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CHAPTER |

INTRODUCTION

1.1 General

An important class of problems encountered in mechanics is concerned with the study
of mechanical response of cylindrical specimens since they are widely found in civil
engineering laboratory and in-situ testing for concrete, soils and rocks. For example, solid
circular cylinders are the most commonly tsed.specimens in various standard tests in
engineering applications, such as uni-axial compression tests, tri-axial compression tests,
double-punch tests and point-lead strength tests, ete:"Hollow cylindrical specimens are also
widely used in rock engineering laboratory to estimate material properties for hydraulic
fracturing, subsidence phenomena and breakout angle. In addition, a cylindrical borehole
drilled in a soil/rock mediuna“is‘commonly found in the petroleum industry. Stability of
borehole is important becatise it is the one of -major problems in oil and gas industries. The
failure of the soil/rock around the borehole is a common problem, and it causes a variety of

drilling delays and expenses running into hundreds of millions of dollars per year.

In the past, the classical theory of eiééﬁgity has been used extensively to analyze
various elastostatic and elastodynamic probier.ri:s involving cylinders and boreholes.
Traditionally, field equations have been formdlété’d on the assumption that the medium is a
single-phase elastic Solid-—However,-geological-maieriais-are_normally two-phase materials
consisting of a solid skeleton with voids filled with water- Such materials are commonly
known as poroelastic materials and widely considered as much more realistic representation
for natural soils. and rocks “than ideal elastic materials. Biot developed theories of
poroelasticity far quasi-static (1941) and dynamic (1956) problems respectively to account for
fluid stress and strain. Later, other porgelastic theories have also been developed by using the
mixture.theory ‘cancepts-but lin~practice they /do not offer any ‘significant advantage over
Biot’s theory. Over the last five decades, Biot’s theories have been employed for analysis of
various practical problems encountered in geomechanics, geophysics, earthquake engineering
and energy resource explorations. Nevertheless, several theoretical models involving
poroelastic materials that could be useful for laboratory and in-situ tests in civil engineering
have not been presented. For example, theoretical modeling of three-dimensional
consolidation of a solid cylinder in the laboratory has never been reported in the literature. In
addition, existing studies on stress analysis of a borehole have not included the excavation

disturbed zone due to borehole drilling process.



The present study is concerned with the development of analytical solutions for
cylinder and borehole based on Biot’s theory of poroelasticity, which can be used for
theoretical modeling of various geomechanics problems. The analytical solution for a solid
poroelastic cylinder of finite length subjected to axisymmetric loading is presented in Chapter
I1l. The quasi-static solutions of an infinite cylindrical borehole in a poroelastic medium
subjected to surface loading, and contact problems between a rigid cylinder bonded to a
borehole in poroelastic material are also presented in Chapter IV. The surrounding medium in
the vicinity of the borehole is considered to be a disturbed zone due to the processes induced
by excavation. The dynamic response, of an infinite borehole in poroelastic medium with
consideration of excavation disturbed zone is also presented in Chapter V. Objectives and
scopes of this study are defined inthe following-Seetion.

1.2 Objectives and Scopes of Present Study
The main objectives and scopes of the present study are given as follows

1. The generalssolutions corresponding_to a finite solid poroelastic cylinder, and an
infinite borehdle in a poroelastic medium with consideration of excavation
disturbed zone subjected to axisyrﬁme’tric loading and fluid sources are derived.
Both fully permeable and impermee:{b{e _flow boundary conditions are considered.
These solutions can te used in tﬁg-"éhalysis of a variety of boundary value
problems encountered.in civil enginéer'ihgrapplications.

2. Numerical solutions for several boundary value problems relevant to cylinders
and boreholes are presented to study the influence of poroelastic material
properties and other governing parameters, and t0 demonstrate the key features of

coupled poroelastic response.



CHAPTER Il

LITERATURE REVIEWS

2.1 General

The theory of poroelasticity has its origin in the one-dimensional theory of soil
consolidation proposed by Terzaghi (1923). Biot (1941) developed a general theory of three-
dimensional consolidation by adopting Terzaghi’s concepts. Biot’s theory is based on the
classical theory of elasticity and Darcy’s laws, ancLit takes into account the coupling between
the solid and fluid stresses and strains. Rice and Cleary (1976) reformulated Biot’s theory
(1941) in terms of Skempton‘’s pore pressure coefficients (Skempton 1954) and the undrained
Poisson’s ratio of the bulk materialsThe first theory of wave propagation in porous elastic
solid was also established by Biot«(1956) by adding inertia terms to his original theory (Biot
1941). Thereafter, Biot’s'theory has widely. been applied to a variety of consolidation and
wave propagation problems insoil engineerihg, rock mechanics, biomedical engineering and
energy resource explorations. The present study is concerned with the development of
analytical solutions for cylinders and boreholes by employing Biot’s theory of poroelasticity.
In the following sections, @ review of literatl{;e__ felated to stress analysis of cylinders and

boreholes is presented. el !
2.2 Cylinder Problems

Stress analysis“of finite elastic cylinders has received considerable attention in the
past due to its close relevance to geotechnical and rock testing methods such as uni-axial and
tri-axial compression testsydeuble-punch tests@and point load strength tests, etc. In addition,
stress analysis''of cylinders _is ‘also- relevant to ‘applications| involving biomedical and
mechanical engineering. Lekhnitskii (1963) and Vendhan and Archer (1978) presented the
early amalytical soelutionsifor-transverselysisotrepicielastic eylinders bysusing the methods of
stress functions and ‘displacement functions‘respectively. Later;-Chau and Wei (2000) derived
the general solution for an isotropic elastic solid cylinder of finite length subjected to arbitrary
surface loading based on two displacement functions. Theoretical models of several
engineering tests were also presented by Watanabe (1996), Wei et al. (1999) and Chau and
Wei (2001) for isotropic cylinders, and by Wei and Chau (2002) for transversely isotropic

materials.

In the context of poroelastic materials, Abousleiman et al. (1996) and Abousleiman

and Cui (1998) presented plane strain poroelastic solutions for infinite cylinders subjected to



axial strain and confining pressure. Cui and Abousleiman (2001) developed a general solution
based on the generalized plane strain conditions for a poroelastic cylinder under an axial load
and confining pressure, and examined the poroelastic effects in rock samples under uni-axial
and tri-axial testing conditions. Kanj et at. (2003) presented plane strain solutions for a fully
saturated transversely isotropic hollow cylinder under various loading conditions relevant to
laboratory testing. Recently, Jourine et al. (2004) proposed a general poroelastic solution for
radially symmetric plane strain problems to model laboratory testing of thick-walled hollow
cylinders with time-dependent boundary conditions. The above studies assumed plane strain
conditions, which are valid for certain ‘types of loading and boundary conditions. Most
soil/rock testing involves cylindrical specimens subjected to axisymmetric loading and the
stresses, pore pressure and fluid flow do not reflceeplane strain behavior due to cylinder end
effects and loading conditions. It is.therefore important to examine the poroelastic field under
practical test conditions using*a 3<D model that allows better understanding of laboratory
results and interpretation of material‘properties. However, a 3-D model for a finite poroelastic

cylinder has not appeared in the literature.
2.3 Borehole Problems

Stress analysis of jcylindrical borehol'e's- in soils and rocks is of fundamental
importance to several engineering application$’$u¢h as in-situ testing of geological materials,
energy and mineral resource explorations, waste digposal and groundwater discharge, etc. In
the past, several studies investigated the response ofsa deep cylindrical borehole in an
isotropic or a transversely-isotropic-elastic-mediuii-to-static-and dynamic loading applied to
borehole surface. For example, Jordan (1962) solved a dynamic problem of suddenly applied
pressure over finite interval of the borehole. The corresponding static solution of radially
applied axisymmetric traction'was also presented by Parnes (1982). Parnes (1983, 1986) later
presented time-harmonic respanse of a borehale cylinder under| axisymmetric torsional and
ring loading. In"addition, Rajapakse.and Gross (1996) derived analytical solutions for
axisymmetric displacements-and-stresses,andthen solved boundary vaide prablems involving
an infinite borehole In a transversely isotropic medium subjected to axisymmetric traction and
a rigid cylinder perfectly bonded to a borehole wall. Robinson (2002) subsequently
considered the contact problem between a rigid cylinder and a borehole wall, and determined
the singularity at the cylinder edges by using Neumann Bessel function series representations

of the kernels of shear and radial stress integral expressions.

All studies mentioned in the foregoing paragraph considered the surrounding medium

as single-phase elastic materials. A poroelastic solution for a borehole in a non-hydrostatic



stress field was presented by Detournay and Cheng (1988) by assuming and plane strain
conditions. Analytical solutions based on the generalized plane strain concept for inclined
boreholes in isotropic and transversely isotropic poroelastic media also exist in the literature
(Cui et al. 1997 and Abousleiman and Cui 1998). Rajapakse (1993) considered axisymmetric
stress analysis of a cylindrical borehole in an infinite poroelastic medium with incompressible
constituents by using Laplace-Fourier integral transforms. Abousleiman et al. (1997)
presented a pseudo-three dimensional solution for an inclined borehole problem. Their
solution has found widespread industry applications in evaluating impacts of the poroelastic
processes on borehole stability (Cui et al. 1998 and Cui et al. 1999). An analytical solution for
an inclined borehole subjected to arbitrary time-dependent far-field stresses and pore fluid
boundary condition at the borghole wall was alse developed by Ekbote et al. (2004). Recently,
Abousleiman and Chen (2010) presented stress-analysis of a borehole subjected to fluid
discharge over a finite segment'of ihe surface coupled with the three-dimensional far-field in-
situ stresses. The wave propagation problem related to an infinite borehole was also
considered by Lu and Jeng (2006), who prese_nted dynamic response of an infinite borehole in

a poroelastic medium subjected to radial-ring force at the borehole.

It is well known that borghole drilling progcess is a primary factor in causing changes
of physical, mechanical, and hydraulic properties éround the borehole, such as bulk modulus,
shear modulus, desaturation, and,-strength. 'l:riléar_ock/soil zone, where its properties are
changed, is called an excavation disturbed zone (EdZ). The EDZ is one of the most important
factors that affect the stability of borehole. Seve'rérlr fesearches have studied behaviors of the
excavation disturbed zone in the past decade. For example, Sato el at. (2000) performed an
excavation disturbance experiment in the Neogene sedimentary soft rock at Tono mine central
Japan to observe the change of rock properties and the width of the EDZ during the drift
excavation. Martinosand €handler, (2004) studied the behavier ofithe-EDZ at the Underground
Research Laboratory (URL) located in-Manitoba, Canada to 'understand the character and the
extent of excavation damage. The EDZfinvestigation was conducted at the'mine using seismic
measureément technigques.by! Malmgren et al! (2007) to determine the mechanical properties of
EDZ at“Kiiranavaara mine, Sweden. The influence of hydro-mechanical properties
(desaturation and anisotropy) in the EDZ at the underground research laboratory in France
was carried out by Shao et al. (2008). Recently, Kwon et al. (2009) used in-situ, laboratory
tests, and computer simulations to investigate characteristics of the excavation damage zone

developed during a Korean tunnel contracture.

Based on a survey of literature mentioned above, it is found that both quasi-static and

dynamic responses of a cylindrical borehole in a poroelastic medium with an excavation



disturbed zone have never been considered in the past, although the EDZ has a significant
influence on a change in rock/soil properties, which is directly related to displacement, stress,
excess pore pressure, and fluid flow around the borehole. The consideration of the EDZ is
then essential for an optimal design of the drilling process. In this study, the general solutions
both quasi-static and dynamic responses of a borehole in a poroelastic medium are derived by
considering the effect of the excavation disturbed zone.

{
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CHAPTER Il

POROMECHANICAL RESPONSE OF FINITE CYLINDER

3.1 General

Drained or undrained cylindrical specimens under axisymmetric loading are
commonly used in laboratory testing of soils and rocks. Poroelastic cylindrical elements are
also encountered in applications related to bioengineering and advanced materials. In this
chapter, a new analytical solution for a solid poroelastic cylinder of finite length subjected to
axisymmetric loading is presented. Both Tully permeable (drained) and impermeable
(undrained) flow boundary-eenditions are considered. The general solutions are derived by
first applying the Laplace transform with respect to time and then solving the resulting
governing equations in“terms of<Fourier-Bessel series, which involve trigonometric and
hyperbolic functions with'respéctito the z - coordinate and Bessel functions with respect to
the r— coordinate. Several time-depende;nf houndary-value problems are solved to
demonstrate the application of'the general -;.soTution to practical situations. Time domain
solutions are obtained by using @ numerical L_qu_ace inversion scheme. Selected numerical
results are presented for different axisymm_e_t;_ric. loading, hydraulic boundary conditions,
cylinder aspect ratios and material properties-*-tg_'__.understand the salient features of the

poroelastic field of a cylinder and its relevance _’[Q'—f_lak_)oratory testing.
3.2 Basic Equation and-General-Solution

Consider a solid poroelastic cylinder of radius ‘@ and height 2h subjected to
axisymmetric loading as showa. in Fig. 3.1. A cylindrical polar coordinate system (r, 8,z) is
used with the z-axis parallel to the axis of the cylinder. The/governing equations given by

Rice and Cleary (1976) for a poroelastic. material undergoing axisymmetric deformations are

— _+_
or’ ror 0z°

o8 U 1 W o 2 (3.1)

¥ 110l b Y11 010 KegNu [ 28a%y)) of
" @-2v)or r* 3@1-2v,) or

2 2
a_2+12+8_2 0+ 1 ag_28(1+vu)ag -0 (32)
or° ror oz (1-2v,) 0z 3(1-2v,) oz
or? ror oz? c ot '

where



_ 2 uxB*(L-v)(L+v,)’ (3.4)
9 (1_Vu)(vu _V) .

