis is the key

dimension. All feature vectors are, then, partitioned into three groups based on

the values in this dimension. Each partitioned group in Figure 4.1 is denoted by

a block sliced along the Z-axis and is separately trained by an individual neural

network. The partitioning process consists of the following main steps.

31

Step1: Partitioning Feature Vectors By Feature Intervals

Consider all the values of all q features of each feature vector. They must lie

in any ranges. Their ranges can be divided into sub-intervals of equal width.

Suppose all values lie in range [a, b] and they are divided into n intervals. So the

width of each interval is d = (b − a)/n. The n intervals are [a, a + d), [a + d, a +

2d), ..., [a+(i−1)d, a+ id), ..., and [a+(n−1)d, a+nd = b]. We define the interval

[a+(i−1)d, a+ id] as the i-th interval. An interval having the maximum number

of feature values is called an important interval, iimp. For example, consider the

patterns shown in Figure 4.2. There are 12 patterns. Each pattern has four

features. The important interval is [2, 3) because it contains 14 feature values

which is maximum. Let Nvalue(i) be the number of feature values lying in the i-th

interval, [a + (i − 1)d, a + id), the important interval is set to

iimp =argmaxi{Nvalue(i)},

where i = 1, 2, ..., n.

Step2: Selecting Key Feature

The key feature (fkey) of each training set is a marker for partitioning the feature

vectors into many groups. Considering an important interval, iimp, we can count

the number of feature vectors whose feature values of each feature column lay in

the iimp-th interval (see Figure 4.2 for an example). Then, the feature column

with the minimum number of feature vectors is selected as the key feature, fkey.

Suppose Npattern(i, k) is the numbers of feature vectors whose feature values of the

k-th column lay in the i-th interval. Therefore, the key feature is defined as

fkey =argmink {Npattern(iimp, k)},

32

Figure 4.2: An example of how input vectors (or feature vectors) are partitioned.

There are 12 feature vectors whose feature values lay in the range [0, 5]. These

feature values are divided into five (n = 5) intervals. The width of each interval

is set to d = 5−0
5

= 1. Step 1 shows the number of values, Nvalue(i), lying in

the i-th interval. The important interval is the third interval because most of the

values lie in it. Step 2 shows the number of feature vectors, Npattern(3, k), having

their feature values lying in the third interval, which is the important interval.

The second feature was used as the key feature to divide all feature vectors. Step

3 shows three groups of feature vectors after partitioning. For this example, the

number of networks is set to 3. Each groups must contains less than or equal

to avg = 12
3

= 4 patterns. Thus, the last group contains the patterns in the

remaining intervals

33

where k = 1, 2, ..., q. This fkey is the index of the fkey-th feature of all feature

vectors. The fkey for the example in Figure 4.2 is the second feature since there

are only two feature values lying in the important interval [2, 3).

Step3: Partitioning Feature Vectors By Key Feature

The average number of feature vectors to be partitioned in each group is computed

by this fraction.

avg = Total numbers of feature vectors
Number of networks

The number of networks must be set prior to partitioning process. This number

indicates how many neural networks are required to be trained in parallel fashion

and also indicates how many blocks of partitioned data are supplied to these

networks. It is necessary to set the average number small enough to possibly

train the network. The recommended average number is approximated to 2,000-

3,000 patterns. The value of avg is just a guideline for partitioning feature vectors

into blocks. The size of some groups may be less or greater than the value of avg.

After knowing all Nvalue(i), for 1 ≤ i ≤ n, and the fkey, the number of feature

values in the interval corresponding to the value of each Nvalue(i) of the fkey-th

feature column is counted. The feature vectors are gradually partitioned in groups

by using the number of feature values of fkey feature column and the value of avg.

From the example in Figure 4.2, there are 12 feature vectors and four features.

