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CHAPTER I 

Introduction 
 
 
1.1 Background and Motivation 
Architectural layout design is one of the most important and complex parts of any 

architectural design process. In order to design a layout that responds to most of its 

related requirements, architects spend much time and effort on studying specific 

layouts and all existing relationships within rooms and among the interior and exterior 

spaces. Besides the artistic aspect of an architectural design, there is a substantial 

logical process behind the layout design phase. Architects cannot avoid having a large 

number of trial and error to reach that step. The combinatorial complexity of most 

architectural layout design problems also makes it practically impossible to obtain a 

systematic knowledge for all possible solutions. 

Architectural layout design is an initial phase of a design process during which 

the architect takes the specification of spatial objects and generates numerous feasible 

drafts. It is the most critical phase which influents the final designed decision. This 

architectural layout design can be interpreted as solving a combinatorial problem. By 

which, solution methodologies for architectural layout design present the most 

comprehensive challenges in the area of architectural design computation due to the 

arrangement of all possible connections of n connected rooms. This combinatorial 

problem is known to be NP-hard (Michalek et al., 2002, Russell et al., 1999), see 

figure. 1.1.  

 

 
Figure 1.1: Conceptually, a huge possible placements can adjusted in a variety of ways. 
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As noted by Yoon (1992), the architectural layout design problem tends to be 

ill-defined and over-constrained. Simon (1973) identified the ill-defined behavior of 

the architectural layout design problem as the incomplete formulation to be used to 

solve in the initial try. Resolving ill-defined problem is a process of searching for and 

refining a set of design constraints. Moreover, the over-constrained problem is due to 

many possible solutions and repeated constraints (Balachandran and Gero, 1987). 

Hence, an architectural layout design problem needs a method of providing an 

optimal solution from a large set of possible solutions, and a method of allowing 

architects to modify the set of design constraints to continually refine the problem 

definition (Arvin and House, 2000). However, Tsang (1995) showed that there is no a 

universal best algorithm that certain algorithms may be preferred under certain 

circumstances. 

Many researchers seek to automate the process of architectural layout design 

problem using several representations and solution techniques. Nevertheless, 

architectural layout design problem is not easily dealt with. The Interactive Layout 

Design Optimization (Michalek and Papalambros, 2002) reported a couple of days to 

solve the problem of ten rooms which is impractical to incorporate in the CAD 

system.  

From the past decades, many previous attempts have been used to deal with 

this problem such as the wall representation (Flemming, 1978, Simon, 1973), non-

linear programming (Imam et al, 1989, Medjdoub et al., Tang et al., 2000) and the 

evolutionary method (Damski et al., 1997, Michalek et al., 2002, Gero et al., 1998). 

There are various difficulties with each approach. The wall representation uses the 

special data structure to generate the linear programming subproblem which requires 

a special algorithm. The nonlinear programming approach guarantees only local 

optimal (Cagan el at., 1998, Michalek el at., 2002). The evolutionary method can only 

guarantee the convergence with a long running time (Jo and Gero, 1998). 

The structural representation (Bloch et al., 1978, Gero, 1990, Honda et 

al.,1995, Schwarz et al., 1994) of a spatial requirement is needed to form the basic 

component of a physical design problem to be automatically solved by computer. One 

representation used a grid system, see figure 1.2(a). This representation is inherently 

discrete and multi-modal. Due to the combinatorial configurations, it cannot be solved 

exhaustively for reasonable-sized layout. The grid allocation approach is a successful 

approach for allocating a predefined space into rooms or activities. This approach can 
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be used to redistribute activities in an office building during a reorganization. Liggett 

and Mitchell (1981) used a constructive placement strategy on the grid system where 

a room space is allocated one at a time. Then the iterative improvement based on the 

objective function has been used to improve the current solution.  

Another structural representation is that of the Flemming wall (Flemming, 

1978, Simon, 1973) identified the location of walls in the space to partition a layout 

into rectangular components, see figure 1.2(b). This structural representation has an 

advantage over the grid-based layout by limiting nonrectangular shapes of space 

patterns which help reduce the computational time. 

 

 
Figure 1.2: (a) Grid system and (b) Dissections based on wall-representation. 

 

The primary structural representation used in this thesis is based on a 

mathematical programming similar to the work from Bloch (1978), et. al. using a 

coordinated system. Michalek, Choudhary and Papalambros (2002) constructed an 

optimization model of the quantifiable aspects that determines the best location and 

size of a group of interrelated rectangular spaces using a middle coordinate (x, y) of 

each room. This allows an optimization algorithm to alter a position of a room 

independently to achieve the optimal cost satisfying all architectural design 

requirements. 

In this thesis, we develop the Mixed Integer Programming (MIP) model 

(Grorge, 1988, Linderoth et al., 1999, Russell et al., 1999) to determine the optimal 

multiobjective architectural layout design called AL-MIP. The advantage of MIP 

model presents an easy adaptability for other architectural requirements. This AL-

MIP has been formulated to reduce the search space. Also, we narrowed the search 

space by allowing architect to specify additional reduction constraints such as the 

fixed room location, the unused grid cells, the fixed border location and the favorable 
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choice of the nearest room to the top left corner. These formulations allow architects 

to design a layout beyond the rectangular boundary (Scott et al., 1999). To deal with a 

medium-sized problem (5-10 rooms), we resolve the problem by adding two valid 

inequalities based on the mathematical programming technique called AL-MIP+. 

These two valid inequalities consist of a non-circular connectivity constraint and an 

advised configuration constraint. The non-circular connectivity constraints utilize two 

binary variables pij and qij from the AL-MIP which causes the reduction of the 

feasible region while the advised configuration constraints utilize a mathematical 

inequalities based on the architect’s preference to suggest a room configuration in 

North, South, East and West directions. AL-MIP+ abandons alternative solutions 

while maintain the final objective value by incorporating the choice of the first room 

to be placed near the top-left corner in the objective function. These two inequalities 

significantly present the reduction of computational iterations and time. In order to 

tackle the medium-sized problem efficiently, the machine learning has been adopted 

to learn a Special Order Set (SOS) in the branch and bound algorithm, called AL-

MIP+GA. The robustness learning methodology Genetic Algorithm (GA) is applied 

to SOS variables of the branch and bound algorithm for finding the better candidate 

solution which will be stored  into a computer as a preprocess of the branching node 

in the search tree. Therefore, the computational iterations and time are drastically 

reduced for the medium-sized problem of 10 rooms that can be solved within a few 

minutes. 

To practically apply AL-MIP, AL-MIP+ and AL-MIP+GA model, this thesis 

has been developed the software named ALDO (Architectural Layout Design 

Optimization) to help an architect identifying the layout requirements graphically 

(Keatruangkamala and Sinapiromsaran, 2005), see figure 1.3. This software utilizes 

the graphic user interface (GUI) running on the Windows operating system and 

automatically solving the architectural layout instance. Furthermore, architect can 

request a drawing presentation of the global optimal solution or save it as a DXF 

format file to use with other CAD software. 
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(a)     (b) 

 
 

           
(c)     (d) 

 
Figure 1.3: The initial software interface (a) for diagram input, (b) and (c) for the text and 

graphical output and (d) the export DXF file from CAD software 

 
1.2 Contributions 
 
The following results are expected from this research: 

• To reduce the computational time using the valid inequalities. 

• To reduce the computational time of the branch and bound using the Special 

Order Set (SOS) variables in improving the MIP solution time. 
 

The results will contribute to the derivation of proposes of improving the 

computational iterations and time for the architectural layout design optimization 

problem. 

 
 
1.3 Dissertation Organization 
 

The organization of this dissertation is as follows. Chapter II reviews the 

theoretical backgrounds and related works. Chapter III presents an overview of the 

proposed model based on the MIP methodology. Chapter IV clarifies the concepts 

behind the proposed learning SOS variables using the GA. An experiment is provided 

in chapter V. Finally, some concluding remarks and suggestions are summarized in 

chapter VI. 



CHAPTER II 

Theoretical Background 

 
This chapter provides summary of important theoretical backgrounds that are required 

in this thesis. It contains two main sections, the mathematical programming model and 

the machine learning algorithm. 

First, we introduce the Mixed Integer Programming (MIP) model based on the 

linear programming (LP) model to solve an architectural layout design problem. 

Moreover, we also introduce the valid inequality constraints that can be used to reduce 

the feasible area of the problem. 

Second, we describe the machine learning algorithm using Genetic Algorithm 

(GA) which helps to reduce the computational iterations and time. 

 

2.1 Fundamentals of a Mathematical Programming 
 

2.1.1 Linear Programming 

 

LP model is concerned with the optimization (minimization or maximization) of 

linear function while satisfying a set of linear equality or inequality constraints or 

restrictions. The LP model solved by Simplex algorithm was first conceived by George 

B. Dantzig around 1947 while he was working as a mathematical advisor to the United 

States Air Force Controller on developing a mechanized planning tool for a time-staged 

deployment, training, and logistical supply program. Although the soviet mathematician 

and economist L. V. Kantorovich formulated and solved a problem of this type dealing 

with organization and planning in 1939, his work remained unknown until 1959. Hence 

concept of the general class of LP model solved by Simplex algorithm is usually 

credited to Dantzig. 

 Nevertheless, LP model is widely utilized with the use or allocation of limited 

resources as a labor, a material and a capital in the best possible manner so that cost is 

minimized/maximized. An LP model is an optimization problem in which the objective 

function and constraints are expressed as linear function based on the canonical form. 
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• The Canonical Form 

There are various forms to represent an LP model. In this thesis, we consider the 

canonical form with m constraints and n nonnegative constraints 

 

 maximize  c1x1   +  c2x2  + … + cnxn 

 subject to  a11x1 +  a12x2 + … + a1nxn < b1   (2.1) 

    a21x1 +  a22x2 + … + a2nxn < b2 

      : 

    am1x1 + am2x2 + … + amnxn < bm 

    x1, x2, … , xn  > 0 

 

where aij, for i = 1, 2, …, m and j = 1, 2, …, n are the coefficients of the constraints. c1, 

c2, …, cn are the coefficients of the objective function for nonnegative unknown 

(decision) variables, x1, x2, … , xn,  respectively. b1, b2, … , bm are the right-side 

constraints. 

 

 In matrix-vector notation, the above canonical form can be written in compact 

form as: 

 maximize   cTx 

 subject to  Ax   <   b      (2.2) 

       x   >   0 

 

where A is an m × n matrix called the coefficient matrix, c is an n × 1 column 

vector called the cost vector, x is an n × 1 column vector called the decision vector and 

b is an m × 1 column vector called the right-side vector. 

 In general, we can convert any LP to the canonical form. Note that the canonical 

form requires maximizing the objective function. For the minimized optimization 

direction, we multiply the objective function by -1 to reverse its direction, changing the 

minimizing problem to the maximizing problem. The optimal solutions of both the 

maximization problem and the minimization problem are the same, while their optimal 

values will differ by a negative sign. 

 

- maximize(-cTx)  =  minimize(cTx)    (2.3) 
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In the next part, we will introduce some terminologies for finding the solution of 

the LP model. 

 

• Feasible Region, Optimal Solution and Extreme Point 

For any linear programming model, we are interested in determining the optimal 

value for the objective function.  

 

Definition 1: (Feasible Region) 

 Given an LP in its canonical form (2.2), the feasible region F is the set of all 

solutions that satisfy all the constraints of the LP. 

 

   F =  { x ∈ Rn | Ax < b, x > 0 } .    (2.4) 

 

A solution in the feasible region of the LP is said to be the feasible solution. 

Suppose that there are feasible solutions, the goal of the LP is to find the optimal 

feasible solution, as measured by the value of the objective function. 

 

Definition 2: (Optimal Solution) 

Consider an LP model if the feasible region is not empty, an optimal solution is 

a feasible solution that has the largest value of the objective function for the 

maximization problem. Let x* be an optimal solution to the LP model. 

 

   cTx*  >  cTx , ∀x ∈ F      (2.5)
   
 

The value of the objective function corresponding to an optimal solution is called the 

optimal value.  

 

Definition 3: (Extreme Point) 

A point x in a convex set S is called an extreme point of S, if x cannot be 

represented as strict convex combination of two district points in S. In order words, if x 

= λ x1 + (1 - λ)x2 with λ ∈ (0,1) and x1, x2  ∈ S, then x = x1 = x2. 

 

Any LP in its canonical form (2.2) must be in one of the following four cases: 
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 1.  LP has the unique optimal solution. 

       This unique optimal solution must be an extreme point. 

2. LP has alternative optimal solutions. 

If there are two extreme points x*1 and x*2, then a convex combination 

of x*1 and x*2 is also optimal. 

3. LP is unbounded. 

For a maximization problem, the feasible region is unbounded and the 

plane cTx = z can be increased along the unbounded direction of the feasible 

region. In this case, the objective value is unbounded and no optimal 

solution exists. 

4. LP has an empty feasible region. 

In this case, the system of equations and/or inequalities defining the 

feasible region is inconsistent. This means there is no point satisfying all 

constraints of the LP.  

  

The following example illustrates the two dimensional LP problem solved by 

simplex method. All extreme points are illustrated in figure 2.1. 
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Example 2.1. Consider the following LP problem: 

  maximize  40x1  +  36x2 

  subject to              x1 < 8 

                 x2 < 10 

     5x1 +  3x2 < 45 

      x1 > 0 

      x2 > 0 

 

The intersection of five half spaces gives the feasible region as follow: 

 

  F = { x ∈ R2|  x1 < 8, x2 < 10, 5x1 + 3x2 < 45, x1 > 0, x2 > 0 } 

Clearly the set is a convex set and its extreme points are given as:  

 

 
Figure 2.1: Feasible region (F) and extreme points (a, b, c, d and e). 

 

 After solving this LP problem, we get the unique optimal solution at x1 = 3, x2 = 

10 and the extreme point is d. In the next section, we will describe the MIP which is the 

linear programming problem with integrality constraints. 

 

 

d e 

a b 

c 

5 

5 10 15 

F

10 

15 

x2 

x1 

The optimal solution 
 

  3 
d   =     
 10 

 
           0                   8          8        3           0 
a  =        ,   b  =   ,    c  =     ,   d  =             , and  e  =     
           0                       0        5/3       10          10 

Objective 
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2.1.2 Mixed Integer Programming 

 
From the previous section, an LP model deals with a linear objective function 

subject to a set of linear constraints. However, in numerous applications, it may be 

necessary to specify that certain variables assume to have integral values. These 

problems can be solved using the branch and bound algorithm which will be described 

in details later. 

An MIP is an optimization problem where some or all variables are restricted to 

take only integral values. General integer and MIP is NP-hard, even today’s state of the 

art commercial LP solvers have difficulties solving MIP formulations representing 

engineering or business optimization models containing more than a few hundred 

integer variables. 

Typically, the integer LP model (George and Laurence, 1988) is simply a linear 

program (LP) in which all variables are restricted to integral values. Nevertheless, we 

will refer to this problem simply as an LP model because the term linear is seldom used 

except to contrast a problem with an integer nonlinear programming problem. If all 

variables must assume only integral values, it is called a pure integer programming 

problem. While some variables are restricted to integral values and others remain 

continuous, then it refers as an MIP problem. 

 
(IP)   maximize     cTx                 (MIP)   maximize      cTx  + dTy 

         subject to:    Ax < b          subject to:     Ax + Dy < b 

                         x > 0,                 x > 0, 

                            x is integer               x is integer 

                   y > 0 

 
where x and y are vectors of design variables, A and D are matrices. 

 

Generally, an MIP model is an optimization model that can be stated 

mathematically as follows: 
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where I is the set of integer variables, C is the set of continuous variables, and N = I  U 

C. The lower and upper bounds lj and uj may take on the values of plus or minus 

infinity. Thus, an MIP model is an LP model plus some integrality restriction on some 

or all variables. 

 
2.1.3 Valid Inequality Constraints 
 

Related to our research of MIP model, we aim to reduce the computational 

iterations and time. This section, we utilize a valid inequality for the constraint set of 

AL-MIP model. The construction of families of valid inequalities is more of an art than 

a formal methodology (George and Laurence, 1988). To describe an idea of valid 

inequalities, the following statements have been shown in details based on a given 

formulation P.  

 

The valid inequalities definition: 

The inequality denoted by (π, π0) is called a valid inequality for P if  πx ≤ π0,     

∀x ∈ P.  

Note that, if (π, π0) is a valid inequality. Then, the formulation P lies in the half-

space {x ∈ Rn : πx ≤ π0} and max{πx : x ∈ P} ≤ π0. 

or we can describe another definition with the face of P as follow. 

 

If (π, π0) is a valid inequality for the formulation P and F = {x ∈ P : πx = π0},  

F is called a face of P and we say that (π, π0) represents or defines F. 

 

Note that, a face is said to be proper if F ≠ ∅, and F ≠ P. Then, the face 

represented by (π, π0) is nonempty and max{πx : x ∈ P} = π0. and if the face F is 

maximize  zMIP = ∑ cj xj + ∑ cj xj 
   

                  j∈I       j∈C 
 

subject to  ∑aij xj +  ∑aij xj   <  bi , i =  1, 
…, m  (2.6) 
   

                 j∈I       j∈C 
 

 l j  <  xj  <  uj , j  ∈ N 

 xj  ∈ Z  , j  ∈ I 
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nonempty, we say it supports P. The set of optimal solutions to an LP is always a face 

of the feasible region. 

In order to describe an idea of valid inequalities, the following figure illustrates 

a smaller feasible region from the valid inequalities. 
 

 
Figure 2.2: Valid inequalities cut off the non-integral feasible region. 

 

2.1.4 Branch and Bound Algorithm 

In this section, the classical and the most widely used approach for solving MIP 

model is the branch and bound algorithm which employs an LP model based relaxations 

of the MIP for exploring the solution spaces. The implementation of the branch and 

bound algorithm can be viewed as a tree search, where the problem at the root node of 

the tree is the original MIP. The new nodes are formed by branching on an existing 

node for which the optimal solution of the relaxation is fractional. 
 