In the above equations, u, denotes the displacement of solid matrix in the i -direction
(i=r,z); ¢ is the dilatation of the solid matrix; , v, v, and x denote the shear modulus,

drained and undrained Poisson’s ratios, and the coefficient of permeability of the cylinder

respectively; B is the Skempton’s pore pressure coefficient (Skempton 1954); £ denotes the
variation of fluid volume per unit reference volume, defined as ¢ =-w, in which w,

denotes the fluid displacement relative to the displacement of solid matrix in the i -direction

(i=r,2).

The constitutive relations can.be expressed as

ou v 3(v, —v)
= 2 . - < 3.5
T ”( ar +1—2V‘QJ B 2V)L+1y) (39
u v, x‘3(.v — V)
= 2u| =+ et 3.6
O ”( r +1~2v8j Bl 2)@ 4y ) (36
o, = Z,u(auZ F gj— . 7,3(V“ V) (3.7)
ol 1-2v" | BI=2,)1+v,)
ou,  au —
= LR ] 3.8
O H( o 6r) e (38)

whereo,,, o,,, o, and g, denote the total stress components-of the bulk material. Note that

the tension positive sign-convention for stresses and strains is adopted here. In addition, p is
the excess pore fluid pressure™(suction is considered negative), which can be expressed in
terms of dilatation and variation of fluid volume as

p LJBEHvD B*@ 4 21 mu))

YRS T L T Ak (3.9)

The fluid discharge in the i -direction (i =r,z) denoted by g, is given by

g = _K%? (3.10)

Note that g; is also related to w; such that g,=ow; /ot .

At this stage, it is convenient to nondimensionalize all quantities including the

coordinates with respect to length and time by selecting the radius of the cylinder “a” as a



unit length and “a“/c” as a unit of time respectively. All variables are replaced by the

corresponding nondimensional variables but the previous notations are used for convenience.

The Laplace transform of a function ¢(r,z,t) with respect to time variable t and its

inverse transform are given respectively by (Snedden 1951)

F(rzs) = [o(r.zned 311)

%Mfwa (r.2,5)8%0s (3.12)

a—iwn

o(r,z,t)

where s is the Laplace transform parameter, the line Re(s)=« is to the right of all

singularities of ¢ and i =~/~4«

Application of the Laplace transform to Eq. (3.3) yields

o 10 o )= =

2 4242 = /s 3.13
[ar2 ror 8ZZJ§ ] v (3.13

The above equation can be solved directl‘y_i "by_ considering a function of the form

£(r,z,8)=R(r,s)Z(z,s) . It can be shown that

= ATy G) Ao )] A COSG2) - v sin(7,.2)]

+i[Bln Io(ﬂnr) + BZn K0 (ﬂnr)][B3n COS(}(nZ) + B4n Sin(lnz)] (314)

where y,=A2+S; B, =1’ +S; A isthe mthrootof J,(4,)=0;. z,=nz/h;and A,
and B, o(i=1,2, 3, 4'm,n=0, 1, 2;...,00) arearbitrary functions. In addition, J, and Y, are
Bessel functions of first and the second kinds respectively of the nth order; and 1, and K,

are modified Bessel functions of the first and second kinds respectively of the nth order
(Watson 1944).

Since the stress field at the center of a solid cylinder must be bounded, all terms that

related to Y,(4,r) and K,(4,r) are inadmissible. In addition, the solution of the variation of

fluid volume (¢ ) should contain only even functions of z since the applied loading is
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symmetric with respect to the mid-plane of the cylinder. Therefore, the admissible complete

solution of the variation of fluid volume is obtained from Eq. (3.14) as,

= 3 A (r)cosh(r,2) + S Byl (B,r)cos(7,2) (3.15)

where A, and B, (m,n=0, 1, 2,..., ) are arbitrary functions to be determined.

Differentiation of Egs. (3.1) and (3.2), and subsequent manipulations yields,

2 2 2 2
(8 +18 0 jg = 77(8 +1a+?—2j§ (3.16)

PR— __+_ . g ¥
or’ ror o0z° or> ror 0z

where n =B(l+v,)/3(1-v, )« "Application of the Laplace transform to Eq. (3.16) and the
substitution of Eq. (3.15) result in '

il
|

= [nAdoshlh, ) 4G, Cosh2) 9, (2,0

+>[1B, 1, (B B, (7, r)jeos(%,2) (3.17)

n=0 "J!_.;
where C, and D, (m,n=0, 1, 2,...,5 ) are arb'__ﬁar-y functions. Consequently, the radial and
vertical displacements™in_the Lapiace domain are 4obtained by substituting Egs. (3.15) and

(3.17) into Egs. (3.1) énd‘ (3.2). The resulting solutions are

T(r2s) = To(rs)+ 30 (2541 + 3T, (Fs)cos(,2) (3.18)
m=1 n=1

0(rzs) = (28 FY T (2,850 +3 0, (F8)sin(&,2) (3.19)

where

U,(r,s) = ns Bl (B,r)+Dyr/2 (3.20)

U.,(z,s) = -ni,s"A, cosh(ymz)+[/1r;1 cosh(/lmz)+aizsinh(/1mz)]cm—Em cosh(4,,2) (3.22)

U.(rs) = nB85'BL(AN—[arl,(z.)-2a,2" (7, ]D, - F (") (3.22)

U,(z,s) = ns2Asinh(y,2)+C,z (3.23)
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u,,(z,s) 77,5 A, sinh(y,,2) + [aiﬂrgl sinh(4,,z) —a,zcosh(4, Z):|Cm +E,, sinh(4,2) (3.24)

a, (r,s) 7,5 B, 1,(B,r)+arD,l,(x,r)+F1,(z.r) (3.25)

In addition, a,=1/2(1-2v,); a,=(1-v,)/(1-2v,); E, and F, (m,n=1, 2, 3,...,0) are

arbitrary functions.

In view of Egs. (3.5)-(3.10), (3.15) and (3.17)-(3.19), the general solutions of stresses,
pore fluid pressure and fluid discharge in the Laplace domain can be expressed as,

%ﬂ”) = 50(12,9)+ 2@ I AN 2.9, (40)
m=1 m=1
+§:Erm(r,s)cos(;(nz) (3.26)
n=1
%ﬂzs) = 5zzo(r,z,s)+iazzm(z,s)30(ﬂmr)+i5m(r,s)005(zn2) (3.27)
m=1 n=1
%ﬂzs) = a,,m(r,z,s)@@ggm(z,s)ao(;imr)+iaé§2n(z,s)r1J1(/1mr)
m= J m=1
+3 G (r, )08 717) (328)
n=1 --'{‘,
—Erz(zr;'s) = ianm(z,s)Jl(;tmr)+i5,zn(r,§§iﬁ'(1nz) (3.29)
m=1 n=1 i _ - %
_ﬁ(rz’;'s‘) = Bz DA+ S D)l 7) (330)
m=1 n=1
%j’s) = Gro(r,z,s)+i§,m(Z,S)J1(/1mI’)+ic_lm(l’,5)003(ln2) (3:31)
m=1 n=1
%ﬂz,s) = qzo(r,z,s)+i§zm(2,8)~]0(/1mr)+iqzn(r15)3in(lnz) (3.32)
m=1 n=1

=) S ~ = =% 1 =(2)

£ 1= 1 "B A - — — —
Where O-rrO ! O-rrm ! O-rrm J O-rrn ' O-zzo ’ Gzzm ! O-zzn ! 0-690’ O-Bem ! O-Qﬁm J O-Ban J O-rzo | O-rzm ' O-rzn ! pO '

Pus Pos Gos T s Tp» Ty O, and g, are given in Appendix A.
3.3 Finite Poroelastic Cylinder under Axisymmetric Loading

Consider a solid cylinder subjected to axisymmetric radial traction F, (z,t) on the
curved surface and axisymmetric vertical traction F,(r,t) at the end surfaces as shown in Fig.

3.1. A linear algebraic equation system can be established to determine the arbitrary functions

appearing in Egs. (3.18)-(3.32) by applying the appropriate boundary conditions on the
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cylinder surfaces. There are three boundary conditions at the curved surface and three at each
end surface. The stress boundary conditions at the curved surface can be expressed in the

Laplace domain as

&, (1,2,5) F (z,5) (3.33)

0 (3.34)

Erz (1’ Z, S)

where F (z,s) is the Laplace transform of radial traction applied at the curved surface. In

addition, the hydraulic boundary condition can e expressed either as

P z,9)
or g,@,z5s)

0; for fully permeable surface (3.35)

0; far impermeable surface (3.36)

The remaining three boundapy€onditions at each end surface can be expressed as

&.(rths) = 0 (3.37)

&, (r,h,s) F (148) s (3.38)

where F (r,s)is the Laplace transform of vertical traction applied at the end surfaces. In

addition,

1
Q

p(r,£h,s) for fully p;armeable surface (3.39)

1
O,

or q,(r,th,s) for impermeable surface (3.40)

The above boundary conditions given by Egs. (3.33)-(3.40) are used to determine all
arbitrary functions appearingin the'general'solutions! First;"consider‘the boundary conditions
on the curved surface, 1.e:°Eqgs. (3.33)and (3.34). Theycan be'expressed by using Egs. (3.26)
and (3.29) as,

5.002,5)+ 3 502,93, () + Y 5 09)c0s(2,2) = F.(29) (3.41)
S5 Ls)sin(zz7) = 0 (3.42)

The applied radial traction at the curved surface F,(z,s) can be expanded in terms of Fourier

cosine series as
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F@s) = Fol9)+ D (s)cos(£2) (3.43)
where
Fo(s) = 2—1h_fhﬁ,<z,s)dz: E() = %iﬁ(Z,S)COS(éZ)dZ (3.44)

Next, expanding all functions of z appearing in the left hand side of Eq. (3.41) in
terms of Fourier cosine series to to mateh with the applied loading function expressed by Eq.
(3.43). This results in,

2 AQGLS) | 25 s Y¥Byhyla/s)t+ a,C, +a,D,

+§;Jo(zﬂm)[—n7§leo(7m)An FaQ,(4,)% 3Ry (2)]C, = 4,Q(4,)E, | = F(s)(3.45)

> 30 [ 172 Qu A (A2, 8l R (2] G~ 4., ), ]

+|:77§r12571|0 (ﬂn) - nﬂnsilll(ﬂn)] Bn * [(al = a4){0(Zn) A (alé:n + 234}(;1) Il(ln)] Dn

ARz () - L2 IF,

F.(s) (3.46)

| el

where
Q, () 2(_13: o Sinhz(amh) (3.47)
(et + 20)
R(a,) = 2(p| e o (22 —aé)sint;(zamh)} (3.48)
(@n t 27) h(a, =+ 7:)

Similarly, /the_applicationcof ithe boundany-conditions for zexo ishear stress at the
curved surface, i.e. '£q. (8.34), and at'the cylinder' ends, Eq.(3.37), ‘respectively yields the
following equations.

_Ulnﬁnsianll(ﬁn) +[ailn|0(§n) - azll(ln)] Dn +ZnFn|1(Zn)

107 nS” Ay Sinh(y,h) +[sinh(4,h) / 2+ a4, hcosh(4,h)]C,, — 4, E,, sinh(4,h)

0 (3.49)

0 (3.50)

Finally, in view of Eq. (3.27), the remaining stress boundary condition at both ends of
the cylinder corresponding to the applied vertical traction, Eq. (3.38), can be rewritten as
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Goo(1.10,9)+ Y 5 (NI (A0) + 3 5 (DC0S(zh) = Fo(r,5) (3.50)

where

E(ns) = Fo(s)+ D Fn(9)3s(4,0) (3.52)
and

_ = _ il y 2 L_

F,(5) = erFz(r,s)dr, WSS Jmm)!I:Z(r,s,)rJo(ﬂ,mr)dr (3.53)

-

Substitution of Eq. (3.53) Into k6. (3.52) together with the expansion of all functions of r

appearing in Eq. (3.51) in'terms of.Fourier-Bessel series of order zero yields,
_ . a,Ay —nByS; (\/g) +a,D,
+Z(_1)n [_Uﬂnzsilso (ﬂn)Bn +[a380(/’{n)+a12/n-r0(zn)] Dn +§nSO(Zn)Fn:| = IEZO(S) (354)
n=1 2

~11B,S, (V/$) + 425 A, cosh(y,h)+|a; cosh(ﬂ,ﬁh-—);_—,pi/lmhsinh(/lmh)]Cm + A, E,, cosh(4,,2)

+2 (0 [nB257S,(4)B, +aiSiUr ) AT IR, + 6.8, (1R ] = Funls) (359)

where
C 2ehie
o) B BRSO (3-50)
— 2 gnlo(gn) _ Zgﬁll(gn)
o der 7 Jmm){mgs (ﬂrﬁmf)z} (357

Thereafter, expanding all functions of r into Fourier-Bessel series of order zero and
all functions of z into Fourier cosine series, the hydraulic boundary conditions for a

permeable surface, i.e. Egs. (3.35) and (3.39), can be expressed as,

a477|:AbQo(\/g)/2+ Bolo(\/g):|_a277[co + Do]"'ii%[aﬂﬂ?o (Yn) Aw —3,11Q, (ﬂ’m)cm] =0 (3.58)

aAUAJQn(\/E)+2J0(/1m)[a477Qn(ym)An_aann(ﬂ'm)Cm]-’_aAanIo(ﬂn)_aannIO(;{n) = O (359)
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a477|:Ab COSh(\/gh) +ByS, (\/g):| - a477[C0 + D0]+i(—1)277[a48n50 (,Bn) -a,D,S, (Zn)] =0 (3-60)

a4nBOSm (\/g) + a4’7AT1 COSh(ymh) - a277Cm COSh(ﬂ’mh) + i(_l)nn[a4 BnSn (ﬂn) - aZ DnSn (ln)] :O (361)

n=1

Similarly, for an impermeable surface Egs. (3.36) and (3.40), the hydraulic boundary

conditions result in,

—xasByl,(vs) = 0 (3.62)
—xn[a,8.B, 1 (B)—~aiDiz)] = 0 (3.63)
—ka,nsAsh@sh), = 0 (3.64)

w787 A SINDGY = 2,4,C,, SiNGagh)]. = O (3.65)

Equations (3.45), (3:46),/(3:49), (3.50), (3.54) and (3.55), together with Egs. (3.58)-
(3.61) for permeable (draingd) strfaces or Egs. (3.62)+(3.65) for impermeable (undrained)
surfaces, constitute a system of lingar equat_ions_ of order (3M +3N)+4, which M and N

are the total number of terms used in the Bess'g_al and Fourier series expansion respectively, to
determine the arbitrary funetions A5 B, C,, D,,A,, B,, C,, D,, E, and F, (m=1,

m?