Suppose the number of networks is set to 3. Therefore, the value of avg must be

equal to 12/3 or 4. The important interval is [2, 3) and fkey is set to 2, which is

the second feature column. In the second feature column, the number of feature

values in each interval is: [0, 1) has three feature values; [1, 2) has two feature

34

Figure 4.3: An example of how to recursively apply the partitioning concept. Each

block denotes a group of feature vectors. (a) The original given feature vectors

to be partitioned. (b) The given feature vectors in (a) are partitioned into four

groups. (c) Groups 2 and 3 in (b) are further partitioned into four subgroups.

values; [2, 3) has two feature values; [3, 4) has two feature values; [4, 5] has three

feature values. With these numbers, all feature vectors are partitioned as follows.

The first group contains all feature vectors whose second feature values are in

[0, 1). The second group contains all feature vectors whose second values are in

[1, 2) and [2, 3). The third group contains all feature vectors in [3, 4), and [4, 5].

However, if any group of feature vectors cannot achieve the desired speed then

the partitioning concept can be recursively applied to that group. Figure 4.3

shows an example of how to recursively partition the feature vectors. The given

feature vectors are in Figure 4.3(a). The first partition consisting of four groups

is shown in Figure 4.3(b). Suppose groups 2 and 3 cannot achieve the desired

speed. These two groups are further partitioned into four subgroups.

35

Figure 4.4: Network Architecture and the determination by thresholding the out-

puts from all networks and comparing them with the patterns in Table 4.3.

4.3.3 Network Architecture

The problem of resolving the actual symbol N is transformed to the problem of

recognizing all prefix patterns of symbol N corresponding to each actual symbol

in
∑

={A, T , C, G}. Therefore, our network architecture consists of four main

recognition networks for each symbol in
∑

. Each network composes of several

sub-networks for performing parallel training as discussed in the previous section.

The pattern recognition process is implemented by using many backpropagation

networks in place of sub-networks of each network type. There is one output

unit for two targets, as 1 refers to the feature vector can be recognized to be

this type of the recognition network and 0 cannot be recognized. Each actual

symbol is resolved by one recognition network with one-against-all recognition

36

Figure 4.5: Network Architecture and the determination by selecting maximum

output values.

scheme. The outputs from all recognition networks are simultaneously considered

to determine the final answer. Two possible determinations are implemented. The

first approach is by thresholding the output value of each recognition network to

0 or 1 (Figure 4.4). The outputs from four recognition networks are compared

with the four-digit binary patterns in Table 4.3 to resolve the symbol. The second

approach is to determine the final answer by selecting the maximum output value

(Figure 4.5).

37

Table 4.3: A table of possible output patterns and the resolved symbols.

Output Pattern from Each Network

Network G Network C Network T Network A Resolved Symbol

0 0 0 0 not applicable

0 0 0 1 A

0 0 1 0 T

0 0 1 1 W (A or T)

0 1 0 0 C

0 1 0 1 M (A or C)

0 1 1 0 Y (T or C)

0 1 1 1 H (A or C or T)

1 0 0 0 G

1 0 0 1 R (G or A)

1 0 1 0 K (G or T)

1 0 1 1 D (G or A or T)

1 1 0 0 S (G or C)

1 1 0 1 V (G or C or A)

1 1 1 0 B (G or T or C)

1 1 1 1 N (G or A or T or C)

CHAPTER 5

EXPERIMENTAL RESULTS

Implementing on the four E.coli genomes consisting of approximately 4-5 million

nucleotides for each strain from EMBL database of European Bioinformatics In-

stitute (EBI): E.coli strain CFT073, E.coli strain K12, E.coli strain O157 :

H7 EDL933, and E.coli strain O157 : H7 substrain RIMD 0509952 (Genome

accession: AE014075, U00096, AE005174, and BA000007, respectively), we se-

lected similar regions on the same position to create two data sets: training set

and testing set. By our assumption, neighboring regions can extract the relative

positions to resolve an ambiguous nucleotide in this region for all strains. For

example, we chose similar regions of about 30,000 nucleotides from each strain

and obtain 1.2 × 105 feature vectors with the number of relative position k = 6.

