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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

1.1 Introduction

-

In 1992, for the purposc.of studying Markov processes via copulas, Darsow,
Nguyen and Olsen introduiced a bilinéar operation on the set of (2-dimensional)

copulas known as the sproduct. “Theré are many more following researches on

- =t

the s-product, e.g., invertible copulas ":hwith respect to the x-product, the joint

continuity of the s-produet with I.respe(';_t',xto‘. various norms on the linear span of
i . '3
the set of copulas, some generalizations, eter.In this thesis, we focus on two aspects
et il
of the x-product: finding a “compatible” norm and studying a generalization.

oy ey,
g

In their paper, Darsow et al. showed that a copula of two random variables,

which are conditioﬁ'a‘ﬂy independent given a third randoin variable, can be decom-
posed as a product of two copulas related to the three Fandom variables. To be pre-
cise, if X and(¥’ dre| coniditionally’ indépendét given' /i then Cxy = Cx 2z *Cyzy,
where Cxy dénotes a copula of the random vector (X,Y). We study a special
case ofythe previouswresnlt where we transtori (the random ~wariables X, Y. We
obtain that if f and ¢ are Borel measurable transformations of random variables
X, Y, respectively, then Cyx)gv) = Crx)x * Cxy * Cygy). In particular, if f
and g are Borel measurable bijective transformations, Darsow et al. showed that
copulas C(x) x and Cy 4y are invertible with respect to the *-product. To study
Cr(x),9(v), we then study a more general form of the decomposition which we call

shuffling maps on the linear span of the set of copulas: A — U x A %V where



U,V are invertible. We discovered that, restricted to the set of copulas, shuffling
maps preserve stochastic properties of copulas, i.e., they preserve independence,
complete dependence and mutual complete dependence. In other words, the trans-
formed random variables f(X) and g(Y) are independent, completely dependent
or mutually completely dependent if and only if random variables X and Y are
independent, completely dependent or maitually completely dependent, respec-
tively. In the sense of this previous r_e}sult, wé Can say that a suitable measure of

dependence should thenbe invariant under bijeetive transformations. In order to

obtain such a measuré ot dependence“;l we constructed a norm called the #-norm

via [|All, = sup U A =V || where Inv € denotes the set of invertible copulas
€lnv e =
and || - || denotes the Sobolegv norny for copulas. We obtain that shuffling maps
. )

are isometies with respectito the LOTHL "iThen we construct the measure w, of two
continuous random variables to bethe no_v’mahzed *-distance between the product

copulas and the copula correspondmo to—ﬁhe two random variables.

a

For the second half of the thesis, we study a generalization of the *-product

known as C—produc-t? But to emphasize the link with the x-product, we will call it
xc product. This generalization arose from a researe¢h by Durante, Klement and
Quesada-Molina eny gempatibility of, eopulas and, characterizing Fréchet classes.
For a family ofjcopulas C = {C}}cjo,1), the *c product of copulas A and B is
given by

(A+c B)(z,y) = / Cu(DrA(r,1), 0, B(t, ) dt.

However, it is questionable whether the product is well-defined because of the
measurability of the integrand. In this part of our thesis, we restrict our attention
to some reasonably large classes of families of copulas. Then, for each family C in
those classes, we show that the *c product is well-defined. Then, we derive some

properties of the re-defined *c product.



1.2 Preliminaries

In this section, we recall necessary definitions and properties involving our
work. Here, we give a definition of bivariate copulas, or 2-copulas. We also give
a definition of trivariate copulas, or 3-copulas, as we will encounter them later in

a definition of classes of compati las. Though, we are only interested in

properties of 2-copulas. an be found in the classic book

[7] by Nelsen.

Definition 1.1. A \vh\‘ function C': [0,1]*> — [0, 1]

satisfying the conditi

1. C(u,0) =C(0,v)

3. C'is 2-increasing, i.e., fo ~al [u1,v9] C [0, 1], we have

rm—:.’m;:;m:;-

N Y] 1,01)

> 0.

ae

Definition 1.2. A Qopula is a function C: 0,1 ﬂ 0, 1] satisfying the condi-

@,ud"mw%’wmm

1. C’(u,v,O =C(u,0,w) = 0 fex.all u,v,w €
WANTNIIAINERY
2. Clu,1,1) =u, C(1,v,1) =v and C(1,1,w) = w for all u,v,w € [0

3. C'is 3-increasing, i.e., for all [uy, us] X [v1,vs] X [wy, ws] € [0,1]3, we have

C(u27v27w2) - C(u17v27w2) - C(u2av17w2) - C(UZ: '1)2,'11)1)+

C(ug, vy, wq) + C(ug, vo, wy) + Clug, vy, wy) — C(uy, vy, wy) > 0.



According to Sklar’s theorem (see, e.g., [7]), for any random vector (X,Y),
there exists a copula C' which links the joint distribution to its marginals as

follows:
ny(u, ’U) = C(Fx(u), Fy('l)))

If X and Y are continuous random

,iables then the copula C' is unique. We

/&1 Vector

We denote the set of E la is Lipschitz continuous with

write Cx y to represent a c

Lipschitz constant 1, M i artial d r1 ves exist almost everywhere
and are bounded, where ) anc Moreover, each copula induces
a measure on the Bore [ENmE ‘ \

Definition 1.3. Give 2 defing tion pc on the set of rectangles

[1, %] X [y1, 2] € [0,1]

po([z1, v2] X [y1,ya]) = — C(21,12) + C(x1,91) > 0.