• Theory of Branch and Bound Algorithm 
 

 Branch and bound algorithm is a method guaranteed to find a global optimal 

solution to the MIP problem (Jeremy F S, 1979).  The basic idea of the branch and 

bound algorithm is to partition a given problem into a number of subproblems. This 

process of partitioning is usually called branching and its purpose is to establish 

subproblems that are easier to solve than the original problem. Branching is generally 

represented in terms of a tree structure, as in figure 2.3 where each node i of the search 

tree represents a subproblem Pi while c is an integral value and xi is a branching order 

called a Special Order Set (SOS). The searching tree may have many levels, with the 

x1 

x2

Valid inequalities 
πx < π0 

objective 

Smaller feasible 
region 
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nodes at the bottom of the branching being referred to as pendant nodes. The solution 

process involved a systematic evaluation of the pendant nodes of the search tree, the 

evaluation process consists of three key components: branching, computing bounds and 

fathoming. To derive the optimal solution to a given problem P0, the set of subproblems 

of P0 must represent all of P0. For simplicity, let {Pi} be the set of feasible integer 

solution to a problem Pi. Then, if P0 is partitioned into P1, P2, …., Pn, it must be true 

that 

 

{P0} = {P1} U {P2} U … U {Pn} 
 

Also, it is generally more efficient to also choose subproblems P1, P2, … Pn 

such that {Pi} ∩ {Pj} = φ for all i  j where ci is an integral value and xi is an order 

variable from i to n. This is especially true when it is necessary to enumerate all 

solutions to the problem, because some solutions would be enumerated multiple times if 

the feasible regions of some subproblems have a nonempty intersection.  

To help understand the branching process, consider an integer program P0 with 

n variables, and suppose that a particular variable, say xk must take on the integral value 

c1, c2, c3, … , cn that the subproblems are created, each of which corresponds to fixing 

the variables xk at one of its possible values. Because xk is now fixed in value, each of 

the subproblems involves only n - 1 variables, see figure 2.3. 
 

 
Figure 2.3: Subproblems and branching strategies. 
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Note, further, that during the branching process, we are essentially adding 

restrictions to a particular problem to form the resulting subproblems. Consequently, 

the feasible region of a subproblem is a subset of the feasible region of the parent 

problem. Thus, in the case of a maximization problem, the optimal objective value 

associated with a subproblem is always less than or equal to the optimal objective value 

associated with the parent problem. Therefore, as we descent in the search tree, the 

optimal objective values associated with each subproblem decrease for a maximization 

problem. In order to describe the branch and bound algorithm, the three key 

components of evaluation process will be described as follows. 

 
• Computing Bound 
 

Suppose that we know a feasible integer solution to a particular maximization 

integer problem. Then the objective value provided by this solution is a lower bound for 

the optimal objective value of the MIP. We assure of obtaining an optimal objective 

which design the lower bound by zL. If several feasible integer solutions are known, zL 

will correspond to the largest known objective value. That zL is the lower bound and the 

integer solution corresponding to this value is called the incumbent solution, because it 

is the best known integer solution. 

 The purpose of computing upper bounds (in a maximization problem) 

determines the optimal solution at a node without actually solving the integer program 

at the node. This is usually done by solving the LP relaxation. Consider an integer 

subproblem Pi associated with the pendant node i. Let z denote the optimal objective 

value associated with subproblem Pi. That is, z corresponds to an optimal integer 

solution of Pi.  To determine, we are interested in finding an upper bound for z that can 

be readily computed. Consider solving the LP relaxation of subproblem Pi, and let z
_
 

denote the optimal objective value of the LP relaxation. Clearly, z
_
 > z the feasible 

region of the integer program is a subset of the feasible region. 

 Suppose that z
_
 < zL. Then, z < z

_
 < zL and subproblem Pi does not need to be 

considered further because it will never yield a solution any better than the current best 

integer solution. This process of eliminating a subproblem Pi from further 
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considerations is referred to as fathoming. However, if z
_
 > zL, then a conclusion can not 

be reached and further branching is needed. 
 
• Fathoming 
 

During the branch and bound process, an attempt is made to resolve each of the 

subproblems corresponding to the pendant nodes of the search tree. Once all of the 

subproblems associated with the pendant nodes are solved, then the problem is solved. 

A subproblem can be eliminated from further consideration in one of the following 

three ways: 

 
1)  The subproblems yield an optimal integer solution. In this case, we update ZL 

and the incumbent solution if necessary and continue the node-selection process. 

2)  It can be shown that the optimal solution value of the subproblem is no better 

than the best integer solution found thus far. This is usually done by computing 

a bound on the optimal integer objective value by solving the LP relaxation. 

This bound is then compared with the objective value of the incumbent solution. 

3)  The subproblem is infeasible. 

 
However, this is not possible to fathom a given pendant node, the subproblem 

associated with that node is again partitioned into a smaller subproblem by branching in 

some prescribed manner. The process is then repeated until all pendant nodes have been 

fathomed. 

 

• Search Strategies 
 

Branching also involves choosing the next subproblem (pendant node) to 

examine. There are several branching strategies for choosing the next pendant node, 

with the most common being depth-first search and best-bound search. In each of these 

strategies, the pendant nodes are placed in a list according to measure of importance. If 

the current node under examination is fathomed, then the next node in the list is 

selected. If the examination of the current node is complete and it can not be fathomed, 

the current subproblem is partitioned into additional subproblems that are then added to 

the list according to the branching strategy being used. A new node is then selected and 

the process is repeated until the list of available pendant nodes is empty. 
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 The solution of the LP relaxation at each node generates a bound on the optimal 

integer solution that can be derived from that node. In the best bound search, the next 

subproblem chosen is simply the one with the best bound. That is, for a maximization 

problem, we would branch next on the node with the largest upper bound. The rationale 

for branching in this way is to attempt to generate an integer solution early in the 

branching process. This incumbent solution then could be used to fathom nodes with 

smaller upper bounds. 

 Depth-first search is also called last-in-first-out (LIFO). Last-in-first-out refers 

to the strategy for placing nodes in and selecting nodes from the list of pendant nodes. 

Using the depth-first strategy, we always choose the subproblem (node) that was placed 

in the list most recently. We essentially work down one side of the search tree first and 

the backtrack once a node is fathomed, because we can be used more efficiently. This is 

a result of subproblems being created by adding restrictions to the parent problem. 

 

 

2.2 Fundamentals of the Genetic Algorithm 

 
2.2.1 Theory of Genetic Algorithm 
 

This section describes the conceptual model of the Genetic Algorithms (GA) 

used in this thesis. It starts with a basic form of GA along with its implementation. 

Then, the fundamental theory of GA and its operators are discussed.  

GA is classified as one of the evolutionary computation algorithms which refer 

to a method that uses some forms of evolution as a major part of the process. Original 

GA was introduced in 1975 by John Holland (1992) but evolution-based computation 

approaches have been studied earlier than that period.  

 

• Genetic Algorithms 

GA was first proposed by John Holland at the University of Michigan in 1973. 

He and his students investigated and proved that GA is a significant contribution for 

scientific and engineering application. Since then, the outputs of researches in this field 

have grown rapidly. GA is not a technique that requires the use of derivatives. The 

obtained optima are evolved from generation to generation without a mathematical 

formulation such as the traditional gradient type of optimizing procedure. Gradient 
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descent which calculates the slope of error surface at the current position works well 

when the error surface is relatively smooth, with few local minima. Nevertheless, most 

real world data has the distorted error surface by noise. The error surface would prove 

difficult for gradient descent because of the local minima. GA is less sensitive to local 

minima because it constitutes a parallel search of the solution space, as opposed to a 

point by point search. 

Therefore, GA is usually applied to optimization problems that are difficult to 

solve or cannot be solved by a mathematical formulation. It is also used to resolved NP-

hard and NP-complete such as traveling saleman problem (TSP), scheduling and design 

problems. It performs searching throughout the solution space to find the near optimal 

answer. 

 

• Genetic Algorithm Background 

 GA is a technique imitating biological process of natural selection (Darwin’s 

rule) by which only good or fit being survive (Tsang et al., 1996). The theory of Charles 

Dawin may be summarized as follows. (a) The individuals of a species show variation. 

(b) In general, more offsprings are produced than needed to replace their parents. (c) 

Populations cannot expand indefinitely and, on average, population sizes remain stable. 

(d) There must be competition for survival and (e) therefore, the best adapted variants 

(the fitness) survive. 

GA uses a direct similarity of natural behavior following Darwin’s theory. 

Above all, the problem to be solved by GA must be first encoded into gene. There is no 

uniform encoding scheme for every problem. The encoding scheme varies from one 

problem to another problem. The appropriate encoding for the problem has to be 

devised. The structure of GA is illustrated in figure 2.4. 
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Figure 2.4: Structure of Genetic Algorithms. 

 

At the beginning, a set of the first generation of gene population is randomly 

produced. We also evaluate their fitness as different beings possess unequal capability 

to survive. After that, the genes in the set are randomly selected to produce the next 

generation genes with the high fitness cost. The genes with low fitness cost are 

eliminated. The producing process continues until the number of generation reaches the 

specified value or there is no new gene to be produced. The set of new genes is 

generated by three main gene operations, which are mutation, crossover and inversion. 

Moreover, the conditions in the while loop depend on the problems to be solved. For 

example, the condition for the traveling saleman problem is the minimum total traveling 

distance. Variable t counts the number of generations whose maximum value is denoted 

by a constant N. 

 

2.2.2 Principal Factors of Genetic Algorithm 

The performance of the GA is controlled by the following factors. 
 

• Encoding Scheme 

 Encoding scheme is referred to as genes of a chromosome which can be 

commonly structured by various ways such as string, binary string, gray code and 

 

Standard Genetic Algorithm() 

1. t = 0 

2. Generate initial population (valid genes) 

3. Calculate fitness values of each gene. 

4. While the conditions are not satisfied and t < N do 

  (a) t  =  t +1 

  (b) Select parents by random. 

  (c) Recombine the population by crossover  

and mutation operations. 

  (d) Calculate fitness values of valid child genes. 

  (e) Select the new population from the old 

   population and the child population. 
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floating point. Generally, the binary scheme is traditionally used in GA but not 

appreciated in some examples such as the problem concerning many variables with 

large domain. Another scheme is the gray code which is slightly modified from the 

binary coding. Note that the gray coding has the property that any two points next to 

each other in the problem space differ by one bit only. By analogy with genetics, the 

values of the variables are called the phenotype and the coding is called the genotype. 

Four different coding have been implemented as follows. 

 

1) A binary coding: each variable is coded in a substring of bits whose number 

is related to the number of alleles that the variable could take. 
 

Table 2.1: Example of binary coding: construction of a chromosome (4 design variables). 

 

 

 

 

 

 

The chromosome of an individual is then constructed by concatenating the 

substrings Si corresponding to each variable xi, see figure 2.5. 

 
 

Figure 2.5: Example of chromosome for a four-variable individual with binary coding. 

 

2) A Gray binary coding: the binary representation as described above is 

widely used in the GA community, but it has some drawbacks. Indeed, it is commonly 

accepted that a coding should reflect as closely as possible the behavior of the variables. 

For example, a small change in the value of the variable should lead to a small 

modification of the genotype. This is not systematically the case in binary coding, 

where subsequent alleles may have completely different chromosomes. Therefore, the 

Variables Types of 
variables 

Xi 
(variation domain of Xi) 

Number of 
Alleles 

Substring 
size 

x1 Continuous [0,10] 1024 (210) 10 

x2 Continuous [0,10] 1024 (210) 10 

x3 Discrete {10; 12.5; 15; 17.5} 4 (22) 2 

x4 Integer {0;1} 4 (21) 1 



21

Gray coding has been introduced, and is built in such a way that two subsequent alleles 

differ only from one bit, see figure 2.6 for a 3-bit variable. 

 

 

 

 

 

 

 
 

Figure 2.6: Binary and Gray coding for a 3-bit variable. 

 

3. A fixed-point representation: this coding is based on a decimal 

representation. Each division of the chromosome corresponds to one figure, and the 

place of the decimal point is fixed. This is illustrated in Fig. 2.7 for a 2-variable 

individual. 

 
Figure 2.7: Example of chromosome for a four-variable individual with binary coding. 

 

4) A real coding: when there are only continuous variables, a real coding is 

often preferred, because it is very close to the real search space. In this representation, 

each individual is thus coded as a vector of real values. 

 

• Fitness Function 

 Fitness function is the link between the GA and the problem to be solved. It is 

one of the most significant elements to assess the GA performance. The value of the 

fitness function is calculated for an individual of population and fitness value is settled 

on its basis. The interaction between a chromosome and a fitness function provides a 

measure of its fitness that is used when carrying out reproduction. Its fitness is 

Alleles Binary coding Gray coding 

1 
2 
3 
4 
5 
6 
7 
8 

000 
001 
010 
011 
100 
101 
110 
111 

000 
001 
011 
010 
110 
111 
101 
100 
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supposed to be proportional to the utility or ability of the individual which that 

chromosome represents. 
 

• Crossover 

 In nature, crossover occurs when two parents exchange parts of their 

corresponding chromosome. In  GA, the crossover recombines the genetic material in 

two parent chromosomes to make two children. This is called by John Holland “one-

point crossover”. For the one-point crossover, two children are constructed by inverting 

the genes of their parents from the (randomly determined) crossover site, see figure 

2.8(a). 

In some situation, using one-point crossover is inefficient. A multipoint 

crossover can be used to overcome this problem. An example is demonstrated in figure 

2.8(b) where multiple crossover points are randomly selected. 

 

 
(a) 

 

 
(b) 

 

Figure 2.8: (a) Example of one-point crossover and (b) example of multiple-point crossover. 
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Another operator is called “uniform crossover” which is similar to multipoint 

crossover. But it needs a randomly generated crossover template which is the pattern of 

crossover point. There is an example in figure 2.9. The length of string 0-1 in the 

template is equal to the length of chromosome. Therefore, at 0 in the template, the gene 

of child 1 is placed by the gene of parent 1 and the gene of child 2 is placed by the gene 

of parent 2. At 1 in the template, the gene of child 1 is placed by the gene of parent 2 

and the gene of child 2 is placed by the gene of parent 1. 

Due to the uniform crossover exchanges bits rather than segments, it can 

combine features regardless of their locations. This ability may outweight the 

disadvantage of destroying building blocks and make uniform crossover a superior 

operator for some problems. 
 

 
 

Figure 2.9: Uniform crossover-child 1, a value of 1 in the random string corresponds to a bit 

from parent 1, and 0 corresponds to a bit from parent 2, and vice versa for child 2. 

 

• Mutation 

 Mutation is the process applied to each offspring individually after the 

crossover. In GA, this operator creates new individuals by a small change in a single 

individual by a random selection. When mutation is applied to a bit string, it sweeps 

down the list of bits and replaces each by a randomly selected bit if the probability of 

test passes. It is called “Bit Mutation” as illustrated in figure 2.10. In addition, it has an 

associated parameter probability that is typically quite low. 
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Figure 2.10: An example of mutation.  

 

Moreover, there are several mutation types that are not the binary case where 

only one or two bits are flipped. The following describes the other techniques of 

mutations. 

1) A Random mutation: for each variable that is going to be mutated, choose a 

random value within its range and assign this value to the variable. So, every value is 

possible. 

2) Gauß mutation: this mutation is similar to the previous one, the only 

difference being that mutation step ∆xi is calculated according to Gauß’ distribution 

N(0,1): smaller mutation steps are much more probable then large mutation steps. The 

probability distribution of a standard mutation is shown in figure 2.11(a). 

3) EXP mutation: this mutation type comes from the idea that the role of 

mutation at the beginning is to make large jumps whereas later on, as the search 

progresses it should be used more for fine–tuning so small jumps are more desirable. 

Exponential distribution is presented in Figure 2.11(b). Here c is the constant that 

depends on the generation number. 

 

 
(a)     (b) 

Figure 2.11: Probability distributions for (a) Gauß mutation and (b) EXP mutation. 
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In this section, we describe the basic idea of GA from both theoretical 

background and their characteristics which started by giving the overview of GA and its 

principal operators. In general, GA is a class of search algorithms inspired by evolution 

from nature. For more details about GA, the reader is suggested to read the standard 

book such as GA in Search Optimization, and Machine Learning (Goldberg, 1989).  

 As far the GA robustness has been discussed with details. Figure 2.12 illustrates 

the entire process GA that will be applied to use in our algorithm. 

 
 

 
 

Figure 2.12: The general structure diagram of the GA is applied to solve  

the architectural layout design problem. 
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CHAPTER III 

Problem Methodologies 
 
In this thesis, we propose three methodologies to attack the architectural layout design 

optimization. First, we formulate the mixed integer optimization model. Our original 

formulation called AL-MIP guarantees the optimal design based on a multiobjective 

function. Second, we propose the valid inequality constraints called AL-MIP+ to reduce 

the AL-MIP iterations and time. These valid inequality constraints consist of non-

circular connectivity constraints and advised configuration constraints that help reduce 

the feasible search space. Finally, the third methodology based on the machine learning 

algorithm utilizes an idea of Genetic Algorithm (GA) called AL-MIP+GA to learn a 

Special Order Set (SOS). 

 
3.1 Architectural Layout Design Optimization Model 
 
3.1.1  Design Variables and Parameters 
 

The architectural layout design problem is posed as a process of finding the best 

location and size of a group of interrelated rectangular rooms. In this thesis, we define 

the room as a rectangular space to represent a specific architectural function such as 

living spaces, storage spaces, and facility spaces. Given a set of rooms {1, 2, …, n}, 

figure 3.1(a) shows the room ith representation using a point at the top left corner (xi, yi) 

with its height hi and width wi. The following figure also shows four walls represented 

by the north, the south, the east and the west. 