Approximately 60% of these 1.2 × 105 vectors are duplicated in the same class

and only 50,000 remaining feature vectors can be used as the data set to train

the neural network. Among these data set, 85% and 15% of them are considered

as training set and testing set, respectively. So the size of training sets for each

region is up to 30,000-40,000 patterns. The number of patterns is too large to be

trained by only one neural network. Hence, the training set must be distributed by

parallel training as discussed in Chapter 4. Therefore, there are two results show-

39

ing the performance of predicting of recognition network for resolving ambiguous

nucleotide and the performance of the parallel training work.

Figure 5.1 showed the relationship between the number of duplicated patterns

and the number of relative positions. When the number of relative positions (k)

increased, the duplicated patterns in the different class and the same class were

reduced while the unduplicated patterns (or remaining patterns for trainning) are

increased. The appropriate number of relative positions is equal to 6 (k = 6)

in this experiment because τ is set to 0.005 and the error ratio of the number of

duplicated vectors being in different classes to the number of remaining vectors (or

unduplicated vectors) is 0.004223. The complexity of data sets can be computed

by multiplying the number of remaining vectors (p) and the number of features

(q). The number of features, q, is derived from the number of relative positions of

four-type symbols and then equal to k×4. Although the error ratio is less than τ

when k is equal or greater than 6, there is the least complexity (p × q) at k = 6.

Table 5.1 shows the effect of varying the value of k. When the number of relative

positions increased, the number of features are also increased. Figure 5.2 shows

the relationship between the number of relative positions and the complexity of

unduplicated data set.

40

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
x 10

4

T
h

e
 n

u
m

b
e

r
o

f
p

a
tt

e
rn

s

The number of relative positions (k)

Duplicated vectors in the different class
Duplicated vectors in the same class
Unplicated vectors

Figure 5.1: The relationship between the number of duplicated patterns and the

number of relative positions.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5
x 10

6

The number of relative positions (k)

C
om

pl
ex

ity
 (p

xq
)

Figure 5.2: The relationship between the number of relative positions and the

complexity of unduplicated data set.

41

Table 5.1: The results of duplicating process of the original feature vectors vary

in the number of relative positions.

k q Duplicated patterns Unduplicated error complexity

in different classes patterns(p) ratio (p × q)

1 4 56993 7863 7.24826 31452

2 8 3297 44667 0.07381 357336

3 12 327 47487 0.00688 569844

4 16 291 48318 0.00602 773088

5 20 258 49062 0.00525 981240

6 24 210 49719 0.00422 1193256

7 28 198 50307 0.00393 1408596

8 32 180 50739 0.00354 1623648

9 36 153 51132 0.00299 1840752

10 40 117 51531 0.0022 2061240

5.1 Performance of each Recognition Network

The performance of each recognition network corresponding to each actual

symbol A, T , C, or G can be measured in terms of sensitivity (SN) and specificity

(SP) [?] derived from true positive (TP)1, true negative (TN)2, false positive

(FP)3, and false negative (FN)4 in equation (5.1). All recognition networks

1TP equals the total number of correctly identified patterns.
2TN equals the total number of correctly unidentified patterns.
3FP equals the total number of incorrectly identified patterns.
4FN equals the total number of incorrectly unidentified patterns.

42

constructed by any similar regions in our experiment have the performance mea-

surement in average range shown in Table 5.1. The sensitivity is the percentage of

total correct patterns while the specificity is 1 - the percentage of total incorrect

patterns.

SN =
TP

TP + FN
, SP =

TP

TP + FP
(5.1)

Table 5.2: The performance of each classication network on four sample regions.