2,...M:n=1,2,.., N).

i

3.4 Numerical Results and Discussion _ .

The solution \piocedure described in the previous seétion is implemented into a
computer program to determine all arbitrary functions appearing in the general solution of a
poroelastic cylinder in the Laplace transform domain. Piessens (1975) conducted a review of
numerical LaplacCe invérsionschemes and:found thatthe schemejproposed by Stehfest (1970)
is very accurate for time-dependent problems. In the past, Stehfest’s scheme has been widely
used in a variety of poroelastic problems. For examplé;the plane strain Selution of poroelastic
cylinders (Cui and /Abousleiman, 2001), interaction hetweenian elastic circular plate and a
multi-layered poroelastic medium (Senjuntichai and Sapsathiarn, 2006) and cylindrical cavity
in a thermoporoelastic medium (Bai and Le, 2009) were studied by using Stehfest’s scheme.

According to Stehfest (1970), the time domain solution is given by

o) = "’ngian&(” 't” 2) (3.66)

where
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a = (- min(nz'N:m) m"’?(2m)!
m={(n+1)/2] (’;— m}!(m ~1){(n—m)!{(2m—n)!m!

(3.67)

In the above equations, ¢ denotes the Laplace transform of ¢(t) and NT is even. It is found

that time domain solutions for axisymmetrically-loaded poroelastic cylinders can be obtained
accurately with NT > 6. Similar behavior was also observed in previous poroelastic problems
(e.g., Senjuntichai and Sapsathiarn 2006, and Bai and Le 2009). The convergence and
numerical stability of the present solution scheme were investigated with respect to the total
number of terms (M and N ) used in the Fourier-Bessel series expansion. The solutions are

found to be stable and converged when both M_and«N"> 30.

The accuracy of present seluion scheme is verified by comparing with the existing
solutions for both elastiesand peroelastic solid cylinders. Wei and Chau (2000) presented the
stress distribution within#an isotropic elastic solid cylinder of diameter 2a and height 2h
under a double-punch testgin which two rigiq_.-é:ircular punches of diameter 2b are applied at
the top and bottom surfaces of'the eylinder. The boundary conditions for a solid cylinder

subjected to a double-punch tgst are given by, .

c.(Lz) = 0 &.0F= = 0 S ofrth) =0 (3.68)
P =

o,(r,th) = ———————— r<b otherwise o, (r,th) = 0; (3.69)
2ab\/b*=r* =

where P is the magnitude of the applied point force.

Figure 3.2(a) shows a.comparison of the final solutions of non-dimensional tangential
and vertical stresses along the axis of'the cylinder from:-the present study with those given by
Wei and Chau (2000) for h/a=1 and b/a =0.1 for different Poisson’s ratios. Comparisons
of tangential and-vertical-stresses-along the cylinder axis are also presented in Fig. 3.2(b) for
different sizes'of the.punch, b/ a); with!v:=0.1'and h /'a =1./Excellent.agreement between the

two solutions is noted. Note that the final solution is obtained from the present scheme by

setting ct/a*=10°.

Cui and Abousleiman (2001) presented the plane strain solution for a solid
poroelastic cylinder capped by a pair of rigid plates at both ends. The cylinder is subjected to

a constant axial compressive force, F(t)=F,H (t) where H(t) is the Heaviside step function,

with no confining pressure. Comparisons between the present solutions and solutions given
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by Cui and Abousleiman (2001) are respectively shown in Fig. 3.3(a) for nondimensional
radial stress and pore pressure at the center of the cylinder and in Fig. 3.3(b) for radial
displacement, vertical and tangential stresses at the boundary of the mid-plane. The material

properties of Mexico Gulf shale were used with =760 MPa; B=0.90; v =0.22; v, =0.46

and x =5.00x10"" m*/Ns. Note that the average vertical stress used in the normalization is
defined as o, =F, / #a® . The plane strain solution can be obtained from the present scheme
by setting h/a to a large value (h/a>5.0). Comparisons in Figs. 3.3(a) and 3.3(b) indicate
very close agreement. The accuracy of the present solution is thus confirmed through
independent comparisons corresponding to two limiting cases (ideal elastic and plane strain

poroelastic cases).

Time-dependent behawior oOF solid cylinders shown in Fig. 3.4 is investigated next.

Figure 3.4 shows a poroglastic.eylinder (B =0.90, v =0.20, v, =0.40) subjected to constant
vertical pressure at both ends [F, (¢ t) = f,H(t) In Eq. (3.38)] with zero radial pressure on the

curved surface and fully permeable hydraulirc'boundary conditions on all surfaces. Figures
3.5(a), 3.5(b) and 3.5(c) show time histories of‘non-dimensional radial stress, vertical stress
and pore pressure respectively atthe center of a (_,jylinder (r/a=0and z/a=0) for different
aspect ratios (h/a = 0.5, 1.0, 1.5, 2.0, and 3.0_)‘_un'der the loading shown in Fig. 3.4. Initially
(ct/a®<107°), radial stress at the center of eylinder is nearly zero, then increases quite
rapidly during the period 0.01<ct/a®<0.1 to,éti)ogt_ 5-10% of the applied vertical pressure
depending on the aspect ratio (h/a) and thereafter diminishes‘very rapidly becoming almost
zero for ct/a®>10. The maximum radial stress value decreases with increasing aspect ratio
but becomes independent of it for h/a>2. Numerical results shown in Fig. 3.5(b) indicate

that the initial vertical stress issequal to the applied pressure f, irrespective of the aspect ratio

(h/a). Thereafter, it increases with fime reaching its maximum value near ct/a*=0.1 before
decreasing to f, when ct/a’*>1. Maximum vertical stress is about 10% more than f, for
longer eylinders but less, than 2% increase is observed for a short cylinder (e.g., h/a = 0.5).
Pore pressure at the centre of cylinder shows [Fig. 3.5(c)] less dependence on h/a compared
to radial and vertical stresses, and the Mandel-Cryer effect is observed in the pore pressure
evolution. Initially (ct/a®<10™), pore pressure at the center is about 30% of the applied
vertical pressure irrespective of the aspect ratio and then slightly increases with time to about
32-35% of the applied pressure. Pore pressure dissipates very rapidly after reaching its peak

value and complete dissipation is observed for ct/a’ > 2.
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Time-histories of non-dimensional radial displacement, tangential (hoop) stress and
vertical stress at the boundary of the cylinder mid-plane (r /a=1 and z/a =0) are presented
in Figs. 3.6(a), 3.6(b) and 3.6(c) respectively for different aspect ratios. Radial displacement
solutions and comparison with the ideal elastic case show that the initial and final normalized
displacements are mainly controlled by the magnitude of undrained and drained Poisson’s
ratios respectively. Similar behavior was observed earlier by Rajapakse and Senjuntichai
(1993) for a surface-loaded poroelastic half space. The initial value of the radial displacement

is essentially independent of the aspect ratio and is equal to v, /2(1+v,) whereas the final
displacement is given by the same expression with v, being replaced by v . In all results

shown in Fig. 3.6, the final solutions are reached-when ct/a*> 2. The influence of aspect
ratio on the radial displacement is negligible if h/a>1.5. Time histories of tangential stress
[Fig. 3.6(b)] and vertical stress [Eig: 3:6(c)] also follow a‘trend that is qualitatively similar to
the radial displacement.#/A" netable feature in Fig. 3.6(b) is that tensile hoop stress is
developed at the boundagy of the mid-plane of a cylinder. Tensile hoop stresses may cause
fracture and opening of poges, which could init'-i.ate cracks and failure. Most geomaterials have
relatively small ultimate stress:in tension énd- tensile tangential stresses could therefore
initiate failure. The solution for tangential stress of a long cylinder can be obtained from the
plane strain case given by Cui and Abousleima_m_f (5001). It can be shown that tangential stress

at the outer boundary (r / a =1) of a tong cylindér"cqn be expressed in the Laplace domain as

Gy .0.8) 2 v, —v)[Zs““é il-(qtg)_ Iy \/g)]
fa S A=), W) =457 =), (5)

(3.70)

Tangential stress solutions shown in Fig. 3.6(b) indicate very close agreement with the plane
strain solution given bysEq.~(3.70) when h La->24 Initially, the maximum tensile stress is
about 17% of f, and" it=is independent ‘of the aspect-ratio.” Non-zero tangential stress is
primarily due to the poroelastic effect’as can be seen~from Eq. (3.70)“because it vanishes
when v, is equal tayy . The final selution-(as well as the ideal elasticsolution) for tangential
stress is zero when ct/a®>2 for all aspect ratios. Vertical stress shown in Fig. 3.6(c) is
compressive throughout its evolution. Initially (ct/a* <107), vertical stress at the boundary
of the cylinder mid-plane is approximately 82% of the applied pressure f, irrespective of the
aspect ratio. The final value is equal to f, and is attained when ct/a’®> 2 for the aspect ratios

considered in this study. It is also noted that vertical stress approaches the plain strain solution

given by Cui and Abousleiman (2001) when h/a>2.
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Figures 3.7(a) and 3.7(b) show profiles of non-dimensional vertical displacement and
vertical stress along the z-axis respectively. Vertical displacement is obviously zero at the
center of the cylinder due to symmetry consideration, and increases almost linearly along the
length reaching its maximum value at the cylinder ends. Average vertical strain is almost
independent of the aspect ratio and this makes the displacement profiles along the length of
each cylinder nearly coinciding with each other in Fig. 3.7(a). A slight increase of
displacement (~ 10%) with time is noted. As expected, non-dimensional vertical stress shown
in Fig. 3.7(b) is compressive at all times and the maximum vertical stress is noted at the
center of the cylinder. The maximum stress shown in Fig. 3.7(b) is about 10% higher than the
corresponding elastic solution for eylinders with h/a =1.5 and 3.0, whereas for a short

cylinder (h/a =0.5), it is about 2% higher thanthe elastic solution. The steady-state is
reached when ct/a?>10 except-for a cylinder with-h/a = 0.5, in which the final solution is

attained relatively quickly.(et/ a=>1).

The profiles of non-dimensional’ pore pressure and fluid discharge in the vertical
direction along the cylinder axis are presented in Figs. 3.7(c) and 3.7(d) respectively. Initially
(ct/a*<107?), the excessipore pressure along the cylinder axis is about 32% of the applied
vertical pressure except at the end surfaces where it is zero due to the drained boundary
condition. At ct/a®= 0.1, the pore pressure in'aishort cylinder (h/a =0.5) decreases from the
initial value, whereas for long cylinders(h/a =i.5 Jéind 3.0), pore pressure experiences a very
small increase from the initial Valles except'he'ar the.cylinder ends due to the boundary

condition. Pore pressure-is-compleiely-dissipated-in-atl-caseswhen ct/a®>10. Numerical

results of the fluid discharge profiles in Fig. 3.7(d) indicate that initially (ct/a*=107) the
discharge is observed only near the end surface due to the pore pressure gradient created at
the ends [Fig. 3+c]sAs the perespressure;gradient propagates.inward into the cylinder more

discharge occurs along the' lefigth’ but-thef maximum: discharge always occurs at the top and

bottom ends. Fluid discharge along the fength becomes=negligible whentct/ a®>10.

Profiles of non-dimensional tangential stress on the outer surface along the length
(r/a=1) and at the mid-height along the radial direction (z/a =0) are shown in Figs. 3.8(a)
and 3.8(b) respectively for different times and aspect ratios. Numerical results in Fig. 3.8(a)
indicate that tangential stress remains tensile along the cylinder wall. Initially, it is nearly
constant within the middle of the cylinder except for short cylinders but shows a drop near the
cylinder ends in all cases. Its magnitude decreases as time progresses and poroelastic effects
dissipate. As expected, tangential stress at the mid-plane approaches the plane strain solution

of Cui and Abousleiman (2001) in the case of long cylinders. The final solution is attained



20

when ct/a® >10 for all cylinders. Figure 3.8(b) shows that tangential stress varies
significantly in the radial direction at the mid-plane. It is generally compressive at early times
(ct/a*=0.005) except in the vicinity of the cylinder wall. The tensile stress region gradually

expands with time and tangential stress at all points becomes negligible when ct / a>>10.

