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INTRODUCTION

The concept of homomorphism has been introduced and studied in every alge-

braic structure. As we know, the concept of group plays a crucial role in algebra.

Hypergroups introduced in the area of algebraic structures are a nice generaliza-

tion of groups. Hypergroup homomorphisms generalize group homomorphisms

naturally (see [3], p.12 or [4], p.4). An important hypergroup homomorphism is

a good homomorphism. Homomorphisms of various types were introduced by J.

Jantosciak in [6]. Epimorphisms of hypergroups were defined in [7] analogously

to that of groups. A relationship between homomorphisms of groups and good

homomorphisms of certain hypergroups defined from those groups were studied

in [9].

Hypergroups defined from groups and their normal subgroups are of our main

interest. If G is a group and N is a normal subgroup of G, let (G, ◦N) be

the hypergroup where x ◦N y = xyN for all x, y ∈ G ([3], p.11). In [7], the

authors characterized the good homomorphisms and the good epimorphisms of

the hypergroup (Z, ◦mZ) defined from the group (Z,+) and its subgroup mZ.

Then x ◦mZ y = x + y + mZ for all x, y ∈ Z. For a hypergroup (H, ◦), let

Hom(H, ◦), GHom(H, ◦), Epi(H, ◦) and GEpi(H, ◦) denote the set of all homo-

morphisms, the set of all good homomorphisms, the set of all epimorphisms and

the set of all good epimorphisms of (H, ◦), respectively. Then the elements of

GHom(Z, ◦mZ) and GEpi(Z, ◦mZ) have been characterized in [7]. It was shown in

[7] that both GHom(Z, ◦mZ) and GEpi(Z, ◦mZ) have the same cardinality which is

2ℵ0 . In [8], the authors found a suitable equivalence relation δ on the semigroup

GHom(Z, ◦mZ) under composition such that GHom(Z, ◦mZ)/δ ∼= (Zm, ·), the mul-

tiplicative semigroup of integers modulo m.

The purpose of Chapter II is to extend the results in [7] mentioned above. The

elements of Hom(Z, ◦mZ) and Epi(Z, ◦mZ) are characterized. We also show in this
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chapter that |Hom(Z, ◦mZ)| = |Epi(Z, ◦mZ)| = 2ℵ0 if m 6= 0.

Chapter III deals with the hypergroup (Zn, ◦mZn) defined from the group

(Zn,+) and its subgroupmZn as above. This chapter gives characterizations of the

elements of Hom(Zn, ◦mZn), GHom(Zn, ◦mZn), Epi(Zn, ◦mZn) and GEpi(Zn, ◦mZn).

The cardinalities of these sets are also provided.

Let (G, •P ) be the P -hypergroup defined from a group G and a nonempty sub-

set P of G, i.e., x •P y = xPy for all x, y ∈ G ([5], p.37). Some results on homo-

morphisms and good homomorphisms of P -hypergroups defined from the groups

(Z,+) and (Zn,+) were given in [2]. Chapter IV deals with homomorphisms,

good homomorphisms, epimorphisms and good epimorphisms of P -hypergroups

defined from the group (Q,+). This chapter is also concerned with the hypergroup

defined from a group G whose hyperproduct x ◦ y of x, y ∈ G is the subgroup of

G generated by x and y ([3], p.11). The groups which we are interested in are

(Z,+), (Zn,+) and (Q,+). Some relationships of Hom(A,+) and GHom(A, ◦)

are determined where (A,+) is one of (Z,+), (Zn,+) and (Q,+). The hyper-

group (R, •) where x • y = y • x = [x, y] if x ≤ y is considered. We show in this

chapter that Hom(R, •) is the set of all monotone functions from R into itself and

GHom(R, •) is the set of all monotone continuous functions from R into itself. In

addition, we show that Epi(R, •) is contained in GHom(R, •). It then follows that

GEpi(R, •) = Epi(R, •).

The definitions and quoted results used in this research are provided in Chap-

ter I.



CHAPTER I

PRELIMINARIES

The cardinality of a set X is denoted by |X|.

The set of integers, the set of rational numbers and the set of real numbers

are denoted by Z, Q and R, respectively.

A hyperoperation on a nonempty set H is a function ◦ : H×H → P (H)r{∅}

where P (H) is the power set of H. The value of (x, y) ∈ H×H under ◦ is denoted

by x ◦ y which is called the hyperproduct of x and y. The system (H, ◦) is called

a hypergroupoid. For A,B ⊆ H and x ∈ H, let

A ◦B =
⋃
a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦ A = {x} ◦ A.

The hypergroupoid (H, ◦) is called a semihypergroup if

x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H.

A hypergroup is a semihypergroup (H, ◦) satisfying the condition

H ◦ x = x ◦H = H for all x ∈ H.

Then hypergroups are a generalization of groups.

Example 1.1. ([3], p.11) Let G be a group and N a normal subgroup of G. If

◦N is the hyperoperation defined on G by

x ◦N y = xyN for all x, y ∈ G,

then (G, ◦N) is a hypergroup.

Example 1.2. ([3], p.11) Let G be a group and P a nonempty subset of G. If

•P is the hyperoperation defined on G by
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x •P y = xPy for all x, y ∈ G,

then (G, •P ) is a hypergroup. It may be called a P-hypergroup (see [5], p.37).

Example 1.3. ([3], p.11) Let G be a group. For x, y ∈ G, define

x ◦ y = 〈x, y〉 , the subgroup of G generated by x and y.

Then (G, ◦) is a hypergroup. Note that if (A,+) is an abelian group, then x ◦ y =

Zx+ Zy for all x, y ∈ A.

Example 1.4. ([5], p.39) Define the hyperoperation • on R as follows :

x • x = {x} for all x ∈ R,

x • y = y • x = (x, y) if x < y.

Then (R, •) is a commutative hypergroup.

Remark 1.5. It can be shown that in Example 1.4 if (x, y) is replaced by [x, y],

we still have that (R, •) is a commutative hypergroup. In this case

x • y = y • x = [x, y] if x ≤ y,

or equivalently,

x • y = [min{x, y},max{x, y}] for all x, y ∈ R.

To be sure that this is true, a proof is given as follows: By the definition of

the hyperoperation •, we have that (R, •) is a commutative hypergroupoid. Let

x, y, z ∈ R. Claim that (x • y) • z = [min{x, y, z},max{x, y, z}] = x • (y • z). We

have that

(x • y) • z = [min{x, y},max{x, y}] • z

=
⋃
{t • z | t ∈ [min{x, y},max{x, y}]}

=
(⋃
{[t, z] | t ∈ [min{x, y},max{x, y}] and t ≤ z}

)⋃
(⋃
{[z, t] | t ∈ [min{x, y},max{x, y}] and t > z}

)
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=



∅
⋃

[z,max{x, y}] = [min{x, y, z},max{x, y, z}]

if z < min{x, y}

[min{x, y}, z]
⋃

∅ = [min{x, y, z},max{x, y, z}]

if z > max{x, y}

[min{x, y}, z]
⋃

[z,max{x, y}] = [min{x, y, z},max{x, y, z}]

if z ∈ [min{x, y},max{x, y}],

so (x•y)•z = [min{x, y, z},max{x, y, z}]. We can show similarly that x•(y•z) =

[min{x, y, z},max{x, y, z}]. Hence (R, •) is a semihypergroup. We also have that

for x ∈ R,

R • x =
⋃
t∈R

t • x

=

(⋃
t≤x

[t, x]

)⋃(⋃
t>x

[x, t]

)

= (−∞, x]
⋃

[x,∞) = R.

This proves that (R, •) is a commutative hypergroup.

A function f from a hypergroup (H, ◦) into a hypergroup (H ′, ◦′) is called a

homomorphism if

f(x ◦ y) ⊆ f(x) ◦′ f(y) for all x, y ∈ H.

If the equality is valid, f is called a good homomorphism. Denote by Hom((H, ◦),

(H ′, ◦′)) and GHom((H, ◦), (H ′, ◦′)) the set of all homomorphisms and the set of

all good homomorphisms from (H, ◦) into (H ′, ◦′), respectively. Let Hom(H, ◦)

and GHom(H, ◦) stand for Hom((H, ◦), (H, ◦)) and GHom((H, ◦), (H, ◦)), respec-

tively. For f ∈ Hom((H, ◦), (H ′, ◦′)), f is called an epimorphism if f(H) =

H ′. Denote by Epi((H, ◦), (H ′, ◦′)) and GEpi((H, ◦), (H ′, ◦′)) the set of all epi-

morphisms and the set of all good epimorphisms from (H, ◦) onto (H ′, ◦′), re-

spectively and let Epi(H, ◦) and GEpi(H, ◦) stand for Epi((H, ◦), (H, ◦)) and
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GEpi((H, ◦), (H, ◦)), respectively.

Let Z+ be the set of positive integers and Zn the set of integers modulo n ∈ Z+.

The equivalence class of x ∈ Z modulo n is denoted by x. For x, y ∈ Z, not both

0, let (x, y) denote the g.c.d. of x and y. Then

Zn = {0, 1, . . . , n− 1} = {x | x ∈ Z}, |Zn| = n.

