Chapter 4

Path Integral Approach to
a Single Polymer Chain
with Random Media

In this chapter we shall consider the problem of a polymer chain in random
media with long-range interactions. We shall generalize the model proposed by
Edwards and Muthukumar (1988) for short-range correlation to finite-range corre-
lation. Instead of using a replica method, we employ the Feynman path-integral
method. This approach had been used to handle the problem of disordered
systems (Samathiyakanit, 1974) such as the heavily doped semiconductors (Sa-
yakanit, 1979). The main idea is to introduce the model trial Hamiltonian with
the non-local harmonic Hamiltonian. Since the original Hamiltonian is trans-
lation invariance, it is essential to model the random system with the non-local
Hamiltonian which will lead to the correct prefactor in the partition function.
Firstly, we shall set up the model of the system and secondly, calculate the mean

square end-to-end distance by path-integral method.

4.1 Model

We consider a Gaussian chain of length L (L = Nb) in a medium with
n obstacles, confined within a volume 2, and having a density p = n/Q2. The

system is described by the generalized Edwards’ Hamiltonian (1988).

BH = 5 " oR (1))’ NdVTz’
_2—()2/0 ’ or +/0 ’ [ (T)]
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z%/ONdT(asz)>2+i/()NdTv[ﬁ(T)_?i]’ (4.1)

where R (7) is the position vector of the chain at the segments 7 (0 < 7 < N ), b

is the Kuhn step length, V [—ﬁ (T)] is a potential due to n obstacles, 7’; is the
position vector of the ith obstacle, and v [7%, (1) — ?i] 1s some arbitrary potential
describing the interaction between the polymer and the obstacle. B is (lcT)_l,
where k& is Boltzmann’s constant and 7" is the absolute temperature.

The polymer propagator of such a system can be expressed in the path-

integral representation as
- — Hy =25
G (Ro B} = [ DR (r) exp(-5m). (42)
R,
where D [ﬁ (T)] denotes the path-integral to be carried out with the boundary
— S - -
conditions R (0) = Ryand R (N) = R,.
We assume that the obstacles are randomly distributed throughout the
volume €2 of the medium. For a random potential distribution

PV]= /.../dgl...d%"(s (v -~ iv [72’ - 7’,}) , (4.3)

51

where the delta function selects out those configurations which leads to a potential

V. Using the integral representation of the delta function,

5(\/—2”:»0 [ﬁ'—?i]) - z—ir-/_;wdtexp{it <V~gv [ﬁ—?i])},

=1

we have

P[V]= %/_:odtexp (itV) (/ -% exp (—itv [7%' - 7’]))

Employing these identities

[z]" =14 (z-1)]" =exp{n(z — 1)},
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where the last equality holds in the limit n — oo,

[ e (- [R-7))]

we obtain random distribution

P[] = %/_:odtexp {itV+ <p/d7’exp (—itv [7%—7’}) —n)}

We now use the fact that v is too small to expand exp (—ttv) in a power series

in v. It is here that we use the assumption of weak and dense scatterrers. Then

1 +o00
P[V] = — dt
21 ) _o
. ; — (3 = t? — 2B —
X exp th—f,tp/drv[R - r] —Ep/drv [R — r}
and
1 +o0 ' t2<
P[V] = —/ dtexp it (V — Vo) — — 3, (4.4)
2m &= 2
where the average V}, and variance ¢ of the potential are defined by
V0=<V [ﬁ}>=p/d7’v[ﬁ—?] (4.5)
and
£ = ;o/d-r_'v2 [ﬁ - ?] . (4.6)
Using
e . 1/2 b?
i = [Z =
/_oo d:rexp( az +b:c) (a> exp (4a)’
we have

PV] = (2r()"?exp <—M> . (4.7)
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Eq.(4.7) shows that P [V] is a Gaussian distribution about the mean V. A
potential having this distribution is called a "Gaussian Random Potential". This
distribution follows from the assumption that the obstacles are equally likely to
be in any volume element in the medium and from retaining quadratic terms in
V only. Using Eq.(4.7) for P [V] in the limits of high density p — oo and weak
scatterer v — 0 , so that pv? remain finite, the average over all configurations of

expression(4.2) can be performed exactly and the result is
Ry

E(Tz},ﬁl;z\f) =L D[T%(T)]