Uni-axial and tri-axial compression tests are commonly employed to determine the
strength and stress-strain relationship of soils and rocks. Unlike a uni-axial test, cylindrical
specimens subjected to tri-axial tests have lateral confining pressure in addition to the vertical

end load. Consider a poroelastic cylinder (B=0.90, v =0.20 and v, =0.40) capped with rigid
plates at its both ends subjected to confining presstire. ( p,) at the initial state and vertical

loading applied to the ends after pore pressure due to confining pressure is totally dissipated.
This problem can be considered as-a.theoretical model of a tri-axial compression test under
stroke control of a jackeied cylindrical specimen, which is covered by a rubber membrane
along the cylindrical surface, and the fluid is drained at.its both ends. The vertical loading is
applied such that the vertical displacements .a'g'.both cylinder ends are controlled at a constant

rate U, i.e. u,(r,£h,t) =u,t S The surface hydraulic boundary conditions are permeable at the

horizontal end surfaces and impermeable alon’g the curved surface. The test condition can be
separated into two states: the initial state:from a,pure confining pressure and the final state of
applied vertical loading. The total selution for the poroelastic field can be obtained by

superposition of the solutions for pure confining pressure and pure applied vertical loading.

Figures 3.9(a) and-3.9(b)-show-the-geometry-of problems considered in the initial and
final states respectively.-The boundary conditions for a cyliader subjected to pure confining

pressure in the initial state [Fig. 3.9(a)] can be expressed as,

5. (Lzs) = —%; & Lzs) | £.0 dLzs) =0 (371
at the ctirved surface.and
1
[275,, (r.ths)dr = —”Tpo 5 (r+hs) = 0 p(rths) = 0 (3.72)
0

at the end surfaces.

The boundary conditions for the final state of a cylinder subjected to vertical loading

under zero confining pressure [Fig. 3.9(b)] can be expressed as,
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o,(Lzs) = 0; 6,Lzs) =0 g@zs) =0 (373
at the curved surface and
o(rths) = —= G (rths) = 0 p(r.+hs) = 0 (3.74)
S

at the end surfaces.

The profiles of non-dimensional excess pore pressure along the vertical axis of the
cylinder due to confining pressure are presented.n Fig. 3.10 for different times and aspect
ratios. Excess pore pressure._is zero at the top“surface due to the boundary condition and
nearly constant at the mid-plane of ihe cylrinder for h/a>1.5. It is non-uniform for shorter
cylinders with the maximume.wvalue observed at the mid-plane of the cylinder. Initial excess
pore pressure in the middlesof the cylinder is approximately 90% of the applied confining
pressure for most cases. Note'that the 1-D sqlution for the excess pore pressure in the initial
state can be obtained by solving Egs. (3.2) and (3.3) and it is also shown in Fig. 3.10. The 1-D

solution can be expressed in the Laplace domain as,

p(z,s) 1 B(l—v)(1+vu-)sl_’Zh[cosh(\Ez)—cosh(ﬁh)]
Po T s 2= ysinh(Jfsh) + (- v)(L+ v, )s”2hcosh(v/sh)

(3.75)

Comparison between the finite cylinder solution and the 1-D solution indicates that both
solutions show similar-trends with time and vertical distance but the 1-D solution generally
has lower pore pressure..The difference between the two selutions reduces with increasing

h/a but shorter cylinders shew substantial differences at intermediate times.

Figures 3:11(a), 3.11(b), 3.11(c) and 3.11(d) show time histories of non-dimensional
radial displacement, tangential stress, vertical stress and excess pore pressure at the boundary

of the mid-plane |(r/a =l and iz /ia =0)crespectively cfor thel loading: case 'defined by Egs.
(3.73) and (3.74). All solutions are negligible when ct/a?<0.01 due to the nature of applied

loading. Radial displacement rapidly increases with time but no asymptotic solution is
expected due to the fact that the applied vertical displacement at the ends linearly increases
with time. Radial displacement is higher for shorter cylinders as the radial strain is larger.
Numerical results for tangential stress in Fig. 3.11(b) indicate that it gradually increases as
time progresses until the final value is reached when ct/a”>10. Tensile tangential stress is

noted at the boundary except in the case of short cylinder (h/a =0.5) where only compressive
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tangential stress is observed at all time instants. This is due to the fact that the tangential
stress depends on radial displacement, dilatation (&) and pore pressure [see Eqg. (3.6)]. Under
the stroke-control loading [Eqg. (3.74)], it is found that the volume reduction in a short
cylinder (h/a<1) is higher than its lateral displacement resulting in compressive tangential
stress being observed. For cylinders with h/a >1, the tensile tangential stress at the boundary
gradually increases as the cylinder becomes longer before approaching the 1-D solution,
which is equal to zero, when h/a>2. Note that the tangential stress under this loading case
is very small compared to vertical stress and pore pressure, and it can be neglected for all
practical purposes. Numerical results presented in Fig. 3.11(c) show that the general trend of
vertical stress histories is similar.to that obseredforthe radial displacement histories in Fig.
3.11(a). Vertical stress rapidly-increases with time-when ct / a>> 1.0, and no final asymptotic
solution exists as the vertical.displacement continuously increases with time. It is obviously
compressive at all times and“its magnitude decreases with the aspect ratio. Time histories of
pore pressure indicate that.porepressure has a steady-state value in this case as the ends are
fully drained although the .eylindrical-boundary is impermeable and applied displacement
continues to increase. The steady-state for pore pressure is reached quicker with decreasing

the aspect ratio as the fluid‘hasdesser distance to reach the drained ends.

Figures 3.12(a), 3.12(b), 3.12(c) and, 3.12(d) show the distribution of non-
dimensional vertical displacement; :radial stfesér:,- pore pressure and vertical discharge
respectively along the z -axis for different times and aspect ratios. All field variables are zero
at t = 0 due to the nature of the displacement controlled loading. The vertical displacement
profiles in Fig. 3.12(a).show linear variation along the vertical-axis from zero at z/a =0 to

the maximum value at the cylinder ends which can be expressed as u,(0,z,t) =u,tz/h. This

behavior is a consequence of the displacement-controlled loading. Radial stress in Fig.
3.12(b) shows considerable time dependency and variation along the length in its evolution
with both compressive and tensile stresses existing along the length. In most cases, radial
stress near the'endssis tensile, but becomesjcompressive jdnithe interior,region. Compressive
radial stress‘increases ‘with decreasing aspect ratio whereas the-opposite is-true for maximum
tensile radial stress. Pore pressure profiles shown in Fig. 3.12(c) indicate that it increases with
increasing time and aspect ratio. Maximum pore pressure is observed at the centre of the
cylinder for all aspect ratios. Fluid discharge in the vertical direction is always highest at the
ends as shown in Fig 3.12(d) and is zero at the centre due to symmetry consideration. The
steady-state solution of the fluid discharge shows a linear variation along the vertical axis. It
should be noted that vertical stress along the z -axis is constant and can be expressed

explicitly as a linear function of time of the form, o,,(0,z,t) =21+ v)tu, /h.
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3.5 Conclusion

It is shown in this chapter that coupled poroelastic governing equations for
axisymmetric deformations of a finite solid cylinder can be solved analytically by employing
Laplace transforms with respect to time and Fourier-Bessel series expansions in the vertical
and radial directions respectively. Applicability of the general solution is demonstrated by
solving two boundary-value problems. Convergence and stability of the series solution and
the numerical Laplace transform is confirmed by excellent agreement between the present
solution and those in the literature for the limiting cases of an ideal elastic finite cylinder and
plane strain poroelastic cylinder. Selected numerical results show complex 3-D behavior and
end effects are significant for eylinders with @specirratio greater than three. The material
dependence of the initial and-final solutiens is primarily controlled by the undrained and
drained Poisson’s ratios respectively. Mandel-Cryer effect is also observed for the present
class of problems. Solutions«forstroke-control tests show that asymptotic solutions for

tangential and radial stresses, and pore, pressure exist.
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CHAPTER IV

QUASI-STATIC RESPONSE OF BOREHOLE
WITH DISTURBED ZONE

4.1 General

In this chapter, time-dependent response of a cylindrical borehole in a poroelastic
medium with consideration of excavation disturbed zone is considered. The general solutions
for axisymmetric deformations are derived by employing Laplace and Fourier transforms with
respect to time and the vertical coordinate respectively. Shear modulus and permeability
coefficient are assumed to be non-homogeﬁous in-the disturbed zone. The general solutions
are employed to formulate boundary value problems corresponding to a borehole subjected to
axisymmetric loading applied at" IS surface, and contact problems involving a borehole
containing a rigid cylinder. Selected numeric_al; results are presented for displacement, stress,
pore pressure and fluidsdischarge to pertray the influence of poroelastic effects and the

excavation disturbed zone gn the borehole response.

4.2 General Solution ,

Consider an infinite cylindricat boreholeri)f.l}-adius a in a poroelastic medium with an
excavation disturbed zone of length d subjec'téd_'t“b_ axisymmetric loading as shown in Fig.
4.1. The governing eguations-m-the-previous-chapter-for-a poroelastic material undergoing
axisymmetric deformatien in Egs. (3.1)-(3.3) can also be employed for this problem. The
general solutions are derived by applying Laplace and Fourier transforms with respect to time

and the vertical coordinate,respectively. The Laplace transform.and.its inverse transform are
given by Egs. (3.11)"and-(3.12). In addition, the Fourier transform of a function f(r,z,s)

with respect to the vertical coordinateé”and the inverse relationship are/given by (Sneddon
1951)

f(r,és) i? f(r,z,5)edz (4.1)

©

_[ f(r,& s)e ' d¢e (4.2)

—o0

f(r,z,5)

where £ is the Fourier transform parameter.
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In all subsequent manipulations, a superposed bar (_) denotes the Laplace transform

of a function with respect to time coordinate and a tilde (7)) denotes the Fourier transform

with respect to the vertical coordinate of the Laplace transform of that function. It is

convenient to nondimensionalize all quantities including the coordinates with respect to the

length and time by selecting the radius of the borehole “a ™ as a unit length, and “a*/c” as a
unit of time respectively. All variables will be replaced by appropriate nondimensional

variables, but the previous notations will be used for convenience.

Equation (3.3) in the previous chapter ¢an be solved directly by applying Laplace and
Fourier transforms with respect to time and the vertical coordinate respectively. The resulting

solution can be expressed as,

§ = Al () 48K (5r) (4.3)

where A and B are arbitraryfunctions,.and

p o= @) ' (4.4)

In addition, 1, and K, “are’ modified Bessel functions of the first and second kinds

n

respectively of the nth order (Watson 1944).

By applying lLaplace and Fourier transforms to Eq. (3.16) together with the

substituting Eq. (4.3),the following solution can be obtained,
&= 20Ea-2v)[Clo(]r) + DK, (£[1) ]+ n[ Al (Br) + BK, (40)] (45)
where C and D .are arbitrary functions.

Next, 'the: application of Laplace and Fourier transforms in Eg. (3.2) and the
substitution of Eqgs. (4.3) and (4.5) result in the following general solution for the vertical
displacement.

0, = Qs [Al(Br)+BK,(Br)]-iér[Cl,(&]r) - DK, (&r)]

+E|[ Elo(&]r) + FKy (&[N ] (4.6)

where E and F are arbitrary functions.
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Thereafter, the following general solutions for radial displacement, stresses and pore
pressure in the Laplace-Fourier domain can be obtained by using Egs. (3.1), (3.5)-(3.9)

together with Egs. (4.3), (4.5) and (4.6) as follows

a, npBs[Al(Br) - BK, (Br)]+2(1- 2v,)[ Cl,(&|r) - DK, (&]r) ]
—|&r[C1,(&]r) + DK, (€r) |- iE[ GI,(&]r) - HK, (€] ] 4.7)

/] +BA[ £25 7K, (Br) + B(sr) K, (Br) ]

7

’( ) +|E1, (&) - €21,

Qe

== AT (A0 - lsr)

N
N

+C{2(1-v,)|

+D{2(1-v, r)+[€ K, (£ r) + €K, (€]}

~igGl| (4.8)
&zz _ 2.-1
2w ~np°s _

+cle| 21, €l et 21 NE (4.9)
COw  _ 1 o
Z = nA[ﬂ(sr) () ,Bri'-:’l;ﬁ,b’rr .

+C[ 200240, G-I

+D[

—ier [ I(|§|r) HK (|§|r)] (4.10)
@J«!mmm d

‘-] WIRIRAR U ITRENG R

= B@en ) @v) ooy BK, (81)]

P
2 91-v,)(v, V)

m[u (1£[1) + DK, (N ] (4.12)
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It can be shown that the general solutions for axisymmetric deformations of a
poroelastic medium in the Laplace-Fourier transform domain as shown in Eqs. (4.6)-(4.12)

can be expressed in the following matrix form.

u(r,&,s) = R(r,&,5)C(&,s) (4.13)

f(r,&,s) = S(r,&,s5)C(,9) (4.14)
where

ur,&s) = [a, a, p]; (4.15)

frés) = [6, 6, W] (4.16)
and C(&s) =[A B.C D E F| (4.17)

The matrices R and S are_defined in Appendix B. The arbitrary functions, A(&,s) to
F(&,s) in C(&,s) are to bedetesmined by employing appropriate boundary and/or continuity

conditions. In the ensuing section, the above general solutions are employed to establish a
stiffness matrix schemesto study time-dependent response of a borehole in a poroelastic

medium with an excavation disturbed zone.

