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INTRODUCTION

The concept of homomorphis | and studied in every alge-
v a crucial role in algebra.
Hypergroups introduced inhe'atea of alsebrai | (r s are a nice generaliza-
tion of groups. ‘ 7 group homomorphisms

naturally (see [3 oroup homomorphism is

a good homomorphism. Homom r—.:.::- Y. various t were introduced by J.
ed in [7] analogously
hisms of groups and good

homomorphisms of certai crgroups defined from those groups were studied

in [9].

Hypergroups defined froui.g d. _o‘ | subgroups are of our main
interest. If and—V § b f let b
interes G is a 1°op‘“‘.|r .-'L s group of G, let (G,oy) be
the hypergroup, whe = xyN for a ( 1; p.11). In [7], the

authors chardcte rized the good homomorpt d epimorphisms of

E

. é

r+y + mZ tor all x;y € Z. For a
Hom(, 0), GHom(l9), Epi(H, o) and @31 (H, o) denote the set of all homo-

morphi u ﬂFq %ﬂ&]ﬂﬂ W ﬂﬂ(ﬂ ﬁ'\orphlsms and
the set 00 eplmorphlsms , respectively. Then the elements of

GHom(Z, 0,,7) and GEp$ Omz have been charaéterized in It was'shown in

TR GPLS ENIAA A VML) B

2% In [8], the authors found a suitable equivalence relation § on the semigroup

the hypergroup 47 uid its subgroup mZ.

Then = o,,7 vy hypergroup (H, o), let

GHom(Z, 0,,,7) under composition such that GHom(Z, 0,,2)/6 = (Zy,, -), the mul-
tiplicative semigroup of integers modulo m.
The purpose of Chapter II is to extend the results in [7] mentioned above. The

elements of Hom(Z, o,,7) and Epi(Z, o,,,7) are characterized. We also show in this



chapter that [Hom(Z, 0,,2)| = |Epi(Z, opmz)| = 2% if m # 0.
Chapter IIT deals with the hypergroup (Z,,omz,) defined from the group

(Z,, +) and its subgroup mZ, as above. This chapter gives characterizations of the

Let (G, ep) be the P-hypergr I ed_froim o group G and a nonempty sub-

set P of G, ie., x o . . Some results on homo-
morphisms and good hoi -hype - efined from the groups
(Z,+) and (Zy; j , apt _deals with homomorphisms,

good homomorplai , hisms of P-hypergroups
defined from the groip (Q r o - = ptor is o ) ed with the hypergroup

; ‘ y € G is the subgroup of
G generated by f( A0 ] \* \ e are interested in are
(Z,+), (Zy,+) and (@, A . clation! \1 (A,+) and GHom(A4, o)
- ; - , ( oyt ‘and (Q,+). The hyper-
group (R, e) where x o7y =y ew =[x y] y is considered. We show in this
chapter that Hom(R, e) is the s e functions from R into itself and
GHom(R, e) is'the s all monotons co ions/from R into itself. In
addition, we :———_
GEPpi(R, ) — EpifiR,

The definitio

“‘:r‘| t then follows that

T

" and quoted results used in this resear are provided in Chap-
ter I.

ﬂ‘lJEJ’J‘VIEJVI‘ﬁWEJ’]ﬂ‘i
Q‘W']ﬂﬂﬂ‘ml UAIINYAY



CHAPTER I

The cardinality o
The set of intege he set of real numbers
are denoted by : .

A hyperoperation , xH — P(H)~{o}
where P(H) is the poter get 7 7 = H > H under o is denoted
by z oy which igi€alled the hyperproduct Sand g, s ystem (H, o) is called

a hypergroupoid. For A, » »

Ao B = ' ‘ | : {z} o A.

The hypergroupoid (H, o) is cated a se; :
oAb A Tl

:y:ik

A hypergroup :
1
|

il
¥ |

Hox=x20H = Hforalla:EH

The“ﬁ%ﬁﬁ AHUNINYINT

Examp ([3], p-11) Let G e a group and N a normal subgroup of G. If

QWTN?T“?WWH’TW]EI’]QH

xoyy=uxyN forall z,y € G

then (G,oy) is a hypergroup.

Example 1.2. ([3], p.11) Let G be a group and P a nonempty subset of G. If
ep is the hyperoperation defined on G by



rxepy=xPy forall z,y € G,

then (G, ep) is a hypergroup. It may be called a P-hypergroup (see [5], p.37).

Example 1.3. ([3], p.11) Let G 1 yup. For z,y € G, define

a;oy:(gc," ‘subgrot 7 ated by z and v.

if (Ay

Then (G, o) is a hyper e tha n abelian group, then zoy =

Example 1.4. ([5 hype 1’ on R as follows :

Then (R, e

Remark 1.5. It can ba mple ‘Li if (,y) is replaced by [z,y],

we still have that (R, ) is .=":":i;;i:‘-:u‘a Ative croup. In this case

or equivalent -yxiﬁiﬁiﬁi |r‘

2oy = [min{z,y}, max{zr,y

To be e that this of is s follows: he definition of
the hyﬁ u ﬂgj w ﬁx groupoid. Let
Ty, 2 c'®. Claim that (z ey) oz— [min{z, y,z} max{x, y,z} =ze yoz We

WA IUNRIINGA Y

(¢ oy) ® 2 = [min{z, y}, max
= J{tez | t € min{z,y}, max{z, y}]}
= (Utit.2] | ¢ € minfer. g} max{e,y)) and ¢ < 2})
<U{[z,t] | ¢ € min{z,y}, max{z,y}] and ¢ > z})

for all n] c R.




