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CHAPTER I 

INTRODUCTION 

1.1 General 

An important class of problems encountered in mechanics is concerned with the study 

of mechanical response of cylindrical specimens since they are widely found in civil 

engineering laboratory and in-situ testing for concrete, soils and rocks. For example, solid 

circular cylinders are the most commonly used specimens in various standard tests in 

engineering applications, such as uni-axial compression tests, tri-axial compression tests, 

double-punch tests and point load strength tests, etc. Hollow cylindrical specimens are also 

widely used in rock engineering laboratory to estimate material properties for hydraulic 

fracturing, subsidence phenomena and breakout angle. In addition, a cylindrical borehole 

drilled in a soil/rock medium is commonly found in the petroleum industry. Stability of 

borehole is important because it is the one of major problems in oil and gas industries. The 

failure of the soil/rock around the borehole is a common problem, and it causes a variety of 

drilling delays and expenses running into hundreds of millions of dollars per year. 

In the past, the classical theory of elasticity has been used extensively to analyze 

various elastostatic and elastodynamic problems involving cylinders and boreholes. 

Traditionally, field equations have been formulated on the assumption that the medium is a 

single-phase elastic solid. However, geological materials are normally two-phase materials 

consisting of a solid skeleton with voids filled with water. Such materials are commonly 

known as poroelastic materials and widely considered as much more realistic representation 

for natural soils and rocks than ideal elastic materials. Biot developed theories of 

poroelasticity for quasi-static (1941) and dynamic (1956) problems respectively to account for 

fluid stress and strain. Later, other poroelastic theories have also been developed by using the 

mixture theory concepts but in practice they do not offer any significant advantage over 

Biot’s theory. Over the last five decades, Biot’s theories have been employed for analysis of 

various practical problems encountered in geomechanics, geophysics, earthquake engineering 

and energy resource explorations. Nevertheless, several theoretical models involving 

poroelastic materials that could be useful for laboratory and in-situ tests in civil engineering 

have not been presented. For example, theoretical modeling of three-dimensional 

consolidation of a solid cylinder in the laboratory has never been reported in the literature. In 

addition, existing studies on stress analysis of a borehole have not included the excavation 

disturbed zone due to borehole drilling process.    
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The present study is concerned with the development of analytical solutions for 

cylinder and borehole based on Biot’s theory of poroelasticity, which can be used for 

theoretical modeling of various geomechanics problems. The analytical solution for a solid 

poroelastic cylinder of finite length subjected to axisymmetric loading is presented in Chapter 

III. The quasi-static solutions of an infinite cylindrical borehole in a poroelastic medium 

subjected to surface loading, and contact problems between a rigid cylinder bonded to a 

borehole in poroelastic material are also presented in Chapter IV. The surrounding medium in 

the vicinity of the borehole is considered to be a disturbed zone due to the processes induced 

by excavation. The dynamic response of an infinite borehole in poroelastic medium with 

consideration of excavation disturbed zone is also presented in Chapter V. Objectives and 

scopes of this study are defined in the following section. 

1.2 Objectives and Scopes of Present Study 

The main objectives and scopes of the present study are given as follows 

1. The general solutions corresponding to a finite solid poroelastic cylinder, and an 

infinite borehole in a poroelastic medium with consideration of excavation 

disturbed zone subjected to axisymmetric loading and fluid sources are derived. 

Both fully permeable and impermeable flow boundary conditions are considered.  

These solutions can be used in the analysis of a variety of boundary value 

problems encountered in civil engineering applications. 

2. Numerical solutions for several boundary value problems relevant to cylinders 

and boreholes are presented to study the influence of poroelastic material 

properties and other governing parameters, and to demonstrate the key features of 

coupled poroelastic response. 

 



CHAPTER II 

LITERATURE REVIEWS 

2.1 General 

The theory of poroelasticity has its origin in the one-dimensional theory of soil 

consolidation proposed by Terzaghi (1923). Biot (1941) developed a general theory of three-

dimensional consolidation by adopting Terzaghi’s concepts. Biot’s theory is based on the 

classical theory of elasticity and Darcy’s laws, and it takes into account the coupling between 

the solid and fluid stresses and strains. Rice and Cleary (1976) reformulated Biot’s theory 

(1941) in terms of Skempton’s pore pressure coefficients (Skempton 1954) and the undrained 

Poisson’s ratio of the bulk material. The first theory of wave propagation in porous elastic 

solid was also established by Biot (1956) by adding inertia terms to his original theory (Biot 

1941). Thereafter, Biot’s theory has widely been applied to a variety of consolidation and 

wave propagation problems in soil engineering, rock mechanics, biomedical engineering and 

energy resource explorations. The present study is concerned with the development of 

analytical solutions for cylinders and boreholes by employing Biot’s theory of poroelasticity. 

In the following sections, a review of literature related to stress analysis of cylinders and 

boreholes is presented. 

2.2 Cylinder Problems 

Stress analysis of finite elastic cylinders has received considerable attention in the 

past due to its close relevance to geotechnical and rock testing methods such as uni-axial and 

tri-axial compression tests, double-punch tests and point load strength tests, etc. In addition, 

stress analysis of cylinders is also relevant to applications involving biomedical and 

mechanical engineering. Lekhnitskii (1963) and Vendhan and Archer (1978) presented the 

early analytical solutions for transversely isotropic elastic cylinders by using the methods of 

stress functions and displacement functions respectively. Later, Chau and Wei (2000) derived 

the general solution for an isotropic elastic solid cylinder of finite length subjected to arbitrary 

surface loading based on two displacement functions. Theoretical models of several 

engineering tests were also presented by Watanabe (1996), Wei et al. (1999) and Chau and 

Wei (2001) for isotropic cylinders, and by Wei and Chau (2002) for transversely isotropic 

materials. 

In the context of poroelastic materials, Abousleiman et al. (1996) and Abousleiman 

and Cui (1998) presented plane strain poroelastic solutions for infinite cylinders subjected to 
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axial strain and confining pressure. Cui and Abousleiman (2001) developed a general solution 

based on the generalized plane strain conditions for a poroelastic cylinder under an axial load 

and confining pressure, and examined the poroelastic effects in rock samples under uni-axial 

and tri-axial testing conditions. Kanj et at. (2003) presented plane strain solutions for a fully 

saturated transversely isotropic hollow cylinder under various loading conditions relevant to 

laboratory testing. Recently, Jourine et al. (2004) proposed a general poroelastic solution for 

radially symmetric plane strain problems to model laboratory testing of thick-walled hollow 

cylinders with time-dependent boundary conditions. The above studies assumed plane strain 

conditions, which are valid for certain types of loading and boundary conditions. Most 

soil/rock testing involves cylindrical specimens subjected to axisymmetric loading and the 

stresses, pore pressure and fluid flow do not reflect plane strain behavior due to cylinder end 

effects and loading conditions. It is therefore important to examine the poroelastic field under 

practical test conditions using a 3-D model that allows better understanding of laboratory 

results and interpretation of material properties. However, a 3-D model for a finite poroelastic 

cylinder has not appeared in the literature. 

2.3 Borehole Problems 

Stress analysis of cylindrical boreholes in soils and rocks is of fundamental 

importance to several engineering applications such as in-situ testing of geological materials, 

energy and mineral resource explorations, waste disposal and groundwater discharge, etc. In 

the past, several studies investigated the response of a deep cylindrical borehole in an 

isotropic or a transversely isotropic elastic medium to static and dynamic loading applied to 

borehole surface. For example, Jordan (1962) solved a dynamic problem of suddenly applied 

pressure over finite interval of the borehole. The corresponding static solution of radially 

applied axisymmetric traction was also presented by Parnes (1982). Parnes (1983, 1986) later 

presented time-harmonic response of a borehole cylinder under axisymmetric torsional and 

ring loading. In addition, Rajapakse and Gross (1996) derived analytical solutions for 

axisymmetric displacements and stresses, and then solved boundary value problems involving 

an infinite borehole in a transversely isotropic medium subjected to axisymmetric traction and 

a rigid cylinder perfectly bonded to a borehole wall. Robinson (2002) subsequently 

considered the contact problem between a rigid cylinder and a borehole wall, and determined 

the singularity at the cylinder edges by using Neumann Bessel function series representations 

of the kernels of shear and radial stress integral expressions. 

All studies mentioned in the foregoing paragraph considered the surrounding medium 

as single-phase elastic materials. A poroelastic solution for a borehole in a non-hydrostatic 
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stress field was presented by Detournay and Cheng (1988) by assuming and plane strain 

conditions. Analytical solutions based on the generalized plane strain concept for inclined 

boreholes in isotropic and transversely isotropic poroelastic media also exist in the literature 

(Cui et al. 1997 and Abousleiman and Cui 1998). Rajapakse (1993) considered axisymmetric 

stress analysis of a cylindrical borehole in an infinite poroelastic medium with incompressible 

constituents by using Laplace-Fourier integral transforms. Abousleiman et al. (1997) 

presented a pseudo-three dimensional solution for an inclined borehole problem. Their 

solution has found widespread industry applications in evaluating impacts of the poroelastic 

processes on borehole stability (Cui et al. 1998 and Cui et al. 1999). An analytical solution for 

an inclined borehole subjected to arbitrary time-dependent far-field stresses and pore fluid 

boundary condition at the borehole wall was also developed by Ekbote et al. (2004). Recently, 

Abousleiman and Chen (2010) presented stress analysis of a borehole subjected to fluid 

discharge over a finite segment of the surface coupled with the three-dimensional far-field in-

situ stresses. The wave propagation problem related to an infinite borehole was also 

considered by Lu and Jeng (2006), who presented dynamic response of an infinite borehole in 

a poroelastic medium subjected to radial ring force at the borehole. 

It is well known that borehole drilling process is a primary factor in causing changes 

of physical, mechanical, and hydraulic properties around the borehole, such as bulk modulus, 

shear modulus, desaturation, and strength. The rock/soil zone, where its properties are 

changed, is called an excavation disturbed zone (EDZ). The EDZ is one of the most important 

factors that affect the stability of borehole. Several researches have studied behaviors of the 

excavation disturbed zone in the past decade. For example, Sato el at. (2000) performed an 

excavation disturbance experiment in the Neogene sedimentary soft rock at Tono mine central 

Japan to observe the change of rock properties and the width of the EDZ during the drift 

excavation. Martino and Chandler (2004) studied the behavior of the EDZ at the Underground 

Research Laboratory (URL) located in Manitoba, Canada to understand the character and the 

extent of excavation damage. The EDZ investigation was conducted at the mine using seismic 

measurement techniques by Malmgren et al. (2007) to determine the mechanical properties of 

EDZ at Kiiranavaara mine, Sweden. The influence of hydro-mechanical properties 

(desaturation and anisotropy) in the EDZ at the underground research laboratory in France 

was carried out by Shao et al. (2008). Recently, Kwon et al. (2009) used in-situ, laboratory 

tests, and computer simulations to investigate characteristics of the excavation damage zone 

developed during a Korean tunnel contracture.  

Based on a survey of literature mentioned above, it is found that both quasi-static and 

dynamic responses of a cylindrical borehole in a poroelastic medium with an excavation 
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disturbed zone have never been considered in the past, although the EDZ has a significant 

influence on a change in rock/soil properties, which is directly related to displacement, stress, 

excess pore pressure, and fluid flow around the borehole. The consideration of the EDZ is 

then essential for an optimal design of the drilling process. In this study, the general solutions 

both quasi-static and dynamic responses of a borehole in a poroelastic medium are derived by 

considering the effect of the excavation disturbed zone.  

 

 

 



CHAPTER III 

POROMECHANICAL RESPONSE OF FINITE CYLINDER 

3.1 General 

Drained or undrained cylindrical specimens under axisymmetric loading are 

commonly used in laboratory testing of soils and rocks. Poroelastic cylindrical elements are 

also encountered in applications related to bioengineering and advanced materials. In this 

chapter, a new analytical solution for a solid poroelastic cylinder of finite length subjected to 

axisymmetric loading is presented. Both fully permeable (drained) and impermeable 

(undrained) flow boundary conditions are considered. The general solutions are derived by 

first applying the Laplace transform with respect to time and then solving the resulting 

governing equations in terms of Fourier-Bessel series, which involve trigonometric and 

hyperbolic functions with respect to the z − coordinate and Bessel functions with respect to 

the coordinate. Several time-dependent boundary-value problems are solved to 

demonstrate the application of the general solution to practical situations. Time domain 

solutions are obtained by using a numerical Laplace inversion scheme. Selected numerical 

results are presented for different axisymmetric loading, hydraulic boundary conditions, 

cylinder aspect ratios and material properties to understand the salient features of the 

poroelastic field of a cylinder and its relevance to laboratory testing. 

r −

3.2 Basic Equation and General Solution 

Consider a solid poroelastic cylinder of radius a  and height  subjected to 

axisymmetric loading as shown in Fig. 3.1. A cylindrical polar coordinate system ( , 

2h

r θ , ) is 

used with the z -axis parallel to the axis of the cylinder. The governing equations given by 

Rice and Cleary (1976) for a poroelastic material undergoing axisymmetric deformations are  

z

 
2 2

2 2 2

2 (1 )1 1
(1 2 ) 3(1 2 )

ur
r

u u

Buu
r r r z r r r

νε ζ
ν ν

⎛ ⎞ +∂ ∂ ∂ ∂ ∂
+ + + − −⎜ ⎟∂ ∂ ∂ − ∂ − ∂⎝ ⎠

 = 0 (3.1) 

 
2 2

2 2

2 (1 )1 1
(1 2 ) 3(1 2 )

u
z

u u

Bu
r r r z z z

νε ζ
ν ν

⎛ ⎞ +∂ ∂ ∂ ∂ ∂
+ + + −⎜ ⎟∂ ∂ ∂ − ∂ − ∂⎝ ⎠

 = 0 (3.2) 

 
2 2

2 2

1
r r r z

ζ
⎛ ⎞∂ ∂ ∂

+ +⎜ ⎟∂ ∂ ∂⎝ ⎠
 = 1 ζ

c t
∂
∂

 (3.3) 

where 
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  = c
2 2(1 )(1 )2

9 (1 )( )
u

u u

Bμκ ν ν
ν ν ν
− +

− −
 (3.4) 

In the above equations,  denotes the displacement of solid matrix in the i -direction 

; 

iu

( , )i r z= ε  is the dilatation of the solid matrix; μ , ν , uν  and κ  denote the shear modulus, 

drained and undrained Poisson’s ratios, and the coefficient of permeability of the cylinder 

respectively; B  is the Skempton’s pore pressure coefficient (Skempton 1954); ζ  denotes the 

variation of fluid volume per unit reference volume, defined as  ,i iwζ = − , in which   

denotes the fluid displacement relative to the displacement of solid matrix in the i -direction 

. 

iw

( ,i r z= )

 The constitutive relations can be expressed as 

 rrσ  = 
3( )2

1 2 (1 2 )(1 )
ur

u

u p
r B

ν ννμ ε
ν ν

−∂⎛ ⎞+ −⎜ ⎟∂ − − +⎝ ⎠ ν
 (3.5) 

 θθσ  = 
3( )2

1 2 (1 2 )(1 )
ur

u

u p
r B

ν ννμ ε
ν ν

−⎛ ⎞+ −⎜ ⎟− − +⎝ ⎠ ν
 (3.6) 

 zzσ  = 
3( )2

1 2 (1 2 )(1 )
uz

u

u p
z B

ν ννμ ε
ν ν

−∂⎛ ⎞+ −⎜ ⎟∂ − − +⎝ ⎠ ν
 (3.7) 

 rzσ  = r zu u
z r

μ ∂ ∂⎛ +⎜ ∂ ∂⎝ ⎠
⎞
⎟  (3.8) 

where rrσ , θθσ , zzσ  and rzσ  denote the total stress components of the bulk material. Note that 

the tension positive sign convention for stresses and strains is adopted here. In addition, p  is 

the excess pore fluid pressure (suction is considered negative), which can be expressed in 

terms of dilatation and variation of fluid volume as 

 
2
p
μ

 = 
2 2(1 ) (1 2 )(1 )

3(1 2 ) 9(1 2 )( )
uB Bν ν u

u u u

ν
ε ζ

ν ν ν
+ − +

− +
− − −ν

)

 (3.9) 

The fluid discharge in the -directioni ( ,i r z= denoted by  is given by iq

  = iq p
i

κ ∂
−

∂
 (3.10) 

Note that  is also related to  such that =iq iw iq /iw t∂ ∂ . 

 At this stage, it is convenient to nondimensionalize all quantities including the 

coordinates with respect to length and time by selecting the radius of the cylinder “ ” as a a
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unit length and “ ” as a unit of time respectively. All variables are replaced by the 

corresponding nondimensional variables but the previous notations are used for convenience. 

