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CHAPTER |

INTRODUCTION

1.1 General

Nanotechnology has important applications in various disciplines such
as biology, chemistry, physics, medicines and engineering. After the
discovery of carbon nanotube (CNT) in 1991 by lijima (1991), a number of
advanced researches have been studied to improve performance of various
devices by utilizing superior mechanical, electronic and optical properties of
nanoscale materials. For example, computer memory storage device called
Nano-RAM, which is faster and denser than common RAM, has been
developed based on the position of carbon nanotubes deposited on a chip-

like substrate.

There are generally two basic approaches to study the mechanical
behavior of nanoscale systems, which are experimental methods and
theoretical simulations. Several experiments have been performed to
investigate mechanical responses of nanoscale materials in the literature. For
example, Wong et al. (1997) determined the mechanical properties, i.e.
Young’s modulus, strength and toughness of isolated silicon carbide (SiC)
nanorods (NRs) and multi-wall carbon nanotubes (MWNTs) by using atomic
force microscopy. Mao et al. (2003) utilized the same method to determine the
hardness of ZnO and SnO2 nano-belts. Although actual behavior of a material
can be obtained by performing an experiment, the results based on this
approach nevertheless highly depend on experimental environments.
Moreover, the cost of experimental study is very expensive due to their
requirement of high-precision testing instruments and procedures. Theoretical
simulations based upon mathematical modeling are therefore attractive
options, which have been widely used to analyze the mechanical behavior of

nanoscale systems. Two major models have been commonly employed in the



analysis of nanoscale systems, i.e. atomistic simulation and continuum based
approach. Although atomistic simulations are considered very accurate for
nanoscale systems, the associated computational resources are significantly
huge since the billions of atom need to be modeled when applied at a
device/system level. Extending continuum mechanics concepts to the
nanoscale level is thus an attractive option that is very efficient in obtaining

first-approximation to nanoscale systems.

From atomistic study, it is found that the energy associated with atoms
at or near a free surface or interface is different from that of atoms in the bulk
material (Miller and Shenoy, 2000; Shenoy, 2005). The excess energy
associated with the surface/interface atoms is called the surface free energy,
which is generally neglected in the context of microscale systems or larger.
However, for nanoscale structures, the surface to volume ratio is much higher
and the surface energy effects can no longer be ignored. Modified continuum
methods that account for surface energy effects and size-dependency are
then developed to examine the mechanical behavior of the materials in
nanoscale level. A rigorous theory based on continuum mechanics concepts
incorporating the surface energy effects was proposed by Gurtin and Murdoch
(1975, 1978), and Gurtin et al. (1998). In the past decade, Gurtin-Murdoch
formulation has been extensively used to investigate a variety of problems

such as nano-inhomogeneities, nano-plates, cracks etc.

This dissertation is concerned with the development of fundamental
solutions for an isotropic elastic material in nanoscale system based upon
continuum mechanics incorporating surface energy effects by employing
Gurtin-Murdoch theory of surface elasticity. The analytical solutions are
derived for fundamental problems to provide a fundamental understanding on
mechanical behavior of nanoscale structures and materials. The solutions for
more complex problems can also be obtained using the application of the
derived fundamental solutions. In this study, analytical solutions of an
isotropic elastic material involving different loading cases and defects, i.e.

dislocations and crack, are presented for the case of plane strain and



axisymmetric problems by employing Fourier and Hankel integral transform
techniques respectively. Numerical results are presented for various boundary
value problems to portray the influence of surface stresses on the elastic field

of the bulk material.

1.2 Objectives and Scopes of Present Study

The main objectives and scopes of the present study are given as

follows:

1) To develop analytical solutions of isotropic elastic material with the
consideration of surface stresses by adopting complete Gurtin-Murdoch
continuum theory of elastic material surfaces for various boundary value

problems that are fundamental in the area of solid mechanics.

2) To investigate size-dependent and nanoscale influence on elastic

fields of various fundamental problems.



CHAPTER I

LITERATURE REVIEWS

2.1 General

Research on nanomechanics has remarkably received increasing
attentions in recent years. It concerns with the study of fundamental
mechanical behavior, i.e. elastic, thermal and kinetic properties, of physical
systems at the nanometer scale. Since the prefix ‘nano’ means a billionth, one
nanometer (abbreviated as 1 nm) is therefore 1/1,000,000,000 of a meter.
Nanostructures and nanomaterials refer to structures and materials that have
at least one of the overall dimensions in the nanoscale level (approximately 1
nm to 100 nm). Existing experimental studies of materials at nanoscale level
reveal that their mechanical properties show size-dependent behaviors that
are completely different from those in macroscopic structures, where their
mechanical properties are independent of their size. Classical continuum
mechanics is therefore not applicable at the nanoscale level due to surface
energy, related size-dependency and quantum effects. Behavior of nanoscale
systems can be accurately predicted by using first-principle quantum
mechanical simulations (Sun and Zhang, 2002; Liang et al., 2005; Ji and Gao,
2004). Such simulations are computationally prohibitive (often practically
unrealistic) when applied at a device/system level. Extending continuum
mechanics concepts to the nanoscale is therefore an attractive option.
Modified continuum methods that account for surface energy effects and size-
dependency are considered very efficient in obtaining first-approximation to

nanoscale systems.



2.2 Surface Elasticity Model

The concepts of surface energy and surface stress were first
formulated by Gibbs (1906). In the formulation of the thermodynamics of
surfaces, Gibbs defined the surface free energy (y) as the reversible work
per unit area needed to create a new surface. For the surface of solids, Gibbs
introduced another surface quantity, called surface stress that represents the
reversible work per unit area needed to elastically stretch a pre-existing
surface. From the thermodynamics of solid surfaces, Shuttlleworth (1950) and
Cammarata (1994) derived the relationship between the surface stress and the
surface free energy. They interpreted surface stress in a term of variation of
the surface free energy with respect to surface strain. It should be noted that
surface free energy is a scalar quantity, while the surface stress is a second
order tensor in the tangent plane of the surface, and the strain normal to the
surface is excluded. Cammarata (1994) also expressed the surface stress in
Lagrangian coordinate system that greatly simplifies the analysis in several

problems.

The influence of surface energy effect is generally neglected when a
microscopic system and larger is considered. Ina nanoscale system, however,
the surface energy effects could have significant influence on their behavior.
The ratio of surface free energy y (J/mz), and Young’s modulus E (J/ms),
;//E, is a parameter with a dimension of length (Yakobson, 2003). This
intrinsic length scale is usually small, in the nanometer range or even smaller,
for metallic materials. When a structure of a material has at least one
characteristic length comparable to this intrinsic scale, the influence of
surface energy effects becomes important, and thus the mechanical
properties of this system become size-dependent. In the case of a soft elastic
solid, such as polymer gels and biological materials, its elastic modulus is
much smaller than that of a conventional solid. Consequently, the
corresponding intrinsic length scale of a soft solid is much larger and

becomes comparable to material dimensions in practical situations and thus



the surface energy effects can play an important role on its mechanical

properties (He and Lim, 2006).

Several theoretical frameworks based on continuum model are
developed incorporating surface energy effects (Miller and Shenoy, 2000;
Park et al., 2006; Slattery et al., 2004). For a linearly isotropic elastic material,
a rigorous theory based on continuum mechanics concepts that incorporate
the effects of surface energy is presented by Gurtin and Murdoch (1975,
1978), and Gurtin et al. (1998). In their model, the surface is considered as a
mathematical layer of zero thickness perfectly bonded to an underlying bulk.
Miller and Shenoy (2000) performed atomistic simulations of nano-scale plates
and bars subjected to uni-axial loading and pure bending and found that their
results were in excellent agreement with those based on the Gurtin-Murdoch

model.

The surface stresses are, in general, anisotropic and depend on the
crystallographic direction of the surface (Gurtin et al., 1998; Shenoy, 2005).
However, it would take an enormous effort in order to analyze problems with
fully surface stresses. Moreover, the assumption of isotropic surface stresses
is considered acceptable and sufficient in the study of surface energy effects
to depict the fundamental understanding of its importance in the analysis of
nanoscale system (Weissmuller and Cahn, 1997). Based on Gurtin-Murdoch
continuum theory of surface elasticity, the surface stress effects are
incorporated in a non-classical boundary condition on the surface/interface, in
which the traction across the surface/interface is discontinuous. This
boundary condition and the surface stress-strain relation together with the
classical elasticity equations constitute a coupled system of field equations.
Over the past decade, Gurtin-Murdoch surface elasticity model has been
extensively employed by several researchers to investigate various problems

with the presence of surface stress effects.



2.3 Fundamental Problems with Surface Stresses

A variety of problems have been successfully investigated in nanoscale
level with the consideration of surface energy effects by employing Gurtin-
Murdoch theory of surface elasticity. For example, several researchers have
examined the problems involving nano-inclusions and nano-inhomogeneities
(Sharma et al.,, 2003; Duan et al.,, 2005; Tian and Rajapakse, 2007;
Mogilevskaya et al., 2008), ultra-thin elastic film (He et al., 2004; Huang,
2008), thin plate (Lu et al., 2006), nano-indentation problems (Zhao, 2009;
Pinyochotiwong, 2010) and crack problems (Wang et al., 2008; Kim et al.,
2010, 2011).

The fundamental study of an elastic layer under surface and internal
loading is important to diverse engineering applications in the context of
classical continuum mechanics. The classical solution of a finite thickness
elastic layer subjected to surface loads was given by Pickett (1938), which
have been widely used for applications in tribology, geomechanics,
biomechanics, etc. In addition, the classical solution of a half-plane subjected
to internal loading was derived by Melan (1932). For the problems in
nanoscale level, those classical solutions are not applicable and the influence
of surface stresses need to be considered. He and Lim (2006) derived the
surface Green'’s function for a soft incompressible isotropic elastic half-space
by assuming that the surface elastic properties are the same as bulk
properties. The elastic field of a half-plane subjected to surface loading in the
presence of surface stresses was considered by Wang and Feng (2007). Zhao
and Rajapakse (2009) studied the plane-strain and axisymmetric response of
an isotropic elastic layer bonded to a rigid base under vertical and horizontal

surface loads.

In the above studies, the surface stress tensor is considered as a two-
dimensional quantity and its out-of-plane components are excluded. A recent
study by Wang et al. (2010), who formulated the surface elasticity theory in

the Lagrangian and Eulerian frameworks, indicated that the deformed and



undeformed configurations should be discriminated even in the case of small
deformations. The out-of-plane terms of the surface displacement gradient
could be significant particularly for curved and rotated surfaces. Povstenko
(1993) studied the influence of residual surface stress gradient on the elastic
field of a half-space that has a jump in residual surface stress over a circular
area. The fundamental solutions of an elastic layer under surface and buried
applied loads with the complete surface stresses have important application
in various problems, such as nano-coatings and nanoscale surface layers
used in electronic devices, advanced materials, communication devices, etc.
In addition, the soft elastic layer can be found in micro-fluidic devices.
Moreover, these fundamental solutions can be employed in the development
of boundary element method (BEM) formulation for more complicated

problems involving nanoscale structures and soft elastic solids.

2.4 Dislocation and Crack Problems with Surface Stresses

The studies of defects such as cracks and dislocations in elastic
materials are important to various engineering applications and have been
extensively studied in the context of classical continuum mechanics (Perez,
2004). For dislocations and cracks in nanoscale system, the influence of
surface energy effects could become significant on their behavior such as
near-tip fields, the energy release rate and their propagation behavior. By
employing atomistic model, Hoagland et al. (1991) investigated the stress and
displacement fields near a tip of a brittle crack and found that the solutions
are in good agreement with the prediction of linear elastic fracture mechanics
except at the vicinity of the crack tip where the effects of surface energy
should be accounted for. From literature survey, however, few studies have
been focused on the dislocation and crack problems with the consideration of
surface energy effects although the concept of surface elasticity was

established several decades ago.