4.3 Borehole in Excavation Disturbed Zone® /.

Naturally, a primary factor affecting thé '_séi{l/rock properties around a borehole is an
excavation process. The soil/rock zone where- trr;e properties and conditions have been
changed is known as an excavation disturbed zone (EDZ). The mechanical properties of the
EDZ can be adjusted based on laboratory and in situ tests. The shear modulus of the EDZ is
normally reduced from its original \value before-excavation. On-the“contrary, the inflow in the
EDZ is larger than'that of the undisturbed zone (Lai et al. 2006 and Kwon et al. 2009). This is
impliedsthat the permeability (coefficient then increases from the origimal value in the EDZ.
Consider ‘a cylindrical borehole with the EDZ of a length d as shown in Fig. 4.1. It is

assumed that the shear modulus and permeability coefficient in the EDZ linearly vary with

the radial distance r in the following manners.

u(r) to[m(r—a—d)+1] (4.18)

and x(r) Ko[m,(a+d —r)+1] (4.19)
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where g, and x, denote the original values of the shear modulus and the permeability
coefficient respectively before excavation. m, and m, are non-negative constants

representing the degree of disturbance due to the drilling process in shear modulus and
permeability coefficient respectively. The poroelastic medium in Fig. 4.1 is then separated
into two zones, i.e. the disturbed zone (a<r<d) and the undisturbed zone (r>d). To
incorporate the influence of excavation disturbed zone, the EDZ is discretized into a total of

N, infinitely long tubular layers with small thickness. Each discretized layer is homogeneous
and governed by Biot’s theory of poroelasticity. The following relationship can be established

by using Egs. (4.13) and (4.14) for the n" layer.
F® = KOUS (4.20)

where K™ is an exact stiffnessamairix in the Laplace-Fourier transform space describing the
relationship between the géneralized disptacement vector U and the force vector F™ for

the n" layer, in which

um = [u‘”)(rn,i,s) u(n)(rn+1’§’_s)__]T (4.21)

F(n)

[ (ge, 9269 dis) | (4.22)

In Egs. (4.21) and (4.22), U™ “is-a column vector of generalized displacements of the n®

layer whose elements-are related to the Laplace-Fourier transiorm of displacements and pore
pressure of the inner (= ) and outer (r =r,,) surfaces of-the n" layer; F™ is a column
vector of generalized forces whose elements are related to the Laplace-Fourier transform of
traction and fluididisplacement of theyinner,and outersurfaces-of.the n" layer. In addition,
the matrices u™ and" "#®™ are ‘indentical to“u ‘and™f given by Egs. (4.15) and (4.16)
respectively, except that the.material properties, of.the-n" layer and employd with r=r or

r=r

n+l*

Similarly, the stiffness matrix K™ for the undisturbed zone (r > d in Fig. 4.1) can

be obtained by establishing a relationship between the generalized displacement vector

UMY and the force vector FN*Y as

KN = g (R(N+1) )*1 (4.23)
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where the elements of matrices R™* and S™* are given in Appendix B.

The global stiffness matrix of the EDZ can be assembled by using the continuity
conditions of traction and fluid flow at the layer interfaces. The final equation system can be

expressed as
F = KU (4.24)

where K™ is a global stiffness matrix, which is a symmetric matrix with a bandwidth of 6. In

addition, U™ and F~ are the global vectors ofi generalized displacements and generalized

forces defined as

* T
U = [u‘l’ P T S u(N*l’] (4.25)

Fo= [l A f0 f‘N*l)]T (4.26)

Consider an infinite eylindrical borehole of radius a in a poroelastic medium with
the excavation disturbed zone subjected to axisymmetric loading applied at its surface as
shown in Fig. 4.1. The boundary conditions in the Laplace-Fourier transform space for the

borehole under applied radial traction-F.{zt) aﬁd' F (2,t) atits surface can be expressed as

6,(LEs) = F(&S) (4.27)
&,(LES) = 1FAEs) (4.28)
and pLé&s) =0 for fully permeable surface (4.29)
or G@1<ss) =0 for impermeable surface (4.30)

Let consider the-case“of a borehale subjectedto applied fiuid pressure P(z,t) at a

fully permeable surface. The boundaryconditions in the Laplace-Fouriertransform space are

given by
. _ 3w,V ~
608 = ~giaman € (4.31)
G,(LEs) =0 (4.32)
and  PLES) = P(Es) (4.33)

The boundary conditions in the Laplace-Fourier transform space when a borehole

subjected to applied fluid discharge Q(z,t) at an impermeable surface can be expressed as
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- _ 3, —v) -

O'rr(l,g,S) - _B(l—ZV)(1+Vu) p(l,f,S) (434)

G,L&Es) =0 (4.35)
and q,(L&s) = Q(&9) (4.36)

The global equation system, Eq. (4.24), for each problem is assembled by considering
the appropriate boundary conditions given by Egs. (4.27)-(4.36). The solutions in the
Laplace-Fourier transform space are then determined by solving the global equation for

discrete values of & and s. Time domain Solutions can be obtained by applying accurate

numerical schemes to Eq. (4.2). The solutions+piesented in this section are the required
influence functions to establish the flexibility equationin the derivation of traction and pore
pressure jump at the contact.surfacefor the contact problems between a borehole and a rigid

cylindrical plug outlined in.the next section.

4.4 Formulation of Contact.Problems between a Borehole and a Rigid Cylinder

In this section, contact problems of arigid eylindrical plug of radius a and height h
bonded to a borehole in a poroelastic mediumrwit_h excavation disturbed zone are considered
as shown in Fig. 4.2(a). This'is a mixed bounda_r;,y_value problem with radial and shear stresses
being zero outside the plug-borghole contact surface and displacements being prescribed
along the contact surface. Two contact problem’sjé_l_re'_gonsidered, namely radial misfit case and
axial loading case. The first problem is concerned \)\—/ith the rigid plug with the radial misfit of

A H(t), in which H(t)is Heaviside step function, placed in the borehole. This problem is

useful in the development of in situ testing devices such as a pressuremeter for the
measurement of geological- material properties. Such misfit exists due to the fact that the
pressuremeter iS,tightly fitted with the borehale. surface! It ‘isjalso useful in the study of
interface stresses;due to a radial misfit between a fiber and a matrix material. The misfit
occurs in the, composites during .the high _temperature processing. due to difference in
magnitude of the thermalexpansion coefficient of the fiber and the matrix material. The other

contact problem involves the rigid plug pulled by a vertical load of P,H(t). The plug is just

fitted with the borehole (i.e, no radial displacement). This problem of this nature is useful in

the modeling of several problems such as fiber pull-out tests and load diffusion, etc.

In this study, two limiting cases of hydraulic boundary conditions at the contact
surface S (-h/2<z<h/2) between a rigid plug and a borehole surface are assumed, i.e.
fully permeable (zero pore pressure) or impermeable (zero radial discharge) surface. Note that

the borehole surface is assumed to be fully permeable. For an impermeable plug, contact
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traction (both radial and tangential directions) and pore pressure are generated at the surface
S .To determine radial and tangential traction, and pore pressure jump denoted by fr (&,9),
T,(&,s), and 'fp (&,s) respectively, the contact surface S is discretized into a total of N, ring

elements as shown in Fig 4.2(b). The displacement compatibility condition is then imposed at

the contact surface S. This is done by imposing the resulting displacement variation on the

nodal locations at the contact surface S by applying radial traction T~r(§,s), tangential
traction fz (&,s), and pore pressure jump fp (&,8) on S. Itis assumed that the applied radial

and tangential traction, and pore pressureé jump are constant within each ring element. The
relationship between the unknown contact traction, pere pressure jJump and the displacements

at the surface S can be expressed.in the following-foiim

G"™ G" GP YT i,
G" G* G® 4T, = a, (4.37)
G G &P |, 0,

of G denotes the influence

e’

In Eq. (4.37), the element’ GJ, where e 2030 N
functions, which are radial displacement (i='tr ), vertical displacement (i=z), and radial
fluid displacement (i = p) at the center of the k“’- 1rirng element due to an instantaneous radial
ring load ( j=r), avertical ring foad-{ | =2), énd'lf};l ring fluid pressure ( j = p) respectively

applied over the I" ring element. The vectors T, and 0, (i=ryz, p) can be expressed as

T, o= [T(29) T(2.8) = T@.9)] ; (4.38)

T, = [T@e Tz - F(2e.9] (4.39)

-T_p = |:-I:P(Zl’s) -I:P(ZZ’S) fp(ZNe’S)]T; (440)

0737009 9 o) (4.41)
In addition,

0, = [A /s Ads o Als]; (4.42)

a, = [0 0 - of; (4.43)

for the case of radial misfit, and

G, = [0 0 - 0]; (4.44)
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0, = [A /s A ls - Als]; (4.45)

for the applied vertical loading case. Note that z, (i=1, 2,...,N,) denotes the vertical

coordinate of the nodal location of the i ring element.

For a fully permeable rigid plug, there is no pore pressure generated on the entire

borehole surface and 'i“p is a null vector. Equation (4.37) then reduces to

~ ~ & -
grr C:'rz o = l~1' (4.46)
GZI’ GZZ TZ uZ

Egs. (4.37) and (4.46)-yield nodal solutions for contact traction and pore pressure

jump. Time domain solutigins Canbe expressed in the next section by employing an accurate

numerical Laplace-Fourier inversion scheme.

The average radial contact stress F, over S for the radial misfit case can be
determined from
hl2

_au K/
Too= - | W 2z = (4.47)

—h/2
and the equilibrium of ‘a,plug under the vertical Io'adr B, IS given by

h/2
R, = 2za’u | T,(L7)dz (4.48)

-h/2
4.5 Numerical Results and Discussion

The; solution-precedure=described jim the-previous; sections .4s, implemented into a
computer. program 10" investigate time-dependent response of“a borehole<in a poroelastic

medium with an excavation disturbed zone. The main computational effort is involved in the
evaluation of influence functions Gi'. The explicit analytical solutions for G are given in
terms of an infinite integral with respect to the Fourier transform parameter £, which can be
converted into a semi-infinite integral since the integrand is either an even or odd function of

& . The semi-infinite integrals of Gi:?' are then computed by using a numerical quadrature

scheme that subdivides the interval of integration and employs a 21-point Gauss-Kronrod rule

to estimate the integral over each subinterval. Time-domain solutions are obtained by using
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an accurate Laplace inversion scheme reported in the literature. Piessens (1975) conducted a
review of numerical Laplace inversion schemes and found that the scheme proposed by
Stehfest (1970) is very accurate for time-dependent problems. In the past, Stehfest’s scheme
has been widely used in a variety of poroelastic problems (Rajapakse 1993, Abousleiman et
al. 1997, Cheng 1997, and Senjuntichai and Sapsathiarn 2006). According to Stehfest’s
(1970) time domain solution is given by Eq. (3.66) in the previous chapter.

. The accuracy of present solution was verified by comparison with the existing
solutions given by Rajapakse (1993) .for, a borehole in a poroelastic medium with

incompressible constituents (v =0.3, v, =0.5 and B =1.0) subjected to axisymmetric radial

traction of uniform intensity f, over a segment of“fength 2h. The boundary conditions for
this problem are given in Egs.(4:27)-(4.38) with F(<,s) = f,sin(¢b)/ &s and F,(&,s) =0.
Figures 4.3(a) and 4.3(b) show gcemparisons of nondimensional profiles of pore pressure and
fluid discharge respectively im" the radial direction (z=0) for b/a=0.25 and 1.0 at
nondimensional time, ct/a®=001'and 0:10: Excellent agreement between both solutions is
noted in both figures. Comparisgns of numerical solutions corresponding to contact problems
shown in Fig. 4.2(a) are presented next.-Fig. 4.4 shows comparisons of average radial traction
(-T,a/ uA,) and an axial stiffness ( B/ yaAz_)_,. g-.i-ven by Eq. (4.46) and (4.47) respectively
with those presented by Rajapakse-and Gross (1996) and Robinson (2002) for a borehole in
an isotropic medium (v =0.3) containing a rigid 'cy]indrical plug. It is noted that the present
solutions agree very closely with both existing ébiﬁtions at all* length-radius ratios of rigid

plug. The accuracy |of the present solution scheme iS thus confirmed through these

independent comparisons.

Numerical results” for- displacement, “stresses, excess pore pressure and radial
discharge corresponding to uniform traction orfluid'saurce applied-at the borehole wall over
a segment of length 2b are presented.next. In this paper, the disturbed zone during drift
excavation 15 assumed to be two, diameter of the borehole (Sato’et ai. 2000) (i.e. d /a=4).
The variations of shear modulus and permeability coefficient in the EDZ are given by Eqgs.