For m ∈ Z, mZ and mZn are subgroups of (Z,+) and (Zn,+), respectively. We

also have that

mZn = (m,n)Zn =
{

0, (m,n), . . . ,
(

n
(m,n)

− 1
)

(m,n)
}
, |mZn| = n

(m,n)
,

Z =
m−1⋃
i=0

(i+mZ) if m ∈ Z+ and Zn =

(m,n)−1⋃
i=0

(i+ (m,n)Zn)

which are disjoint unions. We give a proof that Zn =

(m,n)−1⋃
i=0

(i+ (m,n)Zn) which

is a disjoint union. Since |Zn|
|(m,n)Zn| = n

n
(m,n)

= (m,n), it follows that the index of the

subgroup (m,n)Zn in the group (Zn,+) is (m,n). If i, j ∈ {0, 1, . . . , (m,n) − 1}

are such that i+ (m,n)Zn = j+ (m,n)Zn, then i− j = (m,n)s for some s ∈ Z, so

i− j − (m,n)s = nt for some t ∈ Z. Since (m,n)s+ nt is divisible by (m,n), we

have that i− j is divisible by (m,n). Hence i = j, so the desired result follows.

Moreover, xZn = Zx for all x ∈ Z and Zx + Zy = xZn + yZn = (x, y)Zn =

Z(x, y) for all x, y ∈ Z, not both 0. For a ∈ Z, define

ga(x) = ax and ha(x) = ax for all x ∈ Z.

Then we have that Hom(Z,+) = {ga | a ∈ Z}, ga 6= gb if a 6= b and Hom(Zn,+) =

{ha | a ∈ Z}, ha 6= hb if a 6= b. Notice that for a ∈ Z, ga(Z) = Z if and only if

a = 1 or a = −1. Since for a ∈ Z, aZn(= Za) = Zn if and only if a is a generator

of the group (Zn,+), it follows that for a ∈ Z, ha is an epimorphism if and only

if (a, n) = 1.

From Example 1.1, we have that (Z, ◦mZ) and (Zn, ◦mZn) are the hypergroups

where

x ◦mZ y = x+ y +mZ for all x, y ∈ Z,

x ◦mZn y = x+ y +mZn for all x, y ∈ Z.
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Notice that (−m)Z = mZ, (−m)Zn = mZn, (Z, ◦0Z) = (Z,+) and (Zn, ◦0Zn) =

(Zn,+). Then Hom(Z, ◦0Z) = GHom(Z, ◦0Z) = Hom(Z,+) = {ga | a ∈ Z},

Epi(Z, ◦0Z) = GEpi(Z, ◦0Z) = Epi(Z,+) = {g1, g−1}, Hom(Zn, ◦0Zn) = GHom

(Zn, ◦0Zn) = Hom(Zn,+) = {ha | a ∈ Z} and Epi(Zn, ◦0Zn) = GEpi(Zn, ◦0Zn) =

Epi(Zn,+) = {ha | a ∈ Z and (a, n) = 1}. This implies that |Hom(Z, ◦0Z)| =

|GHom(Z, ◦0Z)| = ℵ0, |Epi(Z, ◦0Z)| = |GEpi(Z, ◦0Z)| = 2, |Hom(Zn, ◦0Zn)| =

|GHom(Zn, ◦0Zn)| = n and |Epi(Zn, ◦0Zn)| = |GEpi(Zn, ◦0Zn)| = φ(n) where φ

is the Euler-phi function. Recall that for a positive integer n, φ(n) is the number

of x ∈ {1, 2, . . . , n} relatively prime to n.

Throughout this research, we assume that m ∈ Z+. However, some results we

obtain are clearly true when m = 0. In [7], the authors characterized the good

homomorphisms and good epimorphisms of (Z, ◦mZ) by introducing the following

general result.

Lemma 1.6. ([7]) Let G be a group and N a normal subgroup of G. Then the

following statements hold.

(i) For every f ∈ GHom(G, ◦N), f(N) = N .

(ii) If f ∈ GHom(G, ◦N), x ∈ G and k ∈ Z, then f(xkN) = (f(x))kN .

Theorem 1.7. ([7]) If f : Z→ Z, then the following statements are equivalent.

(i) f ∈ GHom(Z, ◦mZ).

(ii) f(x+mZ) = xf(1) +mZ for all x ∈ Z.

(iii) There exists an integer a such that

f(x+mZ) = xa+mZ for all x ∈ Z.

We give a remark that if a satisfies (iii) of Theorem 1.7, then a ≡ f(1)(mod m).

The following facts are also used in our work.

Proposition 1.8. ([7]) If G is a group, then GHom(G, ◦G) = {f : G → G |

f(G) = G} = GEpi(G, ◦G).

Theorem 1.9. ([7]) If X is an infinite set, then
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|{f : X → X | f(X) = X}| = 2|X|.

In [7], the elements of GEpi(Z, ◦mZ) were characterized and |GHom(Z, ◦mZ)|

and |GEpi(Z, ◦mZ)| were determined as follows :

Theorem 1.10. ([7]) For f ∈ GHom(Z, ◦mZ), f ∈ GEpi(Z, ◦mZ) if and only if

f(1) and m are relatively prime.

Theorem 1.11. ([7]) |GHom(Z, ◦mZ)| = |GEpi(Z, ◦mZ)| = 2ℵ0 .

In the proof of Theorem 1.11 the following fact of cardinal numbers was used. If p

is an infinite cardinal number, then pp = 2p ([10], p.161). In particular, ℵℵ00 = 2ℵ0 .

The following fact relating to a set of functions and its cardinality is used. If

X and Y are nonempty sets, then

|{f | f : X → Y }| = |Y ||X|.

In particular, if X is an infinite set, then

|{f | f : X → X}| = |X||X| = 2|X|.

The following theorem of homomorphisms and good homomorphisms on P -

hypergroups is known.

Theorem 1.12. ([2]) Let G be a group and ∅ 6= P ⊆ G. Then the following

statements hold.

(i) For f ∈ Hom(G), f ∈ Hom(G, •P ) if and only if f(P ) ⊆ P .

(ii) For f ∈ Hom(G), f ∈ GHom(G, •P ) if and only if f(P ) = P .

From Theorem 1.12 and the facts that

Hom(Z,+) = {ga | a ∈ Z} and Hom(Zn,+) = {ha | a ∈ Z},

the following theorem is directly obtained.

Theorem 1.13. The following statements hold.

(i) For ∅ 6= P ⊆ Z and a ∈ Z, ga ∈ Hom(Z, •P ) if and only if aP ⊆ P .

(ii) For ∅ 6= P ⊆ Z and a ∈ Z, ga ∈ GHom(Z, •P ) if and only if aP = P .
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(iii) For ∅ 6= P ⊆ Zn and a ∈ Zn, ha ∈ Hom(Zn, •P ) if and only if aP ⊆ P .

(iv) For ∅ 6= P ⊆ Zn and a ∈ Zn, ha ∈ GHom(Zn, •P ) if and only if aP = P .

The following theorem was given in [2]. In fact, it follows from Theorem 1.13(i)

and (iii) and the fact that each of Z and Zn contains a multiplicative identity.

Theorem 1.14. ([2]) The following statements hold.

(i) For ∅ 6= P ⊆ Z, Hom(Z,+) ⊆ Hom(Z, •P ) if and only if ZP = P .

(ii) For ∅ 6= P ⊆ Zn, Hom(Zn,+) ⊆ Hom(Zn, •P ) if and only if ZnP = P .



CHAPTER II

HOMOMORPHISMS OF HYPERGROUPS DEFINED

FROM THE GROUP (Z,+) AND ITS SUBGROUPS

In this chapter, we characterize the homomorphisms and the epimorphisms of

the hypergroup (Z, ◦mZ) which is defined from the group (Z,+) and its subgroup

mZ as in Example 1.1. The cardinalities of Hom(Z, ◦mZ) and Epi(Z, ◦mZ) are also

provided. The purpose is to extend Theorem 1.7, Theorem 1.10 and Theorem

1.11.

2.1 Characterizations of Homomorphisms and Epimorphisms

First we recall that x ◦mZ y = x + y + mZ for all x, y ∈ Z. We characterize the

elements of Hom(Z, ◦mZ). The proof of Lemma 1.6 gives us an idea of proving the

following general results which will be used for our characterization.

Lemma 2.1.1. Let G be a group, N a normal subgroup of G. Then the following

statements hold for f ∈ Hom(G, ◦N).

(i) f(N) ⊆ N .

(ii) For all x ∈ G, f(xN) ⊆ f(x)N .

(iii) For all x, y ∈ G, f(xyN) ⊆ f(xy)N = f(x)f(y)N .

(iv) For all x ∈ G, f(x−1N) ⊆ f(x−1)N = f(x)−1N .

(v) For all x ∈ G and k ∈ Z, f(xkN) ⊆ f(xk)N = f(x)kN .

Proof. First, we recall that for all x, y ∈ G, xN ∩ yN 6= ∅ implies xN = yN .

(i) We have that

f(N) = f(eeN) = f(e ◦N e) ⊆ f(e) ◦N f(e) = f(e)f(e)N .

Then f(e) ∈ f(N) ⊆ f(e)f(e)N . Since G is cancellative, we have e ∈ f(e)N
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which implies that N = f(e)N , so f(N) ⊆ f(e)f(e)N = N .