2 /a c

The Laplace transform of a function ( , , )r z tφ  with respect to time variable t  and its 

inverse transform are given respectively by (Snedden 1951) 

 ( , , )r z sφ  =  (3.11) 

 

0

( , , ) str z t e dtφ
∞

−∫

( , , )r z tφ  = 1 ( , , )
2

i
st

i

r z s e ds
i

α

α

φ
π

+ ∞

− ∞
∫  (3.12) 

where s  is the Laplace transform parameter, the line Re( )s α=  is to the right of all 

singularities of φ  and =i 1− . 

Application of the Laplace transform to Eq. (3.3) yields 

 
2 2

2 2

1
r r r z

ζ
⎛ ⎞∂ ∂ ∂

+ +⎜ ∂ ∂ ∂⎝ ⎠
⎟  = sζ  (3.13) 

The above equation can be solved directly by considering a function of the form 

( , , )r z sζ = ( , ) ( , )R r s Z z s . It can be shown that 

 ζ  = [ ][1 0 2 0 3 4
0

( ) ( ) cosh( ) sinh( )m m m m m m m m
m

]A J r A Y r A z A zλ λ γ
∞

=

+ +∑ γ

]

 

   [ ][1 0 2 0 3 4
0

( ) ( ) cos( ) sin( )n n n n n n n n
n

B I r B K r B z B zβ β χ
∞

=

+ + +∑ χ  (3.14) 

where  mγ = 2
m sλ + ; nβ = 2

n sχ + ;  mλ  is the th root of m 1( )mJ λ =0;  nχ = /n hπ ; and  

and 

imA

inB  ( i =1, 2, 3, 4; =0, 1, 2,…,,m n ∞ ) are arbitrary functions. In addition, nJ  and  are 

Bessel functions of first and the second kinds respectively of the n th order; and  and  

are modified Bessel functions of the first and second kinds respectively of the n th order 

(Watson 1944). 

nY

nI nK

Since the stress field at the center of a solid cylinder must be bounded, all terms that 

related to 0 ( mY r)λ  and 0 ( nK r)β  are inadmissible. In addition, the solution of the variation of 

fluid volume ( ζ ) should contain only even functions of z  since the applied loading is 

 



 10

symmetric with respect to the mid-plane of the cylinder. Therefore, the admissible complete 

solution of the variation of fluid volume is obtained from Eq. (3.14) as,  

 ζ  = 0 0
0 0

( )cosh( ) ( )cos(m m m n n n
m n

)A J r z B I r zλ γ β χ
∞ ∞

= =

+∑ ∑  (3.15) 

where  and mA nB  ( =0, 1, 2,…,,m n ∞ ) are arbitrary functions to be determined. 

 Differentiation of Eqs. (3.1) and (3.2), and subsequent manipulations yields, 

 
2 2

2 2

1
r r r z

ε
⎛ ⎞∂ ∂ ∂

+ +⎜ ⎟∂ ∂ ∂⎝ ⎠
 = 

2 2

2

1
r r r z2η ζ

⎛ ⎞∂ ∂ ∂
+ +⎜ ∂ ∂ ∂⎝ ⎠

⎟  (3.16) 

where η = (1 ) / 3(1 )uB uν ν+ − . Application of the Laplace transform to Eq. (3.16) and the 

substitution of Eq. (3.15) result in 

 ε  = [ ] 0
0

cosh( ) cosh( ) ( )m m m m m
m

A z C z J rη γ λ
∞

=

+∑ λ

] )

 

   [ 0 0
0

( ) ( ) cos(n n n n n
n

B I r D I r zη β χ
∞

=

+ +∑ χ  (3.17) 

where  and mC nD  ( =0, 1, 2,…,,m n ∞ ) are arbitrary functions. Consequently, the radial and 

vertical displacements in the Laplace domain are obtained by substituting Eqs. (3.15) and 

(3.17) into Eqs. (3.1) and (3.2). The resulting solutions are 

( , , )ru r z s  = 0 1
1 1

( , ) ( , ) ( ) ( , )cos( )r rm m rn
m n

u r s u z s J r u r s znλ ξ
∞ ∞

= =

+ +∑ ∑  (3.18) 

( , , )zu r z s  = 0 0
1 1

( , ) ( , ) ( ) ( , )sin( )z zm m zn
m n

u z s u z s J r u r s znλ ξ
∞ ∞

= =

+ +∑ ∑  (3.19)  

where 

 0 ( , )ru r s  = 1/2
0 1 0 0( ) / 2s B I r D rη β− +  (3.20) 

 ( , )rmu z s  = 1 1
1cosh( ) cosh( ) sinh( ) cosh( )m m m m m m m m ms A z z a z z C Eηλ γ λ λ λ λ− −⎡ ⎤− + + −⎣ ⎦ z  (3.21) 

 ( , )rnu r s  = 1 1
1 1 0 2 1 1( ) ( ) 2 ( ) (n n n n n n n n n )s B I r a rI r a I r D F I rηβ β χ χ χ χ− −⎡ ⎤− − −⎣ ⎦  (3.22) 

 0 ( , )zu z s  = 1/2
0 0sinh( ) 0s A z Cη γ− + z  (3.23) 
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 ( , )zmu z s  = 1 1
1 1sinh( ) sinh( ) cosh( ) sinh( )m m m m m m m m ms A z a z a z z C Eηγ γ λ λ λ λ− −⎡ ⎤+ − +⎣ ⎦ z  (3.24) 

 ( , )znu r s  = 1
0 1 1 0( ) ( ) (n n n n n n n )s B I r a rD I r F I rηχ β χ χ−− + +  (3.25) 

In addition, =1 /1a 2(1 2 )uν− ; =2a (1 ) / (1 2 )u uν ν− m; − E  and nF  ( =1, 2, 3,…, ) are 

arbitrary functions. 

,m n ∞

 In view of Eqs. (3.5)-(3.10), (3.15) and (3.17)-(3.19), the general solutions of stresses, 

pore fluid pressure and fluid discharge in the Laplace domain can be expressed as,    

( , , )
2

rr r z sσ
μ

 = (1) (2) 1
0 0

1 1
( , , ) ( , ) ( ) ( , ) ( )rr rrm m rrm m

m m
r z s z s J r z s r J r1σ σ λ σ

∞ ∞
−

= =

+ +∑ ∑ λ  

   
1

( , )cos( )rrn n
n

r s zσ χ
∞

=

+∑  (3.26) 

( , , )
2

zz r z sσ
μ

 = 0 0
1 1

( , , ) ( , ) ( ) ( , )cos( )zz zzm m zzn n
m n

r z s z s J r r s zσ σ λ σ
∞ ∞

= =

+ +∑ ∑ χ  (3.27) 

( , , )
2
r z sθθσ
μ

 = (1) (2) 1
0 0

1 1
( , , ) ( , ) ( ) ( , ) ( )m m m

m m
r z s z s J r z s r J rθθ θθ θθσ σ λ σ

∞ ∞
−

= =

+ +∑ ∑ 1 mλ  

   
1

( , )cos( )n
n

r s zθθ nσ χ
∞

=

+∑  (3.28) 

( , , )
2

rz r z sσ
μ

 = 1
1 1

( , ) ( ) ( , )sin( )rzm m rzn n
m n

z s J r r s zσ λ σ χ
∞ ∞

= =

+∑ ∑  (3.29) 

( , , )
2

p r z s
μ

 = 0 0
1 1

( , , ) ( , ) ( ) ( , )cos( )m m n
m n

np r z s p z s J r p r s zλ χ
∞ ∞

= =

+ +∑ ∑  (3.30) 

( , , )
2

rq r z s
μ

 = 0 1
1 1

( , , ) ( , ) ( ) ( , )cos( )r rm m rn
m n

q r z s q z s J r q r s znλ χ
∞ ∞

= =

+ +∑ ∑  (3.31) 

( , , )
2

zq r z s
μ

 = 0 0
1 1

( , , ) ( , ) ( ) ( , )sin( )z zm m zn
m n

q r z s q z s J r q r s znλ χ
∞ ∞

= =

+ +∑ ∑  (3.32) 

where 0rrσ , (1)
rrmσ , (2)

rrmσ , rrnσ , 0zzσ , zzmσ , zznσ , 0θθσ , (1)
mθθσ , (2)

mθθσ , nθθσ , 0rzσ , rzmσ , rznσ , 0p , 

mp , np , 0rq , rmq , rnq , 0zq , zmq  and znq  are given in Appendix A.  

3.3 Finite Poroelastic Cylinder under Axisymmetric Loading 

Consider a solid cylinder subjected to axisymmetric radial traction ( , )rF z t  on the 

curved surface and axisymmetric vertical traction ( , )zF r t  at the end surfaces as shown in Fig. 

3.1. A linear algebraic equation system can be established to determine the arbitrary functions 

appearing in Eqs. (3.18)-(3.32) by applying the appropriate boundary conditions on the 
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cylinder surfaces. There are three boundary conditions at the curved surface and three at each 

end surface. The stress boundary conditions at the curved surface can be expressed in the 

Laplace domain as 

 (1, , )rr z sσ  = ( , )rF z s  (3.33) 

 (1, , )rz z sσ  = 0 (3.34) 

where ( , )rF z s  is the Laplace transform of radial traction applied at the curved surface. In 

addition, the hydraulic boundary condition can be expressed either as 

 (1, , )p z s  = 0; for fully permeable surface (3.35) 

or  (1, , )rq z s  = 0; for impermeable surface (3.36) 

The remaining three boundary conditions at each end surface can be expressed as 

 ( , , )rz r h sσ ±  = 0 (3.37) 

 ( , , )zz r h sσ ±  = ( , )zF r s    (3.38) 

where ( , )zF r s is the Laplace transform of vertical traction applied at the end surfaces. In 

addition, 

 ( , , )p r h s±  = 0  for fully permeable surface (3.39) 

or  ( , , )zq r h s±  = 0     for impermeable surface (3.40)  

 The above boundary conditions given by Eqs. (3.33)-(3.40) are used to determine all 

arbitrary functions appearing in the general solutions. First, consider the boundary conditions 

on the curved surface, i.e., Eqs. (3.33) and (3.34). They can be expressed by using Eqs. (3.26) 

and (3.29) as, 

 (1)
0 0

1 1
(1, , ) ( , ) ( ) (1, )cos( )rr rrm m rrn n

m n
z s z s J s zσ σ λ σ

∞ ∞

= =

+ +∑ ∑ χ  = ( , )rF z s  (3.41) 

 
1

(1, )sin( )rzn n
n

s zσ χ
∞

=
∑  = 0 (3.42) 

The applied radial traction at the curved surface ( , )rF z s  can be expanded in terms of Fourier 

cosine series as 
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 ( , )rF z s  = 0
1

( ) ( )cos( )r rn
n

nF s F s zξ
∞

=

+∑  (3.43) 

where 

 0 ( )rF s  = 1 ( , )
2

h

r
h

F z s dz
h −
∫ ; ( )rnF s  = 1 ( , )cos( )

h

r n
h

F z s z dz
h

ξ
−
∫  (3.44) 

Next, expanding all functions of z  appearing in the left hand side of Eq. (3.41) in 

terms of Fourier cosine series to to match with the applied loading function expressed by Eq. 

(3.43). This results in,  

 1/2
0 0 0 1 3 0 1 0( ) / 2 ( )A Q s s B I s a C a Dη η −− − + +  

[ ]2 10
0 2 0 1 0 0

1

( ) ( ) ( ) ( ) ( )
2

m
m m m m m m m m m

m

J
ms Q A a Q a R C Q Eλ

ηγ γ λ λ λ λ λ
∞

−

=

⎡ ⎤+ − + + −⎣ ⎦∑   =  0 ( )rF s (3.45) 

[ ]2 1
0 4 1

1
( ) ( ) ( ) ( ) ( )m m n m m n m m n m m m n m m

m
J s Q A a Q a R C Q Eλ ηγ γ λ λ λ λ λ

∞
−

=

⎡ ⎤− + + −⎣ ⎦∑  

2 1 1 1
0 1 1 4 0 1 4 1( ) ( ) ( ) ( ) ( 2 ) ( )n n n n n n n n n ns I s I B a a I a a Iηξ β ηβ β χ ξ χ χ− − −⎡ ⎤ ⎡+ − + + − +⎣ ⎦ ⎣ D⎤⎦  

 [ ]0 0 1( ) ( ) ( )n n n nA Q s I I Fη χ χ χ− − − n  = ( )rnF s  (3.46) 

where 

 ( )n mQ α  = 2 2

2( 1) sinh( )
( )

n
m m

m n

h
h
α α
α χ

−
+

  (3.47) 

 ( )n mR α  = 
2 2

2 2 2 2 2

cosh( ) ( )sinh( )2( 1)
( ) ( )

n m m n m m

m n m n

h
h

α α χ α α
α χ α χ

⎡ ⎤−
− +⎢ + +⎣ ⎦

h
⎥  (3.48) 

Similarly, the application of the boundary conditions for zero shear stress at the 

curved surface, i.e. Eq. (3.34), and at the cylinder ends, Eq. (3.37), respectively yields the 

following equations. 

 [ ]1
1 1 0 2 1 1( ) ( ) ( ) ( )n n n n n n n n n n ns B I a I a I D F Iηχ β β χ ξ χ χ χ−− + − +  = 0 (3.49) 

[ ]1
1sinh( ) sinh( ) / 2 cosh( ) sinh( )m m m m m m m m m m ms A h h a h h C Eηλ γ γ λ λ λ λ λ−− + + − h  = 0 (3.50) 

Finally, in view of Eq. (3.27), the remaining stress boundary condition at both ends of 

the cylinder corresponding to the applied vertical traction, Eq. (3.38), can be rewritten as 
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 0 0
1 1

( , , ) ( ) ( ) ( )cos( )zz zzm m zzn n
m n

r h s h J r r hσ σ λ σ χ
∞ ∞

= =

+ +∑ ∑  = ( , )zF r s (3.51) 

where 

 ( , )zF r s  = 0
1

( ) ( ) ( )z zm
m

0 mF s F s J λ
∞

=

+∑ r  (3.52) 

and 

 0 ( )zF s  = 
1

0

2 ( , )zrF r s dr∫ ; ( )zmF s  = 
1

02
0 0

2 ( , ) ( )
( ) z m

m

F r s rJ r dr
J

λ
λ ∫  (3.53) 

Substitution of Eq. (3.53) into Eq. (3.52) together with the expansion of all functions of r  

appearing in Eq. (3.51) in terms of Fourier-Bessel series of order zero yields,   

 2 0 0 0 3 0( )a A B S s a Dη− +  

 [ ]2 1
0 3 0 1 0 0

1

( 1) ( ) ( ) ( ) ( )n
n n n n n n n n n

n
ns S B a S a T D S Fηβ β χ χ χ ξ χ

∞
−

=

⎡ ⎤+ − − + + +⎣ ⎦∑  = 0 ( )zF s  (3.54) 

[ ]2 1
0 3 1( ) cosh( ) cosh( ) sinh( ) cosh( )m m m m m m m m m m mB S s s A h a h a h h C E zη ηλ γ λ λ λ λ−− + + − + λ  

[ ]2 1
3 1

1

( 1) ( ) ( ) ( ) ( )n
n m n n m n n m n n n m n n

n

s S B a S a T D S Fηβ β χ χ χ ξ χ
∞

−

=

⎡ ⎤+ − − + + +⎣ ⎦∑  = ( )zmF s  (3.55) 

where  

 ( )m nS ς  = 1
2 2

0

2 ( )
( ) (

n n

m n m

I
J )

ς ς
λ ς λ+

 (3.56) 

 ( )m nT ς  = 
2

0 1
2 2 2 2 2

0

( ) 2 ( )2
( ) ( )

n n n n

m m n m n

I I
J

ς ς ς ς
λ λ ς λ ς

⎡ ⎤
−⎢ + +⎣ ⎦

⎥  (3.57) 

Thereafter, expanding all functions of r  into Fourier-Bessel series of order zero and 

all functions of z  into Fourier cosine series, the hydraulic boundary conditions for a 

permeable surface, i.e. Eqs. (3.35) and (3.39), can be expressed as, 

[ ] [ ]0
4 0 0 0 0 2 0 0 4 0 2 0

1

( )
( ) / 2 ( ) ( ) ( )

2
m

m m m m
m

J
a A Q s B I s a C D a Q A a Q C

λ
η η η γ

∞

=

⎡ ⎤+ − + + −⎣ ⎦ ∑ η λ  = 0 (3.58) 

[ ]4 0 0 4 2 4 0 2 0
1

( ) ( ) ( ) ( ) ( ) ( )n m n m m n m m n n n
m

a A Q s J a Q A a Q C a B I a D I nη λ η γ η λ η β η χ
∞

=

+ − + −∑     =  0 (3.59) 
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[ ] [2
4 0 0 0 4 0 0 4 0 2 0

1
cosh( ) ( ) ( 1) ( ) ( )n n n n

n
a A sh B S s a C D a B S a D S ]η η η β χ

∞

=

⎡ ⎤+ − + + − −⎣ ⎦ ∑     =  0 (3.60) 

[ ]4 0 4 2 4 2
1

( ) cosh( ) cosh( ) ( 1) ( ) ( )n
m m m m m n n n n n

n
a B S s a A h a C h a B S a D S nη η γ η λ η β χ

∞

=

+ − + − −∑ =0 (3.61) 

Similarly, for an impermeable surface Eqs. (3.36) and (3.40), the hydraulic boundary 

conditions result in, 

 4 0 1( )a sB I sκ η−  = 0 (3.62) 

  = 0 (3.63) 

 

[ ]4 1 2 1( ) ( )n n n n n na B I a D Iκη β β χ χ− −

4 0 sinh( )a s A shκ η−  = 0 (3.64) 

  = 0 (3.65) [ 4 2sinh( ) sinh( )m m m m m ma A h a C hκη γ γ λ λ− − ]

Equations (3.45), (3.46), (3.49), (3.50), (3.54) and (3.55), together with Eqs. (3.58)-

(3.61) for permeable (drained) surfaces or Eqs. (3.62)-(3.65) for impermeable (undrained) 

surfaces, constitute a system of linear equations of order (3 3 ) 4M N+ + , which M  and  

are the total number of terms used in the Bessel and Fourier series expansion respectively, to 

determine the arbitrary functions , 

N

0A 0B , , 0C 0D , , mA nB , , mC nD , mE  and nF  ( =1, 

2,…,

m

M ; n =1, 2,…, ).  N

3.4 Numerical Results and Discussion 

The solution procedure described in the previous section is implemented into a 

computer program to determine all arbitrary functions appearing in the general solution of a 

poroelastic cylinder in the Laplace transform domain. Piessens (1975) conducted a review of 

numerical Laplace inversion schemes and found that the scheme proposed by Stehfest (1970) 

is very accurate for time-dependent problems. In the past, Stehfest’s scheme has been widely 

used in a variety of poroelastic problems. For example, the plane strain solution of poroelastic 

cylinders (Cui and Abousleiman, 2001), interaction between an elastic circular plate and a 

multi-layered poroelastic medium (Senjuntichai and Sapsathiarn, 2006) and cylindrical cavity 

in a thermoporoelastic medium (Bai and Le, 2009) were studied by using Stehfest’s scheme. 