 
(a)      (b) 

 
Figure 3.1: (a) Model variables and parameters based on the coordinated system and  

(b) model relationships between two connected rooms. 
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In design variables and parameters, our model is formulated based on the 

coordinated system of a meter unit scale using the top left corner of the boundary area 

as the reference origin (0, 0). The positive value of x corresponds to x units to the right 

of the origin while the positive value of y corresponds to y units below the origin. 

Coordinates and dimensions are used as design variables, see figure 3.1(a). 

 
xi  =  X coordinate of the top left corner of the room i. 

yi  =  Y coordinate of the top left corner of the room i. 

wi =  the horizontal width of the room i. 

hi  =  the vertical height of the room i. 

 
Two boundary parameters are layout width and layout height which are 

represented by W and H, respectively. Moreover, there are specific parameters for each 

room, the lower and upper limits of the room width and the room height, wmin,i, wmax,i, 

hmin,i, hmax,i where wmin,i is the minimal width of room i, wmax,i is the maximal width of 

room i, hmin,i is the minimal height of room i, hmax,i is the maximal height of room i. In 

addition, Tij is a minimal contact length parameter between room i and room j, see 

figure 3.1(b). 

This thesis also concerns with the reduction of the computational iterations by 

limiting the variable numbers. For the connectivity sets from i = 1, 2, …, n and j = 1, 

2, … , n  where n is the number of room, we can reduce the numbers of variables by 

fixing i less than j (i < j) due to the equivalent of the connectivity between i,j and j,i. 

Thus, we can only use the connectivity i,j where i < j. This help reduces the number of 

variables more than a half. 

 
• The decision binary variables pij and qij 

The possible configurations of the two room connectivities between room i and 

room j can be represented using the four directions of the north (top), the south 

(bottom), the east (right) and the west (left) direction. To capture these idea, we utilize 

the two decision binary variables pij and qij to represent these connectivity directions. 

By which, the four possible connectivities are described using four pairs of (pij, qij) as 

(0,0), (0,1), (1,0) and (1,1). 

Ideally, these two decision binary variables, pij and qij have been used to satisfy 

a constraint between room ith and room jth. Four distinct patterns of pij and qij can be 
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described below. First case, (pij, qij) sets to (0,0) which forces the room i to the left of 

room j. Second cases (pij, qij) sets to (0, 1) which forces the room i to the top of the 

room j. Third case, (pij, qij) sets to (1, 0) which forces the room i to the right of the room 

j. Fourth case, (pij, qij) sets (1, 1) which forces the room i to the bottom of the room j. In 

the other words, the decision to assign values pij and qij will place these two rooms in 

the required orientation, see figure 3.2. 

To utilize an idea of these two decision binary variables, only one from four 

patterns of (pij, qij) will be satisfied selected to satisfy a constraint among each 

constraint group of AL-MIP and AL-MIP+ model. Moreover, the decision variables pij 

and qij can be applied to speed up the computational time which will be described at the 

end of this chapter. 

 

 

Values   Connectivity directions    

pij qij   

0 0  room i connects to the left of room j   

 

 

0 1  room i connects to the top of room j 

 

 

1 0  room i connects to the right of room j 

 

 

1 1  room i connects to the bottom of room j 

 

 

 

Figure 3.2: The four connectivity directions between room i and room j. 
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3.1.2 Multiobjective optimization 
 

Multiobjective optimization known as multi-criteria or multi-attribute 

optimization, is the process of simultaneously optimizing two or more conflicting 

objectives subject to certain constraints. The most widely used method for multiple 

optimization is the weighted-sum approach. The objective function is formulated as a 

weighted summation as follows. 

 

 

 

 subject to :  x ∈ S 

 where   u ∈ Rk,     ui > 0 

 

By choosing the different weights ui, for the different objectives, the preference 

of the decision-maker is taken into account. As the objective functions are generally of 

different magnitudes, they might have to be normalized first. Although the formulation 

is simple, the method requires a special treatment, as there is not clearly the relation 

between the weights and the obtained solution. To determine the weights from the 

decision-maker’s preferences is a specific purpose procedure. 

 

• Architectural layout design multiobjective optimization 

With the architectural layout design, many researches usually concentrated on a 

single objective function. Fleming in 1978 presented a singular objective layout via the 

representation and generation of rectangular dissections that minimized room space. In 

2000, the work of Li, Frazer and Tang dealt with maximizing the area in a given floor 

layout. In contrast, new researches are more interested in multiobjective preferences. In 

this thesis, we are interested in maximizing room areas and minimizing distance 

between rooms. To cope with these multiobjective preferences, we combine two 

objective functions into a summation of weighted components. These weights can be 

adjusted according to architect’s favor. In our experiment, we use equal weights to 

measure performance of our AL-MIP model. At optimal, there always exist alternative 

solutions with the same objective value due to the layout rotation. In order to eliminate 

alternative solutions, we randomly select one of available rooms to be placed near the 

Minimize  n  ui fi (x)  
k

i = 1
(3.1) 
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top left corner. In our experiment, the first room has been selected. For selected io
th 

room, 

 

Minimize     u1x (xi o+yi o) + u2 x (absolute distance) – u3x (maximizing room area) 
 

or 

 

 
 

 

where  xi o, yi o          are X and Y coordinate of the i o
th room,        ∀ io = 1, … , n, 

  zxi,j, zyi,j  are absolute distance of room i and j,          ∀ i < j = 1, … , n, 

  zi     is the maximized value between wi and hi,       ∀ i = 1, … , n, 

  u1, u2, u3  are the weight values. 

 

 Objective 3.2 denotes the minimization of the multiobjective optimization where 

the u1 is the weight of the io
th room positioning to the nearest top left corner, u2 is the 

weight of the total absolute distance and u3 is the weight of the maximizing 

approximated room area. If an architect prefers larger room area then the weighted sum 

of u3 is set to be greater than u2.  If an architect prefers a short total distance between 

rooms then u2 is set to be greater than u3. Hence, architect can generate alternative 

solutions by selecting different io
th  room to be placed near the top left corner or reassign 

the desired objective weights.  Moreover, xio and yio represent the X and Y coordinate of 

the io
th room while zxi,j and zyi,j represent the absolute distance in the X and Y 

coordinate respectively. The zi represents the maximized value between wi and hi that 

we can use to approximate the maximized area. 

 
• Placing a room position near the origin 
 

The combinatorial nature of the alternative optimal solutions having the same 

objective values could affect the total solution time. To allow the AL-MIP algorithm to 

prune other alternative solutions, architects can force the io
th room position to the 

nearest origin of the boundary area. By selecting different room, architects could obtain 

another optimal solution. 

 
 
 

Minimize      u1 (xi o+yi o)  +  u2    n(zxi,j + zyi,j)  –  u3 n zi 
i < j i =1 

(3.2) 
n 
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where   xi o     is the X coordinate of the i o
th room,         ∀ io =  1, … , n, 

   yi o     is the Y coordinate of the i o
th room,         ∀ io =  1, … , n. 

 

• Minimizing the absolute room distance 
 

One interesting criterion of an architect preference deals with a short distance 

among rooms. Calculating the distance as a linear function is not easily achievable. In 

this thesis, we apply the absolute distance function called Manhattan distance, instead 

of the normal Euclidean distance, see figure 3.3(a). This distance function is preferred 

over the Euclidean distance function due to two reasons. The first reason, it maintains 

the unit during the comparison. There is no need to take a root of the sum square 

distance as in Euclidean distance. The second reason is the walking distance from room 

to room could not join diagonally across the room to reach the target room. Architect 

could only walk along the boundary to the available room. The Manhattan distance 

computes as the summation of an absolute difference on the X coordinate and Y 

coordinate between two points, see figure 3.3(a). 

 

 

 

or equivalently, 

 

 

  

subject to: xj  –  xi   <   zxi,j                    

yj  –  yi   <   zyi,j        
 

where  zxi,j    is the absolute distance of room i and j on the X coordinate, 

∀i, j =  1, … , n,  i < j,  

 zyi,j is the absolute distance of room i and j on the Y coordinate 

 ∀i, j =  1, … , n,  i < j, 

xi , xj    are the X coordinate of the room i and  j,           ∀i,j = 1, … , n, 

   yi , yj     are the Y coordinate of the room i and  j,           ∀i,j = 1, … , n. 

Minimize (xi o + yi o) (3.3)

Minimize  n    ( | xi  –  xj | + | yi  –  yj | ) 
i < j 

Minimize  n    ( zxi,j  +  zyi,j ) 
i < j 

(3.4)
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Objective 3.4 denotes the summation of the absolute distance between room i 

and room j where zxi,j is the absolute distance on X coordinate and and zyi,j is the 

absolute distance on Y coordinate. While xi and xj represent the coordinate on the X 

coordinates of room i and j, yi and yj are the Y coordinates of room i and j. Figure 3.3(b) 

illustrates the absolute distance and its equivalent linear model. 

 

 
 

Figure 3.3: (a) Comparison between Euclidian distance function and Manhattan distance 

function and (b) an absolute function is formulated using a linear model. 

 

• Maximize approximating room area 

Another important architect’s preference is the spacious room space. In practice, 

architects wish to design largest possible rooms within the available space. A 

rectangular area can be computed by multiplying two sides as a non-linear function. 

However, the MIP model only deals with linear functions and constraints. Therefore, 

we decide to maximize the room sizes which have the direct effect to the approximated 

room areas that the larger the room sizes are, the greater the area will be, see figure 3.4. 
 

 

 
 

 

 

Maximize n max { wi, hi }  
n 

i = 1
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or equivalently, 

 

 

subject to:  zi   <   wi         

zi   <   hi   
 

where  zi is the maximized value between width and height of room i, 

 ∀ i =  1, … , n. 

 

 
 

Figure 3.4:  Maximizing room area is constructed by maximizing each room side. 
 
 
 
3.1.3 Architectural constraint Formulations 
 

In this thesis, all architectural layout design requirements can be captured using 

a linear function which will be described as follows. 

 
• Location constraint explains the relationship between distinct rooms that 

ensures the location of rooms. To formulate this constraint, we use two decision 

binary variables pij and qij, see figure. 3.5. 
 

xi + wi < xj + W x (pij + qij)                            (3.6) 

yj + hj   < yi + H x (1 + pij - qij)                               (3.7) 

     xj + wj < xi + W x (1 - pij + qij)                             (3.8) 

     yi + hi  < yj + H x (2 - pij - qij)                     (3.9) 

Maximize zi  (3.5) 
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where xi, xj are the X coordinate of the room i and j,         ∀i < j =  1, … , n,  

yi, yj are the Y coordinate of the room i and j,         ∀i < j =  1, … , n, 

wi, wj are the width of the room i and j,          ∀i < j =  1, … , n, 

hi, hj are the height of the room i and j,          ∀i < j =  1, … , n, 

W, H are the boundary width and height. 

 
From the location constraint, the decision variables pij and qij force the 

room i to the left, the bottom, the right and the top of room j corresponding to 

constraint 3.6, 3.7, 3.8 and 3.9.  Four possible cases of (pij, qij) are (0, 0), (0, 1), 

(1, 0) and (1, 1) have been used to force the room connectivities that will be 

explained below. First case, (pij, qij) sets (0, 0). The solution must satisfy xi + wi 

< xj for the constraint 3.6 which implies that the jth room must be placed on the 

right of the ith room. At the same time, constraint 3.7 becomes yj + hj < yi + H. 

Due to the large value of H, the right-hand side becomes a large positive value. 

Hence, any smaller positive yj + hj will satisfy the constraint 3.7. Similarly, 

constraint 3.8 becomes xj + wj < xj + W so that any positive xj + wj will be 

smaller than xi + W. Moreover, constraint 3.9 becomes yi + hi < yj + 2H. This 

also guarantees that any smaller positive yi + hi will satisfy the constraint 3.9. 

Hence, we will say that the setting of (pij, qij) = (0, 0) forces the placement of the 

ith room to the left of the jth room. Second case, (pij, qij) sets (0, 1). The solution 

must satisfy yj + hj < yi for the constraint 3.7 which implies that jth room must be 

placed on the top of the ith room.  Simultaneously, constraint 3.6 becomes xi + wi 

< xj + W. The large value of W in the right-hand side becomes a large positive 

value. So that any smaller positive xi + wi satisfies the constraint 3.6. Constraint 

3.8 becomes xj + wj < xi + 2W that the positive xj + wj is smaller than xi + 2W 

while constraint 3.9 become yi + hi < yj + H that yi + hi is a smaller positive 

value. Thus, the setting of (pij, qij) = (0, 1) forces the placement of the ith room to 

bottom of the jth room. Third case, (pij, qij) sets (1, 0). The solution must satisfy 

xj + wj < xi for the constraint 3.8 which implies that jth room must be placed on 

the left of the ith room.  Simultaneously, constraint 3.6 becomes xi + wi < xj + W. 

The large value of W in the right-hand side becomes a large positive value. For 

any smaller positive xi + wi satisfy the constraint 3.6. Similarly, constraint 3.7 

and 3.9 becomes yj + hj < yi + 2H and yi + hi < yj + H. The positive values of yj + 
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hj and yi + hi are smaller than yi + 2H and yi + H which satisfy constraint 3.7 and 

3.9 respectively. The setting of (pij, qij) = (1,0) forces the placement of the ith 

room to right of the jth room. The last case, (pij, qij) sets (1, 1). The solution must 

satisfy yi + hi < yj for the constraint 3.9 which implies that jth room must be 

placed at the bottom of the ith room.  At the same time, constraint 3.6 becomes xi 

+ wi < xj + 2W. The large value of W in the right-hand side becomes a large 

positive value. Hence, any positive xi + wi satisfies the constraint 3.6. Similarly, 

constraint 3.7 and 3.8 become yj + hj < yi + H and xj + wj < xi + W. The smaller 

positive values of yj + hj and xj + wj are smaller than yi + H and xi + W 

respectively which satisfy constraint 3.7 and 3.8. The setting of (pij, qij) = (1, 1) 

forces the placement of the ith room to top of the jth room. The following figures 

present the ith room placement on the left, the bottom, the right and the top for 

different values of pij and qij. 
 

 
Figure 3.5: pij and qij represent the location of room i and room j. 

 
 
• Fixed position constraint determines the room positioning in a boundary area. In 

a practical design, this constraint helps an architect to secure the room location 

in the design. For example, a high-rise building is fixed the lift core position in 

every levels.  

 
xi  =  Xi                                  (3.10) 

yi  =  Yi                                 (3.11) 

 

where xi, yi are the X and Y coordinate of room i,              ∀i =  1, … , n, 

Xi, Yi are the fixed X and Y coordinate of room i,             ∀i =  1, … , n. 

 
Constraint 3.10 denotes the xi of the room i fixed to the X coordinate 

while constraint 3.11 denotes the yi of the room i fixed to the Y coordinate. 
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• Unused unit cell constraint determines the unusable area. This constraint helps 

an architect design various orthogonal boundary shapes. We use two binary 

variables (sik, tik) to identify the location of unused unit cell, kth, see figure 3.6. 

 
xi    >   xu

k + 1 – W x (sik + tik)                (3.12)  

xu
k    >   xi  + wi – W x (1+ sik– tik)              (3.13) 

yi    >   yu
k + 1 – H x (1–sik + tik)                         (3.14) 

yu
k  >   yi   + hi – H x (2 –sik – tik)                  (3.15) 

 

where  xu
k, yu

k  are unused positions in X and Y coordinate of the unused kth unit, 

  ∀k  = 1, … , n, 

sik, tik are the decision binary variables of room i and k,        ∀i < k = 1, …, n,  

xi, yi are the X and Y coordinate of room i,                ∀i = 1, …, n, 

wi, hi are the width and height of the room i,                          ∀i = 1, …, n, 

W, H are the boundary width and height. 

 
Similar to four possible cases of connectivity constraint, the decision 

variables sik and tik force the room i to avoid the use of a unit cell k. The four 

possible cases of  (sik, tik) are (0, 0), (0, 1), (1, 0) and (1, 1). The first case, (sik, 

tik) sets (0,0). The solution must satisfy xi > xu
k + 1 for constraint 3.12 which 

implies that the unit cell k will shift to the left of the ith room without covering 

it. Other constraints will satisfy unconditionally due to the large values of H and 

W, similar to situations in location constraints. The second case, (sik, tik) sets (0, 

1). The solution must satisfy xu
k > xi + wi for constraint 3.13 which implies that 

the unit cell k will shift to the right of the ith room without covering it while 

other constraints will always satisfy. The third case, (sik, tik) sets (1, 0). The 

solution must satisfy yi > yu
k + 1 for constraint 3.14 which can implies that the 

unit cell k will float on the top of the ith room while other constraints will be 

satisfied. The last case, (sik, tik) sets (1,1). The solution must satisfy yu
k > yi + hi 

for constraint 3.15 which can implies that the unit cell k will fall under the ith 

room and other constraints will always satisfy, see figure 3.6 for illustrations. 
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Figure 3.6: sik and tik represent connection of unused cell and room i. 

 
 

• Boundary constraint forces a room to be inside a boundary. 

 

   xi + wi  < W                        (3.16) 

   yi + hi <   H                         (3.17)   

 

where   xi, yi are the X and Y coordinate of room i,              ∀i =  1, … , n 

wi, hi are the width and height of the room i and j,           ∀i =  1, … , n 

W, H are the boundary width and height. 

  
  Constraint 3.16 denotes the room i within the horizontal boundary while 

constraint 3.17 denotes the room i within the vertical boundary.               

