

การเรียนวิธีการเลือกตัวแปรทวภิาคเพื่อเพิ่มประสิทธิภาพของเวลาที่ใชหาผลเฉลยของ
ปญหากําหนดการเชิงเสนจํานวนเต็มผสมในการหาคาเหมาะที่สุดของการจัดวางผังอาคารทางสถาปตยกรรม

นายกมล เกียรติเรืองกมลา

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปรญิญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร ภาควิชาคณิตศาสตร

คณะวิทยาศาสตร
จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2550
ลิขสิทธิ์ของจุฬาลงกรณมหาวยิาลัย

LEARNING BINARY VARIABLES SELECTIONS

TO IMPROVE THE MIP SOLUTION TIME

IN ARCHITECTURAL LAYOUT DESIGN OPTIMIZATION

Mr. Kamol Keatruangkamala

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctoral of Philosophy Program in Computer Science

Department of Mathematics

Faculty of Science

Chulalongkorn University

Academic Year 2007

Copyright of Chulalongkorn University

 vi

Acknowledgements

This work can not complete in this present stage without numerous contributions, and

help from many people. I would like to use this invaluable section to express my

gracious gratitude to all of them.

 First and foremost, I would like to thank my advisor, Asst. Prof. Dr. Krung

Sinapiromsaran, for his through guidance and support throughout the research, his

whole-hearted efforts in providing the necessary help and many useful discussions and

suggestions for my dissertation and his encouragement in many ways. He has shown me

the impression of Mathematical programming since my early days of computer science

education several year ago. With gratitude I would also acknowledge my dissertation

committee Prof. Dr. Chidchanok Lursinsap, Assoc. Prof. Dr. Somchai Prasitjutrakul,

Assoc. Prof. Dr. Ekachai Leelarasmee, and Asst. Prof. Dr. Acharawan Chutarat for their

valuable times of reading and making constructive comments on this dissertation.

 Most important, I would like to thank the faculty of architecture, Rangsit

university for the financial support during my study here.

 Finally, I would like to thank my parents (Mrs. Saraya S. and Mr. Jirasak K.),

my sister and my brother (Ms. Arpaporn K. and Mr. Chalearmchai K.), Miss Hong

Raksakulkeat, Miss Keerati Boonchote, Miss Aujjima Tritanon and my college friends

Mr. Sittisak S., Mr. Yuttana L., Miss Kodchakorn N., Mr. Matee B. and Mr. Thirawut

K. for supporting, inspiring, and understanding throughout my academic years.

 vii

Contents

Abstract(Thai) ……………………………………………………………....….. iv

Abstract(English) ……………………………………………………................. v

Acknowledgements ……………………………………………...…………....... vi

Contents ……………………………………………...………………………..... vii

List of Tables ……………………………………………...……………………. ix

List of Figures ……………………….………………...…………..……............. x

Chapter

1. Introduction

 1.1 Background and Motivation …………………………………… 1

 1.2 Contributions ………………………...………………………… 5

 1.3 Dissertation Organization …………….………………………... 5

2. Theoretical Background

 2.1 Fundamentals of a Mathematical Programming ………………. 6

 2.1.1 Linear Programming …………………………..………… 6

2.1.2 Mixed Integer Programming…………………………….. 11

 2.1.3 Valid Inequality Constraints …………………………….. 12

2.1.4 Branch and Bound Algorithm …………………………… 13

 2.2 Fundamentals of Genetic Algorithm ……………………….….. 17

2.2.1 Theory of Genetic Algorithm …………………………… 17

2.2.2 Principal Factors of Genetic Algorithm ….……………… 19

3. Problem Methodologies

 3.1 Architectural Layout Design Optimization Model ….……………... 26

 3.1.1 Designing Variables and Parameters …………………….. 26

 3.1.2 Multiobjective Optimization ……………..………………. 29

 3.1.3 Architectural Constraint Formulations ……...……..…….. 33

3.2 Valid Inequality Optimization Model …..………………………….. 41

 3.2.1 Non-circular Connectivity Constraints …………………... 41

 3.2.2 Advised Configuration Constraints …………………......... 44

 viii

4. Learning Methodology Using Genetic Algorithm

4.1 Learning Special Order Set ………………………………………… 46

 4.2 Genetic Algorithms Methods ….…………………………………… 47

 4.2.1 Chromosome …………………………………………….. 47

 4.2.2 Mechanism for Creating Generations …………….……… 49

 4.2.3 Fitness Function ………………………………………...... 50

 4.2.4 Genetic Algorithms Application ……………..…………... 53

5. Experimental Results

 5.1 Experimental Design ………………………………….…………… 55

5.2 Genetic Algorithm Parameters and Design ……….………….…… 57

5.3 MIP, Valid Inequalities and Learning Methodology Results ……... 74

6. Conclusions and Suggestions

 6.1 Conclusions………………………………………………………… 90

 6.2 Suggestions ………………………………………………………… 92

References ………………………………………………………..…………….. 94

Appendix A: Practical Study ………………………………..………………….. 98

Appendix B: GAM IDE model for AL-MIP+ ………………………………….. 100

Biography ……………………………………………..………………………... 102

 ix

List of Tables

Table Page

2.1 Example of binary coding: construction of chromosome (4 design

 variables) ………………………………………………………………... 20

5.1 Iteration comparisons of AL-MIP, AL-MIP+ and AL-MIP+GA ………. 75

5.2 Iteration percentage comparisons of AL-MIP, AL-MIP+ and

AL-MIP+GA ……………………………………………………………. 76

5.3 Time and Time percentage comparisons of AL-MIP, AL-MIP+ and

AL-MIP+GA ……………………………………………………………. 77

 x

List of Figures

Figure Page

1.1 Conceptually, a huge possible placements can adjusted in a variety

of ways …………………………………………………………………... 1

1.2 (a) Grid system and (b) Dissections based on wall-representation ……… 3

1.3 The initial software interface (a) for functional diagram input, (b) and (c)

for the text and graphical output and (d) shows the export DXF file from

CAD software …………………………………………………………… 5

2.1 Feasible region (F) and extreme points (a, b, c, d, e) ……………………. 10

2.2 Valid inequality constraint cut off the non-integral feasible region …….. 13

2.3 Subproblems and branching strategies ………………………………….. 14

2.4 Structure of Genetic Algorithms ………………………………………… 19

2.5 Example of chromosome for a four-variable individual with binary

 coding ………………….………………………………………………... 20

2.6 Binary and Gray coding for a 3-bit variable ….………………………… 21

2.7 Example of chromosome for a four-variable individual with binary

coding ….…………………………………………………………….….. 21

2.8 (a) Example of one-point crossover and (b) example of multiple-point

crossover ………………………………………………………………… 22

2.9 Uniform crossover-child 1, a value of 1 in the random string corresponds

to a bit from parent 1, and 0 corresponds to a bit from parent 2, and

vice versa for child 2 …………………………………………………….. 23

2.10 An example of mutation ………………………………………………… 24

2.11 Probability distributions for (a) Gauß mutation and (b) EXP mutation … 24

2.12 The general structure diagram of the GA is applied to solve the

architectural layout design problem …………………………………….. 25

3.1 (a) Model variables and parameters based on the coordinated system

and (b) model relationships between two connected rooms …………….. 26

3.2 The four connectivity directions between room i and room j …………... 28

 xi

Figure Page

3.3 (a) Comparison between Euclidian distance function and Manhattan

distance function and (b) an absolute function is formulated using

a linear model ……………………………………………………………. 32

3.4 Maximizing room area is constructed by maximizing each room side …. 33

3.5 pij and qij represent the connection of room i and room j ……………….. 35

3.6 sik and tik represent connection of unused cell and room i ………………. 37

3.7 The fixed room presents at each layout boundary ………………………. 38

3.8 pij and qij are reused to formulate the non-intersecting relation between

room i and room j ……………………………………………………….. 39

3.9 (a) qij is reused to formulate the overlapping region between room i and

room i and (b) Tij represents a minimal contact length between room i and

room j…………………………………………………………………….. 40

3.10 Valid inequality constraint cut off the non-integral feasible region …...… 42

3.11 (Left) four possible connected scenarios defined by consecutive

rooms i, j and k and (right) four corresponding scenarios that are

eliminated from consideration ………………………………………...….. 43

3.12 The advised configuration constraints, (a) advised room i' at the

north(top) of room j, (b) advised room i' at the south(bottom) of room j,

(c) advised room i' at the east(right) of room j and (d) advised room i' at

the west(left) of room j …………………………………………………... 45

3.13 The new smaller feasible area is cut off by the valid inequality constraint 45

4.1 (a) the sequential orders pij and qij in branch and bound algorithm start

from the top(root) to the bottom node and (b) The corresponded orders

pij and qij based on GA structural representation is constructed from the

extreme left to the extreme right …………………………………………. 47

4.2 The 2D binary strings of 5 rooms represent the SOS variables …………. 49

4.3 Flow diagram of learning AL-MIP with GA …………………………….. 52

5.1 The distinct pattern A, B, C and D of 10 room configurations ………….. 56

5.2 (a) the statistical data of pattern A and (b) the histogram of the fitness

values tested by the various GA parameters ……………………………... 63

5.3 (a) the statistical data of pattern B and (b) the histogram of the fitness

values tested by the various GA parameters ……………………………... 66

 xii

Figure Page

5.4 (a) the statistical data of pattern B and (b) the histogram of the fitness

values tested by the various GA parameters ……………………………... 69

5.5 (a) the statistical data of pattern D and (b) the histogram of the fitness

values tested by the various GA parameters ……………………………... 72

5.6 The 4 rooms fitness of computational iterations (a) between room A and

room D, (b) between room B and room C and (c) illustrates 4 rooms

candidate SOS variable pij and qij of pattern A, B, D and D …………….. 80

5.7 The 5 rooms fitness of computational iterations (a) between room A and

room D, (b) between room B and room C and (c) illustrates 4 rooms

candidate SOS variable pij and qij of pattern A, B, D and D …………….. 81

5.8 The 6 rooms fitness of computational iterations (a) between room A and

room D, (b) between room B and room C and (c) illustrates 4 rooms

candidate SOS variable pij and qij of pattern A, B, D and D …………….. 82

5.9 The 7 rooms fitness of computational iterations (a) between room A and

room D, (b) between room B and room C and (c) illustrates 4 rooms

candidate SOS variable pij and qij of pattern A, B, D and D …………….. 83

5.10 The 8 rooms fitness of computational iterations (a) between room A and

room D, (b) between room B and room C and (c) illustrates 4 rooms

candidate SOS variable pij and qij of pattern A, B, D and D …………….. 84

5.11 The 9 rooms fitness of computational iterations (a) between room A and

room D, (b) between room B and room C and (c) illustrates 4 rooms

candidate SOS variable pij and qij of pattern A, B, D and D …………….. 85

5.12 The 10 rooms fitness of computational iterations (a) between room A and

room D, (b) between room B and room C and (c) illustrates 4 rooms

candidate SOS variable pij and qij of pattern A, B, D and D …………….. 86

5.13 The computational iteration comparisons from 4 to 15 rooms (a) between

room A and room D and (b) between room B and room C ……………… 89

6.1 The graphical results of 10 room configurations of patterns A, B, C

and D ……………………………………………………………………... 91

CHAPTER I

Introduction

1.1 Background and Motivation
Architectural layout design is one of the most important and complex parts of any

architectural design process. In order to design a layout that responds to most of its

related requirements, architects spend much time and effort on studying specific

layouts and all existing relationships within rooms and among the interior and exterior

spaces. Besides the artistic aspect of an architectural design, there is a substantial

logical process behind the layout design phase. Architects cannot avoid having a large

number of trial and error to reach that step. The combinatorial complexity of most

architectural layout design problems also makes it practically impossible to obtain a

systematic knowledge for all possible solutions.

Architectural layout design is an initial phase of a design process during which

the architect takes the specification of spatial objects and generates numerous feasible

drafts. It is the most critical phase which influents the final designed decision. This

architectural layout design can be interpreted as solving a combinatorial problem. By

which, solution methodologies for architectural layout design present the most

comprehensive challenges in the area of architectural design computation due to the

arrangement of all possible connections of n connected rooms. This combinatorial

problem is known to be NP-hard (Michalek et al., 2002, Russell et al., 1999), see

figure. 1.1.

Figure 1.1: Conceptually, a huge possible placements can adjusted in a variety of ways.

 2

As noted by Yoon (1992), the architectural layout design problem tends to be

ill-defined and over-constrained. Simon (1973) identified the ill-defined behavior of

the architectural layout design problem as the incomplete formulation to be used to

solve in the initial try. Resolving ill-defined problem is a process of searching for and

refining a set of design constraints. Moreover, the over-constrained problem is due to

many possible solutions and repeated constraints (Balachandran and Gero, 1987).

Hence, an architectural layout design problem needs a method of providing an

optimal solution from a large set of possible solutions, and a method of allowing

architects to modify the set of design constraints to continually refine the problem

definition (Arvin and House, 2000). However, Tsang (1995) showed that there is no a

universal best algorithm that certain algorithms may be preferred under certain

circumstances.

Many researchers seek to automate the process of architectural layout design

problem using several representations and solution techniques. Nevertheless,

architectural layout design problem is not easily dealt with. The Interactive Layout

Design Optimization (Michalek and Papalambros, 2002) reported a couple of days to

solve the problem of ten rooms which is impractical to incorporate in the CAD

system.

From the past decades, many previous attempts have been used to deal with

this problem such as the wall representation (Flemming, 1978, Simon, 1973), non-

linear programming (Imam et al, 1989, Medjdoub et al., Tang et al., 2000) and the

evolutionary method (Damski et al., 1997, Michalek et al., 2002, Gero et al., 1998).

There are various difficulties with each approach. The wall representation uses the

special data structure to generate the linear programming subproblem which requires

a special algorithm. The nonlinear programming approach guarantees only local

optimal (Cagan el at., 1998, Michalek el at., 2002). The evolutionary method can only

guarantee the convergence with a long running time (Jo and Gero, 1998).

The structural representation (Bloch et al., 1978, Gero, 1990, Honda et

al.,1995, Schwarz et al., 1994) of a spatial requirement is needed to form the basic

component of a physical design problem to be automatically solved by computer. One

representation used a grid system, see figure 1.2(a). This representation is inherently

discrete and multi-modal. Due to the combinatorial configurations, it cannot be solved

exhaustively for reasonable-sized layout. The grid allocation approach is a successful

approach for allocating a predefined space into rooms or activities. This approach can

 3

be used to redistribute activities in an office building during a reorganization. Liggett

and Mitchell (1981) used a constructive placement strategy on the grid system where

a room space is allocated one at a time. Then the iterative improvement based on the

objective function has been used to improve the current solution.

Another structural representation is that of the Flemming wall (Flemming,

1978, Simon, 1973) identified the location of walls in the space to partition a layout

into rectangular components, see figure 1.2(b). This structural representation has an

advantage over the grid-based layout by limiting nonrectangular shapes of space

patterns which help reduce the computational time.

Figure 1.2: (a) Grid system and (b) Dissections based on wall-representation.

The primary structural representation used in this thesis is based on a

mathematical programming similar to the work from Bloch (1978), et. al. using a

coordinated system. Michalek, Choudhary and Papalambros (2002) constructed an

optimization model of the quantifiable aspects that determines the best location and

size of a group of interrelated rectangular spaces using a middle coordinate (x, y) of

each room. This allows an optimization algorithm to alter a position of a room

independently to achieve the optimal cost satisfying all architectural design

requirements.

In this thesis, we develop the Mixed Integer Programming (MIP) model

(Grorge, 1988, Linderoth et al., 1999, Russell et al., 1999) to determine the optimal

multiobjective architectural layout design called AL-MIP. The advantage of MIP

model presents an easy adaptability for other architectural requirements. This AL-

MIP has been formulated to reduce the search space. Also, we narrowed the search

space by allowing architect to specify additional reduction constraints such as the

fixed room location, the unused grid cells, the fixed border location and the favorable

 4

choice of the nearest room to the top left corner. These formulations allow architects

to design a layout beyond the rectangular boundary (Scott et al., 1999). To deal with a

medium-sized problem (5-10 rooms), we resolve the problem by adding two valid

inequalities based on the mathematical programming technique called AL-MIP+.

These two valid inequalities consist of a non-circular connectivity constraint and an

advised configuration constraint. The non-circular connectivity constraints utilize two

binary variables pij and qij from the AL-MIP which causes the reduction of the

feasible region while the advised configuration constraints utilize a mathematical

inequalities based on the architect’s preference to suggest a room configuration in

North, South, East and West directions. AL-MIP+ abandons alternative solutions

while maintain the final objective value by incorporating the choice of the first room

to be placed near the top-left corner in the objective function. These two inequalities

significantly present the reduction of computational iterations and time. In order to

tackle the medium-sized problem efficiently, the machine learning has been adopted

to learn a Special Order Set (SOS) in the branch and bound algorithm, called AL-

MIP+GA. The robustness learning methodology Genetic Algorithm (GA) is applied

to SOS variables of the branch and bound algorithm for finding the better candidate

solution which will be stored into a computer as a preprocess of the branching node

in the search tree. Therefore, the computational iterations and time are drastically

reduced for the medium-sized problem of 10 rooms that can be solved within a few

minutes.

To practically apply AL-MIP, AL-MIP+ and AL-MIP+GA model, this thesis

has been developed the software named ALDO (Architectural Layout Design

Optimization) to help an architect identifying the layout requirements graphically

(Keatruangkamala and Sinapiromsaran, 2005), see figure 1.3. This software utilizes

the graphic user interface (GUI) running on the Windows operating system and

automatically solving the architectural layout instance. Furthermore, architect can

request a drawing presentation of the global optimal solution or save it as a DXF

format file to use with other CAD software.

 5

(a) (b)

(c) (d)

Figure 1.3: The initial software interface (a) for diagram input, (b) and (c) for the text and

graphical output and (d) the export DXF file from CAD software

1.2 Contributions

The following results are expected from this research:

• To reduce the computational time using the valid inequalities.

• To reduce the computational time of the branch and bound using the Special

Order Set (SOS) variables in improving the MIP solution time.

The results will contribute to the derivation of proposes of improving the

computational iterations and time for the architectural layout design optimization

problem.

1.3 Dissertation Organization

The organization of this dissertation is as follows. Chapter II reviews the

theoretical backgrounds and related works. Chapter III presents an overview of the

proposed model based on the MIP methodology. Chapter IV clarifies the concepts

behind the proposed learning SOS variables using the GA. An experiment is provided

in chapter V. Finally, some concluding remarks and suggestions are summarized in

chapter VI.

CHAPTER II

Theoretical Background

This chapter provides summary of important theoretical backgrounds that are required

in this thesis. It contains two main sections, the mathematical programming model and

the machine learning algorithm.

First, we introduce the Mixed Integer Programming (MIP) model based on the

linear programming (LP) model to solve an architectural layout design problem.

Moreover, we also introduce the valid inequality constraints that can be used to reduce

the feasible area of the problem.

Second, we describe the machine learning algorithm using Genetic Algorithm

(GA) which helps to reduce the computational iterations and time.

2.1 Fundamentals of a Mathematical Programming

2.1.1 Linear Programming

LP model is concerned with the optimization (minimization or maximization) of

linear function while satisfying a set of linear equality or inequality constraints or

restrictions. The LP model solved by Simplex algorithm was first conceived by George

B. Dantzig around 1947 while he was working as a mathematical advisor to the United

States Air Force Controller on developing a mechanized planning tool for a time-staged

deployment, training, and logistical supply program. Although the soviet mathematician

and economist L. V. Kantorovich formulated and solved a problem of this type dealing

with organization and planning in 1939, his work remained unknown until 1959. Hence

concept of the general class of LP model solved by Simplex algorithm is usually

credited to Dantzig.

 Nevertheless, LP model is widely utilized with the use or allocation of limited

resources as a labor, a material and a capital in the best possible manner so that cost is

minimized/maximized. An LP model is an optimization problem in which the objective

function and constraints are expressed as linear function based on the canonical form.

7

• The Canonical Form

There are various forms to represent an LP model. In this thesis, we consider the

canonical form with m constraints and n nonnegative constraints

 maximize c1x1 + c2x2 + … + cnxn

 subject to a11x1 + a12x2 + … + a1nxn < b1 (2.1)

 a21x1 + a22x2 + … + a2nxn < b2

 :

 am1x1 + am2x2 + … + amnxn < bm

 x1, x2, … , xn > 0

where aij, for i = 1, 2, …, m and j = 1, 2, …, n are the coefficients of the constraints. c1,

c2, …, cn are the coefficients of the objective function for nonnegative unknown

(decision) variables, x1, x2, … , xn, respectively. b1, b2, … , bm are the right-side

constraints.

 In matrix-vector notation, the above canonical form can be written in compact

form as:

 maximize cTx

 subject to Ax < b (2.2)

 x > 0

where A is an m × n matrix called the coefficient matrix, c is an n × 1 column

vector called the cost vector, x is an n × 1 column vector called the decision vector and

b is an m × 1 column vector called the right-side vector.

 In general, we can convert any LP to the canonical form. Note that the canonical

form requires maximizing the objective function. For the minimized optimization

direction, we multiply the objective function by -1 to reverse its direction, changing the

minimizing problem to the maximizing problem. The optimal solutions of both the

maximization problem and the minimization problem are the same, while their optimal

values will differ by a negative sign.

- maximize(-cTx) = minimize(cTx) (2.3)

8

In the next part, we will introduce some terminologies for finding the solution of

the LP model.

• Feasible Region, Optimal Solution and Extreme Point

For any linear programming model, we are interested in determining the optimal

value for the objective function.

Definition 1: (Feasible Region)

 Given an LP in its canonical form (2.2), the feasible region F is the set of all

solutions that satisfy all the constraints of the LP.

 F = { x ∈ Rn | Ax < b, x > 0 } . (2.4)

A solution in the feasible region of the LP is said to be the feasible solution.

Suppose that there are feasible solutions, the goal of the LP is to find the optimal

feasible solution, as measured by the value of the objective function.

Definition 2: (Optimal Solution)

Consider an LP model if the feasible region is not empty, an optimal solution is

a feasible solution that has the largest value of the objective function for the

maximization problem. Let x* be an optimal solution to the LP model.

 cTx* > cTx , ∀x ∈ F (2.5)

The value of the objective function corresponding to an optimal solution is called the

optimal value.

Definition 3: (Extreme Point)

A point x in a convex set S is called an extreme point of S, if x cannot be

represented as strict convex combination of two district points in S. In order words, if x

= λ x1 + (1 - λ)x2 with λ ∈ (0,1) and x1, x2 ∈ S, then x = x1 = x2.

Any LP in its canonical form (2.2) must be in one of the following four cases:

9

 1. LP has the unique optimal solution.

 This unique optimal solution must be an extreme point.

2. LP has alternative optimal solutions.

If there are two extreme points x*1 and x*2, then a convex combination

of x*1 and x*2 is also optimal.

3. LP is unbounded.

For a maximization problem, the feasible region is unbounded and the

plane cTx = z can be increased along the unbounded direction of the feasible

region. In this case, the objective value is unbounded and no optimal

solution exists.

4. LP has an empty feasible region.

In this case, the system of equations and/or inequalities defining the

feasible region is inconsistent. This means there is no point satisfying all

constraints of the LP.

The following example illustrates the two dimensional LP problem solved by

simplex method. All extreme points are illustrated in figure 2.1.

10

Example 2.1. Consider the following LP problem:

 maximize 40x1 + 36x2

 subject to x1 < 8

 x2 < 10

 5x1 + 3x2 < 45

 x1 > 0

 x2 > 0

The intersection of five half spaces gives the feasible region as follow:

 F = { x ∈ R2| x1 < 8, x2 < 10, 5x1 + 3x2 < 45, x1 > 0, x2 > 0 }

Clearly the set is a convex set and its extreme points are given as:

Figure 2.1: Feasible region (F) and extreme points (a, b, c, d and e).

 After solving this LP problem, we get the unique optimal solution at x1 = 3, x2 =

10 and the extreme point is d. In the next section, we will describe the MIP which is the

linear programming problem with integrality constraints.

d e

a b

c

5

5 10 15

F

10

15

x2

x1

The optimal solution

 3
d =
 10

 0 8 8 3 0
a = , b = , c = , d = , and e =
 0 0 5/3 10 10

Objective

11

2.1.2 Mixed Integer Programming

From the previous section, an LP model deals with a linear objective function

subject to a set of linear constraints. However, in numerous applications, it may be

necessary to specify that certain variables assume to have integral values. These

problems can be solved using the branch and bound algorithm which will be described

in details later.

An MIP is an optimization problem where some or all variables are restricted to

take only integral values. General integer and MIP is NP-hard, even today’s state of the

art commercial LP solvers have difficulties solving MIP formulations representing

engineering or business optimization models containing more than a few hundred

integer variables.

Typically, the integer LP model (George and Laurence, 1988) is simply a linear

program (LP) in which all variables are restricted to integral values. Nevertheless, we

will refer to this problem simply as an LP model because the term linear is seldom used

except to contrast a problem with an integer nonlinear programming problem. If all

variables must assume only integral values, it is called a pure integer programming

problem. While some variables are restricted to integral values and others remain

continuous, then it refers as an MIP problem.