For the crack problems, a few researchers have considered the

influence of surface stresses on mechanics of single crack in an elastic solid.



For example, Wu (1999) and Wu and Wang (2000, 2001) investigated the
influence of surface tension on two-dimensional crack problems and proposed
that surface tension induced a pair of point loads at the crack tip. The
singularity of the crack-tip stress fields then becomes r* instead of being
r¥? as a result of those point loads. With the assumption of blunt crack-tip,
Wang et al. (2008) examined the effects of surface stress on the elastic fields
near a crack tip for mode-l (opening) and mode-Ill (tearing) cracks with finite
root radius based on Gurtin-Murdoch theory of surface elasticity and found
that the surface stresses have a significant influence on the stress and
displacement fields in the vicinity of blunt crack tip, especially when the
curvature radius of the crack tip is in nanometer level. By performing finite
element analysis, Fu et al. (2008) investigated a blunt mode-Il (sliding) cracks
with the consideration of surface stress effects and proposed that, when the
curvature radius of the crack tip reduces to nanometers, surface stress effects
have a considerable influence on both the magnitude and positions of the

maximum stresses.

The fundamental problem of mode-I crack was also investigated by Oh
et al. (2006) based upon an extension of continuum mechanics incorporating
the effects of nanoscale through the long-range intermolecular force obtained
from atomistic simulations. In their study, they summarized that the crack tip
should be sharp rather than blunt and more importantly, the stress singularity
at the crack tip is eliminated when considered at nanoscale level. The
assumption of finite stress at crack tip was also found in the analysis of mode-
I, Il and Ill cracks by Kim et al. (2010, 2011) by employing Gurtin-Murdoch
surface elasticity. Recently, Sendova and Walton (2010) examined mode-I
crack in an infinite elastic medium with different models of surface energy
effects such as constant surface tension model and curvature dependent
surface tension model. For the case of constant surface tension, they
proposed that the stress singularity at the crack tip is reduced to logarithmic
singular, whereas, the finite stress at the crack tip is observed for the case of

curvature dependent surface tension. In addition, the logarithmic stress
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singularity was also perceived in the analysis of crack problems based upon
Gurtin-Murdoch theory of surface elasticity by Kim et al. (2012). A review of
literature indicates that the influence of surface energy effects on the elastic
field in crack problem is still unclear especially in the vicinity of crack tip,
moreover, all existing studies related to crack problems with the consideration
of surface stresses are concerned with the analysis of plane problems.
Therefore a rigorous analysis of three dimensional crack with the presence of
surface energy effects could provide fundamental understanding of fracture

mechanics in nanoscale systems.

Study on dislocations in an elastic solid has also received wide
attentions among mechanics researches. The presence of dislocations
strongly affects mechanical properties of materials. However, papers on
dislocation problems with the consideration of surface energy effects are very
limited in the literature. For example, the mechanics of dislocation problem
was investigated for screw dislocations in Molybdenum and Tantalum by
performing atomistic simulation (Woodward and Rao, 2001). Recently, Shodja
et al. (2010) examined the behavior of a screw dislocation inside a nanotube
with the consideration surface energy effects based on Gurtin-Murdoch theory
of surface elasticity. The solutions of dislocation have important application in
various problems such as fracture mechanics (Biloy and Eshelby, 1968).
Gross (1982) developed the displacement discontinuity method (DDM), which
is an indirect boundary element method based on the solutions for distributed
dislocations (Crouch and Starfield, 1983). Such techniques can be adopted to
investigate fracture problems involving complicated geometry and boundary
conditions. Based on literature survey, the fundamental solutions for shear
and opening dislocations in an elastic half-plane with the consideration of
surface stresses, which can be employed in the DDM formulation to analyze

the special problem of cracks in an elastic half-plane, do not exist.



CHAPTER Il

BASIC EQUATIONS AND GENERAL SOLUTIONS

In this chapter, the basic equations of classical continuum mechanics with
considering surface stress effects based on Gurtin-Murdoch continuum theory of
surface elasticity are presented. The general solutions for plane strain and
axisymmetric problems are then obtained by solving the governing equations
through the applications of Fourier and Hankel integral transforms respectively.
These general solutions will be employed to derive the fundamental solutions of
an isotropic elastic layer under internal or surface loading, as well as dislocation

and crack problems in the subsequent chapters.

3.1 Basic Equations of Continuum with Surface Stresses

According to Gurtin-Murdoch continuum model of surface elasticity, for an
isotropic elastic material, the surface stress effects are accounted for by
considering the surface of a solid as a thin layer with negligibly thickness
adhering to the underlying bulk material without slipping. The material constants
of the surface are different from those of the bulk material. The surface stress
effects are displayed in the set of non-classical boundary conditions. These
boundary conditions and the surface stress-strain relation together with the
classical elasticity equations form a coupled system of field equations. In the
bulk, the governing equations are the same as those in classical elasticity. In
addition, on the surface (or interface), the generalized Young-Laplace equation
(Povstenko ,1993) and a set of constitutive relations have to be satisfied. The
basic equations for small displacements and infinitesimal strains of a continuum
with surface stress effects can then be established based on the Gurtin-Murdoch

model.

In the absence of body forces, the equilibrium equation, constitutive
relation, and strain-displacement relationship of the bulk material are given

respectively by
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Gij,j :0 (318)

oy = 2ue; + A& (3.1b)
1

& :E(u” +uj’i) (3.1¢)

where oy, & and U; denote the components of stress, strain and displacement

tensors respectively. In addition, ¢ and A are Lamé constants of the bulk

material.

On the surface, the generalized Young-Laplace equation (Povstenko,
1993), surface constitutive relations and strain-displacement relationship can be

expressed as (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et

al., 1998),

Oio T O3N; +t7 =0 (3.2a)

U,Z’a = Tsé‘ﬁa +2(:us _Ts)gﬂa +(;LS +TS)8W§ﬁa +Tsu;,a , 63501 = z-Sus3,oz (3.2b)
S — 1 S S

gaﬁ—z(uaﬁ +uﬂ,a) (3.2¢c)

where the superscript ‘S’ is used to denote the quantities corresponding to the
surface; u° and A° are surface Lamé constants; 7° is the residual surface

stress (or surface tension) under unstrained condition; n. denotes the

1
components of the unit normal vector of the surface and t° denotes the
prescribed traction on the surface. It is noted that the value of 7° is constant for
a given surface orientation of a pure metal/semiconductor at a specific

temperature (Zhao and Rajapakse 2009).

In the above equations, Greek subscripts denote the field quantities
associated with the surface and take the value of 1 or 2, while the Latin
subscripts adopt values from 1 to 3. A majority of existing studies based on the
Gurtin-Murdoch theory has formulated the problems in undeformed configuration
due to the assumption of infinitesimal deformations thus the out-of-plane

component of surface stresses given by the second equation in Eq. (3.2b) is
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normally ignored. The term z'su&a can simply be viewed as the out-of-plane
component of the pre-existing surface tension z° in the deformed configuration
whereas the surface gradient of the displacement Uy , act as the out-of-plane
component of the unit vector tangent to the surface in the deformed state. While
the component rsugva has physical meaning only in the deformed state and
identically vanishes in the undeformed configuration, its contribution to the
constitutive equation, Eq. (3.2b), is of the same order as other terms. As recently
pointed out by Wang et al. (2010), these out-of-plane terms could become

significant even in the case of small deformations.

In this study, the fundamental problems are considered for the case of
plane strain and axisymmetric problems. The equilibrium equations, constitutive
law and strain-displacement relations for the bulk and the surface material can be

specialized for each case as follows:

3.1.1 Basic Equations for Plane Problems

In the case that the deformations under consideration are assumed as

plane strain in the Xz-plane, i.e. ¢, = &, = =8 0, basic equations of the bulk

material in Egs. (3.1a) to (3.1c) can be expressed in a Cartesian coordinate as

99y , 994 _ (3.3a)
OX 0z
90y , 0% _ (3.3b)
OX oz
o, =(A+2ws, + s, (3.3¢)
o, =(A+2u)e, + A&, (3.3d)
o,, =0, =2/, (3.3e)
gXX = aux (33f)
OX
ou
=1 (3.39)

gZZ az
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1(ou, ou
Ep =Ex =7 =+ . (33h>
2\ ox oz

On the surface, the basic equations in Egs. (3.2a) to (3.2c) for the case of

flat surface are given by

a S
gxx +o,|,,+t =0 (3.4a)
X
6 S
g-XZX 0% |20 +t? =0 (3.4b)
o, =7 +K'€, (3.4c)
du’
o8 =10 (3.4d)
dx
du’
g;x = X (346)
dx

where x° =2u° + A°

3.1.2 Basic Equations for Axisymmetric Problems

In the case that the deformations under consideration are rotationally
symmetric about the z-axis, the corresponding elastic fields are described in a
cylindrical coordinate (r,0,z). It is noted that the responses of the elastic solid
are independent of 8,i.e. &, = ¢, = 0. For the bulk material, basic equations in

Egs. (3.1a) to (3.1¢c) can be expressed in a cylindrical coordinate as

oo, 00, O,—0y,

"oy oy =0 (3.5a)
or 0z r
00, 99  9u _g (3.5b)
or 0z r
o, =A+2u)e, + e, + A, (3.5¢)
Oy = A&, +(A+2u)g,, + A, (3.5d)
0, =Ag, +Ag, +(A+2u)¢, (3.5e)

o, =0, =2Us, (3.5f)
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g, = aa“rf (3.50)
. :“_rr (3.5h)
g, :% (3.5i)
&, =&, :%(aauzr +%) (3.5))

On the surface, the basic equations in Egs. (3.2a) to (3.2c) for the case of

flat surface are given by

d S S _ S

O\ + O, — Oy +Gzr| Y +t? =0 (363)

dr r =
do, o,

e o Tt =0 (3.6b)
or =T+ 2u +A%)el + (A +17°)ey, (3.6¢)
O =T+ QU + %)y, + (A +7°)e,, (3.6d)

du’
o, =1"—+ (3.6e)
' dr
du’
uS

3.2 General Solutions for Bulk Materials

3.2.1 General Solutions for Plane Problems
For the plane strain case, the solution for the bulk material can be
obtained by solving the two-dimensional biharmonic equation,

ViVZiy =0 (3.7)

where Vf denotes the two-dimensional Laplacian operator, Vf =?+W; and
X

¥ denotes Airy stress function.
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By applying Fourier integral transform into Eqg. (3.7), we then obtain

o i&x dz 2
J._w ViVipe® dx:(F—QEZJ Q(¢,2)=0 (3.8)

where Q(f,z):szeifxdx. The general solution of above equation may be

written in the following form

Q(&,2) = (A+ Bz)e ¥ + (C + Dz)e* (3.9)

where A, B, C and D are arbitrary functions that can be determined from the

boundary conditions.

Therefore, the general solutions for the bulk stresses and displacements
of a two-dimensional elastic solid can be expressed with respect to a Cartesian

coordinate system as (Sneddon 1951),

o, = —irjnge““df (3.10a)

« = % - ?:Z? e 'dg (3.10b)
o, =% f:igij—?e“ﬂdg (3.10¢)
u, =mj:’_(ﬂ+ 2;1)‘:2? —(3ﬂ+4y)§2‘2—ﬂe-ifxg—f (3.100)
u, zmrj_(ﬂjﬂﬂ)z? +z§29}ie“§xd§ (3.10e)

3.2.2 General Solutions for Axisymmetric Problems

For the axisymmetric case, the solution for the bulk material can be
obtained by solving the following biharmonic equation in a cylindrical coordinate

system.