 
• Fixed border constraint addresses the absolute placement of the room. This 

constraint is divided into four types: the north(top), the south(bottom), the 

east(right) and the west(left). For example, a room is positioned to the north if 

its touch the top border, see figure 3.7. 

 
yi  =  0                                             (3.18) 

yi + hi  =   H                                    (3.19) 

xi + wi  =  W                                (3.20) 

xi  = 0                                          (3.21) 

 

where   xi, yi are the X and Y coordinate of room i,               ∀i =  1, … , n, 

wi, hi are the width and height of the room i and room j,           ∀i =  1, … , n, 

W, H are the boundary width and height. 
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  For the fixed border constraint, the decision variables pij and qij force the 

room i touching the four side of boundary as follows. Constraint 3.18 denotes 

the yi of room i touch the top boundary. Constraint 3.19 denotes the yi + hi of 

room i touch the bottom boundary. Constraint 3.20 denotes the xi + wi of room i 

touch the right boundary while constraint 3.21 denotes the xi of room i touch the 

left boundary, see figure 3.7. 

 

 
Figure 3.7: The fixed room presents at each layout boundary. 

 
 

• Connectivity constraint forces two connecting rooms to be placed next to one 

another. We use the same two binary variables pij and qij with different set of 

constraints, see Figure 3.7.  

 
xi + wi  >  xj – W x (pij + qij)                                  (3.22)     

     yj + hj  >   yi – H x (1 + pij – qij)                     (3.23) 

      xj + wj  >  xi – W x (1 – pij + qij)                     (3.24) 

      yi + hi  >   yj – H x (2 – pij – qij)                     (3.25) 

 
where xi, xj are the X coordinate of the room i and j,         ∀i < j =  1, … , n,  

yi, yj are the Y coordinate of the room i and j,         ∀i < j =  1, … , n, 

wi, wj are the width of the room i and j,          ∀i < j =  1, … , n, 

hi, hj are the height of the room i and j,          ∀i < j =  1, … , n, 

W, H are the boundary width and height. 

 
Applying the location constraints with connectivity constraints, the room 

ith is forced to contact room jth at the right, the top, the left and the bottom 

corresponding the four possible cases of (0, 0), (0, 1), (1, 0) and (1, 1). The first 

case (pij, qij) sets (0, 0). The solution must satisfy xi + wi > xj for constraint 3.22 

which implies that the ith room will contact at the right of jth room. Other 
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constraints will satisfy unconditionally due to the large value of H and W, 

similar to scenarios in connectivity constraints. The second case (pij, qij) sets (0, 

1). The solution must satisfy yj + hj >  yi for constraint 3.23 which implies that 

the the ith room will contact at the top of jth room. Other constraints will always 

satisfy. The third case, (pij, qij) sets (1, 0). The solution must satisfy xj + wj > xi 

for constraint 3.24 which can implies that the ith room will contact at the left of 

jth room. The last case, (pij, qij) sets (1, 0). The solution must satisfy yi + hi >  yj 

for constraint 3.25 which can implies that the ith room will contact at the bottom 

of jth room and other constraints will always satisfy, see figure 3.8 for 

illustration. 
 
 

 
Figure 3.8: pij and qij are reused to formulate the connectivity relation between  

room i and room j. 

 
 
• Access-way constraint forces the minimal contact length between two connected 

rooms. Two rooms are touching each other with the minimal contact length 

defined by the value (Tij). For example, the junction between room i and room j 

must be wide enough to accommodate an access way, the same binary variables 

qij have been reused. Only qij has been used due to the fact that the vertical 

contact is allowed to be placed on the left (pij = 0) or on the right of the room j 

(pij = 1). This also true for the horizontal contact which ignores the placement of 

the room i above (pij = 0) and below (pij = 1) the room j. 

 
H x (qij)  >  yi + Tij – yj – hj                             (3.26) 

H x (qij)  >  yj + Tij – yi – hi                             (3.27) 

W x (1 – qij)  >  xi + Tij – xj – wj                       (3.28) 

W x (1 – qij)  >  xj + Tij – xi – wi                       (3.29) 
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where   Tij is the contact length of the access-way between room i and j, 

  ∀i < j =  1, … , n, 

 xi, xj are the X coordinate of the room i and j,         ∀i < j =  1, … , n,  

yi, yj are the Y coordinate of the room i and j,         ∀i < j =  1, … , n, 

wi, wj are the width of the room i and j,          ∀i < j =  1, … , n, 

hi, hj are the height of the room i and j,          ∀i < j =  1, … , n, 

W, H are the boundary width and height. 

 

Two possible cases of qij are 0 and 1. The first case, qij is set to 0 for the 

vertical contact. The solution must satisfy 0 > yi + Tij – yj – hj for constraint 3.26. 

This overlapping region of room i and room j will appear to the upper corner of 

room i. For 0 >  yj + Tij – yi – hi of constraint 3.27, the overlapping region of 

room i and room j will appear to the lower corner of room i. Constraints, 3.30 

and 3.31 will satisfy unconditionally due to the large value of W. The second 

case, qij is set to 1 for the horizontal contact. The solution must satisfy 0 >  xi + 

Tij – xj – wj for constraint 3.28. This overlapping region of room i and room j 

will appear to the left corner of room i. For 0 > xj + Tij – xi – wi of constraint 

3.29, the overlapping region of room i and room j will appear to the right corner 

of room i. Constraints, 3.26 and 3.27 will also satisfy unconditionally due to the 

large value of H, see figure 3.9 for illustration. 

 

 
Figure 3.9: (a) qij is reused to formulate the overlapping region between room i and room j  

and (b) Tij represents a minimal contact length between room i and room j. 
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• Length constraint determines minimal and maximal lengths of the bounded size 

of each room. A certain room is adjusted to appropriate dimensions between the 

horizontal range of wmin,i , wmax,i and the vertical range of hmin,i , hmax,i 

respectively. 

 
wmin,i  <   wi   <  wmax,i                                      (3.30)  

hmin,i   <   hi    <   hmax,i                                             (3.31) 

 

where   wmin,i , wmax,i    are the minimal and maximal width of room i, ∀i = 1, … , n, 

hmin,i , hmax,i     are the minimal and maximal height of room i,      ∀i = 1, … , n, 

wi, hi           are the width and height of room i,  ∀i = 1, … , n. 

 

 Constraint 3.30 denotes the width of room i within the minimal and 

maximal length while constraint 3.31 denotes the height of room i within the 

minimal and maximal length of room i. 

 

 

3.2 Valid Inequalities Optimization Model 
 
Due to the work of Keatruangkamala and Sinapiromsaran (2003), the solution time to 

solve the architectural layout design problem as the multiobjective MIP model is 

prohibitive for a medium to large problem size. In this thesis, we propose two modeling 

techniques to handle this problem. The first technique is to add valid inequalities of 

non-circular connectivity of the three consecutive rooms to the AL-MIP model, called 

non-circular AL-MIP+. The second is to apply a room location based on architect’s 

preferences called advised AL-MIP+ that help eliminate some alternative solutions. 

These two techniques will be presented as follow. 

 
3.2.1 Non-Circular Connectivity Constraints 
 

The first technique, we use an idea of valid inequality (George and Laurence, 

1988) which based on a smaller feasible region. By which, the LP relaxation region has 

been cut off while all integral points are maintained. The remaining LP relaxation 

region is strictly smaller than the LP relaxation of the original one with the corner 



 42

extreme points are forced to be integral. The notion of the valid inequality can be 

formulated as follows. 
 

Given the IP (Integer programming problem) as 
 

(IP) max{ cTx : x ∈ X } 

  X = { x : Ax < b , x ∈ + } 
 

The inequality πTx < π0 is called a valid inequality for X if πTx < π0 for all x ∈ 

X, see figure 3.10. 

 

 
 

Figure 3.10:  Valid inequality constraint cut off the non-integral feasible region. 
 

The valid inequality for the architectural layout design problem is generated 

using the concept of the non-circular connectivity constraints. These inequality 

constraints are defined among three consecutive rooms i, j and k, connected in this 

order. The binary variables pij, pik, pjk, qij, qik and qjk from the AL-MIP model are used 

to present room connectivity. The consecutive connectivity of room i and j prohibits the 

placement of room i between room j and k, see figure 3.11. Therefore, the valid 

inequalities force the non-circular connection of the room i and k which eliminates 

configuration formed by four different directions, top, left, right and bottom of the ith 

room and the jth room. The non-circular connectivity constraints for each direction have 

been illustrated as follows. 

 
pik – qik         <   W x (pij + qij)                    (3.32) 

pjk + qjk –  1  <   H  x (1 + pij – qij)                 (3.33) 

1 – pik – qik    <   W x (1 – pij +qij)                   (3.34) 

qik – pik          <   H x (2 – pij – qij)                       (3.35) 
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where   pik, pjk, qik, qjk are the decision binary variables,          ∀i < j < k = 1, …, n, 

pij, qij       are the decision binary variables,                  ∀i < j = 1, …, n, 

W, H  are the boundary width and height. 

 
For the non-circular connectivity constraint, the decision variables pij and qij 

prohibit the room k connect to the left, the top, the bottom and the right of room i. 

corresponding to constraint 3.32, 3.33, 3.34 and 3.35. Four possible cases of (pij, qij) are 

(0,0), (0,1), (1,0) and (1,1). The first case, constraint 3.32 (pij, qij) sets (0,0). It forces the 

room j connect to right side of room i and prohibits room k to the left of room i. The 

second case, constraint 3.33 (pij, qij) sets (0,1). It forces the room j connect to the 

bottom of room i and prohibits room k in the above of room i. The third case, constraint 

3.34 (pij, qij) sets (1,0). It forces the room j connect to left side of room i and prohibits 

room k to the right side of room i. And The fourth case, constraint 3.35 (pij, qij) sets  

(1,1). It forces the room j connect to above of room i and prohibits room k to the bottom 

of room i. 

 

 
 

Figure 3.11:  (Left) four possible connected scenarios defined by consecutive rooms i, j and k 

and (right) four corresponding scenarios that are eliminated from consideration. 
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3.2.2  Advised Configuration Constraints 
 

To decrease the computational time, we proposed another inequality constraints 

based on the architect’s preferences. Traditionally, some room positions in an 

architectural layout design was often placed extremely to the north, the south, the east 

and the west directions, for example, architects fix a bedroom on the north or the east 

direction to avoid the sunlight corresponding to the benign Feng Shui (Chinese belief). 

According to this traditional belief, we define constraints to allocate the bedroom on a 

required direction. By which, we proposed the advised configuration constraints to 

allocate the room positioning based on an architect’s preference. These constraints can 

be used to eliminate an infeasible solution immensely. The following constraints 

present the allocation of the advised room i' for all j ∈ {1, 2, … , 3}, see figure 3.12. 
 

yi'  <   yj                     (3.36) 

xi'  <   xj                     (3.37) 

xj + wj    <    xi' + wi'                      (3.38) 

yj + hj   <   yi' + hi'                    (3.39)  
 

where xi', yi'    are the X and Y coordinates of advised room i' in a required direction,  

∀i' = 1, … , n, 

    xj, yj     are the X and Y coordinates of room j,     ∀j = 1, … , n, 

    wi', hi'    are the width and height of advised room i',  ∀i' = 1, … , n, 

    wj, hj     are the width and height of room j,   ∀j = 1, … , n. 

 

 For the four possible cases of advise configuration constraint, the first case, 

constraint 3.36 denotes an advised room i' to the above direction of room j. The second 

case, constraint 3.37 denotes an advised room i' to the left direction of room j. The third 

case, constraint 3.38 denotes an advised room i' to the right direction of room j while 

the fourth case, constraint 3.39 denotes an advised room i' to the below direction of 

room j. 
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                      (a)             (b)         (c)   (d) 

 

Figure 3.12: The advised configuration constraints,  (a) advised room i' at the north(top) of 

room j,  (b) advised room i' at the south(bottom) of room j,  (c) advised room i' at the east(right) 

of room j and (d) advised room i' at the west(left) of room j. 
 

The following figure presents the conceptual solution spaces that these two sets 

of valid inequality constraints of non-circular AL-MIP+ and advised AL-MIP+ have 

been applied to cut off an infeasible solution on search space. 

 

 
 

Figure 3.13: The new smaller feasible area is cut off by the valid inequality constraints. 

 

 



CHAPTER IV 

Machine Learning Using Genetic Algorithms 

 
4.1 Learning Special Order Set 
 
 
From the previous section, we have formulated the AL-MIP model fit to the 

architectural layout design that can deal with a small-sized problem. The two valid 

inequality constraints called AL-MIP+ have been used to reduce the computational MIP 

iterations and time. In order to accelerate the computational speed, the machine learning 

has been adopted. The robustness learning methodology Genetic Algorithms (GA) 

utilized an idea of the Special Order Set (SOS) based on the branching in a branch and 

bound algorithm. 

In details, the branch and bound algorithm is equipped with a best-first search 

strategy. After branching at a certain level, a node is selected based on the current best 

node and branched, then, another node is selected at the new level and branched, and so 

on until the last level is reached and a complete solution is obtained. The complete 

solution is marked as “best node”, and the algorithm tracks back and eliminates nodes 

with a lower bound worse than the “best so far” solution. Otherwise, the algorithm 

branches another node and proceeds forward. 

The learning algorithm based on the robustness GA has been adopted as the 

unsupervised learning to the branch and bound search tree. The MIP solver using the 

branch and bound algorithm utilize the learning algorithm GA to find an appropriate 

sequences of branching variables. The SOS variable is used to guide the sequences of 

the branching strategy which searches throughout the problem space with the variables 

pij and qij (see the previous section 3.1.1). After complete the learning process, the 

stronger gene from GA represents the appropriated SOS variables with a good path of 

branching in the search tree. By which the appropriated order variables of the problem 

constraints help reduce the search space by identifying the better candidate solution 

used to prune the search tree. 
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4.2 Genetic Algorithms Methods 
 
4.2.1 Chromosomes 
 

To encode a SOS into a chromosome, an idea of GA from Traveling Saleman 

Problem (TSP) has been adopted in this thesis. Figure 4.1(a) illustrates an idea of the 

branching branch and bound algorithm which are guided by the candidate SOS 

variables pij and qij. In the figure, the given problem P0 is traced to the subproblems P2, 

P5, P8, …. , Pn using the branching variables pi0j0, qi1j1, pi2j2, …. , pinjn respectively. 

Similarly, figure 4.1(b) illustrates the chromosome which corresponded to an idea of 

branching in figure 4.1(a). Each chromosome is constructed by designing the first-

branch order pi0j0 is placed at the extreme left of the chromosome, the second-branch 

order qi1j1 and the third-branch order pi2j2 are placed at the second and the third orders 

from the extreme left and the last order pinjn is placed at the extreme right of the 

chromosome.  

 

 

          
(a)      (b) 

 

Figure 4.1: (a) the sequential orders pij and qij in branch and bound algorithm start from the 

top(root) to the bottom node and (b) The corresponded orders pij and qij based on GA structural 

representation is constructed from the extreme left to the extreme right. 
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• String Representation 

In order to encode a sequential order of the SOS variables pij and qij, a binary 

string representation has been applied to capture an idea of a SOS variables pij and qij. 

The binary string is flexible for the GA of reproduction, crossover and mutation to 

create a new population. Nevertheless, the SOS variables pij and qij have more 

information to fit with a one dimension (1D) binary string. This thesis utilizes two 

dimension (2D) binary string to capture entire information of the SOS variables pij and 

qij. The space of 2D binary string is m x n, where the m presents the numbers of 

variables and the n presents the sequential order of variables pij and qij. The space of 2D 

binary string is depended on the numbers of variables pij and qij that has been used in 

the problem. 

According to the numbers of connectivity variables between room i and room j, 

the length of binary string of each column is designed to cover, covering all possible 

cases of variables pij and qij. Also, the length of a binary string of each row will cover 

all sequential orders of SOS variables in branch and bound algorithm. The string length 

in each row can generate using the idea of the combination, see the next section for 

details. 

 
• Encoding Schema 

In genetics, the whole information of an individual structure is stored in a 

chromosome as genetic codes. The genome string is composed of a finite set of genes 

and their values. In the artificial world, a gene can be considered as an instruction in a 

recipe and is represented as a particular character or a set of characters in an encoding 

string. 

To encode the SOS, 2D binary strings have been utilized to represent all 

information. For example, an instance of 5 rooms is used to describe the sequential SOS 

schema. With the 5 rooms, we have 20 variables of pij and qij that used in the SOS. 

Therefore, these variables need five bits to represent all possible cases of variables pij 

and qij.  However, a five bit string can represent 32 different patterns which is larger 

than the number of the variables pij and qij. The remaining patterns will not be used to 

represent the variable pij and qij. Thus, for example, 00001 represents a variable p12, 

00010 represents a variable p13, 00011 represents a variable p14, 01011 represents a 
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variable q12, 01100 represents a variable q13 and 10101 represents a variable q45 which 

all numbers of zero (00000) are not used for representing the branching order, see the 

figure 4.2. 

 

 
 

Figure 4.2: The 2D binary strings of 5 rooms represent the SOS variables. 
 
 

Nevertheless, if the current pattern is not represented by any SOS variable, the 

algorithm will ignore and proceed with the next variable, and the index of this variable 

is not stored into a candidate SOS. This method ensures that only feasible SOS is 

created and will be used in the chromosome. 

 

4.2.2 Mechanism for Creating Generations 

 

• Creating Generations 

The roulette wheel is used to create a new generation. The fitness of a particular 

chromosome determines the size of its segment on the roulette wheel. The roulette 

wheel is then spun repeatedly to produce a new population of the same size as the initial 

population. The algorithm will complete when the required number of generations has 

been reached. It displays the candidate SOS associated with the chromosome with the 

highest fitness.  

 

 

 

 

0   0   0   0   1   0   1   0   0 
0   1   0   1   0   1   1   0   1 
1   1   1   1   1   1   1   0   1 
0   0   1   0   0   1   1   0   0 
1   1   0   1   0   0   0   0   1 

represent the first branch order of variable p23 

represent the second branch order of variable q14 

represent the first branch order of variable p24 

All zero bits do not represented  
a valid gene. 
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• Crossover 

At the initial population gene, the individual genes are randomly selected to 

produce a population of chromosomes (candidate solutions). This process is repeated to 

produce a population of the specific size. The Chormosomes are randomly selected for 

crossover and mutation operations with the probability settings based on the paper (Al-

hakim, 2000). The order crossover using two parents and two crossover sites are 

selected randomly and the elements between the two selecting points in one of the 

parent are directly inherited by the offspring.  

