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CHAPTER I 
 

INTRODUCTION 
 
 

1.1 General 

Nanotechnology has important applications in various disciplines such 
as biology, chemistry, physics, medicines and engineering. After the 
discovery of carbon nanotube (CNT) in 1991 by Iijima (1991), a number of 
advanced researches have been studied to improve performance of various 
devices by utilizing superior mechanical, electronic and optical properties of 
nanoscale materials. For example, computer memory storage device called 
Nano-RAM, which is faster and denser than common RAM, has been 
developed based on the position of carbon nanotubes deposited on a chip-
like substrate.  

There are generally two basic approaches to study the mechanical 
behavior of nanoscale systems, which are experimental methods and 
theoretical simulations. Several experiments have been performed to 
investigate mechanical responses of nanoscale materials in the literature. For 
example, Wong et al. (1997) determined the mechanical properties, i.e. 
Young’s modulus, strength and toughness of isolated silicon carbide (SiC) 
nanorods (NRs) and multi-wall carbon nanotubes (MWNTs) by using atomic 
force microscopy. Mao et al. (2003) utilized the same method to determine the 
hardness of ZnO and SnO2 nano-belts. Although actual behavior of a material 
can be obtained by performing an experiment, the results based on this 
approach nevertheless highly depend on experimental environments. 
Moreover, the cost of experimental study is very expensive due to their 
requirement of high-precision testing instruments and procedures. Theoretical 
simulations based upon mathematical modeling are therefore attractive 
options, which have been widely used to analyze the mechanical behavior of 
nanoscale systems. Two major models have been commonly employed in the 



 2 

analysis of nanoscale systems, i.e. atomistic simulation and continuum based 
approach. Although atomistic simulations are considered very accurate for 
nanoscale systems, the associated computational resources are significantly 
huge since the billions of atom need to be modeled when applied at a 
device/system level. Extending continuum mechanics concepts to the 
nanoscale level is thus an attractive option that is very efficient in obtaining 
first-approximation to nanoscale systems. 

From atomistic study, it is found that the energy associated with atoms 
at or near a free surface or interface is different from that of atoms in the bulk 
material (Miller and Shenoy, 2000; Shenoy, 2005). The excess energy 
associated with the surface/interface atoms is called the surface free energy, 
which is generally neglected in the context of microscale systems or larger. 
However, for nanoscale structures, the surface to volume ratio is much higher 
and the surface energy effects can no longer be ignored. Modified continuum 
methods that account for surface energy effects and size-dependency are 
then developed to examine the mechanical behavior of the materials in 
nanoscale level. A rigorous theory based on continuum mechanics concepts 
incorporating the surface energy effects was proposed by Gurtin and Murdoch 
(1975, 1978), and Gurtin et al. (1998). In the past decade, Gurtin-Murdoch 
formulation has been extensively used to investigate a variety of problems 
such as nano-inhomogeneities, nano-plates, cracks etc.  

This dissertation is concerned with the development of fundamental 
solutions for an isotropic elastic material in nanoscale system based upon 
continuum mechanics incorporating surface energy effects by employing 
Gurtin-Murdoch theory of surface elasticity. The analytical solutions are 
derived for fundamental problems to provide a fundamental understanding on 
mechanical behavior of nanoscale structures and materials. The solutions for 
more complex problems can also be obtained using the application of the 
derived fundamental solutions. In this study, analytical solutions of an 
isotropic elastic material involving different loading cases and defects, i.e. 
dislocations and crack, are presented for the case of plane strain and 
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axisymmetric problems by employing Fourier and Hankel integral transform 
techniques respectively. Numerical results are presented for various boundary 
value problems to portray the influence of surface stresses on the elastic field 
of the bulk material. 

1.2 Objectives and Scopes of Present Study 

The main objectives and scopes of the present study are given as 
follows: 

1) To develop analytical solutions of isotropic elastic material with the 
consideration of surface stresses by adopting complete Gurtin-Murdoch 
continuum theory of elastic material surfaces for various boundary value 
problems that are fundamental in the area of solid mechanics. 

2) To investigate size-dependent and nanoscale influence on elastic 
fields of various fundamental problems. 



CHAPTER II 
 

LITERATURE REVIEWS 
 
 

2.1 General 

Research on nanomechanics has remarkably received increasing 
attentions in recent years. It concerns with the study of fundamental 
mechanical behavior, i.e. elastic, thermal and kinetic properties, of physical 
systems at the nanometer scale. Since the prefix ‘nano’ means a billionth, one 
nanometer (abbreviated as 1 nm) is therefore 1/1,000,000,000 of a meter. 
Nanostructures and nanomaterials refer to structures and materials that have 
at least one of the overall dimensions in the nanoscale level (approximately 1 
nm to 100 nm). Existing experimental studies of materials at nanoscale level 
reveal that their mechanical properties show size-dependent behaviors that 
are completely different from those in macroscopic structures, where their 
mechanical properties are independent of their size. Classical continuum 
mechanics is therefore not applicable at the nanoscale level due to surface 
energy, related size-dependency and quantum effects. Behavior of nanoscale 
systems can be accurately predicted by using first-principle quantum 
mechanical simulations (Sun and Zhang, 2002; Liang et al., 2005; Ji and Gao, 
2004). Such simulations are computationally prohibitive (often practically 
unrealistic) when applied at a device/system level. Extending continuum 
mechanics concepts to the nanoscale is therefore an attractive option. 
Modified continuum methods that account for surface energy effects and size-
dependency are considered very efficient in obtaining first-approximation to 
nanoscale systems. 
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2.2 Surface Elasticity Model 

The concepts of surface energy and surface stress were first 
formulated by Gibbs (1906). In the formulation of the thermodynamics of 
surfaces, Gibbs defined the surface free energy (  ) as the reversible work 
per unit area needed to create a new surface. For the surface of solids, Gibbs 
introduced another surface quantity, called surface stress that represents the 
reversible work per unit area needed to elastically stretch a pre-existing 
surface. From the thermodynamics of solid surfaces, Shuttlleworth (1950) and 
Cammarata (1994) derived the relationship between the surface stress and the 
surface free energy. They interpreted surface stress in a term of variation of 
the surface free energy with respect to surface strain. It should be noted that 
surface free energy is a scalar quantity, while the surface stress is a second 
order tensor in the tangent plane of the surface, and the strain normal to the 
surface is excluded. Cammarata (1994) also expressed the surface stress in 
Lagrangian coordinate system that greatly simplifies the analysis in several 
problems. 

The influence of surface energy effect is generally neglected when a 
microscopic system and larger is considered. In a nanoscale system, however, 
the surface energy effects could have significant influence on their behavior. 
The ratio of surface free energy   (J/m2), and Young’s modulus E  (J/m3), 

E , is a parameter with a dimension of length (Yakobson, 2003). This 
intrinsic length scale is usually small, in the nanometer range or even smaller, 
for metallic materials. When a structure of a material has at least one 
characteristic length comparable to this intrinsic scale, the influence of 
surface energy effects becomes important, and thus the mechanical 
properties of this system become size-dependent. In the case of a soft elastic 
solid, such as polymer gels and biological materials, its elastic modulus is 
much smaller than that of a conventional solid. Consequently, the 
corresponding intrinsic length scale of a soft solid is much larger and 
becomes comparable to material dimensions in practical situations and thus 
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the surface energy effects can play an important role on its mechanical 
properties (He and Lim, 2006). 

Several theoretical frameworks based on continuum model are 
developed incorporating surface energy effects (Miller and Shenoy, 2000; 
Park et al., 2006; Slattery et al., 2004). For a linearly isotropic elastic material, 
a rigorous theory based on continuum mechanics concepts that incorporate 
the effects of surface energy is presented by Gurtin and Murdoch (1975, 
1978), and Gurtin et al. (1998). In their model, the surface is considered as a 
mathematical layer of zero thickness perfectly bonded to an underlying bulk. 
Miller and Shenoy (2000) performed atomistic simulations of nano-scale plates 
and bars subjected to uni-axial loading and pure bending and found that their 
results were in excellent agreement with those based on the Gurtin-Murdoch 
model. 

The surface stresses are, in general, anisotropic and depend on the 
crystallographic direction of the surface (Gurtin et al., 1998; Shenoy, 2005). 
However, it would take an enormous effort in order to analyze problems with 
fully surface stresses. Moreover, the assumption of isotropic surface stresses 
is considered acceptable and sufficient in the study of surface energy effects 
to depict the fundamental understanding of its importance in the analysis of 
nanoscale system (Weissmuller and Cahn, 1997). Based on Gurtin-Murdoch 
continuum theory of surface elasticity, the surface stress effects are 
incorporated in a non-classical boundary condition on the surface/interface, in 
which the traction across the surface/interface is discontinuous. This 
boundary condition and the surface stress-strain relation together with the 
classical elasticity equations constitute a coupled system of field equations. 
Over the past decade, Gurtin-Murdoch surface elasticity model has been 
extensively employed by several researchers to investigate various problems 
with the presence of surface stress effects. 
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2.3 Fundamental Problems with Surface Stresses 

A variety of problems have been successfully investigated in nanoscale 
level with the consideration of surface energy effects by employing Gurtin-
Murdoch theory of surface elasticity. For example, several researchers have 
examined the problems involving nano-inclusions and nano-inhomogeneities 
(Sharma et al., 2003; Duan et al., 2005; Tian and Rajapakse, 2007; 
Mogilevskaya et al., 2008), ultra-thin elastic film (He et al., 2004; Huang, 
2008), thin plate (Lu et al., 2006), nano-indentation problems (Zhao, 2009; 
Pinyochotiwong, 2010) and crack problems (Wang et al., 2008; Kim et al., 
2010, 2011). 

The fundamental study of an elastic layer under surface and internal 
loading is important to diverse engineering applications in the context of 
classical continuum mechanics. The classical solution of a finite thickness 
elastic layer subjected to surface loads was given by Pickett (1938), which 
have been widely used for applications in tribology, geomechanics, 
biomechanics, etc. In addition, the classical solution of a half-plane subjected 
to internal loading was derived by Melan (1932). For the problems in 
nanoscale level, those classical solutions are not applicable and the influence 
of surface stresses need to be considered. He and Lim (2006) derived the 
surface Green’s function for a soft incompressible isotropic elastic half-space 
by assuming that the surface elastic properties are the same as bulk 
properties. The elastic field of a half-plane subjected to surface loading in the 
presence of surface stresses was considered by Wang and Feng (2007). Zhao 
and Rajapakse (2009) studied the plane-strain and axisymmetric response of 
an isotropic elastic layer bonded to a rigid base under vertical and horizontal 
surface loads. 

In the above studies, the surface stress tensor is considered as a two-
dimensional quantity and its out-of-plane components are excluded. A recent 
study by Wang et al. (2010), who formulated the surface elasticity theory in 
the Lagrangian and Eulerian frameworks, indicated that the deformed and 
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undeformed configurations should be discriminated even in the case of small 
deformations. The out-of-plane terms of the surface displacement gradient 
could be significant particularly for curved and rotated surfaces. Povstenko 
(1993) studied the influence of residual surface stress gradient on the elastic 
field of a half-space that has a jump in residual surface stress over a circular 
area. The fundamental solutions of an elastic layer under surface and buried 
applied loads with the complete surface stresses have important application 
in various problems, such as nano-coatings and nanoscale surface layers 
used in electronic devices, advanced materials, communication devices, etc. 
In addition, the soft elastic layer can be found in micro-fluidic devices. 
Moreover, these fundamental solutions can be employed in the development 
of boundary element method (BEM) formulation for more complicated 
problems involving nanoscale structures and soft elastic solids.  