(ii) By (i), f(e) ∈ N . If x ∈ G, then

f(xN) = f(xeN) = f(x ◦N e)

⊆ f(x) ◦N f(e)

= f(x)f(e)N

= f(x)N.

(iii) Let x, y ∈ G. Then by (ii),

f(xyN) ⊆ f(xy)N .

We also have that

f(xyN) = f(x ◦N y)

⊆ f(x) ◦N f(y)

= f(x)f(y)N.

Then f(xyN) ⊆ f(xy)N
⋂
f(x)f(y)N which implies that f(xy)N = f(x)f(y)N .

Hence (iii) holds.

(iv) If x ∈ G, then

f(N) = f(xx−1N) = f(x ◦N x−1) ⊆ f(x)f(x−1)N .

But f(N) ⊆ N by (i), so f(N) ⊆ N ∩ f(x)f(x−1)N . Then N = f(x)f(x−1)N

which implies that f(x−1)N = f(x)−1N . By (ii), f(x−1N) ⊆ f(x−1)N . Hence

(iv) holds.

(v) Let x ∈ G. Then by (ii), for all k ∈ Z, f(xkN) ⊆ f(xk)N . It remains to

show that f(xk)N = f(x)kN for all k ∈ Z. This is true for k = 1, and by (i), this

is true for k = 0. Assume that k ∈ Z+ and f(xk)N = f(x)kN . Then

f(xk+1)N = f(xxk)N

= f(x)f(xk)N by (iii)

= f(x)(f(xk)N)

= f(x)(f(x)kN) by assumption

= f(x)k+1N.
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This shows that f(yl)N = f(y)lN for all y ∈ G and l ∈ Z+. If k ∈ Z+, then

f(x−k)N = f((x−1)k)N

= f(x−1)kN

= (f(x−1)N) . . . (f(x−1)N) (k brackets)

= (f(x)−1N) . . . (f(x)−1N) by (iv)

= (f(x)−1)kN

= f(x)−kN.

Hence (v) is proved.

Theorem 2.1.2. For f : Z→ Z, the following statements are equivalent.

(i) f ∈ Hom(Z, ◦mZ).

(ii) f(x+mZ) ⊆ xf(1) +mZ for all x ∈ Z.

(iii) There exists an integer a such that

f(x+mZ) ⊆ xa+mZ for all x ∈ Z.

Proof. (i)⇒(ii) follows directly from Lemma 2.1.1(v).

(ii)⇒(iii) is evident.

(iii)⇒(i). Let x, y ∈ Z. Then f(x) ∈ f(x) +mZ and f(y) ∈ f(y) +mZ. Since

f(x) ∈ f(x+mZ) ⊆ xa+mZ and f(y) ∈ f(y +mZ) ⊆ ya+mZ, it follows that

f(x) +mZ = xa+mZ and f(y) +mZ = ya+mZ. Consequently,

f(x ◦mZ y) = f(x+ y +mZ)

⊆ (x+ y)a+mZ

= xa+mZ + ya+mZ

= f(x) +mZ + f(y) +mZ

= f(x) + f(y) +mZ

= f(x) ◦mZ f(y).

Hence f ∈ Hom(Z, ◦mZ), as desired.
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Remark 2.1.3. For f : Z → Z and a ∈ Z, if f and a satisfy (iii) of Theorem

2.1.2, then a ≡ f(1)(mod m) since f(1) ∈ f(1 +mZ) ⊆ a+mZ.

Next, we provide the following general fact. It is used to characterize the

elements of Epi(Z, ◦mZ).

Lemma 2.1.4. Let G be a group and N a normal subgroup of G. If the index

[G : N ] of N in G is finite and f ∈ Epi(G, ◦N), then f(xN) = f(x)N for all

x ∈ G.

Proof. Let [G : N ] = n. Then there are x1, . . . , xn ∈ G such that G =
n⋃

i=1

xiN .

Then x1N, . . . , xnN are mutually disjoint. By Lemma 2.1.1(ii), f(xiN) ⊆ f(xi)N

for all i ∈ {1, . . . , n}. Hence

G = f(
n⋃

i=1

xiN) =
n⋃

i=1

f(xiN) ⊆
n⋃

i=1

f(xi)N ,

which implies that

G =
n⋃

i=1

f(xiN) =
n⋃

i=1

f(xi)N.

Since [G : N ] = n, it follows that f(x1)N, . . . , f(xn)N are mutually disjoint. But

f(xiN) ⊆ f(xi)N for all i ∈ {1, . . . , n}, thus we have

f(xiN) = f(xi)N for all i ∈ {1, . . . , n}.

Next, let x ∈ G. Then xN = xjN for some j ∈ {1, . . . , n}. By Lemma 2.1.1(ii),

f(xN) ⊆ f(x)N . Hence

f(xj)N = f(xjN) = f(xN) ⊆ f(x)N

which implies that f(x)N = f(xj)N . Consequently,

f(xN) = f(xjN) = f(xj)N = f(x)N .

Hence f(xN) = f(x)N for all x ∈ G.
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Theorem 2.1.5. For f : Z→ Z, f ∈ Epi(Z, ◦mZ) if and only if

(i) f(x+mZ) = xf(1) +mZ for all x ∈ Z and

(ii) f(1) and m are relatively prime.

Proof. First, assume that f ∈ Epi(Z, ◦mZ). By Lemma 2.1.4, f(x+mZ) = f(x) +

mZ for all x ∈ Z. But by Lemma 2.1.1(v), f(x)+mZ = xf(1)+mZ for all x ∈ Z.

Thus (i) holds. The fact that f(Z) = Z and (i) yield

Z = f
( ⋃
x∈Z

(x+mZ)
)

=
⋃
x∈Z

(xf(1) +mZ).

Then 1 ∈ yf(1) +mZ for some y ∈ Z. Thus 1 = yf(1) + tm for some t ∈ Z which

implies that f(1) and m are relatively prime. Therefore (ii) holds.

For the converse, assume that (i) and (ii) hold. Then from (i) and Theorem

2.1.2, f ∈ Hom(Z, ◦mZ). From (ii), sf(1) + tm = 1 for some s, t ∈ Z. But since

for every x ∈ Z, x+mZ = x(sf(1) + tm) +mZ

= xsf(1) +mZ

= f(xs+mZ) by (i)

⊆ f(Z),

it follows that f(Z) = Z. Hence f ∈ Epi(Z, ◦mZ).

Remark 2.1.6. We have that Hom(H, ◦) is a semigroup under composition

where (H, ◦) is a hypergroup. Note that 1H , the identity function on H, is clearly

an element of Hom(H, ◦). Let f, g ∈ Hom(H, ◦) and x, y ∈ H. Then

(gf)(x ◦ y) = g(f(x ◦ y)) ⊆ g(f(x) ◦ f(y))

⊆ g(f(x)) ◦ g(f(y))

= (gf)(x) ◦ (gf)(y).

We know that F (H) is a semigroup under composition where F (H) is the set of all

functions from H into itself. It follows that Hom(H, ◦) is a subsemigroup of F (H).

It is clearly seen that GHom(H, ◦), Epi(H, ◦) and GEpi(H, ◦) are subsemigroups
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of the semigroup Hom(H, ◦).

As mentioned above, we have that Hom(Z, ◦mZ) is a semigroup having GHom

(Z, ◦mZ), Epi(Z, ◦mZ) and GEpi(Z, ◦mZ) as its subsemigroups. By Theorem 2.1.2,

for all f ∈ Hom(Z, ◦mZ),

f(x+mZ) ⊆ xf(1) +mZ for all x ∈ Z.

If f, g ∈ Hom(Z, ◦mZ), then

(gf)(1 +mZ) = g(f(1 +mZ)) ⊆ g(f(1) +mZ) ⊆ f(1)g(1) +mZ

and

(gf)(1 +mZ) ⊆ (gf)(1) +mZ.

This implies that f(1)g(1) +mZ = (gf)(1) +mZ. It follows that

(gf)(1) ≡ f(1)g(1) ≡ g(1)f(1) ≡ (fg)(1)(mod m).

Next, we claim that (Hom(Z, ◦mZ),+) is an abelian group. First, we note that

Hom(Z, ◦mZ) ⊆ F (Z) and (F (Z),+) is an abelian group where F (Z) is the set of

all functions from Z into itself. Let f, g ∈ Hom(Z, ◦mZ) and x ∈ Z. Then

(f + g)(x+mZ) ⊆ f(x+mZ) + g(x+mZ)

⊆ xf(1) +mZ + xg(1) +mZ

= x(f(1) + g(1)) +mZ

= x((f + g)(1)) +mZ,

so by Theorem 2.1.2, f + g ∈ Hom(Z, ◦mZ). Since

(−f)(x+mZ) = −(f(x+mZ)) ⊆ −(xf(1) +mZ)

= x(−f(1)) + (−mZ)

= x((−f)(1)) +mZ,

−f ∈ Hom(Z, ◦mZ). Hence we have the claim.
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2.2 Results on Cardinalities

This section is concerned with the cardinalities of Hom(Z, ◦mZ) and Epi(Z, ◦mZ).

If a ∈ Z, then for x, y ∈ Z,

ga(x ◦mZ y) = ga(x+ y +mZ)

= a(x+ y +mZ)

= ax+ ay + amZ

⊆ ax+ ay +mZ

= ax ◦mZ ay

= ga(x) ◦mZ ga(y).