 
• Mutation 

Mutation is the process applied to each offspring individually after the 

crossover. This operator creates new individual chromosome by a small change in a 

single individual chromosome by a random selection. In this thesis, the encoded SOS 

using the 2D binary string that the mutation is applied to a bit string. It sweeps down the 

bits and replace each by randomly selected bit if the probability of test passes. 

 

4.2.3 Fitness Function 
 

In order to describe the details of evaluate fitness function. This thesis uses the 

MIP optimization solver called CPLEX to evaluate the fitness value of GA. The setting 

of the CPLEX solver will be described below. 

 

• The optimization CPLEX solver 

CPLEX is an optimization software package. It is named for the simplex method 

and the C programming language. It was originally developed by Robert E. Bixby and 

distributed via CPLEX Optimization Inc. CPLEX can solve MIP problem and very 

large LP problems. Moreover, it has a modeling layer and is also available with several 

modeling systems like AIMMS, AMPL, GAMS IDE and OPL Development Studio. In 

this thesis, we develop a modeling language based on GAMS IDE and solve the model 

on CPLEX version 9.0.  
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• Fitness evaluation 

As far as GA is concerned, it’s better to have a higher fitness value to provide 

more opportunities to be chosen in breeding new chromosomes. In this thesis, the 

CPLEX solver has been used to solve the MIP using the SOS variables from GA which 

determines the largest score from the number of iterations.  

At each transition, the value of computational iterations from AL-MIP+GA 

(fitness_score) is subtracted from a standard fitness score (standard_fitness_score) 

which is obtained from the computational iterations of the AL-MIP+. The fitness_score 

higher than the standard_fitness_score presents a better candidate of SOS (a strong 

gene) which will be stored into a text file. The GA fitness is measured from the 

subtraction of the computational iterations of AL-MIP+ and the current computational 

iteration of AL-MIP+GA. We can describe the GA fitness with an equation as follow. 

 

Evaluate Fitness   =   Standard_fitness_score  –  fitness_score (4.1) 
 

Figure 4.3 presents an entire idea of GA using the flow diagram that is adopted 

for AL-MIP+GA. To operate the GA, we input the populations, the generations and the 

standard_fitness_score from the AL-MIP+ into the AL-MIP+GA. The learning process 

will terminate by the current generations (Gen) in each run over the required generation 

(MaxGenerations) and the GA statistics will be summarized into a text file. 
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Figure 4.3: Flow diagram of AL-MIP+GA based on an idea of GA. 
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4.2.4 Genetic Algorithms Application 

The flow diagram from the previous section is used as a programming 

framework. Our AL-MIP+GA algorithm is developed based on the GNU C++ 

programming language. The GA library designed by Matthew Wall (MIT) has been 

used as the GA computational class which will be described in details as follows. 

 

• Genetic Algorithms C++ Library 

The GA library designed by Matthew Wall (1996) contains four flavors of GA. 

The first is the standard simple GA described by Goldberg. This algorithm uses non-

overlapping populations. For each generation, the algorithm creates an entirely new 

population of individuals. The second is a steady-state GA that uses overlapping 

populations. In this variation, users can specify how much of the population should be 

replaced in each generation. The third variation is the incremental GA, in which each 

generation consists of only one or two additional children. The incremental GA allows 

custom replacement methods to define how the new generation should be integrated 

into the population. For example, a newly generated child can replace the parents, 

replace a random individual in the population. This GA library evolves the multiple 

populations in parallel using a steady-state algorithm. The algorithm migrates some of 

the individuals from each population to one of the other populations. 

This GA library has been designed to report the statistics, replacement strategy, 

and parameters for running the algorithm. The population object, a container for 

genomes, also contains some statistics as well as selection and scaling operators. This 

library has built in functions for specifying when the algorithm should terminate. These 

include termination upon generation using a specified certain number of generations. 

The stopping criteria can be designed by the terminated function that is built as a library 

module. Moreover, this GA library keeps track of both the number of genome 

evaluations and population evaluations and stores into a text file.  
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• Pseudo code 

We develop a computer program using GA C++ lib. Our GA learning SOS 

application can be described as a pseudo code based C++ programming language 

format as follows.  

 

chromosome SOS[];  //Special Order Set variables 
int fitness_score[];  //Chromosome fitness score 
main learning_AL-MIP() 
{ Input file: Model file and Data file; 
 Input GA parameters: int MaxPopulations, MaxGenerations, Standard_fitness_score; 
 int Gen = 1, Pop = 1;  
 Initial GA parameters; 
 SOS[] = Random initial populations and encode into chromosomes;  
 While MaxGenerations > Gen 
 { While MaxPopulations > Pop 
           {      fitness_score[Pop] = Evaluate_Fitness(SOS[Pop]);  
           If  fitness_score[Pop]  <  Standard_fiteness_score then 
           Store SOS[Pop] and fitness_score[Pop] as a good chromosome; 
           End if 
          Pop = Pop + 1;   
     }//end while 
           //Evolution process and Update old chromosome 
           SOS[] = Evolutionary_Process(SOS[],  fitness_score[]);  
  Pop = 1; Gen = Gen + 1;  
 }//end while 
} 
int Evaluate_Fitness(SOS) 
{ return Run CPLEX solver with this SOS; 
} 
chromosome Evolutionary_Process(SOS[],  fitness_score[]) 
{ Crossover(SOS[],  fitness_score[]); 
 Mutation(SOS[],  fitness_score[]); 
 return SOS[]; 
} 

 
 

 

 



CHAPTER V 

Experimental Results 
 
5.1   Experimental Design 
 
 
The experiments presented in this thesis have been carried out on a PC computer using 

Pentium Core 2 Duo and 4.0 GB of memory using GAMS CPLEX 9.0. In order to 

measure the performance, we simulate architectural layout design instances with 4, 5, 6, 

7, 8, 9 and 10 rooms based on four distinct configurations, which are  

1) a linear configuration 

2) a rail configuration 

3) a connected wheel configuration  

4) a nested wheel configuration 

See figure 5.1 for the graphical representations of these four distinct patterns. 

  

Each configuration composes of five instances and the average measurements 

have been recorded.  Total of 140 experimental runs have been tested and gathered. Our 

experiment unit scale corresponds to a meter scale. The boundary area is set on 

100×100 square meters and defined the minimum and maximum room width and height 

between 5 to 10 meters. Moreover, the weighted-sum of u1, u2 and u3 are equivalently 

set to 1. 
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Figure 5.1: The distinct pattern A, B, C and D of 10 room configurations. 
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5.2 Genetic Algorithm Parameters and Design 

 

• Parameters Setting in GA 

GA requires parameter tunings in order to achieve the desirable solutions and 

performance. Three common GA parameters are population size, crossover probability, 

and mutation probability. The population size parameter is a major factor in 

determining the quality of the solutions. Setting small population size will cause the GA 

to converge to suboptimal solutions. On the other hand setting large population size will 

cause the GA to waste unnecessary computational resources. The generic crossover 

probability parameter is set between 0 and 1 that is enough to determine the amount of 

gene swapping between the parent solutions. Crossover operator is important because it 

ensures good mixing of candidate solutions. The higher crossover probability, the more 

promising solutions are mixed. This also increases the disruption of good solutions. The 

generic mutation probability parameter is set between 0 and 1 to determine the amount 

of mutation on a solution. Mutation operator is important because it enables diversity in 

the population. With a high mutation probability, it will behave similar to an intelligent 

hill-climbing strategy, in the neighborhood of a particular solution, but it may also 

destroy already found good solutions. The task of tuning these GA parameters has been 

proven to be far from trivial due to the complex interactions among the parameters and 

their proper settings. Several researchers have been trying to understand the 

interdependencies of GA parameters. One of the first empirical studies to understand 

the complex interactions and interdependencies of GA parameters was investigated by 

De Jong (1975). Based on his studies, De Jong introduced a good set of parameter 

settings that have been adopted widely and sometimes referred to as “standard” settings: 

population size of 50 to 100, crossover probability of 0.9, and mutation probability of 

0.001. However, these “standard” settings have been proven problematic by later 

studies, which suggest that the optimal settings of GAs’ parameters are critically 

dependent on the nature of the function being evaluated (Goldberg, 1985; Hart & 

Belew, 1991; Deb, 1999a) and the encoding of decision variables.  

In the real world problem, several researchers (Pelikan et al., 2000) have spent 

much effort on trying to design a GA parameter model and checks their models against 

some real-world problems. Lobo (2000) suggests using an appropriated GA parameter 

that determines the parameters through trial and error on the real world problem. In this 
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thesis, the various characteristics and parameters of the steady-state GA, are determined 

by preliminary experiments from a small instance of 5 room configurations.   

Furthermore, the distinct patterns A, B, C and D using the fixed GA parameter 

settings may lead to slow convergence and sub-optimal solutions, especially when large 

search spaces are to be explored in solving the optimization problems. To remedy this 

problem, the distinct patterns A, B, C and D are experimented for appropriated GA 

parameters that fit to each one. The appropriated GA parameters in populations, 

generations, crossover and mutation will be described in details. 

 

Population size: the population size has to be considered carefully. If the population 

size is too small, the population will soon suffer from premature convergence because 

the diversity in the population is too low. In the other word, if the size is too large the 

convergence towards the optimum is slow and the memory requirements to run the 

genetic algorithm increase enormously.  

In this thesis, we find out an appropriated GA population size using an 

experiment on a 5 room configuration of the distinct patterns A, B, C and D. By which, 

more than a thousand instances is experimented on the common population sizes of 10, 

20, 30 and 50 (Lobo 2000, Pelikan et al., 2000).  

 

Crossover and mutation probability: Recombination and mutation is performed with 

a certain fixed or variable probability. Again the setting of these parameters is the 

subject of deliberation. Whereas the more classical genetic algorithm theorists fervently 

advocate the use of a high crossover probability in the range [0.8, 1] (Goldberg 1989, 

Holland 1975) and a low mutation probability in the range [0, 0.01] (Goldberg, 1989; 

Holland, 1975). 

 Based on the three important results on the mutation operator, the practical 

result is that the lower bound for the mutation probability pm is pm = 1/l with l the length 

of the chromosome (Muhlenbein 1992). This provides a more mathematical background 

for the mutation parameter. The probability that a chromosome with length l is not 

modified by mutation is: 

 

    Ps  = (1 – Pm)l      (5.1) 
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 where Pm represents the bit mutation probability. If there is no crossover 

operator the probability of survival Ps should be no less than the inverse of the expected 

number of offspring. 

 In the past, several researchers use mutation with a low probability but the 

empirical and theoretical investigations demonstrated the benefits of the role of 

mutation as a search operator. The high levels of mutation are the most disruptive and 

also achieve the lowest levels of construction. This means that by using high levels of 

mutation the chance that new candidate gene are found decreases.  

 In this thesis, the experiments of the distinct crossover and the distinct mutation 

are experimented based on the 5 room configurations of patterns A, B, C and D. The 

crossover probability of 0.5, 0.8, 0.9 and 1.0, the mutation probability of 0.0005, 0.001, 

0.005, 0.01 and 0.05 are experimented on thousand instances.  

 

String length: a length of the candidate SOS is represented by a combination from the 

room connectivity of i = 1, 2, 3,…, n  and j = 1, 2, 3, … , n  where n is the numbers of 

room. All available SOS variables are consecutively filled in a chromosome with an 

index given by the ordering variables pij and qij. To find the SOS variable lengths in the 

chromosome, the combination has been adopted to determine the maximum numbers of 

the length. Due to the AL-MIP+GA, two decision binary variable pij and qij identify the 

connectivity between each room i and room j. The total results of an SOS variable 

consists of both variable pij and qij. The equation 5.2 presents the combination equation 

that is used to determine an SOS variable length in a candidate SOS. 

 

 

     

where n is the numbers of room in the problem and r is the numbers of SOS 

variables used in the problem. In this thesis, the value of r is 2.  Since, the binary 

variable of pij and qij are used in each problem. 

 

Generations and stopping criterion: for a generic GA, there are three main ways to 

stop the loop as 1) allele convergence, 2) a predefined number of generations and 3) 

when the optimum is reached. In our thesis, we stop the GA operation using a 

predefined number of generations. The stopping criterion using the numbers of 

generations is tested on the 50, 100 and 500 generations.  

(5.2) C(n,r)         = 
      n! 
 

r! x (n – r)! 
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• Statistical approaches 

The appropriated GA parameters are summarized based on a statistics which is 

proposed by Fonseca and Fleming (1996). In the real world problem, if GA is run for 

several times, the search space can be divided into three categories. 

 

1) The first part of the search space that is always dominated by all runs. 

2) The second part of the search space that is dominated by some runs. 

3) The third part of the search space that is never dominated by any runs. 

 

Based on the Pareto-optimal fronts, the first part of the search space is 

dominated by all runs. This presents the covering 80% of all runs. The second part of 

the search space reaches some Pareto-fronts but not all of them. This presents the 

covering 50% of all runs. And the third part of the search space is never dominated by 

any runs. This presents less than the covering 20% of all runs. By which, the completed 

set of the experiments will be used for the initial comparative GA study. 

 

• The GA parameter experiments 

To test the effectiveness of the GA, a series of the experiments of a 5 rooms of 

pattern A, B, C and D are performed based on a PC computer using Pentium Core 2 

Duo and 2.0 GB of memory. Each experiment, a fixed-length binary string is used as a 

2D binary string with length l = 32. Each string column is represented by a 5 bit that 

can represent all possible cases of variable pij and qij. A simple GA with crossover 

probability of 0.5, 0.8, 0.9 and 1.0, the mutation probability of 0.0005, 0.001, 0.005, 

0.01 and 0.05 are implemented based on the various population sizes of 10, 20, 30 and 

50. The stopping criteria for the experiments are 50, 100 and 500 generations. All 

experiments of patterns A, B, C and D are illustrated as follows. 
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The experiments of pattern A: 
 

 

 

 

 

Crossover 0.5,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 580 620 1240 1596 
Avg. fitness -10340.9 -9566.8 -8796.3 -7240.8 50

 

Time (sec) 48 169 203 287 
Fitness 980 1118 2868 2112 
Avg. fitness -3209.6 -3724.4 -5066.8 -4866.3 10

0 

Time (sec) 84 238 296 483 
Fitness 2458 2922 2879 3064 
Avg. fitness 1238.3 407.6 -332.4 -5132.3 

G
en

er
at

io
ns

 

50
0 

Time (sec) 325 754 1041 2282 

Crossover 0.8,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 1418 843 266 2303 
Avg. fitness -2176.5 -4350.3 -7490.8 -10287.0 50

 

Time (sec) 71 149 200 353 
Fitness 2417 964 2829 2536 
Avg. fitness -2592.4 -3516.6 -5222.3 -4120.0 10

0 

Time (sec) 92 229 324 542 
Fitness 1294 1055 3367 1323 
Avg. fitness -901.8 -919.0 -1140.4 -7518.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 371 782 1051 2596 

Crossover 0.5,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 982 1268 1428 2977 
Avg. fitness -9595.7 -8554.5 -7093.6 -6778.5 50

 

Time (sec) 87 203 253 350 
Fitness 717 -1004 3720 3360 
Avg. fitness -3009.4 -2393.5 -2309.5 -9723.3 10

0 

Time (sec) 100 254 306 732 
Fitness 3582 1571 3634 3624 
Avg. fitness 65.5 -2373.5 -5339.9 -4533.4 

G
en

er
at

io
ns

 

50
0 

Time (sec) 382 794 1650 2592 

Crossover 0.8,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 1382 1228 1705 1511 
Avg. fitness -1772.9 -3738.6 -6535.1 -7890.2 50

 

Time (sec) 71 209 309 532 
Fitness 1381 1218 2362 2344 
Avg. fitness -2517.8 -4159.2 -6724.9 -13469.0 10

0 

Time (sec) 164 386 538 1166 
Fitness 3607 3590 3488 1530 
Avg. fitness 1006.7 -911.8 -3032.8 -6749.9 

G
en

er
at

io
ns

 

50
0 

Time (sec) 627 1586 2256 4453 

Crossover 0.5,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 2836 1129 907 1604 
Avg. fitness -2604.1 -4600.1 -7618.4 -10170.0 50

 

Time (sec) 195 556 695 1268 
Fitness 2964 2845 2645 2675 
Avg. fitness -4129.4 -3781.9 -4274.9 -7704.4 10

0 

Time (sec) 399 786 1179 2317 
Fitness 3950 3556 3556 3633 
Avg. fitness -602.4 -2481.4 -4911.8 -5899.9 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1645 3458 6040 10699 

Crossover 0.8,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 1512 1655 1888 1423 
Avg. fitness -4751.9 -7787.5 -9941.4 -7573.7 50

 

Time (sec) 199 475 918 1133 
Fitness 2212 2430 2445 2770 
Avg. fitness -2923.0 -4685.9 -5918.3 -6245.1 10

0 

Time (sec) 319 578 1127 1920 
Fitness 3264 3113 3429 3669 
Avg. fitness 106.2 -3102.1 -5959.2 -6088.3 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1207 2569 5216 11086 

Crossover 0.5,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 3210 2254 2588 3292 
Avg. fitness -2913.9 -4620.7 -7354.3 -8744.0 50

 

Time (sec) 321 1216 1625 2096 
Fitness 2367 2855 3167 3295 
Avg. fitness -2759.4 -4930.8 -8198.0 -6962.8 10

0 

Time (sec) 653 1409 2478 3721 
Fitness 3915 3855 3625 3210 
Avg. fitness -1842.3 -3190.2 -5247.0 -6575.5 

G
en

er
at

io
ns

 

50
0 

Time (sec) 3122 6304 10887 19005 

Crossover 0.8,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 3204 2430 3259 2251 
Avg. fitness -2947.5 -5115.0 -6703.4 -7939.6 50