(4.18) and (4.19) respectively with 0<m, <0.25 and m, >0. In addition, a poroelastic
material with compressible constituents (v =0.3, v,=0.4, B=0.9) is employed in the
numerical study. Note that the poroelastic solution without the EDZ can be obtained from the
present solution with m =m,=0. In addition, two limiting cases of hydraulic boundary

conditions are considered at the borehole wall, i.e. a fully permeable surface (zero pore

pressure) and an impermeable surface (zero fluid discharge).
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The first set of numerical results corresponding to the case where a borehole
subjected to axisymmetric radial traction of intensity f; is presented in Figs. 4.5-4.7 with
b/a=1. Figure 4.5 presents radial variations of non-dimensional excess pore pressure at the
mid-plane (z / a =0) for both permeable and impermeable borehole surfaces. The effect of the
EDZ on shear modulus is considered in Fig. 4.5(a) with m, =0, 0.1, and 0.2, and m, =0,
whereas the case of m, =0 with m,=0, 0.2, and 0.4 is considered in Fig. 4.5(b) to study the
effect of permeability change in the EDZ. Numerical results presented in Fig. 4.5 indicate that
the disturbed zone has a significant influence on excess pore pressure near the borehole wall.
It is found that pore pressure is zero at r=a for a fully permeable wall before increasing
rapidly with the radial distance reaching; its peaksnearthe borehole wall (r/a<1.5). For an
impermeable wall, the maximum value of pore pressure is observed at the wall (r/a=1)
before decreasing rapidly'with the'radial distance. Pore pressure increases with increasing the
shear modulus coefficient”m_segardless ofithe hydraulie boundary condition at the borehole
wall. On the contrary, pore pressuie decreases with increasing the permeability coefficient

m, as shown in Fig. 4.5(p). 1tds also noted that the pore pressure is virtually negligible when

r / a> 4 irrespective of theshydraulic boundary c-.ondition at the borehole wall.

Variations of non-dimensional fluid diseharge in the radial direction (z /a =0) due to
uniform radial traction are presented in Figs. 4.6(a) and 4.6(b) respectively for different

values of m; and m,. In the case of fully perm'era_ble wall, radial discharge is very high near

the wall and then decreases rapidly with the radial distance. At'early times (ct/a* <0.01), the
fluid flow is inward*{negative value) near the borehole wall (r/a<1.2), and becomes
outward (positive value).with increasing the radial distance.-As time processes (ct/a’>1),
the discharge is inward at all paints in the mediam. Radial fluid discharge corresponding to an
impermeable barehole wall is completely different from-the fully permeable case. Radial fluid
discharge in the“case of impermeable, borehole is zero at the borehole wall due to the
boundary, conditionsat all time<instants. At then: increases: gradually with ithe radial distance
near the borehole wall (r'/ a <1.5) before decreasing with"the radial distance. It is also found
that the fluid discharge for the impermeable wall in Fig. 4.6(a) increases with increasing m,
similar to what observed for the pore pressure in Fig. 4.5(a). However, the discharge profiles
in Fig. 4.6(b) show somewhat different behavior from the pore pressure profiles in Fig. 4.5 (b)

that they increase with increasing m, . This is consistent with the fact that the larger values of
m, indicate more permeable medium, which results in more flow and lower pore pressure in

the vicinity of the borehole.
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Figures 4.7(a) and 4.7 (b) show radial variations of non-dimensional radial
displacement and tangential stress (z/a =0) for different values of m, with m,= 0. Radial
displacement in Fig. 4.7(a) has a maximum value at the borehole wall, and decays rapidly
with the radial distance regardless of the hydraulic boundary condition. The influence of m,
on the displacement is observed only in the vicinity of the borehole wall and the displacement
once again increases with increasing m, similar to what observed for pore pressure and fluid
discharge respectively in Figs. 4.5(a) and 4.6(a). It should be noted that the difference
between displacements at early time (ct/a”<0.01) and larger time (ct/a®>10) is less than
5% at all points for both fully permeable and impermeable walls. Radial profiles of non-
dimensional tangential stress in-Fig. 4.7(b) show a‘Simlar behavior to the radial displacement
profiles in Fig. 4.7(a). The peak-stresses are observed-ai-the wall and decays along the radial
distance but the tangential stress..decays more rapidly when compared to the radial
displacement profiles in*Fig..4.7(a). /In contrast t0 other quantities, the tangential stress

decreases with increasing m, It is implied that the influence of the EDZ results in reduction

of stress and increase of displacement around.the borehole. Solutions for radial displacement

and tangential stress profilgs were also plotied for different values of m, . It was found that
their solutions for different values of ms-are virtually identical indicating that the variation of
permeability in the EDZ has ‘negligibie influence on displacement and stress around the

borehole under applied radial traction:

Numerical results corresponding to a borehole wall subjected to specified fluid

pressure of uniform intensity p, [P(,s)= p,sin(éb)/&s] and radial discharge of uniform

intensity q, [Q(&,s) =,8in(£b) / £s] over a length of b/a =1 are presented in Figs. 4.8 and
4.9 respectively. Profiles of#nen-dimensional ‘radial displacement, tangential stress, excess
pore pressure, and radial; discharge along the radial distance ( z/a =0) with a fully permeable
borehole wall are'shown in Figs. 4.8(a)-4.8(d) respectively for different values of m, and m, .
Under applied fluid pressure, the maximum negative value of radial displacement is observed
at the center of applied loading, and radial displacement decreases rapidly along the radial
distance approaching negligible level when r/a> 4 for all values of m, and m,. It can be
seen from Fig. 4.8(b) that the maximum tangential stress is about 20% more than the specified
fluid pressure at the borehole wall. Tangential stress decreases rapidly with the radial distance
especially at the early time, and it is compressive at all points along the r -axis. Excess pore
pressure profiles in Fig. 4.8(c) show a similar trend to what observed from the tangential

stress profiles in Fig. 4.8(b). The maximum pore pressure is equal to —p, at the borehole wall

due to the imposed boundary condition, and it decreases rapidly with the radial distance. At
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the early time (ct/a’<0.1), pore pressure in all EDZs decreases rapidly near the borehole
wall and becomes suction (positive value) with increasing radial distance. For ct/a”*>0.1,
pore pressure increases gradually with time before diminishing to negligible level when
r / a> 4. Both tangential stress and excess pore pressure profiles decrease with increasing m,
but increase with decreasing m, . Initially, radial discharge illustrated in Fig 4.8(d) is very
high near the borehole wall and decreases along the radial direction. Radial discharge
increases with increasing the value of m, . Fluid discharge can be negligible when r/a> 4 at

all time instants.

Figures 4.9(a)-4.9(d) show profiles+ of" noen-dimensional radial displacement,
tangential stress, excess pore pressure, and.radial discharge respectively due to specified fluid
discharge at an impermeable borehelewall! Radial displacement and tangential stress profiles
in Fig. 4.9(a) and 4.9(b)«respegtively show similar trends to those in Fig. 4.8(a) and 4.8(b)
under applied fluid pressure. The maximum value of displacement is observed at the borehole
wall, and the displacement degreases along'fﬁe radial direction diminishing to zero when

r/a> 4. Itis found from Fig. 4.9(b).that the largest value of tangential stress always occurs

at borehole walls (r /a=1) foralkvalues of m;, m, before decreasing rapidly with the radial
distance especially at early"time. Tangential stress decreases with increasing m, and m,.

Numerical results for excess pore pressure profiles in Fig. 4.9(c) indicate that no suction is

developed in the medium at ali_time instants for applied fluid discharge. Initially

(ct/a®=0.01), the excess pore pressure is observed only/near the borehole wall, and
gradually developed in.the medium as time progresses. The influence of the EDZ on excess
pore pressure is similar to that of tangential stress shown in Fig. 4.9(b). Naturally, the

normalized discharge at r/ a=1 shown in Fig.,4.9(d) is equal to one at all time instants

irrespective of “m, jand ~-m, due to-the 'specified boundary condition. Radial discharge
decreases with increasing m,, but increases with increasing m, . It should also be noted that

final solutions of all’results presentéd in Fig. 4.9 are reached when' ct /&% >100.

The final set of numerical results corresponds to contact problems involving a rigid
cylindrical plug bonded to an infinite borehole with a fully permeable wall and the EDZ [see

Fig. 4.2(a)]. Figure 4.10(a) shows non-dimensional average value of radial stress (T,a/ 1A, ),
given by Eq. (4.47), for a rigid cylindrical plug with a radial misfit of A, for different
gradients of shear modulus in the EDZ (m,=0.1, 0.2 and 0.3) and different times

(ct/a®=0.01, 0.1 and 1). Solutions are presented with different length-radius ratios of a rigid

cylindrical plug (h/a) varying from 0.1 to 10.0. Both fully permeable and impermeable
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plugs are considered. Very large compressive radial stress is developed at the contact surface
for small values of h/a, and it decreases with increasing h/a. The change in shear modulus
has a significant influence on the radial stress, i.e. an average radial stress decreases with

increasing the change in shear modulus (larger value of m, ). The change in permeability is

found to be less influence on the radial stress. The solutions approach an asymptotic value
when h/a>10, which is the plane-strain solution. The numerical solutions for T,a/ uA,
under a fully permeable plug are within five percent different from those of an impermeable
one. Non-dimensional radial stress profiles [o,, (a,z)a/ uA, ] along the contact surface of
rigid cylinder (h/a=2.0) as shown.in Fig. 4.2(a)with radial misfit are shown in Fig. 4.10(b).
The radial contact stress is symmetric about the .z=0.plane and compressive throughout the
contact surface. Radial stress.is.singular at.the edge.of.the cylinder, and it is nearly constant
over the central part of the"plug..Fhe degree of stress singularity is found to be in a square
root order, which agrees*withsthescase of\a cylindrical plug in a borehole in an isotropic
elastic medium (Robinson 2002).+ In addition_, radial stress in the central part of the plug

decreases with increasing _im, .

The numerical results for theapplied vertical loading are presented next. Non-
dimensional axial stiffness (R, / naA,) of a rlgld cylinder bonded to a borehole surface is
presented in Fig 4.11(a). The variation of axial ‘étiﬁness with respect to h/a is almost linear,
and its slope decreases with increasing the vaIru',e' o;‘ m, . Numerical results presented in Fig.
4.11(a) indicate that the axial stiffness of the p-Iu;] depends significantly on the change in
shear modulus in thg EDZ. Figure 4.11(b) presents non-dimensional shear stress
[o,(a,z)al uA,] along the contact surface of an axially loaded rigid plug. Shear stress
profiles are symmetric about_z =0 plane, and have a singularity at the two edges, similar to
what observed imyradial stress profiles shown in“Fig 4.10(b). It is also,constant over the central
part of contact surface, and decreases with increasing the values of m,. In addition, the

influenee, of daydraulic houndary-condition aleng-theplug, surface isynegligible under the

vertical lgading case:
4.6 Conclusion

In this chapter, the general solutions of a cylindrical borehole in a poroelastic medium
with an excavation disturbed zone subjected to axisymmetric loading are based on Biot’s
theory of poroelasticity by applying Laplace and Fourier integral transforms. The general
solutions in the Laplace-Fourier domains are expressed in terms of modified Bessel functions

of the first and second kinds. These solutions are used to formulate boundary value problems
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corresponding to a borehole subjected to axisymmetric loading applied at its surface, and
contact problems involving a borehole containing a rigid cylinder. Numerical results indicate
that changes in shear modulus and permeability coefficient in the excavation disturbed zone
have a significant influence on the solutions especially in the vicinity of the borehole wall.
The shear modulus is reduced due to the excavation process, and it results in more
displacement, excess pore pressure, and fluid discharge, but less tangential stress. The drilling
process leads to larger permeability coefficient in the EDZ, which causes a decrease in pore
pressure but an increase in fluid discharge. The influence from the excavation disturbed zone
is however less significant in the contact problems between a borehole and a rigid plug. The
plane strain solutions are attained when h/a>40+for both cases of the radial misfit and the
vertical loading. The solutions presented in this'chapter.ean be employed to examine several
practical problems in geomechanies related to pressuremeter devices, ground-water wells,

natural resource explorations.and wasie disposal, etc.
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Figure 4.2/ (a) A'rigid cylinder bonded toa borehole with an excavation disturbed zone. (b)

Unit radial loading applied over a finite segment.
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CHAPTER V

DYNAMIC RESPONSE OF BOREHOLE
WITH DISTURBED ZONE

5.1 General

The dynamic response of a cylindrical borehole in an elastic medium is of
fundamental importance in various fields, ssuch as geotechnical engineering, mining
engineering, and geophysical exploration. For/example, analysis of gas explosion inside a
mine on the surrounding rock is important “for“evaluating the damage caused by gas
explosions. This chapter presents dynamichesponse of an infinite cylindrical borehole in a
poroelastic medium with excavation disturbed zone. The borehole is subjected to
axisymmetric  time-harmoni€ ing, ‘loading. The governing equations of Biot’s
poroelastodynamics theory are uncoupled by_using two scalar and two vector potentials. The
general solutions of displacements, 'stresses-and pore pressure in the frequency domain are
derived through the application of Fourier intggral transform with respect to the vertical
coordinate. The accuracy of the present solt;ﬁ.ons IS confirmed through comparisons with

existing solutions for boreholesiin elastic and lioiroelastic media.

o

5.2 Governing Equations and General Soluti_crﬁ_g

-

Consider axisymimeiric-deformations-of-homogenous poroelastic medium with an
infinite cylindrical borehole. A cylindrical coordinate system-(r,0,z ) is defined as shown in
Fig. 4.1 with the z-axis along the center of the borehole. The constitutive relations for a
homogeneous poroeelastic. material are.given in-Egs. (3.5)-(3.8)..The.governing equations for
axisymmetric motionsiof.a poroelastic.mediumgin the absence ofibody forces (solid and fluid)

and a fluid source, can be expressed according to Biot (1962) as

b o

WV + (A +a’M +,u)a—g—y—2— = pl, +p,W. (5.1)
or r or

VU + (A +a*M +,u)%—aMa—§ = pl +p W, (5.2)
oz 0z

oM PE_ M = i mi +bi (5.3)
or or

oMM = o+ m, + b (5.4)

oz oz
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where the superscript dot denotes the derivative of field variables with respect to the time

parameter t; p and p, denote the mass densities of the bulk material and the pore fluid
respectively; m is a density-like parameter defined as m= p, / £, in which £ is porosity; b

is a parameter accounting for the internal friction due to the relative motion between the solid
matrix and the pore fluid. If internal friction is neglected then b =0. In addition, the
parameters « (0< a <1)and M (0<M < o) can be defined as

3(v,—v)

. = (55)
BA-2v)(1+w,)

_ 2uB (I=2v)(1+v,) (5.6)
=L - 21) |

For a completely dry material, ¢.=0_and M =0, whereasfor a material with incompressible
constituents o =0 and M5 oo #In addition,  V* is the Laplace operator defined by
o ¥ of Ik

+ +

v2 ST 5.7
af* 4 ar ) o S

The governing partial differential eqdations, Egs. (5.1)-(5.3) can be solved by using

the following Helmholtz representation for axisymmetric vector fields

i

o4 oG, 53
u(r,z,t = —+——= 5.8
n2) or  orer 1ol 8)
u,(r,z,t) = %—ié(r%j (5.9)
oz rr or
2
w(r,z,t) = 6_¢2+% (5.10)
or  oroz
w,(r,2t) L& %—lé(r%j (5.11)
oz " rr or

where @\(i =1, 2) and\¢:(i =1,2).are scalar and/vector fields respectively.