This shows that ga ∈ Hom(Z, ◦mZ) for all a ∈ Z. Hence Hom(Z,+) ⊆ Hom(Z, ◦mZ).

Observe that ga(mZ) = amZ ⊆ mZ for all a ∈ Z. In general, we have that if N

is a normal subgroup of a group G and f ∈ Hom(G) such that f(N) ⊆ N , then

f ∈ Hom(G, ◦N). The proof is given as follows: For x, y ∈ G,

f(x ◦N y) = f(xyN)

= f(x)f(y)f(N)

⊆ f(x)f(y)N

= f(x) ◦N f(y).

Hence we have

Theorem 2.2.1. If G is a group and N is a normal subgroup of G, then

{f ∈ Hom(G) | f(N) ⊆ N} ⊆ Hom(G, ◦N).

From the fact that Hom(Z,+) ⊆ Hom(Z, ◦mZ), we have |Hom(Z, ◦mZ)| ≥ ℵ0.

It will be shown that,

|Hom(Z, ◦mZ)| = |Epi(Z, ◦mZ)| = 2ℵ0 .

To show that |Hom(Z, ◦mZ)| = 2ℵ0 , we need the following lemma.

Lemma 2.2.2. If G is a group, then Hom(G, ◦G) = {f | f : G→ G}.
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Proof. If f : G→ G, then for all x, y ∈ G,

f(x ◦G y) = f(xyG) = f(G) ⊆ G = f(x)f(y)G = f(x) ◦G f(y),

so f ∈ Hom(G, ◦G).

Hence the result follows.

Theorem 2.2.3. |Hom(Z, ◦mZ)| = 2ℵ0.

Proof. By Lemma 2.2.2, Hom(Z, ◦1Z) = {f | f : Z→ Z}. Then

|Hom(Z, ◦1Z)| = |{f | f : Z→ Z}| = ℵℵ00 = 2ℵ0 .

Next, assume that m > 1. Let K = {g | g : mZ→ mZ}. Then |K| = ℵℵ00 = 2ℵ0 .

Recall that for each x ∈ Z, there are unique qx ∈ Z and rx ∈ {0, 1, . . . ,m − 1}

such that x = mqx + rx. For each g ∈ K, define ḡ : Z→ Z by

ḡ(x) = rx + g(mqx) for all x ∈ Z.

Then for every g ∈ K, ḡ|mZ = g and for x ∈ Z,

ḡ(x+mZ) = ḡ(rx +mqx +mZ)

= ḡ(rx +mZ)

= rx + g(mZ)

⊆ rx +mZ

= rx +mqx +mZ

= x+mZ.

By Theorem 2.1.2, we have that ḡ ∈ Hom(Z, ◦mZ) for all g ∈ K. It follows that

2ℵ0 = |K| = |{ḡ | g ∈ K}|

≤ |Hom(Z, ◦mZ)|

≤ |{f | f : Z→ Z}| = ℵℵ00 = 2ℵ0

which implies that |Hom(Z, ◦mZ)| = 2ℵ0 .

Hence the theorem is proved.



18

Next we show that |Epi(Z, ◦mZ)| = 2ℵ0 . Theorem 1.9 is also needed to prove

this fact.

Theorem 2.2.4. |Epi(Z, ◦mZ)| = 2ℵ0.

Proof. By Lemma 2.2.2, we have that Epi(Z, ◦1Z) = {f : Z → Z | f(Z) = Z}.

Then by Theorem 1.9, |Epi(Z, ◦1Z)| = 2ℵ0 .

Assume that m > 1. Let L = {g : mZ → mZ | g(mZ) = mZ}. Also,

by Theorem 1.9, |L| = 2ℵ0 . For each x ∈ Z, let qx, rx ∈ Z be such that rx ∈

{0, 1, . . . ,m − 1} and x = mqx + rx. Note that qx and rx are unique. For each

g ∈ L, define ḡ : Z→ Z by

ḡ(x) = rx + g(mqx) for all x ∈ Z.

Then for g ∈ L, ḡ|mZ = g and we can see from the proof of Theorem 2.2.3 and the

fact that g(mZ) = mZ that

ḡ(x+mZ) = x+mZ for all x ∈ Z.

It follows from Theorem 2.1.2 that ḡ ∈ Hom(Z, ◦mZ) for all g ∈ L. We also have

that

ḡ(Z) = ḡ
( ⋃
x∈Z

(x+mZ)
)

=
⋃
x∈Z

ḡ(x+mZ) =
⋃
x∈Z

(x+mZ) = Z.

Hence ḡ ∈ Epi(Z, ◦mZ) for all g ∈ L. Consequently,

2ℵ0 = |L| = |{ḡ | g ∈ L}|

≤ |Epi(Z, ◦mZ)|

≤ |{f | f : Z→ Z}| = ℵℵ00 = 2ℵ0 ,

so the desired result follows.



CHAPTER III

HOMOMORPHISMS OF HYPERGROUPS DEFINED

FROM THE GROUP (Zn,+) AND ITS SUBGROUPS

In this chapter, we characterize the homomorphisms, the good homomor-

phisms, the epimorphisms and the good epimorphisms of the hypergroup (Zn, ◦mZn)

(see Example 1.1). The cardinalities of Hom(Zn, ◦mZn), GHom(Zn, ◦mZn), Epi

(Zn, ◦mZn) and GEpi(Zn, ◦mZn) are also determined.

3.1 Characterizations of Homomorphisms, Good Homo-

morphisms, Epimorphisms and Good Epimorphisms

Let us recall that x ◦mZn y = x+ y+mZn for all x, y ∈ Z. Lemma 2.1.1 is needed

to characterize the elements of Hom(Zn, ◦mZn).

Theorem 3.1.1. For f : Zn → Zn, the following statements are equivalent.

(i) f ∈ Hom(Zn, ◦mZn).

(ii) f(x+mZn) ⊆ xf(1) +mZn for all x ∈ Z.

(iii) There exists an integer a such that

f(x+mZn) ⊆ xa+mZn for all x ∈ Z.

Proof. (i)⇒(ii) follows directly from Lemma 2.1.1(v).

(ii)⇒(iii) is evident.

(iii)⇒(i). Let x, y ∈ Z. Then f(x) ∈ f(x) +mZn and f(y) ∈ f(y) +mZn.

Since f(x) ∈ f(x + mZn) ⊆ xa + mZn and f(y) ∈ f(y + mZn) ⊆ ya + mZn, it

follows that f(x) + mZn = xa + mZn and f(y) + mZn = ya + mZn. Therefore

we have that

f(x ◦mZn y) = f(x+ y +mZn)
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⊆ (x+ y)a+mZn

= xa+mZn + ya+mZn

= f(x) +mZn + f(y) +mZn

= f(x) + f(y) +mZn

= f(x) ◦mZn f(y).

Hence f ∈ Hom(Zn, ◦mZn), as desired.

We can see easily from Lemma 1.6(ii) and the proof of Theorem 3.1.1 that the

following result holds.

Theorem 3.1.2. For f : Zn → Zn, the following statements are equivalent.

(i) f ∈ GHom(Zn, ◦mZn).

(ii) f(x+mZn) = xf(1) +mZn for all x ∈ Z.

(iii) There exists an integer a such that

f(x+mZn) = xa+mZn for all x ∈ Z.

We need Lemma 2.1.4 to characterize the elements of Epi(Zn, ◦mZn).

Theorem 3.1.3. For f : Zn → Zn, f ∈ Epi(Zn, ◦mZn) if and only if the following

conditions hold.

(i) f(x+mZn) = xf(1) +mZn for all x ∈ Z.

(ii) If f(1) = a for a ∈ Z, then a and (m,n) are relatively prime.

Proof. Assume that f ∈ Epi(Zn, ◦mZn). The condition (i) follows directly from

Lemma 2.1.4 and Lemma 2.1.1(v). Let f(1) = a where a ∈ Z. Since f(Zn) = Zn,

it follows from Lemma 2.1.1(v) that

Zn = f
( ⋃
x∈Z

(x+ (m,n)Zn)
)
⊆
⋃
x∈Z

(xf(1) + (m,n)Zn).

Then 1 ∈ yf(1) + (m,n)Zn for some y ∈ Z, so 1 = ya + (m,n)z for some z ∈ Z.

Hence 1 = ya + (m,n)z + nw for some w ∈ Z, so ya + (m,n)(z + n
(m,n)

w) = 1

which implies that a and (m,n) are relatively prime. Hence (ii) holds.
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For the converse, assume that (i) and (ii) hold. Then from (i) and Theorem

3.1.1, f ∈ Hom(Zn, ◦mZn). From (ii), we have that there are y, z ∈ Z such that

ay + (m,n)z = 1. Then

1 = ya+ (m,n)z ∈ yf(1) + (m,n)Zn.

Hence from (i), we have that for x ∈ Z,

x = x1 ∈ x(yf(1) + (m,n)Zn)

⊆ xyf(1) + (m,n)Zn = f(xy + (m,n)Zn) ⊆ f(Zn)

which implies that f(Zn) = Zn. Thus f ∈ Epi(Zn, ◦mZn).

Hence the theorem is proved.

The following result follows directly from Theorem 3.1.2 and Theorem 3.1.3.

