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CHAPTER 1

INTRODUCTION

When we deal with a continuous self-map of a metric space, it is usual to discuss
whether the function attains a fixed point. It is not true in general that every continu-
ous function has a fixed point. So, it is a challenging problem in fixed point theory to
find necessary and sufficient conditions on a space or a map for the existence of such
a fixed point. The set of all fixed points of a map, called the fixed point set, is usu-
ally denoted by F(f). It is well-known that if [ is continuous and X is a Hausdorff
space, then F'(f) is always closed but we do not exactly know about other properties
such as convexity and connectivity. In general, the fixed point set of a continuous
self-map of a metric space need not be convex or contractible.For example, if 251 is
the identity map and S* is the boundary of unit open ball D? then F(i5) = S*
which is not contractible but convex (with respect to the metric defined to be the
length of the shortest arc joining any two points). Also,if f(x) = 2% on R, we have
F(f) = {0,1} which is neither convex (with respect to the Euclidean metric) nor

contractible . Therefore, it is natural to ask:
Under what circumstances, F(f)_is conver and contractible?

For an inner product space, we can show that the fixed point set. F'(f) of a nonex-
pansive, or even a quasi-nonexpansive, map is both convex and contractible. Since
every nonempty closed convex subset of a Hilbert space X is always a nonexpansive
retract of X, it follows that the nonempty fixed point set of a nonexpansive map of
a Hilbert space is a nonexpansive retract of X.

In this thesis, we consider a larger class of metric spaces, called CAT(0), which in-

cludes Hilbert spaces and a larger class of maps, called (continuous) quasi-nonexpansive,
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which includes nonexpansive maps. We show that the fixed point set of a quasi-
nonexpansive map on a CAT(0) space is always convex and contractible. There are
three chapters in this thesis. In chapter II, we recall some basic facts used throughout
this work. In chapter III, we recall the definitions and some properties of a CAT(0)
space and show that the fixed point set of a quasi-nonexpansive map on this space
is convex and contractible. Also, we show that every nonempty closed subset of a

CAT(0) space can be realized as the fixed point set of a continuous map.



CHAPTER 11

PRELIMINARIES

In this chapter, we review some notations, terminologies, and fundamental facts

that will be used throughout this work.

DEFINITION 2.1. A metric on a set X # () is a map p: X x X — R satisfying the
following properties for all z,y,z € X :
i p(x,y) >0 ; equality holds if and only if x =y
i p(z,y) = ply, x)
iii p(z,y) < p(, 2)+ p(2,9).

The pair (X, p) is called a metric space.

DEFINITION 2.2. A sequence (x,,) in a topological space X is said to converge to a
point x of X if for each neighborhood U of x, there exists a positive integer N such
that x; lies in U for all i > N. In this case, © is called a limit of the sequence (z,,),

and we write (x,) — .
LEMMA 2.3. In a metric space, every convergent sequence has a unique limit.
Proof. The proof can be found in [1/. O

THEOREM 2.4. Let (X, p) be a metric space and f: X — X. Then, [ is continuous

if and only if for every convergent sequence (x,) — x, we have (f(x,)) — f(z).
Proof. The proof can be found in [1]. O

DEFINITION 2.5. Let X be a set and f: X — X a map. A point x in X is said to

be a fixed point of f provided that f(x) = .
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DEFINITION 2.6. Let X be a Hausdorff topological space and f: X — X a continuous

map. The fixed point set of f, denoted by F(f), is defined by
F(f) ={ze X | f(z) ==}
The following lemma shows basic properties of notion above.

LEMMA 2.7. Let (X,p) be a metric space and f: X — X a continuous map. Then

the following statements hold :

(1) F(f) is closed in X.
(2) F(f) is invariant under f; i.e., f(F(f)) C E(f).

Proof. (1) If F(f) = 0, then we are done. Assume that F(f) # 0. Let (z,) be a
sequence in F'(f) converging to x. That is, (z,) — x. We will show that = € F(f).
Since f is continuous, we have f(z,) — f(x). Note that f(z,) = z, for all n and
T, — x so f(x,) also converges to x. Since the limit is unique, we have f(z) =z
which forces x € F(f). This finishes the proof.