V2D =0 (3.11)
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where V2 denotes the Laplacian operator in a cylindrical coordinate,

2 2
1
V? =%+ 88 +%; and @ is Love’s strain potential.
r- ror oz

By applying Hankel integral transform into Eq. (3.11), we obtain,

j:rvzvzmo(gr)dr:[;—;—gzj Q'(&,2)=0 (3.12)

where Q'(&,2) = “rdd_(&r)dr and J denotes the Bessel functions of the
0 0 n

first kind of order n. The general solution of above equation may be written in the

form

Q'(£,7)=(A+B'z2)e " +(C'+ D'2)e”’ (3.13)

where A', B', C' and D' are arbitrary functions that can be determined from

the boundary conditions.

Therefore, the general solutions for bulk stresses and displacements of an
elastic solid can be expressed with respect to a cylindrical coordinate system as

(Sneddon, 1951; Selvadurai, 2000)

w dQ!
=L§{z (2

2#)52%}30(&)0@— 2(/1:””:62 dd?Jl(fr)dg (3.14a)

d® Q' 2 2(A+p) =, dQY
;tj [ }J (ér)dé+ : jo & J,(érydég (3.14b)
au—j 5[(/1+2y)dd39' (3z+4y)§2%}0(§r)dg (3.14c)
j & { +(A+2u)& Q}J (ér)dée (3.14d)
’“”j 2= (£r)dé (3.14¢)

u,=| g{ de ’Hzﬂg Q}Jo(fr)df (3.14f)



CHAPTER IV

INTERNALLY LOADED ELASTIC LAYER

In this chapter, the fundamental solutions of an isotropic elastic layer of
finite thickness bonded to a rigid material base is derived with the consideration
of surface stresses by employing Gurtin-Murdoch continuum theory of elastic
material surfaces. The boundary value problems corresponding to buried vertical
and horizontal loads with non-classical boundary conditions due to surface
stresses are solved by using Fourier integral transform technique for the case of
plane problems. In addition, the fundamental solutions corresponding to
axisymmetric surface vertical and horizontal loads are determined by the
application of Hankel integral transform technique. Selected numerical results are

presented to portray the influence of surface stresses on the elastic field.

4.1 Fundamental Solutions for Plane Problems

Consider a two-dimensional elastic layer of finite thickness ¢ bonded to a
rigid base, and subjected to vertical and horizontal loading at a depth A& below
the free surface as shown in Figure 4.1(a). The solutions for the problem shown in
Figure 4.1(a) can be derived by dividing the elastic layer into two sub-domains.
The sub-domain ‘1’ corresponds to the region where 0<z<h and the sub-
domain ‘2’ corresponds to the region where h<z<t. The general solutions of
the sub-domain ‘1’ are given by Egs. (3.10a) to (3.10e) whereas the general
solutions of the sub-domain ‘2’ are also given by Egs. (3.10a) to (3.10e) with the
arbitrary functions 4 to D being replaced by E to H respectively. A
superscript ‘i’ (i = 1,2) is used hereafter to denote quantities associated with
each sub-domain. The arbitrary functions 4 to H corresponding to each sub-

domain can be obtained by solving the following boundary value problem.
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d K d 1) d2 1)
oW o+ =Tt S| =0 (4.12)
dx dx ax® )
d s dZ 1)
oW o+ =t T | =0 (4.1b)
dx x® )
g) z:h’_ GEZZ) z:}ﬁ:p(x) <41C)
;1) o az(f) = q(x) (4.1d)
@ _,,2
uz z=h" _uz z=h* (4 1 e)
() _,,2
Mx z=h" _ux z=h* (4 1 f)
u?|.=0 (4.19)
u?| =0 (4.1n)

where x'=A"+24" is a surface material constant; p(x) and ¢(x) denote the
jump of the normal traction and shear traction across the plane z =h due to the

applied internal vertical and horizontal loads respectively (see Figure 4.1(a)).

It should be noted that both Egs. (4.1a) and (4.1b) are non-classical
boundary conditions obtained from Egs. (3.4a) and (3.4b). In addition, Eq. (4.1a)
contains the out-of-plane component of surface stresses associated with residual
surface stress, which has generally been ignored in previous studies. For a flat
surface, it can be seen from Egs. (4.1a) and (4.1b) that the influence of residual
surface stress 7' will be neglected if the out-of-plane component of surface
stresses is disregarded (the second term on the left-hand side of Eq. (4.1a)
vanishes) and the residual surface stress is assumed to be constant. In view of
Egs. (3.10a) to (3.10e), the following set of linear simultaneous equations for
determining the arbitrary functions can be constituted by applying Fourier
integral transform to Egs. (4.1a) to (4.1h) together with the assumption that the

residual surface stress is constant.

(1+|£TSJA+T—S(B+D)+( —ﬁrle=0 (4.2a)
2u )

2(/1+,u 2u
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A+ A+
(l+ﬁk'&j|§|z4 ( (2+24) ———gx j ( M zﬁ)lélc [ ( ”)| |x j (4.2b)
2 2p( A+ 1) 2u 2p( A+ p1)
(4-E)e™ +(B-F)he ™ +(C-G)e" +(D~H)he" =—§ (4.2c)
-6 (0 )(a-r)e o(c-6)e -l =) - (4.20)
|§|(A—E)e'“+[|§|h+ a j(B—F)e'“—|§|(C—G)e“—(|§|h—LJ(D—H)e“:O (4.2¢)
A+u A+u
|g|(A_E)efh+(|g|h_ﬂj(3_zv)ef~+|g|(c_c;) & (|§|h+ j(p H)H =0 (420
A+pu A+
|§|Ee‘f‘+(|§|z+ ~ er'é’—|§|Ge‘f’ (|§| jH B0 (4.29)
At+u +u
|§|Ee§"+(|§|z—’“2” )Fe:'+|§|Ge§'+(|§|t+/1+2ﬂ jHeé':O (4.2h)
A+u A+u

where p(&) and g(&) are the Fourier transforms of p(x) and g(x) respectively

and are given by

p(§)=] p(x)edx (4.32)

—00

+00

q(x)e’fxdx (4.3b)

By solving the set of linear simultaneous equations displayed in EQs.
(4.2a) to (4.2h), the following solutions are obtained for the arbitrary functions A4

to H.

(4,+i4,) (B, +iB,)

A= - B= (4.4a)
1 1
Z(Cp+icq);D=(Dp+iDq) (4.4Db)
1 1
E:(EP+iEq) ;F:(Fp+i}7q) (4.4¢)
1 1
G:(GP+iG4)_H:(HP+iH4) (4.4d)

I ’ I
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where the explicit expressions of Ap, Aq, B, B, Cp, Cq, D, D, E, E,
Fp, Fq Gp, Gq, Hp, Hq and [ are given in the Appendix.

In the following subsections, the explicit expressions of the arbitrary
functions for the special cases of surface loading (A—0) and a semi-infinite

medium (¢ — o) are presented.

4.1.1 Surface Loading on Finite Thickness Layer

The surface loading of a nanoscale layer has many practical applications.
The elastic field corresponding to this case can be obtained by taking the limit of
h—0 in Egs. (4.4a) to (4.4d). The corresponding arbitrary functions are given
by Egs. (4.4a) and (4.4b) with 4, to D, (i= p,q ) defined as follows:

AP:IZ ii) (/1+3,L1):(1+A|§De2|‘§lt —A|§|}+2(l+,u)t|§|((A+t)|§|—l)— Z((j A+ M—/”S/’} (4.5a)
o Bl g S S et
c, ﬁl(mw [(1 A 2|§|[+A|§”+2(/1+,u)t|§|( (A+ofger)+ 2((;123) A+ %’ (4.5¢0)
Dp?l(mﬂ) R TEI g [1+2t|§|j} (4.5d)
qu—%l(msy) 4(:|+§L)825t 4(/1|i) j:ff‘) (/1+u)t2§2—#—(/1;—ﬁm2|§|3} (4.5€)
quz(? (A+34) 1+¥}ezf'—§|j +A+u) (1+2t|§|j )r t§2} (4.5f)
Cﬁ%‘wa” )_ 4(z|+§|ﬂ) e 4(;:;) +ﬂ(ﬁiﬂ) Hrupe T ( lefl} (4.50)

D _7¢) (2+3u) [l—rzs—léﬂe'zét + TZSEI

+HA+u) (1 2t|§|) )r t§2] (4.5h)
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The fundamental solutions corresponding to an elastic layer subjected to
a vertical line load F, and a horizontal line load @, can be obtained by

substituting p(&)=F, and g(&) =0, in the above solutions.

For the cases of vertical strip load of constant magnitude p, and

horizontal strip load of constant magnitude ¢, over the region—a<x<a,

7(¢) =%(§a)po (4.6a)
67(§)=%(§a)qo (4.6b)

Note that A=x"(A+2u)/2u(A+ p) is a parameter with a dimension of
length. This parameter can be viewed as a material characteristic length that
represents the influence of surface stress. It is clear from the above solutions that
the influence of surface stresses does not only come from the surface material
constant k' (or A) but also from the residual surface stress 7*. In the absence
of surface stress effects, A and 7* vanish and the above solutions reduce to the

classical elasticity solutions (Pickett, 1938).

The elastic field of a semi-infinite medium under surface loading can
readily be obtained from the solutions in Egs. (4.4a) and (4.4b), with 4, to D,
(i=p,q) given by Egs. (4.5a) to (4.5h), by taking the limit of £ — co. Note that the
arbitrary functions C and D =0 to ensure the regularity of the solutions at

infinity. In the case of the vertical load, the arbitrary functions 4 and B take the

form,

A= ’;(;)(u Al€)) (4.7a)

B:ﬁ(é){l (A+u) , } 470
el | Tz 70

where



= (1 )+ S| AE2 20

In the case of the horizontal loading,

A:_iﬁ(é){ 7 }

né 2(/1 + ,u)

B =iq_(§)[1+ 2 ]
ns 2u

4.1.2 Internal Loading in Semi-infinite Medium
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(4.9a)

(4.9b)

The stress and displacement fields of a semi-infinite medium under

vertical and horizontal loads applied at a depth 4 below free surface can also be

obtained from the solutions in Eqgs. (4.4a) to (4.4d) by taking the limit of ¢t —> 0.