(IP) maximize cTx (MIP) maximize cTx + dTy

 subject to: Ax < b subject to: Ax + Dy < b

 x > 0, x > 0,

 x is integer x is integer

 y > 0

where x and y are vectors of design variables, A and D are matrices.

Generally, an MIP model is an optimization model that can be stated

mathematically as follows:

12

where I is the set of integer variables, C is the set of continuous variables, and N = I U

C. The lower and upper bounds lj and uj may take on the values of plus or minus

infinity. Thus, an MIP model is an LP model plus some integrality restriction on some

or all variables.

2.1.3 Valid Inequality Constraints

Related to our research of MIP model, we aim to reduce the computational

iterations and time. This section, we utilize a valid inequality for the constraint set of

AL-MIP model. The construction of families of valid inequalities is more of an art than

a formal methodology (George and Laurence, 1988). To describe an idea of valid

inequalities, the following statements have been shown in details based on a given

formulation P.

The valid inequalities definition:

The inequality denoted by (π, π0) is called a valid inequality for P if πx ≤ π0,

∀x ∈ P.

Note that, if (π, π0) is a valid inequality. Then, the formulation P lies in the half-

space {x ∈ Rn : πx ≤ π0} and max{πx : x ∈ P} ≤ π0.

or we can describe another definition with the face of P as follow.

If (π, π0) is a valid inequality for the formulation P and F = {x ∈ P : πx = π0},

F is called a face of P and we say that (π, π0) represents or defines F.

Note that, a face is said to be proper if F ≠ ∅, and F ≠ P. Then, the face

represented by (π, π0) is nonempty and max{πx : x ∈ P} = π0. and if the face F is

maximize zMIP = ∑ cj xj + ∑ cj xj

 j∈I j∈C

subject to ∑aij xj + ∑aij xj < bi , i = 1,
…, m (2.6)

 j∈I j∈C

 l j < xj < uj , j ∈ N

 xj ∈ Z , j ∈ I

13

nonempty, we say it supports P. The set of optimal solutions to an LP is always a face

of the feasible region.

In order to describe an idea of valid inequalities, the following figure illustrates

a smaller feasible region from the valid inequalities.

Figure 2.2: Valid inequalities cut off the non-integral feasible region.

2.1.4 Branch and Bound Algorithm

In this section, the classical and the most widely used approach for solving MIP

model is the branch and bound algorithm which employs an LP model based relaxations

of the MIP for exploring the solution spaces. The implementation of the branch and

bound algorithm can be viewed as a tree search, where the problem at the root node of

the tree is the original MIP. The new nodes are formed by branching on an existing

node for which the optimal solution of the relaxation is fractional.

• Theory of Branch and Bound Algorithm

 Branch and bound algorithm is a method guaranteed to find a global optimal

solution to the MIP problem (Jeremy F S, 1979). The basic idea of the branch and

bound algorithm is to partition a given problem into a number of subproblems. This

process of partitioning is usually called branching and its purpose is to establish

subproblems that are easier to solve than the original problem. Branching is generally

represented in terms of a tree structure, as in figure 2.3 where each node i of the search

tree represents a subproblem Pi while c is an integral value and xi is a branching order

called a Special Order Set (SOS). The searching tree may have many levels, with the

x1

x2

Valid inequalities
πx < π0

objective

Smaller feasible
region

14

nodes at the bottom of the branching being referred to as pendant nodes. The solution

process involved a systematic evaluation of the pendant nodes of the search tree, the

evaluation process consists of three key components: branching, computing bounds and

fathoming. To derive the optimal solution to a given problem P0, the set of subproblems

of P0 must represent all of P0. For simplicity, let {Pi} be the set of feasible integer

solution to a problem Pi. Then, if P0 is partitioned into P1, P2, …., Pn, it must be true

that

{P0} = {P1} U {P2} U … U {Pn}

Also, it is generally more efficient to also choose subproblems P1, P2, … Pn

such that {Pi} ∩ {Pj} = φ for all i j where ci is an integral value and xi is an order

variable from i to n. This is especially true when it is necessary to enumerate all

solutions to the problem, because some solutions would be enumerated multiple times if

the feasible regions of some subproblems have a nonempty intersection.

To help understand the branching process, consider an integer program P0 with

n variables, and suppose that a particular variable, say xk must take on the integral value

c1, c2, c3, … , cn that the subproblems are created, each of which corresponds to fixing

the variables xk at one of its possible values. Because xk is now fixed in value, each of

the subproblems involves only n - 1 variables, see figure 2.3.

Figure 2.3: Subproblems and branching strategies.

15

Note, further, that during the branching process, we are essentially adding

restrictions to a particular problem to form the resulting subproblems. Consequently,

the feasible region of a subproblem is a subset of the feasible region of the parent

problem. Thus, in the case of a maximization problem, the optimal objective value

associated with a subproblem is always less than or equal to the optimal objective value

associated with the parent problem. Therefore, as we descent in the search tree, the

optimal objective values associated with each subproblem decrease for a maximization

problem. In order to describe the branch and bound algorithm, the three key

components of evaluation process will be described as follows.

• Computing Bound

Suppose that we know a feasible integer solution to a particular maximization

integer problem. Then the objective value provided by this solution is a lower bound for

the optimal objective value of the MIP. We assure of obtaining an optimal objective

which design the lower bound by zL. If several feasible integer solutions are known, zL

will correspond to the largest known objective value. That zL is the lower bound and the

integer solution corresponding to this value is called the incumbent solution, because it

is the best known integer solution.

 The purpose of computing upper bounds (in a maximization problem)

determines the optimal solution at a node without actually solving the integer program

at the node. This is usually done by solving the LP relaxation. Consider an integer

subproblem Pi associated with the pendant node i. Let z denote the optimal objective

value associated with subproblem Pi. That is, z corresponds to an optimal integer

solution of Pi. To determine, we are interested in finding an upper bound for z that can

be readily computed. Consider solving the LP relaxation of subproblem Pi, and let z
_

denote the optimal objective value of the LP relaxation. Clearly, z
_
 > z the feasible

region of the integer program is a subset of the feasible region.

 Suppose that z
_
 < zL. Then, z < z

_
 < zL and subproblem Pi does not need to be

considered further because it will never yield a solution any better than the current best

integer solution. This process of eliminating a subproblem Pi from further

16

considerations is referred to as fathoming. However, if z
_
 > zL, then a conclusion can not

be reached and further branching is needed.

• Fathoming

During the branch and bound process, an attempt is made to resolve each of the

subproblems corresponding to the pendant nodes of the search tree. Once all of the

subproblems associated with the pendant nodes are solved, then the problem is solved.

A subproblem can be eliminated from further consideration in one of the following

three ways:

1) The subproblems yield an optimal integer solution. In this case, we update ZL

and the incumbent solution if necessary and continue the node-selection process.

2) It can be shown that the optimal solution value of the subproblem is no better

than the best integer solution found thus far. This is usually done by computing

a bound on the optimal integer objective value by solving the LP relaxation.

This bound is then compared with the objective value of the incumbent solution.

3) The subproblem is infeasible.

However, this is not possible to fathom a given pendant node, the subproblem

associated with that node is again partitioned into a smaller subproblem by branching in

some prescribed manner. The process is then repeated until all pendant nodes have been

fathomed.

• Search Strategies

Branching also involves choosing the next subproblem (pendant node) to

examine. There are several branching strategies for choosing the next pendant node,

with the most common being depth-first search and best-bound search. In each of these

strategies, the pendant nodes are placed in a list according to measure of importance. If

the current node under examination is fathomed, then the next node in the list is

selected. If the examination of the current node is complete and it can not be fathomed,

the current subproblem is partitioned into additional subproblems that are then added to

the list according to the branching strategy being used. A new node is then selected and

the process is repeated until the list of available pendant nodes is empty.

17

 The solution of the LP relaxation at each node generates a bound on the optimal

integer solution that can be derived from that node. In the best bound search, the next

subproblem chosen is simply the one with the best bound. That is, for a maximization

problem, we would branch next on the node with the largest upper bound. The rationale

for branching in this way is to attempt to generate an integer solution early in the

branching process. This incumbent solution then could be used to fathom nodes with

smaller upper bounds.

 Depth-first search is also called last-in-first-out (LIFO). Last-in-first-out refers

to the strategy for placing nodes in and selecting nodes from the list of pendant nodes.

Using the depth-first strategy, we always choose the subproblem (node) that was placed

in the list most recently. We essentially work down one side of the search tree first and

the backtrack once a node is fathomed, because we can be used more efficiently. This is

a result of subproblems being created by adding restrictions to the parent problem.

2.2 Fundamentals of the Genetic Algorithm

2.2.1 Theory of Genetic Algorithm

This section describes the conceptual model of the Genetic Algorithms (GA)

used in this thesis. It starts with a basic form of GA along with its implementation.

Then, the fundamental theory of GA and its operators are discussed.

GA is classified as one of the evolutionary computation algorithms which refer

to a method that uses some forms of evolution as a major part of the process. Original

GA was introduced in 1975 by John Holland (1992) but evolution-based computation

approaches have been studied earlier than that period.

• Genetic Algorithms

GA was first proposed by John Holland at the University of Michigan in 1973.

He and his students investigated and proved that GA is a significant contribution for

scientific and engineering application. Since then, the outputs of researches in this field

have grown rapidly. GA is not a technique that requires the use of derivatives. The

obtained optima are evolved from generation to generation without a mathematical

formulation such as the traditional gradient type of optimizing procedure. Gradient

18

descent which calculates the slope of error surface at the current position works well

when the error surface is relatively smooth, with few local minima. Nevertheless, most

real world data has the distorted error surface by noise. The error surface would prove

difficult for gradient descent because of the local minima. GA is less sensitive to local

minima because it constitutes a parallel search of the solution space, as opposed to a

point by point search.

Therefore, GA is usually applied to optimization problems that are difficult to

solve or cannot be solved by a mathematical formulation. It is also used to resolved NP-

hard and NP-complete such as traveling saleman problem (TSP), scheduling and design

problems. It performs searching throughout the solution space to find the near optimal

answer.

• Genetic Algorithm Background

 GA is a technique imitating biological process of natural selection (Darwin’s

rule) by which only good or fit being survive (Tsang et al., 1996). The theory of Charles

Dawin may be summarized as follows. (a) The individuals of a species show variation.

(b) In general, more offsprings are produced than needed to replace their parents. (c)

Populations cannot expand indefinitely and, on average, population sizes remain stable.

(d) There must be competition for survival and (e) therefore, the best adapted variants

(the fitness) survive.

GA uses a direct similarity of natural behavior following Darwin’s theory.

Above all, the problem to be solved by GA must be first encoded into gene. There is no

uniform encoding scheme for every problem. The encoding scheme varies from one

problem to another problem. The appropriate encoding for the problem has to be

devised. The structure of GA is illustrated in figure 2.4.

19

Figure 2.4: Structure of Genetic Algorithms.

At the beginning, a set of the first generation of gene population is randomly

produced. We also evaluate their fitness as different beings possess unequal capability

to survive. After that, the genes in the set are randomly selected to produce the next

generation genes with the high fitness cost. The genes with low fitness cost are

eliminated. The producing process continues until the number of generation reaches the

specified value or there is no new gene to be produced. The set of new genes is

generated by three main gene operations, which are mutation, crossover and inversion.

Moreover, the conditions in the while loop depend on the problems to be solved. For

example, the condition for the traveling saleman problem is the minimum total traveling

distance. Variable t counts the number of generations whose maximum value is denoted

by a constant N.

2.2.2 Principal Factors of Genetic Algorithm

The performance of the GA is controlled by the following factors.

• Encoding Scheme

 Encoding scheme is referred to as genes of a chromosome which can be

commonly structured by various ways such as string, binary string, gray code and

Standard Genetic Algorithm()

1. t = 0

2. Generate initial population (valid genes)

3. Calculate fitness values of each gene.

4. While the conditions are not satisfied and t < N do

 (a) t = t +1

 (b) Select parents by random.

 (c) Recombine the population by crossover

and mutation operations.

 (d) Calculate fitness values of valid child genes.

 (e) Select the new population from the old

 population and the child population.

20

floating point. Generally, the binary scheme is traditionally used in GA but not

appreciated in some examples such as the problem concerning many variables with

large domain. Another scheme is the gray code which is slightly modified from the

binary coding. Note that the gray coding has the property that any two points next to

each other in the problem space differ by one bit only. By analogy with genetics, the

values of the variables are called the phenotype and the coding is called the genotype.

Four different coding have been implemented as follows.

1) A binary coding: each variable is coded in a substring of bits whose number

is related to the number of alleles that the variable could take.

Table 2.1: Example of binary coding: construction of a chromosome (4 design variables).

The chromosome of an individual is then constructed by concatenating the

substrings Si corresponding to each variable xi, see figure 2.5.

Figure 2.5: Example of chromosome for a four-variable individual with binary coding.

2) A Gray binary coding: the binary representation as described above is

widely used in the GA community, but it has some drawbacks. Indeed, it is commonly

accepted that a coding should reflect as closely as possible the behavior of the variables.

For example, a small change in the value of the variable should lead to a small

modification of the genotype. This is not systematically the case in binary coding,

where subsequent alleles may have completely different chromosomes. Therefore, the

Variables Types of
variables

Xi
(variation domain of Xi)

Number of
Alleles

Substring
size

x1 Continuous [0,10] 1024 (210) 10

x2 Continuous [0,10] 1024 (210) 10

x3 Discrete {10; 12.5; 15; 17.5} 4 (22) 2

x4 Integer {0;1} 4 (21) 1

21

Gray coding has been introduced, and is built in such a way that two subsequent alleles

differ only from one bit, see figure 2.6 for a 3-bit variable.

Figure 2.6: Binary and Gray coding for a 3-bit variable.

3. A fixed-point representation: this coding is based on a decimal

representation. Each division of the chromosome corresponds to one figure, and the

place of the decimal point is fixed. This is illustrated in Fig. 2.7 for a 2-variable

individual.

Figure 2.7: Example of chromosome for a four-variable individual with binary coding.

4) A real coding: when there are only continuous variables, a real coding is

often preferred, because it is very close to the real search space. In this representation,

each individual is thus coded as a vector of real values.

• Fitness Function

 Fitness function is the link between the GA and the problem to be solved. It is

one of the most significant elements to assess the GA performance. The value of the

fitness function is calculated for an individual of population and fitness value is settled

on its basis. The interaction between a chromosome and a fitness function provides a

measure of its fitness that is used when carrying out reproduction. Its fitness is

Alleles Binary coding Gray coding

1
2
3
4
5
6
7
8

000
001
010
011
100
101
110
111

000
001
011
010
110
111
101
100

22

supposed to be proportional to the utility or ability of the individual which that

chromosome represents.

• Crossover

 In nature, crossover occurs when two parents exchange parts of their

corresponding chromosome. In GA, the crossover recombines the genetic material in

two parent chromosomes to make two children. This is called by John Holland “one-

point crossover”. For the one-point crossover, two children are constructed by inverting

the genes of their parents from the (randomly determined) crossover site, see figure

2.8(a).

In some situation, using one-point crossover is inefficient. A multipoint

crossover can be used to overcome this problem. An example is demonstrated in figure

2.8(b) where multiple crossover points are randomly selected.

(a)

(b)

Figure 2.8: (a) Example of one-point crossover and (b) example of multiple-point crossover.

23

Another operator is called “uniform crossover” which is similar to multipoint

crossover. But it needs a randomly generated crossover template which is the pattern of

crossover point. There is an example in figure 2.9. The length of string 0-1 in the

template is equal to the length of chromosome. Therefore, at 0 in the template, the gene

of child 1 is placed by the gene of parent 1 and the gene of child 2 is placed by the gene

of parent 2. At 1 in the template, the gene of child 1 is placed by the gene of parent 2

and the gene of child 2 is placed by the gene of parent 1.

Due to the uniform crossover exchanges bits rather than segments, it can

combine features regardless of their locations. This ability may outweight the

disadvantage of destroying building blocks and make uniform crossover a superior

operator for some problems.

Figure 2.9: Uniform crossover-child 1, a value of 1 in the random string corresponds to a bit

from parent 1, and 0 corresponds to a bit from parent 2, and vice versa for child 2.

• Mutation

 Mutation is the process applied to each offspring individually after the

crossover. In GA, this operator creates new individuals by a small change in a single

individual by a random selection. When mutation is applied to a bit string, it sweeps

down the list of bits and replaces each by a randomly selected bit if the probability of

test passes. It is called “Bit Mutation” as illustrated in figure 2.10. In addition, it has an

associated parameter probability that is typically quite low.

24

Figure 2.10: An example of mutation.

Moreover, there are several mutation types that are not the binary case where

only one or two bits are flipped. The following describes the other techniques of

mutations.

1) A Random mutation: for each variable that is going to be mutated, choose a

random value within its range and assign this value to the variable. So, every value is

possible.

2) Gauß mutation: this mutation is similar to the previous one, the only

difference being that mutation step ∆xi is calculated according to Gauß’ distribution

N(0,1): smaller mutation steps are much more probable then large mutation steps. The

probability distribution of a standard mutation is shown in figure 2.11(a).

3) EXP mutation: this mutation type comes from the idea that the role of

mutation at the beginning is to make large jumps whereas later on, as the search

progresses it should be used more for fine–tuning so small jumps are more desirable.

Exponential distribution is presented in Figure 2.11(b). Here c is the constant that

depends on the generation number.

(a) (b)

Figure 2.11: Probability distributions for (a) Gauß mutation and (b) EXP mutation.

25

In this section, we describe the basic idea of GA from both theoretical

background and their characteristics which started by giving the overview of GA and its

principal operators. In general, GA is a class of search algorithms inspired by evolution

from nature. For more details about GA, the reader is suggested to read the standard

book such as GA in Search Optimization, and Machine Learning (Goldberg, 1989).

 As far the GA robustness has been discussed with details. Figure 2.12 illustrates

the entire process GA that will be applied to use in our algorithm.

Figure 2.12: The general structure diagram of the GA is applied to solve

the architectural layout design problem.

start
stop

Display

Terminate

Roulette
Wheel Evaluate fitness in terms of

the constraint function
Produce layout using placement

algorithm with constraint checking

Check and eliminate
duplication

Encode Gene

Create population
for generation

Parent

Parent A
Parent B

Offspring A

Offspring B

Offspring

Chromosome

Chromosome

Chromosome

Chromosome

Yes

Crossover Function

Mutation Function

Genetic Operator
Randomly
combine genes

Randomly select
chromosome

No

CHAPTER III

Problem Methodologies

In this thesis, we propose three methodologies to attack the architectural layout design

optimization. First, we formulate the mixed integer optimization model. Our original

formulation called AL-MIP guarantees the optimal design based on a multiobjective

function. Second, we propose the valid inequality constraints called AL-MIP+ to reduce

the AL-MIP iterations and time. These valid inequality constraints consist of non-

circular connectivity constraints and advised configuration constraints that help reduce

the feasible search space. Finally, the third methodology based on the machine learning

algorithm utilizes an idea of Genetic Algorithm (GA) called AL-MIP+GA to learn a

Special Order Set (SOS).

3.1 Architectural Layout Design Optimization Model

3.1.1 Design Variables and Parameters

The architectural layout design problem is posed as a process of finding the best

location and size of a group of interrelated rectangular rooms. In this thesis, we define

the room as a rectangular space to represent a specific architectural function such as

living spaces, storage spaces, and facility spaces. Given a set of rooms {1, 2, …, n},

figure 3.1(a) shows the room ith representation using a point at the top left corner (xi, yi)

with its height hi and width wi. The following figure also shows four walls represented

by the north, the south, the east and the west.

(a) (b)

Figure 3.1: (a) Model variables and parameters based on the coordinated system and

(b) model relationships between two connected rooms.

 27

In design variables and parameters, our model is formulated based on the

coordinated system of a meter unit scale using the top left corner of the boundary area

as the reference origin (0, 0). The positive value of x corresponds to x units to the right

of the origin while the positive value of y corresponds to y units below the origin.

Coordinates and dimensions are used as design variables, see figure 3.1(a).

xi = X coordinate of the top left corner of the room i.

yi = Y coordinate of the top left corner of the room i.

wi = the horizontal width of the room i.

hi = the vertical height of the room i.

Two boundary parameters are layout width and layout height which are

represented by W and H, respectively. Moreover, there are specific parameters for each

room, the lower and upper limits of the room width and the room height, wmin,i, wmax,i,

hmin,i, hmax,i where wmin,i is the minimal width of room i, wmax,i is the maximal width of

room i, hmin,i is the minimal height of room i, hmax,i is the maximal height of room i. In

addition, Tij is a minimal contact length parameter between room i and room j, see

figure 3.1(b).

This thesis also concerns with the reduction of the computational iterations by

limiting the variable numbers. For the connectivity sets from i = 1, 2, …, n and j = 1,

2, … , n where n is the number of room, we can reduce the numbers of variables by

fixing i less than j (i < j) due to the equivalent of the connectivity between i,j and j,i.

Thus, we can only use the connectivity i,j where i < j. This help reduces the number of

variables more than a half.

• The decision binary variables pij and qij

The possible configurations of the two room connectivities between room i and

room j can be represented using the four directions of the north (top), the south

(bottom), the east (right) and the west (left) direction. To capture these idea, we utilize

the two decision binary variables pij and qij to represent these connectivity directions.

By which, the four possible connectivities are described using four pairs of (pij, qij) as

(0,0), (0,1), (1,0) and (1,1).

Ideally, these two decision binary variables, pij and qij have been used to satisfy

a constraint between room ith and room jth. Four distinct patterns of pij and qij can be

 28

described below. First case, (pij, qij) sets to (0,0) which forces the room i to the left of

room j. Second cases (pij, qij) sets to (0, 1) which forces the room i to the top of the

room j. Third case, (pij, qij) sets to (1, 0) which forces the room i to the right of the room

j. Fourth case, (pij, qij) sets (1, 1) which forces the room i to the bottom of the room j. In

the other words, the decision to assign values pij and qij will place these two rooms in

the required orientation, see figure 3.2.

To utilize an idea of these two decision binary variables, only one from four

patterns of (pij, qij) will be satisfied selected to satisfy a constraint among each

constraint group of AL-MIP and AL-MIP+ model. Moreover, the decision variables pij

and qij can be applied to speed up the computational time which will be described at the

end of this chapter.

Values Connectivity directions

pij qij

0 0 room i connects to the left of room j

0 1 room i connects to the top of room j

1 0 room i connects to the right of room j

1 1 room i connects to the bottom of room j

Figure 3.2: The four connectivity directions between room i and room j.

i j

i

j

i j

i

j

 29

3.1.2 Multiobjective optimization

Multiobjective optimization known as multi-criteria or multi-attribute

optimization, is the process of simultaneously optimizing two or more conflicting

objectives subject to certain constraints. The most widely used method for multiple

optimization is the weighted-sum approach. The objective function is formulated as a

weighted summation as follows.

 subject to : x ∈ S

 where u ∈ Rk, ui > 0

By choosing the different weights ui, for the different objectives, the preference

of the decision-maker is taken into account. As the objective functions are generally of

different magnitudes, they might have to be normalized first. Although the formulation

is simple, the method requires a special treatment, as there is not clearly the relation

between the weights and the obtained solution. To determine the weights from the

decision-maker’s preferences is a specific purpose procedure.

• Architectural layout design multiobjective optimization

With the architectural layout design, many researches usually concentrated on a

single objective function. Fleming in 1978 presented a singular objective layout via the

representation and generation of rectangular dissections that minimized room space. In

2000, the work of Li, Frazer and Tang dealt with maximizing the area in a given floor

layout. In contrast, new researches are more interested in multiobjective preferences. In

this thesis, we are interested in maximizing room areas and minimizing distance

between rooms. To cope with these multiobjective preferences, we combine two

objective functions into a summation of weighted components. These weights can be

adjusted according to architect’s favor. In our experiment, we use equal weights to

measure performance of our AL-MIP model. At optimal, there always exist alternative

solutions with the same objective value due to the layout rotation. In order to eliminate

alternative solutions, we randomly select one of available rooms to be placed near the

Minimize n ui fi (x)
k

i = 1
(3.1)

 30

top left corner. In our experiment, the first room has been selected. For selected io
th

room,

Minimize u1x (xi o+yi o) + u2 x (absolute distance) – u3x (maximizing room area)

or

where xi o, yi o are X and Y coordinate of the i o
th room, ∀ io = 1, … , n,

 zxi,j, zyi,j are absolute distance of room i and j, ∀ i < j = 1, … , n,

 zi is the maximized value between wi and hi, ∀ i = 1, … , n,

 u1, u2, u3 are the weight values.

 Objective 3.2 denotes the minimization of the multiobjective optimization where

the u1 is the weight of the io
th room positioning to the nearest top left corner, u2 is the

weight of the total absolute distance and u3 is the weight of the maximizing

approximated room area. If an architect prefers larger room area then the weighted sum

of u3 is set to be greater than u2. If an architect prefers a short total distance between

rooms then u2 is set to be greater than u3. Hence, architect can generate alternative

solutions by selecting different io
th room to be placed near the top left corner or reassign

the desired objective weights. Moreover, xio and yio represent the X and Y coordinate of

the io
th room while zxi,j and zyi,j represent the absolute distance in the X and Y

coordinate respectively. The zi represents the maximized value between wi and hi that

we can use to approximate the maximized area.