(2) Clear. O

DEFINITION 2.8. Let (X, p) be a metric space and f: X — X a map. Then f is
called

(1) a contraction if there is a constant o € ]0,1) such that for each z,y € X,

p(f(z), f(y)) <ap(z,y);

(2) -a contractive if for each x # y € X,

p(f(x), f(y) < plz,y);

(3) an isometry if for each x,y € X,

p(f (), f(y) = p(x,y);



(4) a nonexpansive if for each z,y € X,

p(f(x), f(y) < plz,y);

(5) a quasi-nonexpansive if for each © € X and for each fized point y of f

p(f(@),y) < p(x,y).
REMARK 2.9. From the definitions, we have (1) = (2) = (3) = (4) = (5).

DEFINITION 2.10. Let (X, p) be a metric space and let A be a nonempty subset of

X. For each x € X, we define the distance between x and A by
o, ) = inf{p(z,a) | a € A}.

It is easy to show that for a fixed A, the function p(z, A) is a continuous map of

x. Moreover, for z,y € X, one has the inequality

lp(z,A) = p(y, A)| < p(x,y).

LEMMA 2.11. Let (X, p) be a metric space and A a nonempty closed subset of X .

Let x € X. Then x € A if and only if p(x, A) = 0.

Proof. 1t is clear that if © € A then p(z, A) = 0. For the converse, assume that
x & A. Since A is closed, z is not a limit point of A. Then there is an open ball
B(zx,€) of x such that
(B(z,e) —{z}) N A =0.
So, for each a € A, we have p(x,a) > eIt follows that
p(x, A) = inf{p(x,a) | a € A}
> €

> 0.

This finishes the proof. U
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LEMMA 2.12. (The pasting lemma). Let X = AUB, where A and B are closed in
X. Let f: A=Y and g: B—Y be continuous. If f(x) = g(z) for every x € ANB,

then the map h: X — 'Y, defined by

flx) ifzxreA
h(z) =
g(r) ifreB

18 continuous.

Proof. The proof can be found in [1]. O

DEFINITION 2.13. Let f,g: X — Y. We say that f is homotopic to g if there exists
a continuous function H: X X I —'Y such that

e H(-,0) = f,

o H(-,1) =g.

The map H is called a homotopy from f to g.

DEFINITION 2.14. A map f: X — Y is called nullhomotopic if f is homotopic to

a constant map.

DEFINITION 2.15. A space X is called contractible if 1x, the identity map on X,

18 nullhomotopic.



CHAPTER 111

FIXED POINT SET IN A CAT(0) SPACE

Let (X, p) be a metric space and b € R. A map ¢: [0,b] — X is a geodesic
path of [0,b] into X if

p(d(s),0(t)) = |s — t| for all s, ¢ € [0,b].

The image of such a map will be called a geodesic segment or a metric segment
from ¢(0) to ¢(b), denoted by (¢(0), ¢(b)). When the geodesic from = to y is unique,
its image will be denoted by [z, y].

The space (X, p) is said to be geodesic if for distinct points x,y € X, there is
a geodesic segment from x to y. We say that X is uniquely geodesic if there is
exactly one geodesic segment from x to y for any distinct points x,y € X.

The followings are simple facts about a geodesic space X .

LEMMA 3.1. Let z,y € X and z,w € (x,y). Then

(i) 0 < plz,2) < plz,y)
(i) If p(z, 2) = p(z,w), then » = w.
Proof. Let ¢: [0,b] — (£1y) be a geodesic path such that ¢(0) = z and ¢(b) = y
where b € R.
(i) Let ¢ € [0,5] be such that ¢(f) = z. Then plx,2) = p(d(0),(t)) = |t — 0] =
t<b=1b—0]=p(z,y).

(i) Let t,s € [0,b] be such that ¢(t) = z and ¢(s) = w. Then

t =10 —t] = p(¢(0), ¢(t)) = p(, 2) = p(x, w) = p(¢(0), $(s)) = [0 — | = s.