R,

X exp _Q%/ONdT <%)2+/()N/0Nd7daw [ﬁ(T)——ﬁ(O’) , (4.8)

where the mean potential energy has been taken as zero and W denotes the

correlation function, defined as

|44 [Ti (1) — R (0’)] & /d_f'v [—ﬁ (1) — 7’] v [72) (o) — ?] : (4.9)
Eq.(4.8) can be expressed formally in terms of a Hamiltonian as
R

G (ﬁz,EI;N) = ﬁ D [ﬁ (T)] exp (—BH), (4.10)

Ry

where SH is defined by

5H=%/0Nd7 (67;(7)) _./ON/ONdeaW [Tz’(r)—ﬁ(a)]. (4.11)

The correlation function W defined by Eq.(4.9) clearly depends on the obstacle

potential employed. If the obstacle potential is Gaussian, then it will follow that

|44 [7% (1) — R (0)] also a Gaussian function,

%% [7{) (1) — —ﬁ (0)] = ﬂie—(ﬁ(fkﬁ(o))?/@’ (4.12)
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where § denotes the correlation length of the random obstacles and W, = (%;:ZT
gives the magnitude of the fluctuations. In this model the fluctuations are
characterized by W, and £ only. In the white noise model, the correlation length

is zero (£ = 0) , we have

lim W [ﬁ’ (1) - R (a)] =W (0)6 (Tz’ (r)— R (o)) . (4.13)

£—0
This model corresponds to Edwards’model used to predict the size of a polymer
in random media (Edwards and Muthukumar,1988). However, for the long-range
correlation, Eq.(4.12) can be expanded in a power series to give
— — 2
(R -F ()
62

w R (r) - Tz’(a)] =W, [1= (4.14)

This correlation function has been considered and used by Shiferaw and

Goldschmidt (2000).

4.2 Calculation

In the previous section, we have proposed the model of a flexible poly-
mer chain in random media using a Gaussian obstacle potential. Now we will

proceed to characterize the model by using We = W, where u is a para-
e

meter introduced in order to take care of the dimension of the system. The

u2
2
Hamiltonian of the system in Eq.(4.11) can be rewritten as

— — 2
3 [N oR )2 N N R (1) — R (o)
5H=@/ﬁ dT( BT(T> +W5/0 /0 drdoexp | 7

(4.15)
At this stage, the average polymer propagator cannot be solved exactly.

To obtain the mean square end-to-end distance, we have to find an approximate
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expression for G. To do this we follow the method by Samathiyakanit (or Sa-
yakanit) given in Samathiyakanit (1974) by introducing a non-local harmonic trial

Hamiltonian

2
3 [y OR (r
5H0(w)—ﬁ/0 dT< = ) 4b2N/ / dea\R B,

(4.16)

where w is an unknown parameter to be determined. We may proceed to find

the average propagator which from Eq.(4.10) can be rewritten as

G (Ra, Ry N) = Go (B, BiyNow) exp (BHo (@) = BH)) ppiyy»  (417)

where the trial propagator Gy (ﬁg, 1—2)1; N ,w) is defined by
I J— 72’2 AN
Co (R BiiNw) = L D[R (7)) exp (~BHo (w) (4.18)
R
and the average (O) gy, (. 1s defined as

-

Rl Gy [R (r)] O exp (~BHo ()
D [R (1 )] exp (—8Hy (w)) |

(O)prgw) = (4.19)

The trial propagator Gy (R'z, Ry N, w) can be evaluated exactly, which we have

derived in an appendix to give

e e 3 \2( wN Y
Go(Ry Ry:Now) = _wN __
0 ( o w) (27rNb2> (2 sinh “’TN>

3
xexp{—i%coth—‘Rz— Rl‘ } (4.20)