)

Then, by standard measuse-theoric-technigues: Py extended to a measure

on the Borel a—algebj on (0,1 s d@bly stochastic in the sense

that pc(B x [0,1]) = pue(J0, 1] x B) = A(B) for every Borel set B C [0, 1] where A

donotes Lebeﬂ ‘H&LQ 0 g Wﬁlﬁéﬂrﬁl imb{ bighred to as C-measure,

C-volume or mass of copula C. ¢

ARIANAINUNIINYIRY

Definition 1.4. The support of a copula C, denoted by supp C, is defined to be

the complement of the union of all open subsets of [0, 1]> with zero C-volume.

The support of a copula C' together with C-volume can be used to compute
values of the copula at some, if not all, points (z,y) € [0,1]?>. We demonstrate

such technique in the following example.



Example 1.5. Let C be a copula with its support shown in the figure below.

For any point (z | denote the rectangle whose

vertices are (0, o), ( B denote the rectangle whose
vertices are (0,0), (0, c(A) = 0 since it does not
intersect the support of

(z0,1) —C(20,0)—C(0,1) +

C(0,0) = zo. Then, uc(B) i AU B 4) = x¢. Hence,

C(xo, ) ., (0,0) = Xy.

]

Notice that the valtosio ight area can be computed

n 0
similarly. '

Tmm ‘IAHQ NN T IV s scting v
and lower bounds and the product co Thesformulae are &iven, respectively,
. ARIAAN S IR

M (u,v) = min(u, v),
W(u,v) = max(u + v — 1,0),
I(u,v) = uv.

These copulas represent comonotonicity, countermonotonicity and independence,

respectively, between the two random variables.



Example 1.6. It can be shown that supp M is the main diagonal from (0,0) to

(1,1), supp W is the other diagonal and II has full support, i.e., supp Il = [0, 1]%.

In their study of Markov processes, Darsow, Nguyen and Olsen [1, p. 604]

introduced a binary operation x: € x € — € defined by

where 0; denotes the @
operation is bilinear M f
naturally extended toa'bi ‘
From straightforw, ' ¢, we have the following
identities: M x C' = C' i a ' [ = II. Therefore, copulas M

and II can be viewed as ident an | , %), respectively. Moreover,

denoted by C7, the trans of €, defined by C* (u, v) = C(v, u) is also a copula.
In addition, a copula B is sm@q? el iblgif there exists a copula C such that

BxC=CxB=M —c veitible } lays an important role in this

thesis and is denotedﬁy

Remark 1.7 ﬁ @sﬁ ﬁqﬁﬂa C € € are unique
and given by@ﬁnsposed copﬂt or a proof, see |1, Theorem 7.1])
sip R GNTYe m TGt T

attracts our interest because it is easy to compute. Moreover, Santiwipanont and
Sumetkijakan [9] showed that the set of shuffles of M is dense in Inv € with respect
to the Sobolev norm for copulas. A definition of a shuffle of M is given below.

For more details on shuffles of M, see, e.g., [5, 9].



Definition 1.8. A copula C'is a shuffle of M if and only if there exist a positive
integer n, partitions 0 = s9p < 51 < - < s, =land 0 =13 < t; < --- <
tn, = 1 of [0,1], and a permutation o on the set {1,2,...,n} such that each
(8i—1,5i) X (to@i)—1, Loi)) is a square of C-volume s; — s,_; and its intersection with

the support of C' is one of the diagonals of the square. In this thesis, we call it a

shuffle of M of n stripes.

Figure 1.2: the'support-of a ¢

T T

where 0 = (1 3 2)

Example 1.9. TI 5":"‘“3“""'—"-"7' ———— - denoted by S,, is defined
to be the shuffle of l\ﬁup orte ght Tine ining the points (0, a) and

(1 — ,1) and the straight,line joining the points (1 — a,0) and (1, «).

ﬂ‘NEI’J‘VlEJ'VI?WEI’]ﬂ?
ARI1ANNT

Figure 1.3: the support of the straight shuffle of M at a € [0, 1]



Durante, Sarkoci and Sempi [5] generalized the idea of shuffles of M to shuffles
of any copula. The definition of shuffles of copulas is measure theoric. Fortunately,
Santiwipanont et al. [9] gave a useful characterization of shuffles of copulas: a
shuffle of copula C' is the x-product of the copula C' with a shuffle of M on the
left. They also introduce generalized shuffies of copulas: the x-product of a copula
with an invertible copula on the left: Thig'idea can be extended further, i.e., the
x-product of a copula with two inverti_ljale coptilas, one on the left and the other on
the right, which we call dwo=sided generalized shuffies of copulas. For more details
on shuffles of copulas;'sec |5. 9]. IIJ.