It follows that t=s which yields z = ¢(t) = ¢(s) = w, completing the proof. O
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LEMMA 3.2. Let x,y € X, and ¢: [0,b] — (x,y) a geodesic path such that ¢(0) = x

and ¢(b) =y where b € R. Then for t € [0, 1],

p(6(0), ¢(tb)) = tp(4(0), ¢(b)), and
p(d(b), d(tb)) = (1 — t)p(¢(0), H(b)).
Proof. We sce that
p(6(0), 4(tb)) = |0 — tb|
= #/0—=b|

= tp(6(0), (b))
Similarly, we can show that p(¢(b), #(tb) = (1 — t)p(0(0), p(b)). O

PROPOSITION 3.3. Let x,y € X. Foreach t € [0, 1], there is a unique point z € (x,y)

such that

p(r,2) = tp(z,y) and p(y,z) = (1 —t)p(x,y).

Proof. Let t € [0,1]. If x =y, then the conclusion is obvious by letting z = z = y. We
assume that x # y. Let ¢: [0,b] — (x,y) be a geodesic path such that ¢(0) = x and
#(b) =y where b € R. Let z = ¢(tb). Then by Lemma 3.2 we have p(z, z) = tp(z,y)

and p(y,z) = (1 —t)p(x,y). The uniqueness part follows from Lemma 3.1(ii). O

The unique point z intthe above proposition will be denoted by (1 — t)z & ty;
ie., ¢(th) = (1 —=1t)p(0) @ tp(b) for all t €0,1]. Also, for each x € X and t € [0, 1],
(1 —t)z @ te = x. It is obvious that if z € (z,y) satisfies one of the conditions in

Proposition 3.3, it also satisfies the other.

REMARK 3.4. Let x,y € X be such that v #y and s,t € [0,1]. Then

(i) I—=tirdty=(1—s)x®sy if and only if t = s

i) 1—thrdty =ty d (1 —t)z.



LEMMA 3.5. Let z,y € X and ¢: [0,b] — (z,y) be a geodesic path such that ¢(0) =

and ¢(b) =y where b € R. Then for s,t € [0, 1],
p((1—t)z @ ty, (1 —s)zd sy) = [t — s|p(z,y).

Proof. Note that ¢(tb) = (1 —t)z @ ty and ¢(sb) = (1 — s)x @ sy. Then

p((1 =tz @ ty, (1 —s)z @ sy) = p(d(th), d(sb))

= [tb — sb|
=t —s||0 -]
= |t = slp(z,y).
This finishes the proof. 0

LEMMA 3.6. Let x,y € X be such that x #vy. Then

(i) (z,y) = {(1 - t)e Dty [t [0 1]}.

(i) the map f:[0,1] = (z,y), t+— (1 = t)x & ty, is continuous and bijective.
(il)) p(z,y) = p(z,2) + p(z,y) for all z € (z,y).

(iv) if = # w € X are such that p(x,y) < p(z,w), then there is a unique

v € (z,w) such that p(z,v) = p(z,y).

Proof. (i) (2) It is clear by definition.

(C) Let z-€ (z;y): By Lemma 3:1 we have 0-< p(x,z) < p(x,y). Let t =
plz, 2)

plz,y)
fore, z = (1~ t)x P ty.

€ [0,1]. It follows that p(z,z) = tp(z,y) and p(y,z) = (1 — t)p(z,y). There-

(ii) From (i) and Remark 3.4, we get that f is well-defined and bijective. It re-
mains to show that f is continuous. Let ¢: [0,b] — (z,y) be a geodesic path such
that ¢(0) = = and ¢(b) = y where b € R. Then for all ¢ € [0,1], f(t) = ¢(tb). Note

that the map g: [0, 1] — [0, ], ¢ +— tb, is continuous. Since g and ¢ are continuous,

sois f=¢og.
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(iii) Let z € (x,y). Then by (i) z = (1 — t)x & ty for some ¢t € [0,1]. Thus
pla,z) = tp(z,y) and p(y,2) = (1 = t)p(z,y) which imply p(z,2) + p(z,y) =

(iv) Assume z # w € X are such that p(x,y) < p(z,w). Let t =

plx,y) = tp(z,w). Let v = (1 —t)z ® tw so that p(z,v) = tp(z,w) = p(x,y). The

uniqueness part follows from Lemma 3.1(ii). O

LEMMA 3.7. Let X be a uniquely geodesic space. Let x,y € X be such that x # y.
Define

L(z,y) ={ 2 € X | p(x,y) = p(x,2) + p(z,y) }.

Then [x,y] = L(x,y).