(

[z, max{z, y}] = [min{x, y, 2}, max{x, y, 2 }]

if z < min{z,y}

min{z, 5}, 2)U 2 = [minfdh & ; ax{z,y,2}]

~

so (rey)ez = [min Iz :fj

aX{fv Y, 2}]

x »y}, max{z, y}],

'milarly that ze(yez) =
[min{z,y, 2}, . We also have that

for xr € R,

This proves

A function ,ﬁ’

homomorphism E' 7

"&oy C f(x) o f(y) for all x,y € H.

mheﬁluﬂ? nﬂmw BN A e —

-
L

3 1 (H',0') is called a

{

d GHom(( ) the set of all&momorphlsms ar@he set of
@mmﬁmm’mﬂ i fﬁl
tively. For f € Hom((H,o) ), f is called an epimorphism if f(H

H’. Denote by Epi((H, o), (H’,o )) and GEpi((H,o), (H',0)) the set of all epi-
morphisms and the set of all good epimorphisms from (H,o) onto (H’,o'), re-

spectively and let Epi(H,o) and GEpi(H,o) stand for Epi((H,o),(H,o)) and



GEpi((H, o), (H,o)), respectively.
Let Z* be the set of positive integers and Z, the set of integers modulo n € Z*.

The equivalence class of x € Z modulo n is denoted by Z. For x,y € Z, not both

s ImZn| =

(m n)’

which are disjoint ghious. We give'a proof that Z, = | (7 + (m,n)Z,) which

is a disjoint union. Si v. Zois % == (M, n) t %) os that the index of the
subgroup (m,n)Z, n t} _ ’ i,j €{0,1,...,(m,n) — 1}
are such that i + (m, n)Z, —rj = (m,n)s for some s € Z, so
i—j— (m,n)s = nt for .,4-:!:" Sine )s + nt is divisible by (m,n), we

have that ¢ desired result follows.

Moreover' ’:“ Yln = (x,y)Ln =
Z(l‘,y) for all x S /. 'A
L jl

—axandh —axforall:vEZ

i @ﬂﬂf?ﬁﬂ HNINAINT

a=1ora=—1. Since for a € Z‘ aZy (= Za) = Zmif and only if @ isfa generator
VRARIAF R A REARE -
(a,n) =
From Example 1.1, we have that (Z, 0,,z) and (Z,, oz, ) are the hypergroups
where
Tomzy=x+y+mZ forall x,y €Z,
TOomz, Yy=7T+Y+mZ, forall z,yeZ.



Notice that (—=m)Z = mZ, (—m)Zy, = mZy, (Z,007) = (Z,+) and (Zy,00z,) =
(Zy,+). Then Hom(Z,o0qz) = GHom(Z,00z) = Hom(Z,+) = {9, | a € Z},
Epi(Z,o0z) = GEpi(Z,00z) = Epi(Z,+) = {g1,9-1}, Hom(Z,,00z,) = GHom
(Zn, 007,) = Hom(Zy, +) = { 1€ 2} and Epi(Zy, 00z,,) = GEpi(Zy, 09z,,) =
Epi(Z,,+) = {hz | a € Z ::..;\!-f A' s implies that |Hom(Z, oqz)| =
|GHom(Z, ogz)| = Ng ‘ﬂh& 0z) = |GEpNZ, coz)| = 2, [Hom(Z,,00z,)| =
|GHom(Z,,, 0oz, )| = : (Zn70Zn) ~ n, %0z, )| = ¢(n) where ¢

is the Euler-phi functionsRegall that for a pos integer n, ¢(n) is the number
LN
rely > T RN N

of z € {1,2,... ¥ rels

Throughout thi e, @ATCll, oassul that , Z*. However, some results we
obtain are clearly tstie v ‘. .‘ in 7], tl ) \ characterized the good
homomorphisms and ;c o u:_"gr ; Of Ol introducing the following
general result. F E -

following statements hold.

Lemma 1.6. ([7)) P g be%" A subgroup of G. Then the
E .JL; .

(i) For every f € GHom(
(ii) If f € GHom(G,e¢

Theorem g {"’ ' ts are equivalent.
(i) f e GHom

o ) [:j '

ii) flz+mZ) —xf ) +mZ for all x € Z.

BCVERYE) (e
A s neTdY

Proposition 1.8. ([7]) If G is a group, then GHom(G,o0q) = {f : G — G |
f(G) = G} = GEpi(G, og).

Theorem 1.9. ([7]) If X is an infinite set, then



{f:X = X | f(X) =X} =2

In [7], the elements of GEpi(Z, o,,7) were characterized and |GHom(Z, 0,,7)]

and |GEpi(Z, o,,z)| were determined as

€ GEpi(Z, o,z) if and only if

Theorem 1.11. )| = 2%o,

In the proof of T humbers was used. If p

is an infinite cardi ‘\' particular, N = 2%

ts cardinality is used. If

Zoix,

The followmg theorem ?\._; =%%‘ ] d good homomorphisms on P-
hypergroups i _;-

Theorem 1.12. Then the following

U

i |
statements hold. :J

(i) For f € Hom )if.€ Hom(G, ep) iftand only if f(P

o R RHR TN S

From T}ﬂ)rem 1.12 and the facts that

Q RSEN RN AR

he following theorem is directly obtained.

Theorem 1.13. The following statements hold.

(i) For@# P CZ anda € Z, g, € Hom(Z, ep) if and only if aP C P.
(ii) For @ # P CZ and a € Z, g, € GHom(Z, ep) if and only if aP = P.



(iii) For @ # P C Z, and a € Z,,, hz € Hom(Z,,, ep) if and only if aP C P.
(iv) For @ # P C Z,, and a € Z,,, hg € GHom(Z,, ep) if and only if aP = P.

The following theorem was given i In fact, it follows from Theorem 1.13(i)

and (iii) and the fact that eac ontains a multiplicative identity.

Theorem 1.14. ([2]) 7 efoll 7 LBl
(i) Foro+# P CZ. Mo """:} : m(only if ZP = P.
(ii) For @ # P C Z,, HoM(Zf ) C|\Hom(Zy, op).if and only if Z,P = P.