Substituting Egs. (5.8)-(5.11) into Egs. (5.1)-(5.4) together with the assumption that

ot

the motion is time-harmonic with a factor €*, where o is the frequency of excitation, yields
two sets of partial different equations for scalar field ¢, ¢, and vector fields ¢, ¢, as

follows

[(A+aM +24)V? +p5° |4 = —(aMV?+p,5°%)4, (5.12)
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(aMV?+p,5%)g = —(MV?+ms” -ibs)4, (5.13)

and
(V2 +p3% ), = -8y, (5.14)
pip. = —-5’me, +idhe, (5.15)

ot

Note that the term e is suppressed from all expressions for brevity. The above partial
differential equations are reduced to ordinary differential equations by performing appropriate
Fourier transform with respect.to the z-coordinaie given by Eq. (4.1), in which its inverse
relationship is given by Eg. (4.2). After.Jengthy manipulations, it can be shown that the

general solutions of Fouriertransferms of 4 (i =1, 2) and ¢ (i =1,2) can be expressed as

Ar8) =, G4 B, () + C1y ,0) + DIy 7,1) (5.16)
A(r&) = LA A+ BKGan)]% 2 (€10 Gar) + DK, ()] (5.17)
a8 = BN PG (5.18)
w8 = s ED] (519)

o

where A(&), B(£), C(&), D(&),-E(S), and Ifl_;gz)";Jare arbitrary functions to be determined

by using appropriate boundary and/er continuit&]—"‘béhditions relevant to a given problem.
(i=1, 2, 3) and y, (=L 28y are given inAppendix C:A:tilde (") denotes the Fourier
transform of a function. In addition, I, and K, are modified Bessel functions of the first and

second kinds respectively of the nth order (Watson 1944). Thereafter, the general solutions
for displacements, excess pofe ipressure and stresses can be obtained in terms of the arbitrary
functions, A(¢) to F(S), by using Egs. (3.5)-(3.10), (5.8)-(5.11) and (5.16)-(5.19) as follows
G, =W\ [A|1(71r) '] BK1(71r)] +7, [C|1(72r) B DK1(7zr)] v i§73 [E|1(73r) 1 FK1(73I’)] (520)
a, = i‘f[Alo(%r)"‘ BK, (7,1) +Cly (7,1r) + DKo(Vzr)]_J/az [E|0(73r) + FK0(73r)] (5-21)
W, = nn [A|1(71r) - BKl(}/lr)] 72X [Cll(}/zr) - DK1(7zr)] +i&ys x5 [E|1(}/3I’) - FKl(?’sr)] (522)

w, = i‘f{)ﬁ[Alo(%r)"‘BK0(71r)]+Zz[C|0(7zr)+DKo(7zr)]}_7/;Zs[Elo(ysr)"'FK0(73r)] (523)

p = n [Alo(Vlr) +BK, (7’1r)] +17, [Clo(Vzr) + DK, (72r)] (5.24)
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e = B [Alo(71r) +BK, (ylr)] - 2#71r_1 [A|1(7/1r) - BKl(ylr)]

+8, [Cly (711) + DK, (11)] = 27,1 *[Cl, (331) — DK, (7,1)]

+i§732 [E|0(73r)+ FK, ()/3I’)]—i§73l’71[E|1(73l’)— FK1(73I‘)] (525)
6-66' = _(Zl-f +a771)[A|0(7/1r)+ BKO (7/1r)]+2/u71r71[A|1(7/1r)_ BKl(}/lr)]

_(/“-; + 0”72)[C|o(72r) + DK0(7/2r)] + Zﬂyzr_l [Cll(?/zr) - DKl(er)]

+24418y,r [El (751) = FK, (751)] (5.26)
G, = —(2u&* + 21 +am)[Al(gar) + BK, ()] A2u&® + AL +an,)[Cl, (111) + DK, (1))

_Zﬂié‘:?/;[Elo(?/sr)"' FK0(73r)] ] (527)

M
|

n - 2/1i§71 [A|1(71r) — BK1(7/1r)] #H2ily, [CI1(71r) = DK1(71r)]

—/1)/3(§2+7;)[E|1(73r)—FK1(3/3I’)] 7 (528)
where 7., £, L (i=1,2)argigivenin Appenaix,c.

It can be shown that the general solutions for axisymmetric deformations of a
poroelastic medium in the Fourier transform";dpmain given by Egs. (5.20)-(5.28) can be

A4

expressed in the following matrix ferm =

R(r,&)C(S) (5.29)

ur,g) =

f(r.&) ="8{r,5)C(S) (5.30)
where

u(r,&) .= [, o pl; (5.31)

f(r,&) o= (6, &, W] (5.32)
and c@ = By € D 12 F (5.33)

The elements of matrices R and S in the above equations are given in Appendix C.

Similar to quasi-static problem presented in Chapter IV, the disturbed zone is

discretized into infinitely long tubular layers with small thickness. The relationship between
the generalized displacement vector U™ and the force vector F™ can be established for the

n" layer as
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F™ = KMy® (5.34)

where K™ is an exact stiffness matrix of the n™ layer in the Fourier transform space. The

elements of vectors U™ and F™ are defined similar to those in Eq. (4.21)-(4.22)
respectively in the previous chapter with their elements being functions of r and & . In
addition, the stiffness matrix for the undisturbed zone is given by Eq. (4.23). The elements of
matrices R™™ and S™*" are given in Appendix C. The global stiffness matrix K~ for this

problem can be assembled by using the continuity conditions of traction and fluid flow at

each interface, in which
(5.35)

where U” and F~ are the global vetiors of generalized displacements and generalized forces

respectively. The elements#of mairices U" and F~ are given by Egs. (4.25) and (4.26)

respectively.

Consider a borehole inporoelastic medium with the. EDZ subjected to radial traction

F.(z), tangential traction F(z),and gither pore pressure P(z) or fluid source Q(z) applied

at its surface. The boundary conditions-€an be expressed as

6,(LE = F(©O)-apLé TR (5.36)
6,(LE) =wELD) (5.37)
p(LE = P for fully permeable-surface (5.38)
or qLsé = Q) for impermeable surface (5.39)

5.3 Numerical Results and Discussian

Numerical results for «dynamic response™of“andinfinitesborchole [in a poroelastic
medium By considering the 'excavation disturbed zone are presented ‘in“the ‘section. In the first
step, the system of liner simultaneous equations given by Eq. (4.24) is solved by using
appropriate boundary and continuity conditions. Since Eq. (4.24) is established in the Fourier

transform space, it has to be solved for discrete values of £ . The solutions are then

determined by using the numerical quadrature employing in Chapter IV to evaluate the semi-
infinite integral scheme given by Eq. (4.2). The accuracy of the present solution scheme is
verified by comparing with the existing solutions for a borehole in both elastic and poroelastic

media. Parnes (1986) presented the dynamic response due to axisymmetric traction applied at
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a cylindrical borehole surface. Fig. 5.1(a) shows comparisons of nondimensional radial
displacement and tangential stress along the radial direction (z/a =0) due to a uniform line

load (P) along a circle at z/a =0 of a borehole in an elastic medium. Poisson’s ratio equal to
0.25 and a nondimensional frequency & =2.0, defined as o =wa,/p, / 1, , are used where p,

and g, are mass density and shear modulus of the undisturbed zone respectively. Fig. 5.1(b)
shows comparisons of vertical variations of the amplitudes of radial displacement, tangential
and vertical stresses at r/a=1.5 due to a normal concentrated ring load with magnitude P
applied at the level z/a =0 of the borehole wall. The present solutions are compared with
those given by Lu and Jeng (2006). The sfollowing material parameters are used:
Alp, =0.333; M/y, =0667; p,/p, =0488 o =095, m/p, =2.333; and

b"=ab/./p,u, =577.40. The diameter of the borehole is equal to 2a and its surface is

assumed to be fully permeable._we nondimensional frequencies of §=5.73 and 11.45 are
presented. It is found that"thecomparisons in Figs. 5.1(a) and 5.1(b) show very close
agreement between the present solutions and the existing solutions. Therefore, the accuracy of

the present solution scheme is‘confirmed through these independent comparisons.

The numerical results jare presented  hereafter correspond to the cases where

uniformly distributed radial traction. of magnitude f, and uniform fluid pressure of
magnitude p, applied over a finite segment of :h,/‘é’zl at the borehole surface (see Fig. 4.1).
The following nondimensional parameiers are considered for the surrounding poroelastic
medium: A/ g, =0.383; - M-Lopiy-=0.667; ot =0.5;-c-=0.95 and m/ p, =2.333. The
variation of shear modulus is assumed to be linearly varied with the radial direction given by

EQ. (4.18). Two extreme cases of the hydraulic boundary conditions at the borehole surface

i.e. fully permeable and impermeable,.are considered:

Nondimensional radial displacement at the center of loading (r/a=0, z/a=0) are

presented in Fig. 5.2.for various-shear medulus profiles (m, =0, 0.1 afd 0.2) in the disturbed
zone. Solutions are presented for the frequency range 0< 6 < 10. Numerical results in Fig. 5.2
indicate that the disturbed zone has a significant influence on the radial displacement. Radial
variations of both real and imaginary parts of radial displacement with & for the same value
of m, are virtually similar for fully permeable and impermeable borehole walls. Both real and
imaginary parts of the radial displacement for the undisturbed borehole (m,=0) show more
oscillatory variation with 6 when compared to those being disturbed (m, >0). The influence

of internal friction between the solid and fluid phases (b) on the radial displacement is also
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presented with b" =1 and 1000 in Fig. 5.2. The difference between the two solutions is less
than 5% for both real and imaginary parts. It is also noted that the effect of b" has little

influence on the radial displacement regardless of the hydraulic boundary condition at

borehole wall.

Tangential stress is useful in the study of borehole stability and fracturing.
Nondimensional tangential stress with respect to the frequency of excitation is presented for
both fully permeable and impermeable borehole walls in Figs. 5.3(a) and 5.3(b) respectively.
For a fully permeable borehole wall, both real and imaginary parts of tangential stress show
minor dependence on the internal friction as previously noted for the radial displacement in
Fig. 5.2, whereas the internal friction has more-infiuence. for the impermeable borehole wall.
Tangential stress decreases with.increasing m, similarly to what observed for the radial
displacement in Fig. 5.2 when 0.<2.-At higher frequencies (o > 2), real and imaginary parts

of tangential stress show mere complicated variations with m, ..

Figure 5.4 presents nondimensional radial fluid discharge at the center of loading
segment (r/a=1 and z/a=0) to'investigate the flow rate at the borehole wall due to the
radial traction applied on a fully, permeable wall. As expected, both real and imaginary parts

of fluid discharge are zero when & =0.1t is alse‘found that radial discharge corresponding to
b*=1 is larger than that of b =1000 since b is inversely proportional to permeability. The

effect of EDZ on the_discharge at the borehole Wall can be negligible for b =1000 for the
frequency range of o' <10.

Nondimensional _excess pore pressure at the center of loading segment due to
uniformly distributed load@pplied on an impenmeable borehole wall is presented in Fig. 5.5.
These results indicate that excess pare pressure depends very significantly on the internal

friction b™ and m;. It can be seen that, excess pore pressure corresponding to b"=1 shows
more oscillation with, & when compared to that of h*=1000. This'is sindilar. to what observed
from the fluid discharge results in Fig. 5.4. Excess pore pressure increases with increasing m,
for the case of the internal friction b"=1000 whereas it shows complicated variation with

b =1.