Example 1.10 (][9], ps'14). Ect S+ be ?élhe straight shuffle of M at « € [0, 1] as

in Example 1.9. Then J
C(U—Flj—a,v');-'.,—'C'(l—a,v) if 0<u<a<l

(S * C)(u,v) = Ly
F— g1 oz,v)ig,(u —a,v) if 0<a<u<l.

Observe that the mass of Co'ijla‘C is Shﬁ%ﬁéﬂ_éccordinl_g to the shuffling of S. We

generalize this obsélj:\}ation in the following remark.

Remark 1.11. Let’s remark that a shuffle of copula C, which can be written as
S % C where §5)is"a shuffle lof W 'is ‘imdéed ‘the shuffling|of<the mass of copula C'
according to the shuffling of S. In particular, the support of C' is also shuffled
accordinglys Thistact can be shown by ¢onsidering a set of generators of the set
of shuffles of M, which is the set of all shuffles of M of three stripes where the
first is fixed while the second and the third are swapped such that the swapped
second stripe is straight, i.e., the support in that stripe has slope one. An explicit
formula for S« C', where S is an element from this generating set, can be tediously

computed and, from which, the shuffling of the mass can be seen.



if 0<u<ao

Fa—pv) if a<u<p

AUt Ingniens
LML RTPID ) b
C(u,v) if 0<u<a<l

(Sa,pxC)(u,v) = ¢ Cla,v)+Clu+1—=5,0)—Cl+a—pBv) if a<u<p

Cluta—-pBv)+v—-C(l+a—p,0) if f<u<l.

Remark 1.11 is very useful when we want to determine the support of a shuffle

of a copula. We will use this technique in Example 2.16.
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We are also interested in a generalization of the x-product. The motivation
behind this generalization comes from a research on compatibility of copulas.
Copulas (1o, C3 and Css are said to be compatible if there exists a trivariate

copula C such that

Given copulas A an the set of all copulas that are

compatible with A and ot és, Durante et al. [3] intro-

duced a binary operatic o Jetefiried) ot each fz ly of copulas C = {C;}+ep0.1],

 OuB(t,v)) dt.

They called this operation G-product, but is. thesis, we will call it xc product.

But it is questionahlé _:"‘; easurable for all families

0 thiﬁn Chapter 3.

e A L1 ALL N
AMIANTAUR IV

(B xc W)(u,v) = u— B(u,1 —v),

of copulas. We will %e a deta

(W x¢c B)(u,v) =v — B(1 —u,v).

Now, we move on to the next definition. In this thesis, we are interested in

the modified Sobolev norm introduced by Siburg and Stoimenov [11].
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Definition 1.13. For any A € span €, define a norm of A by

= ([ [ 0t + @) iy "

With a slight abuse of notation, the restriction of || - || to € is called the Sobolev

norm for copulas.

The following are some us yﬂ/)f the *-product and the norm (see,
e.g., [1, 11, 12])

Proposition 1.14. .\ Then the following statements hold.

N

1. Ax(BxC) =

2. (BxO)Y'=C

3. CTI =lCl.

4 lC =12 = [C)* =

5. 1IC) = 1 if dudhdnly

6. The x-product join y continuous u especmfo the norm.

e G TR HTHBART o

pletely dependent on Y if there exists a Borel measurable transformation h such
that ﬂﬁ%ﬂﬁﬂg&%ﬁ%ﬁ%ﬂl@lﬂo be mutually
completgly dependent if X is completely dependent on Y and Y is completely
dependent on X, i.e., there exists a Borel measurable bijective transformation h

such that Y = h(X) with probability one.

The following theorem gives some stochastic intepretations of the Sobolev

norm for copulas.
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Theorem 1.16 ([12], Theorem 4.3). Let X and Y be continuous random variables

with copula C. Then ||C|]? € [2/3,1]. Moreover, the following assertions hold:
1. |C)> =2/3 if and only if X and Y are independent.

2. |CI1? € (5/6,1] if X is completely dependent on'Y or'Y is completely de-

é completely dependent.

pendent on X.

3. |C|2=1if and o a

We end this secti eXDIOFN \o etween the x-product and the

v 4 i A \
Sobolev norm for copulass | ‘ \\\\

> observe the x-product of

arlie-Gumbel-Morgenstern (FGM)

—1,1]. Let Sy, be the straight

copula. Then it can be computed,

shuffle of M at 1/2, which }| I 'ﬁé"

though tediously, M -

||Sl/29|| =1|Cp —— C’9||r all 6 # 0.
Hence, a mapﬂ ulﬁ A‘j Wﬁw,{ Wﬁﬂ] ﬂgﬁeral, not an isometry

with respect télthe Sobolev norm for copulas

’QW'l@ﬁﬂ‘iflJ UNIINYAY



CHAPTER 11

A COMPATIBLE NORM

2.1 Shuffling m@

In this section, we i

E—
finition of a shuffling map on the set span €.