AUEINENINYINS
ARAINTUNMINAY



CHAPTER I1

SIS & nd the epimorphisms of
the hypergroup (Z 7) wiich is d > " rom the grot Z,4+) and its subgroup

mZ as in Example 1.1 #The'cardi lities of 4o Epi(Z, o,nz) are also

K’
provided. The p oS | »' "heorem Theorem 1.10 and Theorem
1.11. & FPe NN

2.1 Characterizations of Homomorphisms and Epimorphisms

First we recall that z 8,7 ¥ /=« £ 4 4 1l 2,y € Z. We characterize the
elements of Hom(Z, 0,,,7,). ; 6 gives us an idea of proving the

following gene

ral Tes vich will be us acterization.

’-' 5 = i
Lemma 2.1. y N 4 Then the following

statements holdm f € He [’:j
E

i) f

" HM H‘Iﬂﬂfn‘m &N

(iv ForalleG f(@™IN) C fee™)

AR TTN NWW’I’EI 188

roof First, we recall that for all z,y € G, N NyN # & implies N = yN.
(i) We have that

f(N) = f(eeN) = f(eone) C f(e) on f(e) = f(e)f(e)N.

Then f(e) € f(N) C f(e)f(e)N. Since G is cancellative, we have e € f(e)N



11

which implies that N = f(e)N, so f(N) C f(e)f(e)N = N.
(ii) By (i), f(e) € N. If z € G, then

We also have th#

Then (yN) € 7(ey) M1 F(SR0 1 il implics that f(zy)N = £(2)f (1) N.

! ;
Hence (iii) holds. ' Y .
(iv) If x € G, then o _.T‘_ 1.'

S |t et e e e e e e P e e e o, e e e e

But f(N) C y-‘-? N TR N = f(a)f(a)N
which implies th I f YN = f(z) 'N. By (i), f(z"'N) C f(z")N. Hence
) holds.

ij]‘ ﬂ ﬂn ﬁrﬂ ﬂ ﬁrﬂ It remains to
show tﬁ ﬁ} g is 1s true f and by (i), this
is true for k = 0. Assume that k€ Z* and f(x z)*N. Thenu

9 aﬁmmum’mma d
MN by (iii)
= f(x)(f(@")N)

= f(2)(f(z)*N) by assumption
— (x)k+1N
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This shows that f(y')N = f(y)'N for all y € G and [ € ZT. If k € Z*, then

Hence (v) is proved

Theorem 2.1.2 ements are equivalent.

(i) f € Hom(Z, o 7 .
(i) f(x+mZ) Cxf
(ili) There exists an intéger a sie

k
v ..,_-;ﬁ

ﬁr" ,,_;:;,a

A,

Proof. (1):(-7 follo _
= (iii . ; —_E:1 ¥
(=) g =3
(iil)=(i). Letaa,y and f{y) € f(y) +mZ. Since
flz) e flx+ [ C za + mZ and y) e fly —I—mZ) - , + mZ, it follows that
f(z) + mZ = za +mZand f(y) + mZ = gagt- mZ. Consequently,

AUEGALNIWEINT

x+ya+m

ﬂmmmmwwmmaﬂ

x)+mZ+ f(y) +mZ
= f(z) + f(y) + mZ
= f(@) omz [(y)-

Hence f € Hom(Z, 0,,7), as desired. O
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Remark 2.1.3. For f:7Z — Z and a € Z, if f and a satisfy (iii) of Theorem
2.1.2, then a = f(1)(mod m) since f(1) € f(1+mZ) C a + mZ.

eral fact. It is used to characterize the

, /ﬂ‘bgmup of G. If the index

l'-hw..m, f(xN) = f(x)N for all

Next, we provide the following ge

elements of Epi(Z, 0,,z).

Lemma 2.1.4. Let ( 7 V‘
[G : N] of N in

rzed.

Proof. Let [G : N| , such that G = UxiN

r o | - _ \\ i=1
Then 21N, ..., it disjo 3y Lemma 2.1. i), f(z;N) C f(x;)N
forallie{1,... |

which implies that

Since [G futifually disjoint. But
f(@:iN) C f(z;

1N = f@)N forall i€ {1,..
w44 &;@% 13 WA

QW]Nﬂ‘iﬂMﬁ@@%']ﬁﬂ

Wthh implies that f(z)N = f(z;)N. Consequently,

f(@N) = f(x;N) = f(2;)N = f(z)N

Hence f(zN) = f(x)N for all z € G. O
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Theorem 2.1.5. For f : Z — Z, f € Epi(Z,o0,,7) if and only if

(i) flx+mZ)=xf(1)+mZ for allx € Z and

(ii) f(1) and m are relatively prime.

4 ma 2.1.4, f(x+mZ) = f(x)+
mZ for all x € Z. But emma 2.1.1(v) =z f(1)+mZ for all z € Z.

Thus (i) holds. The b (Z) . ﬁ
. N

| \'*- o
.r \3%\ for some t € Z which

) holds.

For the converse, ) \j\ ) and Theorem

2.1.2, f € Hom(Z,e0,, s F(1 u some s,t € Z. But since

it follows that ’#’;‘.

Remark 2.1.6. e have that Hom( H o) is a semigroup under composition

ek} weAvE ey
0 mmﬁi”mmwmaﬂ

We know that F'(H) is a semigroup under composition where F(H) is the set of all
functions from H into itself. It follows that Hom(H, o) is a subsemigroup of F(H).
It is clearly seen that GHom(H, o), Epi(H, o) and GEpi(H, o) are subsemigroups
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of the semigroup Hom(H, o).