Corollary 3.1.4. GEpi(Zn, ◦mZn) = Epi(Zn, ◦mZn) ⊆ GHom(Zn, ◦mZn).

Remark 3.1.5. From Remark 2.1.6, we have that Hom(Zn, ◦mZn) is a semigroup

under composition having GHom(Zn, ◦mZn), Epi(Zn, ◦mZn)(= GEpi(Zn, ◦mZn)) as

its subsemigroups. We can see from the proof given in Remark 2.1.6 that for all

f, g ∈ Hom(Zn, ◦mZn),

(gf)(1) +mZn = f(1)g(1) +mZn = g(1)f(1) +mZn = (fg)(1) +mZn,

Moreover, (Hom(Zn, ◦mZn),+) is also an abelian group.

3.2 Combinatorial Results

In this section, we determine the cardinalities of the sets Hom(Zn, ◦mZn), GHom

(Zn, ◦mZn) and Epi(Zn, ◦mZn)(= GEpi(Zn, ◦mZn)).

For a ∈ Z, we have that ha(mZn) = amZn ⊆ mZn. It follows from Theorem

2.2.1 that Hom(Zn,+) ⊆ Hom(Zn, ◦mZn), so Epi(Zn,+) ⊆ Epi(Zn, ◦mZn). Conse-

quently, |Hom(Zn, ◦mZn)| ≥ n and |Epi(Zn, ◦mZn)| ≥ φ(n).

Lemma 2.2.2 is also needed to determine |Hom(Zn, ◦mZn)|.

Theorem 3.2.1. |Hom(Zn, ◦mZn)| = n
(

n
(m,n)

)n−1
.
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Proof. Recall that |mZn| = n
(m,n)

,

Zn =

(m,n)−1⋃
i=0

(i+ (m,n)Zn)

which is a disjoint union and note that for nonempty sets A,B, |{f | f : A →

B}| = |B||A|.

Case 1 : (m,n) = 1. Then mZn = Zn and so (Zn, ◦mZn) = (Zn, ◦Zn). By Lemma

2.2.2, |Hom(Zn, ◦mZn)| = nn. Hence |Hom(Zn, ◦mZn)| = n
(

n
(m,n)

)n−1
.

Case 2 : (m,n) > 1. Then n > 1. By Theorem 3.1.1, we have that

Hom(Zn, ◦mZn) = {f : Zn → Zn | f(x+mZn) ⊆ xf(1) +mZn for all x ∈ Z}.

It follows that for f : Zn → Zn,

f ∈ Hom(Zn, ◦mZn)⇐⇒f((m,n)Zn) ⊆ (m,n)Zn,

f(1 + (m,n)Zn) ⊆ f(1) + (m,n)Zn,

f(2 + (m,n)Zn) ⊆ 2f(1) + (m,n)Zn,

· · ·

f((m,n)− 1 + (m,n)Zn) ⊆ ((m,n)− 1)f(1) + (m,n)Zn.

For f : Zn → Zn, all the possibilities of f(1) are 0, 1, . . . , n− 1. We have that

f(1) ∈ f(1 + (m,n)Zn). From these facts, we have

|Hom(Zn, ◦mZn)| = n×
(

n

(m,n)

) n
(m,n)

×
(

n

(m,n)

) n
(m,n)

−1

×
(

n

(m,n)

) n
(m,n)

× · · · ×
(

n

(m,n)

) n
(m,n)

︸ ︷︷ ︸
(m,n)−2 copies

= n×
(

n

(m,n)

) n
(m,n)

×(m,n)−1

= n

(
n

(m,n)

)n−1

.

Hence the proof is complete.
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Next, |GHom(Zn, ◦mZn)| is determined by using Proposition 1.8 and Theorem

3.1.2

Theorem 3.2.2. |GHom(Zn, ◦mZn)| = n
((

n
(m,n)

− 1
)

!
)((

n
(m,n)

)
!
)(m,n)−1

.

Proof. Recall that

Zn =

(m,n)−1⋃
i=0

(i+ (m,n)Zn)

which is a disjoint union and |i+ (m,n)Zn| = |(m,n)Zn| =
∣∣∣ n
(m,n)

∣∣∣ for all i ∈

{0, 1, . . . , (m,n) − 1}. First we note that for finite nonempty sets A,B with

|A| = |B|,

|{f : A→ B | f(A) = B}| = |A|!.

If a ∈ A and b ∈ B, then

|{f : A→ B | f(a) = b and f(A) = B}| = (|A| − 1)!.

Case 1 : (m,n) = 1. Then mZn = Zn, so (Zn, ◦mZn) = (Zn, ◦Zn). By Proposition

1.8, GHom(Zn, ◦mZn) = {f : Zn → Zn | f(Zn) = Zn}. But since Zn is finite, it

follows that |GHom(Zn, ◦mZn)| = n!, so the result follows for this case.

Case 2 : (m,n) > 1. By Theorem 3.1.2,

GHom(Zn, ◦mZn) = {f : Zn → Zn | f(x+mZn) = xf(1) +mZn for all x ∈ Z}.

This implies that for f : Zn → Zn,

f ∈ GHom(Zn, ◦mZn)⇐⇒f((m,n)Zn) = (m,n)Zn,

f(1 + (m,n)Zn) = f(1) + (m,n)Zn,

f(2 + (m,n)Zn) = 2f(1) + (m,n)Zn,

· · ·

f((m,n)− 1 + (m,n)Zn) = ((m,n)− 1)f(1) + (m,n)Zn.
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For f : Zn → Zn, all the possibilities of f(1) are 0, 1, . . . , n− 1. Notice that

f(1) ∈ f(1 + (m,n)Zn). From these facts, we have that

|GHom(Zn, ◦mZn)| = n×
(

n

(m,n)

)
!×
(

n

(m,n)
− 1

)
!

×
(

n

(m,n)

)
!× · · · ×

(
n

(m,n)

)
!︸ ︷︷ ︸

(m,n)−2 copies

= n×
(

n

(m,n)
− 1

)
!×
((

n

(m,n)

)
!

)(m,n)−1

.

= n

((
n

(m,n)
− 1

)
!

)((
n

(m,n)

)
!

)(m,n)−1

.

Therefore the proof is complete.

Finally, we determine |Epi(Zn, ◦mZn)| by the following theorem.

Theorem 3.2.3. The following statements hold.

(i) If (m,n) = 1, then |Epi(Zn, ◦mZn)| = n!.

(ii) If (m,n) > 1, then |Epi(Zn, ◦mZn)| = φ((m,n))
((

n
(m,n)

− 1
)

!
)((

n
(m,n)

)
!
)(m,n)−1

.

Proof. (i) If (m,n) = 1, it follows from Lemma 2.2.2 that

Epi(Zn, ◦mZn) = Epi(Zn, ◦Zn) = {f : Zn → Zn | f(Zn) = Zn},

so |Epi(Zn, ◦mZn)| = n!.

(ii) Assume that (m,n) > 1. It follows from Theorem 3.1.3 that for f : Zn →

Zn,

f ∈ Epi(Zn, ◦mZn)⇐⇒ f(1) = a where a and (m,n) are relatively prime,

f((m,n)Zn) = (m,n)Zn,

f(1 + (m,n)Zn) = f(1) + (m,n)Zn,

f(2 + (m,n)Zn) = 2f(1) + (m,n)Zn,

· · ·

f((m,n)− 1 + (m,n)Zn) = ((m,n)− 1)f(1) + (m,n)Zn.
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For f ∈ Epi(Zn, ◦mZn), the number of all possibilities of f(1) is φ((m,n)). Notice

that f(1) ∈ f(1 + (m,n)Zn). These facts yield the following result.

|Epi(Zn, ◦mZn)| = φ((m,n))×
(

n

(m,n)

)
!×
(

n

(m,n)
− 1

)
!

×
(

n

(m,n)

)
!× · · · ×

(
n

(m,n)

)
!︸ ︷︷ ︸

(m,n)−2 copies

= φ((m,n))

((
n

(m,n)
− 1

)
!

)((
n

(m,n)

)
!

)(m,n)−1

.

Example 3.2.4. From Theorem 3.2.1, Theorem 3.2.2 and Theorem 3.2.3, we

have respectively that

|Hom(Z6, ◦4Z6)| = 6×
(

6

(4, 6)

)6−1

= 6× 35 = 1, 458,

|GHom(Z6, ◦4Z6)| = 6

((
6

(4, 6)
− 1

))
!

((
6

(4, 6)

)
!

)(4,6)−1

= 6× 2!× 3! = 72 and

|Epi(Z6, ◦4Z6)| = φ((4, 6))

((
6

(4, 6)
− 1

)
!

)((
6

(4, 6)

)
!

)(4,6)−1

= 1× 2!× 3! = 12.

Then the number of the homomorphisms in (Z6, ◦4Z6) which are not good ho-

momorphisms is 1, 458 − 72 = 1, 386 and the number of the homomorphisms

of (Z6, ◦4Z6) which are not epimorphisms is 1, 458 − 12 = 1, 446. Recall that

Epi(Z6, ◦4Z6) ⊆ GHom(Z6, ◦4Z6)(Corollary 3.1.4). Then the number of the good

homomorphisms of (Z6, ◦4Z6) which are not epimorphisms is 72− 12 = 60. Notice

that the number of all functions from Z6 into itself is 66 = 46, 656.