Note that the arbitrary functions G and H =0 to ensure the regularity of the

solutions at infinity. The corresponding arbitrary functions 4 to F can be

specialized to the case of a half-plane subjected to internal vertical load as

follows:

p(;;)é {(1 Ag)(ﬂ}b ‘50 m{mw ‘§‘+/1 3u Al (A+p)

- Ah§z}}
2

A+2p)

A+2u

ﬁ(é:)e—\i\h { - |:
B=——""——9A4+3u+(A+u)(A+2h)5—|&|| A+2u+
oA o -2
—( £\,
el
2& A+2u

P& (3rp)
2d(2+2u)

)(+34)

(}p+,u)(/1+3y)/1‘ B 2(A+u)’ e }}
A+2u A+2u

A+2

A+2 A+3 A
*{(w)(luj ;{ 2 g L O
p(&)

(A+2

1)

A+2u

P($)

=277§2 ) A+2 A+3 2
R e e
o

" 7’ (A+p)(A+3p)
oF {(A+y)(1+A(§)+2H§|:A+2y+;H2ﬂA§:|}

]

]

“2(2+2p)nldl :
(A+2upi] +e:1/'{/1+3y+(l+,u)(A+2h)§—2T5{/1+2,u+
u

(/1+;1)(/1+3y)/1‘§‘ 2(/1+y) Ahﬂ}
A+2u A+2u

(4.10a)

(4.10Db)

(4.10c)

(4.10d)

(4.10e)

(4.10f)
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In the case of the internal horizontal loading, the arbitrary functions A to F

take the form,

_ig(&)e (s A | AR Ar2p A3 (2+n)° , 4.11
e O e ey rrem Yl SR AL
BW{ﬂ+3,u(ﬂ+,u)(/1+2h)§+r\§|:ﬂ+2y(}Hr'u N2+34) A+ 2a+n) Ah§2:|} (4.11b)

2(A+2u)né 2u A+2u A+2u
_ @) [u-(2r)nld] (4.11¢)
2de(a+2p)
_iq(&)e™ (2+p) (4.11d)
26(A+2u)

A+2u  A+2u A+3u
i+

; (l+,u)(l+3,u)
_ iq() ¢ {[M(My)hlﬂ](h/llgl)ﬂ IdL(/“#f? I2(/1+2#) & 2u(2+21) g}} (4.11e)
2A+2u)nlde ej,{[ﬂ(mﬂ)hl A A 4'1{ oy I (1) }}

2(/1+/1) 2u 2(ﬂ+2,u) 2,u(ﬁ,+2,u)

(4.111)

(A )1+ +L + z+—————~i(/1+#)(ﬂ+3ﬂ)
I e e
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4.2 Fundamental Solutions for Axisymmetric Problems

Consider a three-dimensional elastic layer of finite thickness ¢ bonded to
a rigid base, and subjected to axisymmetric vertical and tangential loading at a
depth & below the free surface as shown in Figure 4.1(b). Similar to the case of
plane problems, the corresponding solutions of elastic fields can be derived by
dividing the elastic layer into two sub-domains. The sub-domain ‘1’ corresponds
to the region where 0<z<h and the sub-domain ‘2’ corresponds to the region
where h<z<t. The general solutions of the sub-domain ‘1’ are given by Egs.
(3.14a) to (3.14f) whereas the general solutions of the sub-domain ‘2’ are also
given by Egs. (3.14a) to (3.14f) with the arbitrary functions A4' to D' being
replaced by E' to H' respectively. A superscript ‘i’ (i = 1,2) is used hereafter
to denote quantities associated with each sub-domain. The arbitrary functions A"
to H' corresponding to each sub-domain can be obtained by solving the

following boundary value problem.
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Ldrt du® (du® 1du®
I e R =0 (4.12a)
| dr dr dr rodr 6
dr M du®  1du®  L©
A e e e u; = —MLZ =0 (4.12b)
i dr r dr r dr r o
S) =h O-Z(ZZ) z=h+:p(r) (4.12¢)
" o=k o e=a(r) (4.12d)
(3] _,,2
U o T8 (4.12¢)
(3] _,,2
U e T (4.12f)
u?|.=0 (4.129)
u?| =0 (4.12h)

where p(r) and ¢(r) denote the jump of the normal traction and shear traction
across the plane z=h due to the applied internal vertical and tangential loads

respectively.

It should be noted that, similarly to the case of plane problems, the effect
of surface stresses are only appeared in the equilibrium equations of the normal
and shear stresses on the surface of an elastic layer (Egs. (4.12a) and (4.12b)).
The corresponding arbitrary functions A' to H' to determine the solutions of
stresses and displacements can be obtained by solving a set of linear
simultaneous equations constituted by applying Hankel integral transforms to

Egs. (4.12a) to (4.12h).

In this section, only the solutions for the case of surface vertical and
tangential loading on an elastic layer of finite thickness are presented since it has
many practical applications, such as indentation and other contact problems.
Consider a three-dimensional elastic layer of finite thickness ¢ bonded to a rigid
base, and subjected to axisymmetric surface loads as shown in Figure 4.1(b) with

h = 0. The corresponding solutions of stresses and displacements can be
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determined from Eqgs. (3.14a) to (3.14f) with the arbitrary functions A4' to D'

obtained by solving the following boundary value problem.

L d7 du du. 1du
o |. o+ Z 47t z4 -z =—plr 4.13a
=10 | dr dr ( ar* o dr Hzo p( ) ( )
_drs u du. ldu u
O._|.o+ 1+ —+ |+x° L4 ——L—— =—q(r 4.13b
= 12=0 | dr ( rj ( ar* rdr ﬂz_o q( ) ( )
w| =0 (4.13¢)
| =0 (4.13d)

In view of Egs. (3.14a) to (3.14f), the following set of linear simultaneous
equations for determining the arbitrary functions can be constituted by applying
Hankel integral transforms to Eqgs. (4.13a) to (4.13d) together with the assumption

that the residual surface stress is constant.
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where p'(£) and ¢'() are the Hankel transforms of p(r) and ¢(r)

respectively and are given by
(&) =] m(r)Js(¢r)dr (4.152)

q'(&)=-]; ra(r)Ai(¢r)ar (4.15b)

By solving the set of linear simultaneous equations displayed in Egs.
(4.12a) to (4.12d), the following solutions are obtained for the arbitrary functions

A' to D'.
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(4.16a)

(4.16b)

(4.16¢)

(4.16d)

(4.17a)

(4.17b)
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(4.17d)
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(4.171)

(4.17m)

(4.17n)

(4.170)

(4.17p)

The elastic field of a semi-infinite medium under surface loading can

readily be obtained from the solutions in Egs. (4.16a) and (4.16d), by taking the

limit of £t — o00. Note that the arbitrary functions C' and D' =0 to ensure the

regularity of the solutions at infinity. In the case of the vertical load, the arbitrary

functions 4' and B' take the form,

-2 s et

T E (euy| Arrou

g P9 £1+/1+ﬂ/1§]
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where
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In the case of the horizontal loading,

4= u (1+’S—5]

:277'53 (/1+,u)2 H

g6 (1+TS—§]

(A p) 2u

(4.18a)

(4.18b)
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(4.20a)

(4.20b)
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4.3 Numerical Results

The complete fundamental solutions for displacements and stresses are
given by Egs. (3.10a) to (3.10e) with the solutions for arbitrary functions given by
Eqgs. (4.4a) to (4.4d) for the case of plane problems, whereas for the case of
axisymmetric problems the solutions are given by Eqgs. (3.14a) to (3.14f) with the
solutions for arbitrary functions given by Egs. (4.16a) to (4.16d). It is noted that
the solutions for displacements and stresses for the case of plane problems
given by Egs. (3.10a) to (3.10e) can be reduced to semi-infinite integrals due to
the even or odd behavior of the integrand with respect to &. A closed-form
solution for both cases cannot be obtained due to the complexity of the
integrands. Therefore, it is proposed to employ an accurate numerical scheme to
evaluate these integrals. In this study, the integrals are evaluated by using
globally adaptive numerical quadrature scheme based on 21-point Gauss-
Kronrod rule (Piessens 1983). The surface elastic constants can be obtained by
using atomistic simulations (Miller and Shenoy 2000, Shenoy 2005, Dingreville
and Qu 2007). It is convenient to introduce the non-dimensional coordinates,
x,=x/A and z,=z/ A for the case of plane problems and r,=r/A for the
case of axisymmetric problems, in the numerical study. The numerical results in
the present study correspond to the case of an elastic layer subjected to a
distributed load applied over a strip—a<x<a. In addition, a hypothetical
material with 2/u = 2.226 and A = 1 nm are considered, and 7° = 5 N/m is

used to demonstrate the influence of residual surface stress.

4.3.1 Plane Problems

Figures 4.2 to 4.7 demonstrate the influence of surface elasticity and
residual surface stress on the stress field of an elastic layer with very large value
of ¢t (a half-plane) under different loading cases. Figures 4.2 and 4.3 show the
variation of non-dimensional stresses along the x-direction of a half-plane at
various depths under a uniform vertical strip load of magnitude p, and a

horizontal strip load of magnitude g, respectively applied at the surface. A non-
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dimensional load width, a,=a/A= 1, is used in the numerical study. Only the
solutions along the positive x-axis are presented due to the symmetry or anti-

symmetry of the solutions about the z -axis.

The influence of surface elasticity on an identical problem was previously
examined by Zhao and Rajapakse (2009) by ignoring the out-of-plane component
of surface stresses. The dotted lines denote the classical elasticity solutions
corresponding to zero surface stress (i.e. k¥° = 7° = 0) and the dash lines denote
the solutions that neglect the out-of-plane component of surface stresses (Zhao
and Rajapakse, 2009), which also disregard the influence of residual surface
stress (7°) as previously discussed. It is evident from the figures that the
influence of residual surface stress is more significant in the case of vertical strip
load when compared to the horizontal strip load case. On the contrary, the
influence of surface elasticity is more evident in the case of horizontal loading. It
is also found that for the case of horizontal loading the influence of residual
surface stress is negligible on horizontal normal and shear stresses but more
evident on vertical normal stress, whereas in the case of vertical strip load all
stress components depend significantly on the residual surface stress. This
behavior can be described from the fact that the residual surface stress appears
in the equilibrium equation of the vertical normal stress, Eq. (4.1a), but
apparently vanishes in the shear stress equation, Eqg. (4.1b), due to the
assumption that the residual surface stress is constant. As expected, the
influence of residual surface stress becomes significant only in a local region
near the surface (i.e. z, < 2.0 for the vertical loading and z; < 1.0 for the
horizontal loading) and would diminish with the distance from the free surface. In
addition, the influence of the residual surface stress becomes negligible when

xo/a0 > 4,

To investigate the influence of the surface material parameter A and the
residual surface stress 7°, the non-dimensional stress profiles along the x-

direction of a half-plane due to a uniform vertical strip load p, are shown in
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Figure 4.4 for different values of A and in Figure 4.5 for different values of 7°
respectively. Note that in Figures 4.4 and 4.5 stresses are calculated at z, = 0.1.
In Figure 4.4, the non-dimensional stresses are presented for a hypothetical
material with the surface material parameter A being varied from 0 to 1004,
whereas the residual surface stress parameter (7°) is unchanged. It can be seen
from the figure that the free surface is stiffer with increasing values of A
resulting in the reduction of the stresses in the layer. The influence of the residual
surface stress in Figure 4.5 shows a similar trend to Figure 4.4. It can be seen
from Figure 4.5 that all bulk stress components decrease when residual surface

stress (7°) increases from 0 to 100 N/m.

Figures 4.6 and 4.7 show the variation of non-dimensional stresses along
the z-axis of an elastic half-plane subjected to an internal vertical strip load p,
and an internal horizontal strip load g, over a region 2a (with a, = 1) at various
depths. A non-dimensional quantity, 4, = h/A, is used in the numerical analysis.
Numerical results shown in Figures 4.6 and 4.7 indicate that the stresses
increase when approaching the plane of applied loading. A discontinuity in both
vertical and horizontal stresses is observed at the level where the vertical strip
load is applied, whereas for the case of a horizontal strip load the shear stress is
discontinuous at the loading plane. It is found that the residual surface stress
shows more significant influence on the stress field in the case of a vertical strip
loading, especially at points closer to the free surface (z, < 2) when compared to
the case of a horizontal strip loading. It should be noted that the vertical stress
in Figure 4.6 is no longer zero at the surface due to the presence of the residual

surface stress.