As mentioned above, we have that Hom(Z, o,,,7) is a semigroup having GHom
(Z,0mz), Epi(Z, 07) and GEpi(Z, o,,7) as its subsemigroups. By Theorem 2.1.2,
for all f € Hom(Z, 0,,,7), 1 '

(9f)(L+ (Dg(1) +mZ
and
This implies that f(#)g(1) +mZ = | - mZ. It follows that
(o gz amiaE ok wod m)
Next, we claim t at lo L\ 4 ) abelian group. First, we note that
Hom(Z, 0,,z) C F(Z) and ffd-ﬁﬁ_ n group where F(Z) is the set of
all functions from Z into its f,' 5;?; omz) and x € Z. Then

3"

gk AR A
e S s S W e e 2 /8 N i s ) 0 2 W/

L7

.,I
!

Sobyf,lfummmﬂmm
AR Mﬂ”‘?mﬁlﬁﬁ 'mmﬁ 8

= )) +mZ,

—f € Hom(Z, o,,z). Hence we have the claim.
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2.2 Results on Cardinalities

This section is concerned with the cardinalities of Hom(Z, o,,z) and Epi(Z, 0,,7).

If a € Z, then for x,y € 7Z, |

This shows that U7 64 \: ence H . Z,+) C Hom(Z, 0,,z).
Observe that gq (7 ‘ oL, ‘ Z. In ;“7 'ral, we have that if N
is a normal subgrou S _- e Hom \ ach that f(N) C N, then
f € Hom(G, o). o isadivoradit % 7< G,

Hence we have

" i AR IHHIAG =

{f € Hom(G éf CN}CHomGoN

Ragnatu YRADNEIAEREE

that
|Hom(Z, 0,2)| = |Epi(Z, 0pz)| = 2%,
To show that [Hom(Z, 0,,z)| = 2%, we need the following lemma.

Lemma 2.2.2. [f G is a group, then Hom(G, o) ={f | f: G — G}.
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Proof. If f: G — G, then for all z,y € G,

f@ogy) = fayG) = f(G) € G = f(x)f(y)G = [(x) o [(y),

so f € Hom(G, og).

Hence the result follows. O
Theorem 2.2.3. | o7
Proof. By Lemma
2%
Next, assume tha . ! i G O 5% 7R hen |K| = Ryo = 2%,
Recall that for each, ‘ Are re €{0,1,...,m —1}

such that x = magp

Then for every g € K

=r, m%—mZ

ﬂ‘UEJ’JVIEm??NEJ’lﬂﬁ

By Theorem 2.1.2, we have that g € Hom(Z, omZ orallge K. It f s that

amam‘mumfmmaa

< |Hom(Z, 0,nz)|

SHFIfZ— ZY| =R = 2%

which implies that [Hom(Z, o,,7)| = 2%.

Hence the theorem is proved. O
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Next we show that |Epi(Z, 0,,z)| = 2%0. Theorem 1.9 is also needed to prove
this fact.

Theorem 2.2.4. |Epi(Z, OmZ)|

;; ‘_.H 22| [(2) =2}

Proof. By Lemma 2.2.2,
Then by Theorem 1.9 Fr

P

Assume that m ="1. C L ; :.r' g(mZ) = mZ}. Also,
by Theorem 1.9, o . € 4. let g,.7, € Z be such that r, €
{0,1,...,m — 1 1 245 gy f fr.. \Note that gz and are unique. For each

g € L, define g : Z :

Then for g € L, |m ' f Theorem 2.2.3 and the

fact that g(mZ)

I R = ‘
It follows from Theorem 24:2-that g-cF omz) for all g € L. We also have
that

92U o mz)) =| ) ot
\ V;ﬂ

Hence g € Epi( z) for:
vy

o= | = (g | g € LY,

FI‘UEJ’JVIEE]WZ"W eln?

<|{f|f Z—>Z}| =

&mwﬂwumfmmaﬂ



CHAPTER III

phisms, the epimorphisims andthegooc ehypergroup (Zn, 0mz,)
(see Example ' B, €

(Zn, OmZn) and G

Hom(Z,,, omz, ), Epi

s, Good Homo-

) d Epimorphisms

Let us recall that To,,7 Z. Lemma 2.1.1 is needed

to characterize the elements of |

A

Theorem 3.1.1. For f : Z, — Z,, the following sta nks.are equivalent.
(i) f € Honmi(#,, o z

(i) f(T +mZ, E zf(1) +

(iii) There exists aﬁ.mteger a such that

ﬂ‘LlEJ@ FETIN =Sk

Proof. (1)=(ii) follows directly from Lemma 2.1. 1

aWﬁﬁeﬁnmummmay

1nce f(@) e f(x + mZ,) C za+ mZ, and f(y) € f(y + mZ,) C ya + mZ,, it
follows that f(Z) + mZ, = xa+ mZ, and f(y) + mZ, = ya + mZ,. Therefore

we have that

f(@omz, y) = f(T+Y+my)
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C (r+y)a+miy

= xa + mZy, + ya + mZ,

Zy + £(7) +mZn

Hence f € Hom(Z,, 0 zs)sas desired: 7 O

We can see easil§ Tommal. 1d the proof of Theorem 3.1.1 that the

Theorem 3.1.2. Fo1 A L7 “ihe fc owing statements are equivalent.

roall © € 7.

We need Lemma 2. ents of Epi(Z,, omz,, ).

Theorem 3.1 E-‘rm-"—‘"—'—_?'ﬁ"'—-—""{sa only if the following
; A

conditions hold. - i
.l (1]

Ll
(i) f(x+mZ, f(1) +mZ, for all x € 7. -
ﬁ =a fo‘aﬂ then a and (min) are relatively prime.
Proof.

MEl7 mm P 1404 e p——

SRR TR

Then 1 € yf(1) + (m,n)Z, for some y € Z, so 1 = ya + (m, n)z for some z € Z.
Hence 1 = ya + (m,n)z + nw for some w € Z, so ya + (m,n)(z + ﬁw) =1

which implies that a and (m,n) are relatively prime. Hence (ii) holds.
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For the converse, assume that (i) and (ii) hold. Then from (i) and Theorem
3.1.1, f € Hom(Z,, omz,). From (ii), we have that there are y,z € Z such that
ay + (m,n)z = 1. Then

T =
C f(Zn)
which implies tha
Hence the t eorey O
The followinl§, result follogs di detly B L 7. .2'and Theorem 3.1.3.