CHAPTER IV

HOMOMORPHISMS OF SOME OTHER

HYPERGROUPS

In this chapter, we are concerned with the following hypergroups: (Q, •P )

defined as in Example 1.2, (Z, ◦), (Zn, ◦) and (Q, ◦) defined as in Example 1.3

and (R, •) defined in Remark 1.5. Some results concerning homomorphisms of

(Q, •P ), (Z, ◦), (Zn, ◦) and (Q, ◦) are provided. Characterizations of the elements

of Hom(R, •), GHom(R, •), Epi(R, •) and GEpi(R, •) are given.

4.1 P-hypergroups

In this section, we deal with the P -hypergroup (Q, •P ) defined from the group

(Q,+) and ∅ 6= P ⊆ Q. Recall that x •P y = x+ P + y for all x, y ∈ Q.

First, we give a general result on homomorphisms of (Q,+).

Lemma 4.1.1. For a ∈ Q, define ka : Q→ Q by

ka(x) = ax for all x ∈ Q.

Then Hom(Q,+) = {ka | a ∈ Q}.

Proof. It is clear that ka ∈ Hom(Q,+) for all a ∈ Q. For the reverse inclusion,

let f ∈ Hom(Q,+). Claim that f = kf(1). Let m ∈ Z+ and l ∈ Z. Then

f(1) = f(m( 1
m

)) = mf( 1
m

)

which implies that f( 1
m

) = f(1)
m

. Hence

f( l
m

) = f(l( 1
m

)) = lf( 1
m

) = l
m
f(1) = kf(1)(

l
m

),

so we have the claim.

Therefore Hom(Q,+) = {ka | a ∈ Q}, as desired.



27

The following theorem analogous to Theorem 1.13 is directly obtained from

Theorem 1.12 and the definition of ka for a ∈ Q defined in Lemma 4.1.1.

Theorem 4.1.2. Let ∅ 6= P ⊆ Q. The following statements hold.

(i) For a ∈ Q, ka ∈ Hom(Q, •P ) if and only if aP ⊆ P .

(ii) For a ∈ Q, ka ∈ GHom(Q, •P ) if and only if aP = P .

From Theorem 4.1.2 and the fact that aQ = Q if and only if a ∈ Qr {0}, we

obtain the following theorem.

Theorem 4.1.3. Let ∅ 6= P ⊆ Q. Then the following statements hold.

(i) For a ∈ Q, ka ∈ Epi(Q, •P ) if and only if a 6= 0 and aP ⊆ P .

(ii) For a ∈ Q, ka ∈ GEpi(Q, •P ) if and only if a 6= 0 and aP = P .

Example 4.1.4. Let Z− = {x ∈ Z | x < 0}, Q+ = {x ∈ Q | x > 0} and

Q− = {x ∈ Q | x < 0}.

The following results are clearly obtained from Theorem 4.1.2 and Theorem

4.1.3.

{a ∈ Q | ka ∈ Hom(Q, •Z)} = Z,

{a ∈ Q | ka ∈ Epi(Q, •Z)} = Z r {0},

{a ∈ Q | ka ∈ GHom(Q, •Z)} = {−1, 1}

= {a ∈ Q | ka ∈ GEpi(Q, •Z)},

{a ∈ Q | ka ∈ Hom(Q, •Z+)} = Z+

= {a ∈ Q | ka ∈ Epi(Q, •Z+)},

{a ∈ Q | ka ∈ GHom(Q, •Z+)} = {1}

= {a ∈ Q | ka ∈ GEpi(Q, •Z+)},

{a ∈ Q | ka ∈ Hom(Q, •Z−)} = Z+

= {a ∈ Q | ka ∈ Epi(Q, •Z−)},
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{a ∈ Q | ka ∈ GHom(Q, •Z−)} = {1}

= {a ∈ Q | ka ∈ GEpi(Q, •Z−)},

{a ∈ Q | ka ∈ Hom(Q, •Q+)} = Q+ = {a ∈ Q | ka ∈ Epi(Q, •Q+)}

= {a ∈ Q | ka ∈ GHom(Q, •Q+)}

= {a ∈ Q | ka ∈ GEpi(Q, •Q+)},

{a ∈ Q | ka ∈ Hom(Q, •Q−)} = Q+ = {a ∈ Q | ka ∈ Epi(Q, •Q−)}

= {a ∈ Q | ka ∈ GHom(Q, •Q−)}

= {a ∈ Q | ka ∈ GEpi(Q, •Q−)}.

The next theorem is analogous to Theorem 1.14. It is obtained from Lemma

4.1.1, Theorem 4.1.2(i) and a property of Q.

Theorem 4.1.5. For ∅ 6= P ⊆ Q, Hom(Q,+) ⊆ Hom(Q, •P ) if and only if either

P = {0} or P = Q.

Proof. Assume that Hom(Q,+) ⊆ Hom(Q, •P ). By Lemma 4.1.1 and Theorem

4.1.2(i), QP ⊆ P . If a ∈ P for some a ∈ Qr {0}, then

Q = Qa ⊆ QP ⊆ P ⊆ Q,

so P = Q. This implies that either P = {0} or P = Q.

For the converse, assume that P = {0} or P = Q. Then aP ⊆ P for all

a ∈ Q. It then follows from Lemma 4.1.1 and Theorem 4.1.2(i) that Hom(Q,+) ⊆

Hom(Q, •P ).

Remark 4.1.6. Let G be a group and ∅ 6= P ⊆ G. We know from Remark

2.1.6 that Hom(G, •P ) is a semigroup under composition having GHom(G, •P ),

Epi(G, •P ) and GEpi(G, •P ) as its subsemigroups. Let (A,+) be an abelian group

and P a subsemigroup of (A,+). We claim that Hom(A, •P ) is a commutative

semigroup under addition. We have that (F (A),+) is an abelian group where

F (A) is the set of all functions from A into itself. Next, let g, f ∈ Hom(A, •P )

and x, y ∈ A. Then
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(g + f)(x •P y) = (g + f)(x+ P + y)

⊆ g(x+ P + y) + f(x+ P + y)

= g(x •P y) + f(x •P y)

⊆ (g(x) •P g(y)) + (f(x) •P f(y))

= (g(x) + P + g(y)) + (f(x) + P + f(y))

= g(x) + f(x) + P + P + g(y) + f(y)

⊆ g(x) + f(x) + P + g(y) + f(y)

= (g(x) + f(x)) •P (g(y) + f(y))

= (g + f)(x) •P (g + f)(y).

This shows that Hom(A, •P ) is a subsemigroup of (F (A),+).

If P is a subgroup of (A,+), then we have that (Hom(A, •P ),+) is an abelian

group. It remains to show that for f ∈ Hom(A, •P ), −f ∈ Hom(A, •P ). Since P

is a subgroup of (A,+), we have−P = P . Let f ∈ Hom(A, •P ). Then for x, y ∈ A,

(−f)(x •P y) = (−f)(x+ P + y)

= −(f(x+ P + y))

⊆ −(f(x) + P + f(y))

= −f(x)− P − f(y)

= (−f)(x) + P + (−f)(y)

= (−f)(x) •P (−f)(y).

It follows from the above facts that (Hom(Q, •Z+),+) is a commutative semi-

group and (Hom(Q, •Z),+) is an abelian group.
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4.2 Hypergroups Defined from Abelian Groups Whose

Hyperproducts Are Subgroups

In this section, let (A,+) be an abelian group and (A, ◦) the hypergroup under

the hyperoperation ◦ defined by x ◦ y = Zx+ Zy for all x, y ∈ A.

First, we give some necessary conditions for f ∈ GHom(A, ◦).

Proposition 4.2.1. For f ∈ GHom(A, ◦),

(i) f(0) = 0 and

(ii) f(Zx) = Zf(x) for all x ∈ A.

(iii) If (A,+) is the cyclic group generated by an element a ∈ A, then f(A) =

Zf(a), the cyclic subgroup of A generated by f(a).

Proof. (i) Since {f(0)} = f(Z0 + Z0) = f(0 ◦ 0)

= f(0) ◦ f(0)

= Zf(0) + Zf(0)

= Zf(0) ⊇ {0},

it follows that f(0) = 0.

(ii) If x ∈ A, then

f(Zx) = f(Zx+ Z0) = f(x ◦ 0)

= f(x) ◦ f(0)

= f(x) ◦ 0 by (i)

= Zf(x) + Z0

= Zf(x),

so (ii) hold.

(iii) Since A = Za, (iii) follows from (ii).

The following results follow directly from Proposition 4.2.1(iii).

Corollary 4.2.2. The following statements hold.
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(i) If f ∈ GHom(Z, ◦), then f(Z) = Zf(1), and f ∈ GEpi(Z, ◦) if and only if

either f(1) = 1 or f(1) = −1.

(ii) If f ∈ GHom(Zn, ◦), then f(Zn) = Zf(1) = Znf(1), and f ∈ GEpi(Zn, ◦) if

and only if a and n are relatively prime where a = f(1).

The next theorem shows that every homomorphism of (A,+) is a good homo-

morphism of (A, ◦) when A is any of Z, Zn and Q.

Theorem 4.2.3. Hom(Z,+) ⊆ GHom(Z, ◦), Hom(Zn,+) ⊆ GHom(Zn, ◦) and

Hom(Q,+) ⊆ GHom(Q, ◦).