According to Stehfest (1970), the time domain solution is given by 

 ( )tφ  ≈  
1

log 2 ln 2NT

n
n

n
t t

α φ
=

⎛
⎜
⎝ ⎠

∑ % ⎞
⎟  (3.66) 

where  
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 nα  = 
( ) ( ) ( )( )

/2min( , /2)
/2

1 /2

(2 )!( 1)
! 1 ! ! 2 !

2

Nn NT
n NT

m n

m m
N m m n m m n m

+

= +⎡ ⎤⎣ ⎦

−
⎛ ⎞− − − −⎜ ⎟
⎝ ⎠

∑
!

 (3.67) 

In the above equations, φ%  denotes the Laplace transform of ( )tφ  and  is even. It is found 

that time domain solutions for axisymmetrically-loaded poroelastic cylinders can be obtained 

accurately with 6. Similar behavior was also observed in previous poroelastic problems 

(e.g., Senjuntichai and Sapsathiarn 2006, and Bai and Le 2009). The convergence and 

numerical stability of the present solution scheme were investigated with respect to the total 

number of terms (

NT

NT ≥

M and ) used in the Fourier-Bessel series expansion. The solutions are 

found to be stable and converged when both 

N

M  and 30.  N ≥

 The accuracy of present solution scheme is verified by comparing with the existing 

solutions for both elastic and poroelastic solid cylinders. Wei and Chau (2000) presented the 

stress distribution within an isotropic elastic solid cylinder of diameter 2  and height  

under a double-punch test, in which two rigid circular punches of diameter 2  are applied at 

the top and bottom surfaces of the cylinder. The boundary conditions for a solid cylinder 

subjected to a double-punch test are given by,  

a 2h

b

 (1, )rr zσ  = 0; (1, )rz zσ  = 0 ( , )rz r hσ ±  = 0 (3.68) 

 ( , )zz r hσ ±  = 
2 22

P
b b rπ

−
−

;   r b<  otherwise ( , )zz r hσ ±   =  0;  (3.69) 

where  is the magnitude of the applied point force.  P

Figure 3.2(a) shows a comparison of the final solutions of non-dimensional tangential 

and vertical stresses along the axis of the cylinder from the present study with those given by 

Wei and Chau (2000) for  =1 and =0.1 for different Poisson’s ratios. Comparisons 

of tangential and vertical stresses along the cylinder axis are also presented in Fig. 3.2(b) for 

different sizes of the punch, , with 

/h a /b a

/b a ν =0.1 and =1. Excellent agreement between the 

two solutions is noted. Note that the final solution is obtained from the present scheme by 

setting = . 

/h a

2/ct a 510

Cui and Abousleiman (2001) presented the plane strain solution for a solid 

poroelastic cylinder capped by a pair of rigid plates at both ends. The cylinder is subjected to 

a constant axial compressive force, ( )F t = 0 ( )F H t  where  is the Heaviside step function, 

with no confining pressure. Comparisons between the present solutions and solutions given 

( )H t

 



 17

by Cui and Abousleiman (2001) are respectively shown in Fig. 3.3(a) for nondimensional 

radial stress and pore pressure at the center of the cylinder and in Fig. 3.3(b) for radial 

displacement, vertical and tangential stresses at the boundary of the mid-plane. The material 

properties of Mexico Gulf shale were used with μ =760 MPa; B =0.90; ν  =0.22; uν =0.46 

and =κ 175.00 10−× 4m /Ns . Note that the average vertical stress used in the normalization is 

defined as 0σ = 2
0 /F aπ  . The plane strain solution can be obtained from the present scheme 

by setting  to a large value ( >5.0). Comparisons in Figs. 3.3(a) and 3.3(b) indicate 

very close agreement. The accuracy of the present solution is thus confirmed through 

independent comparisons corresponding to two limiting cases (ideal elastic and plane strain 

poroelastic cases). 

/h a /h a

Time-dependent behavior of solid cylinders shown in Fig. 3.4 is investigated next. 

Figure 3.4 shows a poroelastic cylinder ( B =0.90, ν =0.20, uν =0.40) subjected to constant 

vertical pressure at both ends [ ( , )zF r t = 0 ( )f H t  in Eq. (3.38)] with zero radial pressure on the 

curved surface and fully permeable hydraulic boundary conditions on all surfaces. Figures 

3.5(a), 3.5(b) and 3.5(c) show time histories of non-dimensional radial stress, vertical stress 

and pore pressure respectively at the center of a cylinder ( =0 and =0) for different 

aspect ratios (  = 0.5, 1.0, 1.5, 2.0 and 3.0) under the loading shown in Fig. 3.4. Initially 

( ), radial stress at the center of cylinder is nearly zero, then increases quite 

rapidly during the period 0.01< <0.1 to about 5-10% of the applied vertical pressure 

depending on the aspect ratio (h/a) and thereafter diminishes very rapidly becoming almost 

zero for >10. The maximum radial stress value decreases with increasing aspect ratio 

but becomes independent of it for >2. Numerical results shown in Fig. 3.5(b) indicate 

that the initial vertical stress is equal to the applied pressure 

/r a /z a

/h a
2/ 10ct a −< 5

2/ct a

2/ct a

/h a

0f  irrespective of the aspect ratio 

(h/a). Thereafter, it increases with time reaching its maximum value near =0.1 before 

decreasing to 

2/ct a

0f  when >1. Maximum vertical stress is about 10% more than 2/ct a 0f  for 

longer cylinders but less than 2% increase is observed for a short cylinder (e.g., h/a = 0.5). 

Pore pressure at the centre of cylinder shows [Fig. 3.5(c)] less dependence on  compared 

to radial and vertical stresses, and the Mandel-Cryer effect is observed in the pore pressure 

evolution. Initially (

/h a

2/ 10ct a 4−< ), pore pressure at the center is about 30% of the applied 

vertical pressure irrespective of the aspect ratio and then slightly increases with time to about 

32-35% of the applied pressure. Pore pressure dissipates very rapidly after reaching its peak 

value and complete dissipation is observed for ct/a2  > 2 .  
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Time-histories of non-dimensional radial displacement, tangential (hoop) stress and 

vertical stress at the boundary of the cylinder mid-plane ( =1 and =0) are presented 

in Figs. 3.6(a), 3.6(b) and 3.6(c) respectively for different aspect ratios. Radial displacement 

solutions and comparison with the ideal elastic case show that the initial and final normalized 

displacements are mainly controlled by the magnitude of undrained and drained Poisson’s 

ratios respectively. Similar behavior was observed earlier by Rajapakse and Senjuntichai 

(1993) for a surface-loaded poroelastic half space. The initial value of the radial displacement 

is essentially independent of the aspect ratio and is equal to 

/r a /z a

/ 2(1 )u uν ν+  whereas the final 

displacement is given by the same expression with uν  being replaced by ν . In all results 

shown in Fig. 3.6, the final solutions are reached when > 2. The influence of aspect 

ratio on the radial displacement is negligible if >1.5. Time histories of tangential stress 

[Fig. 3.6(b)] and vertical stress [Fig. 3.6(c)] also follow a trend that is qualitatively similar to 

the radial displacement. A notable feature in Fig. 3.6(b) is that tensile hoop stress is 

developed at the boundary of the mid-plane of a cylinder. Tensile hoop stresses may cause 

fracture and opening of pores, which could initiate cracks and failure. Most geomaterials have 

relatively small ultimate stress in tension and tensile tangential stresses could therefore 

initiate failure. The solution for tangential stress of a long cylinder can be obtained from the 

plane strain case given by Cui and Abousleiman (2001). It can be shown that tangential stress 

at the outer boundary ( =1) of a long cylinder can be expressed in the Laplace domain as  

2/ct a

/h a

/r a

 
0

(1,0, )s
f

θθσ  = 
1/2

1 0

1/2
0 1

( ) 2 ( ) ( )

(1 )(1 ) ( ) 4 ( ) ( )
u

u u

s I s I s

s I s s I s

ν ν

ν ν ν ν

−

−

⎡ ⎤− −⎣
⎡ ⎤− + − −⎣ ⎦

⎦  (3.70) 

Tangential stress solutions shown in Fig. 3.6(b) indicate very close agreement with the plane 

strain solution given by Eq. (3.70) when >2. Initially, the maximum tensile stress is 

about 17% of 

/h a

0f  and it is independent of the aspect ratio. Non-zero tangential stress is 

primarily due to the poroelastic effect as can be seen from Eq. (3.70) because it vanishes 

when  uν  is equal to ν . The final solution (as well as the ideal elastic solution) for tangential 

stress is zero when >2 for all aspect ratios. Vertical stress shown in Fig. 3.6(c) is 

compressive throughout its evolution. Initially (

2/ct a
2/ 10ct a 5−< ), vertical stress at the boundary 

of the cylinder mid-plane is approximately 82% of the applied pressure 0f  irrespective of the 

aspect ratio. The final value is equal to 0f  and is attained when > 2 for the aspect ratios 

considered in this study. It is also noted that vertical stress approaches the plain strain solution 

given by Cui and Abousleiman (2001) when >2.  

2/ct a

/h a
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Figures 3.7(a) and 3.7(b) show profiles of non-dimensional vertical displacement and 

vertical stress along the z -axis respectively. Vertical displacement is obviously zero at the 

center of the cylinder due to symmetry consideration, and increases almost linearly along the 

length reaching its maximum value at the cylinder ends. Average vertical strain is almost 

independent of the aspect ratio and this makes the displacement profiles along the length of 

each cylinder nearly coinciding with each other in Fig. 3.7(a). A slight increase of 

displacement (~ 10%) with time is noted. As expected, non-dimensional vertical stress shown 

in Fig. 3.7(b) is compressive at all times and the maximum vertical stress is noted at the 

center of the cylinder. The maximum stress shown in Fig. 3.7(b) is about 10% higher than the 

corresponding elastic solution for cylinders with =1.5 and 3.0, whereas for a short 

cylinder ( =0.5), it is about 2% higher than the elastic solution. The steady-state is 

reached when >10 except for a cylinder with h/a = 0.5, in which the final solution is 

attained relatively quickly ( >1). 

/h a

/h a
2/ct a

2/ct a

The profiles of non-dimensional pore pressure and fluid discharge in the vertical 

direction along the cylinder axis are presented in Figs. 3.7(c) and 3.7(d) respectively. Initially 

( < ), the excess pore pressure along the cylinder axis is about 32% of the applied 

vertical pressure except at the end surfaces where it is zero due to the drained boundary 

condition. At = 0.1, the pore pressure in a short cylinder ( =0.5) decreases from the 

initial value, whereas for long cylinders ( =1.5 and 3.0), pore pressure experiences a very 

small increase from the initial values except near the cylinder ends due to the boundary 

condition. Pore pressure is completely dissipated in all cases when >10. Numerical 

results of the fluid discharge profiles in Fig. 3.7(d) indicate that initially ( =

2/ct a 210−

2/ct a /h a

/h a

2/ct a
2/ct a 210− ) the 

discharge is observed only near the end surface due to the pore pressure gradient created at 

the ends [Fig. 3.7c]. As the pore pressure gradient propagates inward into the cylinder more 

discharge occurs along the length but the maximum discharge always occurs at the top and 

bottom ends. Fluid discharge along the length becomes negligible when >10. 2/ct a

Profiles of non-dimensional tangential stress on the outer surface along the length 

( =1) and at the mid-height along the radial direction ( =0) are shown in Figs. 3.8(a) 

and 3.8(b) respectively for different times and aspect ratios. Numerical results in Fig. 3.8(a) 

indicate that tangential stress remains tensile along the cylinder wall. Initially, it is nearly 

constant within the middle of the cylinder except for short cylinders but shows a drop near the 

cylinder ends in all cases. Its magnitude decreases as time progresses and poroelastic effects 

dissipate. As expected, tangential stress at the mid-plane approaches the plane strain solution 

of Cui and Abousleiman (2001) in the case of long cylinders. The final solution is attained 

/r a /z a
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when >10 for all cylinders. Figure 3.8(b) shows that tangential stress varies 

significantly in the radial direction at the mid-plane. It is generally compressive at early times 

( =0.005) except in the vicinity of the cylinder wall. The tensile stress region gradually 

expands with time and tangential stress at all points becomes negligible when >10. 

2/ct a

2/ct a
2/ct a

Uni-axial and tri-axial compression tests are commonly employed to determine the 

strength and stress-strain relationship of soils and rocks. Unlike a uni-axial test, cylindrical 

specimens subjected to tri-axial tests have lateral confining pressure in addition to the vertical 

end load. Consider a poroelastic cylinder ( B =0.90, ν =0.20 and uν =0.40) capped with rigid 

plates at its both ends subjected to confining pressure ( 0p ) at the initial state and vertical 

loading applied to the ends after pore pressure due to confining pressure is totally dissipated. 

This problem can be considered as a theoretical model of a tri-axial compression test under 

stroke control of a jacketed cylindrical specimen, which is covered by a rubber membrane 

along the cylindrical surface, and the fluid is drained at its both ends. The vertical loading is 

applied such that the vertical displacements at both cylinder ends are controlled at a constant 

rate , i.e. . The surface hydraulic boundary conditions are permeable at the 

horizontal end surfaces and impermeable along the curved surface. The test condition can be 

separated into two states: the initial state from a pure confining pressure and the final state of 

applied vertical loading. The total solution for the poroelastic field can be obtained by 

superposition of the solutions for pure confining pressure and pure applied vertical loading. 

0u 0( , , )zu r h t u t± =

Figures 3.9(a) and 3.9(b) show the geometry of problems considered in the initial and 

final states respectively. The boundary conditions for a cylinder subjected to pure confining 

pressure in the initial state [Fig. 3.9(a)] can be expressed as, 

 (1, , )rr z sσ  = 0p
s

− ; (1, , )rz z sσ  = 0 (1, , )rq z s  = 0 (3.71) 

at the curved surface and 

 
1

0

2 ( , , )zz r h s drπσ ±∫  = 0p
s

π
−     ( , , )rz r h sσ ±  = 0 ( , , )p r h s±  = 0 (3.72) 

at the end surfaces. 

The boundary conditions for the final state of a cylinder subjected to vertical loading 

under zero confining pressure [Fig. 3.9(b)] can be expressed as,  
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 (1, , )rr z sσ  = 0; (1, , )rz z sσ  = 0 (1, , )rq z s  = 0 (3.73) 

at the curved surface and 

 ( , , )zu r h s±  = 0
2−

u
s

    ( , , )rz r h sσ ±  = 0 ( , , )p r h s±  = 0 (3.74) 

at the end surfaces. 