Proof. From Lemma 3.6, it is clear that [z,y] C L(z,vy).
Conversely, let z € L(z,y). Then p(z,y) = p(x, 2) + p(z,y). Let
¢+ 10, p(z, y)| = [, Y]
¢1: [0, p(x, 2)] = [, 2]
¢2: [0, p(z,9)] = [2,9]

be geodesic paths such that ¢(0) = 7, ¢(p(,9)) = 4, $1(0) = 2, ¢ (p(x,2)) = 2,
$2(0) = z, and @o(p(2,y)) =w. First, we show that {z;2] 0 [z,y] = {z}. Let w €

[z, 2] N [z,y]. Then

p(x,w) + p(w, 2) = p(r,2) and p(z,w)+ p(w,y) = p(z,y).

So we have
p(z,y) = p(x,2) + p(z,y)

= p(x,w) + p(w, 2) + p(z,w) + p(w,y)

= p(z,w) + p(w,y) + 2p(z, w)
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It follows that p(z,w) = 0 so z = w. Therefore [z,z] N [z,y] = {z} as desired.
By the pasting lemma, ¢ = ¢1 U ¢o: [0, p(x,y)] — [7,y] is a geodesic path from
r to y and ¢(0) = z and ¢(p(z,y)) = y. Since X is uniquely geodesic, we have

o([0, p(x, y)]) = ¢([0, p(x,y)]) = [x,y], so z € [z,y]. This shows that L(z,y) C [z,y]

and hence L(x,y) = [x,y]. O

LEMMA 3.8. Let X be a uniquely geodesic space, let x,y € X,x #y and f a quasi-
nonezpansive map. If x and y are fived points of f, then f([x,y]) C [z,y]. That is

[z,y] is invariant under f.

Proof. Assume that x and y are fixed points of f. Let z € [x,y]. Then p(z,y) =

p(x,z)+ p(z,y). Since f is quasi-nonexpansive and z,y are its fixed points, we have

plryy) < p(f(2),z) + p(f(2),y)
< p(z,2)+ p(z,y)
= p(x, y)-

This forces p(z,y) = p(x, f(2)) + p(f(2),y). By Lemma 3.7, it follows that f(z) €
[z,y]. Therefore, f([z,y]) C [z,y]. O

Next, we will define the CAT(0) space.

Let (X, p) be a geodesic space. A'geodesic triangle A(x;, 22, x3) in X consists
of three geodesic segments (1, xs), (2, x3), (x1, x3) joining each pair of 1, zs, x3. A
comparison triangle for A in R? is a triangle A(7y, #a,43) such that p(z;,z;) =
|z; — z;| for i,j € {1,2,3}. Let + € A be a point on the geodesic (z;,z;). The
comparison point of z in A is a point Z € (&;, ;) such that p(z;,z) = |z; — Z|.
DEFINITION 3.9. We say that a geodesic metric space (X, p) is a CAT(0) space if

each geodesic triangle A in X satisfies the following property:



12
Let A C R? be a comparison triangle for A. Then for x,y € A and their com-

parison points T,y € A, we have

plz,y) <[z -y

ExamPLE 3.10. The following spaces are CAT(0):

(i) Euclidean space, R"

(ii) Hyperbolic spaces, H™.

(iii) R-Trees.

Proof. The proof can be founded in /2]. O

THEOREM 3.11. A CAT(0) space is a uniquely geodesic space.

Proof. Let (X,p) be a CAT(0) space,  # y € X and ¢1,¢2: [0,p(x,y)] — [z,9]

geodesic paths from z to y such that ¢1(0) = 2 = ¢2(0) and ¢1(p(z,y)) =y

6a(p(, ). We will show that ¢y({0, p(z, y)}) = ¢a({0, pl, ). Let p € 61([0, p(x, )

and ¢ € ([0, p(x,y)]) be such that p(x,p) = p(x,q). Then A(x,p,y) is a geodesic

triangle in X. Let A(Z,p,%) be a comparison triangle for A in R2. Note that p(x,p) =

=0l = |z gl Sinee [y —p| = [y -4, it

)

|z — p| and p(ziq) ={T.— gl so
follows that p = ¢. Since p(p,q) < |p — q| = 0, we obtain p. = ¢q. Therefore,
¢1([0,p(l’,y)]) = ¢2<[0,p($,y)]) O

LEMMA 3.12. Let (X, p) be a CAT(0) space. Then
p(1—txdty, (1 —t)xdtz) <tpy,z)

for all x,y,z € X and t € [0,1].