• Placing a room position near the origin

The combinatorial nature of the alternative optimal solutions having the same

objective values could affect the total solution time. To allow the AL-MIP algorithm to

prune other alternative solutions, architects can force the io
th room position to the

nearest origin of the boundary area. By selecting different room, architects could obtain

another optimal solution.

Minimize u1 (xi o+yi o) + u2 n(zxi,j + zyi,j) – u3 n zi
i < j i =1

(3.2)
n

 31

where xi o is the X coordinate of the i o
th room, ∀ io = 1, … , n,

 yi o is the Y coordinate of the i o
th room, ∀ io = 1, … , n.

• Minimizing the absolute room distance

One interesting criterion of an architect preference deals with a short distance

among rooms. Calculating the distance as a linear function is not easily achievable. In

this thesis, we apply the absolute distance function called Manhattan distance, instead

of the normal Euclidean distance, see figure 3.3(a). This distance function is preferred

over the Euclidean distance function due to two reasons. The first reason, it maintains

the unit during the comparison. There is no need to take a root of the sum square

distance as in Euclidean distance. The second reason is the walking distance from room

to room could not join diagonally across the room to reach the target room. Architect

could only walk along the boundary to the available room. The Manhattan distance

computes as the summation of an absolute difference on the X coordinate and Y

coordinate between two points, see figure 3.3(a).

or equivalently,

subject to: xj – xi < zxi,j

yj – yi < zyi,j

where zxi,j is the absolute distance of room i and j on the X coordinate,

∀i, j = 1, … , n, i < j,

 zyi,j is the absolute distance of room i and j on the Y coordinate

 ∀i, j = 1, … , n, i < j,

xi , xj are the X coordinate of the room i and j, ∀i,j = 1, … , n,

 yi , yj are the Y coordinate of the room i and j, ∀i,j = 1, … , n.

Minimize (xi o + yi o) (3.3)

Minimize n (| xi – xj | + | yi – yj |)
i < j

Minimize n (zxi,j + zyi,j)
i < j

(3.4)

 32

Objective 3.4 denotes the summation of the absolute distance between room i

and room j where zxi,j is the absolute distance on X coordinate and and zyi,j is the

absolute distance on Y coordinate. While xi and xj represent the coordinate on the X

coordinates of room i and j, yi and yj are the Y coordinates of room i and j. Figure 3.3(b)

illustrates the absolute distance and its equivalent linear model.

Figure 3.3: (a) Comparison between Euclidian distance function and Manhattan distance

function and (b) an absolute function is formulated using a linear model.

• Maximize approximating room area

Another important architect’s preference is the spacious room space. In practice,

architects wish to design largest possible rooms within the available space. A

rectangular area can be computed by multiplying two sides as a non-linear function.

However, the MIP model only deals with linear functions and constraints. Therefore,

we decide to maximize the room sizes which have the direct effect to the approximated

room areas that the larger the room sizes are, the greater the area will be, see figure 3.4.

Maximize n max { wi, hi }
n

i = 1

 33

or equivalently,

subject to: zi < wi

zi < hi

where zi is the maximized value between width and height of room i,

 ∀ i = 1, … , n.

Figure 3.4: Maximizing room area is constructed by maximizing each room side.

3.1.3 Architectural constraint Formulations

In this thesis, all architectural layout design requirements can be captured using

a linear function which will be described as follows.

• Location constraint explains the relationship between distinct rooms that

ensures the location of rooms. To formulate this constraint, we use two decision

binary variables pij and qij, see figure. 3.5.

xi + wi < xj + W x (pij + qij) (3.6)

yj + hj < yi + H x (1 + pij - qij) (3.7)

 xj + wj < xi + W x (1 - pij + qij) (3.8)

 yi + hi < yj + H x (2 - pij - qij) (3.9)

Maximize zi (3.5)

 34

where xi, xj are the X coordinate of the room i and j, ∀i < j = 1, … , n,

yi, yj are the Y coordinate of the room i and j, ∀i < j = 1, … , n,

wi, wj are the width of the room i and j, ∀i < j = 1, … , n,

hi, hj are the height of the room i and j, ∀i < j = 1, … , n,

W, H are the boundary width and height.

From the location constraint, the decision variables pij and qij force the

room i to the left, the bottom, the right and the top of room j corresponding to

constraint 3.6, 3.7, 3.8 and 3.9. Four possible cases of (pij, qij) are (0, 0), (0, 1),

(1, 0) and (1, 1) have been used to force the room connectivities that will be

explained below. First case, (pij, qij) sets (0, 0). The solution must satisfy xi + wi

< xj for the constraint 3.6 which implies that the jth room must be placed on the

right of the ith room. At the same time, constraint 3.7 becomes yj + hj < yi + H.

Due to the large value of H, the right-hand side becomes a large positive value.

Hence, any smaller positive yj + hj will satisfy the constraint 3.7. Similarly,

constraint 3.8 becomes xj + wj < xj + W so that any positive xj + wj will be

smaller than xi + W. Moreover, constraint 3.9 becomes yi + hi < yj + 2H. This

also guarantees that any smaller positive yi + hi will satisfy the constraint 3.9.

Hence, we will say that the setting of (pij, qij) = (0, 0) forces the placement of the

ith room to the left of the jth room. Second case, (pij, qij) sets (0, 1). The solution

must satisfy yj + hj < yi for the constraint 3.7 which implies that jth room must be

placed on the top of the ith room. Simultaneously, constraint 3.6 becomes xi + wi

< xj + W. The large value of W in the right-hand side becomes a large positive

value. So that any smaller positive xi + wi satisfies the constraint 3.6. Constraint

3.8 becomes xj + wj < xi + 2W that the positive xj + wj is smaller than xi + 2W

while constraint 3.9 become yi + hi < yj + H that yi + hi is a smaller positive

value. Thus, the setting of (pij, qij) = (0, 1) forces the placement of the ith room to

bottom of the jth room. Third case, (pij, qij) sets (1, 0). The solution must satisfy

xj + wj < xi for the constraint 3.8 which implies that jth room must be placed on

the left of the ith room. Simultaneously, constraint 3.6 becomes xi + wi < xj + W.

The large value of W in the right-hand side becomes a large positive value. For

any smaller positive xi + wi satisfy the constraint 3.6. Similarly, constraint 3.7

and 3.9 becomes yj + hj < yi + 2H and yi + hi < yj + H. The positive values of yj +

 35

hj and yi + hi are smaller than yi + 2H and yi + H which satisfy constraint 3.7 and

3.9 respectively. The setting of (pij, qij) = (1,0) forces the placement of the ith

room to right of the jth room. The last case, (pij, qij) sets (1, 1). The solution must

satisfy yi + hi < yj for the constraint 3.9 which implies that jth room must be

placed at the bottom of the ith room. At the same time, constraint 3.6 becomes xi

+ wi < xj + 2W. The large value of W in the right-hand side becomes a large

positive value. Hence, any positive xi + wi satisfies the constraint 3.6. Similarly,

constraint 3.7 and 3.8 become yj + hj < yi + H and xj + wj < xi + W. The smaller

positive values of yj + hj and xj + wj are smaller than yi + H and xi + W

respectively which satisfy constraint 3.7 and 3.8. The setting of (pij, qij) = (1, 1)

forces the placement of the ith room to top of the jth room. The following figures

present the ith room placement on the left, the bottom, the right and the top for

different values of pij and qij.

Figure 3.5: pij and qij represent the location of room i and room j.

• Fixed position constraint determines the room positioning in a boundary area. In

a practical design, this constraint helps an architect to secure the room location

in the design. For example, a high-rise building is fixed the lift core position in

every levels.

xi = Xi (3.10)

yi = Yi (3.11)

where xi, yi are the X and Y coordinate of room i, ∀i = 1, … , n,

Xi, Yi are the fixed X and Y coordinate of room i, ∀i = 1, … , n.

Constraint 3.10 denotes the xi of the room i fixed to the X coordinate

while constraint 3.11 denotes the yi of the room i fixed to the Y coordinate.

 36

• Unused unit cell constraint determines the unusable area. This constraint helps

an architect design various orthogonal boundary shapes. We use two binary

variables (sik, tik) to identify the location of unused unit cell, kth, see figure 3.6.

xi > xu

k + 1 – W x (sik + tik) (3.12)

xu
k > xi + wi – W x (1+ sik– tik) (3.13)

yi > yu
k + 1 – H x (1–sik + tik) (3.14)

yu
k > yi + hi – H x (2 –sik – tik) (3.15)

where xu
k, yu

k are unused positions in X and Y coordinate of the unused kth unit,

 ∀k = 1, … , n,

sik, tik are the decision binary variables of room i and k, ∀i < k = 1, …, n,

xi, yi are the X and Y coordinate of room i, ∀i = 1, …, n,

wi, hi are the width and height of the room i, ∀i = 1, …, n,

W, H are the boundary width and height.

Similar to four possible cases of connectivity constraint, the decision

variables sik and tik force the room i to avoid the use of a unit cell k. The four

possible cases of (sik, tik) are (0, 0), (0, 1), (1, 0) and (1, 1). The first case, (sik,

tik) sets (0,0). The solution must satisfy xi > xu
k + 1 for constraint 3.12 which

implies that the unit cell k will shift to the left of the ith room without covering

it. Other constraints will satisfy unconditionally due to the large values of H and

W, similar to situations in location constraints. The second case, (sik, tik) sets (0,

1). The solution must satisfy xu
k > xi + wi for constraint 3.13 which implies that

the unit cell k will shift to the right of the ith room without covering it while

other constraints will always satisfy. The third case, (sik, tik) sets (1, 0). The

solution must satisfy yi > yu
k + 1 for constraint 3.14 which can implies that the

unit cell k will float on the top of the ith room while other constraints will be

satisfied. The last case, (sik, tik) sets (1,1). The solution must satisfy yu
k > yi + hi

for constraint 3.15 which can implies that the unit cell k will fall under the ith

room and other constraints will always satisfy, see figure 3.6 for illustrations.

 37

Figure 3.6: sik and tik represent connection of unused cell and room i.

• Boundary constraint forces a room to be inside a boundary.

 xi + wi < W (3.16)

 yi + hi < H (3.17)

where xi, yi are the X and Y coordinate of room i, ∀i = 1, … , n

wi, hi are the width and height of the room i and j, ∀i = 1, … , n

W, H are the boundary width and height.

 Constraint 3.16 denotes the room i within the horizontal boundary while

constraint 3.17 denotes the room i within the vertical boundary.

• Fixed border constraint addresses the absolute placement of the room. This

constraint is divided into four types: the north(top), the south(bottom), the

east(right) and the west(left). For example, a room is positioned to the north if

its touch the top border, see figure 3.7.

yi = 0 (3.18)

yi + hi = H (3.19)

xi + wi = W (3.20)

xi = 0 (3.21)

where xi, yi are the X and Y coordinate of room i, ∀i = 1, … , n,

wi, hi are the width and height of the room i and room j, ∀i = 1, … , n,

W, H are the boundary width and height.

 38

 For the fixed border constraint, the decision variables pij and qij force the

room i touching the four side of boundary as follows. Constraint 3.18 denotes

the yi of room i touch the top boundary. Constraint 3.19 denotes the yi + hi of

room i touch the bottom boundary. Constraint 3.20 denotes the xi + wi of room i

touch the right boundary while constraint 3.21 denotes the xi of room i touch the

left boundary, see figure 3.7.

Figure 3.7: The fixed room presents at each layout boundary.

• Connectivity constraint forces two connecting rooms to be placed next to one

another. We use the same two binary variables pij and qij with different set of

constraints, see Figure 3.7.

xi + wi > xj – W x (pij + qij) (3.22)

 yj + hj > yi – H x (1 + pij – qij) (3.23)

 xj + wj > xi – W x (1 – pij + qij) (3.24)

 yi + hi > yj – H x (2 – pij – qij) (3.25)

where xi, xj are the X coordinate of the room i and j, ∀i < j = 1, … , n,

yi, yj are the Y coordinate of the room i and j, ∀i < j = 1, … , n,

wi, wj are the width of the room i and j, ∀i < j = 1, … , n,

hi, hj are the height of the room i and j, ∀i < j = 1, … , n,

W, H are the boundary width and height.

Applying the location constraints with connectivity constraints, the room

ith is forced to contact room jth at the right, the top, the left and the bottom

corresponding the four possible cases of (0, 0), (0, 1), (1, 0) and (1, 1). The first

case (pij, qij) sets (0, 0). The solution must satisfy xi + wi > xj for constraint 3.22

which implies that the ith room will contact at the right of jth room. Other

 39

constraints will satisfy unconditionally due to the large value of H and W,

similar to scenarios in connectivity constraints. The second case (pij, qij) sets (0,

1). The solution must satisfy yj + hj > yi for constraint 3.23 which implies that

the the ith room will contact at the top of jth room. Other constraints will always

satisfy. The third case, (pij, qij) sets (1, 0). The solution must satisfy xj + wj > xi

for constraint 3.24 which can implies that the ith room will contact at the left of

jth room. The last case, (pij, qij) sets (1, 0). The solution must satisfy yi + hi > yj

for constraint 3.25 which can implies that the ith room will contact at the bottom

of jth room and other constraints will always satisfy, see figure 3.8 for

illustration.

Figure 3.8: pij and qij are reused to formulate the connectivity relation between

room i and room j.

• Access-way constraint forces the minimal contact length between two connected

rooms. Two rooms are touching each other with the minimal contact length

defined by the value (Tij). For example, the junction between room i and room j

must be wide enough to accommodate an access way, the same binary variables

qij have been reused. Only qij has been used due to the fact that the vertical

contact is allowed to be placed on the left (pij = 0) or on the right of the room j

(pij = 1). This also true for the horizontal contact which ignores the placement of

the room i above (pij = 0) and below (pij = 1) the room j.

H x (qij) > yi + Tij – yj – hj (3.26)

H x (qij) > yj + Tij – yi – hi (3.27)

W x (1 – qij) > xi + Tij – xj – wj (3.28)

W x (1 – qij) > xj + Tij – xi – wi (3.29)

 40

where Tij is the contact length of the access-way between room i and j,

 ∀i < j = 1, … , n,

 xi, xj are the X coordinate of the room i and j, ∀i < j = 1, … , n,

yi, yj are the Y coordinate of the room i and j, ∀i < j = 1, … , n,

wi, wj are the width of the room i and j, ∀i < j = 1, … , n,

hi, hj are the height of the room i and j, ∀i < j = 1, … , n,

W, H are the boundary width and height.

Two possible cases of qij are 0 and 1. The first case, qij is set to 0 for the

vertical contact. The solution must satisfy 0 > yi + Tij – yj – hj for constraint 3.26.

This overlapping region of room i and room j will appear to the upper corner of

room i. For 0 > yj + Tij – yi – hi of constraint 3.27, the overlapping region of

room i and room j will appear to the lower corner of room i. Constraints, 3.30

and 3.31 will satisfy unconditionally due to the large value of W. The second

case, qij is set to 1 for the horizontal contact. The solution must satisfy 0 > xi +

Tij – xj – wj for constraint 3.28. This overlapping region of room i and room j

will appear to the left corner of room i. For 0 > xj + Tij – xi – wi of constraint

3.29, the overlapping region of room i and room j will appear to the right corner

of room i. Constraints, 3.26 and 3.27 will also satisfy unconditionally due to the

large value of H, see figure 3.9 for illustration.

Figure 3.9: (a) qij is reused to formulate the overlapping region between room i and room j

and (b) Tij represents a minimal contact length between room i and room j.

 41

• Length constraint determines minimal and maximal lengths of the bounded size

of each room. A certain room is adjusted to appropriate dimensions between the

horizontal range of wmin,i , wmax,i and the vertical range of hmin,i , hmax,i

respectively.

wmin,i < wi < wmax,i (3.30)

hmin,i < hi < hmax,i (3.31)

where wmin,i , wmax,i are the minimal and maximal width of room i, ∀i = 1, … , n,

hmin,i , hmax,i are the minimal and maximal height of room i, ∀i = 1, … , n,

wi, hi are the width and height of room i, ∀i = 1, … , n.

 Constraint 3.30 denotes the width of room i within the minimal and

maximal length while constraint 3.31 denotes the height of room i within the

minimal and maximal length of room i.

3.2 Valid Inequalities Optimization Model

Due to the work of Keatruangkamala and Sinapiromsaran (2003), the solution time to

solve the architectural layout design problem as the multiobjective MIP model is

prohibitive for a medium to large problem size. In this thesis, we propose two modeling

techniques to handle this problem. The first technique is to add valid inequalities of

non-circular connectivity of the three consecutive rooms to the AL-MIP model, called

non-circular AL-MIP+. The second is to apply a room location based on architect’s

preferences called advised AL-MIP+ that help eliminate some alternative solutions.

These two techniques will be presented as follow.

3.2.1 Non-Circular Connectivity Constraints

The first technique, we use an idea of valid inequality (George and Laurence,

1988) which based on a smaller feasible region. By which, the LP relaxation region has

been cut off while all integral points are maintained. The remaining LP relaxation

region is strictly smaller than the LP relaxation of the original one with the corner

 42

extreme points are forced to be integral. The notion of the valid inequality can be

formulated as follows.

Given the IP (Integer programming problem) as

(IP) max{ cTx : x ∈ X }

 X = { x : Ax < b , x ∈ + }

The inequality πTx < π0 is called a valid inequality for X if πTx < π0 for all x ∈

X, see figure 3.10.

Figure 3.10: Valid inequality constraint cut off the non-integral feasible region.

The valid inequality for the architectural layout design problem is generated

using the concept of the non-circular connectivity constraints. These inequality

constraints are defined among three consecutive rooms i, j and k, connected in this

order. The binary variables pij, pik, pjk, qij, qik and qjk from the AL-MIP model are used

to present room connectivity. The consecutive connectivity of room i and j prohibits the

placement of room i between room j and k, see figure 3.11. Therefore, the valid

inequalities force the non-circular connection of the room i and k which eliminates

configuration formed by four different directions, top, left, right and bottom of the ith

room and the jth room. The non-circular connectivity constraints for each direction have

been illustrated as follows.

pik – qik < W x (pij + qij) (3.32)

pjk + qjk – 1 < H x (1 + pij – qij) (3.33)

1 – pik – qik < W x (1 – pij +qij) (3.34)

qik – pik < H x (2 – pij – qij) (3.35)

 43

where pik, pjk, qik, qjk are the decision binary variables, ∀i < j < k = 1, …, n,

pij, qij are the decision binary variables, ∀i < j = 1, …, n,

W, H are the boundary width and height.

For the non-circular connectivity constraint, the decision variables pij and qij

prohibit the room k connect to the left, the top, the bottom and the right of room i.

corresponding to constraint 3.32, 3.33, 3.34 and 3.35. Four possible cases of (pij, qij) are

(0,0), (0,1), (1,0) and (1,1). The first case, constraint 3.32 (pij, qij) sets (0,0). It forces the

room j connect to right side of room i and prohibits room k to the left of room i. The

second case, constraint 3.33 (pij, qij) sets (0,1). It forces the room j connect to the

bottom of room i and prohibits room k in the above of room i. The third case, constraint

3.34 (pij, qij) sets (1,0). It forces the room j connect to left side of room i and prohibits

room k to the right side of room i. And The fourth case, constraint 3.35 (pij, qij) sets

(1,1). It forces the room j connect to above of room i and prohibits room k to the bottom

of room i.

Figure 3.11: (Left) four possible connected scenarios defined by consecutive rooms i, j and k

and (right) four corresponding scenarios that are eliminated from consideration.

 44

3.2.2 Advised Configuration Constraints

To decrease the computational time, we proposed another inequality constraints

based on the architect’s preferences. Traditionally, some room positions in an

architectural layout design was often placed extremely to the north, the south, the east

and the west directions, for example, architects fix a bedroom on the north or the east

direction to avoid the sunlight corresponding to the benign Feng Shui (Chinese belief).

According to this traditional belief, we define constraints to allocate the bedroom on a

required direction. By which, we proposed the advised configuration constraints to

allocate the room positioning based on an architect’s preference. These constraints can

be used to eliminate an infeasible solution immensely. The following constraints

present the allocation of the advised room i' for all j ∈ {1, 2, … , 3}, see figure 3.12.

yi' < yj (3.36)

xi' < xj (3.37)

xj + wj < xi' + wi' (3.38)

yj + hj < yi' + hi' (3.39)

where xi', yi' are the X and Y coordinates of advised room i' in a required direction,

∀i' = 1, … , n,

 xj, yj are the X and Y coordinates of room j, ∀j = 1, … , n,

 wi', hi' are the width and height of advised room i', ∀i' = 1, … , n,

 wj, hj are the width and height of room j, ∀j = 1, … , n.

 For the four possible cases of advise configuration constraint, the first case,

constraint 3.36 denotes an advised room i' to the above direction of room j. The second

case, constraint 3.37 denotes an advised room i' to the left direction of room j. The third

case, constraint 3.38 denotes an advised room i' to the right direction of room j while

the fourth case, constraint 3.39 denotes an advised room i' to the below direction of

room j.

 45

 (a) (b) (c) (d)

Figure 3.12: The advised configuration constraints, (a) advised room i' at the north(top) of

room j, (b) advised room i' at the south(bottom) of room j, (c) advised room i' at the east(right)

of room j and (d) advised room i' at the west(left) of room j.

The following figure presents the conceptual solution spaces that these two sets

of valid inequality constraints of non-circular AL-MIP+ and advised AL-MIP+ have

been applied to cut off an infeasible solution on search space.

Figure 3.13: The new smaller feasible area is cut off by the valid inequality constraints.

CHAPTER IV

Machine Learning Using Genetic Algorithms

4.1 Learning Special Order Set

From the previous section, we have formulated the AL-MIP model fit to the

architectural layout design that can deal with a small-sized problem. The two valid

inequality constraints called AL-MIP+ have been used to reduce the computational MIP

iterations and time. In order to accelerate the computational speed, the machine learning

has been adopted. The robustness learning methodology Genetic Algorithms (GA)

utilized an idea of the Special Order Set (SOS) based on the branching in a branch and

bound algorithm.

In details, the branch and bound algorithm is equipped with a best-first search

strategy. After branching at a certain level, a node is selected based on the current best

node and branched, then, another node is selected at the new level and branched, and so

on until the last level is reached and a complete solution is obtained. The complete

solution is marked as “best node”, and the algorithm tracks back and eliminates nodes

with a lower bound worse than the “best so far” solution. Otherwise, the algorithm

branches another node and proceeds forward.

The learning algorithm based on the robustness GA has been adopted as the

unsupervised learning to the branch and bound search tree. The MIP solver using the

branch and bound algorithm utilize the learning algorithm GA to find an appropriate

sequences of branching variables. The SOS variable is used to guide the sequences of

the branching strategy which searches throughout the problem space with the variables

pij and qij (see the previous section 3.1.1). After complete the learning process, the

stronger gene from GA represents the appropriated SOS variables with a good path of

branching in the search tree. By which the appropriated order variables of the problem

constraints help reduce the search space by identifying the better candidate solution

used to prune the search tree.

 47

4.2 Genetic Algorithms Methods

4.2.1 Chromosomes

To encode a SOS into a chromosome, an idea of GA from Traveling Saleman

Problem (TSP) has been adopted in this thesis. Figure 4.1(a) illustrates an idea of the

branching branch and bound algorithm which are guided by the candidate SOS

variables pij and qij. In the figure, the given problem P0 is traced to the subproblems P2,

P5, P8, …. , Pn using the branching variables pi0j0, qi1j1, pi2j2, …. , pinjn respectively.

Similarly, figure 4.1(b) illustrates the chromosome which corresponded to an idea of

branching in figure 4.1(a). Each chromosome is constructed by designing the first-

branch order pi0j0 is placed at the extreme left of the chromosome, the second-branch

order qi1j1 and the third-branch order pi2j2 are placed at the second and the third orders

from the extreme left and the last order pinjn is placed at the extreme right of the

chromosome.

(a) (b)

Figure 4.1: (a) the sequential orders pij and qij in branch and bound algorithm start from the

top(root) to the bottom node and (b) The corresponded orders pij and qij based on GA structural

representation is constructed from the extreme left to the extreme right.

 48

• String Representation

In order to encode a sequential order of the SOS variables pij and qij, a binary

string representation has been applied to capture an idea of a SOS variables pij and qij.

The binary string is flexible for the GA of reproduction, crossover and mutation to

create a new population. Nevertheless, the SOS variables pij and qij have more

information to fit with a one dimension (1D) binary string. This thesis utilizes two

dimension (2D) binary string to capture entire information of the SOS variables pij and

qij. The space of 2D binary string is m x n, where the m presents the numbers of

variables and the n presents the sequential order of variables pij and qij. The space of 2D

binary string is depended on the numbers of variables pij and qij that has been used in

the problem.