Next, variations of nondimensional radial displacement, tangential stress, excess pore

pressure, and fluid discharge in the radial direction (z/a=0) due to uniform radial traction
are illustrated in Figs. 5.6-5.7. Solutions are presented for b =1 with m, =0, 0.1 and 0.2; and

0=0.5 and 2.0. It can be seen from the figures that both radial displacement and tangential
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stress depend significantly on both m, and 6 . The maximum values of both real and

imaginary parts of radial displacement for 6 =0.5 occur at the borehole wall before decaying
with the radial distance. For higher frequency (6 =2.0), the displacement profiles show more
oscillation, but the maximum value is still found at the borehole wall. The displacement

decreases with increasing the value of m, near the borehole wall (r/a<3), whereas it shows

complicated variation away from the wall (r/a >3). Radial profiles of nondimensional
tangential stress in Fig. 5.6(b) show similar behavior to the displacement profiles in Fig 5.6(a).
The maximum stresses are observed at the wall, and the stresses then decay along the radial

distance. The tangential stress deceases with increasing m,. On the contrary, the profiles of

tangential stress for 6 =2 show.more oscillatory variation than those of the radial stress. It is
implied from Fig. 5.6 that the-imaginary parts of displacement and tangential stress become

negligible when 6 — 0 approaching their static counterparts.

Figs. 5.7(a) and 5.7(b) present variation of nondimensional excess pore pressure and
fluid discharge respectively‘along/the radial direction at the mid plane (z/a=0) for fully
permeable borehole surface. Numerical results indicate that the excavation disturbed zone has
a significant influence ondboth excess pore pressure and fluid discharge for ¢ =2.0, whereas

the solutions for the lower frequency (o =05) are independent of m, . Both real and

imaginary parts of the solutions: for- o :2.0‘1_isﬁoy_v oscillatory variation along the radial
direction. The peak values of fluid discharge are'ob;served at the borehole surface, which are
the same as the radial displacement and tahgéﬁfiél stress presented in Fig 5.6. This is
consistent with the fact-that the maximurm solutions should be-at the point of applied loading.
Excess pore pressure is €gual to zero at the wall due to the Specified boundary condition. In
addition, both excess pore pressure and fluid discharge diminish to negligible level when

rla—so.

The final“set of numerical results corresponding to time-harmonic fluid pressure of
magnittde ¥, applied over segmentof length“h/ a =1 on an impermeable borehole wall. Figs.
5.8(a) and 5.8(b) show radial variations of nondimensional radial displacement and tangential
stress respectively along the mid plane (z/a =0). It can be seen that profiles of radial
displacement and tangential stress for 6 =0.5 are quite smooth along the radial direction,
whereas the solutions for & =2.0 show more oscillatory variation with r/a before
diminishing to zero when r/a — co. Numerical results of radial displacement and tangential
stress in Fig. 5.8 in the vicinity of the borehole wall present more fluctuation than those at a
point away from the wall. It should be noted that the displacement and tangential stress due to

the applied fluid pressure can be neglected when r/a>10.
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Figures 5.9(a) and 5.9(b) present profiles of nondimensional excess pore pressure and
fluid discharge along the radial distance at z/a =0 due to time-harmonic fluid pressure
applied at the borehole surface. It is found that both real and imaginary parts of the solutions
have a smooth variation with r/a for the case of 6 =0.5 and they become oscillated for
0 =2.0 similar to the radial displacement and tangential stress demonstrated in Fig. 5.8. Both
pore pressure and fluid discharge are maximal at the borehole surface and decrease along the
radial distance before reaching zero value when r/a>7. The effect of excavation disturbed
zone also shows significant influence on the excess pore pressure and fluid discharged. It is

found that a solution with higher value of m,, shows more oscillatory variation than that with
lower m,. This implies that higher gradient of/Shear'modulus (more disturbed properties due

to excavation) results in more fluctuations in the solution.
5.3 Conclusion

The analytical solutiens for a cylindrical borehole in an excavation disturbed zone
due to time-harmonic loading at/the borehdle wall are presented in this chapter. A set of
general solutions to the equations of motion from Biot’s poroelastodynamics theory is derived
by using Helmholtz representation .for:axisymmetric vector fields and the Fourier integral
transforms. The numerical results presented for dynamic response of the borehole with
excavation disturbed zone show thai it depends on‘many factors such as material properties,
excavation damage, hydraulic boundary conditi,dﬁs along the borehole surface and the loading
types. It is found that radial displacement, tangential stress, pore pressure and fluid discharge
depend significantly an.the change in shear modulus. The influence of internal friction due to
relative motion between solid and fluid becomes less influence on radial displacement and
tangential stress, but it has a significant influence on excess pore pressure and fluid discharge.
The solutions along‘the radial direction show mare fluciuations when the frequency excitation
and the gradient of shear modulus increase. The solutions presented'in this chapter are useful
to study several problems related a cylindrical borehole‘in a poroelastic medium. For example,
these solutions canhe employed to, study-wave propagation problems|carresponding to the
empty and liquid-filled cylindrical borehole in fluid-saturated porous medium. In addition, the
present analytical solutions can also be extended for stress analysis of a borehole under

transient loading by employing an appropriate technigue such as the fast Fourier transform.
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Figure 5.2 Radial displacement at the center of loading due to radial traction on (a)

permeable wall and (b) impermeable wall.
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70

p(r,0)/f,

Figure 5.7 Profiles of (a) éxeess pore pressureand (b) radial discharge along the r -axis due

A RERERESRS
ARIANTAUNNIING 1A Y



#,u,(r,0)/ap,

0.06

71

0.10

P
) O >
‘v AN S S
e AN ST mmEm T
s
A~

-7

Imaginary part
T T
7 9 11
°
o
=
S Z=
t§ -
b
Imaginary part
T T
7 9 11

Figure 5.8 Profiles of (a) radial displacement and:(b) tangential stress along the r -axis due to

L AR G
ARIANTAUNNIING 1A Y



p(r.0)/p,

72

élah adial discharge due to applied fluid

R D/} it e

ARIANTAUNNIING 1A Y

!
r



CHAPTER VI

CONCLUSIONS

This dissertation presents a theoretical study of poromechanical response of a finite
cylinder and an infinite borehole under axisymmetric loading. Analytical solutions for a
poroelastic cylinder, and a cylindrical borehole in a poroelastic medium with an excavation
disturbed zone are presented. A set of general solutions is obtained from the governing
equations based on Biot’s theory of poroelasticity by applying appropriate integral transform
techniques. There are three main problems presented.in this study, i.e. quasi-static responses
of a cylinder and a borehole, and dynamic response of a borehole. Separate conclusions are
given at the end of Chapters I11-\/ based on the results presented in those chapters. The major

findings and conclusions of this'Study can be summarized as follows:

1. The analytical solutions are obtained in the appropriate transform spaces for each
problem. The Laplace‘inversion is'carried out by employing a numerical scheme
presented by Stehfest (1970), Wh;ere‘as an adaptive numerical quadrature scheme
using a 21-point Gauss-Kronrod'-_(u[e is employed for the Fourier inversion.
Accuracy of the present numericé_l sbhemes is confirmed by comparing with
independent existing sofutions for th-e'-{i_r_niting cases.

2. The present study considers, the di_s__ﬁ_j_rb_gd zone due to borehole drilling process
that has néever been Vtaken into accou'nt_—'inrthe past for stress analysis of borehole
problems! related to poroelastic materials. Shear | modulus and permeability
coefficient are assumed to be non-hemogenous in the excavation disturbed zone
in the present study. An exact stiffness matrix scheme has successfully been
emplayed tosolvethe borehole preblems:

3. Numerical results’ presented "in this"study" indicate ‘that poroelastic material
properties and the hydraulic boundary conditions have a significant influence on
poromechanical responses. of cylinders and horeholes.|It.is also found that the
solutions in the vicinity of borehole due to traction and fluid sources depend
significantly on the reduced shear modulus in the disturbed zone. However, the
increased permeability in the disturbed zone has a significant influence only on

pore pressure and fluid discharge.
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The analytical solutions presented in this study can be used to investigate a variety of
problems in civil engineering applications involving cylinders and boreholes. Moreover, they
can also be extended to study other practical problems, such as those related to hollow
cylinders, load-diffusion from cylindrical piles, pressuremeter devices, hydraulic fracturing

models, excavation and drilling, ground-water wells, and wave propagation problems etc.
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Appendix A

The expression of 6,5, G, Gy, » Pos Py Pos Tio» G @nd @, (i, j=r,60,2) in Egs.

(3.26)-(3.32) are given by

G.(r2,s) = -nA cosh(x/sz)—nsV?rB,l,(\/sr)+a,C, +a,D, (A1)
Go(z,5) = -nyis*A,cosh(y,z) +[a, cosh(4,2) +aA4,zsinh(4,2)]C,
-1, E,, cosh(4,,z ’ ,ﬂ/ (A.2)
52(z,5) = nAs ‘%o&zsinh(ﬂmzﬂcm
' (A3)
——
T(rs) = N-riEn]F,
r}D, (A4)
Gnuo(ri2,8) = (A.5)
F 7iZz .L‘: = ;
Tun(2:8) = nigsT A, cosh(7z)+ [a; coshA, 2) — a4, zsinh(4,2)]C,,
T (A6)
i
Ezzn(r’s) = 1 Dn+§nGn|0(§nr) (A7)

Rl Vr 1 1 e
ST nay

rop o (z‘,ls) = —nA,s A, cosh(y,z) + [ﬂ;l cosh(4,,z) +a,zsinh(4,, z)] C,

—E, cosh(4,,z) (A.10)

Eﬁen (r' S) = _77|: Io(ﬂnr) _ﬂns_lr_lll(ﬂnr):l Bn - I: Io(énr) / 2 - 2a2§n_1r_1|1(§nr):| Dn

~I'F (&) (A12)



N ()]

Po(r,z,5)

Pn(2:9)

P, (r.s)

qro(r,Z,S)

0 (2,5)

0w (r,5)

Gy (r,2,9)

qzm (27 S)

qn (1)

where

1Y AnS A, SINN(y,2) +[sinh(4,,2) / 2+ 8,4,z cosh(4,,2)]|C,,
-4, E,, sinh(4,,2)

_né:nﬂns_an Il(ﬂnr) + [algnrlo(fnr) - a‘Z Il(gnr)] Dn + fnGn Il(fnr)

ag;[A0 cosh(v/sz) + Byl (+/sr) +J —~2,7[C, + D, ]

a;&mwﬂmwmm

ama\mm UAIINYAY

3(v,—v)
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(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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Appendix B

The elements of R(r,&,s) and S(r,&,s) matrices as shown in Egs. (4.13) and (4.14)

respectively are given by

where

Ry,

Ry

Ry R, Ry Ry Ry Ry
R = R21 R22 R23 R24 R25 R26 (B . 1)
R31 R32 R33 R34 R35 R36
s = |s (B.2)
_S
= nps™(pr SO0 R, = nBsTK ()
= 20-2w)1, “2(1-2v,)K, (€] 1) - €] rK, (€] )
= -igl(¢n K, (£]r)
= iénsTl,(pr) iEns K, (Br)
- ieriy (2 ” i£0K, (2]1)
I
i
: 'ﬁfﬁﬁ”j NINTNENNS
v)(l V)I(ﬂ).f _ B(1+V)(1_V)K(,Br)
ﬂﬁ“‘iﬁﬁﬂ‘im URTINGTRY
2B|&|I(1 2B|&|(1
B gy R, = -2l g
=0 R, =0
= s [E1,(Br)-prii () | S, = st [EK(Br)+ BriK (BN

2(1-v,)[&[15 (&) — 2L - 2v, )r 1, ([ ) +[&] 1, (€] ) - £2r1, (€] r)
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S = 20-v,)[E[K, (€] + 20— 2v, )r K, (& r) + €] K, (€] r) + £°rK, (] r)
S, = —E[JE1,(&n -r1,(€n ] S, = —E[|EK, (€N + K (€]n]
S,, = ig’?ﬂs_lh(ﬂr) S, = —i§77ﬂ5_1K1(ﬂl’)

Sy = _ifl:zvullqﬂ r)+|§|r|z(|§| r):l S

Sp = §2|1(|§| r)

(s
o s

i

8

iaal oDy

-

'-L:‘~!~

i£] 2v, K, (1&]r) - [&[rK, (&) ]
_52 K1(|§| I’)

B%sA(L+v,)*(1-v)
9(1_ Vi )(Vu - V)

K (Br)

Bsé?(1+v,)

e D

" (r,&,s) matrices as shown in Eq.

i‘l (B.3)
I

.. QREANENTNEINT
QRINIATU NN INYA Y
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Appendix C

The matrices R and Sin Egs. (4.13) and (4.14) corresponding to dynamic response

of a borehole problem in Chapter V are given by

_71|1(71r) =K L) 7K () i§73|1(73r) _i§73K1(73r)
R = [iglo(an) igK,(nr) iE1(nr) 6K (r,r)  —73lo(rsr)  —75Ko(7sh) (C1)
_771|0(71r) mKo(nr)  mlo(rr) 1Ky (1) 0 0

_1K1(71r) ﬂzlo(}/zr) - 2/‘72r_1|1(72r)
248y, 1, (7,r)
V2 X211 (721)

_:31|0(71r) - 2/‘71r_1|1(71r)
S = EYLESANVAY )
rxh(nr)

:BzKo(72r)_2ﬂ72r_lK ‘ ) (7 | 3[73K0(7/3r)—r‘1K1(;/3r)]
=24i&y, K, (13r) uys (& + 73K () [(C.2)
12K (7, —i&ys 15K, (751)

where

(ma)2 - iba)),oa)2 -piot

M (A +2u)
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In addition, the elements of R™*(r,&,s) and S™*™ (r,&,s) matrices for latest layer

are given by
R, Ru Rg
R = IR, R, R, (C.3)
R32 R34 RSG
S(N+1) (C. 4)
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