13
Proof. Let x,y,z € X and t € [0,1]. Let A(z,y,2) be a geodesic triangle in X and

A(Z,9,%) a comparison triangle for A in R?. Since X is CAT(0), we have
p(I—trdty, 1 —t)xdtz) <|1—-t)z+ty— (1 —t)T — tZ|
=t|y — 2|

=tp(y, 2).

DEFINITION 3.13. Let X be a geodesic space. A set K C X is called p — convex if

for all z,y € K, there is a geodesic path ¢: [0,b] — (x,y) such that (x,y) C K.

THEOREM 3.14. Let X be a CAT(0) space and K C X a nonempty p— convex subset

of X. Then K is contractible.

Proof. Let X be a CAT(0) space and K € X a nonempty p—convex subset of X.

We will show that K is contractible. First, fix o € K. Define H: K x I — K by
H(z,t)=(1—tiedtxgforall x € K t € I.

We will show that H is continuous. Let (z,f) € K x I. Given ¢ > 0. Let § =

p(xoex)—i-l > 0. Let (y,s) € By((x,t),0), where

d((w;t), (y, 8)) = max{p(z,y), |t — s[}
is a metric on K x I. By Lemma 3.5 and Lemma 3.12; we have
p(H(x,t), H(y,5)) = p((1 = t)z ® two, (1 — s)y © swo)
< p((1 =t)x @ txg, (1 — s)x ® sx0)
+ p((1 — 8)x @ sxg, (1 — 8)y B sxg)

< [t — slp(z, 20) + p(z, 9)
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< op(xo,z)+ 6

= d(p(xo, z) +1)

Thus H is continuous. Also,
H(z,0) = 12 ® 029 = = and
H(z,1) = 0z & 1z = .

It follows that K is contractible. This completes the proof. 0

THEOREM 3.15. Let X be a CAT(0) space and f a quasi-nonexpansive map. Then
F(f) is p— convex, and hence contractible. In a word, if F(f) is nonempty , then

F(f) is either a singleton or an infinite.

Proof. Let X be a CAT(0) space and f a quasi-nonexpansive map. Let x,y € F(f)
and z € [z,y]. We will show that f(z) = z. Since z € [x,y], it follows that p(x,y) =
p(x,2) + p(z,y). Since [x,y| is invariant under f, f(z) € [x,y] which implies that

p(x,y) = p(z, f(2)) + p(f(2);y). Since f is quasi-nonexpansive, we have

plie, 2) = p(a, f(2)) and p(z,y) = p(f(=). ).

By Lemma 3.1(ii), we have z = f(z) which implies that z is a fixed point. Con-
sequently, [z,y] € F(f). Hence, F(f) is p—convex and hence contractible. This

completes the proof. 0

It is necessary that a map f be quasi-nonexpansive. For example, consider the

function f: R — R defined by
f(z) =2 for all z € R.

It is obvious that f is not quasi-nonexpansive and F'(f) = {0,1, —1} is not p—convex

and contractible.
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The followings are examples that assert the theorem above.

EXAMPLE 3.16. Let X = D?. Define f: X — X by

fz) ="z
It is clear that X is a CAT(0) space and f is a quasi-nonexpansive. Also, F(f) =

[—1, 1] which is convex and contractible.

ExaMPLE 3.17. Let X = C. Define f: X — X by

f@) = lz|:

It is clear that X is a CAT(0) space and f is a quasi-nonezpansive map. Also,

F(f)=10,00). Then we see that F(f) is convex and contractible.

EXAMPLE 3.18. Let X = D" the unit disk in R™. Fiz i € {1,2,--- ,n} and let e;

be the i'" standard basis element of R™. We define f: X — X by

(1 = llzl)e:
: .

FaypL 2=

Clearly, f is quasi-nonexzpansive. We can easily see that F(f) = {%}. Therefore, it

follows that F(f) is convex and contractible.