Network A Network T Network C Network G

SN SP SN SP SN SP SN SP

region 1 0.9444 0.8368 0.9433 0.8266 0.9332 0.8405 0.9157 0.7668

region 2 0.9227 0.8122 0.9530 0.8328 0.9631 0.8809 0.9273 0.8762

region 3 0.9500 0.8261 0.9432 0.8384 0.9532 0.8711 0.9503 0.8582

region 4 0.9412 0.8215 0.9368 0.8407 0.8951 0.7884 0.9268 0.8006

average 0.9396 0.8242 0.9441 0.8346 0.9361 0.8452 0.9300 0.8255

5.2 The Results of Resolving Method

There are two possible determinations of the outputs from all recognition net-

works. The first approach is by thresholding the output value of each network to

0 or 1 and comparing with the four-digit binary patterns in Table 4.3 to resolve the

symbol. The second approach is to determine the final answer by the maximum

output value. Experimenting on four Eachericia coli genomes, the correctness is

up to 83.96% by the first approach shown in Table 5.4 and 93.34% by the second

43

approach shown in Table 5.5. The number of testing pattern is to 1000 from each

nucleotide.

Table 5.3: Experimental results using the conclusion in Table 4.3.

Resolved Symbol Target A Target T Target C Target G

not applicable 121 114 60 23

A 825 7 0 1

T 8 794 2 0

W 19 20 0 0

C 1 10 849 1

M 14 2 35 0

Y 1 28 39 0

H 2 3 3 0

G 2 5 1 907

R 4 1 0 19

K 0 11 0 26

D 2 1 0 0

S 0 4 9 22

V 0 0 0 0

B 1 0 2 1

N 0 0 0 0

correctness(%) 82.45 79.40 84.93 90.68

average correctness (%) 83.96

44

Table 5.4: Experimental results using the maximum output value.

Resolved Symbol Target A Target T Target C Target G

A 905 32 20 6

T 41 984 21 2

C 26 44 956 4

G 27 31 2 987

correctness(%) 90.49 89.35 95.61 98.71

average correctness (%) 93.34

5.3 The Results of Query Sequences

To test whether the trained network can be used to resolve symbol N in the other

regions, a new testing set containing nucleotide string S of length 45 nucleotides

with format (A + T + C + G)nN , where n > 0 is an integer is created. The

number 45 is not a magic number but it is the maximum relative position in the

experimental DNA sequence. This length may create a problem of some missing

relative positions. Given a number of relative positions k, it is possible that the

number of relative positions of some nucleotide symbols may be less than k. The

corresponding feature vector cannot be completely formed. For this situation, any

missing relative position is, then, set to the large value. So its inversely relative

position is closed to 0. For instance, consider this given query nucleotide sequence.

symbols: C A T T T C T C A C G C T T G T N

position: 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

45

Suppose k is equal to 3. Nucleotide A has only two relative positions, rN1,A9

and rA9,A16. Thus, the last relative position for nucleotide A is missing and its

inversely relative position is set to 0. Similarly, nucleotide G also has two relative

positions, rN1,G3 and rG3,G7. The third inversely relative position of G is set to

0. The feature vector of this given nucleotide sequence is as follows. The testing

results are shown in Tables 5.5 and 5.6.

A T C G

vS = 1
8

1
7

0 1
1

1
2

1
1

1
5

1
2

1
2

1
2

1
4

0

= 0.125 0.1429 0 1.0 0.5 1.0 0.2 0.5 0.5 0.5 0.25 0

Considering the two determinations of output values from four recognition

networks, the second approach of using maximum output value is able to deter-

mine the final answer better than the first approach of using four-digit binary

decision in that both the testing set in the similar area and the query testing set.

Therefore, the recognition networks are efficient to produce the output value as

probability to predict an ambiguous nucleotide symbol. The modification of the

relative position with mutation matrix in Chapter 4 and using the second approach

were constructed as a recogtion network with mutation changes. For 4,000 query

samples, the result of predicting an ambiguous symbol compared with Sampled

Pattern Matching(SPM) is shown in Table 5.8.