ﬁ

ible copulas. A shuffling map

Pyttt :
The motivation behind the- I g” comes from the fact that a shuf-

ffie of the copula, which was

fling image of a co pula i

introduced in Chapte: v )

Proposition 2.2 ([y,‘p 610). If Z and Y are coﬁtionally independent given
=9 L _
X v CoR GPHRNUNITNYINT
U

Proposition 2.3. Let h: R — R be Borel measurable. Thens for any random

i) 00 WYL O Vb d b ER L UE] e

Proof. Observe that h(X) € o(X), the o-algebra generated by X. Hence, by

properties of conditional expectations,

E(Inx)<al X)(w) - E(Iy<p| X)(w) = Inx)<a(w) - E(Iy<p|X)(w)

= E(Ih(x)ga . IY§b|X)(w)

for all w € 2. This completes the proof. O
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Corollary 2.4. Let f,g: R — R be Borel measurable functions. Then
Creox * Oxy * Cygr) = Crx)g(v)
for all random variables X,Y .

Proof. Since f and ¢ are Borel mea: ble, by Propositions 2.2 and 2.3, we have

and (2.1)

(2.2)

for all random variables des o (2.2), we obtain Cx 4v) =

CX,Y * Cy7g(y). Then, W,

— _—_ﬁ_,’, .

We are now readysto-derive-ste 6 5 uffling maps.
Y X

-

*l and U,V € Inv€. Then

the following ﬁﬁﬁﬁl% abl %Jw e1nN9

1. X and Y are independent ifiand only if Syv(Cxy) =

AMBSNTIIIINEGE, .. ..

2. Xiis completely depe or vice versa if and o

Lemma 2.5. Let XE’ be continuous random variab

complete dependence copula.

3. X and 'Y are mutually completely dependent if and only if Syv(Cxy) is a

mutual complete dependence copula.
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Proof. We only need to prove the implications as the converses automatically
follow because the inverse of a shuffling map is still a shuffling map.

1. The result is clear because the copula Cxy = II if and only if X,Y are
independent.

2. With out loss of generality, assume that Y is completely dependent on X.

Then there exists a Borel me y mation h such that Y = h(X) with
probability one. Consid ere exist Borel measurable bi-
jective transformatio V = Cy,4v). By Corollary

2.4, we have

Cr0.90r)
Thus, it suffices to s ﬁ)& : o dependent on f(X). From
Y = h(X) with probability e “g0) G M) = (90 ho f~)(F(X)) with
probability one. ' ' is Borel measurable. This is true

3. The proof is ﬁm 2

goho f~! are now Bc?el measurable biUtive transformations instead of Borel

e B REINUNTNEINT u
oﬁ] g.ix a 6 gfli g(Y pfgj(ﬂ ﬁawﬁ is a copula of

transformed random varia les r some Bore rable 1Ject1ve trans-

ceﬂ that the functions h and

formations f and g. Together with the above lemma, we obtain the following

theorem.
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Theorem 2.6. Let X and Y be continuous random variables. Let f and g be
any Borel measurable bijective transformations of the random variables X and Y,
respectively. Then X and Y are independent, completely dependent or mutually
completely dependent if and only if f(X) and g(Y) are independent, completely

dependent or mutually completely dependent, respectively.

of copulas. In the next s e @nt@n which, in some sense, also

. Mo ! . .
Our main purpos 3 Gt A which shuffling maps are

Definition 2.7. Denoted by ||

([ Span€—>[Q,‘Qo by

lev norm for copulas. Define a map

It can be easi ?]Fﬁﬂr an.C all || - ||« the *-norm.
Moreover, froﬂ:ﬂﬁllt on, 1t 18 clear that ﬂ ||ﬂ| ,ﬁ; all A € span¢.
Lomi® RGN AT NN AGE v -1

Szmzlarly, if IV =1, then |U|| =1 if and only if ||[U « V|| = 1.

Proof. 1t suffices to prove only the first statement as the second statement can be
proved similarly.

Let U,V € € be such that ||U|| = 1 and ||[U V|| = 1. Then U,V are invertible.
We know the set of shuffles of M is dense in Inv € with respect to the Sobolev

norm. Then, with respect to the Sobolev norm, there exist S,,7, shuffles of
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M such that S, — U and T,, — V. Hence, with respect to the Sobolev norm,
SpxT,, — U=V by the joint continuity of the *-product. But a product of shuffles
of M is still a shuffle of M, which is invertible. Hence, ||U * V|| = 1.

Let U and U %V be copulas of Sobolev norm 1. Since ||[U”]|| = ||U]| = 1, then,

by the previous result, we have ||[V|| =

|UT « (U* V)| =1. O

We move on to deriving propertie -norm. The following proposition

\

summarizes the results use @ properties of the measure of

Proposition 2.9.