2.4 Dislocation and Crack Problems with Surface Stresses 

 The studies of defects such as cracks and dislocations in elastic 
materials are important to various engineering applications and have been 
extensively studied in the context of classical continuum mechanics (Perez, 
2004). For dislocations and cracks in nanoscale system, the influence of 
surface energy effects could become significant on their behavior such as 
near-tip fields, the energy release rate and their propagation behavior. By 
employing atomistic model, Hoagland et al. (1991) investigated the stress and 
displacement fields near a tip of a brittle crack and found that the solutions 
are in good agreement with the prediction of linear elastic fracture mechanics 
except at the vicinity of the crack tip where the effects of surface energy 
should be accounted for. From literature survey, however, few studies have 
been focused on the dislocation and crack problems with the consideration of 
surface energy effects although the concept of surface elasticity was 
established several decades ago.  

 For the crack problems, a few researchers have considered the 
influence of surface stresses on mechanics of single crack in an elastic solid. 
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For example, Wu (1999) and Wu and Wang (2000, 2001) investigated the 
influence of surface tension on two-dimensional crack problems and proposed 
that surface tension induced a pair of point loads at the crack tip. The 
singularity of the crack-tip stress fields then becomes 1r  instead of being 

1/2r  as a result of those point loads. With the assumption of blunt crack-tip, 
Wang et al. (2008) examined the effects of surface stress on the elastic fields 
near a crack tip for mode-I (opening) and mode-III (tearing) cracks with finite 
root radius based on Gurtin-Murdoch theory of surface elasticity and found 
that the surface stresses have a significant influence on the stress and 
displacement fields in the vicinity of blunt crack tip, especially when the 
curvature radius of the crack tip is in nanometer level. By performing finite 
element analysis, Fu et al. (2008) investigated a blunt mode-II (sliding) cracks 
with the consideration of surface stress effects and proposed that, when the 
curvature radius of the crack tip reduces to nanometers, surface stress effects 
have a considerable influence on both the magnitude and positions of the 
maximum stresses.  

 The fundamental problem of mode-I crack was also investigated by Oh 
et al. (2006) based upon an extension of continuum mechanics incorporating 
the effects of nanoscale through the long-range intermolecular force obtained 
from atomistic simulations. In their study, they summarized that the crack tip 
should be sharp rather than blunt and more importantly, the stress singularity 
at the crack tip is eliminated when considered at nanoscale level. The 
assumption of finite stress at crack tip was also found in the analysis of mode-
I, II and III cracks by Kim et al. (2010, 2011) by employing Gurtin-Murdoch 
surface elasticity. Recently, Sendova and Walton (2010) examined mode-I 
crack in an infinite elastic medium with different models of surface energy 
effects such as constant surface tension model and curvature dependent 
surface tension model. For the case of constant surface tension, they 
proposed that the stress singularity at the crack tip is reduced to logarithmic 
singular, whereas, the finite stress at the crack tip is observed for the case of 
curvature dependent surface tension. In addition, the logarithmic stress 



 10 

singularity was also perceived in the analysis of crack problems based upon 
Gurtin-Murdoch theory of surface elasticity by Kim et al. (2012). A review of 
literature indicates that the influence of surface energy effects on the elastic 
field in crack problem is still unclear especially in the vicinity of crack tip, 
moreover, all existing studies related to crack problems with the consideration 
of surface stresses are concerned with the analysis of plane problems. 
Therefore a rigorous analysis of three dimensional crack with the presence of 
surface energy effects could provide fundamental understanding of fracture 
mechanics in nanoscale systems.   

Study on dislocations in an elastic solid has also received wide 
attentions among mechanics researches. The presence of dislocations 
strongly affects mechanical properties of materials. However, papers on 
dislocation problems with the consideration of surface energy effects are very 
limited in the literature. For example, the mechanics of dislocation problem 
was investigated for screw dislocations in Molybdenum and Tantalum by 
performing atomistic simulation (Woodward and Rao, 2001). Recently, Shodja 
et al. (2010) examined the behavior of a screw dislocation inside a nanotube 
with the consideration surface energy effects based on Gurtin-Murdoch theory 
of surface elasticity.  The solutions of dislocation have important application in 
various problems such as fracture mechanics (Bilby and Eshelby, 1968). 
Gross (1982) developed the displacement discontinuity method (DDM), which 
is an indirect boundary element method based on the solutions for distributed 
dislocations (Crouch and Starfield, 1983). Such techniques can be adopted to 
investigate fracture problems involving complicated geometry and boundary 
conditions. Based on literature survey, the fundamental solutions for shear 
and opening dislocations in an elastic half-plane with the consideration of 
surface stresses, which can be employed in the DDM formulation to analyze 
the special problem of cracks in an elastic half-plane, do not exist. 

 



CHAPTER III 
 

BASIC EQUATIONS AND GENERAL SOLUTIONS  
 
 

 In this chapter, the basic equations of classical continuum mechanics with 
considering surface stress effects based on Gurtin-Murdoch continuum theory of 
surface elasticity are presented. The general solutions for plane strain and 
axisymmetric problems are then obtained by solving the governing equations 
through the applications of Fourier and Hankel integral transforms respectively. 
These general solutions will be employed to derive the fundamental solutions of 
an isotropic elastic layer under internal or surface loading, as well as dislocation 
and crack problems in the subsequent chapters.  

3.1 Basic Equations of Continuum with Surface Stresses  

According to Gurtin-Murdoch continuum model of surface elasticity, for an 
isotropic elastic material, the surface stress effects are accounted for by 
considering the surface of a solid as a thin layer with negligibly thickness 
adhering to the underlying bulk material without slipping. The material constants 
of the surface are different from those of the bulk material. The surface stress 
effects are displayed in the set of non-classical boundary conditions. These 
boundary conditions and the surface stress-strain relation together with the 
classical elasticity equations form a coupled system of field equations. In the 
bulk, the governing equations are the same as those in classical elasticity. In 
addition, on the surface (or interface), the generalized Young-Laplace equation 
(Povstenko ,1993)  and a set of constitutive relations have to be satisfied. The 
basic equations for small displacements and infinitesimal strains of a continuum 
with surface stress effects can then be established based on the Gurtin-Murdoch 
model.  

In the absence of body forces, the equilibrium equation, constitutive 
relation, and strain-displacement relationship of the bulk material are given 
respectively by 
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0, jij    (3.1a) 

kkijijij   2    (3.1b) 

 , ,

1

2ij i j j iu u        (3.1c) 

where ij , ij  and iu  denote the components of stress, strain and displacement 
tensors respectively. In addition,   and   are Lamé constants of the bulk 
material. 

On the surface, the generalized Young-Laplace equation (Povstenko, 
1993), surface constitutive relations and strain-displacement relationship can be 
expressed as (Gurtin and Murdoch, 1975; Gurtin and Murdoch, 1978; Gurtin et 
al., 1998), 

0
, 0s

i ij j in t      (3.2a) 

    ,2s s s s s s s su                      ; 3 3,
s s su    (3.2b) 

 , ,

1
=

2
s s su u       (3.2c) 

where the superscript ‘ s ’ is used to denote the quantities corresponding to the 
surface; s  and s  are surface Lamé constants; s  is the residual surface 
stress (or surface tension) under unstrained condition; in  denotes the 
components of the unit normal vector of the surface and 0

it  denotes the 
prescribed traction on the surface. It is noted that the value of s  is constant for 
a given surface orientation of a pure metal/semiconductor at a specific 
temperature (Zhao and Rajapakse 2009). 

 In the above equations, Greek subscripts denote the field quantities 
associated with the surface and take the value of 1 or 2, while the Latin 
subscripts adopt values from 1 to 3. A majority of existing studies based on the 
Gurtin-Murdoch theory has formulated the problems in undeformed configuration 
due to the assumption of infinitesimal deformations thus the out-of-plane 
component of surface stresses given by the second equation in Eq. (3.2b) is 
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normally ignored. The term 3,
su   can simply be viewed as the out-of-plane 

component of the pre-existing surface tension s  in the deformed configuration 
whereas the surface gradient of the displacement 3,u   act as the out-of-plane 
component of the unit vector tangent to the surface in the deformed state. While 
the component 3,

su   has physical meaning only in the deformed state and 
identically vanishes in the undeformed configuration, its contribution to the 
constitutive equation, Eq. (3.2b), is of the same order as other terms. As recently 
pointed out by Wang et al. (2010), these out-of-plane terms could become 
significant even in the case of small deformations. 

 In this study, the fundamental problems are considered for the case of 
plane strain and axisymmetric problems. The equilibrium equations, constitutive 
law and strain-displacement relations for the bulk and the surface material can be 
specialized for each case as follows: 

 3.1.1 Basic Equations for Plane Problems 

 In the case that the deformations under consideration are assumed as 
plane strain in the xz -plane, i.e. xy  = yy  = yz  = 0, basic equations of the bulk 
material in Eqs. (3.1a) to (3.1c) can be expressed in a Cartesian coordinate as 

0xx xz

x z

  
 

 
 (3.3a) 

0zx zz

x z

  
 

 
 (3.3b) 

( 2 )xx xx zz        (3.3c) 

( 2 )zz zz xx        (3.3d) 

2xz zx xz     (3.3e) 

x
xx

u

x
 




 (3.3f) 

z
zz

u

z
 




 (3.3g) 
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1

2
z x

xz zx

u u

x z
         

 (3.3h) 

 On the surface, the basic equations in Eqs. (3.2a) to (3.2c) for the case of 
flat surface are given by 

0
0 0

s
xx

xz z xtx

  


  


 (3.4a) 

0
0 0

s
zx

zz z ztx

  


  


 (3.4b) 

s s s s
xx xx      (3.4c) 

s
s s z
zx

du

dx
   (3.4d) 

s
s x
xx

du

dx
   (3.4e) 

where 2s s s     

 3.1.2 Basic Equations for Axisymmetric Problems 

 In the case that the deformations under consideration are rotationally 
symmetric about the z -axis, the corresponding elastic fields are described in a 
cylindrical coordinate ( , ,r z ). It is noted that the responses of the elastic solid 
are independent of  , i.e. r  = z  = 0. For the bulk material, basic equations in 
Eqs. (3.1a) to (3.1c) can be expressed in a cylindrical coordinate as 

0rr rz rr

r z r
     

  
 

 (3.5a) 

0rz zz rz

r z r

   
  

 
 (3.5b) 

( 2 )rr rr zz          (3.5c) 

( 2 )rr zz           (3.5d) 

( 2 )zz rr zz          (3.5e) 

2rz zr rz     (3.5f) 
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r
rr

u

r
 




 (3.5g) 

ru

r    (3.5h) 

z
zz

u

z
 




 (3.5i) 

1
( )

2
r z

rz zr

u u

z r
   

  
 

 (3.5j) 

 On the surface, the basic equations in Eqs. (3.2a) to (3.2c) for the case of 
flat surface are given by 

0

0
0

s s s
rr rr

zr rz

d
t

dr r
   




     (3.6a) 

0

0
0

s s
zr zr

zz zz

d
t

dr r

  


     (3.6b) 

(2 ) ( )s s s s s s s s
rr rr              (3.6c) 

(2 ) ( )s s s s s s s s
rr              (3.6d) 

s
s s z
zr

du

dr
   (3.6e) 

s
s r
rr

du

dr
   (3.6f) 

s
s ru

r   (3.6g) 

3.2 General Solutions for Bulk Materials 

 3.2.1 General Solutions for Plane Problems  

For the plane strain case, the solution for the bulk material can be 
obtained by solving the two-dimensional biharmonic equation, 

2 2
1 1 0     (3.7) 

where  2
1  denotes the two-dimensional Laplacian operator, 

2 2
2
1 2 2x y

 
  

 
; and 

  denotes Airy stress function. 
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 By applying Fourier integral transform into Eq. (3.7), we then obtain 

22
2 2 2
1 1 2

( , ) 0i x d
e dx z

dz
  





 
      

 
  (3.8) 

where ( , ) i xz e dx 
   . The general solution of above equation may be 

written in the following form  

( , ) ( ) ( )z zz A Bz e C Dz e        (3.9) 

where A , B , C  and D  are arbitrary functions that can be determined from the 
boundary conditions. 