To investigate the influence of layer thickness, the profiles of non-
dimensional stresses in elastic layers of different thicknesses bonded to a rigid
base and subjected to uniformly distributed vertical strip load p, and horizontal
strip load g, over a region 2a (with a, = 1) at the free surface are presented in

Figures 4.8 and 4.9 respectively. In this case, it is convenient to define the non-
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dimensional layer thickness, #, = t/A. Once again, the residual surface stress
shows more significant influence in the case of a vertical strip load when
compared to a horizontal strip load. It is clear from these figures that the
thickness of a layer has a significant influence on the stress field for both
classical and non-classical cases. The stresses in both cases are mainly
compressive and decrease with increasing layer thickness, except for the
horizontal stresses under vertical strip load in Figure 4.8(b), in which tensile

stresses are also noted for layers with finite thickness.

4.3.2 Axisymmetric Problems

Figures 4.10 to 4.13 demonstrate the influence of surface elasticity and
residual surface stress on the displacement fields of an elastic layer with finite
thickness under surface axisymmetric vertical and tangential loading. Since an

arbitrary axisymmetric load can be approximated by the summation of

axisymmetric polynomial functions, p(r):Zamr’”*l , elastic fields of an elastic

m=1

layer under arbitrary axisymmetric load can be obtained by superposition
techniques. Figures 4.10 to 4.12 show the variation of normalized displacements
along the z-direction of an elastic layer with finite thickness t,/a,= 5 at r/a,=
0.5 under a parabolic vertical load p(r)=ps°/a® and tangential load
q(r)=qy* 1a®, and a uniformly distributed vertical load of magnitude p, in a
circular region of radius a respectively. The normalized displacements are
presented for different values of a.i.e. a,=a/A=0.5, 1 and 1.5. Numerical results
shown in Figures 4.10 and 4.11 indicate that, similar to the case of plane
problems, the residual surface stress shows more significant influence for the
case of vertically applied load whereas the surface elasticity shows more
significant influence for the case of tangential load. It is also found that for the
case of tangential loading the influence of residual surface stress is negligible on
radial displacement but more evident on vertical displacement, whereas in the

case of vertical loading both vertical and radial displacements depend
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significantly on the residual surface stress. The normalized displacements under
a uniformly distributed vertical load presented in Figure 4.12 show similar trends
when compared to the displacements under a parabolic vertical load presented
in Figure 4.10 except that the maximum negative value of radial displacement
under uniform loading is located at the surface. It can be seen from the figures
that an elastic layer becomes stiffer with the presence of surface stress. In
addition, all displacements reduce to zero when approach the bottom of the
layer. It is obvious from the figures that, with the consideration of surface
stresses, normalized displacements show the size-dependent behavior and the
influence of surface stresses becomes more significant when the radius of

applied load decreases.

In Figure 4.13, normalized vertical displacements of an elastic layer with
finite thickness t,/a, = 5 subjected to a parabolic vertical load p(r) = pyr’ | a*
are presented at various depths with r,= 0 for different values of a.It is observed
from the figure that the influence of surface stress decreases when q, increases
and the solution will converge to the classical solution. Figure 4.14 demonstrate
the influence of surface elasticity and residual surface stress on the stress field of
an elastic layer with finite thickness t,/a, = 5 under surface axisymmetric vertical
loading. Figures 4.14 show the variation of non-dimensional stresses along the 7 -
direction of a layer at various depths under a parabolic distributed vertical load
p(r) = py’ | a* in a circular region of radius a for a,=a/A=1. Similar to the case
of plane problems, all stress components depend significantly on the surface
stresses especially in the plane near the surface, i.e. z;, < 2, In addition, the
influence of the residual surface stress becomes negligible when r,/a, > 4.
Numerical results shown in Figures 4.2 to 4.14 confirm the fact that the influence
of the surface stresses is significant in the analysis of the problems involving

nanoscale layers or soft elastic materials and cannot be ignored.
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4.4 Conclusion

A theoretical formulation based on the Gurtin-Murdoch continuum theory
of elastic material surfaces is presented to study the elastic response of a
nanoscale layer under two-dimensional and three-dimensional axisymmetric
loading. An important aspect of the present study is the consideration of the out-
of-plane term of the surface displacement gradient in the formulation. It is shown
that the elastic field can be solved explicitly for the case of plane problems and
axisymmetric problems by using Fourier and Hankel integral transform
techniques respectively. The final solution is expressed in terms of semi-infinite
integrals that can be accurately computed by employing a numerical quadrature
scheme. It is found from the analytical solution and numerical results that the
effects of the surface energy on the elastic field are characterized by both the
characteristic length parameter A that is related to the surface and bulk elastic
moduli and the residual surface stress (7'). As expected, the influence of the
surface elasticity and the residual surface stress becomes more significant in the
vicinity of the layer surface. Numerical results also indicate that increasing A
and 7' result in a decrease in bulk stresses and displacements. In addition,
unlike in the classical elasticity approach, the behavior of the material becomes
size-dependent when the surface stress is considered. The fundamental solutions
presented in this study can be used to examine a variety of practical problems
involving nanoscale/soft material systems and to develop boundary integral

equations methods for such systems.
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Figure 4.1 An isotropic elastic layer subjected to internal vertical and tangential

loading: (a) plane strain case (b) axisymmetric case.
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Figure 4.2 Non-dimensional stress profiles of a half-plane under vertical surface

load: (a) Vertical stress (b) Horizontal stress (c) Shear stress.



S
N
b\.n
ot
-0.4 —— with residual surface stress
— — —  without residual surface stress
-------- classical solution
° z,=0.1
[} z,=05
A z,=1.0
-0.6 T T
0 2 3
X

o m/2q,

xx

-1.5 o

-2.0

-2.5

——— with residual surface stress
— — — without residual surface stress

-------- classical solution
Py z,=01
™ z,=05
a 2,=1.0
T T
2 3
X

0.4 -

O—:x”aq(}

-0.8

-1.2

——— with residual surface stress

Figure 4.3 Non-dimensional stress profiles of a half-plane under horizontal

surface load: (a) Vertical stress (b) Horizontal stress (c) Shear stress.

— — — without residual surface stress
-------- classical solution
° z,=0.1
[} z,=05
A z,=1.0
T T
2 3

37



ce AJA=0
—— A/A=05
. AA=10
—a— AJA=20
—— A/A=50

-0.5 1

e AJA=0
—e— A/A=05
—.— AA=10
—a— A/A=20
—— A/A=50
—— A/A=100

—v— A/A=100.0

—— AA=50
—— AJA=100

i —w— AJA= 1000
-0.5 - B

Figure 4.4 Non-dimensional stress profiles of a half-plane at z, = 0.1 under
vertical surface load for different surface material constants (A): (a) Vertical

stress (b) Horizontal stress (c) Shear stress.



@ oof— e N
-0.4 L
<
%II-OB — -
N
- F=0
—— F=2N/m
127 - F=5nm [
—A— £ =10N/m
—— £=20N/m
—*— £ =50N/m
..... —v— 7 =100 N/m
16 .
0 2 4
%o
b : |
0.0
0.4 -
®
o
-0.8 . s=0 -
—— F=2N/m
—&— F=5N/m
—A— £ =10N/m
—— £=20N/m
—*— £ =50 N/m
—w— £ =100 N/m
-1.2 -

Py

X

o, /2

-0.6

- £=0
—— F=2N/m
—a— F=5N/m
—A— £ =10N/m
—— £=20N/m
—k— £ =50 N/m
—w— 7 =100 N/m

39

Figure 4.5 Non-dimensional stress profiles of a half-plane at z, = 0.1 under
vertical surface load for different residual surface stresses (7°): (a) Vertical

stress (b) Horizontal stress (c) Shear stress.
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Figure 4.10 Normalized displacement profiles at r,/a, = 0.5 of a layer with finite
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Figure 4.11 Normalized displacement profiles at r,/a, = 0.5 of a layer with finite

thickness t,/a,= 5 under parabolic tangential load at the surface: (a) Vertical

displacement (b) Radial displacement.



0.0 0.6
0
14
2
s
)
<
<
N
3
with residual surface stress
— —— without residual surface stress
44 F e classical solution
a, =05
a,=10
a,=15
5 T T

(@)