\\"« the following statements

hold.
1. ||C|12 =2 if and o
2. |Cll. =14 |IC| =
3| =102 =

4. Transposition Wp

Prooj. 1. smﬂ@ﬂrg@wgﬁs/ﬁ' BRI i clear

IO M, then 1= O] <[]l < 1.

s ’Qo%’la@y\% AR A Y

U (C—-I)«V|?=UxC«V -H|P=[UxCxV|* -2

Y]
ctm the *-norm.

for all U,V € Inv €. The result follows by taking supremum over U,V € Inv € on

both sides.
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4. Let A € span€. We know ||UT|| = |U| for all U € €. In particular,

UT € Inv C if and only if U € Inv C. Hence,

ATl = sup [[Ux A"« V||

,Velnv

||VT x A UT||

]
Theorem 2.10. Shu with respect to the x-norm.
Proof. Let A € span¢ and B ﬁ;“ nv- en, for any U € €, ||[U * B|| =1 if
f < "J 2
and only if [|U]| = 1 by Lemma 2.8. In other words, U * B € Inv € if and only
if U € Inv€. Similarly. , : £ if and only if V' € Inv .
\" LY
Hence, Y P
1] , ]
|Bx AxClly, = sup |[(UxB)*xAx(Cx*V)|
qUITESHENT.,
UxByC*V €lnv €
AR IRIRINGIAD
= [|All.
]

Here, we give two examples: the first example suggests that the Sobolev norm
and the x-norm are distinct and the other gives a class of copulas on which the

Sobolev norm and the *-norm are equal.



19

Example 2.11. From the setup of Example 1.17, let Ay = Si/3 * Cp. Then, we
have Si/o * Ag = Sij2 * Si/2 ¥ Cg = Cy. Also from Example 1.17, we have that

|Ag]] < ||Cyl| for any 6 # 0. Then
[Aoll = (15172 * Aqll = [|Coll > [|46]l-

Hence, the two norms are distinc

Example 2.12. Consider the family v ums of an invertible copula and

||aA +(1—a) :

Hence, the s@%g{g VHRIIAT AR Gty o conv sus

of an 1nvert1ble copula and the preduct copula..

Remeck £45) R \ Al AANYADL v e

to the Sobolev norm for copulas, but that is not the case. If this were true, we
would have obtained that, for any A € span €, there exist U,V € Inv € such that
|All« = |JlU * A % V||. Consequently, we would have the converse of the second
statement in Proposition 2.9. However, this is false as a counterexample is given
in Example 2.16. Before that, let us discuss why Inv € is not compact with respect

to the Sobolev norm for copulas.
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Definition 2.14. For any k£ € N, p € [1,00] and Q C R", the Sobolev space
WHP(Q) is defined to be the set of all functions f € LP(Q) such that for every

multi-index a with |a| < k, the weak partial derivative Du € LP((2).

Proposition 2.15 ([2], pp. 426, 436). For any p € [1,00], let || - |1, be the

classical Sobolev norm defined on theiSobolev space W'P([0,1]%) and let | - |1, be

4. The topologz """""" hy |- 11, coincic for all p € [1, 00].

;ﬂlnv ¢ is not compact with

respect to anﬂ upﬂmse Wﬁ]ﬂﬁw{ﬂ ﬁaperty 4 of the same

proposition, wé can conclude that Inv ¢ is not compact with respect to any |- |1,

e G QAT U AN HFE oo oo

for copuqas. Furthermore, Inv € is complete with respect to the Sobolev norm for

|
From properties pand 3 of the above propositio

copulas because it is a closed subset of the set of copulas, which is complete (for a
proof see [2], Theorem 4.5). As a consequence, Inv € is not totally bounded with
respect to the Sobolev norm for copulas since it is a complete metric space which

is not compact.
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In the following example, we give a copula Cy € € such that ||Co|| # 1 but
|Col|l« = 1. To show that ||Cy||. = 1, we construct a sequence of invertible copulas

U, € Inv € such that ||U,, x Cy|| — 1.

Example 2.16. Let Cy be the copula supported on the straight line joining the
points (0,0) and (1/2,1) and the str ine Jomlng the points (1/2,0) and (1, 1).
It is known that Cj is not in C || < 1. Consider a partition of

0,1]% into 2" equal ver, 1pes}wh@ Let S, be the shuffle of M

which switches, for all j =. 0 the j-th and (j+1)-th stripes

of M. For a better un , see the figure below.

Construct, recursway C, = S, * C for all n € N. According to Remark

L e supﬂtu 8| Y WBIIS WS A T o ., 10, o

j =2 mod 4, the supports of the §-th and (j 4=L)-th stripes ofa(, _; are switched.
Then & m lta &n imutmaglm El:lﬁ %}I examples, see
the ﬁgure below.

Therefore, by applying the technique demonstrated in Example 1.5, it can
be shown that the copula C), and M coincide on the area outside the diagonal
2™-squares. But the union of the diagonal 2"-squares is a descending chain, the
intersection of which is the diagonal of [0,1]? joining the points (0,0) and (1,1).

This implies that, for ¢ = 1,2, we have 0;,C,(z,y) — 9;M(z,y) pointwise for all
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) Cl and 02

y, there exists N € N large
enough so that the poinft )4 tside : suaes. Hence, for each i = 1, 2,
0;Cp(z,y) exists for.a )2 — VM (x,y)]? ae.