 Therefore, the general solutions for the bulk stresses and displacements 
of a two-dimensional elastic solid can be expressed with respect to a Cartesian 
coordinate system as (Sneddon 1951), 

21

2
i x

zz e d  


 


    (3.10a) 
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i x

xx

d
e d

dz
 


 




   (3.10b) 
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i x

xz

d
i e d

dz
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
 
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
   (3.10c) 
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3 2
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8
i x

z

d d d
u e

dz dz
     

   
 



  
      

  (3.10d) 

   
2

2
2

1
2

8
i x

x

d d
u ie

dz
   

   
 



 
      

  (3.10e) 

 3.2.2 General Solutions for Axisymmetric Problems  

For the axisymmetric case, the solution for the bulk material can be 
obtained by solving the following biharmonic equation in a cylindrical coordinate 
system. 

2 2 0      (3.11) 
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where 2  denotes the Laplacian operator in a cylindrical coordinate, 
  

   
  

2 22 2 21
r r r z

; and   is Love’s strain potential. 

 By applying Hankel integral transform into Eq. (3.11), we obtain, 

 
22

2 2 2
0 20

'( , ) 0
d

r J r dr z
dz

  
  
       

 
  (3.12) 

where  00
'( , )z r J r dr 


    and  nJ   denotes the Bessel functions of the 

first kind of order n . The general solution of above equation may be written in the 
form  

'( , ) ( ' ' ) ( ' ' )z zz A B z e C D z e        (3.13) 

where 'A , 'B , 'C  and 'D  are arbitrary functions that can be determined from 
the boundary conditions. 

 Therefore, the general solutions for bulk stresses and displacements of an 
elastic solid can be expressed with respect to a cylindrical coordinate system as 
(Sneddon, 1951; Selvadurai, 2000) 
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CHAPTER IV 
 

INTERNALLY LOADED ELASTIC LAYER 
 
 

 In this chapter, the fundamental solutions of an isotropic elastic layer of 
finite thickness bonded to a rigid material base is derived with the consideration 
of surface stresses by employing Gurtin-Murdoch continuum theory of elastic 
material surfaces. The boundary value problems corresponding to buried vertical 
and horizontal loads with non-classical boundary conditions due to surface 
stresses are solved by using Fourier integral transform technique for the case of 
plane problems. In addition, the fundamental solutions corresponding to 
axisymmetric surface vertical and horizontal loads are determined by the 
application of Hankel integral transform technique. Selected numerical results are 
presented to portray the influence of surface stresses on the elastic field. 

4.1 Fundamental Solutions for Plane Problems 

Consider a two-dimensional elastic layer of finite thickness t  bonded to a 
rigid base, and subjected to vertical and horizontal loading at a depth h  below 
the free surface as shown in Figure 4.1(a). The solutions for the problem shown in 
Figure 4.1(a) can be derived by dividing the elastic layer into two sub-domains. 
The sub-domain ‘1’ corresponds to the region where 0 z h   and the sub-
domain ‘ 2 ’ corresponds to the region where h z t  . The general solutions of 
the sub-domain ‘1’ are given by Eqs. (3.10a) to (3.10e) whereas the general 
solutions of the sub-domain ‘ 2 ’ are also given by Eqs. (3.10a) to (3.10e) with the 
arbitrary functions A  to D  being replaced by E  to H  respectively. A 
superscript ‘ i ’ ( i  = 1, 2 ) is used hereafter to denote quantities associated with 
each sub-domain. The arbitrary functions A  to H  corresponding to each sub-
domain can be obtained by solving the following boundary value problem. 
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 
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 

 (4.1a) 
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(1)
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0

0
s
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zx z

z

d d u
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 



 
   
 

 (4.1b) 

 (1) (2) zz zzz h z h
p x   

   (4.1c) 

 (1) (2) zx zxz h z h
q x   

   (4.1d) 
(1) (2)
z zz h z h

u u  
   (4.1e) 

(1) (2)
x xz h z h

u u  
   (4.1f) 

(2) 0z z tu     (4.1g) 
(2) 0x z tu     (4.1h) 

where 2s s s     is a surface material constant;  p x  and  q x  denote the 
jump of the normal traction and shear traction across the plane z h  due to the 
applied internal vertical and horizontal loads respectively (see Figure 4.1(a)).  

 It should be noted that both Eqs. (4.1a) and (4.1b) are non-classical 
boundary conditions obtained from Eqs. (3.4a) and (3.4b). In addition, Eq. (4.1a) 
contains the out-of-plane component of surface stresses associated with residual 
surface stress, which has generally been ignored in previous studies. For a flat 
surface, it can be seen from Eqs. (4.1a) and (4.1b) that the influence of residual 
surface stress s  will be neglected if the out-of-plane component of surface 
stresses is disregarded (the second term on the left-hand side of Eq. (4.1a) 
vanishes) and the residual surface stress is assumed to be constant. In view of 
Eqs. (3.10a) to (3.10e), the following set of linear simultaneous equations for 
determining the arbitrary functions can be constituted by applying Fourier 
integral transform to Eqs. (4.1a) to (4.1h) together with the assumption that the 
residual surface stress is constant.  

 
 1 1 0

2 2 2

  
 

   
     



   
   
   

s

s sA B D C  (4.2a) 
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 
 

2 2
1 1 1 1 0

2 2 2 2

     
       

       

 
       

 

      
            

s s s sA B C D  (4.2b) 

         
2

    


        h h h h p

A E e B F he C G e D H eh  (4.2c) 

           
1 1    

   


          h h h h iq
A E e h B F e C G e h D H e  (4.2d) 

        0    
   

   
          

 

   
   
   

h h h hA E e h B F e C G e h D H e  (4.2e) 
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   
   

  
         

 

   
   
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2 2
0      

   
   

  
     

 

   
   
   

t t t tEe t Fe Ge t He  (4.2h) 

where  p  and  q  are the Fourier transforms of  p x  and  q x  respectively 
and are given by  

    i xp p x e dx



    (4.3a) 

    i xq q x e dx



    (4.3b) 

 By solving the set of linear simultaneous equations displayed in Eqs. 
(4.2a) to (4.2h), the following solutions are obtained for the arbitrary functions A  
to H . 

 p qA iA
A

I


 ;  p qB iB

B
I


     (4.4a) 

 p qC iC
C

I


 ;  p qD iD

D
I


  (4.4b) 

 p qE iE
E

I


 ;  p qF iF

F
I


  (4.4c) 

 p qG iG
G

I


 ;  p qH iH

H
I


  (4.4d) 
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where the explicit expressions of pA , qA , pB , qB , pC , qC , pD , qD , pE , qE , 

pF , qF , pG , qG , pH , qH  and I  are given in the Appendix. 

In the following subsections, the explicit expressions of the arbitrary 
functions for the special cases of surface loading ( 0h  ) and a semi-infinite 
medium ( t  ) are presented. 

4.1.1 Surface Loading on Finite Thickness Layer 

The surface loading of a nanoscale layer has many practical applications. 
The elastic field corresponding to this case can be obtained by taking the limit of 

0h   in Eqs. (4.4a) to (4.4d). The corresponding arbitrary functions are given 
by Eqs. (4.4a) and (4.4b) with iA  to iD  ( ,i p q ) defined as follows: 
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 The fundamental solutions corresponding to an elastic layer subjected to 
a vertical line load 0P  and a horizontal line load 0Q  can be obtained by 
substituting   0p P   and   0q Q   in the above solutions.  

 For the cases of vertical strip load of constant magnitude 0p  and 
horizontal strip load of constant magnitude 0q  over the region a x a   , 

   
0

2sin a
p p





   (4.6a) 

   
0

2sin a
q q





   (4.6b) 

 Note that     2 2sΛ          is a parameter with a dimension of 
length. This parameter can be viewed as a material characteristic length that 
represents the influence of surface stress. It is clear from the above solutions that 
the influence of surface stresses does not only come from the surface material 
constant s  (or  ) but also from the residual surface stress s . In the absence 
of surface stress effects,   and s  vanish and the above solutions reduce to the 
classical elasticity solutions (Pickett, 1938). 

The elastic field of a semi-infinite medium under surface loading can 
readily be obtained from the solutions in Eqs. (4.4a) and (4.4b), with iA  to iD  
( i = ,p q ) given by Eqs. (4.5a) to (4.5h), by taking the limit of t  . Note that the 
arbitrary functions C  and D  0  to ensure the regularity of the solutions at 
infinity. In the case of the vertical load, the arbitrary functions A  and B  take the 
form, 
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where 
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 In the case of the horizontal loading, 
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4.1.2 Internal Loading in Semi-infinite Medium 

The stress and displacement fields of a semi-infinite medium under 
vertical and horizontal loads applied at a depth h  below free surface can also be 
obtained from the solutions in Eqs. (4.4a) to (4.4d) by taking the limit of t  . 
Note that the arbitrary functions G  and H  0  to ensure the regularity of the 
solutions at infinity. The corresponding arbitrary functions A  to F  can be 
specialized to the case of a half-plane subjected to internal vertical load as 
follows: 
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In the case of the internal horizontal loading, the arbitrary functions A to F 
take the form, 
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4.2 Fundamental Solutions for Axisymmetric Problems 

Consider a three-dimensional elastic layer of finite thickness t  bonded to 
a rigid base, and subjected to axisymmetric vertical and tangential loading at a 
depth h  below the free surface as shown in Figure 4.1(b). Similar to the case of 
plane problems, the corresponding solutions of elastic fields can be derived by 
dividing the elastic layer into two sub-domains. The sub-domain ‘1’ corresponds 
to the region where 0 z h   and the sub-domain ‘ 2 ’ corresponds to the region 
where h z t  . The general solutions of the sub-domain ‘1’ are given by Eqs. 
(3.14a) to (3.14f) whereas the general solutions of the sub-domain ‘ 2 ’ are also 
given by Eqs. (3.14a) to (3.14f) with the arbitrary functions 'A  to 'D  being 
replaced by 'E  to 'H  respectively. A superscript ‘ i ’ ( i  = 1, 2 ) is used hereafter 
to denote quantities associated with each sub-domain. The arbitrary functions 'A  
to 'H  corresponding to each sub-domain can be obtained by solving the 
following boundary value problem. 
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 (1) (2) zz zzz h z h
p r   

   (4.12c) 

 (1) (2) rz rzz h z h
q r   

   (4.12d) 

(1) (2)
z zz h z h

u u  
   (4.12e) 

(1) (2)
r rz h z h

u u  
   (4.12f) 

(2) 0z z tu     (4.12g) 
(2) 0r z tu     (4.12h) 

where  p r  and  q r  denote the jump of the normal traction and shear traction 
across the plane z h  due to the applied internal vertical and tangential loads 
respectively. 

 It should be noted that, similarly to the case of plane problems, the effect 
of surface stresses are only appeared in the equilibrium equations of the normal 
and shear stresses on the surface of an elastic layer (Eqs. (4.12a) and (4.12b)). 
The corresponding arbitrary functions 'A  to 'H  to determine the solutions of 
stresses and displacements can be obtained by solving a set of linear 
simultaneous equations constituted by applying Hankel integral transforms to 
Eqs. (4.12a) to (4.12h). 