According to the numbers of connectivity variables between room i and room j,

the length of binary string of each column is designed to cover, covering all possible

cases of variables pij and qij. Also, the length of a binary string of each row will cover

all sequential orders of SOS variables in branch and bound algorithm. The string length

in each row can generate using the idea of the combination, see the next section for

details.

• Encoding Schema

In genetics, the whole information of an individual structure is stored in a

chromosome as genetic codes. The genome string is composed of a finite set of genes

and their values. In the artificial world, a gene can be considered as an instruction in a

recipe and is represented as a particular character or a set of characters in an encoding

string.

To encode the SOS, 2D binary strings have been utilized to represent all

information. For example, an instance of 5 rooms is used to describe the sequential SOS

schema. With the 5 rooms, we have 20 variables of pij and qij that used in the SOS.

Therefore, these variables need five bits to represent all possible cases of variables pij

and qij. However, a five bit string can represent 32 different patterns which is larger

than the number of the variables pij and qij. The remaining patterns will not be used to

represent the variable pij and qij. Thus, for example, 00001 represents a variable p12,

00010 represents a variable p13, 00011 represents a variable p14, 01011 represents a

 49

variable q12, 01100 represents a variable q13 and 10101 represents a variable q45 which

all numbers of zero (00000) are not used for representing the branching order, see the

figure 4.2.

Figure 4.2: The 2D binary strings of 5 rooms represent the SOS variables.

Nevertheless, if the current pattern is not represented by any SOS variable, the

algorithm will ignore and proceed with the next variable, and the index of this variable

is not stored into a candidate SOS. This method ensures that only feasible SOS is

created and will be used in the chromosome.

4.2.2 Mechanism for Creating Generations

• Creating Generations

The roulette wheel is used to create a new generation. The fitness of a particular

chromosome determines the size of its segment on the roulette wheel. The roulette

wheel is then spun repeatedly to produce a new population of the same size as the initial

population. The algorithm will complete when the required number of generations has

been reached. It displays the candidate SOS associated with the chromosome with the

highest fitness.

0 0 0 0 1 0 1 0 0
0 1 0 1 0 1 1 0 1
1 1 1 1 1 1 1 0 1
0 0 1 0 0 1 1 0 0
1 1 0 1 0 0 0 0 1

represent the first branch order of variable p23

represent the second branch order of variable q14

represent the first branch order of variable p24

All zero bits do not represented
a valid gene.

 50

• Crossover

At the initial population gene, the individual genes are randomly selected to

produce a population of chromosomes (candidate solutions). This process is repeated to

produce a population of the specific size. The Chormosomes are randomly selected for

crossover and mutation operations with the probability settings based on the paper (Al-

hakim, 2000). The order crossover using two parents and two crossover sites are

selected randomly and the elements between the two selecting points in one of the

parent are directly inherited by the offspring.

• Mutation

Mutation is the process applied to each offspring individually after the

crossover. This operator creates new individual chromosome by a small change in a

single individual chromosome by a random selection. In this thesis, the encoded SOS

using the 2D binary string that the mutation is applied to a bit string. It sweeps down the

bits and replace each by randomly selected bit if the probability of test passes.

4.2.3 Fitness Function

In order to describe the details of evaluate fitness function. This thesis uses the

MIP optimization solver called CPLEX to evaluate the fitness value of GA. The setting

of the CPLEX solver will be described below.

• The optimization CPLEX solver

CPLEX is an optimization software package. It is named for the simplex method

and the C programming language. It was originally developed by Robert E. Bixby and

distributed via CPLEX Optimization Inc. CPLEX can solve MIP problem and very

large LP problems. Moreover, it has a modeling layer and is also available with several

modeling systems like AIMMS, AMPL, GAMS IDE and OPL Development Studio. In

this thesis, we develop a modeling language based on GAMS IDE and solve the model

on CPLEX version 9.0.

 51

• Fitness evaluation

As far as GA is concerned, it’s better to have a higher fitness value to provide

more opportunities to be chosen in breeding new chromosomes. In this thesis, the

CPLEX solver has been used to solve the MIP using the SOS variables from GA which

determines the largest score from the number of iterations.

At each transition, the value of computational iterations from AL-MIP+GA

(fitness_score) is subtracted from a standard fitness score (standard_fitness_score)

which is obtained from the computational iterations of the AL-MIP+. The fitness_score

higher than the standard_fitness_score presents a better candidate of SOS (a strong

gene) which will be stored into a text file. The GA fitness is measured from the

subtraction of the computational iterations of AL-MIP+ and the current computational

iteration of AL-MIP+GA. We can describe the GA fitness with an equation as follow.

Evaluate Fitness = Standard_fitness_score – fitness_score (4.1)

Figure 4.3 presents an entire idea of GA using the flow diagram that is adopted

for AL-MIP+GA. To operate the GA, we input the populations, the generations and the

standard_fitness_score from the AL-MIP+ into the AL-MIP+GA. The learning process

will terminate by the current generations (Gen) in each run over the required generation

(MaxGenerations) and the GA statistics will be summarized into a text file.

 52

Figure 4.3: Flow diagram of AL-MIP+GA based on an idea of GA.

 53

4.2.4 Genetic Algorithms Application

The flow diagram from the previous section is used as a programming

framework. Our AL-MIP+GA algorithm is developed based on the GNU C++

programming language. The GA library designed by Matthew Wall (MIT) has been

used as the GA computational class which will be described in details as follows.

• Genetic Algorithms C++ Library

The GA library designed by Matthew Wall (1996) contains four flavors of GA.

The first is the standard simple GA described by Goldberg. This algorithm uses non-

overlapping populations. For each generation, the algorithm creates an entirely new

population of individuals. The second is a steady-state GA that uses overlapping

populations. In this variation, users can specify how much of the population should be

replaced in each generation. The third variation is the incremental GA, in which each

generation consists of only one or two additional children. The incremental GA allows

custom replacement methods to define how the new generation should be integrated

into the population. For example, a newly generated child can replace the parents,

replace a random individual in the population. This GA library evolves the multiple

populations in parallel using a steady-state algorithm. The algorithm migrates some of

the individuals from each population to one of the other populations.

This GA library has been designed to report the statistics, replacement strategy,

and parameters for running the algorithm. The population object, a container for

genomes, also contains some statistics as well as selection and scaling operators. This

library has built in functions for specifying when the algorithm should terminate. These

include termination upon generation using a specified certain number of generations.

The stopping criteria can be designed by the terminated function that is built as a library

module. Moreover, this GA library keeps track of both the number of genome

evaluations and population evaluations and stores into a text file.

 54

• Pseudo code

We develop a computer program using GA C++ lib. Our GA learning SOS

application can be described as a pseudo code based C++ programming language

format as follows.

chromosome SOS[]; //Special Order Set variables
int fitness_score[]; //Chromosome fitness score
main learning_AL-MIP()
{ Input file: Model file and Data file;
 Input GA parameters: int MaxPopulations, MaxGenerations, Standard_fitness_score;
 int Gen = 1, Pop = 1;
 Initial GA parameters;
 SOS[] = Random initial populations and encode into chromosomes;
 While MaxGenerations > Gen
 { While MaxPopulations > Pop
 { fitness_score[Pop] = Evaluate_Fitness(SOS[Pop]);
 If fitness_score[Pop] < Standard_fiteness_score then
 Store SOS[Pop] and fitness_score[Pop] as a good chromosome;
 End if
 Pop = Pop + 1;
 }//end while
 //Evolution process and Update old chromosome
 SOS[] = Evolutionary_Process(SOS[], fitness_score[]);
 Pop = 1; Gen = Gen + 1;
 }//end while
}
int Evaluate_Fitness(SOS)
{ return Run CPLEX solver with this SOS;
}
chromosome Evolutionary_Process(SOS[], fitness_score[])
{ Crossover(SOS[], fitness_score[]);
 Mutation(SOS[], fitness_score[]);
 return SOS[];
}

CHAPTER V

Experimental Results

5.1 Experimental Design

The experiments presented in this thesis have been carried out on a PC computer using

Pentium Core 2 Duo and 4.0 GB of memory using GAMS CPLEX 9.0. In order to

measure the performance, we simulate architectural layout design instances with 4, 5, 6,

7, 8, 9 and 10 rooms based on four distinct configurations, which are

1) a linear configuration

2) a rail configuration

3) a connected wheel configuration

4) a nested wheel configuration

See figure 5.1 for the graphical representations of these four distinct patterns.

Each configuration composes of five instances and the average measurements

have been recorded. Total of 140 experimental runs have been tested and gathered. Our

experiment unit scale corresponds to a meter scale. The boundary area is set on

100×100 square meters and defined the minimum and maximum room width and height

between 5 to 10 meters. Moreover, the weighted-sum of u1, u2 and u3 are equivalently

set to 1.

 56

Figure 5.1: The distinct pattern A, B, C and D of 10 room configurations.

 57

5.2 Genetic Algorithm Parameters and Design

• Parameters Setting in GA

GA requires parameter tunings in order to achieve the desirable solutions and

performance. Three common GA parameters are population size, crossover probability,

and mutation probability. The population size parameter is a major factor in

determining the quality of the solutions. Setting small population size will cause the GA

to converge to suboptimal solutions. On the other hand setting large population size will

cause the GA to waste unnecessary computational resources. The generic crossover

probability parameter is set between 0 and 1 that is enough to determine the amount of

gene swapping between the parent solutions. Crossover operator is important because it

ensures good mixing of candidate solutions. The higher crossover probability, the more

promising solutions are mixed. This also increases the disruption of good solutions. The

generic mutation probability parameter is set between 0 and 1 to determine the amount

of mutation on a solution. Mutation operator is important because it enables diversity in

the population. With a high mutation probability, it will behave similar to an intelligent

hill-climbing strategy, in the neighborhood of a particular solution, but it may also

destroy already found good solutions. The task of tuning these GA parameters has been

proven to be far from trivial due to the complex interactions among the parameters and

their proper settings. Several researchers have been trying to understand the

interdependencies of GA parameters. One of the first empirical studies to understand

the complex interactions and interdependencies of GA parameters was investigated by

De Jong (1975). Based on his studies, De Jong introduced a good set of parameter

settings that have been adopted widely and sometimes referred to as “standard” settings:

population size of 50 to 100, crossover probability of 0.9, and mutation probability of

0.001. However, these “standard” settings have been proven problematic by later

studies, which suggest that the optimal settings of GAs’ parameters are critically

dependent on the nature of the function being evaluated (Goldberg, 1985; Hart &

Belew, 1991; Deb, 1999a) and the encoding of decision variables.

In the real world problem, several researchers (Pelikan et al., 2000) have spent

much effort on trying to design a GA parameter model and checks their models against

some real-world problems. Lobo (2000) suggests using an appropriated GA parameter

that determines the parameters through trial and error on the real world problem. In this

 58

thesis, the various characteristics and parameters of the steady-state GA, are determined

by preliminary experiments from a small instance of 5 room configurations.

Furthermore, the distinct patterns A, B, C and D using the fixed GA parameter

settings may lead to slow convergence and sub-optimal solutions, especially when large

search spaces are to be explored in solving the optimization problems. To remedy this

problem, the distinct patterns A, B, C and D are experimented for appropriated GA

parameters that fit to each one. The appropriated GA parameters in populations,

generations, crossover and mutation will be described in details.

Population size: the population size has to be considered carefully. If the population

size is too small, the population will soon suffer from premature convergence because

the diversity in the population is too low. In the other word, if the size is too large the

convergence towards the optimum is slow and the memory requirements to run the

genetic algorithm increase enormously.

In this thesis, we find out an appropriated GA population size using an

experiment on a 5 room configuration of the distinct patterns A, B, C and D. By which,

more than a thousand instances is experimented on the common population sizes of 10,

20, 30 and 50 (Lobo 2000, Pelikan et al., 2000).

Crossover and mutation probability: Recombination and mutation is performed with

a certain fixed or variable probability. Again the setting of these parameters is the

subject of deliberation. Whereas the more classical genetic algorithm theorists fervently

advocate the use of a high crossover probability in the range [0.8, 1] (Goldberg 1989,

Holland 1975) and a low mutation probability in the range [0, 0.01] (Goldberg, 1989;

Holland, 1975).

 Based on the three important results on the mutation operator, the practical

result is that the lower bound for the mutation probability pm is pm = 1/l with l the length

of the chromosome (Muhlenbein 1992). This provides a more mathematical background

for the mutation parameter. The probability that a chromosome with length l is not

modified by mutation is:

 Ps = (1 – Pm)l (5.1)

 59

 where Pm represents the bit mutation probability. If there is no crossover

operator the probability of survival Ps should be no less than the inverse of the expected

number of offspring.

 In the past, several researchers use mutation with a low probability but the

empirical and theoretical investigations demonstrated the benefits of the role of

mutation as a search operator. The high levels of mutation are the most disruptive and

also achieve the lowest levels of construction. This means that by using high levels of

mutation the chance that new candidate gene are found decreases.

 In this thesis, the experiments of the distinct crossover and the distinct mutation

are experimented based on the 5 room configurations of patterns A, B, C and D. The

crossover probability of 0.5, 0.8, 0.9 and 1.0, the mutation probability of 0.0005, 0.001,

0.005, 0.01 and 0.05 are experimented on thousand instances.

String length: a length of the candidate SOS is represented by a combination from the

room connectivity of i = 1, 2, 3,…, n and j = 1, 2, 3, … , n where n is the numbers of

room. All available SOS variables are consecutively filled in a chromosome with an

index given by the ordering variables pij and qij. To find the SOS variable lengths in the

chromosome, the combination has been adopted to determine the maximum numbers of

the length. Due to the AL-MIP+GA, two decision binary variable pij and qij identify the

connectivity between each room i and room j. The total results of an SOS variable

consists of both variable pij and qij. The equation 5.2 presents the combination equation

that is used to determine an SOS variable length in a candidate SOS.

where n is the numbers of room in the problem and r is the numbers of SOS

variables used in the problem. In this thesis, the value of r is 2. Since, the binary

variable of pij and qij are used in each problem.

Generations and stopping criterion: for a generic GA, there are three main ways to

stop the loop as 1) allele convergence, 2) a predefined number of generations and 3)

when the optimum is reached. In our thesis, we stop the GA operation using a

predefined number of generations. The stopping criterion using the numbers of

generations is tested on the 50, 100 and 500 generations.

(5.2) C(n,r) =
 n!

r! x (n – r)!

 60

• Statistical approaches

The appropriated GA parameters are summarized based on a statistics which is

proposed by Fonseca and Fleming (1996). In the real world problem, if GA is run for

several times, the search space can be divided into three categories.

1) The first part of the search space that is always dominated by all runs.

2) The second part of the search space that is dominated by some runs.

3) The third part of the search space that is never dominated by any runs.

Based on the Pareto-optimal fronts, the first part of the search space is

dominated by all runs. This presents the covering 80% of all runs. The second part of

the search space reaches some Pareto-fronts but not all of them. This presents the

covering 50% of all runs. And the third part of the search space is never dominated by

any runs. This presents less than the covering 20% of all runs. By which, the completed

set of the experiments will be used for the initial comparative GA study.

• The GA parameter experiments

To test the effectiveness of the GA, a series of the experiments of a 5 rooms of

pattern A, B, C and D are performed based on a PC computer using Pentium Core 2

Duo and 2.0 GB of memory. Each experiment, a fixed-length binary string is used as a

2D binary string with length l = 32. Each string column is represented by a 5 bit that

can represent all possible cases of variable pij and qij. A simple GA with crossover

probability of 0.5, 0.8, 0.9 and 1.0, the mutation probability of 0.0005, 0.001, 0.005,

0.01 and 0.05 are implemented based on the various population sizes of 10, 20, 30 and

50. The stopping criteria for the experiments are 50, 100 and 500 generations. All

experiments of patterns A, B, C and D are illustrated as follows.

 61

The experiments of pattern A:

Crossover 0.5, mutation = 0.0005

Populations

10 20 30 50

Fitness 580 620 1240 1596
Avg. fitness -10340.9 -9566.8 -8796.3 -7240.8 50

Time (sec) 48 169 203 287
Fitness 980 1118 2868 2112
Avg. fitness -3209.6 -3724.4 -5066.8 -4866.3 10

0

Time (sec) 84 238 296 483
Fitness 2458 2922 2879 3064
Avg. fitness 1238.3 407.6 -332.4 -5132.3

G
en

er
at

io
ns

50
0

Time (sec) 325 754 1041 2282

Crossover 0.8, mutation = 0.0005

Populations

10 20 30 50

Fitness 1418 843 266 2303
Avg. fitness -2176.5 -4350.3 -7490.8 -10287.0 50

Time (sec) 71 149 200 353
Fitness 2417 964 2829 2536
Avg. fitness -2592.4 -3516.6 -5222.3 -4120.0 10

0

Time (sec) 92 229 324 542
Fitness 1294 1055 3367 1323
Avg. fitness -901.8 -919.0 -1140.4 -7518.8

G
en

er
at

io
ns

50
0

Time (sec) 371 782 1051 2596

Crossover 0.5, mutation = 0.001

Populations

10 20 30 50

Fitness 982 1268 1428 2977
Avg. fitness -9595.7 -8554.5 -7093.6 -6778.5 50

Time (sec) 87 203 253 350
Fitness 717 -1004 3720 3360
Avg. fitness -3009.4 -2393.5 -2309.5 -9723.3 10

0

Time (sec) 100 254 306 732
Fitness 3582 1571 3634 3624
Avg. fitness 65.5 -2373.5 -5339.9 -4533.4

G
en

er
at

io
ns

50
0

Time (sec) 382 794 1650 2592

Crossover 0.8, mutation = 0.001

Populations

10 20 30 50

Fitness 1382 1228 1705 1511
Avg. fitness -1772.9 -3738.6 -6535.1 -7890.2 50

Time (sec) 71 209 309 532
Fitness 1381 1218 2362 2344
Avg. fitness -2517.8 -4159.2 -6724.9 -13469.0 10

0

Time (sec) 164 386 538 1166
Fitness 3607 3590 3488 1530
Avg. fitness 1006.7 -911.8 -3032.8 -6749.9

G
en

er
at

io
ns

50
0

Time (sec) 627 1586 2256 4453

Crossover 0.5, mutation = 0.005

Populations

10 20 30 50

Fitness 2836 1129 907 1604
Avg. fitness -2604.1 -4600.1 -7618.4 -10170.0 50

Time (sec) 195 556 695 1268
Fitness 2964 2845 2645 2675
Avg. fitness -4129.4 -3781.9 -4274.9 -7704.4 10

0

Time (sec) 399 786 1179 2317
Fitness 3950 3556 3556 3633
Avg. fitness -602.4 -2481.4 -4911.8 -5899.9

G
en

er
at

io
ns

50
0

Time (sec) 1645 3458 6040 10699

Crossover 0.8, mutation = 0.005

Populations

10 20 30 50

Fitness 1512 1655 1888 1423
Avg. fitness -4751.9 -7787.5 -9941.4 -7573.7 50

Time (sec) 199 475 918 1133
Fitness 2212 2430 2445 2770
Avg. fitness -2923.0 -4685.9 -5918.3 -6245.1 10

0

Time (sec) 319 578 1127 1920
Fitness 3264 3113 3429 3669
Avg. fitness 106.2 -3102.1 -5959.2 -6088.3

G
en

er
at

io
ns

50
0

Time (sec) 1207 2569 5216 11086

Crossover 0.5, mutation = 0.01

Populations

10 20 30 50

Fitness 3210 2254 2588 3292
Avg. fitness -2913.9 -4620.7 -7354.3 -8744.0 50

Time (sec) 321 1216 1625 2096
Fitness 2367 2855 3167 3295
Avg. fitness -2759.4 -4930.8 -8198.0 -6962.8 10

0

Time (sec) 653 1409 2478 3721
Fitness 3915 3855 3625 3210
Avg. fitness -1842.3 -3190.2 -5247.0 -6575.5

G
en

er
at

io
ns

50
0

Time (sec) 3122 6304 10887 19005

Crossover 0.8, mutation = 0.01

Populations

10 20 30 50

Fitness 3204 2430 3259 2251
Avg. fitness -2947.5 -5115.0 -6703.4 -7939.6 50

Time (sec) 305 593 1091 1917
Fitness 2321 2798 3012 3498
Avg. fitness -3396.2 -5590.5 -7151.9 -7207.5 10

0

Time (sec) 582 1050 2044 3377
Fitness 2221 2446 3822 3478
Avg. fitness -2424.4 -4297.8 -5684.6 -7305.4

G
en

er
at

io
ns

50
0

Time (sec) 2491 4475 8696 15734

Crossover 0.5, mutation = 0.05

Populations

10 20 30 50

Fitness 2767 2675 2934 2751
Avg. fitness -5126.9 -6001.0 -8208.6 -9081.8 50

Time (sec) 483 1522 1852 2555
Fitness 2710 2808 3098 3071
Avg. fitness -5048.7 -5755.1 -7740.5 -8682.4 10

0

Time (sec) 763 1745 2849 5193
Fitness 3291 3345 3442 3621
Avg. fitness -5087.1 -5820.6 -7847.5 -8721.0

G
en

er
at

io
ns

50
0

Time (sec) 3776 9207 15240 23660

Crossover 0.8, mutation = 0.05

Populations

10 20 30 50

Fitness 2107 2665 2850 3180
Avg. fitness -5119.1 -7206.4 -8477.9 -9034.0 50

Time (sec) 358.4 666 1208.2 1978.2
Fitness 2957 3105 2854 3001
Avg. fitness -5663.2 -7461.9 -8415.8 -8880.7 10

0

Time (sec) 676 1203 2331 3667
Fitness 3219 3455 3709 3512
Avg. fitness -5124.7 -6891.3 -7877.7 -8902.8

G
en

er
at

io
ns

50
0

Time (sec) 3101 5181 9851 16982

 62

Crossover 0.9, mutation = 0.0005

Populations

10 20 30 50

Fitness 1117 1194 668 1721
Avg. fitness -2695.9 -4007.7 -6210.0 -10021.3 50

Time (sec) 71 214 318 571
Fitness 1476 826 2723 765
Avg. fitness -2110.9 -2350.5 -3112.5 -8548.3 10

0

Time (sec) 146 310 419 1060
Fitness 1169 1442 3258 3350
Avg. fitness -1355.5 -1007.9 -884.3 -3696.5

G
en

er
at

io
ns

50
0

Time (sec) 608 1258 1679 3422

Crossover 1.0, mutation = 0.0005

Populations

10 20 30 50

Fitness 1929 1055 2814 3278
Avg. fitness -5885.5 -6389.9 -8314.2 -9000.7 50

Time (sec) 175 381.78 673 1091
Fitness 2321 2380 3415 3207
Avg. fitness -3361.8 -2334.9 -1826.9 -8873.0 10

0

Time (sec) 321 514 820 1968
Fitness 2129 2576 3597 2047
Avg. fitness 624.2 315.4 76.8 -2667.9

G
en

er
at

io
ns

50
0

Time (sec) 960 1820.34 3085 6514

Crossover 0.9, mutation = 0.001

Populations

10 20 30 50

Fitness 964 889 1801 2408
Avg. fitness -7945.9 -6585.3 -6688.0 -8629.4 50

Time (sec) 128 303 423 704
Fitness 1435 1422 1329 1842
Avg. fitness -2149.6 -4186.4 -7153.5 -5331.2 10

0

Time (sec) 219 412 773 1211
Fitness 2795 2450 2933 3212
Avg. fitness 339.0 -1310.5 -3251.1 -3434.2

G
en

er
at

io
ns

50
0

Time (sec) 744 2179 3217 5271

Crossover 1.0, mutation = 0.001

Populations

10 20 30 50

Fitness 1324 2022 2120 2085
Avg. fitness -3726.9 -5566.2 -8642.5 -8305.6 50

Time (sec) 188 409 720 1203
Fitness 1767 2450 3028 2567
Avg. fitness -3128.7 -3349.0 -4313.6 -7300.0 10

0

Time (sec) 356 695 1189 2414
Fitness 3182 2568 2526 3494
Avg. fitness 1396.6 -134.5 -1695.4 -2388.4

G
en

er
at

io
ns

50
0

Time (sec) 1400 2966 5191 8906

Crossover 0.9, mutation = 0.005

Populations

10 20 30 50

Fitness 3095 2426 1437 2682
Avg. fitness -1339.8 -4520.4 -8176.8 -10158.6 50

Time (sec) 186 403 822 1402
Fitness 3166 3265 2815 3080
Avg. fitness -1281.5 -4118.0 -7388.1 -8569.7 10

0

Time (sec) 379 789 1523 2732
Fitness 3892 3534 3477 3625
Avg. fitness 577.0 -1740.5 -4241.1 -6973.4

G
en

er
at

io
ns

50
0

Time (sec) 1691 3452 6628 12150

Crossover 1.0, mutation = 0.005

Populations

10 20 30 50

Fitness 2366 2556 2275 2391
Avg. fitness -1587.0 -5837.6 -8477.8 -8542.0 50

Time (sec) 249 502 960 1628
Fitness 2626 2811 2516 3049
Avg. fitness -1739.2 -3947.8 -6317.4 -7883.7 10

0

Time (sec) 489 922 1732 3134
Fitness 3130 2855 3492 3522
Avg. fitness -1195.5 -2923.0 -4769.8 -6661.7

G
en

er
at

io
ns

50
0

Time (sec) 2320 4393 8266 14577

Crossover 0.9, mutation = 0.01

Populations

10 20 30 50

Fitness 2249 2560 2302 2591
Avg. fitness -2536.9 -4916.0 -7812.5 -8790.4 50

Time (sec) 305 587 1163 2037
Fitness 3585 3245 2708 3135
Avg. fitness -2053.0 -4697.2 -7835.9 -8136.7 10

0

Time (sec) 550 1117 2143 3592
Fitness 3319 3860 4176 3734
Avg. fitness -1031.5 -3303.8 -5923.8 -7664.5

G
en

er
at

io
ns

50
0

Time (sec) 2240 4574 8782 14963

Crossover 1.0, mutation = 0.01

Populations

10 20 30 50

Fitness 2399 2800 2982 2592
Avg. fitness -4088.9 -6953.3 -7899.5 -8748.1 50

Time (sec) 333 622 1166 1973
Fitness 2684 2540 3491 2815
Avg. fitness -2364.3 -4571.1 -6964.6 -8957.0 10

0

Time (sec) 553 1080 2849 5371
Fitness 2957 3250 3146 3583
Avg. fitness -1582.6 -4124.4 -6834.5 -7461.6

G
en

er
at

io
ns

50
0

Time (sec) 2389 4852 9302 16938

Crossover 0.9, mutation = 0.05

Populations
10 20 30 50

Fitness 2304 2811 2913 3044
Avg. fitness -6871.2 -7256.0 -8404.5 -8549.0 50

Time (sec) 396 683 1212.4 1970
Fitness 3050 3240 2936 2418
Avg. fitness -5247.3 -6510.9 -8459.9 -9022.3 10

0

Time (sec) 679 1196 2204 3745
Fitness 3511 3460 3338 3085
Avg. fitness -5423.0 -6533.8 -8332.4 -9067.9

G
en

er
at

io
ns

50
0

Time (sec) 3082 5433 11003 18927

Crossover 1.0, mutation = 0.05

Populations

10 20 30 50

Fitness 2496 2324 2465 2746
Avg. fitness -7346.2 -9704.5 -9385.7 -8924.4 50

Time (sec) 410 686 1243 2003
Fitness 2987 3105 3273 2859
Avg. fitness -6276.0 -7170.5 -8357.7 -8936.4 10

0

Time (sec) 693 1207 8215 6705
Fitness 3222 3565 2863 3146
Avg. fitness -5166.2 -6639.9 -8384.6 -9123.6

G
en

er
at

io
ns

50
0

Time (sec) 3536 6906 13990 21151

 63

From the experiments, the 240 instances of pattern A are tested based on the

various characteristics of GA parameters. The outputs of all runs are normalized using

the respective minimal and maximal values of the fitness in the Pareto-fronts where

more than a half of experiments present the high fitness value. By which, the data are

not normally distributed. The histogram has been used to present the frequency from the

various characteristics of GA parameters that can be illustrated below.