Proof. If a, x, y ∈ Z, then

ga(x ◦ y) = ga(Zx+ Zy)

= a(Zx+ Zy)

= Zax+ Zay

= ax ◦ ay

= ga(x) ◦ ga(y),

so ga ∈ GHom(Z, ◦). Since Hom(Z,+) = {ga | a ∈ Z}, we have Hom(Z,+) ⊆

GHom(Z, ◦).

Recall that Hom(Zn,+) = {ha | a ∈ Z} and Hom(Q,+) = {ka | a ∈ Q}

(by Lemma 4.1.1). We can show similarly that Hom(Zn,+) ⊆ GHom(Zn, ◦) and

Hom(Q,+) ⊆ GHom(Q, ◦).

From Corollary 4.2.2 and Theorem 4.2.3, we have

Corollary 4.2.4. The following statements hold.

(i) Hom(Z,+)
⋂

GEpi(Z, ◦) = {g1, g−1}.

(ii) Hom(Zn,+)
⋂

GEpi(Zn, ◦) = {ha | a ∈ Z and (a, n) = 1}.

The following theorem shows that Hom(Z,+) ( GHom(Z, ◦), Hom(Q,+) (

GHom(Q, ◦) and gives a necessary and sufficient conditions for n guaranteeing

that Hom(Zn,+) ( GHom(Zn, ◦) holds.
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Theorem 4.2.5. The following statements hold.

(i) Hom(Z,+) ( GHom(Z, ◦).

(ii) Hom(Q,+) ( GHom(Q, ◦).

(iii) For n ∈ Z+, Hom(Zn,+) ( GHom(Zn, ◦) if and only if n ≥ 4.

Proof. Define f : Z→ Z and f : Q→ Q by

f(1) = f(1) = −1, f(−1) = f(−1) = 1,

f(x) = x for all x ∈ Z r {1,−1} and

f(x) = x for all x ∈ Qr {1,−1}.

It is easily seen that f 6= ga for all a ∈ Z and f 6= ka for any a ∈ Q. We have that

f(x ◦ y) = f(Zx+ Zy), f(x) ◦ f(y) = Zf(x) + Zf(y) for all x, y ∈ Z

and

f(x ◦ y) = f(Zx+ Zy), f(x) ◦ f(y) = Zf(x) + Zf(y) for all x, y ∈ Q.

Since for x, y ∈ Q, 1 ∈ Zx+ Zy ⇐⇒ −1 ∈ Zx+ Zy, it follows that

f(Zx+ Zy) = Zx+ Zy for all x, y ∈ Z

and

f(Zx+ Zy) = Zx+ Zy for all x, y ∈ Q.

By the definitions of f and f and the fact that Z(1) = Z(−1), we have that

Zf(x) + Zf(y) = Zx+ Zy for all x, y ∈ Z

and

Zf(x) + Zf(y) = Zx+ Zy for all x, y ∈ Q.

These show that f ∈ GHom(Z, ◦) and f ∈ GHom(Q, ◦). Thus f ∈ GHom(Z, ◦)r

Hom(Z,+) and f ∈ GHom(Q, ◦) r Hom(Q,+). This proves (i) and (ii).

To prove (iii), assume that n ≥ 4.

Case 1 : n = 4. Define f : Z4 → Z4 by f(0) = 0 and f(1) = f(2) = f(3) = 2. It
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is clear that f 6= ha for all a ∈ {0, 1, 2, 3}. Thus f /∈ Hom(Z4,+). To show f ∈

GHom(Z4, ◦), we first note that if A is a subset of Z4 containing 0 and a nonzero

element, then f(A) = {0, 2}. It is evident that f(0 ◦ 0) = {0} = f(0) ◦ f(0).

Next, let x, y ∈ Z4, not both 0, say x 6= 0. Then x◦y = Z4x+Z4y ⊇ {0, x}. Thus

f(x ◦ y) = {0, 2}. Since

f(x) ◦ f(y) =

2 ◦ 0 = Z42 + Z40 = {0, 2} if y = 0,

2 ◦ 2 = Z42 + Z42 = {0, 2} if y 6= 0,

it follows that f(x ◦ y) = f(x) ◦ f(y), so f ∈ GHom(Z4, ◦), as desired. Hence

Hom(Z4,+) ( GHom(Z4, ◦).

Case 2 : n ≥ 5. Then 1 and n − 1 are relatively primes to n. Then Z(1) =

Z(n− 1) = Zn. Define f : Zn → Zn by

f(1) = n− 1, f(n− 1) = 1 and

f(x) = x for all x ∈ Zn r {1, n− 1}.

Then f(1+n− 2) = f(n− 1) = 1 and f(1)+f(n− 2) = n− 1+n− 2 = 2n− 3 =

−3 = n− 3. But since n ≥ 5, 1 6= n− 3, so f(1 + n− 2) 6= f(1) + f(n− 2), it

follows that f /∈ Hom(Zn,+). To show that f ∈ GHom(Zn, ◦), let x, y ∈ Z. Then

f(x ◦ y) = f(Zx+ Zy) and f(x) ◦ f(y) = Zf(x) + Zf(y).

It is evident that f(0◦0) = f(0) = 0 = Z0+Z0 = f(0)◦f(0). Assume that x 6= 0

or y 6= 0.

Subcase 2.1 : x = 1 or x = n− 1. Then f(Zx+ Zy) = f(Zn) = Zn and

Zf(x) + Zf(y) =

Z(n− 1) + Zf(y) = Zn if x = 1,

Z(1) + Zf(y) = Zn if x = n− 1,

thus f(Zx+ Zy) = Zn = Zf(x) + Zf(y).

Subcase 2.2 : y = 1 or y = n− 1. It follows similarly to Case 1 that

f(Zx+ Zy) = Zn = Zf(x) + Zf(y).

Subcase 2.3 : x, y ∈ Zn r {1, n− 1}. Then f(Zx + Zy) = f(Z(x, y)) and



34

Zf(x) + Zf(y) = Zx + Zy = (x, y)Zn = Z(x, y). Since Z(x, y) is a subgroup

of (Zn,+) and 1 and n− 1 are inverses of each other in (Zn,+), it follows that

1 ∈ Z(x, y) ⇐⇒ n− 1 ∈ Z(x, y). Hence f(Z(x, y)) = Z(x, y), so f(Zx + Zy) =

Zf(x) + Zf(y).

Therefore we have that f ∈ GHom(Zn, ◦) r Hom(Zn,+).

To prove that if Hom(Zn,+) ( GHom(Zn, ◦), then n ≥ 4, it is equivalent

to show that if n < 4, then Hom(Zn,+) = GHom(Zn, ◦) by Theorem 4.2.3.

Recall that by Proposition 4.2.1, f(0) = 0 for all f ∈ GHom(Zn, ◦) and by

Corollary 4.2.2(ii) for f ∈ GHom(Zn, ◦), f(Zn) = Znf(1), and f(Zn) = Zn if

and only if a and n are relatively prime where f(1) = a. We also have that for

f ∈ GHom(Zn, ◦), f(1) = 0 if and only if f = h0. It is evident that Hom(Zn,+) =

GHom(Zn, ◦) if n = 1.

Let f ∈ GHom(Z2, ◦). Then f(0) = 0. If f(1) = 0, then f = h0. If f(1) = 1,

then f = h1.

Next, let f ∈ GHom(Z3, ◦). Then f(0) = 0. If f(1) = 0, then f = h0. If

f(1) = 1, then f(Z3) = Z3 which implies that f(2) = 2, so f = h1. If f(1) = 2,

then f(Z3) = Z3 which implies that f(2) = 1, thus f = h2.

The proof is thereby complete.

Remark 4.2.6. Let (A,+) be an abelian group. We know from Remark 2.1.6

that Hom(A, ◦) is a semigroup under composition having GHom(A, ◦), Epi(A, ◦)

and GEpi(A, ◦) as its subsemigroups. If f ∈ Hom(A, ◦) and x, y ∈ A. Then

(−f)(x ◦ y) = −(f(x ◦ y))

⊆ −(f(x) ◦ f(y))

= −(Zf(x) + Zf(y))

= −Zf(x) + (−Zf(y))

= Z((−f)(x)) + Z((−f)(y))

= (−f)(x) ◦ (−f)(y).

This shows that −f ∈ Hom(A, ◦) for all f ∈ Hom(A, ◦). We can see from the
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above proof that if f ∈ GHom(A, ◦), then −f ∈ GHom(A, ◦). Since −A = A,

it follows that for f ∈ Epi(A, ◦), −f ∈ Epi(A, ◦) and for f ∈ GEpi(A, ◦), −f ∈

GEpi(A, ◦).

4.3 The Hypergroup Defined from R Whose Hyperpro-

ducts Are Closed Intervals

In this section, we consider the hypergroup (R, •) where

x • y = y • x = [x, y] if x ≤ y.

We first characterize the homomorphisms of the hypergroup (R, •).

Theorem 4.3.1. Let f : R → R. Then f ∈ Hom(R, •) if and only if f is

monotone.

Proof. To prove that f ∈ Hom(R, •) implies that f is monotone by contrapositive,

assume that f is not monotone. Then there are x, y, z ∈ R such that x < y < z

and either f(x) < f(y) > f(z), or f(x) > f(y) < f(z). Thus f(x•z) = f([x, z]) =

{f(t) | t ∈ [x, z]} 3 f(y).