EXAMPLE 3.19. Let X be the real Hilbert space R* under the usual Euclidean inner
product. If x = (a,b) € X we define x+ € X to be (b, —a). Trivially, we have ||x*|| =
|z|| forall x,y € X. We take our closed and bounded convex set K to be the closed
unit ball in X and put Ky ={z € X : ||z]| < 3} and Ky, ={z e X : ; <|z| <1}

We define the map f: K — K as follows :

fz) =
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We notice that, for x € K1 N Ky, the two possible expressions for f(x) coincide and
that f is continuous on both Ky, and Ks. Hence f 1is continuous on K. We now
show that f is quasi-nonexpansive. Note that F(f) = {(0,0)} which is convex and

contractible. To show that f s quasi-nonexpansive, let x € K. If x € Ky, we have

2
(lzll + llz=11) = Zll=] < [l = Oll.

N

1f(z) = Ol = lIf ()] = \&(w +ar)| <

If x € Ky, we have

£ @) — 0] = || £(=)]
- I3 ==
< S )+ (el )

1]
e

<@l + el + Nel)

— e =0].

It follows that f is quasi-nonexpansive as desired.
EXAMPLE 3.20. Let f: R — R be defined by

f(z) = %ln(l +¢e%) for all x € R.

We will show that f is quasi-nonexpansive and F(f) is conver and contractible.
Notice that for all z € R, if f(x) =z, then $In(l + ") =z so In(1 + €”) = 2z.

By computing, we have x = 111(”2\/5). Therefore, F(f) = {ln(%)} which is convex

and contractible.. It remains to show that f “is quasi-nonexpansive. First, we claim

that for all x,y € R with y < z,

1+ex<§.
1+e¥y = ey

Let x,y € R be such that y < x. Then e¥ < e*. Thus,

e'(14e") =e' 4" < e+ eV =e"(1+¢).
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It follows that
1+e” < e’

14+ev — ev

Next, let y € R and x = ln(”z\/‘?’) the fized point of f. Then

£) — ol = |5 (1 + &) — (1 +¢7)
- %| In(1+¢€Y) — In(1 4 €)|

)l

14 e*
1+4e¥

1
=—|1

lin

1 e’
< —|Iln(—

SIS
< 1| |

= 'I‘ JE—

5 Y

< |y —al.

Therefore, f is quasi-nonezpansive.

REMARK 3.21. There is no quasi-nonexpansive map on D? such that F(f) = S'.

REMARK 3.22. Fvery polynomial f: C — C of degree n where n > 2 1is not a

qUasi-nonerpansive map.

THEOREM 3.23. Ewvery CAT(0) space is contractible.

Proof. Let X be a CAT(0) space. The identity map 2x on X is quasi-nonexpansive

and F(1x) = X. By Theorem 3.6, F(1x) is contractible, so. X is also contractible. [

From Theorem 3.23, we obtain that every noncontractible space is not a CAT(0)

space. Thus, for example, S* and R*\ {0} are not CAT(0) spaces.

DEFINITION 3.24. A map f: X — X is said to be eventually quasi-nonexpansive

if there exists an integer N € N such that for each n > N, f" is quasi-nonexpansive.

EXAMPLE 3.25. Every nonexpansive map is eventually quasi-nonexrpansive.
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EXAMPLE 3.26. Let f: R — R be defined by
0 ifx <0

fz) =
-2z ifx>0

We see that for all n > 2, f"(x) =0 is clearly quasi-nonexpansive so f is eventually

quasi-nonerpansive.

EXAMPLE 3.27. Let g: R — R be defined by

(

=21+ 1 wmgpr <—1
—z if =1<a<0
g(r) =
z if0<z <1
1 if x> 1.
\
We see that ¢
1 ifr <=1
—r—f— 1<z <0
9" (x) =

T if0<x<1

1 ifx>1
\
for all n > 2. It is obvious that g™ is quasi-nonexpansive for all n > 2. So g is

eventually quasi-nonexpansive.

Next, we will show the interesting fact for the fixed point of an eventually quasi-

nonexpansive map.

THEOREM 3.28. Let (X,p) be a CAT(0) space. If f: X — X is an eventually

quasi-nonexpansive map, then F(f) is p— convex.