(a) (b)

Figure 5.2: (a) the statistical data of pattern A and

(b) the histogram of the fitness values tested by the various GA parameters.

As a result, the various probabilities of crossovers and mutations found on each

run are not significantly influent the fitness value. On the other hand the high

populations and high generations significantly influent the high fitness value. Using the

Pareto-optimal fronts, the dominated GA parameters covered 80% instances of

populations and generations can be illustrated with the circle using the following table.

Populations

10 20 30 50

50

100 ● ●

G
en

er
at

io
ns

500 ● ● ● ●

Pattern A: Statistical data of the fitness value

Mean 1184.67

Mean 1184.67

Std Dev 462.85

Std Error Mean 29.87

Upper 95% Mean 1243.52

Upper 95% Mean 1243.52

Numbers 240

 64

The experiments of pattern B:

Crossover 0.5, mutation = 0.0005

Populations

10 20 30 50

Fitness 125 687 444 832
Avg. fitness -1478.0 -4513.7 -3297.1 -5953.7 50

Time (sec) 23 82 130 213
Fitness 654 409 637 914
Avg. fitness -145.8 -3660.6 -3231.8 -2863.8 10

0

Time (sec) 52 152 220 392
Fitness 1442 1380 1779 1647
Avg. fitness 682.9 62.0 -790.9 -2822.3

G
en

er
at

io
ns

50
0

Time (sec) 268 573 790 1751

Crossover 0.8, mutation = 0.0005

Populations

10 20 30 50

Fitness 384 843 337 90
Avg. fitness -2519.9 -3847.4 -3150.7 -5858.4 50

Time (sec) 55 94 156 275
Fitness 826 964 387 304
Avg. fitness -151.6 -1071.4 -3009.5 -2749.4 10

0

Time (sec) 74 148 261 414
Fitness 1545 1055 1451 1206
Avg. fitness 60.7 -1208.2 -391.1 -1332.6

G
en

er
at

io
ns

50
0

Time (sec) 396 919 1183 2089

Crossover 0.5, mutation = 0.001

Populations

10 20 30 50

Fitness 309 504 1120 1169
Avg. fitness -2736.2 -3842.8 -3141.7 -5623.2 50

Time (sec) 52 116 169 302
Fitness 467 776 1497 645
Avg. fitness -775.2 -2400.6 -3039.1 -3641.7 10

0

Time (sec) 97 204 324 556
Fitness 1242 1571 974 1284
Avg. fitness -458.4 -110.7 -2559.6 -4009.0

G
en

er
at

io
ns

50
0

Time (sec) 450 857 1508 2760

Crossover 0.8, mutation = 0.001

Populations

10 20 30 50

Fitness 49 308 766 1002
Avg. fitness -2523.8 -2099.7 -4674.3 -3043.4 50

Time (sec) 65 120 230.4 340
Fitness 180 228 857 888
Avg. fitness -2834.9 -3794.2 -2174.5 -4414.5 10

0

Time (sec) 138 245 327 684
Fitness 1640 1218 1560 840
Avg. fitness 613.2 -2043.3 -948.8 -2313.7

G
en

er
at

io
ns

50
0

Time (sec) 413.25 1018 1425 2697

Crossover 0.5, mutation = 0.005

Populations

10 20 30 50

Fitness 119 372 868 1149
Avg. fitness -3305.5 -3761.7 -2932.8 -3664.7 50

Time (sec) 145 348 467 798
Fitness 1259 1172 1418 1372
Avg. fitness -1264.0 -3123.8 -2310.4 -3090.5 10

0

Time (sec) 279 599 937 1529
Fitness 1761 1404 1667 1805
Avg. fitness -749.4 -2143.0 -2485.6 -2981.4

G
en

er
at

io
ns

50
0

Time (sec) 1348 2996 4367 7874

Crossover 0.8, mutation = 0.005

Populations

10 20 30 50

Fitness 117 496 1091 929
Avg. fitness -3095.4 -4551.6 -4860.2 -4106.1 50

Time (sec) 160 358 560 856
Fitness 1058 1172 1138 1374
Avg. fitness -2242.1 -3153.2 -3738.8 -4591.0 10

0

Time (sec) 295 605 993 1663
Fitness 1061 1457 1454 1779
Avg. fitness -1080.0 -2276.8 -2712.7 -3547.7

G
en

er
at

io
ns

50
0

Time (sec) 1231 2746 4187.6 7848

Crossover 0.5, mutation = 0.01

Populations

10 20 30 50

Fitness 555 1440 1356 1595
Avg. fitness -3087.6 -2472.1 -3688.1 1595.0 50

Time (sec) 263 505 820 1430
Fitness 1730 1287 1656 1375
Avg. fitness -612.3 -2953.0 -3099.0 -3805.2 10

0

Time (sec) 421 1006 1576 2932
Fitness 1831 1842 1990 1465
Avg. fitness -859.2 -2037.2 -2418.5 -3400.2

G
en

er
at

io
ns

50
0

Time (sec) 2271 4920 7989 14244

Crossover 0.8, mutation = 0.01

Populations

10 20 30 50

Fitness 705 1585 1111 1105
Avg. fitness -1222.5 -2078.6 -3525.2 -4351.8 50

Time (sec) 238 514 859.2 1475
Fitness 1291 1617 1846 1477
Avg. fitness -1486.4 -2523.5 -2966.0 -3753.0 10

0

Time (sec) 450 986 1522.5 3650
Fitness 1834 1763 1388 1335
Avg. fitness -902.5 -2196.5 -2966.1 -3646.3

G
en

er
at

io
ns

50
0

Time (sec) 2040 4499 7238.4 12957

Crossover 0.5, mutation = 0.05

Populations

10 20 30 50

Fitness 633 798 1016 878
Avg. fitness -3357.8 -3876.7 -4101.4 -4624.2 50

Time (sec) 279 586 612 1498
Fitness 1277 1505 1612 1466
Avg. fitness -3083.9 -3921.2 -4210.0 -4494.3 10

0

Time (sec) 579 1163 1759 2959
Fitness 1790 1561 1682 1505
Avg. fitness -2511.3 -3418.5 -4058.2 -4556.6

G
en

er
at

io
ns

50
0

Time (sec) 2599 5635 9085 12069

Crossover 0.8, mutation = 0.05

Populations

10 20 30 50

Fitness 1010 1098 1111 1069
Avg. fitness -3145.6 -3723.2 -4366.6 -4392.8 50

Time (sec) 284 590 913 1491
Fitness 1203 1245 1218 1335
Avg. fitness -2895.7 -3801.8 -4364.6 -4600.9 10

0

Time (sec) 532 1100 1695 2841
Fitness 1640 1493 1633 1690
Avg. fitness -2363.8 -3542.3 -3895.7 -4460.5

G
en

er
at

io
ns

50
0

Time (sec) 2752 5049 7666 1327

 65

Crossover 0.9, mutation = 0.0005

Populations

10 20 30 50

Fitness 752 529 552 1000
Avg. fitness -2917.7 -5388.7 -4517.9 -4046.4 50

Time (sec) 76 165 251 414
Fitness 311 1118 927 948
Avg. fitness -2146.7 -4190.5 -1957.1 -4372.1 10

0

Time (sec) 118 291 372 748
Fitness 1468 1536 1625 1536
Avg. fitness 751.2 -450.5 -1314.1 -1314.7

G
en

er
at

io
ns

50
0

Time (sec) 501 1168 1744 3012.

Crossover 1.0, mutation = 0.0005

Populations

10 20 30 50

Fitness 259 1194 281 1138
Avg. fitness -2323.2 -882.2 -4424.0 -4294.8 50

Time (sec) 135 274 490 833
Fitness 698 922 1643 1795
Avg. fitness -1018.6 -2314.6 -1180.2 -3554.8 10

0

Time (sec) 254 537 873 1522
Fitness 1829 1083 1744 1536
Avg. fitness 785.2 -366.6 755.9 -1369.5

G
en

er
at

io
ns

50
0

Time (sec) 1128 2513 3331 6550

Crossover 0.9, mutation = 0.001

Populations

10 20 30 50

Fitness 534 678 649 866
Avg. fitness -1979.7 -3156.8 -3969.1 -4834.7 50

Time (sec) 85 170 291 499
Fitness -88 1590 991 1153
Avg. fitness -2016.2 -2283.2 -2825.5 -3938.0 10

0

Time (sec) 157 329 516 921
Fitness 1447 1763 1970 1883
Avg. fitness -55.0 -771.3 -907.4 -3460.8

G
en

er
at

io
ns

50
0

Time (sec) 736 1447 2254 2783

Crossover 1.0, mutation = 0.001

Populations

10 20 30 50

Fitness 701 1321 1302 865
Avg. fitness -967.1 -1988.8 -3464.9 -3978.0 50

Time (sec) 125 312 514 818
Fitness 473 579 1415 904
Avg. fitness -1503.6 -3320.4 -1246.7 -3926.0 10

0

Time (sec) 262 623 794 847
Fitness 1500 1729 1664 1587
Avg. fitness 137.9 167.6 -185.3 -1634.2

G
en

er
at

io
ns

50
0

Time (sec) 1086 2468 3983 7279

Crossover 0.9, mutation = 0.005

Populations

10 20 30 50

Fitness 455 1287 616 1184
Avg. fitness -2685.6 -2498.8 -3136.2 -4964.8 50

Time (sec) 175 361 568 1126
Fitness 1451 1731 1059 1294
Avg. fitness -1421.5 -2570.8 -2878.3 -4095.1 10

0

Time (sec) 333 686 1019 1869
Fitness 1801 1287 1356 1754
Avg. fitness -198.1 -2498.8 -2205.7 -3640.7

G
en

er
at

io
ns

50
0

Time (sec) 1663 3290 5173 9347

Crossover 1.0, mutation = 0.005

Populations

10 20 30 50

Fitness 628 1447 1170 878
Avg. fitness -2384.7 -4498.6 -2902.0 -4394.9 50

Time (sec) 217 467 608 1166
Fitness 999 1785 1257 1175
Avg. fitness -1419.2 -1811.6 -3396.5 -3911.2 10

0

Time (sec) 386 818 1361 2209
Fitness 1897 1785 1480 1578
Avg. fitness -215.3 -1811.6 -2501.1 -2993.8

G
en

er
at

io
ns

50
0

Time (sec) 1898 4370 6984 12137

Crossover 0.9, mutation = 0.01

Populations

10 20 30 50

Fitness 685 1009 1219 1421
Avg. fitness -2549.4 -3702.5 -3984.2 -4128.1 50

Time (sec) 251 591 897 1517
Fitness 1217 1089 1106 1369
Avg. fitness -2172.9 -2778.8 -3157.1 -3243.7 10

0

Time (sec) 462 824 1693 2805
Fitness 1787 1887 1732 1525
Avg. fitness -651.9 -2216.0 -2899.8 -3926.6

G
en

er
at

io
ns

50
0

Time (sec) 2413 5265 8282 14289

Crossover 1.0, mutation = 0.01

Populations

10 20 30 50

Fitness 1272 1459 949 1349
Avg. fitness -1850.9 -3129.0 -4530.7 -4304.7 50

Time (sec) 246 547 932.8 1512
Fitness 1496 1464 1181 1565
Avg. fitness -1557.3 -2744.3 -3202.9 -4306.0 10

0

Time (sec) 501 1086 1701 2966
Fitness 1755 1850 1706 1794
Avg. fitness -955.4 -2763.2 -3547.8 -4034.5

G
en

er
at

io
ns

50
0

Time (sec) 2656 6211 9828 1691

Crossover 0.9, mutation = 0.05

Populations
10 20 30 50

Fitness 788 668 711 870
Avg. fitness -3420.7 -3965.2 -4342.3 -4652.8 50

Time (sec) 291.2 597 910.4 1540.8
Fitness 1189 704 1041 1303
Avg. fitness -3040.7 -4111.1 -4063.3 -4587.1 10

0

Time (sec) 557.7 1256 1752.3 3205.95
Fitness 1669 1257 1336 1658
Avg. fitness -2366.0 -3715.2 -3971.4 -4448.6

G
en

er
at

io
ns

50
0

Time (sec) 2988 6665 10639.8 17712

Crossover 1.0, mutation = 0.05

Populations

10 20 30 50

Fitness 1347 780 944 775
Avg. fitness -3019.5 -3782.9 -4580.6 -4452.4 50

Time (sec) 270 542 947 1553
Fitness 1718 1208 1026 902
Avg. fitness -2459.1 -3733.3 -4215.7 -4495.5 10

0

Time (sec) 625 1375 2047 3576
Fitness 1573 1624 1652 1686
Avg. fitness -2664.9 -3592.5 -4222.7 -4630.5

G
en

er
at

io
ns

50
0

Time (sec) 3252 6760 10681 18422

 66

From the experiments of pattern B, the 240 instances are tested based on the

various characteristics of GA parameters. Also, the outputs of all runs are normalized

using the respective minimal and maximal values of the fitness in the Pareto-fronts

where more than a half of experiments present the high fitness value. By which, the

data are not normally distributed. The histogram has been used to present the fitness

frequency from the various characteristics of GA parameters that can be illustrated

below.

(a) (b)

Figure 5.3: (a) the statistical data of pattern B and

(b) the histogram of the fitness values tested by the various GA parameters.

Similar to the pattern A, the various probabilities of crossovers and mutations of

pattern B found on each run are not significantly influent the fitness value. Whereas the

high populations and high generations influent the high fitness value significantly.

Using the Pareto-optimal fronts, the dominated GA parameters covered 80% instances

of populations and generations can be illustrated with the circle using the following

table.

Populations

10 20 30 50

50

100 ● ● ●

G
en

er
at

io
ns

500 ● ● ● ●

Pattern B: Statistical data of the fitness value

Mean 1184.41

Medium 1243.50

Std Dev 462.35

Std Error Mean 29.84

Upper 95% Mean 1243.20

Upper 95% Mean 1243.62

Numbers 240

 67

The experiments of pattern C:

Crossover 0.5, mutation = 0.0005

Populations

10 20 30 50

Fitness 124 754 606 912
Avg. fitness -500.9 -1383.8 -1877.8 -1857.5 50

Time (sec) 30 79 115 202
Fitness 2471 2476 2036 2683
Avg. fitness -1744.9 -256.0 -1456.5 -1562.3 10

0

Time (sec) 83 127 207 368
Fitness 2607 3594 3427 3622
Avg. fitness 1713.3 2695.3 2813.4 -237.4

G
en

er
at

io
ns

50
0

Time (sec) 272 489 788 1616

Crossover 0.8, mutation = 0.0005

Populations

10 20 30 50

Fitness 688 259 714 871
Avg. fitness 1271.4 -1469.2 -1060.3 -928.0 50

Time (sec) 46 380 157 386
Fitness 1623 2575 2744 3079
Avg. fitness 317.6 -760.5 -2833.4 -1098.6 10

0

Time (sec) 80 182 262 450
Fitness 1435 3663 3363 3208
Avg. fitness 407.7 2455.4 695.5 -188.3

G
en

er
at

io
ns

50
0

Time (sec) 80 182 262 450

Crossover 0.5, mutation = 0.001

Populations

10 20 30 50

Fitness 556 307 116 1104
Avg. fitness -736.3 -842.9 -1141.8 -1623.5 50

Time (sec) 55 108 265 531
Fitness 1840 2396 2760 1558
Avg. fitness -775.2 -400.6 -271.4 -1631.2 10

0

Time (sec) 92 223 279 579
Fitness 3627 3618 3466 3676
Avg. fitness 2189.1 2542.9 2137.6 1261.3

G
en

er
at

io
ns

50
0

Time (sec) 395 782 1153 2234

Crossover 0.8, mutation = 0.001

Populations

10 20 30 50

Fitness 926 1621 1211 1184
Avg. fitness 1784.8 744.7 -456.4 -341.8 50

Time (sec) 68 125 179 295
Fitness 2961 2834 2872 3146
Avg. fitness -319.9 218.8 -182.9 -975.0 10

0

Time (sec) 100 249 362 647
Fitness 3743 3523 3842 3743
Avg. fitness 996.1 1278.1 3010.2 603.1

G
en

er
at

io
ns

50
0

Time (sec) 100 249 362 647

Crossover 0.5, mutation = 0.005

Populations

10 20 30 50

Fitness 533 434 1458 1258
Avg. fitness -709.6 -745.6 -611.6 -1562.3 50

Time (sec) 152 312 436 791
Fitness 2951 2433 2974 3404
Avg. fitness 1254.1 -655.4 -544.2 -1078.8 10

0

Time (sec) 209 235 255 1554
Fitness 3324 3345 3711 3804
Avg. fitness 766.7 1024.6 -91.5 -98.6

G
en

er
at

io
ns

50
0

Time (sec) 1417 2675 4380 6410

Crossover 0.8, mutation = 0.005

Populations

10 20 30 50

Fitness 265 675 1401 1554
Avg. fitness -1282.2 -1124.5 -1481.0 -676.2 50

Time (sec) 163 347 490 365
Fitness 2678 2975 3162 3236
Avg. fitness 2129.3 -654.2 -593.9 -1741.7 10

0

Time (sec) 243 688 897 1664
Fitness 3524 3936 3935 3818
Avg. fitness 1752.7 1244.3 -161.7 -195.7

G
en

er
at

io
ns

50
0

Time (sec) 243 688 897 1664

Crossover 0.5, mutation = 0.01

Populations

10 20 30 50

Fitness 1221 1168 983 1009
Avg. fitness -308.6 -472.1 -688.1 -1595.3 50

Time (sec) 216 443 670 892
Fitness 2806 2831 3643 3025
Avg. fitness -612.3 -953.0 -1099.0 -3805.2 10

0

Time (sec) 344 659 1138 2232
Fitness 3028 3152 3378 3223
Avg. fitness 859.2 -2037.2 -1218.5 -3400.2

G
en

er
at

io
ns

50
0

Time (sec) 1774 3954 5990 7743

Crossover 0.8, mutation = 0.01

Populations

10 20 30 50

Fitness 1580 328 1259 1321
Avg. fitness -222.5 -278.6 -1642.6 -451.9 50

Time (sec) 221 445 826 887
Fitness 2711 3395 3684 3102
Avg. fitness -1486.4 -1523.5 -1114.5 -375.3 10

0

Time (sec) 498 1344 1626 2524
Fitness 3451 3700 3215 3504
Avg. fitness 902.5 -1196.5 -966.2 366.3

G
en

er
at

io
ns

50
0

Time (sec) 498 1344 1626 2524

Crossover 0.5, mutation = 0.05

Populations

10 20 30 50

Fitness 1367 1164 1696 1218
Avg. fitness -744.5 -970.3 -1784.6 -1423.6 50

Time (sec) 260 528 826 1365
Fitness 3348 3259 3482 2876
Avg. fitness 53.2 -855.9 -1088.9 -1507.2 10

0

Time (sec) 499 1043 1448 2772
Fitness 3323 3621 3540 3486
Avg. fitness -97.0 -646.1 -1052.3 -1500.7

G
en

er
at

io
ns

50
0

Time (sec) 2532 5182 7730 8185

Crossover 0.8, mutation = 0.05

Populations

10 20 30 50

Fitness 1187 2094 2731 2923
Avg. fitness -259.7 -1047.0 -1266.1 -1330.4 50

Time (sec) 252 503 791 1335
Fitness 2943 3530 3347 3419
Avg. fitness -511.1 -871.8 -1220.1 -1473.3 10

0

Time (sec) 643 1030 3637 4786
Fitness 3788 3384 3592 3627
Avg. fitness 137.2 -868.9 -1087.8 -1457.5

G
en

er
at

io
ns

50
0

Time (sec) 643 1030 3637 4786

 68

Crossover 0.9, mutation = 0.0005

Populations

10 20 30 50

Fitness 792 215 432 1056
Avg. fitness -511.7 -799.3 -1392.5 -1239.6 50

Time (sec) 57 142 357 474
Fitness 1913 3786 1941 2865
Avg. fitness -747.8 2129.2 -1507.4 -372.1 10

0

Time (sec) 153 198 442 1485
Fitness 3445 3092 3659 3426
Avg. fitness 2925.0 1632.7 2456.9 -477.5

G
en

er
at

io
ns

50
0

Time (sec) 471 1049 1430 3197

Crossover 1.0, mutation = 0.0005

Populations

10 20 30 50

Fitness 670 794 695 1286
Avg. fitness 254.0 1432.0 -1005.1 -1880.1 50

Time (sec) 116 199 452 702
Fitness 2690 2355 2726 2868
Avg. fitness 478.0 -1303.0 -898.2 -1477.8 10

0

Time (sec) 230 543 869 1485
Fitness 3296 3683 3384 3716
Avg. fitness 2882.1 2468.6 2821.9 2711.0

G
en

er
at

io
ns

50
0

Time (sec) 1011 2110 3000 5128

Crossover 0.9, mutation = 0.001

Populations

10 20 30 50

Fitness 281 627 1557 1078
Avg. fitness 1979.4 -771.3 969.2 -834.8 50

Time (sec) 83 244 749 1046
Fitness 2112 2816 2378 2767
Avg. fitness 1016.2 -315.7 -1825.5 -393.8 10

0

Time (sec) 224 475 655 1543
Fitness 3472 3231 3728 3519
Avg. fitness 1549.7 1288.3 907.4 -346.1

G
en

er
at

io
ns

50
0

Time (sec) 845 1572 3154 5543

Crossover 1.0, mutation = 0.001

Populations

10 20 30 50

Fitness 361 677 1543 2057
Avg. fitness -1170.2 -2187.7 -3811.4 -4375.8 50

Time (sec) 157 286 847 1169
Fitness 2851 2042 2547 1627
Avg. fitness -1653.9 -3652.4 -1371.3 -4318.6 10

0

Time (sec) 288 657 1105 1642
Fitness 2700 3112 3795 3856
Avg. fitness 151.7 184.3 -203.9 -1797.7

G
en

er
at

io
ns

50
0

Time (sec) 1239 2936 4626 8862

Crossover 0.9, mutation = 0.005

Populations

10 20 30 50

Fitness 848 770 901 1112
Avg. fitness 1148.2 -736.3 -1121.9 -1567.6 50

Time (sec) 137 337 883 1196
Fitness 2086 3403 3471 2947
Avg. fitness 1600.6 -279.2 261.5 -1381.5 10

0

Time (sec) 273 573 960 1768
Fitness 3845 3618 3618 3319
Avg. fitness 2302.9 -122.1 -122.1 -1145.6

G
en

er
at

io
ns

50
0

Time (sec) 1354 3533 4926 7919

Crossover 1.0, mutation = 0.005

Populations

10 20 30 50

Fitness 1792 1154 2264 2161
Avg. fitness 213.3 -630.3 -77.2 -1637.8 50

Time (sec) 297 391 993 1225
Fitness 2650 2834 3694 2947
Avg. fitness 1013.7 632.6 -793.1 -1381.5 10

0

Time (sec) 334 712 1174 1768
Fitness 3859 3670 3555 3549
Avg. fitness 2618.1 1159.8 213.0 -557.0

G
en

er
at

io
ns

50
0

Time (sec) 1507 3649 5572 10050

Crossover 0.9, mutation = 0.01

Populations

10 20 30 50

Fitness 1439 1119 1660 1284
Avg. fitness -542.9 -702.5 849.2 -842.6 50

Time (sec) 233 427 911 1221
Fitness 2556 3287 3223 3150
Avg. fitness 273.0 -779.9 -735.6 -937.3 10

0

Time (sec) 412 879 1328 2435
Fitness 3452 3462 3637 3202
Avg. fitness 561.2 1817.5 -988.8 -1260.8

G
en

er
at

io
ns

50
0

Time (sec) 1766 4326 6533 9023

Crossover 1.0, mutation = 0.01

Populations

10 20 30 50

Fitness 2609 2990 2945 2765
Avg. fitness 890.5 1129.0 543.8 -347.6 50

Time (sec) 332 455 1034 1303
Fitness 3067 3000 3421 3208
Avg. fitness -553.7 -7554.4 -323.0 -1537.3 10

0

Time (sec) 442 893 1336 2435
Fitness 3597 3393 3497 3674
Avg. fitness -1355.4 2123.3 -754.4 -1191.8

G
en

er
at

io
ns

50
0

Time (sec) 1922 3649 4134 11525

Crossover 0.9, mutation = 0.05

Populations
10 20 30 50

Fitness 1309 1043 2985 3247
Avg. fitness -673.4 -1271.6 -1324.9 -1560.1 50

Time (sec) 250 492 975 1275
Fitness 2766 3000 3630 3631
Avg. fitness -263.3 -1079.3 -1344.3 -1394.9 10

0

Time (sec) 488 996 1527 2761
Fitness 3751 3456 3363 3681
Avg. fitness -57.6 -738.5 -1322.2 -1485.8

G
en

er
at

io
ns

50
0

Time (sec) 2395 4914 7575 11724

Crossover 1.0, mutation = 0.05

Populations

10 20 30 50

Fitness 1883 2683 3129 2834
Avg. fitness -1005.6 -1271.6 -1465.6 -1685.6 50

Time (sec) 458 506 1193 1329
Fitness 2074 3430 2982 3004
Avg. fitness -430.3 -1095.4 -1444.8 -1554.9 10

0

Time (sec) 503 1033 1574 2793
Fitness 3533 3576 3625 3412
Avg. fitness -228.4 -1027.6 -1454.1 -1589.3

G
en

er
at

io
ns

50
0

Time (sec) 2491 5349 7886 13898

 69

From the experiments, the 240 instances of pattern C are tested based on the

various characteristics of GA parameters. Similarly, the outputs of all runs are

normalized using the respective minimal and maximal values of the fitness in the

Pareto-fronts where more than a half of experiments present the high fitness value. By

which, the data are not normally distributed. The histogram has been used to present the

fitness frequency from the various characteristics of GA parameters that can be

illustrated below.