 The profiles of non-dimensional excess pore pressure along the vertical axis of the 

cylinder due to confining pressure are presented in Fig. 3.10 for different times and aspect 

ratios. Excess pore pressure is zero at the top surface due to the boundary condition and 

nearly constant at the mid-plane of the cylinder for >1.5. It is non-uniform for shorter 

cylinders with the maximum value observed at the mid-plane of the cylinder. Initial excess 

pore pressure in the middle of the cylinder is approximately 90% of the applied confining 

pressure for most cases. Note that the 1-D solution for the excess pore pressure in the initial 

state can be obtained by solving Eqs. (3.2) and (3.3) and it is also shown in Fig. 3.10. The 1-D 

solution can be expressed in the Laplace domain as, 

/h a

 
0

( , )p z s
p

%
 = 

1/2

1/2

(1 )(1 ) cosh( ) cosh( )1
2( )sinh( ) (1 )(1 ) cosh( )

u

u u

B s h sz sh

s sh s h

ν ν

ν ν ν ν

⎡ ⎤⎡ ⎤− + −⎣ ⎦⎢ ⎥−
⎢ ⎥− + − +
⎣ ⎦

sh
 (3.75) 

Comparison between the finite cylinder solution and the 1-D solution indicates that both 

solutions show similar trends with time and vertical distance but the 1-D solution generally 

has lower pore pressure. The difference between the two solutions reduces with increasing 

 but shorter cylinders show substantial differences at intermediate times. /h a

Figures 3.11(a), 3.11(b), 3.11(c) and 3.11(d) show time histories of non-dimensional 

radial displacement, tangential stress, vertical stress and excess pore pressure at the boundary 

of the mid-plane ( =1 and =0) respectively for the loading case defined by Eqs. 

(3.73) and (3.74). All solutions are negligible when <0.01 due to the nature of applied 

loading. Radial displacement rapidly increases with time but no asymptotic solution is 

expected due to the fact that the applied vertical displacement at the ends linearly increases 

with time. Radial displacement is higher for shorter cylinders as the radial strain is larger. 

Numerical results for tangential stress in Fig. 3.11(b) indicate that it gradually increases as 

time progresses until the final value is reached when >10. Tensile tangential stress is 

noted at the boundary except in the case of short cylinder ( =0.5) where only compressive 

/r a /z a
2/ct a

2/ct a

/h a
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tangential stress is observed at all time instants. This is due to the fact that the tangential 

stress depends on radial displacement, dilatation (ε ) and pore pressure [see Eq. (3.6)]. Under 

the stroke-control loading [Eq. (3.74)], it is found that the volume reduction in a short 

cylinder ( <1) is higher than its lateral displacement resulting in compressive tangential 

stress being observed. For cylinders with >1, the tensile tangential stress at the boundary 

gradually increases as the cylinder becomes longer before approaching the 1-D solution, 

which is equal to zero, when >2.  Note that the tangential stress under this loading case 

is very small compared to vertical stress and pore pressure, and it can be neglected for all 

practical purposes. Numerical results presented in Fig. 3.11(c) show that the general trend of 

vertical stress histories is similar to that observed for the radial displacement histories in Fig. 

3.11(a). Vertical stress rapidly increases with time when > 1.0, and no final asymptotic 

solution exists as the vertical displacement continuously increases with time. It is obviously 

compressive at all times and its magnitude decreases with the aspect ratio. Time histories of 

pore pressure indicate that pore pressure has a steady-state value in this case as the ends are 

fully drained although the cylindrical boundary is impermeable and applied displacement 

continues to increase. The steady-state for pore pressure is reached quicker with decreasing 

the aspect ratio as the fluid has lesser distance to reach the drained ends.  

/h a

/h a

/h a

2/ct a

Figures 3.12(a), 3.12(b), 3.12(c) and 3.12(d) show the distribution of non-

dimensional vertical displacement, radial stress, pore pressure and vertical discharge 

respectively along the -axis for different times and aspect ratios. All field variables are zero 

at t = 0 due to the nature of the displacement controlled loading. The vertical displacement 

profiles in Fig. 3.12(a) show linear variation along the vertical axis from zero at =0 to 

the maximum value at the cylinder ends which can be expressed as = . This 

behavior is a consequence of the displacement-controlled loading. Radial stress in Fig. 

3.12(b) shows considerable time dependency and variation along the length in its evolution 

with both compressive and tensile stresses existing along the length. In most cases, radial 

stress near the ends is tensile but becomes compressive in the interior region. Compressive 

radial stress increases with decreasing aspect ratio whereas the opposite is true for maximum 

tensile radial stress. Pore pressure profiles shown in Fig. 3.12(c) indicate that it increases with 

increasing time and aspect ratio. Maximum pore pressure is observed at the centre of the 

cylinder for all aspect ratios. Fluid discharge in the vertical direction is always highest at the 

ends as shown in Fig 3.12(d) and is zero at the centre due to symmetry consideration. The 

steady-state solution of the fluid discharge shows a linear variation along the vertical axis. It 

should be noted that vertical stress along the z -axis is constant and can be expressed 

explicitly as a linear function of time of the form, 

z

/z a

(0, , )zu z t 0 /u tz h

(0, , )zz z tσ = 02 (1 ) /tu hμ ν+ .  
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3.5 Conclusion 

It is shown in this chapter that coupled poroelastic governing equations for 

axisymmetric deformations of a finite solid cylinder can be solved analytically by employing 

Laplace transforms with respect to time and Fourier-Bessel series expansions in the vertical 

and radial directions respectively. Applicability of the general solution is demonstrated by 

solving two boundary-value problems. Convergence and stability of the series solution and 

the numerical Laplace transform is confirmed by excellent agreement between the present 

solution and those in the literature for the limiting cases of an ideal elastic finite cylinder and 

plane strain poroelastic cylinder. Selected numerical results show complex 3-D behavior and 

end effects are significant for cylinders with aspect ratio greater than three. The material 

dependence of the initial and final solutions is primarily controlled by the undrained and 

drained Poisson’s ratios respectively. Mandel-Cryer effect is also observed for the present 

class of problems. Solutions for stroke-control tests show that asymptotic solutions for 

tangential and radial stresses, and pore pressure exist.  
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Figure 3.1 Finite poroelastic cylinder under axisymmetric loading.
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Figure 3.2 Comparison with existing solutions for elastic cylinders. 

ct/a2

0.0001 0.001 0.01 0.1 1 10 100

-
rr

(0
,0

,t)
/

0, 
p(

0,
0,

t)/
 0

0.0

0.1

0.2

0.3

0.4

Present study
Cui and Abousleiman (2001)

Radial stress

Pore pressure

ct/a2

0.0001 0.001 0.01 0.1 1 10 100

-


(a
,0

,t)
/

0, 
-

zz
(a

,0
,t)

/
0

-0.4

0.0

0.4

0.8

1.2

u
r(a

,0
,t)

/a
 0

0.08

0.10

0.12

0.14

0.16

Tangential stress

Radial displacement

Vertical stress

 

    (a)           (b) 

Figure 3.3 Comparison with existing solutions for poroelastic cylinders under plane strain 

condition.  
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Figure 3.4 Poroelastic cylinder ( B =0.90, =0.20, u =0.40) subjected to axisymmetric 

vertical loading for numerical results in Figs. 3.5-3.8. 
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(c) 

Figure 3.5 Time histories of (a) radial stress; (b) vertical stress and (c) excess pore pressure at 

the center of cylinder for different values of /h a . 
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(c) 

Figure 3.6 Time histories of (a) radial displacement; (b) tangential stress; and (c) vertical 

stress at the boundary of the mid-plane of cylinder for different values of /h a . 
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(c)      (d) 

Figure 3.7 Profiles of (a) vertical displacement; (b) axial stress; (c) excess pore pressure; and 

(d) vertical discharge along the z -axis of cylinder for different ratios of /h a . 
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Figure 3.8 Profiles of tangential stress (a) along the length of the cylinder ( /r a =1) and  

(b) at the mid-height ( /z a =0) 
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                                   (a)               (b) 

Figure 3.9 Poroelastic cylinder ( B =0.90, =0.20, u =0.40) capped with rigid plates 

subjected to (a) confining pressure and (b) vertical loading. 
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Figure 3.10 Profiles of excess pore pressure along the z -axis of cylinder [Fig. 3.9(a)] for 

different values of /h a . 
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(c)      (d) 

Figure 3.11 Time histories of (a) radial displacement, (b) tangential stress, (c) axial stress; 

and (d) excess pore pressure at the boundary of the mid-plane of cylinder [Fig. 3.9(b)] for 

different values of /h a . 
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(c)      (d) 

Figure 3.12 Profiles of (a) vertical displacement; (b) radial stress; (c) excess pore pressure; 

and (d) vertical discharge along the z -axis of cylinder [Fig. 3.9(b)] for different values of  

/h a . 

 



CHAPTER IV 

QUASI-STATIC RESPONSE OF BOREHOLE 

WITH DISTURBED ZONE 

4.1 General 

In this chapter, time-dependent response of a cylindrical borehole in a poroelastic 

medium with consideration of excavation disturbed zone is considered. The general solutions 

for axisymmetric deformations are derived by employing Laplace and Fourier transforms with 

respect to time and the vertical coordinate respectively. Shear modulus and permeability 

coefficient are assumed to be non-homogenous in the disturbed zone. The general solutions 

are employed to formulate boundary value problems corresponding to a borehole subjected to 

axisymmetric loading applied at its surface, and contact problems involving a borehole 

containing a rigid cylinder. Selected numerical results are presented for displacement, stress, 

pore pressure and fluid discharge to portray the influence of poroelastic effects and the 

excavation disturbed zone on the borehole response. 

4.2 General Solution 

Consider an infinite cylindrical borehole of radius  in a poroelastic medium with an 

excavation disturbed zone of length  subjected to axisymmetric loading as shown in Fig. 

4.1. The governing equations in the previous chapter for a poroelastic material undergoing 

axisymmetric deformation in Eqs. (3.1)-(3.3) can also be employed for this problem. The 

general solutions are derived by applying Laplace and Fourier transforms with respect to time 

and the vertical coordinate respectively. The Laplace transform and its inverse transform are 

given by Eqs. (3.11) and (3.12). In addition, the Fourier transform of a function 

a

d

( , , )f r z s  

with respect to the vertical coordinate and the inverse relationship are given by (Sneddon 

1951) 

 ( , , )f r sξ%  = 1 ( , , )
2

ξ

π

∞

−∞
∫ i zf r z s e dz  (4.1) 

 ( , , )f r z s  = ( , , ) ξξ ξ
∞

−

−∞
∫ % i zf r s e d  (4.2) 

where ξ  is the Fourier transform parameter. 
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In all subsequent manipulations, a superposed bar ( )  denotes the Laplace transform 

of a function with respect to time coordinate and a tilde  denotes the Fourier transform 

with respect to the vertical coordinate of the Laplace transform of that function. It is 

convenient to nondimensionalize all quantities including the coordinates with respect to the 

length and time by selecting the radius of the borehole “ ” as a unit length, and “ ” as a 

unit of time respectively. All variables will be replaced by appropriate nondimensional 

variables, but the previous notations will be used for convenience. 

( )%

a 2 /a c

 Equation (3.3) in the previous chapter can be solved directly by applying Laplace and 

Fourier transforms with respect to time and the vertical coordinate respectively. The resulting 

solution can be expressed as, 

 ζ%  = 0 0( ) ( )AI r BK rβ β+  (4.3) 

where A  and B  are arbitrary functions, and 

 β  = 2( )sξ +  (4.4) 

In addition,  and  are modified Bessel functions of the first and second kinds 

respectively of the n th order (Watson 1944). 

nI nK

By applying Laplace and Fourier transforms to Eq. (3.16) together with the 

substituting Eq. (4.3), the following solution can be obtained,  

 ε%   =  [ ]0 0 0 02 (1 2 ) ( ) ( ) ( ) ( )u CI r DK r AI r BK rξ ν ξ ξ η β β⎡ ⎤− + + +⎣ ⎦  (4.5) 

where  and  are arbitrary functions. C D

 Next, the application of Laplace and Fourier transforms in Eq. (3.2) and the 

substitution of Eqs. (4.3) and (4.5) result in the following general solution for the vertical 

displacement.  

 zu%  = [ ]1
0 0 1 1( ) ( ) ( ) ( )i s AI r BK r i r CI r DK rξλ β β ξ ξ ξ− ⎡ ⎤+ − −⎣ ⎦  

   0 0( ) ( )EI r FK rξ ξ ξ⎡+ +⎣ ⎤⎦  (4.6) 

where E  and F  are arbitrary functions. 
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 Thereafter, the following general solutions for radial displacement, stresses and pore 

pressure in the Laplace-Fourier domain can be obtained by using Eqs. (3.1), (3.5)-(3.9) 

together with Eqs. (4.3), (4.5) and (4.6) as follows 

  = ru% [ ]1
1 1 1 1( ) ( ) 2(1 2 ) ( ) ( )us AI r BK r CI r DK rηβ β β ν ξ ξ− ⎡ ⎤− + − −⎣ ⎦  

   2 2 1 1( ) ( ) ( ) ( )r CI r DK r i GI r HK rξ ξ ξ ξ ξ ξ⎡ ⎤ ⎡− + − −⎣ ⎦ ⎣ ⎤⎦  (4.7) 

 
2

rrσ
μ
%

 = 2 1 1 2 1 1
0 1 0( ) ( ) ( ) ( ) ( ) ( )1A s I r sr I r B s K r sr K rη ξ β β β λ ξ β β β− − − −⎡ ⎤ ⎡− + +⎣ ⎦ ⎣ ⎤⎦  

   { }1 2
0 1 22(1 ) ( ) 2(1 2 ) ( ) ( ) ( )u uC I r r I r I r rIν ξ ξ ν ξ ξ ξ ξ ξ−+ − − − + − 1 r  

   { }1 2
0 1 22(1 ) ( ) 2(1 2 ) ( ) ( ) ( )u uD K r r K r K r rKν ξ ξ ν ξ ξ ξ ξ ξ−+ − + − + + 1 r  

   1
0 1 0 1( ) ( ) ( ) ( )i G I r r I r i H K r r K rξ ξ ξ ξ ξ ξ ξ ξ−⎡ ⎤ ⎡− − − +⎣ ⎦ ⎣

1− ⎤⎦  (4.8) 

 
2

zzσ
μ
%

 = [ ]2 1
0 0 0 0( ) ( ) ( ) ( )s AI r BK r i GI r HK rηβ β β ξ ξ ξ ξ− ⎡ ⎤− + + +⎣ ⎦  

   0 1 0 12 ( ) ( ) 2 ( ) ( )u uC I r rI r D K r rI rξ ν ξ ξ ξ ξ ν ξ ξ ξ⎡ ⎤ ⎡+ + + −⎣ ⎦ ⎣ ⎤⎦  (4.9) 

 
2
θθσ
μ
%

 = 1 1
1 0 1 0( ) ( ) ( ) ( ) ( ) ( )A sr I r I r B sr K r K rη β β β η β β β− −⎡ ⎤ ⎡− − +⎣ ⎦ ⎣ ⎤⎦  

   1
1 2 02(1 2 ) ( ) ( ) 2 ( )u uC r I r I r Iν ξ ξ ξ ν ξ ξ−⎡ ⎤+ − − +⎣ ⎦r  

   1
1 2 02(1 2 ) ( ) ( ) 2 ( )u uD r K r K r Kν ξ ξ ξ ν ξ ξ−⎡ ⎤+ − − − +⎣ ⎦r  

   1
1 1( ) ( )i r GI r HK rξ ξ ξ− ⎡− −⎣ ⎤⎦  (4.10) 

 
2

rzσ
μ
%

 = [ ]1 2
1 1 1 1( ) ( ) ( ) ( )i s AI r BK r GI r HK rξηβ β β ξ ξ ξ− ⎡ ⎤− + −⎣ ⎦  

   1 2 1 22 ( ) ( ) 2 ( ) ( )u ui C I r rI r i D K r rK rξ ν ξ ξ ξ ξ ν ξ ξ ξ⎡ ⎤ ⎡− + + −⎣ ⎦ ⎣ ⎤⎦  (4.11) 

 
2
p
μ
%

 = [ ]
2 2

0 0
(1 ) (1 ) ( ) ( )

9(1 )( )
uB

u u

AI r BK rν ν β β
ν ν ν
+ −

+
− −

 

   0 0

2 (1 )
( ) ( )

3
uB

CI r DK r
ξ ν

ξ ξ
+

⎡ ⎤− +⎣ ⎦  (4.12) 
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 It can be shown that the general solutions for axisymmetric deformations of a 

poroelastic medium in the Laplace-Fourier transform domain as shown in Eqs. (4.6)-(4.12) 

can be expressed in the following matrix form. 

 ( , , )r sξu   =  ( , , ) ( , )r s sξ ξR C  (4.13) 

 ( , , )r sξf   =  ( , , ) ( , )r s sξ ξS C  (4.14) 

where 

 ( , , )r sξu  = [ ; (4.15) ]Tr zu u p% % %

 ( , , )r sξf  = [  (4.16) ]Trr rz rwσ σ% % %

and  ( , )sξC  = [ ]TA B C D E F  (4.17) 

The matrices  and S  are defined in Appendix B. The arbitrary functions, R ( , )A sξ  to 

( , )F sξ  in ( , )sξC  are to be determined by employing appropriate boundary and/or continuity 

conditions. In the ensuing section, the above general solutions are employed to establish a 

stiffness matrix scheme to study time-dependent response of a borehole in a poroelastic 

medium with an excavation disturbed zone. 