(z,y) € [0,1]* and the egrable on [0,1]?. Hence,

by Dominated Convergenge Th ‘ 'ﬁ' M| =1

To sum up, C,, = | Pt % -+ % S7) x Cp is a product
of a shuffle of M and the ] 7 o For "N. So we have a copula Cj and
sequences of invertible copulas {U/,,} and {V ore Uy = Sy, * Sy1 %+ *5) and

V, = M such that GGl T bt 05 % Co 1% which implies |||, = 1.

oy 2 1.
oo mefUENENINEING
Fl@ R \ﬁeﬁe’%ﬂﬂ it W@%WH qﬁ@“ﬁf mutual con-

plete dependence w introduced by Siburg and Stoimenov [12]. Let X and Y

Therefore, for C' € QlC Il =

be continuous random variables with copula C. The measure w is defined by
w(X,Y) = +/3||C — 1I||, which can be viewed as the normalized Sobolev distance
between the copula C' and the independence copula. The following theorem sum-

marizes properties of the measure.
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Theorem 2.17 ([12], Theorem 5.3). Let X andY be continuous random variables

with copula C. Then the measure w(X,Y") has the following properties:
1. w(X,)Y) =w(Y, X).

2. 0<w(X,Y)<1.

3. w(X,Y) =0 if and only

,ﬁ/ﬁ independent.

Analogous to theﬂlea Imésure of dependence using

the -norm as follows. Let, X and Y be ¢ontinuous random variables with copula

6. vetme oY AN HIES WEIATN Ser 2o rrpision

2.9, we have w,(X,Y) = (3]|C]|? €2)"/2.

Bealﬁhla)ﬁ ﬂo‘jhmiulmq ,‘A m)ﬂfl aaﬂous to those of
the Sobolev norm, the properties of w, are consequently analogous to those of w’s
except for properties 4 and 6 in Theorem 2.17. The measure w,, unlike the measure
w, is not a measure of mutual complete dependence since there exists, according
to Example 2.16, a pair of continuous random variables which are not mutually
completely dependent but their copula has *-norm one. This is the downfall of

our measure compared to the measure w. Nevertheless, for the measure w,, we can
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weaken the assumptions on the transformations f and g in property 6 in Theorem
2.17. In order to do this, we use the fact that the shuffling maps are isometries
with respect to the *-norm. The following theorem summarizes properties of the

measure Wy.

Theorem 2.18. Let X and Y inuous random variables with copula C.

1. w(X,)Y)=w

2.0 <w(X,Y)

3. we(X,Y)=0 zf d . 7\ Adent.

4. w(X,Y)=14f ' ‘ t\' l ly dependent.

5. w(X,Y) € (\/5/2,‘1 _!_ - Ccompl endent on X or X is completely

dependent on Y . % * .

s

6. If f and g AV,{T """"""""""" 7 v-j rmations, then we have

o (F(X).9(0) | . (X i
7. If {(Xnﬂ,%ﬂrsﬂﬂsﬂeﬁeﬂ ﬁwmﬂtiandom variables with

copulas {@), }nen and zf hm yC’ —Cl, = 0 then we have lim w*(Xn, Y,) =

ammmmumawmaﬂ

Proof. Let X and Y be continuous random variables.
1. This follows from the fact that ||Cxy|« = ||Cy.x||« since, by Proposition

2.9, the transposition map is an isometry with respect to the *-norm.

€ [2/3,1]. Since ||A]|« > ||A]| for all A € span€,

we have ||Cxyl||? € [2/3,1]. Hence, 0 < w,(X,Y) < 1.
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3. By Proposition 2.9, X and Y are independent if and only if Cxy = II if
and only if ||Cxy|? = 2/3. Therefore, X and Y are independent if and only if
wi(X,Y) = 0.

4. If X and Y are mutually completely dependent, then ||Cy y|/« = 1. There-
fore, w,(X,Y) = 1.

5. Let Y be completely de pen \ X be completely dependent on Y.
Then ||Cxy|]?* € ( L o Al > ||A]| for all A € span€,
we have ||Cxy|]? € ( : ,1].

6. Let f, g be Borel'ing i chive .. rmations. Then, X and f(X)

are mutually complete and

(Y) Thus ||Cf(X),X|| =1

and [[Cygv)ll = 1 by \ 'w copulas Cfxy x and Cygy)

N
‘\\ ‘e

are invertible by prop

o FEGRBNINE 1N S
awﬁ%ﬁ@h‘ﬁﬁf ) wieyitabl
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We end this chapter with the list of open problems we encountered during our

work on this part of thesis.

1. Besides the transposition and shuffling maps and their compositions, are

there any other maps which are isometries with respect to the *-norm?

2. What are necessary and suffi uditions on a copula C' with ||C||, = 17

3. What is the set ofcoy 4' Whébolev norm and the %-norm
coincide? ‘ ’

4. Is the *-productgéi Inuous ;. ' o the *-norm?

5
AULINENINYINT
ARIAATAUNNIING A Y



CHAPTER III

A GENERALIZED «-PRODUCT

In this section, wi

.‘_
i i y T ots of fions on the family of copulas
so that the ¢ product i NSNS

Example 3.1. Let P bset of [0,1]. Consider the

family C = {C}}iepo

Then we can see that besgue measurable in the

variable t for Some E

J IT and any z,y € (0,1)

: y) m
From he ﬁougﬁaew LIV 82 B et i ot ey el

defined since the integrand may not be Lebesgue measurableg One way to solve

i m%ﬂqbﬂﬁrﬁlﬂ i9tb Lo Wl i) Ghenbi abscs of fomites

of copulas. We give two sets of conditions such that Cy(0xA(z,t),01B(t,y)) is a

so that M (x,y) >

Lebesgue measurable function in the variable ¢.
The first set of conditions is given in the following theorem. Practically, almost

all families of copulas we encounter satify this set of conditions.
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Theorem 3.2. Let C = {Ci}icpo,1) be a family of copulas which satisfies

1. C consists of countably many distinct copulas and

2. for each A € €, the set {t € [0,1]: C; = A} is Borel measurable.