By approximating Eq.(4.17) and keeping only the first cumulant, we get

Gy (ﬁg ﬁl; N) = Go (_ﬁg, ﬁl; N, w) exp [(,BHO (w) — BH)ﬁHO(w)] . (4.21)
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To obtain G, (ﬁg,—ﬁl;N) we have to find the average (8H (w) — BH)BHo(w)

Since the first term in BHy (w) and SH always cancel each other, so we
shall denote (BHo (w)) sy and (BH)gp, (., for convenience as the average of
the second term respectively. Thus the average (8Ho (w)) gy, Of Eq.(4.16) is

easily written as

(BHo () s1rae) = %‘%/ON /ON drda<‘7z’(r)—§(a)|2>ﬁﬂ " (4.22)

Next we consider the average (8H) g4y, () Which can be conveniently evaluated
by making a Fourier tranformation of W, and expressed in cumulants. Since
BHy (w) is quadratic, only the first two cumulants are non-zero (Kubo,1962),

then the average (B8H) gy, ) of Eq.(4.15) becomes

v R T
(BH) g 110wy = Wg/ / dea/ d——exp [ — + X1+ X2, (4.23)
0o Jo (2m) 2

where

X, =ik. <7€ (r)— R (0)>ﬂHo(w) (4.24)
and
X, = —%2 % <(7?’ (1) =R (0))2>Bﬂo(w) “(R(r) - R(o))fmo(w)} . (4.25)

x|

Performing the k -integration in Eq.(4.23), we get

N [N 1\3/2 B2
<5H>gﬁo(w)=W5/O /o drda(a> A3 exp 24 | (4.26)

where

&
A=2> 4
4

~{R{7)— R (U))zyo(w)jl (4.27)
and

B = <7~'E (r) - R (a)> . (4.28)
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Here, we see that Eq.(4.22) and Eq.(4.26) are expressed solely in terms of the

—

following averages <R (1) and <ﬁ (7) - R (0)> . These averages

>/3Ho(u) BHo(w)
can be obtained from a characteristic functional. From Feynman and Hibbs

(1995) the characteristic functional can be expressed as

<exp (— /0 " dr f (r)- R (T)) >m,(w)

— exp (— [ﬁH('),min (@) = BHo min (w)]) , (4.29)

where SHj . (w) and BHgmin (w) are two minimum Hamiltonians. The min-
imum Hamiltonians are obtained from the most probable chain configuration
(Wiegel,1986) by minimization of the Hamiltonians. This is the standard prob-
lem of the calculus of variations, where it is shown that the minimum should be

a solution of the Euler-Lagrange equation which we have derived in an appendix.

The averaged <7%) (T)>BHo(w) and <72) (1) - R (a)>BHO(w)can be obtained from the
following expressions
- 66}1/ min ((4)) i
<R (T)>5H ~ [—i—} (4.30)
o(w) 5F ) |70

and

(R R @)

BHo(w)

_ [_ 52ﬁH(l),min (UJ) T 5ﬂH(l),min (w) 618H(’),min (w)} ) (431)
6f (r)d f (o) o f (1) 0f(9)  17(r)=o0

Following these procedures we obtain

— _ = [ sin(wr) sin(%(N—7))sin (4 (7))
<R (T)>BH0(w) = 2 (sin (wN) T : cos (%N) )
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— [sin(w(N —7)) sin(4(N —7))sin(% (7))
R, ( D n 2 s (&) ) , (4.32)

Then the difference

<7€ (T)>BHo(w) - <7% (U)>BHo(w)

cos (£(N —|r+a])sin(4¢(r—0) = =
— R,— R 4.33
sin (42%) ( : 1> (4.33)
and the correlation function
— — 2
(F-F@))
B8Ho(w)
B 2b2 sinh “(T,;”) sinh “’(N_g_a))
N w sinh “’—N
smh “’2N 2 . '