 In this section, only the solutions for the case of surface vertical and 
tangential loading on an elastic layer of finite thickness are presented since it has 
many practical applications, such as indentation and other contact problems. 
Consider a three-dimensional elastic layer of finite thickness t  bonded to a rigid 
base, and subjected to axisymmetric surface loads as shown in Figure 4.1(b) with 
h  = 0. The corresponding solutions of stresses and displacements can be 
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determined from Eqs. (3.14a) to (3.14f) with the arbitrary functions 'A  to 'D  
obtained by solving the following boundary value problem. 
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0z z tu     (4.13c) 

0r z tu     (4.13d) 

 In view of Eqs. (3.14a) to (3.14f), the following set of linear simultaneous 
equations for determining the arbitrary functions can be constituted by applying 
Hankel integral transforms to Eqs. (4.13a) to (4.13d) together with the assumption 
that the residual surface stress is constant. 
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where  'p   and  'q   are the Hankel transforms of  p r  and  q r  
respectively and are given by  

     00
'p rp r J r dr 


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     10
'q rq r J r dr 


   (4.15b) 

 By solving the set of linear simultaneous equations displayed in Eqs. 
(4.12a) to (4.12d), the following solutions are obtained for the arbitrary functions 

'A  to 'D . 
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 The elastic field of a semi-infinite medium under surface loading can 
readily be obtained from the solutions in Eqs. (4.16a) and (4.16d), by taking the 
limit of t  . Note that the arbitrary functions 'C  and 'D  0  to ensure the 
regularity of the solutions at infinity. In the case of the vertical load, the arbitrary 
functions 'A  and 'B  take the form, 
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where 
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 (4.19) 

 In the case of the horizontal loading, 
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4.3 Numerical Results 

The complete fundamental solutions for displacements and stresses are 
given by Eqs. (3.10a) to (3.10e) with the solutions for arbitrary functions given by 
Eqs. (4.4a) to (4.4d) for the case of plane problems, whereas for the case of 
axisymmetric problems the solutions are given by Eqs. (3.14a) to (3.14f) with the 
solutions for arbitrary functions given by Eqs. (4.16a) to (4.16d). It is noted that 
the solutions for displacements and stresses for the case of plane problems 
given by Eqs. (3.10a) to (3.10e) can be reduced to semi-infinite integrals due to 
the even or odd behavior of the integrand with respect to  . A closed-form 
solution for both cases cannot be obtained due to the complexity of the 
integrands. Therefore, it is proposed to employ an accurate numerical scheme to 
evaluate these integrals. In this study, the integrals are evaluated by using 
globally adaptive numerical quadrature scheme based on 21-point Gauss-
Kronrod rule (Piessens 1983). The surface elastic constants can be obtained by 
using atomistic simulations (Miller and Shenoy 2000, Shenoy 2005, Dingreville 
and Qu 2007). It is convenient to introduce the non-dimensional coordinates, 

0x x /   and 0z z /   for the case of plane problems and 0r r /   for the 
case of axisymmetric problems, in the numerical study. The numerical results in 
the present study correspond to the case of an elastic layer subjected to a 
distributed load applied over a strip a x a   . In addition, a hypothetical 
material with    = 2.226 and   = 1 nm are considered, and s  = 5 N/m is 
used to demonstrate the influence of residual surface stress. 

 4.3.1 Plane Problems 

Figures 4.2 to 4.7 demonstrate the influence of surface elasticity and 
residual surface stress on the stress field of an elastic layer with very large value 
of t  (a half-plane) under different loading cases. Figures 4.2 and 4.3 show the 
variation of non-dimensional stresses along the x -direction of a half-plane at 
various depths under a uniform vertical strip load of magnitude 0p  and a 
horizontal strip load of magnitude 0q  respectively applied at the surface. A non-
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dimensional load width, 0a = a = 1, is used in the numerical study. Only the 
solutions along the positive x-axis are presented due to the symmetry or anti-
symmetry of the solutions about the z -axis.  

 The influence of surface elasticity on an identical problem was previously 
examined by Zhao and Rajapakse (2009) by ignoring the out-of-plane component 
of surface stresses. The dotted lines denote the classical elasticity solutions 
corresponding to zero surface stress (i.e. s  = s  = 0) and the dash lines denote 
the solutions that neglect the out-of-plane component of surface stresses (Zhao 
and Rajapakse, 2009), which also disregard the influence of residual surface 
stress ( s ) as previously discussed. It is evident from the figures that the 
influence of residual surface stress is more significant in the case of vertical strip 
load when compared to the horizontal strip load case. On the contrary, the 
influence of surface elasticity is more evident in the case of horizontal loading. It 
is also found that for the case of horizontal loading the influence of residual 
surface stress is negligible on horizontal normal and shear stresses but more 
evident on vertical normal stress, whereas in the case of vertical strip load all 
stress components depend significantly on the residual surface stress. This 
behavior can be described from the fact that the residual surface stress appears 
in the equilibrium equation of the vertical normal stress, Eq. (4.1a), but 
apparently vanishes in the shear stress equation, Eq. (4.1b), due to the 
assumption that the residual surface stress is constant. As expected, the 
influence of residual surface stress becomes significant only in a local region 
near the surface (i.e. 0z  < 2.0 for the vertical loading and 0z  < 1.0 for the 
horizontal loading) and would diminish with the distance from the free surface. In 
addition, the influence of the residual surface stress becomes negligible when 

0 0x a  > 4. 

 To investigate the influence of the surface material parameter   and the 
residual surface stress s , the non-dimensional stress profiles along the x -
direction of a half-plane due to a uniform vertical strip load 0p  are shown in 
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Figure 4.4 for different values of   and in Figure 4.5 for different values of s  
respectively. Note that in Figures 4.4 and 4.5 stresses are calculated at 0z  = 0.1. 
In Figure 4.4, the non-dimensional stresses are presented for a hypothetical 
material with the surface material parameter 1  being varied from 0 to 100 , 
whereas the residual surface stress parameter ( s ) is unchanged. It can be seen 
from the figure that the free surface is stiffer with increasing values of 1  

resulting in the reduction of the stresses in the layer. The influence of the residual 
surface stress in Figure 4.5 shows a similar trend to Figure 4.4. It can be seen 
from Figure 4.5 that all bulk stress components decrease when residual surface 
stress ( s ) increases from 0 to 100 N/m.  

 Figures 4.6 and 4.7 show the variation of non-dimensional stresses along 
the z -axis of an elastic half-plane subjected to an internal vertical strip load 0p  
and an internal horizontal strip load 0q  over a region 2 a  (with 0a  = 1) at various 
depths. A non-dimensional quantity, 0h  = h  , is used in the numerical analysis. 
Numerical results shown in Figures 4.6 and 4.7 indicate that the stresses 
increase when approaching the plane of applied loading. A discontinuity in both 
vertical and horizontal stresses is observed at the level where the vertical strip 
load is applied, whereas for the case of a horizontal strip load the shear stress is 
discontinuous at the loading plane. It is found that the residual surface stress 
shows more significant influence on the stress field in the case of a vertical strip 
loading, especially at points closer to the free surface ( 0z  < 2) when compared to 
the case of a horizontal strip loading. It should be noted that the vertical stress  
in Figure 4.6 is no longer zero at the surface due to the presence of the residual 
surface stress. 

To investigate the influence of layer thickness, the profiles of non-
dimensional stresses in elastic layers of different thicknesses bonded to a rigid 
base and subjected to uniformly distributed vertical strip load 0p  and horizontal 
strip load 0q  over a region 2 a  (with 0a  = 1) at the free surface are presented in 
Figures 4.8 and 4.9 respectively. In this case, it is convenient to define the non-



    32 

dimensional layer thickness, 0t  = t  . Once again, the residual surface stress 
shows more significant influence in the case of a vertical strip load when 
compared to a horizontal strip load. It is clear from these figures that the 
thickness of a layer has a significant influence on the stress field for both 
classical and non-classical cases. The stresses in both cases are mainly 
compressive and decrease with increasing layer thickness, except for the 
horizontal stresses under vertical strip load in Figure 4.8(b), in which tensile 
stresses are also noted for layers with finite thickness. 

 4.3.2 Axisymmetric Problems 

 Figures 4.10 to 4.13 demonstrate the influence of surface elasticity and 
residual surface stress on the displacement fields of an elastic layer with finite 
thickness under surface axisymmetric vertical and tangential loading. Since an 
arbitrary axisymmetric load can be approximated by the summation of 

axisymmetric polynomial functions, 1

1

( ) m
m

m

p r r






   , elastic fields of an elastic 

layer under arbitrary axisymmetric load can be obtained by superposition 
techniques. Figures 4.10 to 4.12 show the variation of normalized displacements 
along the z -direction of an elastic layer with finite thickness 0 0/t a = 5 at 0 0/r a = 
0.5 under a parabolic vertical load 2 2

0( ) /p r p r a  and tangential load 
2 2

0( ) /q r q r a , and a uniformly distributed vertical load of magnitude 0p  in a 
circular region of radius a  respectively. The normalized displacements are 
presented for different values of a .i.e. 0a = a = 0.5, 1 and 1.5. Numerical results 
shown in Figures 4.10 and 4.11 indicate that, similar to the case of plane 
problems, the residual surface stress shows more significant influence for the 
case of vertically applied load whereas the surface elasticity shows more 
significant influence for the case of tangential load. It is also found that for the 
case of tangential loading the influence of residual surface stress is negligible on 
radial displacement but more evident on vertical displacement, whereas in the 
case of vertical loading both vertical and radial displacements depend 
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significantly on the residual surface stress. The normalized displacements under 
a uniformly distributed vertical load presented in Figure 4.12 show similar trends 
when compared to the displacements under a parabolic vertical load presented 
in Figure 4.10 except that the maximum negative value of radial displacement 
under uniform loading is located at the surface. It can be seen from the figures 
that an elastic layer becomes stiffer with the presence of surface stress. In 
addition, all displacements reduce to zero when approach the bottom of the 
layer. It is obvious from the figures that, with the consideration of surface 
stresses, normalized displacements show the size-dependent behavior and the 
influence of surface stresses becomes more significant when the radius of 
applied load decreases. 

 In Figure 4.13, normalized vertical displacements of an elastic layer with 
finite thickness 0 0/t a  = 5 subjected to a parabolic vertical load 2 2

0( ) /p r p r a  
are presented at various depths with 0r = 0 for different values of a .It is observed 
from the figure that the influence of surface stress decreases when 0a  increases 
and the solution will converge to the classical solution.  Figure 4.14 demonstrate 
the influence of surface elasticity and residual surface stress on the stress field of 
an elastic layer with finite thickness 0 0/t a  = 5 under surface axisymmetric vertical 
loading. Figures 4.14 show the variation of non-dimensional stresses along the r -
direction of a layer at various depths under a parabolic distributed vertical load 

2 2
0( ) /p r p r a  in a circular region of radius a  for 0a = a = 1. Similar to the case 

of plane problems, all stress components depend significantly on the surface 
stresses especially in the plane near the surface, i.e. 0z  < 2, In addition, the 
influence of the residual surface stress becomes negligible when 0 0r a  > 4. 
Numerical results shown in Figures 4.2 to 4.14 confirm the fact that the influence 
of the surface stresses is significant in the analysis of the problems involving 
nanoscale layers or soft elastic materials and cannot be ignored. 
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4.4 Conclusion 

A theoretical formulation based on the Gurtin-Murdoch continuum theory 
of elastic material surfaces is presented to study the elastic response of a 
nanoscale layer under two-dimensional and three-dimensional axisymmetric 
loading. An important aspect of the present study is the consideration of the out-
of-plane term of the surface displacement gradient in the formulation. It is shown 
that the elastic field can be solved explicitly for the case of plane problems and 
axisymmetric problems by using Fourier and Hankel integral transform 
techniques respectively. The final solution is expressed in terms of semi-infinite 
integrals that can be accurately computed by employing a numerical quadrature 
scheme. It is found from the analytical solution and numerical results that the 
effects of the surface energy on the elastic field are characterized by both the 
characteristic length parameter   that is related to the surface and bulk elastic 
moduli and the residual surface stress ( s ). As expected, the influence of the 
surface elasticity and the residual surface stress becomes more significant in the 
vicinity of the layer surface. Numerical results also indicate that increasing   
and s  result in a decrease in bulk stresses and displacements. In addition, 
unlike in the classical elasticity approach, the behavior of the material becomes 
size-dependent when the surface stress is considered. The fundamental solutions 
presented in this study can be used to examine a variety of practical problems 
involving nanoscale/soft material systems and to develop boundary integral 
equations methods for such systems. 
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Figure 4.1 An isotropic elastic layer subjected to internal vertical and tangential 
loading: (a) plane strain case (b) axisymmetric case.  