7;13 (t,y)) is Lebesque measurable in the

Proof. Let C = {Ci}1ei0 mily owmsfying the two conditions.

Since there are count tinct *s‘h'ﬂ:-- E = {Cy,Cy, ...} be an

Then, for all z,y € [0,1], Cy(0s

variable t.

enumeration of the

For each C,, € F 7 _ ( Observe that {T,,}52, is a
- ’*\ * 4 “‘
1e ﬁs, hen We e Cy(02A(x,t),01B(t,y)) as

\\\

L]

t);

partition of [0, 1] into

t,y)),

which is a countable sum of e functions; hence, it is Lebesgue

measurable. Y ————— w1 O
i X

Observe that theoof of the above theorem Worﬂ perfectly fine if we replace

AT N

Theorem 3.3V If the map (t,x Q — Cy(x yus Borel measumble then for all

- QIR QAN FUNRNINE % B e

mn the vamable t.

Proof. For any fixed x,y € [0, 1], the map ¢ — (¢, 05A(x,t), 01 B(t,y)) is Lebesgue
measurable since each component function is Lebesgue measurable. Then, being
the composition of a Lebesgue measurable map t +— (¢, D, A(x,t),0,B(t,y)) and a
Borel measurable map (¢, z,y) — Ci(z,y), the map t — Cy(02A(z,t), 1 B(t,y)) is

Lebesgue measurable. O
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Denoted by M. the collection of families which satisfy the set of conditions in
Theorem 3.2, M,, the collection of families which satisfy the condition in Theorem
3.3 and M the collection of families {C}}scjo1) such that, for all A,B € € and
z,y € [0,1], the function Cy(02A(x,t),01B(t,y)) is Lebesgue measurable in the
variable t. We have just shown that M, and M, are subcollections of M. Let’s

remark that, in practice, it is %‘!’// termine whether a family is in M.

This is the sole reason we.l e the M, and M,,.
| — f

Lemma 3.4. If a fa

then it also satisfies th ti ' ; In other words, M. C M,,.

Proof. Let C = {C}},

Then we can write

o e,’sau,, .

(t,x,y) — Ci(x,y gequal toUT ><(C'—

are Borel measurablé. Hence, the i

ve that T, and C; ([0, a])

‘interval [0, a] under the

map (t,z,y) — C’t(x% is Borel measurable. O

The fouovﬁg‘ﬂ 82{3)%5 wr§%&@ﬁn§es which behave well

outside a set O?JLebesgue mMeasure,zero.

propsubh 3.6 4 d & b o/} VADEIR L e

Dy = Cy ae. t €[0,1], then D € M and the products *c and xp are identical.

We say that the family D is x-equivalent to the family C.

Proof. The result easily follows from the fact that if f = g a.e. and f is Lebesgue
measurable, then ¢ is also Lebesgue measurable. Moreover, for any Lebesgue

measurable set A, / fdx= / g d\ where X denotes Lebesgue measure. O
A A
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3.2 The x¢ product

In this section, we properly re-define the ¢ product. Then we derive some of

its properties.

Definition 3.6. Let C € M. The *¢ product of copulas A and B is defined by

A*CBEQ:.

Lemma 3.8. Let mght invertible or B s left

\\

Proof. 1t suffices to pro 4t “stateme i as the second is analogous.

wnvertible with respe
Let A be a right inver sopula., - ,y) € {0, 1} almost everywhere.

Wb, y)) di

/Ct(l O1B(t,y)) dt

ﬂumﬂsmmmm
ammmmémﬁ%maa

= (A B)(z,y).
O

Theoretically, we often encounter the xc of copulas A and B where one of

them is invertible, so the above lemma is very useful.
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Lemma 3.9. {[I*cIl: C € M} =¢.

Proof. For any copula C' € €, consider the family C consisting of C; = C' for all
€ [0,1]. Then, we have C € M, and

C(z,y) dt = C(z,vy).

(IWxe M)(z,y) =

This completes the proof. O
.__d
Theorem 3.10. If C,; ) thaw% Ci(z,y) pointwise for all
[0,1], then (A xc B (%, §)pointwi
Proof. Observe tha
Cn t( B(t7 y))
pointwise. Moreover, Cyy( Ok ?' by g b A(z,t),00B(t,y)) are bounded
by 1 which is Lebesgue integra ‘.,i'r o) 1] ‘o inated Convergence Theorem,
1 = ‘_,.z.l"‘u,! ‘ )
| GO0 ) e [ CUBBAG 1), 5, ¢.)
* J
O

pointwise. This com%tes 0

o
o AT VIR s o

the umform norm. Hence, given a family of copulas C = {C}}cj0,1), we can find

families of shuffles of M, S,, = {S,+}1e)0,1), such that Axg, B — Axc B uniformly.