zyla,

43

. /Apa,
-0.04 -0.02 0.00 0.02 0.04
0
14
2
with residual surface stress
— —— without residual surface stress
~~~~~~~~ classical solution
o a,=0.5
3
a,=1.0
a,=15
4
5 T T T

(b)

Figure 4.12 Normalized displacement profiles at r,/a, = 0.5 of a layer with finite

thickness t,/a,= 5 under uniformly distributed vertical load at the surface: (a)

Vertical displacement (b) Radial displacement.
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(c) Shear stress.



CHAPTER V

DISLOCATIONS AND CRACK IN ELASTIC MEDIUM

In this chapter, the fundamental solutions of an isotropic elastic medium
involving defects, i.e. dislocations and crack, are derived with the consideration
of the influence of surface stresses by employing Gurtin-Murdoch continuum
theory of elastic material surfaces. The boundary value problems corresponding
to shear (gliding edge) and opening (climbing edge) dislocations in an elastic
half-plane are solved by using Fourier integral transform technique. In addition, a
penny-shaped crack in an infinite elastic medium is investigated for mode-| crack
by the application of Hankel integral transform technique. Selected numerical
results are presented to portray the influence of surface stresses on these

problems.

5.1 Dislocations in Semi-Infinite Elastic Medium

Consider an elastic half-plane with shear (gliding edge) and opening
(climbing edge) dislocations located at a depth h below the free surface as
shown in Figure 5.1. The solution to this problem can be derived by considering
the half-plane as a two sub-domain. The sub-domain ‘1’ corresponds to the
region where 0<z<h and the sub-domain ‘2’ corresponds to the region where
h<z<ow. The general solutions of sub-domain ‘1’ are given by Egs. (3.10a) to
(3.10e) whereas the general solution of sub-domain ‘2’ are also given by Egs.
(3.10a) to (3.10e) withC and D =0 to satisfy the regularity conditions at infinity,
and the constants 4 and B being replaced by E and F respectively. A
superscript ‘i’ (i = 1,2) is used hereafter to denote the quantities associated
with each sub-domain. The arbitrary functions 4 to F corresponding to each

sub-domain can be obtained by solving the following boundary value problem.
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(5.1a)

(5.1b)

(5.1c)
(5.1d)

(5.1e)

(5.1f)

where b, (a =x,z) denotes the magnitude of the dislocations, which are the

components of the Burger's vector; and H(x) denotes the unit step function.

It should be noted that both Egs.

(5.1a) and (5.1b) are non-classical

boundary conditions obtained from Egs. (3.4a) and (3.4b). Application of Fourier

integral transforms to Egs. (5.1a) to (5.1f) together with the assumption that

residual surface stress is constant and the substitution of Egs. (3.10a) to

yield,

(1+ﬁr“jA+—(B+D)+( 4 r“jC:O
2u 2(A+p) 2u

e e L e

(4-E)e™ +(B-F)he ™ + " + Dhe™ =0

|§|(A_E)ei‘§‘h _(1_|§|h)(B—F)e7‘5‘h _|§| Ce —(1+|§|h)De\£\h 0

(a-m)e (|§|h+ j(za F)et Jelce - (mh—i
+u A+

lE[(4-E)e " + (|§|h *2”)(3 F)e ™ +|dce ”+(|§|h+
A+ A+

(3.10e)

(5.2a)

(5.2b)

(5.2¢)

(5.2d)

(5.2e)

(5.2f)

The following solutions are obtained for the arbitrary functions 4, B, C,

D, E and F by solving a set of linear simultaneous equations presented above.
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5.1.1 Shear Dislocation

The arbitrary functions corresponding to the shear dislocation of intensity

b _are
bxﬂ(/lﬂt)e“ (ﬂ+2,u Au j
* n(2n) | i 5.3
’ |§|77(/1+2/1) (1+|§|A)h_|§| A+ﬂA /1+2u|b i (5.3a)
b u(A+u)e | < (mzﬂ pr ﬂ
B=— 1 2Eh+HE A A(1-24h (5.3b)
e | M )
hb u(2+u)e
TR (5.3c)
E(2+2u)
b,,u(l—f—lu)ef‘ﬁh
T n2a) (5.3d)
G(2+2u)

& |:(1+|§|A)h+r—s|§|(ilﬂ—#h+ﬂ|§|hAﬂ
20 \ A+pu  A+2u

_ bul(atp) (5.3¢)
|§|77(/7~+2ﬂ) 1 T A2u 2u A+ '
—e (1+|§|A)h—5|§|( 0 ht /1+IuA+/1+2,u|5 hAj
N A+2pu A+3
R el
— (5.37)

.\ eah{_1+2|g|h+|¢1/1é|ﬂ( /Zf:—%ﬂA(l—Zﬁh)ﬂ

where 77 is given by Eq.(4.8)

5.1.2 Opening Dislocation

The arbitrary functions corresponding to the opening dislocation of

intensity b_ are

. dn [ s 2 2
B [ o )| YR
w p

Aen(A+2.) (ru)(A+2p)” I+2u
j +u)e +
i T {22 )| (540
_ i u(ap)e (5.4c)

&el(a+24)
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D ib, ,u(/1+ y)efw

&(av2u) (o:44)
(_1+|¢1h)eﬂ{1+mmi|ﬁ(“2” A3 ﬂ
_ b pldep) 2u N\ A vz (5.4¢)

Hn(A+24) 4h[(1+m/1)(1+| 4 _|§|(/1+2,u (Ll | A HAAuts’ e §2h/1ﬂ

C(Aru)ar2p)” Av2u

o e 22 2|

] A A+2u
sz HoAt (5.4f)

&n(A+2) f"{1+2|§|h+|§|/1—|ﬁ(/1+2ﬂ+—|§|/1(1+2|§|h)ﬂ

From the above solutions, it is evident that the elastic field of the half-
plane is influenced by both surface material constant x° (or A) and residual
surface stress 7°. Note that 4 and ¥ vanish in the absence of surface stresses

and the above solutions reduce to the classical elasticity solutions.

5.1.3 Numerical Results

The complete fundamental solutions for displacements and stresses
corresponding to shear and opening dislocations are given by Egs. (3.10a) to
(3.10e) with the solutions for arbitrary functions, A to F, given by Egs. (5.3a) to
(5.3f) and (5.4a) to (5.4f). The solutions for displacements and stresses given by
Egs. (3.10a) to (3.10e) can be reduced to semi-infinite integrals due to the even
or odd behavior of the integrand with respect to &. Since, closed-form solutions
cannot be obtained similar to the case of internally loaded elastic layer in
Chapter 4, the numerical quadrature scheme based on 21-point Gauss-Kronrod
rule (Piessens 1983) is then employed. It is convenient to introduce the following
non-dimensional quantities in the numerical study: x,=x/A4; z,=z/A4;
h,=h/A. In addition, the material properties of A/u = 2.226 (e.g. Aluminum
(Dingreville and Qu 2007)), and A = 0.15288 nm for Al [1 1 1] surface (Miller and
Shenoy 2000) are used in the present study, and 7° = 5 N/m is used to

demonstrate the influence of residual surface stress.
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Figures 5.2 and 5.3 show the non-dimensional stresses along the x-
direction of a half-plane at various depths due to a shear dislocation of
magnitude b_ and an opening dislocation of magnitude b, ,respectively, at the
plane h, = 1.0 . Only the solutions along the positive x-axis are plotted due to
the symmetry or anti-symmetry of the solutions about the z-axis. For the shear
dislocation, vertical and horizontal normal stresses are symmetric whereas shear
stress is anti-symmetric about the z-axis. For the case of opening dislocation,
vertical and horizontal stresses are anti-symmetric, while shear stress is
symmetric, about the z-axis. Note that the dotted lines in Figures 5.2 and 5.3
denote the classical elasticity solutions corresponding to zero surface stress (i.e.
k' = 7' = 0) and the dash lines denote the solutions that neglect the out-of-plane
component of surface stresses. It is evident from both figures that some
components of the bulk stress field are significantly influenced by the presence
of surface stresses. Horizontal normal stresses of the bulk material show more
influence of surface elasticity A when compared to vertical and shear stresses.
In addition, vertical normal stresses of the bulk material show more influence of
residual surface stress z° when compared to horizontal and shear stresses. This
observation is true for both types of dislocations. It should be noted that at z, =
1.0 horizontal normal stress and shear stress are infinite at the dislocation core
under a shear dislocation, whereas for an opening dislocation, horizontal and
vertical normal stresses are infinite at the dislocation core. For both types of
dislocations, the influence of surface elasticity on bulk shear stress is negligible
especially at points closer to the dislocation core whereas the residual surface
stress show more significant influence on bulk shear stress in the vicinity of
dislocation core (e.g. when x, < 3). On the other hand, the influence of residual
surface stress on bulk horizontal normal stress is negligible especially at points
closer to the dislocation core whereas the horizontal normal stress for both types
of dislocation shows more significant influence of surface elasticity in the vicinity

of the dislocation core (e.g. when x, < 3) especially in the domain above the slip
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plane. In addition, the influence of surface elasticity and residual surface stress
on the vertical normal stress show more significant at points closer to the
dislocation core (e.g. when x, < 3) except in the case of shear dislocation, the
influence of surface elasticity is negligible. It is obvious that the region above the
slip plane has the most influence of surface stress due to its proximity to the free

surface. In all cases, the stresses become quite negligible for x;, > 5.

To investigate the influence of the depth of dislocation plane; surface
material parameter A and residual surface stress 7, the non-dimensional stress
field along the x-direction due to an opening dislocation of magnitude b, are
presented in Figure 5.4 for different depths of dislocation plane, in Figure 5.5 for
different values of A and in Figure 5.6 for different values of 7° respectively.
Note that in Figure 5.4 stresses are calculated at z, = 1.0. From Figure 5.4, it is
clear that the depth of dislocation has a significant influence on the stress field
and the stresses increase as the dislocation plane approaches z, = 1.0.
Furthermore, the influence of surface elasticity and residual surface stress are
more significant when the slip plane is near the free surface. As in Figures 5.2
and 5.3, horizontal normal stress shows the highest influence of surface elasticity
whereas vertical normal stress shows the highest influence of residual surface
stress. In Figure 5.5 the non-dimensional stresses are presented for a
hypothetical material with the surface material parameter A, being varied from 0
to 10004 (where A = 0.15288 nm for aluminum), whereas the residual surface
stress parameter (7°) is unchanged. On the other hand, the non-dimensional
stresses displayed in Figure 5.6 are presented for a hypothetical material with the
residual surface stress parameter 7' being varied from 0 to 1000 N/m, whereas
the surface material parameter is unchanged. Note that in Figures 5.5 and 5.6
stresses are calculated at z, = 0.1 to maximize the influence of surface stress.
As expected, the influence of surface stresses on the bulk stress components
becomes more significant with increasing 4, and 7° (i.e. when the surface

becomes more rigid). In addition, the stress field shows an asymptotic solution
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with respect to 4 and 7*°, which is reached when A4, > 1004 and 7° > 500 N/m,
respectively. Another important observation is that horizontal normal stress near
the free surface shown in Figures 5.5 and 5.6 experience a change in sign as the
surface material parameter or residual surface stress parameter increases.
Numerical results shown in Figures 5.2 to 5.6 confirm the fact that the influence of
surface stresses cannot be ignored in modeling of near-surface cracks and other

defects in materials where the surface energy effects are not negligible.
5.2 Penny-Shaped Crack in Infinite Elastic Medium

5.2.1 Formulation of Dual Integral Equations

Consider a penny-shaped crack with a radius a subjected to
axisymmetric applied internal pressure p(r) in an infinite elastic medium as
shown in Figure 5.7. The corresponding solutions for bulk stresses and
displacements are given by Eqgs. (3.14a) to (3.14f) with C' and D' =0to satisfy
the regularity conditions at infinity and the arbitrary functions 4' and B' can be

obtained by solving the boundary value problem on the crack surface (z = 0).

- dr’ duZ+TS d’u, +ld“z = (,,) 0<r<a (5.59)
= dr dr dr*  r dr P - |

a<r<owo (5.5b)

u =0,
s 2

J,.z+{ci,—r(l+£j+lcs(d u’+1du’—£ﬂzo, 0<r<a (5.5c)
r

r ar* rdr 1’

o.=0, a<r<o (5.5d)

It is noted that the residual surface stress of the crack surface is assumed
to be constant and the analysis is only concerned with the elastic field induced
by the external loading, i.e. the influence of point loads at crack-tip induced by
residual surface stress (Wu,1999) is not considered. By substituting the solutions
of stresses and displacements from Egs. (3.14a) to (3.14f) into Egs. (5.5a) to
(5.5d), we then obtain
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Iw{ 2(/1+,u)§4+“—’ur“§5}A+(2y§3+2¢“§4)B}J0(5r)d§=—p(r) , 0<r<a (5.6a)
0 u

j”(“—”gsAJrzng]Jo(gr)dg:o, a<r<o (5.6b)
o\ u

[ {2 Kﬁ} [uéa+/1+ﬂ ng }Jl(fr)dfzo, 0<r<a (5.60)
0 7

jo [2(A+p)E*4-22&°BJ,(ér)dé=0, a<r<w (5.6d)

By introducing the non-dimensional parameters; 7 =r/a and g?:fa,
Egs. (5.6a) to (5.6d) can be expressed to a set of simultaneous dual integral

equations as

IZ,,() H(€)J, (Er)dg =n(r). 0<7<1 (57a)
IZdy() 1(8),, (¢r)ac=g,(r). 1<F<w (5.7b)
where i=1, 2;

2(/1+,u)65 + ZK ZyE:JrZr‘E—j
oo a 7 a a a

2(A+ u )5—4 i E e f AruE

| U a a u a

and p(r) = ap(ar)
The above equation can be easily reduced to

2

JZ (€ (&)J, (&r)ae=n(r). 0<7<1 (58a)

,[ () ( ) ¢=0, l<r7r <o (5.8b)
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where W[(E):Zz:du(f)fl(f) and

Jj=1
_ ., i}
2u(Atp) & M
A+2u a a’ A+2u

_/1+2,uK a’ 2;1(/1+2,u)’<

po L& Ar3u
a

To solve Egs. (5.8a) and (5.8b), v is defined as (Erdogan and Bahar,
1964):;

— _1_ﬂ,‘ X —
m=0
Hence, Eq.(5.8b) will be automatically satisfied due to the following properties of
Sonine-Schafheitlin integrals (Magnus and Oberhettinger, 1954).
Oo_lfﬂj —_— F £/ ) )
[[E7I, (&), c2mep, (E)dE =0, F>1; 2(v,+m+1)>0and B, >0 (5.10)

and Eqg.(5.8a) may then be written as