 

Time (sec) 305 593 1091 1917 
Fitness 2321 2798 3012 3498 
Avg. fitness -3396.2 -5590.5 -7151.9 -7207.5 10

0 

Time (sec) 582 1050 2044 3377 
Fitness 2221 2446 3822 3478 
Avg. fitness -2424.4 -4297.8 -5684.6 -7305.4 

G
en

er
at

io
ns

 

50
0 

Time (sec) 2491 4475 8696 15734 

Crossover 0.5,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 2767 2675 2934 2751 
Avg. fitness -5126.9 -6001.0 -8208.6 -9081.8 50

 

Time (sec) 483 1522 1852 2555 
Fitness 2710 2808 3098 3071 
Avg. fitness -5048.7 -5755.1 -7740.5 -8682.4 10

0 

Time (sec) 763 1745 2849 5193 
Fitness 3291 3345 3442 3621 
Avg. fitness -5087.1 -5820.6 -7847.5 -8721.0 

G
en

er
at

io
ns

 

50
0 

Time (sec) 3776 9207 15240 23660 

Crossover 0.8,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 2107 2665 2850 3180 
Avg. fitness -5119.1 -7206.4 -8477.9 -9034.0 50

 

Time (sec) 358.4 666 1208.2 1978.2 
Fitness 2957 3105 2854 3001 
Avg. fitness -5663.2 -7461.9 -8415.8 -8880.7 10

0 

Time (sec) 676 1203 2331 3667 
Fitness 3219 3455 3709 3512 
Avg. fitness -5124.7 -6891.3 -7877.7 -8902.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 3101 5181 9851 16982 
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Crossover 0.9,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 1117 1194 668 1721 
Avg. fitness -2695.9 -4007.7 -6210.0 -10021.3 50

 

Time (sec) 71 214 318 571 
Fitness 1476 826 2723 765 
Avg. fitness -2110.9 -2350.5 -3112.5 -8548.3 10

0 

Time (sec) 146 310 419 1060 
Fitness 1169 1442 3258 3350 
Avg. fitness -1355.5 -1007.9 -884.3 -3696.5 

G
en

er
at
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ns

 

50
0 

Time (sec) 608 1258 1679 3422 

Crossover 1.0,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 1929 1055 2814 3278 
Avg. fitness -5885.5 -6389.9 -8314.2 -9000.7 50

 

Time (sec) 175 381.78 673 1091 
Fitness 2321 2380 3415 3207 
Avg. fitness -3361.8 -2334.9 -1826.9 -8873.0 10

0 

Time (sec) 321 514 820 1968 
Fitness 2129 2576 3597 2047 
Avg. fitness 624.2 315.4 76.8 -2667.9 

G
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at
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50
0 

Time (sec) 960 1820.34 3085 6514 

Crossover 0.9,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 964 889 1801 2408 
Avg. fitness -7945.9 -6585.3 -6688.0 -8629.4 50

 

Time (sec) 128 303 423 704 
Fitness 1435 1422 1329 1842 
Avg. fitness -2149.6 -4186.4 -7153.5 -5331.2 10

0 

Time (sec) 219 412 773 1211 
Fitness 2795 2450 2933 3212 
Avg. fitness 339.0 -1310.5 -3251.1 -3434.2 

G
en

er
at

io
ns

 

50
0 

Time (sec) 744 2179 3217 5271 

Crossover 1.0,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 1324 2022 2120 2085 
Avg. fitness -3726.9 -5566.2 -8642.5 -8305.6 50

 

Time (sec) 188 409 720 1203 
Fitness 1767 2450 3028 2567 
Avg. fitness -3128.7 -3349.0 -4313.6 -7300.0 10

0 

Time (sec) 356 695 1189 2414 
Fitness 3182 2568 2526 3494 
Avg. fitness 1396.6 -134.5 -1695.4 -2388.4 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1400 2966 5191 8906 

Crossover 0.9,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 3095 2426 1437 2682 
Avg. fitness -1339.8 -4520.4 -8176.8 -10158.6 50

 

Time (sec) 186 403 822 1402 
Fitness 3166 3265 2815 3080 
Avg. fitness -1281.5 -4118.0 -7388.1 -8569.7 10

0 

Time (sec) 379 789 1523 2732 
Fitness 3892 3534 3477 3625 
Avg. fitness 577.0 -1740.5 -4241.1 -6973.4 

G
en
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50
0 

Time (sec) 1691 3452 6628 12150 

Crossover 1.0,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 2366 2556 2275 2391 
Avg. fitness -1587.0 -5837.6 -8477.8 -8542.0 50

 

Time (sec) 249 502 960 1628 
Fitness 2626 2811 2516 3049 
Avg. fitness -1739.2 -3947.8 -6317.4 -7883.7 10

0 

Time (sec) 489 922 1732 3134 
Fitness 3130 2855 3492 3522 
Avg. fitness -1195.5 -2923.0 -4769.8 -6661.7 

G
en

er
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50
0 

Time (sec) 2320 4393 8266 14577 

Crossover 0.9,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 2249 2560 2302 2591 
Avg. fitness -2536.9 -4916.0 -7812.5 -8790.4 50

 

Time (sec) 305 587 1163 2037 
Fitness 3585 3245 2708 3135 
Avg. fitness -2053.0 -4697.2 -7835.9 -8136.7 10

0 

Time (sec) 550 1117 2143 3592 
Fitness 3319 3860 4176 3734 
Avg. fitness -1031.5 -3303.8 -5923.8 -7664.5 

G
en
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50
0 

Time (sec) 2240 4574 8782 14963 

Crossover 1.0,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 2399 2800 2982 2592 
Avg. fitness -4088.9 -6953.3 -7899.5 -8748.1 50

 

Time (sec) 333 622 1166 1973 
Fitness 2684 2540 3491 2815 
Avg. fitness -2364.3 -4571.1 -6964.6 -8957.0 10

0 

Time (sec) 553 1080 2849 5371 
Fitness 2957 3250 3146 3583 
Avg. fitness -1582.6 -4124.4 -6834.5 -7461.6 

G
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50
0 

Time (sec) 2389 4852 9302 16938 

Crossover 0.9,   mutation = 0.05 

Populations  
10 20 30 50 

Fitness 2304 2811 2913 3044 
Avg. fitness -6871.2 -7256.0 -8404.5 -8549.0 50

 

Time (sec) 396 683 1212.4 1970 
Fitness 3050 3240 2936 2418 
Avg. fitness -5247.3 -6510.9 -8459.9 -9022.3 10

0 

Time (sec) 679 1196 2204 3745 
Fitness 3511 3460 3338 3085 
Avg. fitness -5423.0 -6533.8 -8332.4 -9067.9 

G
en
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ns

 

50
0 

Time (sec) 3082 5433 11003 18927 

Crossover 1.0,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 2496 2324 2465 2746 
Avg. fitness -7346.2 -9704.5 -9385.7 -8924.4 50

 

Time (sec) 410 686 1243 2003 
Fitness 2987 3105 3273 2859 
Avg. fitness -6276.0 -7170.5 -8357.7 -8936.4 10

0 

Time (sec) 693 1207 8215 6705 
Fitness 3222 3565 2863 3146 
Avg. fitness -5166.2 -6639.9 -8384.6 -9123.6 

G
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ns

 

50
0 

Time (sec) 3536 6906 13990 21151 
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From the experiments, the 240 instances of pattern A are tested based on the 

various characteristics of GA parameters. The outputs of all runs are normalized using 

the respective minimal and maximal values of the fitness in the Pareto-fronts where 

more than a half of experiments present the high fitness value. By which, the data are 

not normally distributed. The histogram has been used to present the frequency from the 

various characteristics of GA parameters that can be illustrated below. 

 

          
(a) (b) 
 

Figure 5.2: (a) the statistical data of pattern A and  

(b) the histogram of the fitness values tested by the various GA parameters. 

 

As a result, the various probabilities of crossovers and mutations found on each 

run are not significantly influent the fitness value. On the other hand the high 

populations and high generations significantly influent the high fitness value. Using the 

Pareto-optimal fronts, the dominated GA parameters covered 80% instances of 

populations and generations can be illustrated with the circle using the following table. 

 
Populations  

10 20 30 50 

50     

100   ● ● 
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500 ● ● ● ● 

 

 

 

Pattern A: Statistical data of the fitness value 

Mean           1184.67 

Mean           1184.67 

Std Dev                          462.85 

Std Error Mean          29.87 

Upper 95% Mean          1243.52 

Upper 95% Mean          1243.52 

Numbers           240 
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The experiments of pattern B: 
 

 

 

 

 

Crossover 0.5,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 125 687 444 832 
Avg. fitness -1478.0 -4513.7 -3297.1 -5953.7 50

 

Time (sec) 23 82 130 213 
Fitness 654 409 637 914 
Avg. fitness -145.8 -3660.6 -3231.8 -2863.8 10

0 

Time (sec) 52 152 220 392 
Fitness 1442 1380 1779 1647 
Avg. fitness 682.9 62.0 -790.9 -2822.3 

G
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50
0 

Time (sec) 268 573 790 1751 

Crossover 0.8,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 384 843 337 90 
Avg. fitness -2519.9 -3847.4 -3150.7 -5858.4 50

 

Time (sec) 55 94 156 275 
Fitness 826 964 387 304 
Avg. fitness -151.6 -1071.4 -3009.5 -2749.4 10

0 

Time (sec) 74 148 261 414 
Fitness 1545 1055 1451 1206 
Avg. fitness 60.7 -1208.2 -391.1 -1332.6 

G
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50
0 

Time (sec) 396 919 1183 2089 

Crossover 0.5,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 309 504 1120 1169 
Avg. fitness -2736.2 -3842.8 -3141.7 -5623.2 50

 

Time (sec) 52 116 169 302 
Fitness 467 776 1497 645 
Avg. fitness -775.2 -2400.6 -3039.1 -3641.7 10

0 

Time (sec) 97 204 324 556 
Fitness 1242 1571 974 1284 
Avg. fitness -458.4 -110.7 -2559.6 -4009.0 

G
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er
at
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50
0 

Time (sec) 450 857 1508 2760 

Crossover 0.8,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 49 308 766 1002 
Avg. fitness -2523.8 -2099.7 -4674.3 -3043.4 50

 

Time (sec) 65 120 230.4 340 
Fitness 180 228 857 888 
Avg. fitness -2834.9 -3794.2 -2174.5 -4414.5 10

0 

Time (sec) 138 245 327 684 
Fitness 1640 1218 1560 840 
Avg. fitness 613.2 -2043.3 -948.8 -2313.7 

G
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50
0 

Time (sec) 413.25 1018 1425 2697 

Crossover 0.5,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 119 372 868 1149 
Avg. fitness -3305.5 -3761.7 -2932.8 -3664.7 50

 

Time (sec) 145 348 467 798 
Fitness 1259 1172 1418 1372 
Avg. fitness -1264.0 -3123.8 -2310.4 -3090.5 10

0 

Time (sec) 279 599 937 1529 
Fitness 1761 1404 1667 1805 
Avg. fitness -749.4 -2143.0 -2485.6 -2981.4 

G
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50
0 

Time (sec) 1348 2996 4367 7874 

Crossover 0.8,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 117 496 1091 929 
Avg. fitness -3095.4 -4551.6 -4860.2 -4106.1 50

 

Time (sec) 160 358 560 856 
Fitness 1058 1172 1138 1374 
Avg. fitness -2242.1 -3153.2 -3738.8 -4591.0 10

0 

Time (sec) 295 605 993 1663 
Fitness 1061 1457 1454 1779 
Avg. fitness -1080.0 -2276.8 -2712.7 -3547.7 

G
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50
0 

Time (sec) 1231 2746 4187.6 7848 

Crossover 0.5,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 555 1440 1356 1595 
Avg. fitness -3087.6 -2472.1 -3688.1 1595.0 50

 

Time (sec) 263 505 820 1430 
Fitness 1730 1287 1656 1375 
Avg. fitness -612.3 -2953.0 -3099.0 -3805.2 10

0 

Time (sec) 421 1006 1576 2932 
Fitness 1831 1842 1990 1465 
Avg. fitness -859.2 -2037.2 -2418.5 -3400.2 

G
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50
0 

Time (sec) 2271 4920 7989 14244 

Crossover 0.8,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 705 1585 1111 1105 
Avg. fitness -1222.5 -2078.6 -3525.2 -4351.8 50

 

Time (sec) 238 514 859.2 1475 
Fitness 1291 1617 1846 1477 
Avg. fitness -1486.4 -2523.5 -2966.0 -3753.0 10

0 

Time (sec) 450 986 1522.5 3650 
Fitness 1834 1763 1388 1335 
Avg. fitness -902.5 -2196.5 -2966.1 -3646.3 

G
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50
0 

Time (sec) 2040 4499 7238.4 12957 

Crossover 0.5,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 633 798 1016 878 
Avg. fitness -3357.8 -3876.7 -4101.4 -4624.2 50

 

Time (sec) 279 586 612 1498 
Fitness 1277 1505 1612 1466 
Avg. fitness -3083.9 -3921.2 -4210.0 -4494.3 10

0 

Time (sec) 579 1163 1759 2959 
Fitness 1790 1561 1682 1505 
Avg. fitness -2511.3 -3418.5 -4058.2 -4556.6 

G
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50
0 

Time (sec) 2599 5635 9085 12069 

Crossover 0.8,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 1010 1098 1111 1069 
Avg. fitness -3145.6 -3723.2 -4366.6 -4392.8 50

 

Time (sec) 284 590 913 1491 
Fitness 1203 1245 1218 1335 
Avg. fitness -2895.7 -3801.8 -4364.6 -4600.9 10

0 

Time (sec) 532 1100 1695 2841 
Fitness 1640 1493 1633 1690 
Avg. fitness -2363.8 -3542.3 -3895.7 -4460.5 

G
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50
0 

Time (sec) 2752 5049 7666 1327 
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Crossover 0.9,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 752 529 552 1000 
Avg. fitness -2917.7 -5388.7 -4517.9 -4046.4 50

 

Time (sec) 76 165 251 414 
Fitness 311 1118 927 948 
Avg. fitness -2146.7 -4190.5 -1957.1 -4372.1 10

0 

Time (sec) 118 291 372 748 
Fitness 1468 1536 1625 1536 
Avg. fitness 751.2 -450.5 -1314.1 -1314.7 

G
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50
0 

Time (sec) 501 1168 1744 3012. 

Crossover 1.0,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 259 1194 281 1138 
Avg. fitness -2323.2 -882.2 -4424.0 -4294.8 50

 

Time (sec) 135 274 490 833 
Fitness 698 922 1643 1795 
Avg. fitness -1018.6 -2314.6 -1180.2 -3554.8 10

0 

Time (sec) 254 537 873 1522 
Fitness 1829 1083 1744 1536 
Avg. fitness 785.2 -366.6 755.9 -1369.5 

G
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50
0 

Time (sec) 1128 2513 3331 6550 

Crossover 0.9,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 534 678 649 866 
Avg. fitness -1979.7 -3156.8 -3969.1 -4834.7 50

 

Time (sec) 85 170 291 499 
Fitness -88 1590 991 1153 
Avg. fitness -2016.2 -2283.2 -2825.5 -3938.0 10

0 

Time (sec) 157 329 516 921 
Fitness 1447 1763 1970 1883 
Avg. fitness -55.0 -771.3 -907.4 -3460.8 

G
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50
0 

Time (sec) 736 1447 2254 2783 

Crossover 1.0,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 701 1321 1302 865 
Avg. fitness -967.1 -1988.8 -3464.9 -3978.0 50

 

Time (sec) 125 312 514 818 
Fitness 473 579 1415 904 
Avg. fitness -1503.6 -3320.4 -1246.7 -3926.0 10

0 

Time (sec) 262 623 794 847 
Fitness 1500 1729 1664 1587 
Avg. fitness 137.9 167.6 -185.3 -1634.2 

G
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50
0 

Time (sec) 1086 2468 3983 7279 

Crossover 0.9,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 455 1287 616 1184 
Avg. fitness -2685.6 -2498.8 -3136.2 -4964.8 50

 

Time (sec) 175 361 568 1126 
Fitness 1451 1731 1059 1294 
Avg. fitness -1421.5 -2570.8 -2878.3 -4095.1 10

0 

Time (sec) 333 686 1019 1869 
Fitness 1801 1287 1356 1754 
Avg. fitness -198.1 -2498.8 -2205.7 -3640.7 

G
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50
0 

Time (sec) 1663 3290 5173 9347 

Crossover 1.0,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 628 1447 1170 878 
Avg. fitness -2384.7 -4498.6 -2902.0 -4394.9 50

 

Time (sec) 217 467 608 1166 
Fitness 999 1785 1257 1175 
Avg. fitness -1419.2 -1811.6 -3396.5 -3911.2 10

0 

Time (sec) 386 818 1361 2209 
Fitness 1897 1785 1480 1578 
Avg. fitness -215.3 -1811.6 -2501.1 -2993.8 

G
en
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50
0 

Time (sec) 1898 4370 6984 12137 

Crossover 0.9,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 685 1009 1219 1421 
Avg. fitness -2549.4 -3702.5 -3984.2 -4128.1 50

 

Time (sec) 251 591 897 1517 
Fitness 1217 1089 1106 1369 
Avg. fitness -2172.9 -2778.8 -3157.1 -3243.7 10

0 

Time (sec) 462 824 1693 2805 
Fitness 1787 1887 1732 1525 
Avg. fitness -651.9 -2216.0 -2899.8 -3926.6 

G
en
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ns

 

50
0 

Time (sec) 2413 5265 8282 14289 

Crossover 1.0,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 1272 1459 949 1349 
Avg. fitness -1850.9 -3129.0 -4530.7 -4304.7 50

 

Time (sec) 246 547 932.8 1512 
Fitness 1496 1464 1181 1565 
Avg. fitness -1557.3 -2744.3 -3202.9 -4306.0 10

0 

Time (sec) 501 1086 1701 2966 
Fitness 1755 1850 1706 1794 
Avg. fitness -955.4 -2763.2 -3547.8 -4034.5 

G
en
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50
0 

Time (sec) 2656 6211 9828 1691 

Crossover 0.9,   mutation = 0.05 

Populations  
10 20 30 50 

Fitness 788 668 711 870 
Avg. fitness -3420.7 -3965.2 -4342.3 -4652.8 50

 

Time (sec) 291.2 597 910.4 1540.8 
Fitness 1189 704 1041 1303 
Avg. fitness -3040.7 -4111.1 -4063.3 -4587.1 10

0 

Time (sec) 557.7 1256 1752.3 3205.95 
Fitness 1669 1257 1336 1658 
Avg. fitness -2366.0 -3715.2 -3971.4 -4448.6 

G
en
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ns

 

50
0 

Time (sec) 2988 6665 10639.8 17712 

Crossover 1.0,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 1347 780 944 775 
Avg. fitness -3019.5 -3782.9 -4580.6 -4452.4 50

 

Time (sec) 270 542 947 1553 
Fitness 1718 1208 1026 902 
Avg. fitness -2459.1 -3733.3 -4215.7 -4495.5 10

0 

Time (sec) 625 1375 2047 3576 
Fitness 1573 1624 1652 1686 
Avg. fitness -2664.9 -3592.5 -4222.7 -4630.5 

G
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50
0 

Time (sec) 3252 6760 10681 18422 
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From the experiments of pattern B, the 240 instances are tested based on the 

various characteristics of GA parameters. Also, the outputs of all runs are normalized 

using the respective minimal and maximal values of the fitness in the Pareto-fronts 

where more than a half of experiments present the high fitness value. By which, the 

data are not normally distributed. The histogram has been used to present the fitness 

frequency from the various characteristics of GA parameters that can be illustrated 

below. 