4.3 Borehole in Excavation Disturbed Zone 

Naturally, a primary factor affecting the soil/rock properties around a borehole is an 

excavation process. The soil/rock zone where the properties and conditions have been 

changed is known as an excavation disturbed zone (EDZ). The mechanical properties of the 

EDZ can be adjusted based on laboratory and in situ tests. The shear modulus of the EDZ is 

normally reduced from its original value before excavation. On the contrary, the inflow in the 

EDZ is larger than that of the undisturbed zone (Lai et al. 2006 and Kwon et al. 2009). This is 

implied that the permeability coefficient then increases from the original value in the EDZ. 

Consider a cylindrical borehole with the EDZ of a length  as shown in Fig. 4.1. It is 

assumed that the shear modulus and permeability coefficient in the EDZ linearly vary with 

the radial distance  in the following manners. 

d

r

 ( )rμ  = [0 1( )m r a dμ ]1− − +  (4.18) 

and  = ( )rκ [0 2 ( )m a d rκ ]1+ − +  (4.19) 
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where 0μ  and 0κ  denote the original values of the shear modulus and the permeability 

coefficient respectively before excavation.  and  are non-negative constants 

representing the degree of disturbance due to the drilling process in shear modulus and 

permeability coefficient respectively. The poroelastic medium in Fig. 4.1 is then separated 

into two zones, i.e. the disturbed zone (

1m 2m

a r d≤ < ) and the undisturbed zone ( ). To 

incorporate the influence of excavation disturbed zone, the EDZ is discretized into a total of 

r d>

aN  infinitely long tubular layers with small thickness. Each discretized layer is homogeneous 

and governed by Biot’s theory of poroelasticity. The following relationship can be established 

by using Eqs. (4.13) and (4.14) for the  layer. thn

   =   (4.20) ( )nF ( ) ( )n nK U

where  is an exact stiffness matrix in the Laplace-Fourier transform space describing the 

relationship between the generalized displacement vector  and the force vector  for 

the  layer, in which 

( )nK
( )nU ( )nF

thn

   =   (4.21) 

   =   (4.22) 

( )nU
T( ) ( )

1( , , ) ( , , )n n
n nr s r sξ +⎡⎣u u ξ ⎤⎦

ξ ⎤⎦
( )nF

T( ) ( )
1( , , ) ( , , )n n

n nr s r sξ +⎡−⎣ f f

In Eqs. (4.21) and (4.22),  is a column vector of generalized displacements of the  

layer whose elements are related to the Laplace-Fourier transform of displacements and pore 

pressure of the inner ( ) and outer (

( )nU thn

nr r= 1nr r += ) surfaces of the  layer;  is a column 

vector of generalized forces whose elements are related to the Laplace-Fourier transform of 

traction and fluid displacement of the inner and outer surfaces of the  layer. In addition, 

the matrices  and   are indentical to u  and  f  given by Eqs. (4.15) and (4.16) 

respectively, except that the material properties of the  layer and employd with =  or 

= . 

thn ( )nF

thn
( )nu ( )nf

thn r nr

r 1nr +

Similarly, the stiffness matrix ( 1)N +K  for the undisturbed zone (  in Fig. 4.1) can 

be obtained by establishing a relationship between the generalized displacement vector  

 and the force vector 

r d>

( 1)N+U ( 1)N +F  as 

   = ( 1)N +K ( 1( 1) ( 1)N N )−+ +S R  (4.23) 
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where the elements of matrices ( 1)N +R  and ( 1)N+S  are given in Appendix B. 

The global stiffness matrix of the EDZ can be assembled by using the continuity 

conditions of traction and fluid flow at the layer interfaces. The final equation system can be 

expressed as 

   =   (4.24) *F * *K U

where  is a global stiffness matrix, which is a symmetric matrix with a bandwidth of 6. In 

addition,  and  are the global vectors of generalized displacements and generalized 

forces defined as 

*K
*U *F

   =   (4.25) *U
T(1) (2) ( ) ( ) ( 1)n N N +⎡⎣u u u u uL L ⎤⎦

⎤⎦   =   (4.26) *F
T(1) (2) ( ) ( ) ( 1)n N N +⎡⎣f f f f fL L

Consider an infinite cylindrical borehole of radius  in a poroelastic medium with 

the excavation disturbed zone subjected to axisymmetric loading applied at its surface as 

shown in Fig. 4.1. The boundary conditions in the Laplace-Fourier transform space for the 

borehole under applied radial traction 

a

( , )rF z t  and ( , )zF z t  at its surface can be expressed as 

 (1, , )rr sσ ξ%   =  ( , )rF sξ%  (4.27) 

 (1, , )rz sσ ξ%   =  ( , )zF sξ%  (4.28) 

and (1, , )p sξ%   =  0 for fully permeable surface (4.29) 

or  (1, , )rq sξ%   =  0 for impermeable surface (4.30) 

Let consider the case of a borehole subjected to applied fluid pressure ( , )P z t  at a 

fully permeable surface. The boundary conditions in the Laplace-Fourier transform space are 

given by 

 (1, , )rr sσ ξ%   =  3( ) ( , )
(1 2 )(1 )

u

u

P s
B

ν ν
ξ

ν ν
−

−
− +

%  (4.31) 

 (1, , )rz sσ ξ%   =  0 (4.32) 

and (1, , )p sξ%   =  ( , )P sξ%  (4.33) 

The boundary conditions in the Laplace-Fourier transform space when a borehole 

subjected to applied fluid discharge  at an impermeable surface can be expressed as ( , )Q z t
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 (1, , )rr sσ ξ%   =  3( ) (1, , )
(1 2 )(1 )

u

u

p s
B

ν ν
ξ

ν ν
−

−
− +

%  (4.34) 

 (1, , )rz sσ ξ%   =  0 (4.35) 

and (1, , )rq sξ   =  ( , )Q sξ%  (4.36) 

 The global equation system, Eq. (4.24), for each problem is assembled by considering 

the appropriate boundary conditions given by Eqs. (4.27)-(4.36). The solutions in the 

Laplace-Fourier transform space are then determined by solving the global equation for 

discrete values of ξ  and s . Time domain solutions can be obtained by applying accurate 

numerical schemes to Eq. (4.2). The solutions presented in this section are the required 

influence functions to establish the flexibility equation in the derivation of traction and pore 

pressure jump at the contact surface for the contact problems between a borehole and a rigid 

cylindrical plug outlined in the next section.  

4.4 Formulation of Contact Problems between a Borehole and a Rigid Cylinder 

In this section, contact problems of a rigid cylindrical plug of radius  and height  

bonded to a borehole in a poroelastic medium with excavation disturbed zone are considered 

as shown in Fig. 4.2(a). This is a mixed boundary value problem with radial and shear stresses 

being zero outside the plug-borehole contact surface and displacements being prescribed 

along the contact surface. Two contact problems are considered, namely radial misfit case and 

axial loading case. The first problem is concerned with the rigid plug with the radial misfit of 

, in which is Heaviside step function, placed in the borehole. This problem is 

useful in the development of in situ testing devices such as a pressuremeter for the 

measurement of geological material properties. Such misfit exists due to the fact that the 

pressuremeter is tightly fitted with the borehole surface. It is also useful in the study of 

interface stresses due to a radial misfit between a fiber and a matrix material. The misfit 

occurs in the composites during the high temperature processing due to difference in 

magnitude of the thermal expansion coefficient of the fiber and the matrix material. The other 

contact problem involves the rigid plug pulled by a vertical load of . The plug is just 

fitted with the borehole (i.e, no radial displacement). This problem of this nature is useful in 

the modeling of several problems such as fiber pull-out tests and load diffusion, etc. 

a h

( )r H tΔ ( )H t

0 ( )P H t

In this study, two limiting cases of hydraulic boundary conditions at the contact 

surface  ( ) between a rigid plug and a borehole surface are assumed, i.e. 

fully permeable (zero pore pressure) or impermeable (zero radial discharge) surface. Note that 

the borehole surface is assumed to be fully permeable. For an impermeable plug, contact 

S / 2 / 2h z h− ≤ ≤
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traction (both radial and tangential directions) and pore pressure are generated at the surface 

.To determine radial and tangential traction, and pore pressure jump denoted by S ( , )rT sξ% , 

( , )zT sξ% , and ( , )pT sξ%  respectively, the contact surface  is discretized into a total of S eN  ring 

elements as shown in Fig 4.2(b). The displacement compatibility condition is then imposed at 

the contact surface . This is done by imposing the resulting displacement variation on the 

nodal locations at the contact surface  by applying radial traction 

S

S ( , )rT sξ% , tangential 

traction ( , )zT sξ% , and pore pressure jump ( , )pT sξ%  on . It is assumed that the applied radial 

and tangential traction, and pore pressure jump are constant within each ring element. The 

relationship between the unknown contact traction, pore pressure jump and the displacements 

at the surface  can be expressed in the following form 

S

S

 

rr rz rp
r

zr zz zp
z

pr pz pp
p

⎡ ⎤ ⎧ ⎫
⎢ ⎪ ⎪

⎨ ⎬⎢
⎪ ⎪⎢ ⎥
⎩ ⎭⎣ ⎦

G G G T
G G G T
G G G T

% % % %

% % % %

% % % %

⎥
⎥  = 

r

z

p

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

u
u
u

%

%

%

 (4.37) 

In Eq. (4.37), the element , where =1, 2, 3,…,ij
klG% ,k l eN , of  denotes the influence 

functions, which are radial displacement (

ij%G

i r= ), vertical displacement ( ), and radial 

fluid displacement ( ) at the center of the  ring element due to an instantaneous radial 

ring load ( ),  a vertical ring load (

i z=

i p= thk

j r= j z= ), and a ring fluid pressure ( ) respectively 

applied over the  ring element. The vectors  and   (

j p=

thl iT% iu% , ,i r z p= ) can be expressed as 

   =  ; (4.38) rT%
T

1 2( , ) ( , ) ( , )r r r NeT z s T z s T z s⎡⎣
% % %L ⎤⎦

 zT%   =  ; (4.39) 
T

1 2( , ) ( , ) ( , )z z z NeT z s T z s T z s⎡⎣
% % %L ⎤⎦

⎤⎦

]

]

   =  ; (4.40) pT%
T

1 2( , ) ( , ) ( , )p p p NeT z s T z s T z s⎡⎣
% % %L

   =  ; (4.41) pu% [ T0 0 0L

In addition, 

   =  ru% [ T/ / /r r rs sΔ Δ ΔL s ; (4.42) 

 zu%  =  [ ; (4.43) ]

]

T0 0 0L

for the case of radial misfit, and 

   =  ; (4.44) ru% [ T0 0 0L
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 zu%   =  [ T/ / /z z z ]s sΔ Δ ΔL s ; (4.45) 

for the applied vertical loading case. Note that  ( i =1, 2,…,iz eN ) denotes the vertical 

coordinate of the nodal location of the  ring element. thi

For a fully permeable rigid plug, there is no pore pressure generated on the entire 

borehole surface and  is a null vector. Equation (4.37) then reduces to p
%T

 rr rz

zr zz

⎡ ⎤
⎢ ⎥

r

⎣ ⎦

% %

% %
G G
G G z

⎧ ⎫
⎨ ⎬
⎩ ⎭

%

%
T
T

 = r

z

⎧ ⎫
⎨ ⎬
⎩ ⎭

%

%

u
u

 (4.46) 

Eqs. (4.37) and (4.46) yield nodal solutions for contact traction and pore pressure 

jump. Time domain solutions can be expressed in the next section by employing an accurate 

numerical Laplace-Fourier inversion scheme. 

The average radial contact stress  over  for the radial misfit case can be 

determined from 

0T S

  = 0T
/2

/2

(1, )
h

r
h

a T z dz
h
μ

−
∫  (4.47) 

and the equilibrium of a plug under the vertical load  is given by  0

) z

P

  =  (4.48) 0P
/2

2

/2

2 (1,
h

z
h

a T z dπ μ
−
∫

4.5 Numerical Results and Discussion 

The solution procedure described in the previous sections is implemented into a 

computer program to investigate time-dependent response of a borehole in a poroelastic 

medium with an excavation disturbed zone. The main computational effort is involved in the 

evaluation of influence functions . The explicit analytical solutions for  are given in 

terms of an infinite integral with respect to the Fourier transform parameter 

kl
ijG kl

ijG

ξ , which can be 

converted into a semi-infinite integral since the integrand is either an even or odd function of 

ξ . The semi-infinite integrals of  are then computed by using a numerical quadrature 

scheme that subdivides the interval of integration and employs a 21-point Gauss-Kronrod rule 

to estimate the integral over each subinterval. Time-domain solutions are obtained by using 

kl
ijG
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an accurate Laplace inversion scheme reported in the literature. Piessens (1975) conducted a 

review of numerical Laplace inversion schemes and found that the scheme proposed by 

Stehfest (1970) is very accurate for time-dependent problems. In the past, Stehfest’s scheme 

has been widely used in a variety of poroelastic problems (Rajapakse 1993, Abousleiman et 

al. 1997, Cheng 1997, and Senjuntichai and Sapsathiarn 2006). According to Stehfest’s 

(1970) time domain solution is given by Eq. (3.66) in the previous chapter. 

. The accuracy of present solution was verified by comparison with the existing 

solutions given by Rajapakse (1993) for a borehole in a poroelastic medium with 

incompressible constituents (ν =0.3, uν =0.5 and B =1.0) subjected to axisymmetric radial 

traction of uniform intensity 0f  over a segment of length . The boundary conditions for 

this problem are given in Eqs. (4.27)-(4.33) with 

2h

( , )rF sξ%  = 0 sin( ) /f b sξ ξ  and ( , )zF sξ% =0. 

Figures 4.3(a) and 4.3(b) show comparisons of nondimensional profiles of pore pressure and 

fluid discharge respectively in the radial direction ( =0) for =0.25 and 1.0 at 

nondimensional time, =0.01 and 0.10. Excellent agreement between both solutions is 

noted in both figures. Comparisons of numerical solutions corresponding to contact problems 

shown in Fig. 4.2(a) are presented next. Fig. 4.4 shows comparisons of average radial traction 

(

z /b a
2/ct a

0 / rT a μ− Δ ) and an axial stiffness ( 0 / zP aμ Δ ) given by Eq. (4.46) and (4.47) respectively 

with those presented by Rajapakse and Gross (1996) and Robinson (2002) for a borehole in 

an isotropic medium (ν =0.3) containing a rigid cylindrical plug. It is noted that the present 

solutions agree very closely with both existing solutions at all length-radius ratios of rigid 

plug. The accuracy of the present solution scheme is thus confirmed through these 

independent comparisons. 

Numerical results for displacement, stresses, excess pore pressure and radial 

discharge corresponding to uniform traction or fluid source applied at the borehole wall over 

a segment of length  are presented next. In this paper, the disturbed zone during drift 

excavation is assumed to be two diameter of the borehole (Sato et al. 2000) (i.e. =4). 

The variations of shear modulus and permeability coefficient in the EDZ are given by Eqs. 

(4.18) and (4.19) respectively with 

2b

/d a

10 0.m 25≤ ≤  and 0. In addition, a poroelastic 

material with compressible constituents (

2m ≥

ν =0.3, uν =0.4, B =0.9) is employed in the 

numerical study. Note that the poroelastic solution without the EDZ can be obtained from the 

present solution with = =0. In addition, two limiting cases of hydraulic boundary 

conditions are considered at the borehole wall, i.e. a fully permeable surface (zero pore 

pressure) and an impermeable surface (zero fluid discharge). 

1m 2m
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The first set of numerical results corresponding to the case where a borehole 

subjected to axisymmetric radial traction of intensity 0f  is presented in Figs. 4.5-4.7 with 

=1. Figure 4.5 presents radial variations of non-dimensional excess pore pressure at the 

mid-plane ( =0) for both permeable and impermeable borehole surfaces. The effect of the 

EDZ on shear modulus is considered in Fig. 4.5(a) with =0, 0.1, and 0.2, and =0, 

whereas the case of =0 with =0, 0.2, and 0.4 is considered in Fig. 4.5(b) to study the 

effect of permeability change in the EDZ. Numerical results presented in Fig. 4.5 indicate that 

the disturbed zone has a significant influence on excess pore pressure near the borehole wall. 

It is found that pore pressure is zero at 

/b a

/z a

1m 2m

1m 2m

r a=  for a fully permeable wall before increasing 

rapidly with the radial distance reaching; its peak near the borehole wall ( <1.5). For an 

impermeable wall, the maximum value of pore pressure is observed at the wall ( =1) 

before decreasing rapidly with the radial distance. Pore pressure increases with increasing the 

shear modulus coefficient  regardless of the hydraulic boundary condition at the borehole 

wall. On the contrary, pore pressure decreases with increasing the permeability coefficient 

 as shown in Fig. 4.5(b). It is also noted that the pore pressure is virtually negligible when 

> 4 irrespective of the hydraulic boundary condition at the borehole wall. 