46

Table 5.5: Experimental results using the patterns in Table 4.3 of query sequence

Resolved Symbol Target A Target T Target C Target G

not applicable 135 73 69 49

A 708 21 21 17

T 18 733 17 19

W 29 47 4 4

C 17 32 756 18

M 19 6 58 8

Y 8 40 17 4

H 4 3 3 6

G 10 18 21 734

R 25 1 5 70

K 9 8 1 17

D 1 4 0 6

S 4 3 17 35

V 8 8 4 6

B 5 3 3 7

N 0 1 3 1

correctness(%) 70.79 73.28 75.63 73.40

average correctness (%) 73.26

47

Table 5.6: Experimental results using the maximum output value of query se-

quences

Resolved Symbol Target A Target T Target C Target G

A 823 52 57 60

T 61 835 50 50

C 65 67 846 49

G 51 45 46 841

correctness(%) 82.34 83.47 84.64 84.12

average correctness (%) 83.63

Table 5.7: Experimental results of recognition network comparing with Sampled

Pattern Matching(SPM) for 4,000 samples

SPM Recoginition Networks

predictable patterns 1295 3454

correctness 32.37% 86.54%

5.4 Performance of Parallel Technique

The performance of the proposed technique was compared in terms of CPU-time

and average CPU-time for all nodes in the neural network defined in Chapter 3.

The average time for each node in a neural network is the smallest part of the

calculation in the neural network. All simulations of sub-networks for each net-

work type A, T , C, or G were carried out on Intel Pentium4 1.50GHz with 256MB

RAM PC, using the SNNS 4.2, Stuttgart Neural Network Simulator which is pub-

licly available at http://www-ra.informatik.uni-tuebingen.de/SNNS/, on Linux

48

operating system. By distributing the data to construct the sub-networks and

concurrently training them, an ambiguous nucleotide problem can be rapidly re-

solved. The performance of this technique is shown in Table 5.8 and Figure 5.3

for 20,000 sample feature vectors.

In parallel theory, the good speedup(S) should be equal to the number of

processors, Num, and the efficiency(E) of processor, speedup
Num

, should be equal to 1.

But our algorithm can reduce the training time more than the increasing of the

number of processors. Therefore, the speedup can be more than the number of

processors and the efficiency of each processor can be higher.

Table 5.8: The performance results of this parallel technique.

Num I/Net CPU Time Epoch N/Net AT/N AE/N S E

1 20000 157179.99 50000* 175 898.1714 0.018 1 1

2 10000 50528.01 50000* 125 404.2241 0.0081 2.22 1.11

4 5000 3256.14 8736 96 33.9181 0.0039 4.63 1.16

6 3334 535.36 2730 82 6.5288 0.0024 7.51 1.25

8 2500 344.1 2600 76 4.5276 0.0017 10.31 1.29

10 2000 174.31 1864 70 2.4901 0.0013 13.45 1.34

12 1667 113.87 1599 66 1.7253 0.0011 16.64 1.38

*Not Acceptable N/Net : Nodes per network S: Speedup

Num : Number of networks AT/N: Average time per node E: Efficiency

I/Net : Input patterns per network AE/N: Average time a epoch per node

49

0 2 4 6 8 10 12
0

5

10

15

20

Number of Netwoks

Sp
ee

du
p

Theory
Parallel

0 2 4 6 8 10 12
0.5

1

1.5

2

2.5

Number of Networks

Ef
fic

ie
nc

y

Theory
Parallel

(a) (b)

Figure 5.3: (a) Relationship between the speedup and the number of networks.

(b) Relationship between the efficiency and the number of networks.

CHAPTER 6

CONCLUSION

Two new concepts for resolving the ambiguous nucleotide denoted by symbol N

and speeding up the recognition process by parallel training are proposed. The

nucleotide resolving algorithm can achieve an impressive average accuracy and the

parallel training can increase the speed of training time more than the number

of processors. The speedup obtained was super linear since training the whole

data set by a single neural networks take a non-applicable time which can be

considered as an infinite time. But when the data set are partitioned and trained

by each individual network, the convergence can be acheived in a short period.

The partitioning technique managing on data sets can be applied to other models

of artificial neural networks to reduce computational time.

