Chapter 3

Some Theoretical Approaches
to a Polymer Chain in

Random Media

The problem of polymer chain in random environment is among the most
interesting in statistical physics, since it is directly related to the statistical me-
chanics of a quantum particle in a random potential, that has applications in
diverse fields of disorderd systems. It has been known for a long time that the
behavior of polymer chain in random media controls a wide variety of phenom-
ena such as transport across membranes (Bean, 1972), viscoselasticity of polymer
solution (Ferry, 1980), exclusion chromatography (Yau, Kirkland and Bly, 1979)
and diffusion in porous media (Dullien, 1979), etc. In general, the random media
has very complicated random obstacle structures. To understand this complex
problem, the mean field theories (Renkin, 1954) have been used with simplifying
assumptions and conditions. Furthermore, computer simulations (Baumgartner,
1984) have been performed using well characterized models. In this chapter, we
shall review Edwards and Muthukumar (1988) approach using replica method for
treating the problem of a polymer chain in random media for very short-range

correlation and Shiferaw and Goldschmidt (2000) approach for the long-range

correlation.
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3.1 Edwards and Muthukumar Approach

Edwards and Muthukumar addressed the problem of the equilibrium
behavior of a Gaussian chain trapped inside a quenched random medium. They
consider a collection of n obstacles and a Gaussian chain of contour length L = Nb

in a volume €2 . The system is described by the generalized Edwards Hamiltonian

3N 2 ., N
= — dtv 7%)(7')—?;' ; (3.1)
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where R (7) is the position vector of the chain at the segments 7 (0<7<N),
b is the Kuhn step length, v [ﬁ (7) — 7’,-] 1s some arbitrary potential describing
the interaction between the polymer and the obstacle, 7; is the position vector
of the ith obstacle. 3 is (k7)7", where k is Boltzman’s constant and 7" is the
absolute temperature.

The mean square end-to-end distance of the chain in a random medium

is obtained by summing over all possible configurations of the chain and is given

R2({7:}) =
(73 — . (62)
—
D[R (r)] exp(~5H)
R(0)

R(N)
where / D denotes the summation over all chain configurations. The

R(0)

average of the mean square end-to-end distance of the chain over all possible
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distribution of the obstacles is

()~ [1I

when there are many obstacles randomly distributed, the obstacle density p (7")

—

g BT, (33)

at a point 7 can be regarded as having a Gaussian distribution

Pp] = exp [—% / d?”zf)—o?)} , (3.4)
where
p(7) =D 8(F =7 35)
and -
B é—/d?p(?) (3.6)

is the mean obstacle density. Thus R? ({7,}) is R? [p] and we need
Y rduidn

RZ) = ;
< > /D[ﬂ]P[p]

where the angular brackets indicate the average over the different configura-

(3.7)

tions of the random medium. In order to obtain the correct average, Edwards

and Muthukumar (1988) employed the replica trick. Since [ﬁ (N) - R (0)] =
N

-
/dr (8_1;512) , we can rewrite R? as
0

— .. 0InZ(X)
2 —— SO————
=

where

Z(A):/D[Ti (T)] exp { A [7dr (agf)ﬂ _BHS. (39
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Since
Inz = (6L> (3.10)
om ), _o
which is referred to as the "replica trick", we get from Eq.(3.8)
o AL
2 - lim =2
RE= lim oman B
where Z is given by Eq.(3.9). Thus we can write
N — % 2
n m L m 6Ra
z =I11/D[Ra] exp Zl A /dTQE— _BH.| Y. (312
a= a= 0

where

127(170(3"’“) Z/dT o[Rara) -7 (313)

The purpose of using the replica trick is to circumvent the averaging of a logarithm
appearing in Eq.(3.8). However, we have introduced an additional parameter m
which is eliminated by taking the limit of m — 0 in Eq.(3.11). Although we
have taken m as an integer, we must continue differentiation analytically the
expression for R? to all positive real m and evaluate it.

We now proceed to perform the average of Eq.(3.11) according to Eq.(3.7).