Corollary 3.1.4 Hom(Z,,, omz,,)-

Remark 3.1.5. F' ] L, Oz, ) 1s a semigroup
under composition ha A ¢ (7. Ly 0z, ) (= GEpi(Z,,,0mz,)) as
its subsemigroups. We cal iven in Remark 2.1.6 that for all
f,9 € Hom(Z,ve I

. -
L

(9f)(1) 4t - = Uf9)(1) + mZ,,

. r!‘
Moreover, (HOrrEn, omz, ), +) 18 also an abelian group. ]

2 Gpasianey) S Y8075

In this s&tlon we determine the I‘Qa,lrdlna,htles of the sets Hom( Zn, o , GHom

qmamm Win ﬂﬂ?ﬁﬂorem

2 1 that Hom(Z,, +) € Hom(Z,, ommz,), so Epi(Z,,+) C Epi(Z,, omz, ). Conse-

quently, |[Hom(Z,,, oz, )| > n and |Epi(Z,,, omz, )| > é(n).

Lemma 2.2.2 is also needed to determine [Hom(Z,, 0,7, )|-

n—1
Theorem 3.2.1. |Hom(Z,,0pz,)| =n (L) .

(m.n)
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Proof. Recall that |mZ,| =

(m (m,n)”

(m,n)—1

L = U (i + (m,n)Z,)

which is a disjoint union an ) foff empty sets A, B,[{f|f: A —
B} = Bl Sz
Case 1: (m,n) = ~Th ,';' — » and --.. = (Zy,0z,). By Lemma
- , n—1
2.2.2, |[Hom(Zy, 0,7 T el g “ Sy L (m"n)) )
e . ’

Case 2 : (m ve have that

)
HOIIl(Zn, OmZ, ) 3

L) 4 mZy, for all x € Z}.

It follows that for f 47,

fEHOIII(Zn, mln) <3

.,',‘." l)f(T) + (m,n)Zy,.

For f: Z, — A'E all the poss are 0,1 ‘n—l. We have that

) Ly

f(1) e f(1+ (m, n From these facts, We have

) %J % Wﬂ%‘iﬂﬁﬂﬁ

Hence the proof is complete. O
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Next, |GHom(Z,,, 0z, )| is determined by using Proposition 1.8 and Theorem
3.1.2

Theorem 3.2.2. |GHom(Z,, 0,7, )|

Proof. Recall that

which is a disjoi ’(mn for all 7 €
{0,1,...,(m,n)&="1}. #Fiust s, g r finite onempty sets A, B with
Al =B, F J —
Ifaec Aandbe B

= (|A] = DL

Casel: (m,n)=1. nia:'g';:;: :
1.8, GHom( ”,

= (Zy, 0z,). By Proposition

since Z,, is finite, it
ko

- 21
his case.
A

follows that | y.

Case2:(mn1ByTeo i)

ﬂﬂﬂmﬁ%‘wm prgeen
“W"Tﬁﬂﬁmﬂﬁmmaa

f2+ (m,n)Z,) =2f(1) + (m,n)Z,,

=

f((m,n) =1+ (m,n)Zy) = ((m,n) = 1) f(1) + (m, n)Zy.
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For f : Z, — Z,, all the possibilities of f(1) are 0,1,...,n — 1. Notice that
f(1) € f(1+ (m,n)Z,). From these facts, we have that

Therefore the prebf is €omploi 5 = B R y O

Finally, we de rmige |1

(i) If (m,n) =1, then ‘
(ii) If (m,n) > 1, then|Ep

Proof. (i) If (myr

&

Epi /'.——"»,  ,: Jin) = Ln},

so |Epi(Zn, omz, )| = n'

H Ff‘ﬁ‘El AT
qvﬁ R m A ﬁ i mé““a

1-|- mn

2+ (m,n)Z,) = 2f(T) + (m,n)Zy,,

f((m,n) =1+ (m,n)Zp) = ((m,n) = 1) f(I) + (m, n)Zy.
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For f € Epi(Z,, omz,), the number of all possibilities of f(1) is ¢((m,n)). Notice
that f(1) € f(1+ (m,n)Z,). These facts yield the following result.

X (<m7?n> - 1)’

n

[Epi(Zn, omz, )| = ¢((m,n)

Example 3.2.4. : [ L __ heorem 3.2.2 and Theorem 3.2.3, we

4,6)

A
S\ (46)-1
Tk |
‘J.h‘ 6) :
e 1 % 9l x 3l = 190

~AUEAERE DS .....

momorphisms is 1,458 — 72 = #,386 and the number of the hom@niorphisms
LR AT HARIANFRE
Zg,04z,) € GHom(Zg, 047, )(Corollary 3.1.4). Then the number of the good
homomorphlsms of (Z¢, 04z,;) which are not epimorphisms is 72 — 12 = 60. Notice

that the number of all functions from Zg into itself is 6° = 46, 656.



CHAPTER IV

In this chapter ALE ' "  | wing hypergroups: (Q,ep)
defined as in Exam !' (2 ned as in Example 1.3
and (R, e) defin g o homomorphisms of
(Q, 8p), (Z,0), (Zg#o) ¢ 1 .. ' de acterizations of the elements

of Hom(R, e), C are given.

In this section, we deal with the ‘ “Lyps  (Q,ep) defined from the group

(Q—I—)and@;éPC@R 1 a+ P +yforall x,y € Q.
First, we &l Q¢ - (Qget).

Lemma 4.1. y or a € Q, defi .r‘

() = ax for all x € Q. u-!