Proof. Since f is eventually quasi-nonexpansive, there is N € N such that f" is

quasi-nonexpansive for all n > N. First, claim that F(f) = F(fN) N F(fN*). Tt is
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clear that F(f) C F(fN) N F(fN*1) since for each x € F(f) we have f(x) = z so
fN(z) = x and fN*(x) = x. Conversely, let z € F(fN)NEF(fN*1). Then fN(z) =z
and fN(z) =2 so

v = Y 2) = f(fY (@) = f(2)
which implies that x € F(f). Therefore, the claim is proved. Next, we will show that
F(f) is p—convex. Let z,y € F(f). Then z,y € F(f") and z,y € F(f¥*!). Since
Y and fN*! are quasi-nonexpansive so by Theorem 3.15, we have [z,y] C F(fV)

and [z,y] C F(fN*!). This yields

[, yh SE(fY) N F (Y = F(f).

Therefore, F(f) is p— convex. O

THEOREM 3.29. Let X be a CAT(0) space. If f: X — X is an eventually quasi-

nonexpansive map, then F(f) is contractible.

Proof. Tt follows directly from Theorem 3.14. U

ExAMPLE 3.30. Let X = R and f,g be maps in Example 3.26 and Fxample 3.27,
respectively. Note that both f and g are not quasi-nonerpansive but eventually quasi-
nonezpansive. Moreover, we: see that-F(f) = {0} -and F(g) = [0,1]. It is clear that

F(f) and F(g) are conver and contractible.

Next; we will show that every nonempty closed subset K of a CAT(0) space X

is the fixed point set of a continuous self map 7" on X.

THEOREM 3.31. Let X be a CAT(0) space and K a nonempty closed subset of X.

Then there ezists a continuous map T: X — X such that F(T) = K.
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Proof. Let K be a nonempty closed subset of X. First note that for each z € X, we

have p(z, K) < 0o. So we let k, = 15;”(’;(]){). Note that for each z,y € X,

e — Joy| = | ple, K)  ply, K) |
L+p(z, K) 1+ p(y, K)
1 ! 1 !
Ty SRR e o)
1 1

TG E) T R)

p(x,K) rd /O(y7K)
(1 + oy, K)) (1 + p(z, K))

<|p(z, K) — p(y, K)|.

Now, fix g € K and define T": X — X by

T(x) = (1 —k,)x® kyxo for all =€ X.

We first show that 7T is continuous on X . Let © € X. Let € > (0. Choose § =

Let y € B,(z,06). By Lemma 3.5, Lemma 3.12 and the above note, we have
p(T(x), T(y)) = p((L — ka)2 B koo, (1 — ky)y © kyzo)
< p((1 — ky)x & kywo, (1 — ky)z & kyzo)
(L= ky)z ® kyo, (L= ky)y © kyo)
< ke =kylp(, 20) + p(2,9)
< |pke, K) — ply, K)p(o, ) + p(, y)
< p(a,y)(p(xo; )+ 1)
< 0(p(zos) 4+ 1)
=e.

This shows that T is continuous.

€

p($,3}0)+1 ’
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Also, we see that T'(x) = x if and only if (1 — k,)z @ k,zo = z if and only if

k., = 0 if and only if 1£(px(ff)<) = 0 if and only if p(z, K) = 0 if and only if xz € K.

Thus, F(f) = K, completing the proof. O

The following is an example of a continuous map and closed set in Theorem 3.31.

EXAMPLE 3.32. Let X = [0,1] and K = {0,1,4,3,...} a closed subset of X. By

Theorem 3.31, define T: X — X by

x
T(x)=———— forallz € X.
Z) 1—|—p(x,K)f
For each n € NU{0¥ Tet To(0) = 0 and To: [——, 2] — [——, 2] be defined
or each n e =0 and T),: [—, -] — ,—]| be define
- ; n+1'n n+1'n
by
T . _2n+1 <.§L’<l
1 2 ' 2n(n — —n
T (2) = 1+1 2n(n+1)
¥ . 2n+1
e mar e S Sy e

n+1

11 =
We see that F(Ty) = {0} and F(T,) = {n——H’ ﬁ} It follows that T = U T, and

n=0

F(T) = U F(T,). It is obvious that T is continuous and F(T) = K.
n=0

7

0.4 4

0.2+

X

FIGUure 1. f(z)=2,T(z) = m
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