)0 AN (= VAN (2 VA s Vs 0<F<l (511)

m=0 j=1

where ¢, are the unknown coefficients to be determined. Multiplying both sides
of Eqg. (5.11) by

—1+v,-( —2 ﬁi—l@ 2. — .

r 1-7 ) \sk(v[+ﬂi,1+vi,r ) k =01,2,..., m;

and then integrating with respect to 7 from 0 to 1, yield (Tranter, 1956)

iz¢jm_|.:§_lﬁ/ﬁ;eii (f_)]vi+2k+ﬁ, (E)ij+2m+ﬁj (E)dé_,? = Qi(Vl-,ﬂi,k) (512)
where

I'(v,+k+1) RN _o\A-1 o -
Q"(V"’ﬂ"’k)zzﬂf1r(vvi+1)r(k+ﬁ:)J°h"(r)r (L-7) S (vt Bl 7 )ar
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and 3, is the Jacobi polynomial, which is defined in terms of hypergeometric series by

(Magnus and Oberhettinger, 1954) as

3, (a.7,x)=,F(-n,a+n;y;x)

The coefficients ¢,, can be obtained by solving Eg. (5.12). Note that the
unspecified constant, ﬂ/ in Eg. (5.12) must be positive and makes the integral
appearing in Eqg. (5.12) converged. The arbitrary functions A' and B' for calculate

stresses and displacements can be expressed in term of y, (i =1,2) as

A'(E):(Mﬂ)/l(;;”ﬂ)gs{%(f) 22 (5)} (5.13a)
B(&)= (/H_uzﬂ);z{wl(f) 75 (5)} (5.13b)

5.2.2 Numerical Results

In this section, selected numerical results are presented to portray the
influence of surface stresses on the elastic field of the medium. It is noted that
the solutions for stresses and displacements can be calculated by Egs.(3.14a) to
(3.14f) with the arbitrary functions, A" and B', given by Eqgs.(5.13a) and (5.13b).
In this study, the semi-infinite integrals in Eqgs.(3.14a) to (3.14f) are evaluated by
using globally adaptive numerical quadrature scheme based on 21-point Gauss-
Kronrod rule (Piessens 1983). In the numerical study, it is convenient to introduce
the following non-dimensional quantities, r, = rlA: Z, = zl A and a, = al A,

where A = and it has the dimension of length. The numerical results in

the present study corresponding to the case of a penny-shaped crack in an
infinite elastic medium subjected to a uniformly distributed applied internal
pressure, p,. In addition, the material properties of A/ u= 1.94, A = .24983 nm
and 7' = 0.6056 N/m for Si [100] (Miller and Shenoy, 2000) are used in the

present study.

Since the arbitrary function, A' and B', given by Egs.(5.13a) and (5.13b)

are evaluated by the combination of y; and ,, which are defined by infinite
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series in Eq.(5.9), the convergence of the solution is plotted to verify the validity
and accuracy of the solution technique and to determine the appropriate number
of terms, m, in the series that can be used to predict the behavior of the problem
accurately. Figure 5.8 shows the convergence of non-dimensional vertical stress
in the vicinity of crack tip for the classical case where the surface stress is
excluded (i.e. k¥ = 7' = 0). It can be seen from the figure that the present
solution shows very good agreement with classical elasticity solution proposed
by Fabricant (1989) especially when m is larger than 60. In Figure 5.9, the
numerical solutions for the classical vertical stress and classical crack opening
displacement from the present study, using 65 terms in the approximation (m =
65), are compared with the benchmark solutions. It is evident from Figure 5.9 that
numerical results obtained from the present study are almost indistinguishable
from the exact solutions proposed by Fabricant (1989). In this study, the elastic

field of the medium are therefore calculated by using m = 65.

Figures 5.10 and 5.11 demonstrate the influence of surface stresses on
the elastic field of an elastic medium near the crack region. A non-dimensional
crack radius, a, = 1.0 is considered in the numerical study. In Figure 5.10, the
variation along the r-axis of non-dimensional vertical stresses in the region near
the crack tip is presented, whereas Figure 5.11 displays the non-dimensional
crack opening displacements. The non-dimensional stresses and displacements
shown in Figures 5.10 and 5.11 are presented for Si [100] and hypothetical
material (A/ u = 1.94, A = .24983 nm) with different values of residual surface
stress (i.e. 7° = 0.1 and 1.0 N/m). Note that the broken lines in Figures 5.10 and
5.11 denote the classical elasticity solution (Fabricant, 1989), which can also be
obtained from the present solution with the absence of surface stress (i.e. k' =

* =0).

The variation of non-dimensional vertical stress on the crack plane in the
region near the crack tip shown in Figure 5.10 reveals that the surface stresses

have a significant influence on the vertical stress, especially in the vicinity of the
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crack tip where the vertical stress approaches infinity for both classical and
present solutions. It is observed from the figure that the presence of surface
stress effects results in the reduction of vertical stress. Similar aspect is also
found in the case of plane strain cracks (Kim et al., 2011). Note that their paper
assumes that the stress at the crack tip is finite. In Figure 5.11 the influence of
the surface stresses on the crack opening displacement is presented. As in
classical elasticity, the maximum displacement is located at the center of the
crack before gradually reduces to zero at the crack tip. In addition, it can be
seen from the figure that the presence of surface stresses causes the reduction

of the crack opening displacement.

Figure 5.12 demonstrate the size-dependent behavior of the elastic
medium with the presence of surface stresses. In Figure 5.12, the variation along
the r-axis of non-dimensional vertical stress profile in the region near the crack
tip is presented for Si [100] with different values of crack radius (i.e. a, = 0.5, 1.0
and 1.5). It is obvious from the figure that with the consideration of surface
stresses, the non-dimensional vertical stress depends significantly on crack size
in contrast with the classical solutions, where the non-dimensional vertical
stresses are independent of crack size. In addition, it is observed from Figure
5.12 that the influence of surface stresses decreases when crack size increases
and the solution will converge to the classical solution. Numerical results shown
in Figures 5.10 to 5.12 confirm the fact that the influence of surface stresses is
significant in the analysis of the problems involving nanoscale cracks and other

defects in materials where the surface energy effects are not negligible.

5.3 Conclusion

The fundamental solutions of an elastic medium with dislocations and
crack are derived with the consideration of surface stress influence by adopting
the Gurtin-Murdoch continuum theory of surface elasticity. The elastic fields

corresponding to plane strain and axisymmetric problems are obtained by using
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Fourier and Hankel integral transforms, respectively. It is found that analytical
solutions can be expressed in terms of semi-infinite integrals that cannot be
evaluated in closed-form but can be computed accurately by employing a
numerical quadrature scheme. For crack problems, a set of simultaneous dual
integral equations is solved by employing appropriate solution scheme. It is
found from the numerical results that the surface stresses have a significant
influence on the elastic field especially in the region near the surface. In addition,
numerical results in this study show similar trends with their classical solutions.
However, unlike in the classical elasticity approach, the behavior of the material
becomes size-dependent when the surface stresses are accounted for. The
fundamental solutions for gliding and climbing edge dislocations presented in
this study are essential to the extension of the displacement discontinuity method
(DDM) to analyze fracture problems involving nanoscale systems and soft elastic

solids.
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Figure 5.1 Dislocations in a semi-infinite elastic medium at a depth h below the

surface.
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Figure 5.4 Non-dimensional stress profiles under opening dislocation for different

depths of dislocation plane (z,= 1.0): (a) Vertical stress (b) Horizontal stress (c)

Shear stress.
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Figure 5.6 Non-dimensional stress profiles under opening dislocation for different

residual surface stresses (h, = 1.0 and z;, = 0.1): (a) Vertical stress (b)

Horizontal stress (c) Shear stress.
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Figure 5.7 A penny-shaped crack in an infinite elastic medium subjected to

applied internal pressure.
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Figure 5.8 Convergence of non-dimensional vertical stress profile in the vicinity of

crack tip.
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Figure 5.10 Non-dimensional vertical stress profile in the vicinity of crack tip for

different residual surface stresses (7°).
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CHAPTER VI

RIGID-INDENTATION ON ELASTIC LAYER

In this chapter, the fundamental solutions derived in Chapter 4 are
employed in the formulation of axisymmetric indentation problems. Green
functions of surface displacements of an isotropic elastic layer with the
consideration of surface stresses are first constructed from the fundamental
solutions presented in Section 4.2. The integral equations for solving nano-
indentation problems of a finite thickness elastic layer under axisymmetric punch
profile are then formulated for several indentation models. Selected numerical
results are presented to portray the influence of surface stresses for a special

case of rigid, flat-ended cylindrical punch with frictionless model.

6.1 Axisymmetric Green Functions for Elastic Layer

Consider a three-dimensional finite thickness elastic layer bonded to a
rigid base, and subjected to axisymmetric normal and tangential traction on the
surface. The required fundamental solutions for the problems are presented in
Section 4.2 for arbitrary axisymmetric load cases. Green functions, which are
defined by the solutions of surface displacements of an elastic layer under unit
normal ring load, p, and unit tangential ring loads, ¢, can be respectively
constructed by Egs. (3.14e) and (3.14f) with the arbitrary functions given by Egs.
(4.16a) to (4.16d). Note that the Hankel transforms of unit normal ring load and

unit tangential ring load applied at the radius r are given by

P'(f) = —Iowrp5(r — r*)JO(fr)dr =—prJ, (fr*) (6.1a)

‘]'(‘f) = _J.Oqué'(r — r*)Jl(fr)dr = —qr*Jl(fr*) (6.1b)
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By using a method of superposition, the vertical and radial displacements
at any distance r on the surface due to arbitrary axisymmetric normal traction

p(r*) and tangential traction q(r*) can be expressed in the integral equation as

ur(r)zI:Uy(r,r*)p(r*)dr* +_[OwUrT(r,r*)q(r*)dr* (6.2)
uz(r):I:Uzjv(r,r*)p(r*)dr* +I0wUZT(r,r*)q(r*)dr* (6.3)
where U (r,r*) and UZN(r,r*) denote radial and vertical displacements
respectively at any distance » on the surface due to a unit normal ring load
applied on the layer at the radius r*, whereas U,,T(r,r*) and UZT(r,r*) denote
radial and vertical displacements at any distance r on the surface due to a unit
tangential ring load applied on the layer at the radius r respectively . Similarly, all
other elastic fields at any point (r,z) within the bulk material, denoted generically

by R(r,z), due to arbitrary axisymmetric normal and tangential traction can also

be expressed in the integral equation as

R(r,z):IOwRN(r,z,r*)p(r*)dr* +I:RT(r,z,r*)q(r*)dr* (6.4)
where RN(r,z,r*) and RT(r,z,r*) denote the responses at any point (r,z) due to
a unit normal ring load and unit tangential ring load applied on the layer at the
radius 7 respectively. It is clear that for a problem where the surface traction
p(r*) and q(r*) are fully prescribed, all field quantities can be directly
computed by Eq. (6.4). The derived Green functions have important applications
in contact problems such as indentation problems, where the surface traction is

unknown, as demonstrated in the subsequent sections.

6.2 Axisymmetric Rigid Punch Problems

For indentation problems, normal traction and tangential traction in the
contact region are unknown a priori and have to be determined with the
appropriate assumption of the contact condition in the contact region between

the punch and the layer. Consider an isotropic elastic layer under an
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axisymmetric rigid punch with a profile v”(r) as shown in Figure 6.1. It is noted
that the profile of the punch is conveniently defined by choosing v/ = 0 at » = 0.
The radius of a contact region and the indentation depth induced by a resultant
force P at the center of the punch are denoted by a and d respectively. The
integral equation for solving the unknown traction can be summarized for the

cases of frictionless and frictional indentation models as follows:

6.2.1 Rigid Frictionless Punch Problems

In the study of indentation problems, the model of a frictionless punch is
the most common model, and has been widely employed in classical mechanics.
For a special case of axisymmetric frictionless nano-indentation problems, the
tangential traction in the contact region identically vanishes whereas the vertical
displacement is prescribed via the punch profile, v”, and the prescribed

indentation depth, d . The integral equation for determining the normal traction in