 (a) 

 (b) 
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Figure 4.2 Non-dimensional stress profiles of a half-plane under vertical surface 
load: (a) Vertical stress (b) Horizontal stress (c) Shear stress.  

(c) 

(b) 

(a) 
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Figure 4.3 Non-dimensional stress profiles of a half-plane under horizontal 
surface load: (a) Vertical stress (b) Horizontal stress (c) Shear stress.  

(c) 

(b) 

(a) 
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Figure 4.4 Non-dimensional stress profiles of a half-plane at 0z  = 0.1 under 
vertical surface load for different surface material constants ( ): (a) Vertical 

stress (b) Horizontal stress (c) Shear stress. 

(c) 

(b) 

(a) 
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Figure 4.5 Non-dimensional stress profiles of a half-plane at 0z  = 0.1 under 
vertical surface load for different residual surface stresses ( s ): (a) Vertical 

stress (b) Horizontal stress (c) Shear stress. 

(c) 

(b) 

(a) 
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Figure 4.6 Non-dimensional stress profiles along the z -axis of a half-plane under 
internal vertical load: (a) Vertical stress (b) Horizontal stress. 

 
 

Figure 4.7 Non-dimensional shear stress profiles along the z -axis of a half-plane 
under internal horizontal load. 

 (a)  (b) 
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Figure 4.8 Non-dimensional stress profiles along the z -axis of a finite thickness 
layer under vertical surface load: (a) Vertical stress (b) Horizontal stress. 
 

 
 

Figure 4.9 Non-dimensional shear stress along the z -axis of a finite thickness 
layer under horizontal surface load. 

 (a)  (b) 
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Figure 4.10 Normalized displacement profiles at 0 0/r a = 0.5 of a layer with finite 

thickness 0 0/t a = 5 under parabolic vertical load at the surface: (a) Vertical 
displacement (b) Radial displacement. 

 
 

Figure 4.11 Normalized displacement profiles at 0 0/r a = 0.5 of a layer with finite 
thickness 0 0/t a = 5 under parabolic tangential load at the surface: (a) Vertical 

displacement (b) Radial displacement. 

 (a)  (b) 

 (a)  (b) 
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Figure 4.12 Normalized displacement profiles at 0 0/r a = 0.5 of a layer with finite 
thickness 0 0/t a = 5 under uniformly distributed vertical load at the surface: (a) 

Vertical displacement (b) Radial displacement. 
 

 
 

Figure 4.13 Normalized vertical displacement at 0r = 0 of a layer with finite 
thickness 0 0/t a = 5 under parabolic vertical load at the surface. 

 (a)  (b) 
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Figure 4.14 Non-dimensional stress profiles of a layer with finite thickness 0 0/t a = 
5 under parabolic vertical load at the surface: (a) Vertical stress (b) Radial stress 

(c) Shear stress. 

(c) 

(b) 

(a) 



CHAPTER V 
 

DISLOCATIONS AND CRACK IN ELASTIC MEDIUM 
 
 

 In this chapter, the fundamental solutions of an isotropic elastic medium 
involving defects, i.e. dislocations and crack, are derived with the consideration 
of the influence of surface stresses by employing Gurtin-Murdoch continuum 
theory of elastic material surfaces. The boundary value problems corresponding 
to shear (gliding edge) and opening (climbing edge) dislocations in an elastic 
half-plane are solved by using Fourier integral transform technique. In addition, a 
penny-shaped crack in an infinite elastic medium is investigated for mode-I crack 
by the application of Hankel integral transform technique. Selected numerical 
results are presented to portray the influence of surface stresses on these 
problems. 

5.1 Dislocations in Semi-Infinite Elastic Medium 

Consider an elastic half-plane with shear (gliding edge) and opening 
(climbing edge) dislocations located at a depth h  below the free surface as 
shown in Figure 5.1. The solution to this problem can be derived by considering 
the half-plane as a two sub-domain. The sub-domain ‘1’ corresponds to the 
region where 0 z h   and the sub-domain ‘ 2 ’ corresponds to the region where 

h z   . The general solutions of sub-domain ‘1’ are given by Eqs. (3.10a) to 
(3.10e) whereas the general solution of sub-domain ‘ 2 ’ are also given by Eqs. 
(3.10a) to (3.10e) with C  and D  0  to satisfy the regularity conditions at infinity, 
and the constants A  and B  being replaced by E  and F  respectively. A 
superscript ‘ i ’ ( i  = 1, 2 ) is used hereafter to denote the quantities associated 
with each sub-domain. The arbitrary functions A  to F  corresponding to each 
sub-domain can be obtained by solving the following boundary value problem. 
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(1) (2)= zz zzz h z h
   

  (5.1c) 

(1) (2)= zx zxz h z h
   

  (5.1d) 
(2) (1) ( )z z zz h z h

u u b H x  
    (5.1e) 

(2) (1) ( )x x xz h z h
u u b H x  

    (5.1f) 

where ( , )b x z    denotes the magnitude of the dislocations, which are the 
components of the Burger’s vector; and ( )H x  denotes the unit step function. 

It should be noted that both Eqs. (5.1a) and (5.1b) are non-classical 
boundary conditions obtained from Eqs. (3.4a) and (3.4b). Application of Fourier 
integral transforms to Eqs. (5.1a) to (5.1f) together with the assumption that 
residual surface stress is constant and the substitution of Eqs. (3.10a) to (3.10e) 
yield, 
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The following solutions are obtained for the arbitrary functions A , B , C , 
D , E  and F  by solving a set of linear simultaneous equations presented above. 
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5.1.1 Shear Dislocation 

The arbitrary functions corresponding to the shear dislocation of intensity 

xb  are 
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where   is given by Eq.(4.8) 

5.1.2 Opening Dislocation 

The arbitrary functions corresponding to the opening dislocation of 
intensity zb  are 
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From the above solutions, it is evident that the elastic field of the half-
plane is influenced by both surface material constant s  (or  ) and residual 
surface stress s . Note that Λ  and s  vanish in the absence of surface stresses 
and the above solutions reduce to the classical elasticity solutions. 

 5.1.3 Numerical Results 

The complete fundamental solutions for displacements and stresses 
corresponding to shear and opening dislocations are given by Eqs. (3.10a) to 
(3.10e) with the solutions for arbitrary functions, A to F, given by Eqs. (5.3a) to 
(5.3f) and (5.4a) to (5.4f). The solutions for displacements and stresses given by 
Eqs. (3.10a) to (3.10e) can be reduced to semi-infinite integrals due to the even 
or odd behavior of the integrand with respect to  . Since, closed-form solutions 
cannot be obtained similar to the case of internally loaded elastic layer in 
Chapter 4, the numerical quadrature scheme based on 21-point Gauss-Kronrod 
rule (Piessens 1983) is then employed. It is convenient to introduce the following 
non-dimensional quantities in the numerical study: 0x x /  ; 0z z /  ; 

0h h /  . In addition, the material properties of    = 2.226 (e.g. Aluminum 
(Dingreville and Qu 2007)), and   = 0.15288 nm for Al [1 1 1] surface (Miller and 
Shenoy 2000) are used in the present study, and s  = 5 N/m is used to 
demonstrate the influence of residual surface stress. 
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Figures 5.2 and 5.3 show the non-dimensional stresses along the x -
direction of a half-plane at various depths due to a shear dislocation of 
magnitude xb  and an opening dislocation of magnitude zb  ,respectively, at the 
plane 0h  = 1.0 . Only the solutions along the positive x -axis are plotted due to 
the symmetry or anti-symmetry of the solutions about the z -axis. For the shear 
dislocation, vertical and horizontal normal stresses are symmetric whereas shear 
stress is anti-symmetric about the z -axis. For the case of opening dislocation, 
vertical and horizontal stresses are anti-symmetric, while shear stress is 
symmetric, about the z -axis. Note that the dotted lines in Figures 5.2 and 5.3 
denote the classical elasticity solutions corresponding to zero surface stress (i.e. 

s  = s  = 0) and the dash lines denote the solutions that neglect the out-of-plane 
component of surface stresses. It is evident from both figures that some 
components of the bulk stress field are significantly influenced by the presence 
of surface stresses. Horizontal normal stresses of the bulk material show more 
influence of surface elasticity   when compared to vertical and shear stresses. 
In addition, vertical normal stresses of the bulk material show more influence of 
residual surface stress s   when compared to horizontal and shear stresses. This 
observation is true for both types of dislocations. It should be noted that at 0z  = 
1.0 horizontal normal stress and shear stress are infinite at the dislocation core 
under a shear dislocation, whereas for an opening dislocation, horizontal and 
vertical normal stresses are infinite at the dislocation core. For both types of 
dislocations, the influence of surface elasticity on bulk shear stress is negligible 
especially at points closer to the dislocation core whereas the residual surface 
stress show more significant influence on bulk shear stress in the vicinity of 
dislocation core (e.g. when 0x  < 3). On the other hand,  the influence of residual 
surface stress on bulk horizontal normal stress is negligible especially at points 
closer to the dislocation core whereas the horizontal normal stress for both types 
of dislocation shows more significant influence of surface elasticity in the vicinity 
of the dislocation core (e.g. when 0x  < 3) especially in the domain above the slip 
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plane. In addition, the influence of surface elasticity and residual surface stress 
on the vertical normal stress show more significant at points closer to the 
dislocation core (e.g. when 0x  < 3) except in the case of shear dislocation, the 
influence of surface elasticity is negligible. It is obvious that the region above the 
slip plane has the most influence of surface stress due to its proximity to the free 
surface. In all cases, the stresses become quite negligible for 0x  > 5. 

To investigate the influence of the depth of dislocation plane; surface 
material parameter   and residual surface stress s , the non-dimensional stress 
field along the x -direction due to an opening dislocation of magnitude zb  are 
presented in Figure 5.4 for different depths of dislocation plane, in Figure 5.5 for 
different values of   and in Figure 5.6 for different values of s  respectively. 
Note that in Figure 5.4 stresses are calculated at 0z  = 1.0. From Figure 5.4, it is 
clear that the depth of dislocation has a significant influence on the stress field 
and the stresses increase as the dislocation plane approaches 0z  = 1.0. 
Furthermore, the influence of surface elasticity and residual surface stress are 
more significant when the slip plane is near the free surface. As in Figures 5.2 
and 5.3, horizontal normal stress shows the highest influence of surface elasticity 
whereas vertical normal stress shows the highest influence of residual surface 
stress. In Figure 5.5 the non-dimensional stresses are presented for a 
hypothetical material with the surface material parameter 1  being varied from 0 
to 1000  (where   = 0.15288 nm for aluminum), whereas the residual surface 
stress parameter ( s ) is unchanged. On the other hand, the non-dimensional 
stresses displayed in Figure 5.6 are presented for a hypothetical material with the 
residual surface stress parameter s  being varied from 0 to 1000 N/m, whereas 
the surface material parameter is unchanged. Note that in Figures 5.5 and 5.6 
stresses are calculated at 0z  = 0.1 to maximize the influence of surface stress. 
As expected, the influence of surface stresses on the bulk stress components 
becomes more significant with increasing 1  and s  (i.e. when the surface 
becomes more rigid). In addition, the stress field shows an asymptotic solution 
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with respect to 1  and s , which is reached when 1  > 100  and s  > 500 N/m, 
respectively. Another important observation is that horizontal normal stress near 
the free surface shown in Figures 5.5 and 5.6 experience a change in sign as the 
surface material parameter or residual surface stress parameter increases. 
Numerical results shown in Figures 5.2 to 5.6 confirm the fact that the influence of 
surface stresses cannot be ignored in modeling of near-surface cracks and other 
defects in materials where the surface energy effects are not negligible. 