/r a

/r a

1m

2m

/r a

Variations of non-dimensional fluid discharge in the radial direction ( =0) due to 

uniform radial traction are presented in Figs. 4.6(a) and 4.6(b) respectively for different 

values of  and . In the case of fully permeable wall, radial discharge is very high near 

the wall and then decreases rapidly with the radial distance. At early times ( 0.01), the 

fluid flow is inward (negative value) near the borehole wall ( <1.2), and becomes 

outward (positive value) with increasing the radial distance. As time processes ( >1), 

the discharge is inward at all points in the medium. Radial fluid discharge corresponding to an 

impermeable borehole wall is completely different from the fully permeable case. Radial fluid 

discharge in the case of impermeable borehole is zero at the borehole wall due to the 

boundary condition at all time instants. It then increases gradually with the radial distance 

near the borehole wall ( <1.5) before decreasing with the radial distance. It is also found 

that the fluid discharge for the impermeable wall in Fig. 4.6(a) increases with increasing  

similar to what observed for the pore pressure in Fig. 4.5(a). However, the discharge profiles 

in Fig. 4.6(b) show somewhat different behavior from the pore pressure profiles in Fig. 4.5 (b) 

that they increase with increasing . This is consistent with the fact that the larger values of 

 indicate more permeable medium, which results in more flow and lower pore pressure in 

the vicinity of the borehole.    

/z a

1m 2m

2/ct a ≤

/r a
2/ct a

/r a

1m

2m

2m
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Figures 4.7(a) and 4.7 (b) show radial variations of non-dimensional radial 

displacement and tangential stress ( =0) for different values of  with = 0. Radial 

displacement in Fig. 4.7(a) has a maximum value at the borehole wall, and decays rapidly 

with the radial distance regardless of the hydraulic boundary condition. The influence of  

on the displacement is observed only in the vicinity of the borehole wall and the displacement 

once again increases with increasing similar to what observed for pore pressure and fluid 

discharge respectively in Figs. 4.5(a) and 4.6(a). It should be noted that the difference 

between displacements at early time ( <0.01) and larger time ( >10) is less than 

5% at all points for both fully permeable and impermeable walls. Radial profiles of non-

dimensional tangential stress in Fig. 4.7(b) show a similar behavior to the radial displacement 

profiles in Fig. 4.7(a). The peak stresses are observed at the wall and decays along the radial 

distance but the tangential stress decays more rapidly when compared to the radial 

displacement profiles in Fig. 4.7(a). In contrast to other quantities, the tangential stress 

decreases with increasing . It is implied that the influence of the EDZ results in reduction 

of stress and increase of displacement around the borehole. Solutions for radial displacement 

and tangential stress profiles were also plotted for different values of . It was found that 

their solutions for different values of  are virtually identical indicating that the variation of 

permeability in the EDZ has negligible influence on displacement and stress around the 

borehole under applied radial traction. 

/z a 1m 2m

1m

1m

2/ct a 2/ct a

1m

2m

2m

Numerical results corresponding to a borehole wall subjected to specified fluid 

pressure of uniform intensity 0p  [ 0( , ) sin( ) /P s p b sξ ξ ξ=% ] and radial discharge of uniform 

intensity  [0q 0( , ) sin( ) /Q s q b sξ ξ ξ=% ] over a length of =1 are presented in Figs. 4.8 and 

4.9 respectively. Profiles of non-dimensional radial displacement, tangential stress, excess 

pore pressure, and radial discharge along the radial distance ( =0) with a fully permeable 

borehole wall are shown in Figs. 4.8(a)-4.8(d) respectively for different values of  and . 

Under applied fluid pressure, the maximum negative value of radial displacement is observed 

at the center of applied loading, and radial displacement decreases rapidly along the radial 

distance approaching negligible level when > 4 for all values of  and . It can be 

seen from Fig. 4.8(b) that the maximum tangential stress is about 20% more than the specified 

fluid pressure at the borehole wall. Tangential stress decreases rapidly with the radial distance 

especially at the early time, and it is compressive at all points along the -axis. Excess pore 

pressure profiles in Fig. 4.8(c) show a similar trend to what observed from the tangential 

stress profiles in Fig. 4.8(b). The maximum pore pressure is equal to 

/b a

/z a

1m 2m

/r a 1m 2m

r

0p−  at the borehole wall 

due to the imposed boundary condition, and it decreases rapidly with the radial distance. At 
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the early time ( <0.1), pore pressure in all EDZs decreases rapidly near the borehole 

wall and becomes suction (positive value) with increasing radial distance. For >0.1, 

pore pressure increases gradually with time before diminishing to negligible level when 

> 4. Both tangential stress and excess pore pressure profiles decrease with increasing  

but increase with decreasing . Initially, radial discharge illustrated in Fig 4.8(d) is very 

high near the borehole wall and decreases along the radial direction. Radial discharge 

increases with increasing the value of . Fluid discharge can be negligible when > 4 at 

all time instants. 

2/ct a
2/ct a

/r a 1m

2m

2m /r a

Figures 4.9(a)-4.9(d) show profiles of non-dimensional radial displacement, 

tangential stress, excess pore pressure, and radial discharge respectively due to specified fluid 

discharge at an impermeable borehole wall. Radial displacement and tangential stress profiles 

in Fig. 4.9(a) and 4.9(b) respectively show similar trends to those in Fig. 4.8(a) and 4.8(b) 

under applied fluid pressure. The maximum value of displacement is observed at the borehole 

wall, and the displacement decreases along the radial direction diminishing to zero when 

> 4. It is found from Fig. 4.9(b) that the largest value of tangential stress always occurs 

at borehole walls ( =1) for all values of ,  before decreasing rapidly with the radial 

distance especially at early time. Tangential stress decreases with increasing  and . 

Numerical results for excess pore pressure profiles in Fig. 4.9(c) indicate that no suction is 

developed in the medium at all time instants for applied fluid discharge. Initially 

( =0.01), the excess pore pressure is observed only near the borehole wall, and 

gradually developed in the medium as time progresses. The influence of the EDZ on excess 

pore pressure is similar to that of tangential stress shown in Fig. 4.9(b). Naturally, the 

normalized discharge at =1 shown in Fig. 4.9(d) is equal to one at all time instants 

irrespective of  and  due to the specified boundary condition. Radial discharge 

decreases with increasing , but increases with increasing . It should also be noted that 

final solutions of all results presented in Fig. 4.9 are reached when >100. 

/r a

/r a 1m 2m

1m 2m

2/ct a

/r a

1m 2m

1m 2m

2/ct a

The final set of numerical results corresponds to contact problems involving a rigid 

cylindrical plug bonded to an infinite borehole with a fully permeable wall and the EDZ [see 

Fig. 4.2(a)]. Figure 4.10(a) shows non-dimensional average value of radial stress ( 0 / rT a μΔ ), 

given by Eq. (4.47), for a rigid cylindrical plug with a radial misfit of  for different 

gradients of shear modulus in the EDZ ( =0.1, 0.2 and 0.3) and different times 

( =0.01, 0.1 and 1). Solutions are presented with different length-radius ratios of a rigid 

cylindrical plug ( ) varying from 0.1 to 10.0. Both fully permeable and impermeable 

rΔ

1m

2/ct a

/h a
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plugs are considered. Very large compressive radial stress is developed at the contact surface 

for small values of , and it decreases with increasing . The change in shear modulus 

has a significant influence on the radial stress, i.e. an average radial stress decreases with 

increasing the change in shear modulus (larger value of ). The change in permeability is 

found to be less influence on the radial stress. The solutions approach an asymptotic value 

when >10, which is the plane-strain solution. The numerical solutions for 

/h a /h a

1m

/h a 0 / rT a μΔ  

under a fully permeable plug are within five percent different from those of an impermeable 

one. Non-dimensional radial stress profiles [ ( , ) /rr ra z aσ μΔ ] along the contact surface of 

rigid cylinder ( =2.0) as shown in Fig. 4.2(a) with radial misfit are shown in Fig. 4.10(b). 

The radial contact stress is symmetric about the =0 plane and compressive throughout the 

contact surface. Radial stress is singular at the edge of the cylinder, and it is nearly constant 

over the central part of the plug. The degree of stress singularity is found to be in a square 

root order, which agrees with the case of a cylindrical plug in a borehole in an isotropic 

elastic medium (Robinson 2002).  In addition, radial stress in the central part of the plug 

decreases with increasing . 

/h a

z

1m

The numerical results for the applied vertical loading are presented next. Non-

dimensional axial stiffness ( 0 / zP aμ Δ ) of a rigid cylinder bonded to a borehole surface is 

presented in Fig 4.11(a). The variation of axial stiffness with respect to  is almost linear, 

and its slope decreases with increasing the value of . Numerical results presented in Fig. 

4.11(a) indicate that the axial stiffness of the plug depends significantly on the change in 

shear modulus in the EDZ. Figure 4.11(b) presents non-dimensional shear stress 

[

/h a

1m

( , ) /rz za z aσ μΔ ] along the contact surface of an axially loaded rigid plug. Shear stress 

profiles are symmetric about =0 plane, and have a singularity at the two edges, similar to 

what observed in radial stress profiles shown in Fig 4.10(b). It is also constant over the central 

part of contact surface, and decreases with increasing the values of . In addition, the 

influence of hydraulic boundary condition along the plug surface is negligible under the 

vertical loading case. 

z

1m

4.6 Conclusion 

In this chapter, the general solutions of a cylindrical borehole in a poroelastic medium 

with an excavation disturbed zone subjected to axisymmetric loading are based on Biot’s 

theory of poroelasticity by applying Laplace and Fourier integral transforms. The general 

solutions in the Laplace-Fourier domains are expressed in terms of modified Bessel functions 

of the first and second kinds. These solutions are used to formulate boundary value problems 
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corresponding to a borehole subjected to axisymmetric loading applied at its surface, and  

contact problems involving a borehole containing a rigid cylinder. Numerical results indicate 

that changes in shear modulus and permeability coefficient in the excavation disturbed zone 

have a significant influence on the solutions especially in the vicinity of the borehole wall. 

The shear modulus is reduced due to the excavation process, and it results in more 

displacement, excess pore pressure, and fluid discharge, but less tangential stress. The drilling 

process leads to larger permeability coefficient in the EDZ, which causes a decrease in pore 

pressure but an increase in fluid discharge. The influence from the excavation disturbed zone 

is however less significant in the contact problems between a borehole and a rigid plug. The 

plane strain solutions are attained when >10 for both cases of the radial misfit and the 

vertical loading. The solutions presented in this chapter can be employed to examine several 

practical problems in geomechanics related to pressuremeter devices, ground-water wells, 

natural resource explorations and waste disposal, etc. 

/h a
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Figure 4.1 Infinite borehole in poroelastic medium with excavation disturbed zone. 

                                

 

(a)                                                                   (b) 

Figure 4.2 (a) A rigid cylinder bonded to a borehole with an excavation disturbed zone. (b) 

Unit radial loading applied over a finite segment. 
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(a)     (b) 

Figure 4.3 Comparison with existing solutions for a borehole in a homogenous poroelastic 

medium with incompressible constituents. 
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Figure 4.4 Comparison with existing solutions for a rigid cylinder bonded to a borehole in an 

elastic medium.  
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 (b) 

Figure 4.5 Profiles of excess pore pressure along the r -axis due to applied radial traction for 

different values of (a) 1m  and (b) 2m . 
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(b) 

Figure 4.6 Profiles of fluid discharge along the r -axis due to applied radial traction for 

different values of (a) 1m  and (b) 2m . 
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(b) 

Figure 4.7 Profiles of (a) displacement and (b) tangential stress different shear modulus along 

the r -axis due to applied radial traction. 
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     (c)           (d) 

Figure 4.8 Profiles of (a) displacement, (b) tangential stress, (c) excess pore pressure and (d) 

fluid discharge along the r -axis due to applied fluid pressure. 
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Figure 4.9 Profile of (a) displacement, (b) tangential stress, (c) excess pore pressure and (d) 

fluid discharge along the r -axis due to applied fluid discharge.  
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(b) 

Figure 4.10 Profile of (a) average radial traction and (b) radial stress along the contact 

surface for radial misfit. 
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(b) 

Figure 4.11 Profile of (a) axial stiffness and (b) tangential stress along the contact surface for 

applied vertical loading. 



CHAPTER V 

DYNAMIC RESPONSE OF BOREHOLE 

WITH DISTURBED ZONE 

5.1 General 

The dynamic response of a cylindrical borehole in an elastic medium is of 

fundamental importance in various fields, such as geotechnical engineering, mining 

engineering, and geophysical exploration. For example, analysis of gas explosion inside a 

mine on the surrounding rock is important for evaluating the damage caused by gas 

explosions. This chapter presents dynamic response of an infinite cylindrical borehole in a 

poroelastic medium with excavation disturbed zone. The borehole is subjected to 

axisymmetric time-harmonic ring loading. The governing equations of Biot’s 

poroelastodynamics theory are uncoupled by using two scalar and two vector potentials. The 

general solutions of displacements, stresses and pore pressure in the frequency domain are 

derived through the application of Fourier integral transform with respect to the vertical 

coordinate. The accuracy of the present solutions is confirmed through comparisons with 

existing solutions for boreholes in elastic and poroelastic media. 

5.2 Governing Equations and General Solutions 

Consider axisymmetric deformations of homogenous poroelastic medium with an 

infinite cylindrical borehole. A cylindrical coordinate system ( , ,r zθ ) is defined as shown in 

Fig. 4.1 with the z -axis along the center of the borehole. The constitutive relations for a 

homogeneous poroelastic material are given in Eqs. (3.5)-(3.8). The governing equations for 

axisymmetric motions of a poroelastic medium, in the absence of body forces (solid and fluid) 

and a fluid source, can be expressed according to Biot (1962) as 

 2 2
2( ) r

r
uu M M

r r r
ε ζμ λ α μ μ α∂ ∂

∇ + + + − −
∂ ∂

 = r fu rwρ ρ+&& &&  (5.1) 
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where the superscript dot denotes the derivative of field variables with respect to the time 

parameter ; t ρ  and fρ  denote the mass densities of the bulk material and the pore fluid 

respectively;  is a density-like parameter defined as m /fm ρ β= , in which β  is porosity; b  

is a parameter accounting for the internal friction due to the relative motion between the solid 

matrix and the pore fluid. If internal friction is neglected then b =0. In addition, the 

parameters α  (0≤ α ≤ 1) and M  (0 M≤ < ∞ ) can be defined as 

 α  = 
3( )

(1 2 )(1 )
u

uB
ν ν
ν ν
−

− +
 (5.5) 

 M  = 
2 22 (1 2 )(1 )

9( )(1 2 )
u

u u

Bμ ν ν
ν ν ν

− +
− −

 (5.6) 

For a completely dry material, α =0 and M =0, whereas for a material with incompressible 

constituents α =0 and . In addition, M →∞ 2∇  is the Laplace operator defined by 

 2∇  = 
2 2

2

1
r r r z
∂ ∂ ∂

+ +
∂ ∂ ∂ 2  (5.7) 

The governing partial differential equations, Eqs. (5.1)-(5.3) can be solved by using 

the following Helmholtz representation for axisymmetric vector fields 

  = ( , , )ru r z t
2

1

r r
1

z
φ ϕ∂ ∂
+

∂ ∂ ∂
 (5.8) 

  = ( , , )zu r z t 1 1 r
z r r r

1φ ϕ∂ ∂∂ ⎛− ⎜∂ ∂⎝ ⎠
⎞
⎟  (5.9) 

  = ( , , )rw r z t
2

2

r r
2

z
φ ϕ∂ ∂

+
∂ ∂ ∂

 (5.10) 

  = ( , , )zw r z t 2 1 r
z r r r

2φ ϕ∂ ∂∂ ⎛− ⎜∂ ⎝ ⎠
⎞
⎟∂

i

 (5.11) 

where φ ( i =1, 2) and iϕ ( i =1,2) are scalar and vector fields respectively.  