The approach to resolve the ambiguous symbol N in a DNA sequence based

on relative positions, recognition, and classification concepts is implemented by

using this parallel technique. The feature vector formed by concatenating the

inversely relative positions used as the feature of the sequence during the learning

and recognizing processes by a neural network. The output of each recognition

networks is similar to emission probability weighted by the relative positions;

therefore, the outputs from all recognition networks are simultaneously considered

51

to determine the final answer.

Experimenting on four Eachericia coli genomes, the results of both possible

determinations are better than the expected results of SPM. The first approach

is by thresholding the output value of each network to 0 or 1 and comparing with

the four-digit binary patterns to resolve the symbol. The second approach is to

determine the final answer with maximum output value. The results of using

maximum output value are able to determine the ambiguous symbol better than

the results of using the four-digit binary decision in both the testing set in the

similar area and the query testing set.

For further study, this prediction approach will be extended to cover other

species to verify the efficiency of the recognition network and extend to predict

more than one ambiguous nucleotide.

REFERENCES

[1] M. Pop and D. Kosack. Using the TIGR Assembler in shotgun-sequencing
projects, Bacterial Artificial Chromosomes, Humana Press 1 (2004): 279-
294.

[2] M. Pop, S. L. Salzberg and M. Shumway. Genome Sequence Assembly: Algo-
rithms and Issues, IEEE Computer (2002): 47-54.

[3] M.K. Golberg, D.T. Lim and M.Magdon-Ismail. A Learning Al-
gorithm for String Assembly, in Workshop on Data Mining in
Bioinformatics with SIGKDD01 Conference: 32-37.

[4] P. Gajer, M. Schatz and S.L. Salzberg. Automated correction of genome se-
quence errors, Nucleic Acids Research (2004): 562-569.

[5] J. Blazewicz, P. Formanowicz, F. Guinand and M. Kasprzak. A heuristic
managing errors for DNA sequencing, Bioinformatics Applications note 18
(2002): 652-660.

[6] Amplicon express. DNA Sequencing Troubleshooting, Available from:
http://www.genomex.com/AEX zone/troubleshooting.html.

[7] G. P. Moss. International Union of Pure and Applied. Chemistry, Available
from: http://www.chem.qmul.ac.uk/iupac/.

[8] Christine Orengo, David Jones, and Janet Thornton.
Bioinformatics: genes, proteins and cumputers. BIOS Scientific Pub-
lishers Limited, 2003.

[9] Masatoshi Nei and Sudhir Kumar. Molecular Evolution and Phylogenetics.
(n.p): Oxford University Press, (2000).

[10] Peter F. Arndt, Christopher B. Burge, and Terene Hwa.
DNA Sequence Evolution with Neighbor-Dependent Mutation.
Journal of Computational Biology 10, 3-4 (2003): 313-322.

[11] Matthew J. Gonzales, Jonathan M. Dugan and Robert W. Shafer.
Synonymous-non-synonymous mutation rates between sequences contain-
ing ambiguous nucleotides(Syn-SCAN), Bioinformatics Applications note
18 (2002): 886-887.

[12] Hong Wan, Lugang Li, John C. Wootton. Discovering Simple re-
gions in Biological Sequences Associated with Scoring Schemes.
Journal of Computational Biology 10, 2 (2003): 171-185.

[13] Rumelhart. D. E. and McCelelland, J. L. (eds). Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition, MIT Press 1.

53

[14] Cathy H. Wu, Georgr M. Whitson, Chun-Tse Hsiao and Cheng-Fu
Huang. Classification Artificial Neural Systems for Genome Research,
Conference on High Performance Networking and Computing Proceedings
ACM/IEEE conference on Supercomputing (1992): 797-803.

[15] Maxam AM and Gilbert W. A new method for sequencing DNA.
Proceeding Natural Academic Science 74, 2 (Februrary 1977): 560-564.

[16] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating
inhibitors, Proceeding Natural Academic Science 74, 12 (December 1977):
5463-5467.