 

          
(a)                (b) 
 

Figure 5.3: (a) the statistical data of pattern B and  

(b) the histogram of the fitness values tested by the various GA parameters. 

 

Similar to the pattern A, the various probabilities of crossovers and mutations of 

pattern B found on each run are not significantly influent the fitness value. Whereas the 

high populations and high generations influent the high fitness value significantly. 

Using the Pareto-optimal fronts, the dominated GA parameters covered 80% instances 

of populations and generations can be illustrated with the circle using the following 

table. 

 
Populations  

10 20 30 50 

50     

100  ● ● ● 
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500 ● ● ● ● 

 

Pattern B: Statistical data of the fitness value 

Mean           1184.41 

Medium           1243.50 

Std Dev                          462.35 

Std Error Mean          29.84 

Upper 95% Mean          1243.20 

Upper 95% Mean          1243.62 

Numbers           240 



 67

The experiments of pattern C: 
 

 

 

 

 

Crossover 0.5,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 124 754 606 912 
Avg. fitness -500.9 -1383.8 -1877.8 -1857.5 50

 

Time (sec) 30 79 115 202 
Fitness 2471 2476 2036 2683 
Avg. fitness -1744.9 -256.0 -1456.5 -1562.3 10

0 

Time (sec) 83 127 207 368 
Fitness 2607 3594 3427 3622 
Avg. fitness 1713.3 2695.3 2813.4 -237.4 

G
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50
0 

Time (sec) 272 489 788 1616 

Crossover 0.8,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 688 259 714 871 
Avg. fitness 1271.4 -1469.2 -1060.3 -928.0 50

 

Time (sec) 46 380 157 386 
Fitness 1623 2575 2744 3079 
Avg. fitness 317.6 -760.5 -2833.4 -1098.6 10

0 

Time (sec) 80 182 262 450 
Fitness 1435 3663 3363 3208 
Avg. fitness 407.7 2455.4 695.5 -188.3 

G
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50
0 

Time (sec) 80 182 262 450 

Crossover 0.5,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 556 307 116 1104 
Avg. fitness -736.3 -842.9 -1141.8 -1623.5 50

 

Time (sec) 55 108 265 531 
Fitness 1840 2396 2760 1558 
Avg. fitness -775.2 -400.6 -271.4 -1631.2 10

0 

Time (sec) 92 223 279 579 
Fitness 3627 3618 3466 3676 
Avg. fitness 2189.1 2542.9 2137.6 1261.3 

G
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50
0 

Time (sec) 395 782 1153 2234 

Crossover 0.8,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 926 1621 1211 1184 
Avg. fitness 1784.8 744.7 -456.4 -341.8 50

 

Time (sec) 68 125 179 295 
Fitness 2961 2834 2872 3146 
Avg. fitness -319.9 218.8 -182.9 -975.0 10

0 

Time (sec) 100 249 362 647 
Fitness 3743 3523 3842 3743 
Avg. fitness 996.1 1278.1 3010.2 603.1 

G
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50
0 

Time (sec) 100 249 362 647 

Crossover 0.5,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 533 434 1458 1258 
Avg. fitness -709.6 -745.6 -611.6 -1562.3 50

 

Time (sec) 152 312 436 791 
Fitness 2951 2433 2974 3404 
Avg. fitness 1254.1 -655.4 -544.2 -1078.8 10

0 

Time (sec) 209 235 255 1554 
Fitness 3324 3345 3711 3804 
Avg. fitness 766.7 1024.6 -91.5 -98.6 

G
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50
0 

Time (sec) 1417 2675 4380 6410 

Crossover 0.8,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 265 675 1401 1554 
Avg. fitness -1282.2 -1124.5 -1481.0 -676.2 50

 

Time (sec) 163 347 490 365 
Fitness 2678 2975 3162 3236 
Avg. fitness 2129.3 -654.2 -593.9 -1741.7 10

0 

Time (sec) 243 688 897 1664 
Fitness 3524 3936 3935 3818 
Avg. fitness 1752.7 1244.3 -161.7 -195.7 

G
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50
0 

Time (sec) 243 688 897 1664 

Crossover 0.5,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 1221 1168 983 1009 
Avg. fitness -308.6 -472.1 -688.1 -1595.3 50

 

Time (sec) 216 443 670 892 
Fitness 2806 2831 3643 3025 
Avg. fitness -612.3 -953.0 -1099.0 -3805.2 10

0 

Time (sec) 344 659 1138 2232 
Fitness 3028 3152 3378 3223 
Avg. fitness 859.2 -2037.2 -1218.5 -3400.2 
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50
0 

Time (sec) 1774 3954 5990 7743 

Crossover 0.8,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 1580 328 1259 1321 
Avg. fitness -222.5 -278.6 -1642.6 -451.9 50

 

Time (sec) 221 445 826 887 
Fitness 2711 3395 3684 3102 
Avg. fitness -1486.4 -1523.5 -1114.5 -375.3 10

0 

Time (sec) 498 1344 1626 2524 
Fitness 3451 3700 3215 3504 
Avg. fitness 902.5 -1196.5 -966.2 366.3 

G
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50
0 

Time (sec) 498 1344 1626 2524 

Crossover 0.5,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 1367 1164 1696 1218 
Avg. fitness -744.5 -970.3 -1784.6 -1423.6 50

 

Time (sec) 260 528 826 1365 
Fitness 3348 3259 3482 2876 
Avg. fitness 53.2 -855.9 -1088.9 -1507.2 10

0 

Time (sec) 499 1043 1448 2772 
Fitness 3323 3621 3540 3486 
Avg. fitness -97.0 -646.1 -1052.3 -1500.7 

G
en

er
at

io
ns

 

50
0 

Time (sec) 2532 5182 7730 8185 

Crossover 0.8,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 1187 2094 2731 2923 
Avg. fitness -259.7 -1047.0 -1266.1 -1330.4 50

 

Time (sec) 252 503 791 1335 
Fitness 2943 3530 3347 3419 
Avg. fitness -511.1 -871.8 -1220.1 -1473.3 10

0 

Time (sec) 643 1030 3637 4786 
Fitness 3788 3384 3592 3627 
Avg. fitness 137.2 -868.9 -1087.8 -1457.5 

G
en

er
at

io
ns

 

50
0 

Time (sec) 643 1030 3637 4786 
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Crossover 0.9,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 792 215 432 1056 
Avg. fitness -511.7 -799.3 -1392.5 -1239.6 50

 

Time (sec) 57 142 357 474 
Fitness 1913 3786 1941 2865 
Avg. fitness -747.8 2129.2 -1507.4 -372.1 10

0 

Time (sec) 153 198 442 1485 
Fitness 3445 3092 3659 3426 
Avg. fitness 2925.0 1632.7 2456.9 -477.5 

G
en

er
at

io
ns

 

50
0 

Time (sec) 471 1049 1430 3197 

Crossover 1.0,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 670 794 695 1286 
Avg. fitness 254.0 1432.0 -1005.1 -1880.1 50

 

Time (sec) 116 199 452 702 
Fitness 2690 2355 2726 2868 
Avg. fitness 478.0 -1303.0 -898.2 -1477.8 10

0 

Time (sec) 230 543 869 1485 
Fitness 3296 3683 3384 3716 
Avg. fitness 2882.1 2468.6 2821.9 2711.0 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1011 2110 3000 5128 

Crossover 0.9,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 281 627 1557 1078 
Avg. fitness 1979.4 -771.3 969.2 -834.8 50

 

Time (sec) 83 244 749 1046 
Fitness 2112 2816 2378 2767 
Avg. fitness 1016.2 -315.7 -1825.5 -393.8 10

0 

Time (sec) 224 475 655 1543 
Fitness 3472 3231 3728 3519 
Avg. fitness 1549.7 1288.3 907.4 -346.1 

G
en

er
at

io
ns

 

50
0 

Time (sec) 845 1572 3154 5543 

Crossover 1.0,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 361 677 1543 2057 
Avg. fitness -1170.2 -2187.7 -3811.4 -4375.8 50

 

Time (sec) 157 286 847 1169 
Fitness 2851 2042 2547 1627 
Avg. fitness -1653.9 -3652.4 -1371.3 -4318.6 10

0 

Time (sec) 288 657 1105 1642 
Fitness 2700 3112 3795 3856 
Avg. fitness 151.7 184.3 -203.9 -1797.7 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1239 2936 4626 8862 

Crossover 0.9,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 848 770 901 1112 
Avg. fitness 1148.2 -736.3 -1121.9 -1567.6 50

 

Time (sec) 137 337 883 1196 
Fitness 2086 3403 3471 2947 
Avg. fitness 1600.6 -279.2 261.5 -1381.5 10

0 

Time (sec) 273 573 960 1768 
Fitness 3845 3618 3618 3319 
Avg. fitness 2302.9 -122.1 -122.1 -1145.6 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1354 3533 4926 7919 

Crossover 1.0,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 1792 1154 2264 2161 
Avg. fitness 213.3 -630.3 -77.2 -1637.8 50

 

Time (sec) 297 391 993 1225 
Fitness 2650 2834 3694 2947 
Avg. fitness 1013.7 632.6 -793.1 -1381.5 10

0 

Time (sec) 334 712 1174 1768 
Fitness 3859 3670 3555 3549 
Avg. fitness 2618.1 1159.8 213.0 -557.0 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1507 3649 5572 10050 

Crossover 0.9,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 1439 1119 1660 1284 
Avg. fitness -542.9 -702.5 849.2 -842.6 50

 

Time (sec) 233 427 911 1221 
Fitness 2556 3287 3223 3150 
Avg. fitness 273.0 -779.9 -735.6 -937.3 10

0 

Time (sec) 412 879 1328 2435 
Fitness 3452 3462 3637 3202 
Avg. fitness 561.2 1817.5 -988.8 -1260.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1766 4326 6533 9023 

Crossover 1.0,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 2609 2990 2945 2765 
Avg. fitness 890.5 1129.0 543.8 -347.6 50

 

Time (sec) 332 455 1034 1303 
Fitness 3067 3000 3421 3208 
Avg. fitness -553.7 -7554.4 -323.0 -1537.3 10

0 

Time (sec) 442 893 1336 2435 
Fitness 3597 3393 3497 3674 
Avg. fitness -1355.4 2123.3 -754.4 -1191.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1922 3649 4134 11525 

Crossover 0.9,   mutation = 0.05 

Populations  
10 20 30 50 

Fitness 1309 1043 2985 3247 
Avg. fitness -673.4 -1271.6 -1324.9 -1560.1 50

 

Time (sec) 250 492 975 1275 
Fitness 2766 3000 3630 3631 
Avg. fitness -263.3 -1079.3 -1344.3 -1394.9 10

0 

Time (sec) 488 996 1527 2761 
Fitness 3751 3456 3363 3681 
Avg. fitness -57.6 -738.5 -1322.2 -1485.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 2395 4914 7575 11724 

Crossover 1.0,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 1883 2683 3129 2834 
Avg. fitness -1005.6 -1271.6 -1465.6 -1685.6 50

 

Time (sec) 458 506 1193 1329 
Fitness 2074 3430 2982 3004 
Avg. fitness -430.3 -1095.4 -1444.8 -1554.9 10

0 

Time (sec) 503 1033 1574 2793 
Fitness 3533 3576 3625 3412 
Avg. fitness -228.4 -1027.6 -1454.1 -1589.3 

G
en

er
at

io
ns

 

50
0 

Time (sec) 2491 5349 7886 13898 
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From the experiments, the 240 instances of pattern C are tested based on the 

various characteristics of GA parameters. Similarly, the outputs of all runs are 

normalized using the respective minimal and maximal values of the fitness in the 

Pareto-fronts where more than a half of experiments present the high fitness value. By 

which, the data are not normally distributed. The histogram has been used to present the 

fitness frequency from the various characteristics of GA parameters that can be 

illustrated below. 

 

          
(a)       (b) 
 

Figure 5.4: (a) the statistical data of pattern C and  

(b) the histogram of the fitness values tested by the various GA parameters. 

 

As a result, the various probabilities of crossovers and mutations of pattern C 

found on each run are not significantly influent the fitness value. Whereas the high 

populations and high generations influent the high fitness value significantly. Using the 

Pareto-optimal fronts, the dominated GA parameters covered 80% instances of 

populations and generations can be illustrated with the circle using the following table. 

 
Populations  

10 20 30 50 

50     

100  ● ● ● 

G
en

er
at

io
ns

 

500 ● ● ● ● 

 

 

Pattern C: Statistical data of the fitness value 

Mean            3055.26 

Medium            3157.5 

Std Dev                           585.99 

Std Error Mean           37.82 

Upper 95% Mean           3129.78 

Upper 95% Mean           2980.75 

Numbers            240 
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The experiments of pattern D: 
 

 

 

 

 

Crossover 0.5,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 224 262 289 295 
Avg. fitness -1092.7 -3009.4 -4006.9 -4380.8 50

 

Time (sec) 49 64 104 160 
Fitness 779 672 59 912 
Avg. fitness -2826.7 -3712.3 -2341.7 -3905.9 10

0 

Time (sec) 84 103 147 287 
Fitness 1245 1021 1487 1220 
Avg. fitness -1358.4 -1056.0 -2233.4 -1910.4 

G
en

er
at

io
ns

 

50
0 

Time (sec) 187 395 625 1094 

Crossover 0.8,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 157 346 545 583 
Avg. fitness -2246.7 -3256.9 -3546.4 -6219.3 50

 

Time (sec) 56 84 106 211 
Fitness 893 1532 1793 1026 
Avg. fitness -1820.3 -3747.6 -4208.0 -5897.9 10

0 

Time (sec) 128 147 216 412 
Fitness 1273 1644 1988 1623 
Avg. fitness -484.0 -1593.6 -1501.7 -3933.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 269 567 860 2163 

Crossover 0.5,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 458 533 765 544 
Avg. fitness -876.3 -1255.8 -2369.0 -855.5 50

 

Time (sec) 52 98 185 320 
Fitness 1130 256 1111 548 
Avg. fitness -970.2 -3663.0 -2423.4 -4532.4 10

0 

Time (sec) 101 158 223 404 
Fitness 1317 1764 2038 1737 
Avg. fitness -406.5 -1465.8 -3835.2 -3299.3 

G
en

er
at

io
ns

 

50
0 

Time (sec) 259 633 1100 1751 

Crossover 0.8,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 168 610 723 871 
Avg. fitness -3219.0 -4847.4 -3951.7 -3159.1 50

 

Time (sec) 56 103 137 284 
Fitness 531 1486 2046 1863 
Avg. fitness -3202.0 -4102.1 -2114.8 -5337.6 10

0 

Time (sec) 94 180 262 550 
Fitness 1239 1544 2098 2320 
Avg. fitness 1238.2 -836.3 -1431.9 -1665.6 

G
en

er
at

io
ns

 

50
0 

Time (sec) 315 852 2230 4455 

Crossover 0.5,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 233 442 411 315 
Avg. fitness -1445.6 -1233.7 -5609.7 -6052.5 50

 

Time (sec) 102 255 392 620 
Fitness 893 985 1320 1590 
Avg. fitness 543.3 -1489.4 -2330.9 -5895.1 10

0 

Time (sec) 239 676 981 1270 
Fitness 1998 2152 2295 2003 
Avg. fitness -1009.8 -3542.8 -3595.4 -4671.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 872 2110 3256 5791 

Crossover 0.8,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 543 445 895 940 
Avg. fitness 544.7 -2557.0 -3800.3 -5359.1 50

 

Time (sec) 133 298 351 706 
Fitness 233 887 1349 1850 
Avg. fitness -1190.6 -23456.0 -3904.0 -4819.1 10

0 

Time (sec) 308 723 690 1246 
Fitness 887 1355 2420 2235 
Avg. fitness -1290.4 -1448.6 -2911.8 -2356.9 

G
en

er
at

io
ns

 

50
0 

Time (sec) 945 2323 3240 6506 

Crossover 0.5,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 553 322 675 445 
Avg. fitness -3140.2 -3573.6 -2786.2 -3481.4 50

 