Specifically consider the average of

N
exp Z /d'ra R(TQ—T‘]}.
=170

S [Tz’a (Ta) — ?’,-] = /d?v [Tia (Ta) — 7’] o (7) (3.14)

i=1
in view of Eq.(3.5), we obtain the average of Eq.(3.11) by inserting Eq.(3.4) into

Eq.(3.7),

m o n N
<exp {— z:l ' /drav [ﬁa (Ta) — 7’,—] }>
a=] 1=1 0

n

Since
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N

/dTa/dTBU [ﬁa (Ta) — ﬁﬁ (Tg)] , (3.15)

0

B @ m n
_exp{zgﬁzl

where

—

U [Ra(ra) - Bo(rg)] = / 470 [Ra(ra) = 7] 0 [Rs (rs) - 7] . (310)

At this stage, Edwards and Muthukumar modeled the interaction between

the polymer and the obstacles by taking delta potential as
U(7)=ub'6(7), (3.17)

where 1 is a pseudopotential and is dimensionless. Combining Eq.(3.8)-(3.17)

we obtain
S . ,
=2 T e R
2 — o a
i —1}11{1}()6"1/HD{RQ] Z(/dTaa )
= La:l 0
3/ TR R\
Xexp{_ﬁz:l/(ha or )
ALY
" N
#Po Z/ TQ/dTﬁb (TQ)—T%)g(TB)]}. (3.18)
a,f=1",

To evaluate the integral of Eq.(3.18), Edwards and Muthukumar em-
ployed the Feynman variational procedure for the free energy of the chain. By

taking the trial Hamiltonian to be

N 2
3 «— Ta)
BH() = —b‘2‘ Z/dTQ ( 87‘0 > + Q, (319)
where

N
q _’2
=Ly / dra B2 (ry). (3.20)
0
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The Helmholtz free energy of the chain in m replicas F(m) is given by

exp [-BF (m)] = / H D [ﬁa] exp (—fHo+ X +Q), (3.21)
where N N
b6 m - -
X = ll'p20 ;1/dTa/dTB(5 [Ra (TQ) — Rg (Tﬁ) } (322)
XP=0 0

Here q is the variational parameter and F(m) is to be extremized with respect to

q. The extremum condition for F(m) is set up using the following argument
(eTHh] /5 g7 Who. (3.23)

Therefore we can rewrite Eq.(3.21) as

m

exp [=BF (m)] ~ exp (X)y +(Q)y) [ [[ D [Re] oo (-p0),  (32)

a=1
where the angular brackets with subscript zero indicate the average with respect
to the trial Hamiltonian of Eq.(3.19).

The propagator G®) corresponding to the trial Hamiltonian is that of
a harmonically localized random walk for cach replica and is well-known in the

literature (Feynman and Hibbs, 1995). For each a,

Ra(r)
G = / D [Ra(r)]
Ro(7')
N S \2 LN
X exp _Q_I)Z/dT (%f:) —%/dTﬁi (1)

3/2
= - exp{—-— E
2mbsinh (gb |1 — 77| /3) 2bsinh (¢b |7 — 77| /3)

% [(ﬁi (1) — ﬁi (T')) cosh (gb |7 — 7'| /3) — 27%:, (1) - 7?,)0 (T')] }. (3.25)
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As shown by Feynman and Hibbs (1995), G® can be expanded in expo-

nential function of (7 — 7') multiplied by products of eigenfunctions

o) _ ﬁz":exp {_qb T — T;I (+13) } o, [ﬁ’m. (T)] o, [Tz’m (r’)]

i=1 j=0
H exp { ® |T 7 } @0 [Roi (7)] @0 [Rai ()] (3.26)
where we have assumed that the ground state dominates the sum. Since
[fu] - (5) " - (5) (). om
b 2b
we obtain
G (%)3/2 exp {— (zib) (Tz’g (1) = R2 (T')) - @} . (3.28)
Choosing ﬁa (0) to be the origin and integrating over ﬁa (N), we get
/H D exp —[BH,) ~ exp (—quNb) : (3.29)