5.2 Penny-Shaped Crack in Infinite Elastic Medium 

 5.2.1 Formulation of Dual Integral Equations  

Consider a penny-shaped crack with a radius a  subjected to 
axisymmetric applied internal pressure ( )p r  in an infinite elastic medium as 
shown in Figure 5.7. The corresponding solutions for bulk stresses and 
displacements are given by Eqs. (3.14a) to (3.14f) with 'C  and 'D  0 to satisfy 
the regularity conditions at infinity and the arbitrary functions 'A  and 'B  can be 
obtained by solving the boundary value problem on the crack surface ( z  = 0). 
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0rz  , a r    (5.5d) 

It is noted that the residual surface stress of the crack surface is assumed 
to be constant and the analysis is only concerned with the elastic field induced 
by the external loading, i.e. the influence of point loads at crack-tip induced by 
residual surface stress (Wu,1999) is not considered. By substituting the solutions 
of stresses and displacements from Eqs. (3.14a) to (3.14f) into Eqs. (5.5a) to 
(5.5d), we then obtain 
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 By introducing the non-dimensional parameters; /r r a  and a  , 
Eqs. (5.6a) to (5.6d) can be expressed to a set of simultaneous dual integral 
equations as 
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and    p r ap ar  

 The above equation can be easily reduced to 
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 To solve Eqs. (5.8a) and (5.8b),   is defined as (Erdogan and Bahar, 
1964); 

   1

2
0

j

j jj jm m
m

J
     




 


                           (5.9) 

Hence, Eq.(5.8b) will be automatically satisfied due to the following properties of 
Sonine-Schafheitlin integrals (Magnus and Oberhettinger, 1954). 
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and Eq.(5.8a) may then be written as 
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where jm   are the unknown coefficients to be determined. Multiplying both sides 
of Eq. (5.11) by  
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and then integrating with respect to r from 0 to 1, yield (Tranter, 1956) 
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and n  is the Jacobi polynomial, which is defined in terms of hypergeometric series by 
(Magnus and Oberhettinger, 1954) as  

   2 1, , , ; ;n x F n n x        

 The coefficients jm  can be obtained by solving Eq. (5.12). Note that the 
unspecified constant, j , in Eq. (5.12) must be positive and makes the integral 
appearing in Eq. (5.12) converged. The arbitrary functions 'A  and 'B  for calculate 
stresses and displacements can be expressed in term of i  ( i  = 1,2) as 
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 5.2.2 Numerical Results 

In this section, selected numerical results are presented to portray the 
influence of surface stresses on the elastic field of the medium. It is noted that 
the solutions for stresses and displacements can be calculated by Eqs.(3.14a) to 
(3.14f) with the arbitrary functions, 'A  and 'B , given by Eqs.(5.13a) and (5.13b). 
In this study, the semi-infinite integrals in Eqs.(3.14a) to (3.14f) are evaluated by 
using globally adaptive numerical quadrature scheme based on 21-point Gauss-
Kronrod rule (Piessens 1983). In the numerical study, it is convenient to introduce 
the following non-dimensional quantities, 0r  = /r  ; 0z  = /z   and 0a  = /a  , 
where   = /s   and it has the dimension of length. The numerical results in 
the present study corresponding to the case of a penny-shaped crack in an 
infinite elastic medium subjected to a uniformly distributed applied internal 
pressure, 0p . In addition, the material properties of /  = 1.94,   = .24983 nm 
and s  = 0.6056 N/m for Si [100] (Miller and Shenoy, 2000) are used in the 
present study. 

Since the arbitrary function, 'A  and 'B , given by Eqs.(5.13a) and (5.13b) 
are evaluated by the combination of 1  and 2 , which are defined by infinite 
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series in Eq.(5.9), the convergence of the solution is plotted to verify the validity 
and accuracy of the solution technique and to determine the appropriate number 
of terms, m , in the series that can be used to predict the behavior of the problem 
accurately. Figure 5.8 shows the convergence of non-dimensional vertical stress 
in the vicinity of crack tip for the classical case where the surface stress is 
excluded (i.e. s  = s  = 0). It can be seen from the figure that the present 
solution shows very good agreement with classical elasticity solution proposed 
by Fabricant (1989) especially when m  is larger than 60. In Figure 5.9, the 
numerical solutions for the classical vertical stress and classical crack opening 
displacement from the present study, using 65 terms in the approximation (m = 
65), are compared with the benchmark solutions. It is evident from Figure 5.9 that 
numerical results obtained from the present study are almost indistinguishable 
from the exact solutions proposed by Fabricant (1989). In this study, the elastic 
field of the medium are therefore calculated by using m  = 65.  

Figures 5.10 and 5.11 demonstrate the influence of surface stresses on 
the elastic field of an elastic medium near the crack region. A non-dimensional 
crack radius, 0a  = 1.0 is considered in the numerical study. In Figure 5.10, the 
variation along the r -axis of non-dimensional vertical stresses in the region near 
the crack tip is presented, whereas Figure 5.11 displays the non-dimensional 
crack opening displacements. The non-dimensional stresses and displacements 
shown in Figures 5.10 and 5.11 are presented for Si [100] and hypothetical 
material ( /   = 1.94,   = .24983 nm) with different values of residual surface 
stress (i.e. s  = 0.1 and 1.0 N/m). Note that the broken lines in Figures 5.10 and 
5.11 denote the classical elasticity solution (Fabricant, 1989), which can also be 
obtained from the present solution with the absence of surface stress (i.e. s  = 

s  = 0).  

The variation of non-dimensional vertical stress on the crack plane in the 
region near the crack tip shown in Figure 5.10 reveals that the surface stresses 
have a significant influence on the vertical stress, especially in the vicinity of the 



    56 

crack tip where the vertical stress approaches infinity for both classical and 
present solutions. It is observed from the figure that the presence of surface 
stress effects results in the reduction of vertical stress. Similar aspect is also 
found in the case of plane strain cracks (Kim et al., 2011). Note that their paper 
assumes that the stress at the crack tip is finite. In Figure 5.11 the influence of 
the surface stresses on the crack opening displacement is presented. As in 
classical elasticity, the maximum displacement is located at the center of the 
crack before gradually reduces to zero at the crack tip. In addition, it can be 
seen from the figure that the presence of surface stresses causes the reduction 
of the crack opening displacement.  

Figure 5.12 demonstrate the size-dependent behavior of the elastic 
medium with the presence of surface stresses. In Figure 5.12, the variation along 
the r -axis of non-dimensional vertical stress profile in the region near the crack 
tip is presented for Si [100] with different values of crack radius (i.e. 0a  = 0.5, 1.0 
and 1.5). It is obvious from the figure that with the consideration of surface 
stresses, the non-dimensional vertical stress depends significantly on crack size 
in contrast with the classical solutions, where the non-dimensional vertical 
stresses are independent of crack size. In addition, it is observed from Figure 
5.12 that the influence of surface stresses decreases when crack size increases 
and the solution will converge to the classical solution. Numerical results shown 
in Figures 5.10 to 5.12 confirm the fact that the influence of surface stresses is 
significant in the analysis of the problems involving nanoscale cracks and other 
defects in materials where the surface energy effects are not negligible. 

5.3 Conclusion 

The fundamental solutions of an elastic medium with dislocations and 
crack are derived with the consideration of surface stress influence by adopting 
the Gurtin-Murdoch continuum theory of surface elasticity. The elastic fields 
corresponding to plane strain and axisymmetric problems are obtained by using 
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Fourier and Hankel integral transforms, respectively. It is found that analytical 
solutions can be expressed in terms of semi-infinite integrals that cannot be 
evaluated in closed-form but can be computed accurately by employing a 
numerical quadrature scheme. For crack problems, a set of simultaneous dual 
integral equations is solved by employing appropriate solution scheme. It is 
found from the numerical results that the surface stresses have a significant 
influence on the elastic field especially in the region near the surface. In addition, 
numerical results in this study show similar trends with their classical solutions. 
However, unlike in the classical elasticity approach, the behavior of the material 
becomes size-dependent when the surface stresses are accounted for. The 
fundamental solutions for gliding and climbing edge dislocations presented in 
this study are essential to the extension of the displacement discontinuity method 
(DDM) to analyze fracture problems involving nanoscale systems and soft elastic 
solids. 
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Figure 5.1 Dislocations in a semi-infinite elastic medium at a depth h  below the 
surface. 
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 Figure 5.2 Non-dimensional stress profiles under shear dislocation at 0h  = 1.0: 
(a) Vertical stress (b) Horizontal stress (c) Shear stress.   

(c) 

(b) 

(a) 
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 Figure 5.3 Non-dimensional stress profiles under opening dislocation at 0h  = 
1.0: (a) Vertical stress (b) Horizontal stress (c) Shear stress.   

(c) 

(b) 

(a) 
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Figure 5.4 Non-dimensional stress profiles under opening dislocation for different 
depths of dislocation plane ( 0z = 1.0): (a) Vertical stress (b) Horizontal stress (c) 

Shear stress.   

(c) 

(b) 

(a) 
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Figure 5.5 Non-dimensional stress profiles under opening dislocation for different 
material constants ( 0h  = 1.0 and 0z  = 0.1): (a) Vertical stress (b) Horizontal 

stress (c) Shear stress.   

(c) 

(b) 

(a) 
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Figure 5.6 Non-dimensional stress profiles under opening dislocation for different 
residual surface stresses ( 0h  = 1.0 and 0z  = 0.1): (a) Vertical stress (b) 

Horizontal stress (c) Shear stress. 

(c) 

(b) 

(a) 
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Figure 5.7 A penny-shaped crack in an infinite elastic medium subjected to 
applied internal pressure. 
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Figure 5.8 Convergence of non-dimensional vertical stress profile in the vicinity of 

crack tip. 
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Figure 5.9 Comparison of classical numerical solution with exact solution: (a) 

Vertical stress (b) Crack opening displacement.

(a) 

(b) 



    67 

 
 
 
 
 
 
 
 
 

 
Figure 5.10 Non-dimensional vertical stress profile in the vicinity of crack tip for 

different residual surface stresses ( s ). 
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Figure 5.11 Non-dimensional crack opening displacement for different residual 

surface stresses ( s ). 
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Figure 5.12 Non-dimensional vertical stress profile in the vicinity of crack tip for 

different sizes of crack ( 0a ). 



 
CHAPTER VI 

 
RIGID-INDENTATION ON ELASTIC LAYER  

 
 

 In this chapter, the fundamental solutions derived in Chapter 4 are 
employed in the formulation of axisymmetric indentation problems. Green 
functions of surface displacements of an isotropic elastic layer with the 
consideration of surface stresses are first constructed from the fundamental 
solutions presented in Section 4.2. The integral equations for solving nano-
indentation problems of a finite thickness elastic layer under axisymmetric punch 
profile are then formulated for several indentation models. Selected numerical 
results are presented to portray the influence of surface stresses for a special 
case of rigid, flat-ended cylindrical punch with frictionless model.  