Then H "'{ﬁ
~RUEANEYIN0]. .....

let f € Hom(Q, +). Claim that fi= kfq). Let m&Z" and | € Z. Thenr

QW']Nﬂ‘ifﬂelﬂd%T}ﬂﬂ'mﬂ

thh implies that f . Hence

f(#) = f(l(%)) =1f(s5) = £ f(1) = kry(5),
so we have the claim.

Therefore Hom(Q, +) = {k, | a € Q}, as desired. O
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The following theorem analogous to Theorem 1.13 is directly obtained from

Theorem 1.12 and the definition of k, for a € Q defined in Lemma 4.1.1.

Theorem 4.1.2. Let @ # P C Q. \The following statements hold.

(i) Forac Qe Jfif andsogly i ot md P C P.

Q_:{x€Q|x-<O

The following results e -}’~-ﬁ sbt: i, from Theorem 4.1.2 and Theorem

4.1.3.

£
Y )
‘" i

-l V
{ae k. € GHom(Q; ez )

(il
iF |

=ae Q| k. € GEpi(Q, o)}

ﬂuaqmwmﬁwsﬂni
AR mﬁ@"i‘ﬁpﬂ "Ta ]

{a € Q| k, € Hom(Q, ez )} =Z*

= {a c Q | k., € Epi((@, .Z_)}’
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{a € Q| k, € GHom(Q, - )} = {1}

={a € Q| k, € GEpi(Q, oz-)},

{a € Q| k, € Epi(Q, og+)}

‘ //g k, € GHom(Q, eg+)}

= S GEpi(Q, OQ+)},

Proof. Assume that (b';:Eqp-.... ( 4 ByLemma 4.1.1 and Theorem
— —=
4.1.2(i), QP CP. Ifac -“.f_:a- "?:i.'-‘:"!a""!."’:': hen

l-l=l-l"-_l-l. ‘ﬁ__l-l_

Yo ]

so P = Q. This p
For the converse, assume that P = {0} or P = Q: “j hen aP C P for all
a € Q. It then folld‘slﬁm Lemma 4.1.1 afid' Theorem 4.1.2(i) that Hom(Q, +) C

H°m‘ﬂuEVJVIEm§WEﬂﬂ'§ :

Remark 4.1.6. Let G be a gI"up and @ # P€ G. We know fromi Remark

R ARARALER WD g

‘Epi(G, ep) and GEpi(G, ep) as its subsemigroups. Let (A4, +) be an abelian group

C <.

and P a subsemigroup of (A4,+). We claim that Hom(A, ep) is a commutative
semigroup under addition. We have that (F(A),4+) is an abelian group where
F(A) is the set of all functions from A into itself. Next, let g, f € Hom(A, ep)
and x,y € A. Then
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(g+fzepy)=(g+ f)lx+P+y)

- f(x+ P +y)

This shows that Ho
lom(A, ep),+) is an abelian

—f € Hom(A, ep). Since P

If P is a subgroup © '
group. It remains to show ::,n'?;" r q.

is a subgroup of (A D _; Then for z,y € A,

¥

x+P+y

ﬂuﬂﬂﬂ&ﬂ@wﬂﬂﬂﬁ
Qﬁﬂﬁﬂﬂ‘imﬁ’lﬁ%ﬂﬂﬂﬂﬂ

It follows from the above facts that (Hom(Q, ez+), +) is a commutative semi-

group and (Hom(Q, ez),+) is an abelian group.
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4.2 Hypergroups Defined from Abelian Groups Whose
Hyperproducts Are Subgroups

In this section, let (A, +) be an abi o (A, o) the hypergroup under
the hyperoperation o defined | Zyfor all x,y € A.

First, we give some necessary itiofis Fouef (A, o).

it follows that f

(ii) If x ?f— |
| f(Za) =

AU INININANT
ammmmw@i"ﬁwmaﬂ

(iii) Since A = Za, (iii) follows from (ii). O
The following results follow directly from Proposition 4.2.1(iii).

Corollary 4.2.2. The following statements hold.
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(i) If f € GHom(Z,o), then f(Z) = Zf(1), and f € GEpi(Z,o) if and only if
either f(1) =1 or f(1) = —1.
(ii) If f € GHom(Z,,o), then f(Z,) = Zf(1) = Z,f(1), and f € GEpi(Z,,o) if

and only if a and n are relatively prime hege a = f(1).

The next theorem shoy every howiomor phism of (A, +) is a good homo-

morphism of (A, o)

Theorem 4.2.3.
Hom(Q, +) €

Proof. 1f a,x,

so g, € GHo 7 (Z, 0 ince Hom(Z. ) i}, we have Hom(Z,+) C

GHom(Z, o) y = ] ‘

Recall that T' 7 o1 :,' +) = {ko | a € Q}
(by Lemma 4.1. 1)) We can show similarly that Hom(Zn, C GHom(Z,, o) and
Hom(Q,+) C GHoﬁ@o O

Hﬂ:JJaEJfJ NUNINYINT
Corollary 4.2.4. The following Statements hold»

QWIZQMQMUMTW]EHQH

11 Hom(Z,,+) (GEpi(Z,,0) = {ha | a € Z and (a,n) = 1}.

The following theorem shows that Hom(Z,+) € GHom(Z, o), Hom(Q, +) C
GHom(Q, o) and gives a necessary and sufficient conditions for n guaranteeing

that Hom(Z,,, +) € GHom(Z,, o) holds.
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Theorem 4.2.5. The following statements hold.
(i) Hom(Z,+) € GHom(Z, o).

(ii) Hom(Q, +) € GHom(Q, o).
(iii) Forn € Z*, Hom(Z,, + & To

Proof. Define f :Z — 7 ‘ :

It is easily seen tha %. a € Q. We have that

f(xoy) =7f( + ) y) forall z,y €Z

) forall z,y € Q.