(a) (b)

Figure 5.4: (a) the statistical data of pattern C and

(b) the histogram of the fitness values tested by the various GA parameters.

As a result, the various probabilities of crossovers and mutations of pattern C

found on each run are not significantly influent the fitness value. Whereas the high

populations and high generations influent the high fitness value significantly. Using the

Pareto-optimal fronts, the dominated GA parameters covered 80% instances of

populations and generations can be illustrated with the circle using the following table.

Populations

10 20 30 50

50

100 ● ● ●

G
en

er
at

io
ns

500 ● ● ● ●

Pattern C: Statistical data of the fitness value

Mean 3055.26

Medium 3157.5

Std Dev 585.99

Std Error Mean 37.82

Upper 95% Mean 3129.78

Upper 95% Mean 2980.75

Numbers 240

 70

The experiments of pattern D:

Crossover 0.5, mutation = 0.0005

Populations

10 20 30 50

Fitness 224 262 289 295
Avg. fitness -1092.7 -3009.4 -4006.9 -4380.8 50

Time (sec) 49 64 104 160
Fitness 779 672 59 912
Avg. fitness -2826.7 -3712.3 -2341.7 -3905.9 10

0

Time (sec) 84 103 147 287
Fitness 1245 1021 1487 1220
Avg. fitness -1358.4 -1056.0 -2233.4 -1910.4

G
en

er
at

io
ns

50
0

Time (sec) 187 395 625 1094

Crossover 0.8, mutation = 0.0005

Populations

10 20 30 50

Fitness 157 346 545 583
Avg. fitness -2246.7 -3256.9 -3546.4 -6219.3 50

Time (sec) 56 84 106 211
Fitness 893 1532 1793 1026
Avg. fitness -1820.3 -3747.6 -4208.0 -5897.9 10

0

Time (sec) 128 147 216 412
Fitness 1273 1644 1988 1623
Avg. fitness -484.0 -1593.6 -1501.7 -3933.8

G
en

er
at

io
ns

50
0

Time (sec) 269 567 860 2163

Crossover 0.5, mutation = 0.001

Populations

10 20 30 50

Fitness 458 533 765 544
Avg. fitness -876.3 -1255.8 -2369.0 -855.5 50

Time (sec) 52 98 185 320
Fitness 1130 256 1111 548
Avg. fitness -970.2 -3663.0 -2423.4 -4532.4 10

0

Time (sec) 101 158 223 404
Fitness 1317 1764 2038 1737
Avg. fitness -406.5 -1465.8 -3835.2 -3299.3

G
en

er
at

io
ns

50
0

Time (sec) 259 633 1100 1751

Crossover 0.8, mutation = 0.001

Populations

10 20 30 50

Fitness 168 610 723 871
Avg. fitness -3219.0 -4847.4 -3951.7 -3159.1 50

Time (sec) 56 103 137 284
Fitness 531 1486 2046 1863
Avg. fitness -3202.0 -4102.1 -2114.8 -5337.6 10

0

Time (sec) 94 180 262 550
Fitness 1239 1544 2098 2320
Avg. fitness 1238.2 -836.3 -1431.9 -1665.6

G
en

er
at

io
ns

50
0

Time (sec) 315 852 2230 4455

Crossover 0.5, mutation = 0.005

Populations

10 20 30 50

Fitness 233 442 411 315
Avg. fitness -1445.6 -1233.7 -5609.7 -6052.5 50

Time (sec) 102 255 392 620
Fitness 893 985 1320 1590
Avg. fitness 543.3 -1489.4 -2330.9 -5895.1 10

0

Time (sec) 239 676 981 1270
Fitness 1998 2152 2295 2003
Avg. fitness -1009.8 -3542.8 -3595.4 -4671.8

G
en

er
at

io
ns

50
0

Time (sec) 872 2110 3256 5791

Crossover 0.8, mutation = 0.005

Populations

10 20 30 50

Fitness 543 445 895 940
Avg. fitness 544.7 -2557.0 -3800.3 -5359.1 50

Time (sec) 133 298 351 706
Fitness 233 887 1349 1850
Avg. fitness -1190.6 -23456.0 -3904.0 -4819.1 10

0

Time (sec) 308 723 690 1246
Fitness 887 1355 2420 2235
Avg. fitness -1290.4 -1448.6 -2911.8 -2356.9

G
en

er
at

io
ns

50
0

Time (sec) 945 2323 3240 6506

Crossover 0.5, mutation = 0.01

Populations

10 20 30 50

Fitness 553 322 675 445
Avg. fitness -3140.2 -3573.6 -2786.2 -3481.4 50

Time (sec) 178 386 688 870
Fitness 566 1220 1100 1235
Avg. fitness -1200.8 -2967.6 -2194.9 -2936.0 10

0

Time (sec) 360 845 1550 1875
Fitness 1366 1842 2113 2115
Avg. fitness -711.9 -2035.8 -2361.3 -2832.3

G
en

er
at

io
ns

50
0

Time (sec) 1558 3050 4998 7756

Crossover 0.8, mutation = 0.01

Populations

10 20 30 50

Fitness 445 567 765 863
Avg. fitness -1130.8 -1922.7 -3260.8 -4025.4 50

Time (sec) 187 360 488 966
Fitness 566 1050 1912 1290
Avg. fitness -1374.9 -2334.2 -2743.5 -3471.5 10

0

Time (sec) 396 955 1046 1855
Fitness 1120 1265 1456 1766
Avg. fitness -834.8 -2031.7 -2743.6 -3372.8

G
en

er
at

io
ns

50
0

Time (sec) 1661 3373 5339 8530

Crossover 0.5, mutation = 0.05

Populations

10 20 30 50

Fitness 1256 1513 1508 1158
Avg. fitness -5255.3 -5383.5 -5505.7 -6127.2 50

Time (sec) 219 430 843 1088
Fitness 1318 1683 1346 1396
Avg. fitness -4101.1 -4998.4 -5714.6 -6159.0 10

0

Time (sec) 403 832 1289 2179
Fitness 1827 1845 1979 2058
Avg. fitness -3596.0 -4870.2 -5460.9 -5916.8

G
en

er
at

io
ns

50
0

Time (sec) 2020 3988 6536 10017

Crossover 0.8, mutation = 0.05

Populations

10 20 30 50

Fitness 985 1158 1572 1178
Avg. fitness -4682.3 -5304.5 -5449.7 -6138.2 50

Time (sec) 239 438 656 1118
Fitness 1288 1608 1430 1366
Avg. fitness -4307.2 -4829.5 -5623.3 -6130.6 10

0

Time (sec) 423 1265 1301 2173
Fitness 1979 1934 1861 1811
Avg. fitness -3463.1 -4954.3 -5440.0 -5853.8

G
en

er
at

io
ns

50
0

Time (sec) 1995 4208 6441 9937

 71

Crossover 0.9, mutation = 0.0005

Populations

10 20 30 50

Fitness 477 1414 1273 969
Avg. fitness -3035.4 -3548.7 -5017.4 -4489.4 50

Time (sec) 58 112 170 300
Fitness 988 882 1502 977
Avg. fitness -1009.8 -3927.8 -1383.0 -5328.2 10

0

Time (sec) 152 216 271 287
Fitness 1844 2037 2086 1837
Avg. fitness -1143.7 -73.2 217.9 -2117.4

G
en

er
at

io
ns

50
0

Time (sec) 287 395 1180 2239

Crossover 1.0, mutation = 0.0005

Populations

10 20 30 50

Fitness 557 1154 931 1788
Avg. fitness -2310.0 -4476.0 -5065.0 -5652.3 50

Time (sec) 93 226 367 619
Fitness 549 928 479 1107
Avg. fitness -1517.1 -2974.6 -5065.7 -5704.2 10

0

Time (sec) 199 404 659 1156
Fitness 1244 1881 2226 1784
Avg. fitness -179.9 -321.4 -909.5 -2281.6

G
en

er
at

io
ns

50
0

Time (sec) 780 1596 2511 4488

Crossover 0.9, mutation = 0.001

Populations

10 20 30 50

Fitness 445 567 776 998
Avg. fitness -233.6 -292.5 -1724.7 -2474.5 50

Time (sec) 132 151 275 508
Fitness 1230 2032 1549 1153
Avg. fitness -1560.7 -1599.7 -1170.2 -3394.1 10

0

Time (sec) 183 357 395 662
Fitness 1255 2302 2355 1998
Avg. fitness -1947.7 -1256.3 -1014.5 -2384.6

G
en

er
at

io
ns

50
0

Time (sec) 495 1324 2886 5012

Crossover 1.0, mutation = 0.001

Populations

10 20 30 50

Fitness 511 1118 728 1417
Avg. fitness 253.1 -134.3 -134.3 -1260.2 50

Time (sec) 123 182 325 723
Fitness 1209 1827 2779 1750
Avg. fitness 1263.0 -809.9 -1234.1 -1724.3 10

0

Time (sec) 236 429 723 1155
Fitness 1771 2091 2580 2448
Avg. fitness 1760.6 -307.1 287.6 -1519.6

G
en

er
at

io
ns

50
0

Time (sec) 922 1665 3533 5322

Crossover 0.9, mutation = 0.005

Populations

10 20 30 50

Fitness 658 875 996 1243
Avg. fitness -2524.4 -2348.9 -2948.0 -4666.9 50

Time (sec) 147 303 489 766
Fitness 1430 1445 1236 1345
Avg. fitness -1336.2 -2416.6 -2705.6 -3849.4 10

0

Time (sec) 352 805 705 1446
Fitness 1560 1856 2332 2200
Avg. fitness -186.2 -2348.9 -2073.4 -3422.3

G
en

er
at

io
ns

50
0

Time (sec) 1259 2653 3362 7988

Crossover 1.0, mutation = 0.005

Populations

10 20 30 50

Fitness 812 1263 818 686
Avg. fitness -3390.7 -4966.0 -4080.1 -3072.1 50

Time (sec) 156 320 529 858
Fitness 1796 1359 2166 1511
Avg. fitness -1415.2 -4369.4 -3419.8 -5915.1 10

0

Time (sec) 269 680 863 1692
Fitness 1940 1904 1964 2138
Avg. fitness -948.5 -2543.1 -4364.3 -2686.5

G
en

er
at

io
ns

50
0

Time (sec) 1216 2777 4647 7943

Crossover 0.5, mutation = 0.01

Populations

10 20 30 50

Fitness 766 1088 1290 970
Avg. fitness -3849.8 -3582.1 -4495.7 -7117.0 50

Time (sec) 189 398 544 1021
Fitness 860 1144 2239 2198
Avg. fitness -2037.6 -3685.3 -4126.0 -5870.4 10

0

Time (sec) 402 935 1123 1873
Fitness 1776 2009 2120 2030
Avg. fitness -283.9 -3582.1 -3161.9 -5219.0

G
en

er
at

io
ns

50
0

Time (sec) 1728 3557 5789 9402

Crossover 1.0, mutation = 0.01

Populations

10 20 30 50

Fitness 542 445 763 877
Avg. fitness -1910.5 -5898.6 -4616.7 -4985.4 50

Time (sec) 211 405 612 989
Fitness 1120 1237 2014 1228
Avg. fitness -1280.4 -3433.1 -5891.9 -6326.8 10

0

Time (sec) 420 929 1288 1830
Fitness 2344 2554 2276 2098
Avg. fitness -1260.7 2889.5 -2929.4 -3433.6

G
en

er
at

io
ns

50
0

Time (sec) 1893 4223 6128 9533

Crossover 0.5, mutation = 0.05

Populations
10 20 30 50

Fitness 898 1159 1524 1534
Avg. fitness -3971.7 -4845.9 -5674.7 -6082.2 50

Time (sec) 207 424 656 1101
Fitness 1679 1277 1294 1486
Avg. fitness -3994.6 -4840.3 -5620.3 -6016.7 10

0

Time (sec) 413 988 1306 2163
Fitness 1899 1941 1970 1895
Avg. fitness -3584.1 -5084.5 -5469.9 -5984.0

G
en

er
at

io
ns

50
0

Time (sec) 2006 4218 6411 10067

Crossover 1.0, mutation = 0.05

Populations

10 20 30 50

Fitness 1177 1270 1695 1482
Avg. fitness -4388.9 -5361.4 -5757.3 -6176.3 50

Time (sec) 212 441 665 1102
Fitness 1550 1868 1644 1553
Avg. fitness -4515.5 -5449.6 -5931.4 -6315.0 10

0

Time (sec) 427 974 1318 2199
Fitness 1958 1845 1760 1805
Avg. fitness -3941.5 -5051.5 -5643.3 -6106.2

G
en

er
at

io
ns

50
0

Time (sec) 2037 4192 6371 10131

 72

From the experiments of pattern D, the 240 instances are tested based on the

various characteristics of GA parameters. Similarly, the outputs of all runs are

normalized using the respective minimal and maximal values of the fitness in the

Pareto-fronts where more than a half of experiments present the high fitness value. By

which, the data are not normally distributed. The histogram has been used to present the

fitness frequency from the various characteristics of GA parameters that can be

illustrated below.

(a) (b)

Figure 5.5: (a) the statistical data of pattern D and

(b) the histogram of the fitness values tested by the various GA parameters.

Similar to all previous patterns, the various probabilities of crossovers and

mutations of pattern D found on each run are not significantly influent the fitness value.

Whereas the high populations and high generations significantly influent the high

fitness value. Using the Pareto-optimal fronts, the dominated GA parameters covered

80% instances of populations and generations can be illustrated with the circle using the

following table.

Populations

10 20 30 50

50

100 ● ●

G
en

er
at

io
ns

500 ● ● ● ●

Pattern D: Statistical data of the fitness value

Mean 1856.43

Medium 1908.00

Std Dev 629.02

Std Error Mean 40.60

Upper 95% Mean 1936.42

Upper 95% Mean 1776.45

Numbers 240

 73

 As the results, the experiments from patterns A, B, C and D present the high

fitness value when the populations and generations increase. The high levels of

population of 30, 50 and the generations of 100, 500 present achievements of the high

levels of the fitness value included the average fitness values in all patterns. While, the

high levels of crossover and mutation are the most disruptive and also achieve the

lowest levels of construction of gene. This means that by using high levels of crossover

and mutation, the chance that new candidate gene are found decreases. The

performance of GA is not so much influenced by these operators than the population

sizes and generations. Therefore, this thesis uses the common crossover of 0.9 and

mutation 0.001 suggested by De jong (1975) and Goldberg (1985).

The appropriated GA parameters selected here are sufficiently to solve the

architectural layout design problem. The Pareto-fronts have been adopted to guarantee

these GA parameters which dominate 80% of the fitness values. Nevertheless, the

characteristics of GA parameters used in this thesis are selected by concerning the

trade-off between the high fitness value in the Pareto-fronts and the minimal running

time. The appropriated GA parameters well suited for pattern A, B, C and D can be

described as the following statements.

 - Population size of 30

 - Generation of 100

 - Crossover probability of 0.9

 - Mutation probability of 0.001

 - Selection is a roulette wheel.

 74

5.3 MIP, Valid Inequalities and Learning Methodology Results

In this section, the medium-sized instances (4-10 rooms) are experimented and

illustrated. To measure each methodology performance, the objective values, the

number of iterations, the computational iteration percentages and the computational

time, are illustrated on table 5.1, table 5.2 and table 5.3, respectively.

In the table 5.1, each configuration illustrates the objective values and the

numbers of iterations among AL-MIP, AL-MIP+ and AL-MIP+GA.

In the table 5.2, each configuration illustrates the two parts of the computational

iteration percentages from AL-MIP, AL-MIP+ and AL-MIP+GA. First, the

computational iteration percentages of AL-MIP+ illustrate the comparison between AL-

MIP+ and AL-MIP. Second, the computational iteration percentages of AL-MIP+GA

illustrate the comparison among AL-MIP and AL-MIP+.

In the table 5.3, each configuration illustrates the computational time and the

computational time percentages of AL-MIP, AL-MIP+ and AL-MIP+GA among the

four distinct patterns A, B, C and D. This table illustrates the two parts of the

computational time and the computational time percentage gains.

Indeed, the GA parameters used in this thesis are experimented on a medium-

sized problem of 4, 5, 6, 7, 8, 9 and 10 room configurations among the distinct pattern

A, B, C and D. Each experiment has been performed with population sizes of 30,

generation iterations of 100, crossover probability of 0.9 and mutation probability of

0.001, see table 5.3.

 75

Table 5.1: Iteration comparisons of AL-MIP, AL-MIP+ and AL-MIP+GA.

 AL-MIP AL_MIP+ AL-MIP+GA

Room Patterns Objective non-circular non-circular and
No. Value AL-MIP advised AL-MIP

4 A 15 1.10E+03 8.49E+02 6.15E+02 4.53E+02
 B 17 1.19E+03 1.04E+03 6.17E+02 4.55E+02
 C 18 1.39E+03 1.21E+03 6.55E+02 5.29E+02
 D 15 1.07E+03 1.01E+03 5.51E+02 4.81E+02

5 A 50 1.31E+04 1.06E+04 6.99E+03 3.69E+03
 B 50 8.88E+03 7.62E+03 3.65E+03 2.41E+03
 C 55 1.11E+04 8.66E+03 5.04E+03 1.82E+03
 D 50 1.52E+04 1.13E+04 5.56E+03 3.81E+03

6 A 90 1.84E+05 1.16E+05 4.38E+04 2.78E+04
 B 93 4.38E+04 2.59E+04 1.62E+04 1.06E+04
 C 104 6.11E+04 2.62E+04 2.55E+04 5.40E+03
 D 94 2.27E+05 1.26E+05 2.71E+04 2.39E+04

7 A 150 5.25E+06 3.23E+06 2.51E+05 1.83E+05
 B 166 1.76E+05 8.54E+04 5.65E+04 4.08E+04
 C 165 2.01E+05 1.36E+05 9.22E+04 3.23E+04
 D 151 1.11E+06 1.01E+06 1.35E+05 1.04E+05

8 A 225 1.65E+08 1.04E+08 3.00E+06 1.98E+06
 B 237 7.80E+05 6.27E+05 2.79E+05 1.64E+05
 C 255 8.69E+05 6.82E+05 5.92E+05 1.96E+05
 D 240 9.07E+06 4.86E+06 1.75E+06 6.89E+05

9 A 310 7.55E+08 5.75E+08 1.71E+07 1.15E+07
 B 350 2.90E+06 1.77E+06 1.53E+06 7.71E+05
 C 370 3.57E+06 2.85E+06 8.55E+05 4.75E+05
 D 329 1.41E+08 7.55E+07 3.77E+06 2.46E+06

10 A 425 2.18E+09 1.15E+09 4.15E+07 2.65E+07
 B 482 1.41E+07 8.04E+06 3.63E+06 1.70E+06
 C 526 1.08E+07 5.65E+06 4.21E+06 1.60E+06
 D 449 6.24E+08 2.94E+08 2.61E+07 1.78E+07

 76

Table 5.2: Iteration percentage comparisons of AL-MIP, AL-MIP+ and AL-MIP+GA.

 Valid Inequalities Learning Methodology

Room Patterns Compare Compare non-Circular Compare non-Circular Compare AL-MIP+GA with

No. non-circular and advised AL-MIP and advised AL-MIP AL-MIP non-circular non-circular and

 with AL-MIP with AL-MIP with non-circular AL-MIP AL-MIP advised AL-MIP

4 A 22.61 43.94 27.56 58.71 46.64 26.34
 B 12.68 48.19 40.67 61.80 56.25 26.26
 C 12.81 52.88 45.96 61.94 56.35 19.24
 D 6.07 48.55 45.23 55.09 52.19 12.70

5 A 19.38 46.84 34.06 71.93 65.18 47.19
 B 14.25 58.91 52.09 72.86 68.35 33.95
 C 22.01 54.63 41.82 83.65 79.04 63.97
 D 25.77 63.42 50.71 74.88 66.16 31.34

6 A 37.28 76.25 62.12 84.93 75.97 36.56
 B 40.76 62.98 37.50 75.72 59.01 34.41
 C 57.08 58.27 2.77 91.17 79.43 78.84
 D 44.32 88.06 78.55 89.47 81.09 11.82

7 A 38.56 95.22 92.22 96.52 94.34 27.23
 B 51.37 67.82 33.83 76.73 52.15 27.69
 C 32.65 54.17 31.95 83.96 76.18 65.00
 D 8.68 87.87 86.72 90.63 89.74 22.79

8 A 37.21 98.18 97.10 98.80 98.09 34.04
 B 19.60 64.28 55.57 78.92 73.78 40.98
 C 21.46 31.83 13.20 77.42 71.25 66.88
 D 46.37 80.74 64.09 92.40 85.82 60.52

9 A 23.88 97.74 97.03 98.48 98.00 32.59
 B 38.93 47.10 13.39 73.37 56.39 49.65
 C 20.23 76.05 69.98 86.70 83.33 44.48
 D 46.44 97.33 95.01 98.26 96.74 34.74

10 A 47.01 98.09 96.40 98.78 97.71 36.24
 B 43.20 74.36 54.86 87.96 78.80 53.04
 C 47.48 60.85 25.45 85.09 71.61 61.91
 D 52.90 95.81 91.10 97.15 93.96 32.08

 77

Table 5.3: Time and Time percentage comparisons of AL-MIP, AL-MIP+ and AL-MIP+GA.