Our motivation for the previous example is the computation of A xc B. One
can see that given a family C = {C}}cj0,1), it is not easy to obtain an explicit
formula for A xc B. But with the above result, the computation seems more

feasible.
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3.3 Identity and zero of (€, x*c)

Recall from Chapter 1 that the identity and the zero of (&, %) are M and II,

respectively.

Theorem 3.13. For all C € M, the identity for (€, xc) exists and is unique.

| WbundM

Proof. Let C € M. Sin “inver ble mma 3.8, we have

POSE \\ o er identity. Then we have
=/

Moreover, it is the Fréchet-Ho

Proof. The unlquene part S er% for the x¢ product. Then

U=UxcV =V. Novv‘t see that II i 1s zero, if exists, it requires some work.

10 18 LYY mmg@@@e of M et € 0,1

since S, is 1nvert1ble we have S, # U = S, xc L= U.

b AINIAUTIINYIAY

Cle+l—a,y) —C(l—a,y) if 0<z<a<l
(Sa x C)(2,y) =
y—Cl—-—a,y)+Cz—a,y) if 0<a<z<1.

Then copula U must satisfy the two functional equations

Ur+1—a,y)=Uy)+U(1l—-0a,y) f0<z<a<l1and (3.1)

Uzx—oa,y)+y=U(z,y) + U1 —a,y) f0<a<z<l (3.2)
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We will solve the above equations and show that the only copula which satisfies
them is the product copula II.
Fix y € [0,1] and let f(z) = U(x,y). Then, from the properties of copulas, f

is a continuous mapping on [0, 1] with boundary contitions f(0) = 0 and f(1) =

3.
fo—a) : (1 w <z<l (3.4)
First, we solve / 1 \ , ) becomes the well-known

Cauchy equation

Then (3.1) and (3.2) become

flz+1—-a

<zr<a<1and (3.3)
a<zx

where f: [0,1] — 0,

Observe that f(

3\@

Hence, by induction, we have =) = mfGalhus f (1) =nf(+). In other words,

F(2) = Lf(1) for ailbu'e N
1<m<n,ie f(r -

and f(0) = 0. Hence, for all z € [0, 1], We have

ﬂumwm‘mmm 55)
NO’il FRARTUAYT NG B - e

fa —:Jc = f(1) — f(z) for all z € [0,1]. Thus, from (3.3), we have f(x — a) =

for all m,n € N such that

now that f is continuous

f(x) — f(a) for all 0 < a < & < 1. In other words, f(z) = f(z — @) + f(a) for
all 0 < a <z < 1. Again, we have f(2) = f(Z=1) + f(2) for all m,n € N such
that 1 < m < n. This is the same equation as the one we just solved. Hence, for

all z € [0,1], we also have that
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From (3.5) and (3.6), we have U(x,y) = f(z) = zf(1) = xy for all z,y € [0, 1].

Thus, the only copula which satifies (3.1) and (3.2) is the product copula II. [

Lemma 3.15. If C € M is a family such that xc has a zero, then

1

Cy(z,y) dt = zy
0

for all z,y € [0,1].
Proof. If xc has the zero

Recall that {II «¢II: § .Hen , IT can be any copula. But
for the x¢ product to
can see that, for the : 4 Lave a ), the underlying family C must be

extremely special.

Example 3.16. Given a ' ; - = {Chlip,1). If C =TI, then the

xc product is simply the cl _, hich has a zero. If C' # II, then

: .
Example 3.17. Let € be a family Of €opulas wher y =1l a.e. t €[0,1]. Then,

o A AV S
a3 AT RIHBAF I b v o1

form C’;!u, v) = uv + Quv(l — u)(1 — v) where 6 € [-1,1]. Let C = {Ci}sepo,

where C is equal to Cy if t € [0,1/2] and is equal to C_y otherwise. It is easily

seen that the family C satisfies the condition in Lemma 3.15.

We will show that *¢ in the above example has no zero, which implies that

the criteria in Lemma 3.15 is not sufficient for the product to have a zero.
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Example 3.19. Consider a family of copulas C in Example 3.18 where 6 # 0.

Compute

(Axc ) (z,y) = /0 Ci(02A(x,t),y) dt

1/2 1
:/ Co(A(x,t),y) dt+/ C_p(0xA(z,1),y) dt
0 1

(1 — B Az, £))(1 — y) di+

1/2
I .
: — 0 A(z,t))(1 —y) dt
A D 0, A () di—

Az \\
Choose A = Cy. Fronystraigl forxm nﬁ" mp if z ¢ {0,1}, then

ZE

0, A t1aAtdt‘" T
/ AT, {10, Vo (05 20 (x — 1)

£ 0.

aZA( xz, )) dt

Thus Cg *C 11 7é H The

We end this V

i

work on this part of esis

L Hyglm;mnw@\ QA EVS i of copas © to be

in the set M7

2. ﬁxat are necessary and suéﬁ(:lent co::!ltlons for a faq Eo,copulas C to

induce the product *xc which posesses a zero?

Y]

e encountered during our

3. What are the invertible copulas with respect to the *c product?

4. What are probabilistic interpretations of the xc product?
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