Since for z,y € Q, 1 € Zx " - + Zy, it follows that

and - :-_ .,r

z,y € Q.
EAF |

By the definitions of Jrand £ and the fac@at 7Z(1 , we have that

AUARENINEINT
aa‘hwwﬂﬁztwmawmaa

hese show that f € GHom(Z, o) and f € GHom(Q, o). Thus f € GHom(Z, o)
Hom(Z, +) and f € GHom(Q, o) ~ Hom(Q, +). This proves (i) and (ii).

To prove (iii), assume that n > 4.

Case 1 : n=4. Define f:Zs — Zs by f(0) =0and f(1) = f(2) = f(3) =2. Tt
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is clear that f # hg for all @ € {0,1,2,3}. Thus f ¢ Hom(Z4,+). To show f €
GHom(Zy, o), we first note that if A is a subset of Z4 containing 0 and a nonzero

element, then f(A) = {0,2}. It is evident that f(000) = {0} = f(0) o f(0).

f(®oy)=1{0,2}. Since

it follows that f(:
Hom(Z4, +) € GL

Case 2 : n > 5.4Then 1a 2 re relativels

L P Vk'
Z(n—1)=2Z,. |

es to n. Then Z(1) =

_ f
Then f(14+n —2) = fn—' —2)=n—14+4n—-2=2n-3=
+n—2)# f(1)+ f(n—2), it
follows that 'i H : i, o), let x,y € Z. Then

&l Dz

B | _
It is evident thaﬂ(OoO) = f(0)=0=Z0+20= f(0)o f(0). Assume that T # 0
ory # 0.

%ﬂ%ﬂ’&%%ﬁ%&ﬂﬂ‘i i

(@ +Zf(y ﬂn if =1

awwmﬁﬁﬁmmqm}mﬂ

husz:U+Zy L, =7fZ)+Zf(y

—3=n-3. But since

Subcase 2.2 : § = 1 or ¥ = n—1. It follows similarly to Case 1 that
f(Zx + Zy) = Z, = Zf(T) + Zf(Y).

Subcase 2.3 : 7,7 € Z, ~ {1,n—1}. Then f(Zz + Zy) = f(Z(x,y)) and
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Z2f(@) + Zf(§) = 2T + 7§ = (2,y)Zy, = Z(z,y). Since Z(zx,y) is a subgroup
of (Z,,+) and 1 and n — 1 are inverses of each other in (Z,,+), it follows that
Te Z(z,y) <= n—1 € Z(z,y). Hence f(Z(x,y)) = Z(x,y), so f(ZT + Zg) =
Zf(®) + Zf @) 1

Therefore we have -.;7 ‘Hom(Z, lom(Z,, +).

To prove that if Hom(%Z,. G n > 4, it is equivalent
to show that if n Q] m( n,—kwo) by Theorem 4.2.3
A

Let f € GHoul(Z, 8). Fhen f{{ = 0.1f f(T) =0, then f = h. If f(T) = T
then f = hy. 7 .
Next, let f € GHom
f(1) =T, then f(Zs) =
then f(Z3) =

£ /(1) = 0, then f = hg. 1If
=2,s0 f=hy If f(1) =2

The proof. i O

Z

Remark 4.2.6.g,et
a

semigroup under composition havm

and GEﬁ( ﬂ as f@semlggpﬁ %JHW Ej’Tdﬁ i
ol aﬂnimgmfaﬂma Y

=Z((—f)(2)) + Z((— f)(v))
= (=)@) o (=Nw).

This shows that —f € Hom(A,o) for all f € Hom(A, o). We can see from the

We fI' from Remark 2.1.6

that Hom(A, o) Hom(A o), Epi(A,o)
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above proof that if f € GHom(A, o), then —f € GHom(A, o). Since —A = A,
it follows that for f € Epi(A,o), —f € Epi(A,o) and for f € GEpi(A,o), —f €
GEpi(4, o).

We first charactezize

Theorem 4.3.1. Ic f F B Ri-[ , 7 if and only if f is

monotone.

Proof. To prove that' 1onotone by contrapositive,

- ze]Rsuchthatx<y<z
and either f(z) < f(y) > f 'f:!!-’:% < f(z) Thus f(zez) = f([z,z2]) =

()| tele,2y > f

assume that f is not 101 '.t‘"; hen t

Casel: f Ir"
Subcase 1. = fL'J and f(x) # f(y), so
flxez) L f(z)e f(2).

f(flﬂsufiﬁ 18 ﬁ%{wﬂﬂ[ﬂﬁn # (y), so
SETHSATSLI NG 18

f(2). We can prove similarly to Case 1, that f(x e z

From Case 1 and Case 2, we conclude that f ¢ Hom(R, e).

Conversely, assume that f is monotone. Then f is increasing or decreasing.
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First assume that f is increasing. Let z,y € R be such that x < y. Then

f(z) < f(y). Since f(zey) = flyox) = f([z,y]) = {f(t) [ t € [x,y]} and
flz) < f(t) < f(y) for all t € [x,y], it follows that

are homomorphis

. ¥ - L ———————— h ;‘\
We can see f anﬂ are ce S F{J‘j ontinuous.

: |

Recall a fact in énalysm that if f: R —> R is continuous and [ is an interval

“RUHIIANAINI. ...

f:R = Ris a good homomorphi$m of (R

e N34T 3 B NRAINUIAY...

nd continuous on R.

Proof. Assume that f € GHom(RR,e). By Theorem 4.3.1, f is monotone. First,

assume that f is increasing. Then we have that for = < y,

[z, ) = flwoy) = flyex) = f(x) o fy) = f(y) o f(x) = [f(2), f(y)].



37

To show that f is continuous on R, that is, to show that
Va e RVe>035>0, f((a—0d,a+9)) C(f(a) —¢, f(a) +e).