6.1 Axisymmetric Green Functions for Elastic Layer  

Consider a three-dimensional finite thickness elastic layer bonded to a 
rigid base, and subjected to axisymmetric normal and tangential traction on the 
surface. The required fundamental solutions for the problems are presented in 
Section 4.2 for arbitrary axisymmetric load cases. Green functions, which are 
defined by the solutions of surface displacements of an elastic layer under unit 
normal ring load, p , and unit tangential ring loads, q , can be respectively 
constructed by Eqs. (3.14e) and (3.14f) with the arbitrary functions given by Eqs. 
(4.16a) to (4.16d). Note that the Hankel transforms of unit normal ring load and 
unit tangential ring load applied at the radius *r  are given by 

       * * *
0 00

'p rp r r J r dr pr J r   


      (6.1a) 

       * * *
1 10

'q rq r r J r dr qr J r   


      (6.1b) 
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By using a method of superposition, the vertical and radial displacements 
at any distance r  on the surface due to arbitrary axisymmetric normal traction 

 *p r  and tangential traction  *q r  can be expressed in the integral equation as 

         * * * * * *

0 0
, ,N T

r r ru r U r r p r dr U r r q r dr
 

    (6.2) 

         * * * * * *

0 0
, ,N T

z z zu r U r r p r dr U r r q r dr
 

    (6.3) 

where  *,N
rU r r  and  *,N

zU r r  denote radial and vertical displacements 
respectively at any distance r  on the surface due to a unit normal ring load 
applied on the layer at the radius *r , whereas  *,T

rU r r  and  *,T
zU r r  denote 

radial and vertical displacements at any distance r  on the surface due to a unit 
tangential ring load applied on the layer at the radius *r  respectively . Similarly, all 
other elastic fields at any point ( , )r z  within the bulk material, denoted generically 
by  ,R r z , due to arbitrary axisymmetric normal and tangential traction can also 
be expressed in the integral equation as 

         * * * * * *

0 0
, , , , ,N TR r z R r z r p r dr R r z r q r dr

 
    (6.4) 

where  *, ,NR r z r  and  *, ,TR r z r  denote the responses at any point ( , )r z  due to 
a unit normal ring load and unit tangential ring load applied on the layer at the 
radius *r  respectively. It is clear that for a problem where the surface traction 

 *p r  and  *q r  are fully prescribed, all field quantities can be directly 
computed by Eq. (6.4). The derived Green functions have important applications 
in contact problems such as indentation problems, where the surface traction is 
unknown, as demonstrated in the subsequent sections. 

6.2 Axisymmetric Rigid Punch Problems 

 For indentation problems, normal traction and tangential traction in the 
contact region are unknown a priori and have to be determined with the 
appropriate assumption of the contact condition in the contact region between 
the punch and the layer. Consider an isotropic elastic layer under an 
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axisymmetric rigid punch with a profile  pv r  as shown in Figure 6.1. It is noted 
that the profile of the punch is conveniently defined by choosing pv  = 0 at r  = 0. 
The radius of a contact region and the indentation depth induced by a resultant 
force P  at the center of the punch are denoted by a  and d  respectively. The 
integral equation for solving the unknown traction can be summarized for the 
cases of frictionless and frictional indentation models as follows: 

 6.2.1 Rigid Frictionless Punch Problems 

 In the study of indentation problems, the model of a frictionless punch is 
the most common model, and has been widely employed in classical mechanics. 
For a special case of axisymmetric frictionless nano-indentation problems, the 
tangential traction in the contact region identically vanishes whereas the vertical 
displacement is prescribed via the punch profile, pv , and the prescribed 
indentation depth, d . The integral equation for determining the normal traction in 
the contact region can then be deduced from Eq. (6.3) as  

       * * *

0
,

a N p
z zu r U r r p r dr d v r   ,  0 r a   (6.5) 

where a  denotes the contact radius. 

 6.2.2 Rigid Fully Bonded Punch Problems 

 For the case of rigid fully bonded nano-indentation problems, the 
tangential displacement in the contact region identically vanishes whereas the 
vertical displacement is prescribed via the punch profile, pv , and the prescribed 
indentation depth, d . The integral equations for determining normal and 
tangential traction in the contact region can then be deduced from Eqs. (6.2) and 
(6.3) as  

         * * * * * *

0 0
, , 0

a aN T
r r ru r U r r p r dr U r r q r dr    ,  0 r a   (6.6) 

           * * * * * *

0 0
, ,

a aN T p
z z zu r U r r p r dr U r r q r dr d v r     , 0 r a   (6.7) 
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 6.2.3 Rigid Rough Punch Problems 

 For the case of rigid rough nano-indentation problems, the tangential 
traction in the contact region can be related to the normal traction via an 
appropriate friction model whereas the vertical displacement is prescribed via 
the arbitrary punch profile, pv , and the prescribed indentation depth, d . The 
integral equation for determining normal traction in the contact region can be 
deduced from Eq. (6.3) as  

            * * * * * *

0 0
, ,

a aN T p
z z zu r U r r p r dr U r r f p r dr d v r     , 0 r a   (6.8) 

where a function f  denotes the relation between normal traction and tangential 
traction. Once the normal traction  *p r  is determined, the tangential traction 

 *q r  can readily be obtained.  

It is noted that by solving the integral equations (6.5) to (6.8), the unknown 
surface traction are obtained for each case. The elastic field of an elastic layer 
can readily be determined from the integral relation (6.4) 

6.3 Rigid Frictionless Flat-Ended Cylindrical Punch  

Consider a three-dimensional elastic layer of a finite thickness t  bonded 
to a rigid material base under a rigid flat-ended cylindrical punch of a radius a  
as shown in Figure 6.2. The punch is subjected to a resultant force P  at the 
center of the punch, and results in the indentation depth d  as shown in the 
figure. In this study, it is assumed that there is no friction between the punch and 
the layer. For the special case of rigid flat-ended punch, the punch profile is set 
to be zero, i.e. ( )pv r  = 0, the integral equation for solving the pressure 
distribution in the contact region can be expressed as 

   * * *

0
,

a N
zU r r p r dr d ,  0 r a   (6.9) 

In order to solve the above equation, the pressure distribution in the 
contact region is assumed in the following form. 
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   * *

1

m

j j
j

p r f r


 ,   (6.10) 

 By substitution pressure distribution in Eq. (6.10) into Eq. (6.9), we then 
obtain 

   * * *

0
1

,
m a N

j z j
j

U r r f r dr d


  ,  0 r a   (6.11) 

By adopting collocation technique, the above integral equation can be 
discretized into the following form 

   * * *

0
1

,
m a N

j z i j i
j

U r r f r dr d


  ,        for all  ir , i  = 1, 2, 3, …, n  (6.12) 

where id  denotes the indentation depth at ir . 

 The coefficient j  can be obtained by solving Eq. (6.12). In this study the 
pressure distribution is approximated by the summation of axisymmetric 
polynomial functions as follow: 

 * * 1

1

( )
m

j
j

j

p r r 



 ,   (6.13) 

More importantly, unlike classical solution, it is noted that for this 
particular case the resultant force P  is not only transferred to the pressure 
distribution in the contact region but it also produced a normal ring load at the 
edge of the punch due to the influence of surface tension when the out-of-plane 
surface stresses is considered. Once the normal traction is obtained, all other 
field quantities can be computed from the integral relation in Eq. (6.4). 

6.4 Numerical Results  

In this section, selected numerical results are presented to portray the 
influence of surface stresses on the elastic field of the layer. It is noted that the 
relevant Green functions constructed by Eqs. (3.14e) and (3.14f) with the 
arbitrary functions given by Eqs. (4.16a) to (4.16d) are expressed as semi-infinite 
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integrals where closed form solutions cannot be obtained as previously 
discussed in Chapter 4. The numerical quadrature scheme based on 21-point 
Gauss-Kronrod rule (Piessens 1983) is then employed to evaluate these integrals. 
In the numerical study, it is convenient to introduce the following non-dimensional 
quantities, 0r  = /r  ; 0z  = /z  ; 0t  = /t  ; 0a  = /a   and 0d  = /d   , where 
Λ  =    2 2s       , and it has the dimension of length. The numerical 
results in the present study correspond to the case of an elastic layer with finite 
thickness 0 0/t a  = 5 under rigid frictionless flat-ended cylindrical punch with the 
contact radius 0a  = 0.5 and the indentation depth 0d . In addition, the material 
properties used in Chapter 4 are considered in the numerical study, i.e.    = 
2.226;   = 1 nm and s  = 5 N/m. 

Since the pressure distribution is approximated by the summation of 
axisymmetric polynomial functions, the convergence of the solution is plotted to 
verify the accuracy of the solution technique and to determine the appropriate 
number of terms, m , in the series that can be used to predict the behavior of the 
problem accurately.  Figure 6.3 shows the convergence of normallized contact 
pressure with the consideration of complete surface stresses. It can be seen from 
the figure that the present solution shows good agreement with benchmark 
solution proposed by Pinyochotiwong (2010) especially when m  is larger than 
12. In Figure 6.4, the numerical solutions for the normalized vertical displacement 
from the present study, using 15 terms in the approximation ( m  = 15), are 
compared with the benchmark solutions. It is evident from Figure 6.4 that 
numerical results obtained from the present study show excellent agreement with 
the solutions proposed by Pinyochotiwong (2010). In this study, all solutions are 
therefore calculated by using m  = 15.  

Figures 6.5 and 6.6 demonstrate the influence of surface stresses on the 
pressure distribution in the contact region and vertical displacement respectively, 
for difference values of contact radius (i.e. 0a  = 0.5, 1.0 and 1.5). It can be seen 
from Figure 6.5 that the contact pressure significantly decreases when the 
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influence of surface stresses is considered. On the contrary, the vertical 
displacement outside of the contact region obtained from current study is 
comparative higher than that in classical elasticity due to the fact that surface 
stresses make elastic layer stiffer and hence larger indentation force is needed in 
order to produce the same indentation depth. It is obvious from the figure that 
with the consideration of surface stress influence, normalized contact pressure 
and vertical displacement depend significantly on crack radius (or size of the 
punch for this particular case). In addition, the influence of surface stresses 
decreases when the radius on contact region increases, and the solution will 
converge to the classical solution.      

In Figures 6.7 and 6.8, the variation of normalized displacement profiles 
and stress profiles along r -direction of an elastic layer with finite thickness 0 0/t a  
= 5 under flat-ended cylindrical punch with contact radius 0a = 0.5 are presented 
at various depths. It can be seen from Figure 6.7 that both vertical and radial 
displacements show significant influence on surface stresses especially at the 
plane near surface. In addition, both vertical and radial displacements from the 
present study are comparative higher than classical solutions as previously 
discussed except that radial displacement at the region close to the surface 
where the negative values occur. From Figure 6.8, it is obvious that all 
components of stress show significant influence of surface stress especially at 
the plane near surface, i.e. 0z  < 2. In addition, the influence of the residual 
surface stress becomes negligible when 0 0r a  > 3. It should be noted that 
stresses and displacements presented in this study show similar trend with 
classical solutions. 

6.5 Conclusion 

The indentation problem of an isotropic elastic layer under an 
axisymmetric punch is examined with the consideration of surface stresses by 
adopting Gurtin-Murdoch continuum theory of surface elasticity. The interaction 
problem is formulated by employing the Green functions constructed from the 
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derived fundamental solutions in Section 4.2. It is noted that Green functions can 
be expressed in terms of semi-infinite integrals that cannot be evaluated in 
closed-form but can be computed accurately by employing a numerical 
quadrature scheme. It is found from the numerical results that the surface 
stresses have a significant influence on the elastic field especially in the region 
near the surface. In addition, numerical results in this study show similar trends 
with their classical solutions. However, unlike classical elasticity, the behavior of 
the material becomes size-dependent when the surface stresses are accounted 
for. More importantly, for this particular case of flat-ended cylindrical punch, the 
presence of surface tension induces a normal ring load at the edge of the punch.  
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 pv r

 
Figure 6.1 An isotropic elastic layer under axisymmetric rigid punch. 

0pv 

 
Figure 6.2 An isotropic elastic layer under rigid frictionless flat-ended cylindrical punch 

of a radius a .  
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Figure 6.3 Convergence of normalized contact pressure of a half space ( 0t   ) 

under flat-ended cylindrical punch with contact radius 0a = 0.5. 
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Figure 6.4 Comparison of numerical vertical displacement with benchmark 

solutions.
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Figure 6.5 Distribution of normalized contact pressure under flat-ended cylindrical 

punch with various contact radii. 
  
 
 
 
 

 
Figure 6.6 Normalized vertical displacement of the surface layer under flat-ended 

cylindrical punch with various contact radii.

(b) 
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Figure 6.7 Normalized displacement profiles of a layer with finite thickness 0 0/t a = 

5 under flat-ended cylindrical punch with contact radius 0a = 0.5: (a) Vertical 
displacement (b) Radial displacement.