 Computational time (sec) Percentage gains (%)
Room Patterns AL-MIP AL-MIP+ AL-MIP+GA Compare AL-MIP+GA with

No. non-circular non-circular and AL-MIP non-circular non-circular and

 AL-MIP advised AL-MIP AL-MIP advised AL-MIP

4 A 0.06 0.05 0.04 0.03 50.00 40.00 25.00
 B 0.09 0.08 0.05 0.04 55.56 50.00 20.00
 C 0.08 0.07 0.05 0.04 50.00 42.86 20.00
 D 0.05 0.05 0.04 0.03 40.00 40.00 25.00

5 A 0.36 0.31 0.23 0.18 50.00 41.94 21.74
 B 0.31 0.25 0.14 0.11 64.52 56.00 21.43
 C 0.31 0.24 0.16 0.11 64.52 54.17 31.25
 D 0.41 0.3 0.17 0.12 70.73 60.00 29.41

6 A 5.93 3.62 1.35 1.17 80.27 67.68 13.33
 B 1.15 0.77 0.54 0.43 62.61 44.16 20.37
 C 1.86 0.79 0.77 0.60 67.74 24.05 22.08
 D 7.24 4.07 0.87 0.74 89.78 81.82 14.94

7 A 320.97 179.71 9.42 6.13 98.09 96.59 34.93
 B 5.32 2.82 2.02 1.46 72.56 48.23 27.72
 C 6.55 4.23 3.55 1.81 72.37 57.21 38.44
 D 44.81 40.42 4.32 2.54 94.33 93.72 41.20

8 A 11444.71 7897.16 114.9 67.73 99.41 99.14 35.43
 B 26.86 21.94 11.82 7.77 71.07 64.59 34.26
 C 32.45 24.7 20.35 11.19 62.43 50.65 45.01
 D 595.06 316.8 80.16 42.09 92.93 86.71 47.49

9 A 38685.49 17362.18 918.03 537.83 98.61 96.90 41.41
 B 114.97 71.86 59.93 41.78 58.44 33.51 30.29
 C 172.07 134.88 36.98 24.47 85.78 81.86 33.83
 D 12699.56 5979.77 290.96 161.98 98.72 97.29 44.33

10 A 188851.03 83266.98 8327.53 4946.26 97.38 94.06 40.60
 B 829.99 469.99 259.79 178.60 76.07 57.74 31.25
 C 1142.34 841.63 325.59 119.05 89.58 85.85 63.44
 D 48987.75 26561.01 2452.82 1187.83 97.58 95.53 51.57

 78

Table 5.1 shows the objective value, the number of iterations, the computational

time in seconds and the percentage gains among AL-MIP, AL-MIP+ and AL-MIP+GA

of four architectural patterns vary from 4 to 10 rooms. The column of the objective

value is used to compare the optimal solutions from all methodologies. All experiments

have the same objective values even though they are different solutions. These results

confirm with the theory of mathematical optimization.

According to the table 5.1, the distinct patterns A, B, C and D of 5-10 room

configurations illustrate the various computational iterations. A linear configuration

(pattern A) uses higher computational iterations. A nested wheel configuration (pattern

D) uses less computational iterations than a linear configuration while a rail (pattern B)

and a connected configuration (pattern C) use a small numbers in computational

iterations. This due to the structural connectivity composes of a large number of

repeated patterns of a circular connection that utilizes the non-circular AL-MIP which

reduces a feasible region more than a linear and a nested wheel configuration (pattern A

and D). For a small room number (4-5 rooms), two computational iterations of a rail

and a connected wheel configuration have similar of computational iterations. Both

show the similar exponential growth. For a medium room number (6 – 10 rooms), a

connected wheel configuration presents a quite different computational iteration

between a rail and a connected wheel configuration that differentiate more than 3 times

for a 10 rooms. This illustrates that the connected circular constraints as a wheel

configuration is suitable to use with a wheel configuration.

Table 5.2 shows the performance among AL-MIP, AL-MIP+ and AL-MIP+GA.

The percentage gain is computed by subtracting a measure (computational iterations) of

the AL-MIP and AL-MIP+ from the AL-MIP+GA. The larger the positive value is, the

better the gain will be. Note that different patterns have different percentage gains. To

measure the performance gain of AL-MIP+GA, the final column presents the

percentages AL-MIP+GA comparison with our previous methodology AL-MIP+. For a

linear configuration (Pattern A), the minimum and maximum iteration percentages are

26.34 and 47.19 for 4 and 6 rooms. For a rail configuration (Pattern B), the minimum

and maximum iteration percentages are 26.26 and 53.04 for 4 and 10 rooms. For a

connected wheel configuration (Pattern C), the minimum and maximum iteration

percentages are 19.24 and 78.84 for 4 and 6 rooms. For a nested wheel configuration

(Pattern D), the minimum and maximum iteration percentages are 11.82 and 60.52 of 6

and 8 rooms respectively.

 79

An average computational iteration from 4-10 rooms of a linear configuration

(Pattern A) is 38.00, a rail configuration (Pattern B) is 38.00, a connected wheel is

57.19 and a nested wheel is 29.43 respectively.

According to table 5.2, at the forth and fifth columns, the computational

iteration percentage gains of valid inequalities present higher reduction of the advised

AL-MIP than non-circular AL-MIP. In a medium room number (6-10 rooms), an

advised AL-MIP presents a high reduction in a linear configuration. This presents an

advised AL-MIP+, is highly suitable for a linear configuration. Moreover, at the final

column, the learning methodology using GA presents the higher reduction of

computational iterations in a rail and a connected wheel configuration. This presents a

room configuration with a higher connection degree among each room is suitable for

the AL-MIP+GA.

Table 5.3 illustrates the computational time percentages among AL-MIP, AL-

MIP+ and AL-MIP+GA of four architectural patterns varying from 4 to 10 rooms. For a

linear configuration (Pattern A), the percentage gains of the minimum and the

maximum are 13.33 and 41.05 of 6 and 8 rooms. For a rail configuration (Pattern B),

the percentage gains of the minimum and the maximum are 20.00 and 27.72 of 4 and 7

rooms. For a connected wheel configuration (Pattern A), the percentage gains of the

minimum and the maximum are 20.00 and 63.44 of 4 and 10 rooms. For a nested wheel

configuration (Pattern D), the percentage gains of the minimum and the maximum are

14.49 and 51.57 of 6 and 10 rooms.

An average computational time from 4-10 rooms of a linear configuration

(Pattern A) is 27.82, a rail configuration (Pattern B) is 22.03, a connected wheel is

35.59 and a nested wheel is 48.48, respectively.

To summarize all patterns, AL-MIP+GA achieves the iterations and time more

than 44% and 25% for 5 rooms while AL-MIP+GA achieve the iterations and time

more than 45% and 43% for 10 rooms respectively. These results illustrate, the larger

the problem is the larger the percentage gain will be. For a linear configuration (pattern

B) and a rail configuration (pattern C), we can achieve more than average 40% of the

iteration improvement over 6 rooms. This due to the structural connectivity composes

of a large number of repeated patterns of circular connections. The memory usages also

improve for a larger problem sizes due to the small number of iterations.

 80

• Fitness and the Candidate Special Order Set Results

As far as GA is concerned, the fitness curve and the candidate SOS vary from 4-

10 rooms of patterns A, B, C and D. These can illustrate using the figure 5.6 to figure

5.12, respectively.

4.00E+02

5.13E+02

6.25E+02

7.38E+02

8.50E+02
1 11 21 31 41 51 61 71 81 91

4 ROOM - PATTERN A 4 ROOM - PATTERN B

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (a)

4.00E+02

5.13E+02

6.25E+02

7.38E+02

8.50E+02
1 11 21 31 41 51 61 71 81 91

4 ROOM - PATTERN B 4 ROOM - PATTERN C

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (b) (c)

Figure 5.6: The 4 rooms fitness of computational iterations

(a) between room A and room D, (b) between room B and room C and

(c) illustrates 4 rooms candidate SOS variable pij and qij of pattern A, B, D and D.

4 Rooms: the candidate SOS

Branching
Orders

Pattern A Pattern B Pattern C Pattern D

1 q14 q34 q23 p34
2 q24 p24 q14 q12
3 q24 q34 p34 q24
4 p14 q24 p13 p34
5 q14 p23 p24 p34
6 p24 q12 q12 q13
7 q13 p14 p13 p12
8 p13 p34 q13 p13
9 q13 q12 q24 p34

10 p24 q23 q13 p34
11 p14 p14 p24 p12
12 q24 q14 q34
13 p12 q34
14 p23
15

 81

3.00E+03

5.75E+03

8.50E+03

1.13E+04

1.40E+04
1 11 21 31 41 51 61 71 81 91

5 ROOM - PATTERN A 5 ROOM - PATTERN D

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (a)

1.50E+03

2.88E+03

4.25E+03

5.63E+03

7.00E+03
1 11 21 31 41 51 61 71 81 91

5 ROOM - PATTERN B 5 ROOM - PATTERN C

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (b)

 (c)

Figure 5.7: The 5 rooms fitness of computational iterations

(a) between room A and room D, (b) between room B and room C and

(c) illustrates 5 rooms candidate SOS variable pij and qij of pattern A, B, D and D.

5 Rooms: the candidate SOS

Branching
Orders

Pattern A Pattern B Pattern C Pattern D

1 q1,2 p1,5 q1,5 q1,3
2 q1,3 p1,4 p2,5 p2,5
3 p2,4 p1,4 q4,5 p2,4
4 q2,5 q3,5 p2,5 q2,4
5 p1,3 q4,5 q2,5 p2,3
6 q2,5 p2,5 p3,5 q2,3
7 q2,4 p2,5 q2,4 q1,3
8 p3,5 q2,5 p1,3 q3,5
9 q3,5 q1,4 p2,5 p1,3

10 p1,5 q3,5 p1,5 p1,4
11 p1,4 p1,3 p2,5 p1,3
12 q1,4 q3,5 p2,5 p2,4
13 q1,5 p1,5 q4,5 q2,4
14 p1,3 p2,5 q3,5 p1,4
15 p2,5 q1,3 q2,5 q2,4
16 q2,5 p2,5 p4,5 p3,5
17 q2,5 p2,5 q1,3
18 p2,5 q1,2 q3,5
19 q1,5 p2,5
20 q4,5 q1,2
21 q2,5
22
23
24
25

 82

2.00E+04

5.00E+04

8.00E+04

1.10E+05

1.40E+05
1 11 21 31 41 51 61 71 81 91

6 ROOM - PATTERN A 6 ROOM - PATTERN D

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (a)

2.00E+03

1.40E+04

2.60E+04

3.80E+04

5.00E+04
1 11 21 31 41 51 61 71 81 91

6 ROOM - PATTERN B 6 ROOM - PATTERN C

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (b)

 (c)

Figure 5.8: The 6 rooms fitness of computational iterations

(b) between room A and room D, (b) between room B and room C and

(c) illustrates 6 rooms candidate SOS variable pij and qij of pattern A, B, D and D.

6 rooms: the candidate SOS

Branching
Orders

Pattern A Pattern B Pattern C Pattern D

1 q2,4 p2,5 p5,6 q3,6
2 q1,5 p1,3 p2,5 q2,4
3 q1,6 p1,5 q5,6 q2,5
4 p1,2 p1,4 p2,6 p2,4
5 p1,2 p3,5 p2,5 p1,4
6 p1,6 q1,5 p1,5 p2,6
7 q2,6 q2,5 p3,5 p2,4
8 q3,6 p1,5 p2,6 q2,6
9 p3,6 p1,5 p2,6 p1,4
10 q1,4 q1,3 q1,5 p1,4
11 q1,5 p1,4 p4,6 p2,5
12 q1,5 q1,2 q2,4 p1,5
13 q2,5 p5,6 p5,6 q2,6
14 q1,3 q3,6 q4,5 q1,3
15 q1,3 q1,3 q1,6 p2,6
16 q1,4 p1,4 p2,6 q1,3
17 q1,6 q2,6 q5,6 q1,3
18 q1,6 p5,6 p4,5 p4,6
19 q3,6 p3,6 p1,5 q1,3
20 q1,5 p2,6 q2,5 p1,2
21 q2,6 p3,6 p3,6 p4,6
22 p1,4 q4,6 q2,6 q4,6
23 p3,6 p1,4 q4,6 q3,6
24 q2,4 p1,6 p1,6 q1,5
25 p1,4 q2,6 p3,6
26 p2,5 q1,6 q1,3
27 q1,6 q3,6 p4,6
28 p1,3 p2,6 q1,5
29 p1,4 p3,6
30 q4,6 p1,2
31 q1,5
32 q3,6
33
34
35

 83

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06
1 11 21 31 41 51 61 71 81 91

7 ROOM - PATTERN A 7 ROOM - PATTERN D

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (a)

0.00E+00

7.50E+04

1.50E+05

2.25E+05

3.00E+05
1 11 21 31 41 51 61 71 81 91

7 ROOM - PATTERN B 7 ROOM - PATTERN C

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (b)

 (c)

Figure 5.9: The 7 rooms fitness of computational iterations

(c) between room A and room D, (b) between room B and room C and

(c) illustrates 7 rooms candidate SOS variable pij and qij of pattern A, B, D and D.

7 rooms: the candidate SOS

Branching
Orders

Pattern A Pattern B Pattern C Pattern D

1 p5,6 q1,5 p2,5 p3,4
2 q3,7 q1,3 p6,7 p3,7
3 p2,5 q2,6 p2,5 q3,7
4 p1,4 p2,5 q2,7 q5,7
5 q1,4 p1,3 q1,7 q1,4
6 q2,7 p1,3 p2,5 p2,5
7 p4,7 p5,6 q3,6 p4,7
8 p2,5 q1,6 q1,6 p5,7
9 q1,3 p1,7 p1,7 q2,5
10 q4,7 q1,6 q4,7 q2,4
11 p1,5 p5,6 p2,5 q2,4
12 p1,4 q1,3 p2,7 p2,5
13 q5,7 p6,7 p4,7 q5,6
14 p1,6 p1,4 p1,4 q3,7
15 p1,4 p1,6 q2,7 p4,6
16 q3,7 q2,5 q4,5 q1,2
17 p2,5 q1,7 p6,7 p2,5
18 p2,5 p1,7 p4,5 q4,6
19 p1,7 q1,7 q1,6 q4,7
20 p2,5 p2,7 p1,6 q2,4
21 q2,4 p2,7 q1,5 q5,7
22 p3,7 p4,7 q3,7 q3,6
23 q3,7 q1,2 q1,6 p5,6
24 q2,4 p6,7 q6,7 q1,4
25 q3,5 p4,6 p1,7 q1,2
26 q1,4 p1,5 q1,2 p5,7
27 q1,5 p3,7
28 q2,6
29
30

 84

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07
1 11 21 31 41 51 61 71 81 91

8 ROOM - PATTERN A 8 ROOM - PATTERN D

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (a)

0.00E+00

3.00E+05

6.00E+05

9.00E+05

1.20E+06
1 11 21 31 41 51 61 71 81 91

8 ROOM - PATTERN B 8 ROOM - PATTERN C

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (b)

 (c)

Figure 5.10: The 8 rooms fitness of computational iterations

(d) between room A and room D, (b) between room B and room C and

(c) illustrates 8 rooms candidate SOS variable pij and qij of pattern A, B, D and D.

8 rooms: the candidate SOS

Branching
Orders

Pattern A Pattern B Pattern C Pattern D

1 p5,8 q2,8 q2,8 q4,7
2 q2,5 q2,7 q2,6 p1,3
3 q1,4 q1,4 q1,5 q4,8
4 p1,8 p1,8 p1,8 p1,4
5 q2,6 q2,6 q2,5 q3,6
6 p3,8 q2,5 p2,8 p3,5
7 q5,7 p3,8 q1,6 q4,6
8 p4,8 p2,8 p2,6 p2,6
9 q1,4 q2,7 p2,5 p4,7
10 q1,3 q4,7 q4,8 q1,3
11 p3,8 p4,8 q4,6 p4,8
12 p4,7 p1,7 q5,7 p4,6
13 q5,8 p2,8 p5,8 q1,4
14 q1,6 p2,5 p4,8 p3,6
15 p2,8 q3,8 p1,6 q1,3
16 p1,4 q3,7 p4,6 p2,4
17 q1,6 p1,6 q3,8 p1,4
18 q4,8 q3,6 q3,7 p1,3
19 p3,7 p3,8 p1,5 p3,6
20 p1,8 q1,7 q3,6 q2,6
21 q1,4 p3,7 q1,8 q2,4
22 p3,6 p3,6 p3,8 q3,5
23 q4,8 q5,8 p3,7 p2,6
24 q1,8 q4,8 p5,7 q1,7
25 p2,4 p4,7 p3,6 p3,6
26 p1,5 q3,6 q1,7 q1,4
27 q2,7 q1,8 q1,6 q4,6
28 p2,5 q1,6 q5,8 p1,7
29 p3,8 p5,8 p5,7 p1,4
30 q3,8 q1,5 q1,8 q5,8
31 q3,5 q4,7 p2,5 q3,6
32 p1,5 q1,7 p5,8
33 p1,4 p1,7 p2,4
34 q1,4
35 p1,4
36
37

 85

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07
1 11 21 31 41 51 61 71 81 91

9 ROOM - PATTERN A 9 ROOM - PATTERN D

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (a)

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06
1 11 21 31 41 51 61 71 81 91

9 ROOM - PATTERN B 9 ROOM - PATTERN C

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (b)

(c)

Figure 5.11: The 9 rooms fitness of computational iterations

(e) between room A and room D, (b) between room B and room C and

(c) illustrates 9 rooms candidate SOS variable pij and qij of pattern A, B, D and D.

9 rooms : the candidate SOS

Branching
Orders

Pattern A Pattern B Pattern C Pattern D

1 p5,8 q2,9 q2,9 q5,6
2 p3,6 p3,7 p4,6 p1,7
3 p1,9 q2,8 q3,9 q5,9
4 q2,7 q4,7 p1,6 p2,6
5 p5,9 p4,9 q3,8 q5,3
6 q1,5 p1,7 q2,8 q3,7
7 q4,7 p4,8 q4,6 q1,3
8 p5,6 q6,9 p4,9 q3,9
9 q1,4 q2,7 q2,7 p5,6
10 q5,9 q2,6 p3,6 q6,8
11 p2,5 q2,5 q2,6 p5,3
12 p2,9 q3,8 p2,9 q1,7
13 q1,8 q1,5 q1,6 q3,9
14 q3,9 q1,4 q4,8 p5,6
15 p2,5 q5,8 q4,7 q1,3
16 q1,3 p5,9 q1,5 p7,9
17 p1,8 p1,9 p1,9 p1,7
18 q1,4 p1,8 p2,8 p1,3
19 q3,8 q4,8 q2,6 p6,8
20 q5,9 p2,9 q4,9 q2,8
21 p7,9 q2,7 p3,6 q7,9
22 p2,8 p1,6 q5,9 p2,8
23 p6,9 p2,8 p4,8 p2,6
24 q1,9 p2,5 p4,7 q1,4
25 p1,4 q3,9 q3,7 p3,9
26 q2,8 q3,7 p3,8 p1,4
27 p3,8 p5,8 q5,8 q7,9
28 p5,,8 q4,9 q1,9 q5,,3
29 q1,6 p3,8 p5,,8 p7,9
30 p4,7 p3,6 p5,7 q3,7
31 q7,9 p6,9 q1,8 p5,9
32 q3,7 q5,9 q1,7 q3,9
33 q1,7 p4,7 p2,8 p3,7
34 p3,6 q1,9 p1,8 q2,6
35 q6,9 q1,7 q5,7 p3,9
36 p2,8 q3,6 p5,9 q1,4
37 p3,9 p1,7 q6,8
38 q1,6 p1,6 p1,4
39 p1,5 p1,5 p5,9
40 p1,4 q2,8
41 q2,6
42

 86

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07
1 11 21 31 41 51 61 71 81 91

10 ROOM - PATTERNA 10 ROOM - PATTERN D

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (a)

0.00E+00

4.00E+06

8.00E+06

1.20E+07

1.60E+07
1 11 21 31 41 51 61 71 81 91

10 ROOM - PATTERN B 10 ROOM - PATTERN C

Generations

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

100

 (b)

 (c)

Figure 5.12: The 10 rooms fitness of computational iterations
(f) between room A and room D, (b) between room B and room C and

(c) illustrates 10 rooms candidate SOS variable pij and qij of pattern A, B, D and D.

10 rooms: the candidate SOS

Branching
Orders

Pattern A Pattern B Pattern C Pattern D

1 p4,8 q2,10 q2,10 q5,9
2 p1,5 q2,9 p4,10 p2,10
3 q3,6 p4,7 q2,9 q1,9
4 q2,5 q1,8 p3,8 q3,10
5 p4,7 q2,8 q1,8 p6,9
6 q2,7 q4,7 p3,7 q5,8
7 p5,9 q2,7 q2,8 q1,10
8 p2,9 q3,9 p1,9 q3,7
9 p1,10 q2,6 q2,6 p1,9
10 q1,5 q1,4 q5,10 p5,9
11 q4,10 p1,10 p2,9 p5,8
12 p2,9 q2,5 q1,6 q6,9
13 p2,5 p5,10 p2,8 q3,10
14 q4,8 p2,10 q1,5 p5,3
15 q1,5 q1,10 q5,10 q3,9
16 p2,8 q1,9 p1,10 p6,10
17 p3,10 p2,9 q4,10 p3,7
18 q1,4 q1,8 p2,7 p5,2
19 p2,8 p2,8 q4,9 p1,7
20 q1,10 q3,7 p3,6 q4,6
21 p2,5 q4,10 q4,8 q6,8
22 p1,9 q3,6 p1,10 q3,10
23 q2,6 q2,7 p3,9 p6,8
24 q4,7 q1,5 q4,6 q2,8

25 p5,9 p2,8 P3,10 p4,7

26 q3,9 p2,5 q1,9 q2,6

27 p4,6 q3,10 q4,7 p3,10

28 p5,8 q1,6 q1,8 p2,6

29 q1,6 p1,9 p4,9 q1,4

30 p1,10 p3,7 q3,6 q3,6

31 p4,9 q1,10 p4,8 q7,9

32 q1,5 p3,6 q5,6 q4,7

33 q6,8 q6,10 p4,7 p7,9

34 p7,9 p3,9 q3,10 q3,7

35 q6,10 p5,9 p4,6 p1,10

36 p5,9 p5,8 q3,9 q3,9

37 q1,10 q6,9 p5,9 p1,8

38 p3,9 p6,10 q1,10 p3,7

39 p3,6 q5,9 p5,8 p3,9

40 q1,9 q3,8 q3,8 q1,4

41 p3,10 p3,10 p1,9 q2,8

42 q5,8 q5,8 q3,7 p3,6
43 p6,9 p5,8 q5,8 q2,6
44 p1,9 p4,8 p2,10 q1,9
45 p3,6 p6,9 p5,7 p2,8
46 q4,8 q5,10 q1,7 p6,9
47 q5,7 q1,7 q5,7 p2,6

48 p2,9 p1,8 p5,10 q1,8

49 q3,9 q4,8 p1,8 p4,6

50 p4,9 p1,7 p1,7

51 p1,7 q2,7 p3,9

52 p1,6 p1,6 p1,4

53 q4,8 p1,5 p1,3

54 p1,5
55 p1,4

 87

The GA design process is executed with a random initial population. In order to

show the improvement of the AL-MIP+GA, the populations are made up of 30, the

numbers of generations of the genetic search process are set at 100, the crossover

probability is set at 0.01 and the mutation probability is set at 0.001. Our AL-MIP+GA

normally terminate after the repeated process of generations reaching the required

generations. The strong gene present the candidate SOS that will appropriately use to

speed up computational solution time of AL-MIP+.

Figure 5.6 to 5.12 illustrate computational iterations of a typical run. The

vertical axis of 4-10 room configurations represents the computational iteration scales

where the upward direction corresponds to the improvement of computational

iterations. The horizontal axis represents the change of generations.

From the fitness results, each figure illustrates the improvement behaviors of the

computational iterations as the generations increase. In order to understand this

behavior, figure 5.6 to figure 5.12 illustrate the fitness curve comparisons. Due to the

different of the computational scales between pattern A, D and pattern B, C, we use two

fitness figures to illustrate the computational iterations for each case. At the beginning

of a period, the fitness curve presents the higher growth between generations 1 to 40.

This presents our AL-MIP+GA corresponding to a general learning rate GA (Chen et

al., 1993 and Goldberg, 1989). The candidate SOS variables are found after 40

generations which the mutation will be adopted to increase the better fitness value of

the candidate SOS.

Moreover, we illustrate the candidate SOS among pattern A, B, C and D in each

case on figure 5.6(c) to figure 5.12(c). Each case, patterns A, B, C and D present a

nonequivalent length of candidate SOS from a nonequivalent connectivity degree. The

length of candidate SOS will increase corresponded to the increase of room numbers.

Finally, the AL-MIP+GA model described here illustrate the potential uses in

the MIP branch and bound algorithm. The candidate SOS used a robustness GA can

reduce an average computational iteration and time more than a thirty percent compared

to the AL-MIP+ model.

 88

• The efficiency of AL-MIP+ model

To verify an efficiency of AL-MIP+ model we extent the numbers of room from

11 to 15 room configurations of patterns A, B, C and D. These experiments are tested

on the similar environments from the previous section. The computational iterations and

time from 4 to 15 room configurations can be illustrated as follows.

Table 5.4: computational iteration and time comparisons of 4 to 15 rooms.