Substituting Eqs. (5.8)-(5.11) into Eqs. (5.1)-(5.4) together with the assumption that 

the motion is time-harmonic with a factor i te ω , where ω  is the frequency of excitation, yields 

two sets of partial different equations for scalar field 1φ , 2φ  and vector fields 1ϕ  2ϕ  as 

follows 

 ( ) 2 2
12Mλ α μ ρδ⎡ ⎤+ + ∇ +⎣ ⎦φ  = ( )2 2

2fMα ρ δ φ− ∇ +  (5.12) 
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 ( )2 2
1fMα ρ δ φ∇ +  = ( )2 2

2M m ibδ δ φ− ∇ + −  (5.13) 

and 

 ( )2 2
1μ ρδ ϕ∇ +  = 2

2fδ ρ ϕ−  (5.14) 

 2
1fδ ρ ϕ  = 2

2m i b 2δ ϕ δ ϕ− +  (5.15) 

Note that the term i te ω  is suppressed from all expressions for brevity. The above partial 

differential equations are reduced to ordinary differential equations by performing appropriate 

Fourier transform with respect to the z -coordinate given by Eq. (4.1), in which its inverse 

relationship is given by Eq. (4.2). After lengthy manipulations, it can be shown that the 

general solutions of Fourier transforms of iφ ( =1, 2) and i iϕ ( i =1,2) can be expressed as 

 1( , )rφ ξ%  = 0 1 0 1 0 2 0 2( ) ( ) ( ) ( )AI r BK r CI r DK rγ γ γ γ+ + +  (5.16) 

 2 ( , )rφ ξ%  = [ ] [ ]1 0 1 0 1 2 0 2 0 2( ) ( ) ( ) ( )AI r BK r CI r DK rχ γ γ χ γ γ+ + +  (5.17) 

 1( , )rϕ ξ%  = 0 3 0 3( ) ( )EI r FK rγ γ+  (5.18) 

 2 ( , )rϕ ξ%  = [3 0 3 0 3( ) ( )]EI r FK rχ γ γ+  (5.19) 

where ( )A ξ , ( )B ξ , ( )C ξ , ( )D ξ , ( )E ξ , and ( )F ξ  are arbitrary functions to be determined 

by using appropriate boundary and/or continuity conditions relevant to a given problem. iγ  

( =1, 2, 3) andi iχ  ( =1, 2, 3) are given in Appendix C. A tilde (   denotes the Fourier 

transform of a function. In addition,  and  are modified Bessel functions of the first and 

second kinds respectively of the n th order (Watson 1944). Thereafter, the general solutions 

for displacements, excess pore pressure and stresses can be obtained in terms of the arbitrary 

functions, 

i )%

nI nK

( )A ξ  to ( )F ξ , by using Eqs. (3.5)-(3.10), (5.8)-(5.11) and (5.16)-(5.19) as follows  

  = ru% [ ] [ ] [ ]1 1 1 1 1 2 1 2 1 2 3 1 3 1 3( ) ( ) ( ) ( ) ( ) ( )AI r BK r CI r DK r i EI r FK rγ γ γ γ γ γ ξγ γ γ− + − + −  (5.20) 

 zu%  = [ ] [ ]2
0 1 0 1 0 2 0 2 3 0 3 0 3( ) ( ) ( ) ( ) ( ) ( )i AI r BK r CI r DK r EI r FK rξ γ γ γ γ γ γ γ+ + + − +  (5.21) 

  = rw% [ ] [ ] [ ]1 1 1 1 1 1 2 2 1 2 1 2 3 3 1 3 1 3( ) ( ) ( ) ( ) ( ) ( )AI r BK r CI r DK r i EI r FK rγ χ γ γ γ χ γ γ ξγ χ γ γ− + − + −  (5.22) 

 zw%  = [ ] [ ]{ } [ ]2
1 0 1 0 1 2 0 2 0 2 3 3 0 3 0 3( ) ( ) ( ) ( ) ( ) ( )i AI r BK r CI r DK r EI r FK rξ χ γ γ χ γ γ γ χ γ γ+ + + − +  (5.23) 

  = p% [ ] [ ]1 0 1 0 1 2 0 2 0 2( ) ( ) ( ) ( )AI r BK r CI r DK rη γ γ η γ γ+ + +  (5.24) 
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 rrσ%  = [ ] [ ]1
1 0 1 0 1 1 1 1 1 1( ) ( ) 2 ( ) ( )AI r BK r r AI r BK rβ γ γ μγ γ γ−+ − −  

   [ ] [ ]1
2 0 1 0 1 2 1 1 1 1( ) ( ) 2 ( ) ( )CI r DK r r CI r DK rβ γ γ μγ γ γ−+ + − −  

   [ ] [ ]2 1
3 0 3 0 3 3 1 3 1 3( ) ( ) ( ) ( )i EI r FK r i r EI r FK rξγ γ γ ξγ γ γ−+ + − −  (5.25) 

 θθσ%  = [ ] [ ]2 1
1 1 0 1 0 1 1 1 1 1 1( ) ( ) ( ) 2 ( ) ( )L AI r BK r r AI r BK rλ αη γ γ μγ γ γ−− + + + −  

   [ ] [ ]2 1
2 2 0 2 0 2 2 1 2 1 2( ) ( ) ( ) 2 ( ) ( )L CI r DK r r CI r DK rλ αη γ γ μγ γ γ−− + + + −  

    (5.26) [1
3 1 3 1 32 ( )i r EI r FK rμ ξγ γ γ−+ − ]( )

 zzσ%  = [ ] [ ]2 2 2 2
1 1 0 1 0 1 2 2 0 1 0 1(2 ) ( ) ( ) (2 ) ( ) ( )L AI r BK r L CI r DKμξ λ αη γ γ μξ λ αη γ γ− + + + − + + + r  

   [ ]2
3 0 3 0 32 ( ) (i EI r FK rμ ξγ γ γ− + )  (5.27) 

  rzσ%  = [ ] [ ]1 1 1 1 1 2 1 1 1 12 ( ) ( ) 2 ( ) (i AI r BK r i CI r DK rμ ξγ γ γ μ ξγ γ γ− + − )  

   [ ]2 2
3 3 1 3 1 3( ) ( ) ( )EI r FK rμγ ξ γ γ γ− + −  (5.28) 

where iη , iβ , ( i =1, 2) are given in Appendix C.  iL

 It can be shown that the general solutions for axisymmetric deformations of a 

poroelastic medium in the Fourier transform domain given by Eqs. (5.20)-(5.28) can be 

expressed in the following matrix form  

 ( , )r ξu   =  ( , ) ( )r ξ ξR C  (5.29) 

 ( , )r ξf   =  ( , ) ( )r ξ ξS C  (5.30) 

where 

 ( , )r ξu  = [ ; (5.31) ]Tr zu u p% % %

 ( , )r ξf  = [  (5.32) ]Trr rz rwσ σ% % %

and  ( )ξC  = [ ]TA B C D E F  (5.33) 

The elements of matrices  and S  in the above equations are given in Appendix C. R

 Similar to quasi-static problem presented in Chapter IV, the disturbed zone is 

discretized into infinitely long tubular layers with small thickness. The relationship between 

the generalized displacement vector   and the force vector  can be established for the 

 layer as 

( )nU ( )nF
thn
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   =   (5.34) ( )nF ( ) ( )n nK U

where  is an exact stiffness matrix of the  layer in the Fourier transform space. The 

elements of vectors  and  are defined similar to those in Eq. (4.21)-(4.22) 

respectively in the previous chapter with their elements being functions of r  and 

( )nK thn
( )nU ( )nF

ξ . In 

addition, the stiffness matrix for the undisturbed zone is given by Eq. (4.23). The elements of 

matrices  and  are given in Appendix C. The global stiffness matrix  for this 

problem can be assembled by using the continuity conditions of traction and fluid flow at 

each interface, in which 

( 1)N +R ( 1)N+S *K

   =   (5.35) *F * *K U

where  and  are the global vectors of generalized displacements and generalized forces 

respectively. The elements of matrices  and   are given by Eqs. (4.25) and (4.26) 

respectively. 

*U *F
*U *F

Consider a borehole in poroelastic medium with the EDZ subjected to radial traction 

( )rF z , tangential traction ( )zF z , and either pore pressure  or fluid source  applied 

at its surface. The boundary conditions can be expressed as 

( )P z ( )Q z

 (1, )rrσ ξ%   =  ( ) (1, )rF pξ α−% % ξ  (5.36) 

 (1, )rzσ ξ%   =  ( )zF ξ%  (5.37) 

 (1, )p ξ%   =  ( )P ξ%  for fully permeable surface (5.38) 

or  (1, )rq ξ%   =  ( )Q ξ%  for impermeable surface (5.39) 

5.3 Numerical Results and Discussion 

Numerical results for dynamic response of an infinite borehole in a poroelastic 

medium by considering the excavation disturbed zone are presented in the section. In the first 

step, the system of liner simultaneous equations given by Eq. (4.24) is solved by using 

appropriate boundary and continuity conditions. Since Eq. (4.24) is established in the Fourier 

transform space, it has to be solved for discrete values of ξ . The solutions are then 

determined by using the numerical quadrature employing in Chapter IV to evaluate the semi-

infinite integral scheme given by Eq. (4.2). The accuracy of the present solution scheme is 

verified by comparing with the existing solutions for a borehole in both elastic and poroelastic 

media. Parnes (1986) presented the dynamic response due to axisymmetric traction applied at 
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a cylindrical borehole surface. Fig. 5.1(a) shows comparisons of nondimensional radial 

displacement and tangential stress along the radial direction ( =0) due to a uniform line 

load ( ) along a circle at =0 of a borehole in an elastic medium. Poisson’s ratio equal to 

0.25 and a nondimensional frequency 

/z a

P /z a

δ =2.0, defined as δ = 0 0/aω ρ μ , are used where 0ρ  

and 0μ  are mass density and shear modulus of the undisturbed zone respectively. Fig. 5.1(b) 

shows comparisons of vertical variations of the amplitudes of radial displacement, tangential 

and vertical stresses at =1.5 due to a normal concentrated ring load with magnitude P  

applied at the level =0 of the borehole wall. The present solutions are compared with 

those given by Lu and Jeng (2006). The following material parameters are used: 

/r a

/z a

0/λ μ =0.333; 0/M μ =0.667; 0/fρ ρ =0.488; α =0.95; 0/m ρ =2.333; and 

*
0 0/b ab ρ μ= =577.40. The diameter of the borehole is equal to 2  and its surface is 

assumed to be fully permeable. Two nondimensional frequencies of 

a

δ =5.73 and 11.45 are 

presented. It is found that the comparisons in Figs. 5.1(a) and 5.1(b) show very close 

agreement between the present solutions and the existing solutions. Therefore, the accuracy of 

the present solution scheme is confirmed through these independent comparisons. 

 The numerical results are presented hereafter correspond to the cases where 

uniformly distributed radial traction of magnitude 0f  and uniform fluid pressure of 

magnitude  applied over a finite segment of =1 at the borehole surface (see Fig. 4.1). 

The following nondimensional parameters are considered for the surrounding poroelastic 

medium: 

0p /h a

0/λ μ =0.333; 0/M μ =0.667; 0/fρ ρ =0.5; α =0.95 and 0/m ρ =2.333. The 

variation of shear modulus is assumed to be linearly varied with the radial direction given by 

Eq. (4.18). Two extreme cases of the hydraulic boundary conditions at the borehole surface 

i.e. fully permeable and impermeable, are considered.  

Nondimensional radial displacement at the center of loading ( =0, =0) are 

presented in Fig. 5.2 for various shear modulus profiles ( =0, 0.1 and 0.2) in the disturbed 

zone. Solutions are presented for the frequency range 0<

/r a /z a

1m

δ ≤ 10. Numerical results in Fig. 5.2 

indicate that the disturbed zone has a significant influence on the radial displacement. Radial 

variations of both real and imaginary parts of radial displacement with δ  for the same value 

of are virtually similar for fully permeable and impermeable borehole walls. Both real and 

imaginary parts of the radial displacement for the undisturbed borehole ( =0) show more 

oscillatory variation with 

1m

1m

δ  when compared to those being disturbed ( >0). The influence 

of internal friction between the solid and fluid phases ( ) on the radial displacement is also 

1m

b
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presented with =1 and 1000 in Fig. 5.2. The difference between the two solutions is less 

than 5% for both real and imaginary parts. It is also noted that the effect of   has little 

influence on the radial displacement regardless of the hydraulic boundary condition at 

borehole wall. 

*b
*b

Tangential stress is useful in the study of borehole stability and fracturing. 

Nondimensional tangential stress with respect to the frequency of excitation is presented for 

both fully permeable and impermeable borehole walls in Figs. 5.3(a) and 5.3(b) respectively. 

For a fully permeable borehole wall, both real and imaginary parts of tangential stress show 

minor dependence on the internal friction as previously noted for the radial displacement in 

Fig. 5.2, whereas the internal friction has more influence for the impermeable borehole wall. 

Tangential stress decreases with increasing  similarly to what observed for the radial 

displacement in Fig. 5.2 when 

1m

δ <2. At higher frequencies (δ ≥ 2), real and imaginary parts 

of tangential stress show more complicated variations with .  1m

Figure 5.4 presents nondimensional radial fluid discharge at the center of loading 

segment ( =1 and =0) to investigate the flow rate at the borehole wall due to the 

radial traction applied on a fully permeable wall. As expected, both real and imaginary parts 

of fluid discharge are zero when 

/r a /z a

δ =0. It is also found that radial discharge corresponding to 

=1 is larger than that of =1000 since  is inversely proportional to permeability. The 

effect of EDZ on the discharge at the borehole wall can be negligible for =1000 for the 

frequency range of 

*b *b *b
*b

δ <10.    

Nondimensional excess pore pressure at the center of loading segment due to 

uniformly distributed load applied on an impermeable borehole wall is presented in Fig. 5.5. 

These results indicate that excess pore pressure depends very significantly on the internal 

friction  and . It can be seen that excess pore pressure corresponding to =1 shows 

more oscillation with 

*b 1m *b

δ  when compared to that of =1000. This is similar to what observed 

from the fluid discharge results in Fig. 5.4. Excess pore pressure increases with increasing  

for the case of the internal friction =1000 whereas it shows complicated variation with 

=1. 

*b

1m

*b
*b

Next, variations of nondimensional radial displacement, tangential stress, excess pore 

pressure, and fluid discharge in the radial direction ( =0) due to uniform radial traction 

are illustrated in Figs. 5.6-5.7. Solutions are presented for =1 with =0, 0.1 and 0.2; and 

/z a
*b 1m

δ =0.5 and 2.0. It can be seen from the figures that both radial displacement and tangential 
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stress depend significantly on both  and 1m δ . The maximum values of both real and 

imaginary parts of radial displacement for δ =0.5 occur at the borehole wall before decaying 

with the radial distance. For higher frequency (δ =2.0), the displacement profiles show more 

oscillation, but the maximum value is still found at the borehole wall. The displacement 

decreases with increasing the value of  near the borehole wall ( <3), whereas it shows 

complicated variation away from the wall ( >3). Radial profiles of nondimensional 

tangential stress in Fig. 5.6(b) show similar behavior to the displacement profiles in Fig 5.6(a). 

The maximum stresses are observed at the wall, and the stresses then decay along the radial 

distance. The tangential stress deceases with increasing . On the contrary, the profiles of 

tangential stress for 

1m /r a

/r a

1m

δ =2 show more oscillatory variation than those of the radial stress. It is 

implied from Fig. 5.6 that the imaginary parts of displacement and tangential stress become 

negligible when δ → 0 approaching their static counterparts.  

Figs. 5.7(a) and 5.7(b) present variation of nondimensional excess pore pressure and 

fluid discharge respectively along the radial direction at the mid plane ( =0) for fully 

permeable borehole surface. Numerical results indicate that the excavation disturbed zone has 

a significant influence on both excess pore pressure and fluid discharge for 

/z a

δ =2.0, whereas 

the solutions for the lower frequency ( δ =0.5) are independent of . Both real and 

imaginary parts of the solutions for 

1m

δ =2.0 show oscillatory variation along the radial 

direction. The peak values of fluid discharge are observed at the borehole surface, which are 

the same as the radial displacement and tangential stress presented in Fig 5.6. This is 

consistent with the fact that the maximum solutions should be at the point of applied loading. 

Excess pore pressure is equal to zero at the wall due to the specified boundary condition. In 

addition, both excess pore pressure and fluid discharge diminish to negligible level when 

.    /r a →∞

The final set of numerical results corresponding to time-harmonic fluid pressure of 

magnitude 0P  applied over segment of length =1 on an impermeable borehole wall. Figs. 

5.8(a) and 5.8(b) show radial variations of nondimensional radial displacement and tangential 

stress respectively along the mid plane ( =0). It can be seen that profiles of radial 

displacement and tangential stress for 

/h a

/z a

δ =0.5 are quite smooth along the radial direction, 

whereas the solutions for δ =2.0 show more oscillatory variation with  before 

diminishing to zero when . Numerical results of radial displacement and tangential 

stress in Fig. 5.8 in the vicinity of the borehole wall present more fluctuation than those at a 

point away from the wall. It should be noted that the displacement and tangential stress due to 

the applied fluid pressure can be neglected when >10. 

/r a

/r a →∞

/r a
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Figures 5.9(a) and 5.9(b) present profiles of nondimensional excess pore pressure and 

fluid discharge along the radial distance at =0 due to time-harmonic fluid pressure 

applied at the borehole surface. It is found that both real and imaginary parts of the solutions 

have a smooth variation with  for the case of 

/z a

/r a δ =0.5 and they become oscillated for 

δ =2.0 similar to the radial displacement and tangential stress demonstrated in Fig. 5.8. Both 

pore pressure and fluid discharge are maximal at the borehole surface and decrease along the 

radial distance before reaching zero value when >7. The effect of excavation disturbed 

zone also shows significant influence on the excess pore pressure and fluid discharged. It is 

found that a solution with higher value of , shows more oscillatory variation than that with 

lower . This implies that higher gradient of shear modulus (more disturbed properties due 

to excavation) results in more fluctuations in the solution. 