If f is a constant function, then f is

inuous. Assume that f is not a constant

Case 1: f(a) =
Suppose that (f(a)

> a since f is increasing.
1ot a constant function and

f is increasing, there exi e R s l a —¢. Then b < a and

R) # @. Then
. Let § = a—e. Then

which is a contradi

there exists e € Ri§ '

Case 2 : f(a) ﬂnin , Ji ﬂ;j ere exists ¢ > 0 such
that f((a —d,a 5))C(f( ) =€ fla) +

gy AT

increasing there exists b € R suchi'that f(b) < f ﬁ €. Then b < a

q W ﬁ\ﬁﬂ‘iﬁd MW%’@%&M a

contradlctlon Then ( —¢, fla R) # @. Since f(a) is not a maximum

of f(R) and f is increasing, we can show sunllarly that (f(a), f(a)+€) ) f(R) #
Let ey, ey € R be such that f(ey) € (f(a) —¢, f(a)) and f(ez2) € (f(a), f(a) +€).

Then e; < a < e3. Let § = min{a — e, e — a}. Then we have
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fla—=46,a+0)) € f([a—d,a+4d])

in R, so f is continuous

on R. If f is decreasi o be shoy continuous on R.
For the conversggssume/liaf f is mon '7 N tinuous. First assume
that f is increasing. Let : hat - [hen f(zey) = f(yex) =

f([l’,y]) and f ;
f([z,y]) is an intery;

¢ [ is continuous on R,

() @)

This shows that f ¢ GV m (TR 'L""; el ee ' *|. the above proof that if f is

decreasing, then f € GHo ."T.- eis, -a !,

The proof is thereby co EE];'?F .-“r ,;' , O

Example 4. 3.4, From Examp 3.2 7 : ":‘il ons f and g belong
L o

to GHom(R, @) but / S a ement of Hom(R, @)
GHom(RR, e). v L

“ﬁm“\i‘ ik mmm@a )

Theorem 4.3.1, f is monotone. Assume that f is increasing. To show that f €

GHom(R,e), let z,y € R be such that x < y. Since f € Hom(R,e) and f is

increasing, it follows that

f(lz,y]) = flzoy) = flyex) C fly) o f(x) = f(x) o f(y) = [f(2), f(y)]-
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Suppose that f([z,y]) S [f(z), f(y)]. Let a € [f(x), f(Y)] ~ f([z,y]). But
f(@), fly) € f([x,y]), so f(z) < a < f(y). Since f is increasing, we have that

(R) = R

..,,Q and thus f(r ey) =

A ,; we can show similarly

O
Remark 4.3.6. ﬂr heorem 4.3.5 that GEpi(R, ) = Epi(RR, e).
, .If" 4
Remark 4.3.7. Iy m:m and i heo 1 .3.5, it indicates a fact in

Analysis that if f: R = R l{ 61 ’f,@n X R, then f is continuous.

D (R,o) if a # 0 and

f(z) = b for Ly_ C X1 an-element or 7 (‘J ). In addition, we

have that g € E, ' .m

Remark 4.3.9. Lé @& R be given. For fL.R — R, if f is increasing decreasmg]

B AR A R o

and ¢ <q then cf is decreasing [increasing|. It follows from Theorem 4.3.1 that

SURERIET ey et tTop

G GHom(R,e), then ¢f € GHom(R,e), so —f € GHom(R,e). If ¢ # 0, then
R=R,socf € Ep1(R, o) for all f € Epi(R,e). In particular, —f € Epi(R, e) for
all f € Epi(R, ). Therefore we conclude that for ¢ # 0, cHom(R, e) = Hom(R, ),
¢GHom(R, e) = GHom(R, ) and cEpi(R, e) = Epi(R, e).

Example 4.



REFERENCES

[1] Bartle, R. G., and Sherbet, D. R, Introduction to Real Analysis.

n, K. Homomorphisms of

some hypergroups.- J lieopea™Ssuc for Annual Meeting in

Math. 20 6. ‘f‘
[3] Corsini, P. Pr ' Hy "\.,&; idine:
[4] Corsini, P.; a I A "I‘ ;\\»§\' ructure Theory.

[5] Davvaz, B.. OTg Fotea, V&' Hyperring Theory and Applications.
Palm Hagbor \

Aviani Editore, 1993.

[6] Jantosciak, J. Hg o.-i_', S equivalenc ﬂ‘h eductions in hypergroups.
Riv. Mat/ Pu Appl. ,/-1"9*'? n!: 3 47 \ .
[7] Mora, W., Hemalsil, Jf?' D . On homomorphisms of certain

hypergroups. E ec. Vol. for ICDMA 2008 (2008):

137144, i

[8] Mora, ?.-‘*’:*7 If" ‘( k on some
Semigroups ¢ ms. t— West J. Math. 10(2)
(2008):207-212. I

Neﬁnen hong and Plmkla, Y. Relationship between

R SVHHS WS

ssue for Annual Meetmg in Math. 2006 (2006): 13-18.

TRTH QAT TINY TN



VITA

Name Mr. Witthawa I anthawimol
Date of Birth 20 Fe
Place of Birth

Education

i University, 2004

Cal etsar U versity, 2006

4

dF

AULININTNEINS

AR TUNNINGAY

41



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I  PRELIMINARIES
	Chapter II  HOMOMORPHISMS OF HYPERGROUPS DEFINED FROM THE GROUP (Z,+) AND ITS SUBGROUPS
	2.1 Characterizations of Homomorphisms and Epimorphisms
	2.2 Results on Cardinalities

	Chapter III  HOMOMORPHISMS OF HYPERGROUPS DEFINED FROM THE GROUP (Zn,+) AND ITS SUBGROUPS
	3.1 Characterizations of Homomorphisms, Good Homomorphisms, Epimorphisms and Good Epimorphisms
	3.2 Combinatorial Results

	Chapter IV  HOMOMORPHISMS OF SOME OTHER HYPERGROUPS 
	4.1 P-hypergroups
	4.2 Hypergroups Defined from Abelian Groups Whose Hyperproducts Are Subgroups
	4.3 The Hypergroup Defined from R Whose Hyperproducts Are Closed Intervals

	References
	Vita