Case 1 : f(x) < f(y) > f(z).

Subcase 1.1 : f(x) = f(z). Then f(x) • f(z) = {f(x)} and f(x) 6= f(y), so

f(x • z) * f(x) • f(z).

Subcase 1.2 : f(x) < f(z). Then f(x) • f(z) = [f(x), f(z)] 63 f(y), so

f(x • z) * f(x) • f(z).

Subcase 1.3 : f(x) > f(z). Then f(x) • f(z) = [f(z), f(x)] 63 f(y), so

f(x • z) * f(x) • f(z).

Case 2 : f(x) > f(y) < f(z). We can prove similarly to Case 1, that f(x • z) *

f(x) • f(z).

From Case 1 and Case 2, we conclude that f /∈ Hom(R, •).

Conversely, assume that f is monotone. Then f is increasing or decreasing.
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First assume that f is increasing. Let x, y ∈ R be such that x ≤ y. Then

f(x) ≤ f(y). Since f(x • y) = f(y • x) = f([x, y]) = {f(t) | t ∈ [x, y]} and

f(x) ≤ f(t) ≤ f(y) for all t ∈ [x, y], it follows that

f(x • y) ⊆ [f(x), f(y)] = f(x) • f(y) = f(y) • f(x).

This proves that f ∈ Hom(R, •). We can see from above proof that if f is

decreasing and x, y ∈ R such that x ≤ y, then

f(x • y) = f(y • x) ⊆ [f(y), f(x)] = f(y) • f(x) = f(x) • f(y),

so we have that f ∈ Hom(R, •).

Hence the theorem is proved.

Example 4.3.2. From Theorem 4.3.1, the following functions from R into itself

are homomorphisms of a hypergroup (R, •).

(1) For a, b ∈ R, f(x) = ax+ b for all x ∈ R.

(2) For an odd integer n ∈ Z+, g(x) = xn for all x ∈ R.

(3) h(x) =

0 if x ≤ 0,

x+ 1 if x > 0.

We can see f and g are continuous functions but h is not continuous.

Recall a fact in Analysis that if f : R → R is continuous and I is an interval

in R, then f(I) is an interval ([1], p.162).

The following theorem gives a characterization determining when a function

f : R→ R is a good homomorphism of (R, •).

Theorem 4.3.3. For f : R → R, f ∈ GHom(R, •) if and only if f is monotone

and continuous on R.

Proof. Assume that f ∈ GHom(R, •). By Theorem 4.3.1, f is monotone. First,

assume that f is increasing. Then we have that for x ≤ y,

f([x, y]) = f(x • y) = f(y • x) = f(x) • f(y) = f(y) • f(x) = [f(x), f(y)].
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To show that f is continuous on R, that is, to show that

∀a ∈ R ∀ε > 0 ∃δ > 0, f((a− δ, a+ δ)) ⊆ (f(a)− ε, f(a) + ε).

If f is a constant function, then f is continuous. Assume that f is not a constant

function, let a ∈ R and ε > 0 be given.

Case 1 : f(a) = max f(R). Then f(x) = f(a) for all x ≥ a since f is increasing.

Suppose that (f(a)− ε, f(a))
⋂
f(R) = ∅. Since f is not a constant function and

f is increasing, there exists b ∈ R such that f(b) ≤ f(a)− ε. Then b < a and

(f(a)− ε, f(a)) ⊆ [f(b), f(a)] = f([b, a]) ⊆ f(R).

which is a contradiction. This implies that (f(a) − ε, f(a))
⋂
f(R) 6= ∅. Then

there exists e ∈ R such that f(e) ∈ (f(a)− ε, f(a)), so e < a. Let δ = a− e. Then

f((a− δ, a+ δ)) = f((e, a+ δ))

= f((e, a])

⊆ f([e, a])

= [f(e), f(a)]

⊆ (f(a)− ε, f(a)]

⊆ (f(a)− ε, f(a) + ε).

Case 2 : f(a) = min f(R). We can show similarly that there exists δ > 0 such

that f((a− δ, a+ δ)) ⊆ (f(a)− ε, f(a) + ε).

Case 3 : f(a) is neither a maximum of f(R) nor a minimum of f(R). Suppose

that (f(a)− ε, f(a))
⋂
f(R) = ∅. Since f(a) is not a minimum of f(R) and f is

increasing there exists b ∈ R such that f(b) ≤ f(a)− ε. Then b < a and

(f(a)− ε, f(a)) ⊆ [f(b), f(a)] = f([b, a]) ⊆ f(R),

a contradiction. Then (f(a)− ε, f(a))
⋂
f(R) 6= ∅. Since f(a) is not a maximum

of f(R) and f is increasing, we can show similarly that (f(a), f(a)+ε)
⋂
f(R) 6= ∅.

Let e1, e2 ∈ R be such that f(e1) ∈ (f(a) − ε, f(a)) and f(e2) ∈ (f(a), f(a) + ε).

Then e1 < a < e2. Let δ = min{a− e1, e2 − a}. Then we have
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f((a− δ, a+ δ)) ⊆ f([a− δ, a+ δ])

⊆ f([e1, e2])

= [f(e1), f(e2)]

⊆ (f(a)− ε, f(a) + ε).

This shows that f is a continuous at a. But a is arbitrary in R, so f is continuous

on R. If f is decreasing, it can be shown similarly that f is continuous on R.

For the converse, assume that f is monotone and continuous. First assume

that f is increasing. Let x, y ∈ R be such that x ≤ y. Then f(x • y) = f(y • x) =

f([x, y]) and f(x) ≤ f(t) ≤ f(y) for all t ∈ [x, y]. Since f is continuous on R,

f([x, y]) is an interval in R. It follows that

f([x, y]) = [f(x), f(y)] = f(x) • f(y) = f(y) • f(x).

This shows that f ∈ GHom(R, •). We can see from the above proof that if f is

decreasing, then f ∈ GHom(R, •).

The proof is thereby complete.

Example 4.3.4. From Example 4.3.2, we have that the functions f and g belong

to GHom(R, •) but h is not in GHom(R, •). Then h is an element of Hom(R, •)r

GHom(R, •).

The next theorem shows that an epimorphism of (R, •) is a good homomor-

phism.

Theorem 4.3.5. Epi(R, •) ⊆ GHom(R, •).

Proof. Let f ∈ Epi(R, •) be given. Then f ∈ Hom(R, •) and f(R) = R. By

Theorem 4.3.1, f is monotone. Assume that f is increasing. To show that f ∈

GHom(R, •), let x, y ∈ R be such that x ≤ y. Since f ∈ Hom(R, •) and f is

increasing, it follows that

f([x, y]) = f(x • y) = f(y • x) ⊆ f(y) • f(x) = f(x) • f(y) = [f(x), f(y)].
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Suppose that f([x, y]) ( [f(x), f(y)]. Let a ∈ [f(x), f(y)] r f([x, y]). But

f(x), f(y) ∈ f([x, y]), so f(x) < a < f(y). Since f is increasing, we have that

f(t) ≤ f(x) for all t ∈ (−∞, x) and f(t) ≥ f(y) for all t ∈ (y,∞).

This implies that a /∈ f((−∞, x)) and a /∈ f((y,∞)). Since a /∈ f([x, y]). We

deduce that

a /∈ f((−∞, x))
⋃
f([x, y])

⋃
f((y,∞)) = f(R) = R

which is a contradiction. Hence f([x, y]) = [f(x), f(y)] and thus f(x • y) =

f(x) • f(y). Hence f ∈ GHom(R, •). If f is decreasing, we can show similarly

that f ∈ GHom(R, •).

Hence the theorem is proved.

Remark 4.3.6. It follows directly from Theorem 4.3.5 that GEpi(R, •) = Epi(R, •).

Remark 4.3.7. From Theorem 4.3.3 and Theorem 4.3.5, it indicates a fact in

Analysis that if f : R→ R is monotone and f(R) = R, then f is continuous.

Example 4.3.8. From Example 4.3.2, we have that f ∈ Epi(R, •) if a 6= 0 and

f(x) = b for all x ∈ R is an element of GHom(R, •) r Epi(R, •). In addition, we

have that g ∈ Epi(R, •).

Remark 4.3.9. Let c ∈ R be given. For f : R→ R, if f is increasing [decreasing]

and c ≥ 0, then cf is increasing [decreasing] and if f is increasing [decreasing]

and c < 0, then cf is decreasing [increasing]. It follows from Theorem 4.3.1 that

if f ∈ Hom(R, •), then cf ∈ Hom(R, •), so −f ∈ Hom(R, •). For f : R →

R, if f is continuous, then so is cf . Thus we conclude Theorem 4.3.3 that if

f ∈ GHom(R, •), then cf ∈ GHom(R, •), so −f ∈ GHom(R, •). If c 6= 0, then

cR = R, so cf ∈ Epi(R, •) for all f ∈ Epi(R, •). In particular, −f ∈ Epi(R, •) for

all f ∈ Epi(R, •). Therefore we conclude that for c 6= 0, cHom(R, •) = Hom(R, •),

cGHom(R, •) = GHom(R, •) and cEpi(R, •) = Epi(R, •).
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