(b) 

(a) 
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Figure 6.8 Normalized stress profiles of a layer with finite thickness 0 0/t a = 5 
under flat-ended cylindrical punch with contact radius 0a = 0.5: (a) Vertical stress 

(b) Radial stress (c) Shear stress. 

(c) 

(b) 

(a) 



CHAPTER VII 
 

CONCLUSIONS 
 
 

7.1 Summary 

This research presents a theoretical study of an isotropic elastic 
material with the consideration of surface energy effects by employing Gurtin-
Murdoch continuum theory of elastic material surfaces. The fundamental 
solutions of an isotropic elastic layer under different loading cases, and an 
elastic medium with dislocations and cracks are presented. A set of general 
solutions corresponding to each problem is obtained from the governing 
equations of the bulk material by applying appropriate integral transform 
techniques. In addition, solution procedures for indentation problems are also 
presented to demonstrate the application of the derived fundamental solutions 
corresponding to an isotropic elastic layer under vertical and radial loads. 
Selected numerical results together with discussion and conclusion are given 
separately for each problem in the corresponding chapters. The major 
findings and conclusions of this research can be summarized as follows: 

1. The analytical solutions are expressed in terms of semi-infinite integrals 
for problems involving different loading cases, dislocations and cracks with the 
presence of surface stresses, in which, closed-form solutions cannot be obtained 
due to the complexity of the integrands. The solutions can be accurately 
computed by employing a numerical quadrature scheme. In this research, a 
globally adaptive numerical quadrature scheme based on 21-point Gauss-
Kronrod rule is employed in the evaluation of the integrals. The validity and 
accuracy of the present solution schemes are confirmed by comparing with 
available benchmark solutions. 
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2. As shown in the numerical results for each problem, surface stresses 
show a significant influence on the elastic fields of an isotropic elastic 
material especially in the vicinity of the surface. In addition, the bulk material 
becomes stiffer with the presence of surface energy effects for the 
fundamental problems presented in this research. An extensive parametric 
study observed in numerical results indicates that, unlike classical elasticity, 
the elastic fields of the bulk material become size-dependent with the 
consideration of surface stresses. Numerical results presented in this study 
indicate that the influence of surface stresses is significant in the analysis of 
the problem involving nanoscale structures and soft elastic materials where 
the surface energy effects are not negligible. 

7.2 Suggestions for Further Work  

The fundamental solutions presented in this thesis provide an insight 
into fundamental understanding on the mechanical behavior of nanoscale 
structures and soft elastic solids, and can be used as benchmark solutions for 
verification purpose. The analytical solutions presented in this study can also 
be employed to construct Green functions which are useful for various 
boundary value problems in practical situations. The suggestions for further 
study on mechanics of nanoscale material are 

1. In most practical situations, the substrate material is generally not rigid. The 
fundamental solutions for multilayer problems with the surface stresses are therefore 
very useful. In such problems, the surface energy effects on the interface between 
layers could become significant. The current methodology based on Fourier and 
Hankel transforms can be readily extended to solve the case of a flexible 
substrate.  

2. The consideration of more complex problems, e.g., indentation 
problems with non-axisymmetric geometry and indenter shape, the elastic 
medium with arbitrary crack shape or multiple cracks, etc.    
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APPENDIX 



  APPENDIX A 

 The expressions of iA  to iH  ( i  = p , q ) and I  appearing in Eqs. (4.4a) 
to (4.4d) are given as follows: 
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    
                  

  
   

  

   
    

 
 

2

2 2

2 2

3

2 2
h h

q

e t t h h e 


  

   
  

  


 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

       
  

 (A.9) 

               

        

       

2 2 2

2

43
3 2 sinh 2 2 cosh

3

4 23
2 sinh 2 1

3 3

3
3 2 cosh 2 cos

2

t h t h

h h

q s

t h h e e t h h

h t t t h e t h e

B

t h

 

 

           
   

        
     

          
  

  



  
            

    
           

       


  
      

 
      

         
 

    

 
 2

22

2

2

4 2
h

2

3 2
2 2 sinh 1

2 3

t h

h h

q

h h e

t h h t h te t h e



 


   

  
 

     
       

   





 
 
 
 
 
 
 
           
                          

 (A.10) 

               

                 

    

2

2 2 2

3 cosh 2 sinh 2

3 3
cosh sinh

3

2 3 2
3 cosh 2 sinh 2

2 2

s

q

h t h h t h

t t t h h h t t t h h h

t h h t

C

              

     
              

   

            
    

           
     
                       

   
        



  

    
   

        
 

   
 

     

    
     

 

2

2 2 2

2

2

22 3
3 cosh

2 3

2 2 3 3 3
2 2 sin( )

2 22

3 3

2 2 2

t h t h

h

h h

t t t h t h e e h

t t h h

 

          
      

                   
     

     
  

     

  

  
 
   

   
    

    
                   

   
   

 

 
 

 
   

 
 

2 2

2

2 2

3

2 2 2
h h

q

e h t t h e 


  

   
 

     


 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

                        

(A.11) 
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               

        

       

2 2 2

2

43
3 2 sinh 2 2 cosh

3

2 43
2 sinh 1 2

3 3

3
3 2 cosh 2 cos

2

t h t h

h h

q s

t h e h e t h h

h t h e t t t h e

D

t h

 

 

           
   

        
     

          
  

  



  
            

    
           

       


  
      

 
      

             

 
 2

22

3

2

4 2
h

2

2 3 3
2 2 sinh 2

2 2

t h

h h

q

h h e

t h t h he t t h e



 


   

  
 

                
     

 



 
 
 
 
 
 
 
           
                          

 (A.12) 

            

               
 

              

   

2 2

2 2

2

2 2 2

3 1

3 12 13
3 2 2 1

3
3 2 1 2 3 2 2 1 2

32
3

2 2

t h t h

h

h

s

q

h e h e

t t h h t e

h t t t t h h th t e

E

 





          

   
            

 

                 
 

      
   

 



        
  

              


             

    
 

   
 

 

  
 

  
 

  

2

2 22

2 2

2 2 3
1

2 2

3 2 1 3 3
2 2 2 2

2

3

t h t h

h h

h e h h e

t t t h h t t t h h e e

 

 

            
        

                 
        

 


 



                            
                         


 

  
 

   
  

 
 

2

2 2 2

2 2

4 2

2 22 1 3 3 3
2 2 1 2

32

q

t t t h h t h t t th


  

                
           

 
 
 
 
 
 
 
 
 
   
 

 
 
 
 
 
 
                              

(A.13) 

          

         

           

2 2

2 2

2

2 2

3
3 1 2

2
1 4 2 2 1 1

3 3

3 3 2
3 2 2

2 2 2 2

t h t h

h h

s
t h

q

e h e

th t h t e t h e

e hF

 

 



       
 

        
   

                    
      

 





  
        

  
                 

      
               

 

             
 

            

2

2 2

2
2

2

2 3 3 2 2
2 2 1

2 3 3

2 3 3 2
2 2 1

2 3

t h

h

h

e

t h t th e

t h t h e







         
       

       

       
      

     





 






          
                        
                         

 
 4 2

q 
  




















 (A.14) 

            

               
 

              

   

2 2

2 2

2

2 2 2

3 1

3 12 13
3 2 2 1

3
3 2 1 2 3 2 2 1 2

32
3

2 2

t h t h

h

h

s

q

h e h e

t t h h t e

h t t t t h h th t e

G

 





          

   
            

 

                 
 

      
   

   



        
  

              


              

   
 

   
 

 

  
 

  
 

  

2

2 22

2 2

2 2 3
1

2 2

3 2 1 3 3
2 2 2 2

2

t h t h

h h

h e h h e

t t t h h t t t h h e e

 

 

             
        

                 
        



   



                             
                         



 
  

 
   

  

 
 

2

2 2 2

2 2

4 2

2 23 2 1 3 3 3
2 2 1 2

32

q

t t t h h t h t t th


  

                 
            

 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
                               

(A.15) 



 97 

          

         

           

2 2

2 2

2

2 2

3
3 1 2

2
1 1 1 4 2 2

3 3

3 3 2
3 2 2

2 2 2 2

t h t h

h h

s
t h

q

e h e

t h e th t h t e

e hH

 

 



       
 

        
   

                    
      

   



 

  
        

   
                  

     
             

 

            

             
 

2

2

2 2

2
2

2 3 3 2
2 2 1

2 3

2 3 3 2 2
2 2 1

2 3 3

t h

h

h

e

t h t h e

t h t th e







       
      

     

         
       

       

 










          
                     
                           

 
 4 2

q 
  










 







 
 

 (A.16) 

        

   
     

     
 

   
 

2 2
2

2

2 2 2 2 4

4 5
3 cosh 2 sinh 2 2

3 2 3 2
3 cosh 2 sinh 2

2 2 2 2 2 2
s

I t t t t

t t t t

          
 

         
          

            

          

                     

 (A.17) 

 



 98 

BIOGRAPHY 

The author, Pong-in Intarit, was born in Songkhla, Thailand, on June 2, 
1984. He received his Bachelor of Engineering degree in Civil Engineering 
from Chulalongkorn University in 2006. After graduation, he decided to 
continue his Doctor of Philosophy degree in Civil Engineering at 
Chulalongkorn University in the same year under the supervision of Professor 
Dr.Teerapong Senjuntichai and Associate Professor Dr.Jaroon Rungamornrat 
with the support from Thailand Research Fund under the Royal Golden Jubilee 
Ph.D. (RGJ-Ph.D.) Scholarship. He spent the summers of 2010 and 2012 at the 
Simon Fraser University, Burnaby, Canada, to conduct a research work with 
Professor Dr.Nimal Rajapakse.  

Publications: 

Intarit P., Senjuntichai T. and Rajapakse R.K.N.D. 2010. Dislocation and internal loading 
in a semi-infinite elastic medium with surface stresses. Engineering Fracture 
Mechanics 77: 3592-3603. 

Intarit P., Senjuntichai T., Rungamornrat J. and Rajapakse R.K.N.D. 2011. Surface 
elasticity and residual stress effect on the elastic field of a nanoscale elastic layer. 
Interaction and Multiscale Mechanics 4(2): 85-105. 

 

 


	Cover (Thai)

	Cover (English)

	Accepted

	Abstract (Thai)

	Abstract (English)

	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER   I  INTRODUCTION

	1.1 General
	1.2 Objectives and Scopes of Present Study

	CHAPTER  II  LITERATURE REVIEWS

	2.1 General
	2.2 Surface Elasticity Model
	2.3 Fundamental Problems with Surface Stresses
	2.4 Dislocation and Crack Problems with Surface Stresses

	CHAPTER   III   BASIC EQUATIONS AND GENERAL SOLUTIONS

	3.1 Basic Equations of Continuum with Surface Stresses
	3.2 General Solutions for Bulk Materials

	CHAPTER   IV  INTERNALLY LOADED ELASTIC LAYER

	4.1 Fundamental Solutions for Plane Problems
	4.2 Fundamental Solutions for Axisymmetric Problems
	4.3 Numerical Results
	4.4 Conclusion

	CHAPTER   V  DISLOCATIONS AND CRACK IN ELASTIC MEDIUM

	5.1 Dislocations in Semi-Infinite Elastic Medium
	5.2 Penny-Shaped Crack in Infinite Elastic Medium
	5.3 Conclusion

	CHAPTER  VI  RIGID-INDENTATION ON ELASTIC LAYER

	6.1 Axisymmetric Green Functions for Elastic Layer
	6.2 Axisymmetric Rigid Punch Problems
	6.3 Rigid Frictionless Flat-Ended Cylindrical Punch
	6.4 Numerical Results
	6.5 Conclusion

	CHAPTER   VII  CONCLUSIONS

	7.1 Summary
	7.2 Suggestions for Further Work

	REFERENCES
	APPENDIX
	BIOGRAPHY