/r a

1m

1m

5.3 Conclusion 

 The analytical solutions for a cylindrical borehole in an excavation disturbed zone 

due to time-harmonic loading at the borehole wall are presented in this chapter. A set of 

general solutions to the equations of motion from Biot’s poroelastodynamics theory is derived 

by using Helmholtz representation for axisymmetric vector fields and the Fourier integral 

transforms. The numerical results presented for dynamic response of the borehole with 

excavation disturbed zone show that it depends on many factors such as material properties, 

excavation damage, hydraulic boundary conditions along the borehole surface and the loading 

types. It is found that radial displacement, tangential stress, pore pressure and fluid discharge 

depend significantly on the change in shear modulus. The influence of internal friction due to 

relative motion between solid and fluid becomes less influence on radial displacement and 

tangential stress, but it has a significant influence on excess pore pressure and fluid discharge. 

The solutions along the radial direction show more fluctuations when the frequency excitation 

and the gradient of shear modulus increase. The solutions presented in this chapter are useful 

to study several problems related a cylindrical borehole in a poroelastic medium. For example, 

these solutions can be employed to study wave propagation problems corresponding to the 

empty and liquid-filled cylindrical borehole in fluid-saturated porous medium. In addition, the 

present analytical solutions can also be extended for stress analysis of a borehole under 

transient loading by employing an appropriate technique such as the fast Fourier transform. 
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 (a)             (b) 

Figure 5.1 Comparison with existing solutions for a borehole in (a) elastic medium and (b) 

poroelastic medium. 
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(b)  

Figure 5.2 Radial displacement at the center of loading due to radial traction on (a) 

permeable wall and (b) impermeable wall. 
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(b) 

Figure 5.3 Tangential stress at the center of loading due to radial traction on (a) permeable 

wall and (b) impermeable wall. 
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Figure 5.4 Radial discharge at the center of loading due to radial traction on permeable wall. 
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Figure 5.5 Excess pore pressure at the center of loading due to radial traction on impermeable 

wall. 
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Figure 5.6 Profiles of (a) radial displacement and (b) tangential stress along the -axis due to 

radial traction on permeable wall. 
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Figure 5.7 Profiles of (a) excess pore pressure and (b) radial discharge along the r -axis due 

to radial traction on permeable wall. 
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Figure 5.8 Profiles of (a) radial displacement and (b) tangential stress along the -axis due to 

applied fluid pressure on permeable wall. 
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Figure 5.9 Profiles of (a) excess pore pressure and (b) radial discharge due to applied fluid 

pressure on permeable wall. 

 

 



CHAPTER VI 

CONCLUSIONS 

This dissertation presents a theoretical study of poromechanical response of a finite 

cylinder and an infinite borehole under axisymmetric loading. Analytical solutions for a 

poroelastic cylinder, and a cylindrical borehole in a poroelastic medium with an excavation 

disturbed zone are presented. A set of general solutions is obtained from the governing 

equations based on Biot’s theory of poroelasticity by applying appropriate integral transform 

techniques. There are three main problems presented in this study, i.e. quasi-static responses 

of a cylinder and a borehole, and dynamic response of a borehole. Separate conclusions are 

given at the end of Chapters III-V based on the results presented in those chapters. The major 

findings and conclusions of this study can be summarized as follows: 

1. The analytical solutions are obtained in the appropriate transform spaces for each 

problem. The Laplace inversion is carried out by employing a numerical scheme 

presented by Stehfest (1970), whereas an adaptive numerical quadrature scheme 

using a 21-point Gauss–Kronrod rule is employed for the Fourier inversion. 

Accuracy of the present numerical schemes is confirmed by comparing with 

independent existing solutions for the limiting cases.   

2. The present study considers the disturbed zone due to borehole drilling process 

that has never been taken into account in the past for stress analysis of borehole 

problems related to poroelastic materials. Shear modulus and permeability 

coefficient are assumed to be non-homogenous in the excavation disturbed zone 

in the present study. An exact stiffness matrix scheme has successfully been 

employed to solve the borehole problems. 

3. Numerical results presented in this study indicate that poroelastic material 

properties and the hydraulic boundary conditions have a significant influence on 

poromechanical responses of cylinders and boreholes. It is also found that the 

solutions in the vicinity of borehole due to traction and fluid sources depend 

significantly on the reduced shear modulus in the disturbed zone. However, the 

increased permeability in the disturbed zone has a significant influence only on 

pore pressure and fluid discharge. 

 



 74

The analytical solutions presented in this study can be used to investigate a variety of 

problems in civil engineering applications involving cylinders and boreholes. Moreover, they 

can also be extended to study other practical problems, such as those related to hollow 

cylinders, load-diffusion from cylindrical piles, pressuremeter devices, hydraulic fracturing 

models, excavation and drilling, ground-water wells, and wave propagation problems etc. 
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Appendix A 

The expression of 0ijσ , ijmσ , ijnσ  , 0p , mp , np , 0iq , imq  and inq  ( =,i j , ,r zθ ) in Eqs. 

(3.26)-(3.32) are given by 

 0 ( , , )rr r z sσ  = 1/2 1
0 0 1cosh( ) ( ) 3 0 1 0A sz s r B I sr a C a Dη η − −− − + +  (A.1) 

 (1) ( , )rrm z sσ  = [ ]2 1
2 1cosh( ) cosh( ) sinh( )m m m m m m ms A z a z a z zηγ γ λ λ λ−− + + C  

   cosh( )m m mE zλ λ−  (A.2) 

 (2) ( , )rrm z sσ  = 1 1
1cosh( ) cosh( ) sinh( )m m m m m m ms A z z a z zηλ γ λ λ λ− − C⎡ ⎤− +⎣ ⎦  

   cosh( )m mE zλ+  (A.3) 

 ( , )rrn r sσ  = 1 2 1 1
0 1 0 1( ) ( ) ( ) ( )n n n n n n n n ns I r r I r B I r r I r Fη ξ β β β ξ ξ ξ− − −⎡ ⎤ ⎡− − −⎣ ⎦ ⎣ ⎤⎦  

   { }1 1
1 2 0 1 2 1( ) ( ) 2 ( )n n n na a I r a r a r I r Dξ ξ ξ ξ− −⎡ ⎤+ + − +⎣ ⎦ n  (A.4) 

 0 ( , , )zz r z sσ  = 0 0 2 0 3 0( )B I sr a C a Dη− + +  (A.5) 

 ( , )zzm z sσ  = [ ]2 1
3 1cosh( ) cosh( ) sinh( )m m m m m m ms A z a z a z zηλ γ λ λ λ− + − C  

   cosh( )m m mE zλ λ+  (A.6) 

 ( , )zzn r sσ  = [ ]2 1
0 3 0 1 1 0( ) ( ) ( ) (n n n n n n n n n n )s B I r a I r a rI r D G I rηβ β ξ ξ ξ ξ−− + + + ξ  (A.7) 

 0 ( , , )r z sθθσ  = 1/2 1
0 0 0 1 3 0cosh( ) ( ) ( )A sz B I sr s r I sr a C aη η − −⎡ ⎤− − + +⎣ ⎦ 1 0D+  (A.8) 

 (1) ( , )m z sθθσ  = 3cosh( ) cosh( )m m m mA z a C zη γ− + λ  (A.9) 

 (2) ( , )m z sθθσ  = 1 1
1cosh( ) cosh( ) sinh( )m m m m m m ms A z z a z zηλ γ λ λ λ− − C⎡ ⎤− + +⎣ ⎦  

   cosh( )m mE zλ−  (A.10) 

 ( , )n r sθθσ  =  

   

1 1 1 1
0 1 0 2 1( ) ( ) ( ) / 2 2 ( )n n n n n n nI r s r I r B I r a r I r Dη β β β ξ ξ ξ− − − −⎡ ⎤ ⎡− − − −⎣ ⎦ ⎣ n⎤⎦

)1
1(n nr F I rξ−−  (A.11) 
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 ( , )rzm z sσ  = [ ]1
1sinh( ) sinh( ) / 2 cosh( )m m m m m m m ms A z z a z zηγ λ γ λ λ λ−− + + C  

   sinh( )m m mE zλ λ−  (A.12) 

 ( , )rzn r sσ  = [ ]1
1 1 0 2 1 1( ) ( ) ( ) (n n n n n n n n n n n )s B I r a rI r a I r D G I rηξ β β ξ ξ ξ ξ ξ−− + − +  (A.13) 

 0 ( , , )p r z s  = [ ]4 0 0 0 2 0 0cosh( ) ( )a A sz B I sr a C Dη ⎡ ⎤+ + − +⎣ ⎦ η  (A.14) 

 ( , )mp z s  =  (A.15) [ 4 2cosh( ) cosh( )m m m ma A z a C zη γ − ]λ

 ( , )np r s  = 4 0 2 0( ) (n n n na B I r a D I r)η β η ξ−  (A.16) 

 0 ( , , )rq r z s  = 4 0 1(a sB I srκ η− )  (A.17) 

 ( , )rmq z s  =  (A.18) [ 4 2cosh( ) cosh( )m m m ma A z a C zκη γ λ− ]

 ( , )rnq r s  =  (A.19) [ 4 1 2 1( ) ( )n n n n n na B I r a D I rκ ηβ β ηξ ξ− − ]

 0 ( , , )zq r z s  = 4 0 sinh( )a sA szκ η−  (A.20) 

 ( , )zmq z s  =  (A.21) [ 4 2sinh( ) sinh( )m m m m m ma A z a C zκη γ γ λ λ− − ]

 ( , )znq r s  =  (A.22) [ 4 0 2 0( ) ( )n n n n na B I r a D I rκξ η β η ξ− ]

where 

  = 3a
(1 2 )

u

u

ν
ν−

 (A.23) 

  = 4a (1 )(1 )
3( )

u

u

B ν ν
ν ν
− +

−
 (A.24) 
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Appendix B 

 The elements of ( , , )r sξR  and ( , , )r sξS  matrices as shown in Eqs. (4.13) and (4.14) 

respectively are given by 

  = R
11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

R R R R R R
R R R R R R
R R R R R R

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥

⎥
⎥

 (B.1) 

  =  (B.2) S
11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

S S S S S S
S S S S S S
S S S S S S

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

where 

 11R  = 1
1( )s I rηβ β−  12R  = 1

1( )s K rηβ η−−  

 13R  = 1 22(1 2 ) ( ) ( )u I r rI rν ξ ξ ξ− −  14R  = 1 22(1 2 ) ( ) ( )u K r rK rν ξ ξ ξ− − −  

 15R  = 1( )i I rξ ξ−  16R  = 1( )i K rξ ξ  

 21R  = 1
0 ( )i s I rξη β−  22R  = 1

0 ( )i s K rξη β−  

 23R  = 1( )i rI rξ ξ−  24R  = 1( )i rK rξ ξ  

 25R  = 0 ( )I rξ ξ  26R  = 0 ( )K rξ ξ  

 31R  = 
2 2

0
(1 ) (1 ) ( )

9(1 )( )
u

u u

B I rν ν β
ν ν ν
+ −
− −

 32R  = 
2 2

0
(1 ) (1 ) ( )

9(1 )( )
u

u u

B K rν ν β
ν ν ν
+ −
− −

 

 33R  = 0

2 (1 )
( )

3
uB

I r
ξ ν

ξ
+

−  34R  = 0

2 (1 )
( )

3
uB

K r
ξ ν

ξ
+

−  

 35R  = 0 36R  = 0 

  = 11S 1 2 1
0 1( ) ( )s I r r I rη ξ β β β− −⎡ ⎤−⎣ ⎦   = 12S 1 2 1

0 1( ) ( )s K r r K rη ξ β β β− −⎡ ⎤+⎣ ⎦  

  = 13S 1 2
0 1 22(1 ) ( ) 2(1 2 ) ( ) ( ) ( )u uI r r I r I r rI r1ν ξ ξ ν ξ ξ ξ ξ ξ−− − − + −  
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  = 14S 1 2
0 1 22(1 ) ( ) 2(1 2 ) ( ) ( ) ( )u uK r r K r K r rK r1ν ξ ξ ν ξ ξ ξ ξ ξ−− + − + +  

  = 15S 1
0 1( ) ( )i I r r I rξ ξ ξ ξ−⎡ ⎤− −⎣ ⎦   = 16S 1

0 1( ) ( )i K r r K rξ ξ ξ ξ−⎡ ⎤− +⎣ ⎦  

  = 21S 1
1( )i s I rξηβ β−   = 22S 1

1( )i s K rξηβ β−−  

  = 23S 1 22 ( ) ( )ui I r rI rξ ν ξ ξ ξ⎡ ⎤− +⎣ ⎦   = 24S 1 22 ( ) ( )ui K r rK rξ ν ξ ξ ξ⎡ ⎤−⎣ ⎦  

  = 25S 2
1( )I rξ ξ   = 26S 2

1( )K rξ ξ−  

  = 31S
2 2

1
(1 ) (1 ) ( )

9(1 )( )
u

u u

B s I rβ ν ν β
ν ν ν
+ −

− −
  = 32S

2 2

1
(1 ) (1 ) ( )

9(1 )( )
u

u u

B s K rβ ν ν β
ν ν ν
+ −

−
− −

 

  = 33S
2

1
2 (1 ) ( )

3
uBs I rξ ν

ξ
+

−   = 34S
2

1
2 (1 ) ( )

3
uBs K rξ ν

ξ
+  

  = 0  = 0 35S 36S

In addition, the elements of ( 1) ( , , )N r sξ+R  and ( 1) ( , , )N r sξ+S  matrices as shown in Eq. 

(4.23) for latest layer given by 

  = ( 1)N +R
12 14 16

22 24 26

32 34 36

R R R
R R R
R R R

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥

⎥

 (B.3) 

  =  (B.4) ( 1)N+S
12 14 16

22 24 26

32 34 36

S S S
S S S
S S S

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦
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Appendix C 

The matrices R  and in Eqs. (4.13) and (4.14) corresponding to dynamic response 

of a borehole problem in Chapter V are given by  

S

R  = 
1 1 1 1 1 1 2 1 2 2 1 2 3 1 3 3 1 3

2 2
0 1 0 1 0 2 0 2 3 0 3 3 0 3

1 0 1 1 0 1 2 0 2 2 0 2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 0 0

I r K r I r K r i I r i K r
i I r i K r i I r i K r I r K r

I r K r I r K r

γ γ γ γ γ γ γ γ ξγ γ ξγ γ
ξ γ ξ γ ξ γ ξ γ γ γ γ γ
η γ η γ η γ η γ

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 (C.1) 

S  = 

1 1
1 0 1 1 1 1 1 0 1 1 1 1 2 0 2 2 1 2

1 1 1 1 1 1 2 1 2

1 1 1 1 1 1 1 1 2 2 1 2

( ) 2 ( ) ( ) 2 ( ) ( ) 2 ( )
2 ( ) 2 ( ) 2 ( )

( ) ( ) ( )

1I r r I r K r r K r I r r I
i I r i K r i I r

I r K r I r

rβ γ μγ γ β γ μγ γ β γ μγ γ
μ ξγ γ μ ξγ γ μ ξγ γ
γ χ γ γ χ γ γ χ γ

− −⎡ − − −
⎢ −⎢
⎢ −⎣

−

1

 

         

1 1
2 0 2 2 1 2 3 3 0 3 1 3 3 3 0 3 1 3

2 2 2 2
2 1 1 3 3 1 3 3 3 1 3

2 2 1 2 3 3 1 3 3 3 1 3

( ) 2 ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

K r r K r i I r r I r i K r r K r

i K r I r K r
K r i I r i K r

β γ μγ γ ξγ γ γ γ ξγ γ γ γ

μ ξγ γ μγ ξ γ γ μγ ξ γ γ
γ χ γ ξγ χ γ ξγ χ γ

− − ⎤−⎡ ⎤ ⎡− − ⎤−⎣ ⎦ ⎣ ⎦⎥
− − + + ⎥

⎥− − ⎥⎦

(C.2) 

where 

 iη  = 2( )i iMLα χ+ , i =1, 2; iβ  = 2 22 i i iLμγ λ αη− − , i =1, 2; 

 iχ  = 
2 2

2 2

( 2 ) i

f i

M L
ML

2λ α μ ρω
ρ ω α

+ + −
−
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In addition, the elements of ( 1) ( , , )N r sξ+R  and ( 1) ( , , )N r sξ+S  matrices for latest layer 

are given by 

  = ( 1)N +R
12 14 16

22 24 26

32 34 36

R R R
R R R
R R R

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥⎣ ⎦

⎥

⎥
⎥

 (C.3) 

  =  (C.4) ( 1)N+S
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22 24 26

32 34 36
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