[17] Sun Kim. A Survey of Computational Techniques for Genome Sequenc-
ing, Center for Genomics and Bioinformatics. Indiana University, Bloom-
ington, (2002).

[18] Rutgers. Sequencing and Amplifying DNA, Available from Molecular
Biology and Biochemistry.

[19] Tao Jiang, Ming Li. DNA Sequencing and String Learning.
Mathematical Systems Theory 29, 4 (1996): 387-405.

[20] I. Apostol, P. Jacquet, and W. Szpankowski. How Pre-
dictable Are Biological Sequences?, European Conference on
Computational Biology (ECCB2003) (September 2003).

[21] I. Apostol, P. Jacquet, and W. Szpankowski. Universal Predictor Based on
Pattern Matching, IEEE Trans. Information Theory 48 (2002): 1462-1472.

[22] D. Cornforth, and D. Newth. The Kernel Addition Training Al-
gorithm: Faster Training for CMAC Based Neural Networks,
Proceedings Conference Artificial Neural Networks and Expert Systems.
Otago, (2001).

[23] A. Roy, S. Govil and R. Miranda. A Neural-Network Learning Theory and a

Polynomial Time RBF Algorithm, IEEE Transactions on Neural Networks

8, 6 (1997): 1301-1313.

VITAE

Kitiporn Plaimas was born in October 26, 1980, in Bangkok. She has been on a

DPST scholarship from the Institute for the Promotion of Teaching Science and

Technology (IPST) since 1998. She received Bachelor’s degree in Mathematics

from the Faculty of Science, Mahidol University in 2001.

PUBLICATION

- K. Plaimas, C. Lursinsap, and A. Suratanee, “High Performance of Artificial Neural

Network of Resolving Ambiguous Nucleotide Problem”, the 19th IEEE International

Parallel and Distributed Processing Symposium (IPDPS-2005), April 4-8, 2005, Denver,

Colorado, USA.

- K. Plaimas, C. Lursinsap, and A. Suratanee, Partitioning Data Set for Training Neural

Network in Parallel to Resolve Ambiguous Nucleotide Problem, NECSEC2005, March

31-April 1, 2005, Khon Kaen, Thailand.

- K. Plaimas, C. Lursinsap, and A. Suratanee, Resolving Ambiguous Nucleotide Symbols

Associated with Scoring Scheme of Mutation Rates, the 9th Annual National Sympo-

sium on Computational Science & Engineering (ANSCSE9), March 23-25, 2005, Mahi-

dol University, Bangkok, Thailand.

- K. Plaimas, C. Lursinsap, and A. Suratanee, “Resolving Ambiguous Nucleotide Sym-

bols Using Weighted Relative Position Recognition”, ThCSC2004, December 16-17,

2004, Kasetsart University, Bangkok, Thailand.

- K. Plaimas and C. Lursinsap, “Resolving Ambiguous Nucleotide Symbol from DNA

Sequences”, International Conference on Bioinformatics 2004 (InCob2004), September

5-8, 2004, Auckland, New Zealand.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	1.1 The Problem Identification
	1.2 The Objective and Scope
	1.3 The Outline of the Thesis

	Chapter 2 Background knowledges
	2.1 DNA Structure and DNA Sequences
	2.2 Mutational Changes of DNA Sequences
	2.3 An Overview of Artificial Neural Networks
	2.4 Backpropagation Neural Network

	Chapter 3 Literature reviews
	3.1 The Review of Literature Related to DNA Sequencing Problems
	3.2 The Review of Literature Related to SPM Predictor Derived from Information Theory

	Chapter 4 A proposed technique for predicting ambiguous nucleotide symbol
	4.1 Problem Formulation
	4.2 Relative Positions
	4.3 Recognition Process

	Chapter 5 Experimental results
	5.1 Performance of each Recognition Network
	5.2 The Results of Resolving Method
	5.3 The Results of Query Sequences
	5.4 Performance of Parallel Technique

	Chapter 6 Conclusion
	References
	Vita