 Pattern A Pattern B Pattern C Pattern D

 Computations Computations Computations Computations
Room
numbers Iterations Time

(sec) Iterations Time
(sec) Iterations Time

(sec) Iterations Time
(sec)

4 6.15E+02 0.03 6.17E+02 0.04 6.55E+02 0.04 5.51E+02 0.03

5 6.99E+03 0.18 3.65E+03 0.11 5.04E+03 0.11 5.56E+03 0.12

6 4.38E+04 1.17 1.62E+04 0.43 2.55E+04 0.60 2.71E+04 0.74

7 2.51E+05 6.13 5.65E+04 1.46 9.22E+04 1.81 1.35E+05 2.54

8 3.00E+06 67.73 2.79E+05 7.77 5.92E+05 11.19 1.75E+06 42.09

9 1.71E+07 537.83 1.53E+06 41.78 8.55E+05 24.47 3.77E+06 161.98

10 4.15E+07 4946.26 3.63E+06 178.6 4.21E+06 119.05 2.61E+07 687.83

11 3.53E+08 31656.06 8.72E+06 723.09 1.17E+07 465.26 2.17E+08 3858.99

12 1.62E+09 101299.41 2.36E+07 2045.1 2.03E+07 1521.23 5.64E+08 10633.37

13 2.90E+09 227923.66 3.34E+07 2079.12 3.84E+07 5443.72 1.99E+09 37485.80

14 1.80E+10 501432.05 1.17E+08 15610.25 8.47E+07 34185.90 1.23E+10 121011.97

15 5.58E+10 902577.69 2.00E+08 37337.12 2.78E+08 67981.47 2.22E+10 509821.54

As the results, the AL-MIP+ model presents the effectiveness to solve the larger

scale problem from 4 to 15 room configurations which has the exponential growth of

the computational iterations and time. Particularly, pattern A and D present the large

increases of computational iterations comparing to pattern B and C, see figure 5.13.

Moreover the running time of pattern A and D present more than a week to achieve the

solution for the 15 room configurations. With the results of the growth function confirm

that an architectural layout design is an NP hard problem. Therefore it is not easily

solved by using a conventional technique.

 89

5.5
8E

+10

6.1
5E

+02

6.9
9E

+03

4.3
8E

+04

2.5
1E

+05

3.0
0E

+06

1.7
1E

+07

4.1
5E

+07

3.5
3E

+08
1.6

2E
+09

2.9
0E

+09

1.8
0E

+10 2.2
2E

+10

1.2
3E

+10

1.9
9E

+09

5.6
4E

+08
2.1

7E
+08

2.6
1E

+07

3.7
7E

+06

1.7
5E

+06

1.3
5E

+05

2.7
1E

+04

5.5
6E

+03

5.5
1E

+02

0.00E+00

2.00E+10

4.00E+10

6.00E+10

4 5 6 7 8 9 10 11 12 13 14 15

Pattern A Pattern D

Number of rooms

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

(a)

2.0
0E

+08

1.1
7E

+08

3.3
4E

+072.3
6E

+07

8.7
2E

+06

3.6
3E

+06

1.5
3E

+06

2.7
9E

+05

5.6
5E

+04

1.6
2E

+04

3.6
5E

+03

6.1
7E

+02

2.0
3E

+07
1.1

7E
+07

4.2
1E

+06

8.5
5E

+05

5.9
2E

+05

9.2
2E

+04

2.5
5E

+04

5.0
4E

+03

6.5
5E

+02
3.8

4E
+07 8.4

7E
+07

2.7
8E

+08

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4 5 6 7 8 9 10 11 12 13 14 15

Pattern B Pattern C

Number of rooms

C
om

pu
ta

tio
na

l I
te

ra
tio

ns

(b)

Figure 5.13: The computational iteration comparisons from 4 to 15 rooms

(a) between room A and room D and (b) between room B and room C.

CHAPTER VI

Conclusions and Suggestions

6.1 Conclusions and Suggestions

We propose the feasibility of the AL-MIP, the AL-MIP+ and the AL-MIP+GA to solve

an architectural layout design optimization. Dealing with a medium-sized problem (5-

10 rooms), the AL-MIP+ helps reduce the computational iterations and time

considerably. The experiments show the feasibility of using AL-MIP model included

two valid inequalities. The average computational time for 10 room configurations of

pattern B, C and D, can be solved in a few minute with the global optimal. More than

one third can be reduced the computational iterations and time from AL-MIP due to a

smaller feasible region.

The AL-MIP+GA based on the learning methodology using GA is adopted to

reduce the computational iterations and time. This GA identifies the current best

candidate of a Special Order Set (a strong gene) which achieves an average of 30 to 70

percentage gain reductions compare to the AL-MIP+ while the computational iterations

and time illustrate an average more than 90 percent reduction gains comparing to AL-

MIP. Indeed, the graphical results of 10 room configurations, see figure 6.1 presents an

achievement of the global optimal solution.

The AL-MIP included valid inequalities and learning methodology reveal a

significant potential for computational optimization algorithms. The consistency

between mathematical formulation and machine learning creates a distinct MIP as an

optimization methodology.

• Applying AL-MIP+GA

In order to apply the AL-MIP+GA for the architectural layout design, the

candidate SOS can be used to reduce the computational iterations and time by adding to

the problem as a preprocess data. Indeed, some architectural layout design patterns

might be often used in a layout design. For example a linear pattern that is used as a

pattern of circulation of museum design and a pattern of circulation of factory design.

Therefore, a regularly architectural layout design pattern can be swiftly solved using the

candidate SOS which we have stored from the AL-MIP+GA. In the other words, we can

 91

save the computational iterations and time by learning the candidate SOS that has been

regularly used and store as a preprocess data.

Pattern A Pattern B

Pattern C Pattern D

Figure 6.1: The graphical results of 10 room configurations of patterns A, B, C and D.

 92

• Conclusions

In this thesis, several results of architectural layout design problem using the

AL-MIP, the AL-MIP+ and the AL-MIP+GA can be concluded as follows.

1. The AL-MIP, the AL-MIP+ and the AL-MIP+GA can be utilized with

architectural layout design problem that helps architects solve the medium-

sized problem within a reasonable time.

2. The valid inequalities can be used to reduce the search space while still

maintain the integer optimal solutions.

3. The candidate SOS can reduce the search space from the MIP branch and

bound Algorithm.

4. GA is the robustness learning methodology for the MIP branch and bound

algorithm.

5. This thesis presents the distinct MIP methods that consist of valid

inequalities and learning methodology.

6.2 Suggestions

Due to the nature of design problems, the fitness function of the quality of the solutions

during the genetic process can be computationally very demanding. Great efforts have

been made towards reducing the number of evaluations needed before the final solution

is reached.

Moreover, our approach can be further developed a possible perspective

direction for improvement an architectural layout design problem.

• Improve Architectural Layout Design Constraints

New constraints and objectives can be added to the model to improve

optimization behavior, better represent architectural criteria, and improve the quality of

layouts

 93

• Multiple Floors

The ability to apply an architectural layout design for a multi-level floor layout

is an important area since the modern high-rise building is comprised of a multi floor

design.

• Complex Shapes

 A more generalized unit component that can represent non-rectangular and non-

orthogonal shapes would be necessary to generalize this idea to handle a practical

architectural layout design problem.

• Parallel Computing

For the perspective views, over a medium-sized room (10-20 rooms), our

approach with the domain expert and the parallel computing should be adopted to

reduce the computational iterations and time.

 94

References

Balachandran M and Gero JS. Dimensioning of architectural floor plans under conflicting

objectives. Environment and Planning 1987;14:29-37.

Battle D.L., and Vose M.D. Isomorphisms of genetic algorithms. Paper presented at the

Foundations of Genetic Algorithms; 1990.

Baykan C and Fox M. Constraint satisfaction techniques for spatial planning. Intelligent CAD

Systems III, Practical Experience and Evaluation 1991.

Bloch CJ and Krishnamurti R. The counting of rectangular dissections. Environment and

Planning 1978;2:207-214.

Cagan J, Degentesh D and Yin S. A simulated annealing based algorithm using hierarchical

models for general three-dimentional component layout. Computer-Adied Design

1998;30(10):781-790.

Chen YH and Wang YZ. Genetic algorithms for optimized retriangulation in the context of

reverse engineering. Computer-Aided Design 1993;31(4):261-271.

Damski JC and Gero JS. An evolutionary approach to generating constraint-based space layout

topologies. In: Junge R (ed.). CAAD Future 1997;855–874.

De Jong and K.A. An analysis of the behavior of a class of genetic adaptive systems.

Unpublished Doctoral dissertation, University of Michigan, Ann Arbor 1975.

Deb K. Genetic Algorithm in Search and Optimization: The Technique and Applications.

Kanpur: Indian Institute of Technology; 1999.

Deb K and Gene AS. A robust optimal design technique for mechanicalcomponent design.

Evolutionary algorithms in engineering applications. Berlin: Springer 1997;497–514.

Frederick S H and Gerald J L. Introduction to mathematical programming. McGraw-Hill

Publishing Company; 1990.

Flemming U. Representation and generation of rectangular dissections. Annual ACM IEEE

Design Automation Conference 1978;15:138-144.

Flemming U. A generative expert system for the design of building layouts. Artificial

intelligence in engineering: design. New York: Elsevier; 1988.

Frazer J. Creative design and the generative evolutionary paradigm. In: Bentley PJ, Corne DW,

editors. Creative evolutionary systems. New York: Academic Press: 2002;253-274.

George LN and Laurence AW. Integer and combinatorial optimization. New York: A Wiley-

Interscience Publication; 1988.

Gero JS and Kazakov VA. Evolving design genes in space layout planning problems. Arificial

Intelligence in Engineering 1998;12(3):163–176.

 95

Gero JS. Design prototypes: a knowledge representation schema for design. AI Magazine

1990;11(4):26-36.

Goldberg DE. Genetic algorithms in search, optimization and machine learning. Massachusetts:

Addison-Wesley Pubblishing Company, Reading; 1989.

Hart W.E. and Belew R.K. Optimizing an arbitrary function is hard for the genetic algorithms.

Paper presented at the Proceedings of the Fourth International Conference on Genetic

Algorithms; 1991.

Hesser J. and Männer R. Towards an optimal mutation probability for genetic algorithms.

Paper presented at the Parallel Problem Solving from Nature-Proceedings of the first

workshop, PPSN1, Dortmund, Germany: Springer-Verlag, Berlin, Germany. 1991.

Homayouni H. A Survey of Computational Approaches to Space Layout Planning (1965-2000).

Computational Approaches to Space Layout Planning; 2006.

Honda K and Mizoguchi F. Constraint-based approach for automatic spatial layout planning.

11th Conference on Artificial Intelligence for Applications 1995;38.

Jeremy F S. Mathematical Programming Structures and Algorithms. A Wiley-Interscience

Publication 1979.

Jo JH and Gero JS. Space layout planning using an evolutionary approach. Artificial

Intelligence in Engineering 1998;12:146-162.

Keatruangkamala K and Sinapiromsaran K. Optimizing Architectural Design via Mixed Integer

Programming. Proceeding in CAADFutures 2005;11:175-184.

Keatruangkamala K and Sinapiromsaran, K. Heuristic cut for identifying the solution of the

architectural layout design optimization. Proceeding in the Second Graduate Congress

of Mathematics and Physical Science; 2006.

Koide T and Wakabayashi S. A timing-driven floorplanning algorithm with the Elmore delay

model for building block layout. Integration, the VLSI journal 1999;27:57-76.

Levin PH. Use of graphs to decide the optimum layout of building. Architect 1964;14:809-815.

Li SP, Frazer JH and Tang MX. A constraint based generative system for floor layouts.

2000;10:441-450.

Liggett RS and Mitchell WJ. Optimal space planning in practice. Computer Aided Design

1981;13(5):277–288.

Liggett RS. Designer-automated algorithm partnership: an interactivegraphic approach to

facility layout. Evaluating and predicting design performance, New York: Wiley

Interscience 1992;101–123.

Linderoth and Savelsbergh MWP. A computational study of search strategies for mixed integer

programming. INFORMS J. on Computing 1999;11:173-187.

 96

Lobo F. The Parameter-Less Genetic Algorithm: Rational and Automated Parameter Selection

for Simplified Genetic Algorithm Operation. Unpublished doctoral dissertation,

Universidade de Lisboa; 2000.

Medjdoub B and Yannou B. Topological enumeration heuristics in constraint-based space

layout planning. AI in Design’98, 1998;271–290.

Medjdoub B and Yannou B. Seperating topology and geometry in space planning. Computer-

Aided Design. 2000; 32:39-61.

Michalek J and Papalambros PY. Interactive layout design optimization. Engineering

Optimization 2002;34(5):461-484.

Michalek, J, Choudhary R and Papalambros PY. Architectural layout design optimization.

Engineering Optimization 2002; 34(5):485–501.

Mitchell WJ, Steadman JP and Liggett RS. Synthesis and optimization of small rectangular

floor plans. Environment and Planning B 1976; 3(1):37–70.

O’Sullivan B. Constraint-aided conceptual design. PhD thesis, Dept of Computer Science,

University College Cork, Ireland; 1999.

Pefferkorn GE. A Heuristic problem solving design system for equipment or furniture layouts.

Communications of the ACM 1975.

Pelikan M., Goldberg D. E. and Cant u-Paz E. Bayesian Optimization Algorithm, Population

Sizing and Convergence. Ilinois Genetic Algorithms Laboratory; 2001.

Romualdas B and Ina P. Optimization of architectural layout by the improved genetic

algorithm. Journal of Civil Engineering and Management 2005;11(1)13-21.

Schwarz A, et al. On the use of the automated building design system. Computer Aided Design

1994;26:747–762.

Schwarz A, Berry DM and Shaviv E. Representing and solving the automated building design

problem. Computer-Aided Design 1994;26(9):689-698.

Scott A and Donald H. Making Design Come Alive: Using Physically Based Modelling

Techniques in Space Layout Planning. CAADFutures 1999:245-262.

Simon HA. The structure of ill-structured problems. Artificial Intelligence 1973;4: 181-201.

Steadman P. Graph-theoretic representation of architectural arrangement. In The Architecture of

Form. L. London, New York, Melbourne: Cambridge Univ Press 1976;94-115.

Tsang K S, Man K F and Kwong S. Genetic Algorithms: Concepts and Applications. IEEE

Transaction on Industrial Electronic, 1996.

Willoughby T, Paterson W and Drummond G. Computer aided architectural planning.

Operational Research Quarterly 1970;21:91-98.

Yin S, Cagan J. An extended pattern search algorithm for three-dimensional component layout.

Transactions of the ASME 1997;122:102-108.

Appendix

 98

Appendix A

Practical study

To verify the robustness of algorithm, we experiment based on the studying of

two stories house. This study, is solved using the fixed position constraint, fixed border

constraint and unoccupied unit constraints for a non-circular AL-MIP+ model. This

study allows us to construct non-rectangular boundary shape which is motivated by the

staircase area. To exhibit the flexibility of these three constraints, a realistic two stories

house allocated on asymmetric boundary, has been solved using the non-circular AL-

MIP+ model. The initial specification of the requirements is shown in the following

information.

Two stories house study: room specifications

No. Room Width (m.) Height (m.) Connect

min max min max

1st Floor
1. Garage x 2 cars 5 6 5 7 2, 4, South
2. Living Rm. 5 8 5 8 1, 6
3. Dining Rm. 5 7 5 7 4, 6
4. Kitchen 5 6 5 7 1, 3
5. Staircase 4 4 3 3 6
6. Hall 1 4 6 4 6 2, 3, 5, 7
7. Bath 3 4 3 4 6

2nd Floor
8. Master bedroom 6 7 6 7 10, 11, East
9. Bedroom 2 5 7 5 7 10, 11
10. Hall 2 3 5 3 5 8, 9, 11, 12
11. Bath 3 4 3 4 8, 9, 10
12. Staircase 4 4 3 3 10

Remark: unit scale in meter.

Based on our non-circular AL-MIP+ model, the total computational time of

these two stories house are 54.468 seconds. The number of iterations and computational

time of the first floor are 179282 and 41.625 seconds while the iterations and

computational time of the second floor are 48369 and 12.843 seconds, respectively. The

optimal layout design is shown in the figure A.1.

 99

Figure A.1: The realistic of two stories house solved by the non-circular AL-MIP cooperate with three

adjustable constraints and the gray region presents unoccupied unit spaces

(a) the computational time of 1st floor plan is 41.625 seconds and

(b) the computational time of 2nd floor plan is 12.843 seconds.

 100

Appendix B

GAMS IDE model for AL-MIP+

This appendix section presents the GAMS IDE model for AL-MIP+ methodology.

$ontext

 GAMS IDE model for AL-MIP+
 Developed by Kamol Keatruangkamala

$Offtext

set ROOM;

ALIAS(ROOM,i);
ALIAS(ROOM,j);
ALIAS(ROOM,k);

set LINK(i,j)
CONNECT(i,j)

 CONNECT3(i,j,k)
fixABOVE(i,j)

 fixLEFT(i,j)
 fixRIGHT(a,b)
 fixBOTTOM(a,b);

PARAMETERS
 DELTA
 Panel_Width
 Panel_Height
 Wmin(i)
 Wmax(i)
 Hmin(i)
 Hmax(i);

PARAMETER WeightLeftCorner(i);
PARAMETERS WeightMinDistance
 WeightMaxArea;

VARIABLE z;
POSITIVE VARIABLES
 zx(i,j)
 zy(i,j)
 za(i);

POSITIVE VARIABLES
 x(i)
 y(i)
 w(i)
 h(i);
BINARY VARIABLES
 p(i,j)
 q(i,j)
 r(i);

 w.lo(i) = Wmin(i);
 w.up(i) = Wmax(i);
 h.lo(i) = Hmin(i);
 h.up(i) = Hmax(i);

EQUATIONS

 101

 obj_Min
 za_width(i)
 za_height(i)
 abs_plus_x(i,j)
 abs_minus_x(i,j)
 abs_plus_y(i,j)
 abs_minus_y(i,j)
 widthsize(i)
 heightsize(i)
 force_ij_left(i,j)
 force_ij_bottom(i,j)
 force_ij_right(i,j)
 force_ij_top(i,j)
 join_ij_left(i,j)
 join_ij_bottom(i,j)
 join_ij_right(i,j)
 join_ij_top(i,j)
 overlap_Up(i,j)
 overlap_Down(i,j)
 overlap_Left(i,j)
 overlap_Right(i,j)
 not10_a(i,j,k)
 not11_a(i,j,k)
 not00_a(i,j,k)
 not01_a(i,j,k)
 fixedABOVE(i,j)
 fixedLEFT(i,j)
 fixedRIGHT(a,b)
 fixedBOTTOM(a,b);

 obj_Min.. z =e= sum(i, WeightLeftCorner(i)*(x(i)+y(i)))
 + WeightMinDistance*sum(LINK(i,j), zx(i,j) + zy(i,j))
 - WeightMaxArea*sum(i, za(i));
 za_width(i).. za(i) =l= w(i);
 za_height(i).. za(i) =l= h(i);
 abs_plus_x(LINK(i,j)).. x(i) - x(j) =l= zx(i,j);
 abs_minus_x(LINK(i,j)).. x(j) - x(i) =l= zx(i,j);
 abs_plus_y(LINK(i,j)).. y(i) - y(j) =l= zy(i,j);
 abs_minus_y(LINK(i,j)).. y(j) - y(i) =l= zy(i,j);
 widthsize(i).. x(i) + w(i) =l= Panel_Width;
 heightsize(i).. y(i) + h(i) =l= Panel_Height;
 force_ij_left(LINK(i,j)).. x(i) + w(i) =l= x(j) + Panel_Width*(p(i,j) +q(i,j));
 force_ij_bottom(LINK(i,j)).. y(j) + h(j) =l= y(i) + Panel_Height*(1 +p(i,j) -q(i,j));
 force_ij_right(LINK(i,j)).. x(j) + w(j) =l= x(i) + Panel_Width*(1 -p(i,j) +q(i,j));
 force_ij_top(LINK(i,j)).. y(i) + h(i) =l= y(j) + Panel_Height*(2 -p(i,j) -q(i,j));
 join_ij_left(CONNECT(i,j)).. x(i) + w(i) =g= x(j) - Panel_Width*(p(i,j) -q(i,j));
 join_ij_bottom(CONNECT(i,j)).. y(j) + h(j) =g= y(i) - Panel_Height*(1 +p(i,j) -q(i,j));
 join_ij_right(CONNECT(i,j)).. x(j) + w(j) =g= x(i) - Panel_Width*(1 -p(i,j) +q(i,j));
 join_ij_top(CONNECT(i,j)).. y(i) + h(i) =g= y(j) - Panel_Height*(2 -p(i,j) -q(i,j));
 overlap_Up(CONNECT(i,j)).. 0 =g= y(i) + DELTA - y(j) - h(j) - Panel_Height*(q(i,j));
 overlap_Down(CONNECT(i,j)).. 0 =g= y(j) + DELTA - y(i) - h(i) - Panel_Height*(q(i,j));
 overlap_Left(CONNECT(i,j)).. 0 =g= x(i) + DELTA - x(j) - w(j) - Panel_Width*(1 -q(i,j));
 overlap_Right(CONNECT(i,j)).. 0 =g= x(j) + DELTA - x(i) - w(i) - Panel_Width*(1 -q(i,j));
 not10_a(CONNECT3(i,j,k)).. p(i,k) -q(i,k) =l= Panel_width*(p(i,j) +q(i,j));
 not11_a(CONNECT3(i,j,k)).. p(i,k) +q(i,k)-1 =l= Panel_Width*(1 +p(i,j) -q(i,j));
 not00_a(CONNECT3(i,j,k)).. 1 -p(i,k) -q(i,k) =l= Panel_width*(1 -p(i,j) +q(i,j));
 not01_a(CONNECT3(i,j,k)).. q(i,k) -p(i,k) =l= Panel_Width*(2 -p(i,j) -q(i,j));
 fixedABOVE(fixABOVE(i,j)).. y(i) =l= y(j);
 fixedLEFT(fixLEFT(i,j)).. x(i) =l= x(j);
 fixedRight(fixRIGHT(a,b)).. x(a) + w(a) =g= x(b) + w(b);
 fixedBOTTOM(fixBOTTOM(a,b)).. y(a) + h(a) =g= y(b) + h(b);

MODEL ALDO / ALL /;
SOLVE ALDO USING MIP MINIMIZING z;
DISPLAY x.l, y.l, w.l, h.l, p.l, q.l, Wmin, Wmax, Hmin, Hmax;

 102

Biography

Name: Kamol Keatruangkamala

Email: kamolkeat@hotmail.com

Educations

• 2007 Ph.d.,candidate (Computer Science), Faculty of Science,

Chulalongkorn University, Bangkok, Thailand

• 2003 Master of Economic. (M.Econ), Faculty of Economic,

National Institute of Development Administration, Bangkok, Thailand

• 2000 Master of Archtecture. (M.Arch), Faculty of Architecture,

Chulalongkorn University, Bangkok, Thailand

• 1997 Bachelor of Architecture. (B.Arch), Faculty of Architecture,

King Mongkut's Institute of Technology Lardkrabang, Bangkok,

Thailand

Awards and Recognitions

• 2003 International conference committee of the 8th CAADRIA’2003

(CAADRIA: Computer Aided-Architectural Design Research in Asia)

• 2002 Member in council of Thai architects

• 2001 Program committee in Computer Aided-Architectural Design,

 Faculty of architecture, Rangsit University, Thailand

• 1992 Best military student Award from Territorial Defend (AE 1992).

Publications:

• Keatruangkamala K, Sinapiromsaran K. Optimizing Architectural Design via

Mixed Integer Programming. Proceeding in CAADFutures 2005;11:175-184.

• Keatruangkamala K, Sinapiromsaran, K. Heuristic cut for identifying the

solution of the architectural layout design optimization. Proceeding in the

Second Graduate Congress of Mathematics and Physical Science; 2006.

• Keatruangkamala K, Sinapiromsaran, K. Strong Valid Inequality Constraints for

Architectural Layout Design. Proceeding in the Second Graduate Congress of

Mathematics and Physical Science; 2007.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract(Thai)
	Abstract(English)
	Acknowledgements
	Contents
	CHAPTER I Introduction
	1.1 Background and Motivation
	1.2 Contributions
	1.3 Dissertation Organization

	CHAPTER II Theoretical Background
	2.1 Fundamentals of a Mathematical Programming
	2.2 Fundamentals of Genetic Algorithm

	CHAPTER III Problem Methodologies
	3.1 Architectural Layout Design Optimization Model
	3.2 Valid Inequality Optimization Model

	CHAPTER IV Machine Learning Using Genetic Algorithms
	4.1 Learning Special Order Set
	4.2 Genetic Algorithms Methods

	CHAPTER V Experimental Results
	5.1 Experimental Design
	5.2 Genetic Algorithm Parameters and Design
	5.3 MIP, Valid Inequalities and Learning Methodology Results

	CHAPTER VI Conclusions and Suggestions
	6.1 Conclusions
	6.2 Suggestions

	References
	Appendix
	Vita