the contact region can then be deduced from Eq. (6.3) as
uz(r):I:UzN(r,r*)p(r*)dr*:d—v”(r), 0<r<a (6.5)
where a denotes the contact radius.

6.2.2 Rigid Fully Bonded Punch Problems

For the case of rigid fully bonded nano-indentation problems, the
tangential displacement in the contact region identically vanishes whereas the
vertical displacement is prescribed via the punch profile, v”, and the prescribed
indentation depth, d. The integral equations for determining normal and
tangential traction in the contact region can then be deduced from Egs. (6.2) and

(6.3) as

ur(r)zjaUN(r,r*)p(r*)dr*+I:Urr(r,r*)q(r*)dr*:O, 0<r<a (6.6)

u, (r):J.aUZN (r,r*)p(r*)dr* +J-:UZT (r,r*)q(r*)dr* =d—v"(r), 0<r<a (6.7)



73

6.2.3 Rigid Rough Punch Problems

For the case of rigid rough nano-indentation problems, the tangential
traction in the contact region can be related to the normal traction via an
appropriate friction model whereas the vertical displacement is prescribed via
the arbitrary punch profile, v¥, and the prescribed indentation depth, d. The
integral equation for determining normal traction in the contact region can be

deduced from Eq. (6.3) as

uz(r):IOaUZN (r,r*)p(r*)dr* +I:UZT (r,r*)f(p(r*))dr* =d—v'(r),0<r<a (6.8)
where a function f denotes the relation between normal traction and tangential

traction. Once the normal traction p(r*) is determined, the tangential traction

q(r*) can readily be obtained.

It is noted that by solving the integral equations (6.5) to (6.8), the unknown
surface traction are obtained for each case. The elastic field of an elastic layer

can readily be determined from the integral relation (6.4)

6.3 Rigid Frictionless Flat-Ended Cylindrical Punch

Consider a three-dimensional elastic layer of a finite thickness ¢ bonded
to a rigid material base under a rigid flat-ended cylindrical punch of a radius a
as shown in Figure 6.2. The punch is subjected to a resultant force P at the
center of the punch, and results in the indentation depth d as shown in the
figure. In this study, it is assumed that there is no friction between the punch and
the layer. For the special case of rigid flat-ended punch, the punch profile is set
to be zero, i.e. v’(r) = 0, the integral equation for solving the pressure

distribution in the contact region can be expressed as

I:UZN(W*)p(r*)dr*=d, 0<r<a (6.9)

In order to solve the above equation, the pressure distribution in the

contact region is assumed in the following form.
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p(r)=2e,/,(r), (6.10)
j=1
By substitution pressure distribution in Eqg. (6.10) into Eq. (6.9), we then
obtain
Z;ajjo UZN(r,r*)fj(r*)dr* =d, 0<r<a (6.11)
j:

By adopting collocation technique, the above integral equation can be

discretized into the following form

1

iajj:UzN(ig,r*)fj(r*)dr*:a’., forall ,i=1,23 .. n (6.12)
j=1

where d; denotes the indentation depth at 7.

The coefficient «; can be obtained by solving Eq. (6.12). In this study the
pressure distribution is approximated by the summation of axisymmetric

polynomial functions as follow:

P(r*) = i“f(r*)‘i_l’ (6.13)
=

More importantly, unlike classical solution, it is noted that for this
particular case the resultant force P is not only transferred to the pressure
distribution in the contact region but it also produced a normal ring load at the
edge of the punch due to the influence of surface tension when the out-of-plane
surface stresses is considered. Once the normal traction is obtained, all other

field quantities can be computed from the integral relation in Eq. (6.4).

6.4 Numerical Results

In this section, selected numerical results are presented to portray the
influence of surface stresses on the elastic field of the layer. It is noted that the
relevant Green functions constructed by Eqgs. (3.14e) and (3.14f) with the

arbitrary functions given by Eqgs. (4.16a) to (4.16d) are expressed as semi-infinite
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integrals where closed form solutions cannot be obtained as previously
discussed in Chapter 4. The numerical quadrature scheme based on 21-point
Gauss-Kronrod rule (Piessens 1983) is then employed to evaluate these integrals.
In the numerical study, it is convenient to introduce the following non-dimensional
quantities, ry = rlA; z, = zIA; ty =tlA; a, = alA and dy = dIl A, where
A = &' (A+2u)/2u(A+u), and it has the dimension of length. The numerical
results in the present study correspond to the case of an elastic layer with finite
thickness ¢,/ a, = 5 under rigid frictionless flat-ended cylindrical punch with the
contact radius a, = 0.5 and the indentation depth d,. In addition, the material
properties used in Chapter 4 are considered in the numerical study, i.e. /1/,u =

2.226: A =1 nmand ¥ =5N/m.

Since the pressure distribution is approximated by the summation of
axisymmetric polynomial functions, the convergence of the solution is plotted to
verify the accuracy of the solution technique and to determine the appropriate
number of terms, m, in the series that can be used to predict the behavior of the
problem accurately. Figure 6.3 shows the convergence of normallized contact
pressure with the consideration of complete surface stresses. It can be seen from
the figure that the present solution shows good agreement with benchmark
solution proposed by Pinyochotiwong (2010) especially when m is larger than
12. In Figure 6.4, the numerical solutions for the normalized vertical displacement
from the present study, using 15 terms in the approximation (m = 15), are
compared with the benchmark solutions. It is evident from Figure 6.4 that
numerical results obtained from the present study show excellent agreement with
the solutions proposed by Pinyochotiwong (2010). In this study, all solutions are

therefore calculated by using m = 15.

Figures 6.5 and 6.6 demonstrate the influence of surface stresses on the
pressure distribution in the contact region and vertical displacement respectively,
for difference values of contact radius (i.e. a, = 0.5, 1.0 and 1.5). It can be seen

from Figure 6.5 that the contact pressure significantly decreases when the
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influence of surface stresses is considered. On the contrary, the vertical
displacement outside of the contact region obtained from current study is
comparative higher than that in classical elasticity due to the fact that surface
stresses make elastic layer stiffer and hence larger indentation force is needed in
order to produce the same indentation depth. It is obvious from the figure that
with the consideration of surface stress influence, normalized contact pressure
and vertical displacement depend significantly on crack radius (or size of the
punch for this particular case). In addition, the influence of surface stresses
decreases when the radius on contact region increases, and the solution will

converge to the classical solution.

In Figures 6.7 and 6.8, the variation of normalized displacement profiles
and stress profiles along r-direction of an elastic layer with finite thickness ¢,/a,
= 5 under flat-ended cylindrical punch with contact radius a,= 0.5 are presented
at various depths. It can be seen from Figure 6.7 that both vertical and radial
displacements show significant influence on surface stresses especially at the
plane near surface. In addition, both vertical and radial displacements from the
present study are comparative higher than classical solutions as previously
discussed except that radial displacement at the region close to the surface
where the negative values occur. From Figure 6.8, it is obvious that all
components of stress show significant influence of surface stress especially at
the plane near surface, i.e. z, < 2. In addition, the influence of the residual
surface stress becomes negligible when 7, /a, > 3. It should be noted that
stresses and displacements presented in this study show similar trend with

classical solutions.

6.5 Conclusion

The indentation problem of an isotropic elastic layer under an
axisymmetric punch is examined with the consideration of surface stresses by
adopting Gurtin-Murdoch continuum theory of surface elasticity. The interaction

problem is formulated by employing the Green functions constructed from the
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derived fundamental solutions in Section 4.2. It is noted that Green functions can
be expressed in terms of semi-infinite integrals that cannot be evaluated in
closed-form but can be computed accurately by employing a numerical
quadrature scheme. It is found from the numerical results that the surface
stresses have a significant influence on the elastic field especially in the region
near the surface. In addition, numerical results in this study show similar trends
with their classical solutions. However, unlike classical elasticity, the behavior of
the material becomes size-dependent when the surface stresses are accounted
for. More importantly, for this particular case of flat-ended cylindrical punch, the

presence of surface tension induces a normal ring load at the edge of the punch.
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Figure 6.1 An isotropic elastic layer under axisymmetric rigid punch.
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Figure 6.2 An isotropic elastic layer under rigid frictionless flat-ended cylindrical punch

of aradius a.
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under flat-ended cylindrical punch with contact radius a,= 0.5.
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Figure 6.7 Normalized displacement profiles of a layer with finite thickness t,/a,=

5 under flat-ended cylindrical punch with contact radius a,= 0.5: (a) Vertical

displacement (b) Radial displacement.
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CHAPTER VII

CONCLUSIONS

7.1 Summary

This research presents a theoretical study of an isotropic elastic
material with the consideration of surface energy effects by employing Gurtin-
Murdoch continuum theory of elastic material surfaces. The fundamental
solutions of an isotropic elastic layer under different loading cases, and an
elastic medium with dislocations and cracks are presented. A set of general
solutions corresponding to each problem is obtained from the governing
equations of the bulk material by applying appropriate integral transform
techniques. In addition, solution procedures for indentation problems are also
presented to demonstrate the application of the derived fundamental solutions
corresponding to an isotropic elastic layer under vertical and radial loads.
Selected numerical results together with discussion and conclusion are given
separately for each problem in the corresponding chapters. The major

findings and conclusions of this research can be summarized as follows:

1. The analytical solutions are expressed in terms of semi-infinite integrals
for problems involving different loading cases, dislocations and cracks with the
presence of surface stresses, in which, closed-form solutions cannot be obtained
due to the complexity of the integrands. The solutions can be accurately
computed by employing a numerical quadrature scheme. In this research, a
globally adaptive numerical quadrature scheme based on 21-point Gauss-
Kronrod rule is employed in the evaluation of the integrals. The validity and
accuracy of the present solution schemes are confirmed by comparing with

available benchmark solutions.
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2. As shown in the numerical results for each problem, surface stresses
show a significant influence on the elastic fields of an isotropic elastic
material especially in the vicinity of the surface. In addition, the bulk material
becomes stiffer with the presence of surface energy effects for the
fundamental problems presented in this research. An extensive parametric
study observed in numerical results indicates that, unlike classical elasticity,
the elastic fields of the bulk material become size-dependent with the
consideration of surface stresses. Numerical results presented in this study
indicate that the influence of surface stresses is significant in the analysis of
the problem involving nanoscale structures and soft elastic materials where

the surface energy effects are not negligible.

7.2 Suggestions for Further Work

The fundamental solutions presented in this thesis provide an insight
into fundamental understanding on the mechanical behavior of nanoscale
structures and soft elastic solids, and can be used as benchmark solutions for
verification purpose. The analytical solutions presented in this study can also
be employed to construct Green functions which are useful for various
boundary value problems in practical situations. The suggestions for further

study on mechanics of nanoscale material are

1. In most practical situations, the substrate material is generally not rigid. The
fundamental solutions for multilayer problems with the surface stresses are therefore
very useful. In such problems, the surface energy effects on the interface between
layers could become significant. The current methodology based on Fourier and
Hankel transforms can be readily extended to solve the case of a flexible

substrate.

2. The consideration of more complex problems, e.g., indentation
problems with non-axisymmetric geometry and indenter shape, the elastic

medium with arbitrary crack shape or multiple cracks, etc.
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