Furthermore, (Q), can be readily obtained from the dominant ground state eigen-

function as

.-\

J oA ® 93 [Ro (7]

/D - (1)] 23 [Ra (7)]

_ mano (3.30)

a=l

2771N
0=1€ /dT
0

Now we calculate the remaining term of Eq.(3.24). Parameterizing the

delta function in Eq.(3.22) we obtain
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(o (F [t - Tatea]),
- [

= exp ( % (if a#p) (3.33)

i2h

}= —qb'f-f’lfs)] ,(if a=p) (3.32)

The coefficient of m in (X), is given by
k k%b
dr’ d ( )
2q
=
X exp _k—l_)e_qb]T—Tll/s — 1
2q

= (3.34)

0(X b6
m—0 am

Combining the results of Eq.(3.24), Eq.(3.30) and Eq.(3.34), the replica Helmholtz

free energy F' becomes

~ . O0BF(m) _ gqNb
— =
& ,Llin,o Im = 4

oF |
(5’—">q=q =0. (3.36)

Following Eq.(3.34) to Eq.(3.36), we get

— . (3.35)

At the minimum of free energy,

qo = 3ep’p3b®, (3.37)

e e *
(271') /d:z: g 3/2 (1— e‘z)s/z =11, (3.38)
0

where
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It follows from Eq.(3.25) that the average mean square end-to-end distance of the

chain is
()= 2w a»
qo0
2
(@)= (1), (o = i) (340
<ﬁ> — NB?, (2 — 0) (3.41)
- 1

2\ _ — )

<R > il (3.42)

Due to the definition the chain length L (L = Nb) is directly proportional
to the number of segments N (or the total monomers) in the polymer chain. We
first consider in the case when the chain length is very short (N — 0). According
to Eq.(3.41), when z — 0 the polymer chain behaves like a free chain. Next,
if the polymer chain is very long (N — o), z — oo as shown in Eq.(3.42), we
can see that the size of a polymer chain is independent of the chain length. The
polymer chain curls up in the free volume between the obstacles and the size of

a polymer chain is limited by the size of the free volume.

3.2 Shiferaw and Goldschmidt Approach

Shiferaw and Goldschmidt (2000) presented an exactly solvable model of
a Gaussian polymer chain in a quenched random medium. This is the case when
the random medium obeys very long-range quadratic correlation. The model is
solved in d spatial dimensions and also using the replica method. The model of

the system can be described by the Hamiltonian

Hzﬂ—;iﬁ7dr(aR(T) /dR(T +/dTV[ ()], (3.43)
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where R (1) is the position vector of a point on the polymer at the segment
7(0 < 7 < N) and b is the Kuhn step length. 3 is (kT) ™", where k is Boltzman’s
constant and 7' is the absolute temperature.

The medium of random obstacles is described by a random potential

% [7%) (T)] that is taken from a Gaussian distribution that satisfies

<V [7%]> = (3.44)

and

(vEv[])=s((R-R)). (3.45)

The harmonic term in the Hamiltonian is included to mimic the effects

of finite volume. This is important to ensure that the model is well defined,
since it turns out that certain equilibrium properties of the polymer diverge in
the infinite volume limit (z — 0). The function f characterizes the correlations
of the random potential, and will depend on the particular problem. Once we

have defined the Hamiltonian, we can write the partition sum (Green function)
— —
that go from R to R’ as
R(N)=R'
i (Tz‘, 2 N) 1k / D [Tz’ (T)] exp (—BH) . (3.46)
R©)=R

The mean square end-to-end distance can be calculated by

@ ) JdRdR (R - 7%”)2 z(R,R;N)

— — - —
[dRdR'z (R, R;N)
where the over bar represents the average of the ratio over the random potential.

, (3.47)

This average is referred to as a quenched average as opposed to an annealed

average, where the numerator and the denominator are averaged independently.