We note that this expression gives not only the end-to-end correlation but
also gives information about the correlation along the chain. Using the above

averages we can write
3/2 .
— —_ — 3 OJN
(B By "") (27rNb2> (%mh%)
—3w 1 wN  wN wNY\ /= —=\?
xexp[( 4b2 ) ( h7+'—4—(‘0866h2 5 ) (Rz'— R1>

3 3wN e B?
~5t— cth——W/ / dea( ) A2 exp 1A ], (4.35)

where

N

w(N—(1—0))
2

2
3w sin

A=

%2 N b% sinh 2= sinh (4.36)

wN
h %5

and

ink w(rt—0) , hw(l\f—(7+a))
Bo(MIEeA ) R R).

sinh %
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Note that this Green function is obtained by averaging over all configurations of

obstacles, it must have the property

— -—> — —— S —

Gy (R2, Rl;Naw) =G (Rz - R1;N,w) .
The double integrations in Eq.(4.35) can be reduced by using the following iden-
tity

N /N N

/ / drdog (|7 — o) = 2/ dz (N —z)g(z). (4.38)
o Jo 0

The partition function can be obtained from taking the trace
Z (w) =TrGh (72)2 — ﬁl; N, w) (4.39)

and the variational parameter w can be obtained from

0ln Z (w)

= 0. 4.40

Thus we obtain variational equation

1—“thth +1 wN L wN wN'“wN 2
g O )Ty |\ ot g 9 ®¢7g

Wb LA NG .
= = (E) 2A de (N — ) A

sinh “Zsinh “B=2) Ngiph2ez 3 giph @NV=27)
X -2 —2 |, (441)
w sinh <~ 2sinh® ¥~ 2sinh %~
where z = 7 — ¢ . This variational equation is still very complicated. However

we can consider several limiting cases.

Limiting Case: wN — oo

Because the second term on the right hand side of Eq.(4.34) contained
the non-local in 7 + o and therefore for wN — oo this second term is damped
out. Then Eq.(4.34) can be written in asymptotic form as

<(§¥(T)-?¥(a))2> ::%;(1-e-w“-vn_ (4.42)

BHo(w)
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Furthermore we consider the above equation for small and large values of w (1 — o) .
For w (7 — o) — 0 we can write
— — 2
<(R(T)— R (o)) > 0P (r—0), (w(r—0)—0) (4.43)
BHo(w)
and for the case w (7 — o) — oo
— — 2 b2
<(R (1)- R (a)) > N —. (w(T —0) > 00) (4.44)
BHow) Y
These results can be compared with the results obtained by Edwards using the

replica method. For wN — oo the varational equation is simplfied to

—2p2 3/2 N
1 wN _ _“b_“ <_1_) 2/ dz (N — z)
4 6N(7r§2)/ 4r 0

€ b1 Le )17 11 —e™wT)  gev®
X {Z 4 N ] [ 50 - . (4.45)

Limiting Case: short and long-range correlation

Next, let us consider Eq.(4.45) for short and long-range correlation. Then

solutions are

T262p2 3
w= ( g Z ) %, (& —0) (4.46)
and
4 .
VALY (§ — 00) (4.47)

Collecting the above results together, we obtain

<(§(N)_ﬁ(o)>2> z@i( . )3, (WN — 00,6 = 0) (4.48)

2
BHo(w) 2 7T2€ b?

and

RN -R©0) a (WN — 00, — 00) (4.49)
BHow) 4
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We also noted that for wN — 0
<(Tz’ (N) - R (0))2> ~ b2N. (wN — 0) (4.50)
BHo(w)

Due to the definition the chain length L(L = Nb) is proportional to the
number of segments N per chain. Therefore, we find that in the white noise
limit as £ — 0, at small chain length (WN — 0), the chain behaves like a free
chain as shown in Eq.(4.50) . At large chain length (wWN — 00), we find that the
size of the chain is independent of the chain length as shown in Eq.(4.48). Thus
the chain is localized to a certain size. But in the long-range correlation limit

as £ — oo, the chain behaves like a free chain for all chain length as shown in

Eq.(4.49) and Eq.(4.50).
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