34

In order to compute the quenched average over the random potential,
Shiferaw and Goldschmidt applied the replica method. By introducing m copies

of the system and average over the random potential to obtain

7., ({7?,’,-} , {72’;} : N) —Z (73'1, R’ N) 2 (Tz'm,ﬁ’;n; N)

Ri(N)=R! .
o ({7{2},{7{’;};1\/) T /ﬁ ED[_ﬁi] exp (—BHm), (3.48)
R;(0)=R;
h
where i _17d . J 6?,—(7) 2 iy
m=3 TZ W( 5 >+uRi(7)
B e, == _, .,
_E/Odrldcr;f ((R,-(T)- E;(0)) ) (3.49)

Now, the mean square end-to-end distance defined in Eq.(3.47) can be rewritten

as

— — — \ 2
= S TR []4R: (’ﬁl— Rg) T ({ﬁ,},{fz’;};N)
(R?) = lim R RN S . (3.50)
m—0 ’ /
SI14R TL Rz ({B:}. {R,.} ;N)

We see that the averaged equilibrium properties of the polymer can be
extracted from an m-body problem by taking the m — 0 limit at the end. This
limit has to be taken with care, by solving the problem analytically for general
m, before taken the limit of m — 0.

At this stage, to find the mean square end-to-end distance we must know

the correlation function. Shiferaw and Goldschmidt took the correlation function

to be of the form

(7 -

(IR [E) =1 ((B-F))=o|1- =] @
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where ¢ is chosen to be larger than the sample size, so that the correlation function
is well-defined (non-negative) over the entire sample.
By substuting Eq.(3.51) into Eq.(3.49), expanding the quadratic term and

simplifying the double integral, we obtain the replicated Hamiltonian

N

— 2
1 d [OR; =

0 1

2

~2By Z / drRi(r) | . (3.52)

where v = 26 1 and where we have dropped the constant part of the function f,
since it only contributes an unimportant normalization factor.

Now, using the Gaussian tranformation

2 A\ 2 =3 —3
exp(%)zﬁ/dAexp(%—Q-A) (3.53)

N
Q =284 (Z / dr R, (ﬂ) : (3.54)

0

and letting

we can write the replicated partition sum as

oo

- . . 2
Zom ({R,},{R;};N) ”. f2_7r1)m _/mdx exp (%)
. R.N)=R'
<11 D [Tii} exp (—ﬁHi (T)) , (3.55)
=l R.0)=F.

N — 2
ATy d OR;(7) ﬁl—’z 12Y . 1.
Hl()\)—/dr 52b2< - ) + R ) 42X Ran)| 859)
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and where p/ = p + 4nfByN. The path-integral can now be evaluated directly
using well-known results for quadratic Hamiltonian. Once the partition sum is
known, we can directly evaluate the right-hand side of Eq.(3.50) by taking m — 0
at the end. The result is

R2) = 2d sinh (N (g"‘fi>llz>
>_ 172 L |
B (b%) <COSh (g,;ﬁ) B 1)

We see that the mean square end-to-end distance is independent of dis-

(3.57)

ordered medium and in the limit of i — 0, Eq.(3.57) becomes
<7%’2> = Nb* (3.58)

This interesting finding is that a chain that is free to move in a quadrati-
cally correlated random potential behaves like a free chain as if there is no random
potential.

In this chapter, we consider the problem of flexible polymer chain in a
medium of fixed random obstacles.  We reviewed Edwards and Muthukumar
(1988) approach for the short-range correlation and Shiferaw and Goldsschmidt
(2000) for the long-range correlation. In calculating the size of the polymer,
the averaging over the chain configurations should be done first followed by the
averaging over the configurations of the random medium. Using Replica method,
for the short-range correlation Edwards and Muthukumar (1988) have shown that
if the chain length is very short, the polymer chain behaves like a free chain. But
if the polymer chain is very long we can see that the size of the polymer chain is
independent of the chain length. The polymer chain curls up in the free volume
between the obstacles and the size of the polymer chain is limited by the size of

the free volume. For the long-range correlation, Shiferaw and Goldsschmidt have
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shown that the polymer chain always behaves like a free chain as if there is no

random potential.
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