Time (sec) 178 386 688 870 
Fitness 566 1220 1100 1235 
Avg. fitness -1200.8 -2967.6 -2194.9 -2936.0 10

0 

Time (sec) 360 845 1550 1875 
Fitness 1366 1842 2113 2115 
Avg. fitness -711.9 -2035.8 -2361.3 -2832.3 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1558 3050 4998 7756 

Crossover 0.8,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 445 567 765 863 
Avg. fitness -1130.8 -1922.7 -3260.8 -4025.4 50

 

Time (sec) 187 360 488 966 
Fitness 566 1050 1912 1290 
Avg. fitness -1374.9 -2334.2 -2743.5 -3471.5 10

0 

Time (sec) 396 955 1046 1855 
Fitness 1120 1265 1456 1766 
Avg. fitness -834.8 -2031.7 -2743.6 -3372.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1661 3373 5339 8530 

Crossover 0.5,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 1256 1513 1508 1158 
Avg. fitness -5255.3 -5383.5 -5505.7 -6127.2 50

 

Time (sec) 219 430 843 1088 
Fitness 1318 1683 1346 1396 
Avg. fitness -4101.1 -4998.4 -5714.6 -6159.0 10

0 

Time (sec) 403 832 1289 2179 
Fitness 1827 1845 1979 2058 
Avg. fitness -3596.0 -4870.2 -5460.9 -5916.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 2020 3988 6536 10017 

Crossover 0.8,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 985 1158 1572 1178 
Avg. fitness -4682.3 -5304.5 -5449.7 -6138.2 50

 

Time (sec) 239 438 656 1118 
Fitness 1288 1608 1430 1366 
Avg. fitness -4307.2 -4829.5 -5623.3 -6130.6 10

0 

Time (sec) 423 1265 1301 2173 
Fitness 1979 1934 1861 1811 
Avg. fitness -3463.1 -4954.3 -5440.0 -5853.8 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1995 4208 6441 9937 
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Crossover 0.9,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 477 1414 1273 969 
Avg. fitness -3035.4 -3548.7 -5017.4 -4489.4 50

 

Time (sec) 58 112 170 300 
Fitness 988 882 1502 977 
Avg. fitness -1009.8 -3927.8 -1383.0 -5328.2 10

0 

Time (sec) 152 216 271 287 
Fitness 1844 2037 2086 1837 
Avg. fitness -1143.7 -73.2 217.9 -2117.4 

G
en

er
at

io
ns

 

50
0 

Time (sec) 287 395 1180 2239 

Crossover 1.0,   mutation = 0.0005 

Populations  

10 20 30 50 

Fitness 557 1154 931 1788 
Avg. fitness -2310.0 -4476.0 -5065.0 -5652.3 50

 

Time (sec) 93 226 367 619 
Fitness 549 928 479 1107 
Avg. fitness -1517.1 -2974.6 -5065.7 -5704.2 10

0 

Time (sec) 199 404 659 1156 
Fitness 1244 1881 2226 1784 
Avg. fitness -179.9 -321.4 -909.5 -2281.6 

G
en

er
at

io
ns

 

50
0 

Time (sec) 780 1596 2511 4488 

Crossover 0.9,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 445 567 776 998 
Avg. fitness -233.6 -292.5 -1724.7 -2474.5 50

 

Time (sec) 132 151 275 508 
Fitness 1230 2032 1549 1153 
Avg. fitness -1560.7 -1599.7 -1170.2 -3394.1 10

0 

Time (sec) 183 357 395 662 
Fitness 1255 2302 2355 1998 
Avg. fitness -1947.7 -1256.3 -1014.5 -2384.6 

G
en

er
at

io
ns

 

50
0 

Time (sec) 495 1324 2886 5012 

Crossover 1.0,   mutation = 0.001 

Populations  

10 20 30 50 

Fitness 511 1118 728 1417 
Avg. fitness 253.1 -134.3 -134.3 -1260.2 50

 

Time (sec) 123 182 325 723 
Fitness 1209 1827 2779 1750 
Avg. fitness 1263.0 -809.9 -1234.1 -1724.3 10

0 

Time (sec) 236 429 723 1155 
Fitness 1771 2091 2580 2448 
Avg. fitness 1760.6 -307.1 287.6 -1519.6 

G
en

er
at

io
ns

 

50
0 

Time (sec) 922 1665 3533 5322 

Crossover 0.9,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 658 875 996 1243 
Avg. fitness -2524.4 -2348.9 -2948.0 -4666.9 50

 

Time (sec) 147 303 489 766 
Fitness 1430 1445 1236 1345 
Avg. fitness -1336.2 -2416.6 -2705.6 -3849.4 10

0 

Time (sec) 352 805 705 1446 
Fitness 1560 1856 2332 2200 
Avg. fitness -186.2 -2348.9 -2073.4 -3422.3 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1259 2653 3362 7988 

Crossover 1.0,   mutation = 0.005 

Populations  

10 20 30 50 

Fitness 812 1263 818 686 
Avg. fitness -3390.7 -4966.0 -4080.1 -3072.1 50

 

Time (sec) 156 320 529 858 
Fitness 1796 1359 2166 1511 
Avg. fitness -1415.2 -4369.4 -3419.8 -5915.1 10

0 

Time (sec) 269 680 863 1692 
Fitness 1940 1904 1964 2138 
Avg. fitness -948.5 -2543.1 -4364.3 -2686.5 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1216 2777 4647 7943 

Crossover 0.5,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 766 1088 1290 970 
Avg. fitness -3849.8 -3582.1 -4495.7 -7117.0 50

 

Time (sec) 189 398 544 1021 
Fitness 860 1144 2239 2198 
Avg. fitness -2037.6 -3685.3 -4126.0 -5870.4 10

0 

Time (sec) 402 935 1123 1873 
Fitness 1776 2009 2120 2030 
Avg. fitness -283.9 -3582.1 -3161.9 -5219.0 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1728 3557 5789 9402 

Crossover 1.0,   mutation = 0.01 

Populations  

10 20 30 50 

Fitness 542 445 763 877 
Avg. fitness -1910.5 -5898.6 -4616.7 -4985.4 50

 

Time (sec) 211 405 612 989 
Fitness 1120 1237 2014 1228 
Avg. fitness -1280.4 -3433.1 -5891.9 -6326.8 10

0 

Time (sec) 420 929 1288 1830 
Fitness 2344 2554 2276 2098 
Avg. fitness -1260.7 2889.5 -2929.4 -3433.6 

G
en

er
at

io
ns

 

50
0 

Time (sec) 1893 4223 6128 9533 

Crossover 0.5,   mutation = 0.05 

Populations  
10 20 30 50 

Fitness 898 1159 1524 1534 
Avg. fitness -3971.7 -4845.9 -5674.7 -6082.2 50

 

Time (sec) 207 424 656 1101 
Fitness 1679 1277 1294 1486 
Avg. fitness -3994.6 -4840.3 -5620.3 -6016.7 10

0 

Time (sec) 413 988 1306 2163 
Fitness 1899 1941 1970 1895 
Avg. fitness -3584.1 -5084.5 -5469.9 -5984.0 

G
en

er
at

io
ns

 

50
0 

Time (sec) 2006 4218 6411 10067 

Crossover 1.0,   mutation = 0.05 

Populations  

10 20 30 50 

Fitness 1177 1270 1695 1482 
Avg. fitness -4388.9 -5361.4 -5757.3 -6176.3 50

 

Time (sec) 212 441 665 1102 
Fitness 1550 1868 1644 1553 
Avg. fitness -4515.5 -5449.6 -5931.4 -6315.0 10

0 

Time (sec) 427 974 1318 2199 
Fitness 1958 1845 1760 1805 
Avg. fitness -3941.5 -5051.5 -5643.3 -6106.2 

G
en

er
at

io
ns

 

50
0 

Time (sec) 2037 4192 6371 10131 
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From the experiments of pattern D, the 240 instances are tested based on the 

various characteristics of GA parameters. Similarly, the outputs of all runs are 

normalized using the respective minimal and maximal values of the fitness in the 

Pareto-fronts where more than a half of experiments present the high fitness value. By 

which, the data are not normally distributed. The histogram has been used to present the 

fitness frequency from the various characteristics of GA parameters that can be 

illustrated below. 

 

          
(a)       (b) 
 

Figure 5.5: (a) the statistical data of pattern D and  

(b) the histogram of the fitness values tested by the various GA parameters. 

 

Similar to all previous patterns, the various probabilities of crossovers and 

mutations of pattern D found on each run are not significantly influent the fitness value. 

Whereas the high populations and high generations significantly influent the high 

fitness value. Using the Pareto-optimal fronts, the dominated GA parameters covered 

80% instances of populations and generations can be illustrated with the circle using the 

following table. 

 
Populations  

10 20 30 50 

50     

100   ● ● 

G
en

er
at
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ns

 

500 ● ● ● ● 

 

Pattern D: Statistical data of the fitness value 

Mean            1856.43 

Medium            1908.00 

Std Dev                           629.02 

Std Error Mean           40.60 

Upper 95% Mean           1936.42 

Upper 95% Mean           1776.45 

Numbers            240 
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 As the results, the experiments from patterns A, B, C and D present the high 

fitness value when the populations and generations increase.  The high levels of 

population of 30, 50 and the generations of 100, 500 present achievements of the high 

levels of the fitness value included the average fitness values in all patterns. While, the 

high levels of crossover and mutation are the most disruptive and also achieve the 

lowest levels of construction of gene. This means that by using high levels of crossover 

and mutation, the chance that new candidate gene are found decreases. The 

performance of GA is not so much influenced by these operators than the population 

sizes and generations. Therefore, this thesis uses the common crossover of 0.9 and 

mutation 0.001 suggested by De jong (1975) and Goldberg (1985).  

The appropriated GA parameters selected here are sufficiently to solve the 

architectural layout design problem. The Pareto-fronts have been adopted to guarantee 

these GA parameters which dominate 80% of the fitness values. Nevertheless, the 

characteristics of GA parameters used in this thesis are selected by concerning the 

trade-off between the high fitness value in the Pareto-fronts and the minimal running 

time. The appropriated GA parameters well suited for pattern A, B, C and D can be 

described as the following statements. 

  - Population size of 30 

  - Generation of 100 

  - Crossover probability of 0.9 

  - Mutation probability of 0.001 

  - Selection is a roulette wheel. 
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5.3 MIP, Valid Inequalities and Learning Methodology Results 
 

In this section, the medium-sized instances (4-10 rooms) are experimented and 

illustrated. To measure each methodology performance, the objective values, the 

number of iterations, the computational iteration percentages and the computational 

time, are illustrated on table 5.1, table 5.2 and table 5.3, respectively.  

In the table 5.1, each configuration illustrates the objective values and the 

numbers of iterations among AL-MIP, AL-MIP+ and AL-MIP+GA. 

In the table 5.2, each configuration illustrates the two parts of the computational 

iteration percentages from AL-MIP, AL-MIP+ and AL-MIP+GA. First, the 

computational iteration percentages of AL-MIP+ illustrate the comparison between AL-

MIP+ and AL-MIP. Second, the computational iteration percentages of AL-MIP+GA 

illustrate the comparison among AL-MIP and AL-MIP+. 

In the table 5.3, each configuration illustrates the computational time and the 

computational time percentages of AL-MIP, AL-MIP+ and AL-MIP+GA among the 

four distinct patterns A, B, C and D. This table illustrates the two parts of the 

computational time and the computational time percentage gains.  

Indeed, the GA parameters used in this thesis are experimented on a medium-

sized problem of 4, 5, 6, 7, 8, 9 and 10 room configurations among the distinct pattern 

A, B, C and D. Each experiment has been performed with population sizes of 30, 

generation iterations of 100, crossover probability of 0.9 and mutation probability of 

0.001, see table 5.3. 
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Table 5.1: Iteration comparisons of AL-MIP, AL-MIP+ and AL-MIP+GA. 

   AL-MIP AL_MIP+ AL-MIP+GA

Room Patterns Objective     non-circular non-circular and  
No.     Value         AL-MIP advised AL-MIP   

       
4 A 15 1.10E+03 8.49E+02 6.15E+02 4.53E+02 
 B 17 1.19E+03 1.04E+03 6.17E+02 4.55E+02 
 C 18 1.39E+03 1.21E+03 6.55E+02 5.29E+02 
 D 15 1.07E+03 1.01E+03 5.51E+02 4.81E+02 
       
       

5 A 50 1.31E+04 1.06E+04 6.99E+03 3.69E+03 
 B 50 8.88E+03 7.62E+03 3.65E+03 2.41E+03 
 C 55 1.11E+04 8.66E+03 5.04E+03 1.82E+03 
 D 50 1.52E+04 1.13E+04 5.56E+03 3.81E+03 
       
       

6 A 90 1.84E+05 1.16E+05 4.38E+04 2.78E+04 
 B 93 4.38E+04 2.59E+04 1.62E+04 1.06E+04 
 C 104 6.11E+04 2.62E+04 2.55E+04 5.40E+03 
 D 94 2.27E+05 1.26E+05 2.71E+04 2.39E+04 

       
       

7 A 150 5.25E+06 3.23E+06 2.51E+05 1.83E+05 
 B 166 1.76E+05 8.54E+04 5.65E+04 4.08E+04 
 C 165 2.01E+05 1.36E+05 9.22E+04 3.23E+04 
 D 151 1.11E+06 1.01E+06 1.35E+05 1.04E+05 

       
       

8 A 225 1.65E+08 1.04E+08 3.00E+06 1.98E+06 
 B 237 7.80E+05 6.27E+05 2.79E+05 1.64E+05 
 C 255 8.69E+05 6.82E+05 5.92E+05 1.96E+05 
 D 240 9.07E+06 4.86E+06 1.75E+06 6.89E+05 

       
       

9 A 310 7.55E+08 5.75E+08 1.71E+07 1.15E+07 
 B 350 2.90E+06 1.77E+06 1.53E+06 7.71E+05 
 C 370 3.57E+06 2.85E+06 8.55E+05 4.75E+05 
 D 329 1.41E+08 7.55E+07 3.77E+06 2.46E+06 

       
       

10 A 425 2.18E+09 1.15E+09 4.15E+07 2.65E+07 
 B 482 1.41E+07 8.04E+06 3.63E+06 1.70E+06 
 C 526 1.08E+07 5.65E+06 4.21E+06 1.60E+06 
 D 449 6.24E+08 2.94E+08 2.61E+07 1.78E+07 
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Table 5.2: Iteration percentage comparisons of AL-MIP, AL-MIP+ and AL-MIP+GA. 

  Valid Inequalities Learning Methodology 

Room Patterns Compare Compare non-Circular Compare non-Circular Compare AL-MIP+GA with 

No.  non-circular and advised AL-MIP and advised AL-MIP AL-MIP non-circular non-circular and 

    with AL-MIP with AL-MIP with non-circular AL-MIP  AL-MIP advised AL-MIP 

        
4 A 22.61 43.94 27.56 58.71 46.64 26.34 
 B 12.68 48.19 40.67 61.80 56.25 26.26 
 C 12.81 52.88 45.96 61.94 56.35 19.24 
 D 6.07 48.55 45.23 55.09 52.19 12.70 
        
        

5 A 19.38 46.84 34.06 71.93 65.18 47.19 
 B 14.25 58.91 52.09 72.86 68.35 33.95 
 C 22.01 54.63 41.82 83.65 79.04 63.97 
 D 25.77 63.42 50.71 74.88 66.16 31.34 
        
        

6 A 37.28 76.25 62.12 84.93 75.97 36.56 
 B 40.76 62.98 37.50 75.72 59.01 34.41 
 C 57.08 58.27 2.77 91.17 79.43 78.84 
 D 44.32 88.06 78.55 89.47 81.09 11.82 
        
        

7 A 38.56 95.22 92.22 96.52 94.34 27.23 
 B 51.37 67.82 33.83 76.73 52.15 27.69 
 C 32.65 54.17 31.95 83.96 76.18 65.00 
 D 8.68 87.87 86.72 90.63 89.74 22.79 
        
        

8 A 37.21 98.18 97.10 98.80 98.09 34.04 
 B 19.60 64.28 55.57 78.92 73.78 40.98 
 C 21.46 31.83 13.20 77.42 71.25 66.88 
 D 46.37 80.74 64.09 92.40 85.82 60.52 
        
        

9 A 23.88 97.74 97.03 98.48 98.00 32.59 
 B 38.93 47.10 13.39 73.37 56.39 49.65 
 C 20.23 76.05 69.98 86.70 83.33 44.48 
 D 46.44 97.33 95.01 98.26 96.74 34.74 
        
        

10 A 47.01 98.09 96.40 98.78 97.71 36.24 
 B 43.20 74.36 54.86 87.96 78.80 53.04 
 C 47.48 60.85 25.45 85.09 71.61 61.91 
 D 52.90 95.81 91.10 97.15 93.96 32.08 
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Table 5.3: Time and Time percentage comparisons of AL-MIP, AL-MIP+ and AL-MIP+GA. 

  Computational time (sec)  Percentage gains (%) 
Room Patterns AL-MIP AL-MIP+ AL-MIP+GA  Compare AL-MIP+GA with 

No.   non-circular non-circular and   AL-MIP non-circular non-circular and 

     AL-MIP advised AL-MIP    AL-MIP advised AL-MIP 

          
4 A 0.06 0.05 0.04 0.03  50.00 40.00 25.00 
 B 0.09 0.08 0.05 0.04  55.56 50.00 20.00 
 C 0.08 0.07 0.05 0.04  50.00 42.86 20.00 
 D 0.05 0.05 0.04 0.03  40.00 40.00 25.00 
              
          
5 A 0.36 0.31 0.23 0.18  50.00 41.94 21.74 
 B 0.31 0.25 0.14 0.11  64.52 56.00 21.43 
 C 0.31 0.24 0.16 0.11  64.52 54.17 31.25 
 D 0.41 0.3 0.17 0.12  70.73 60.00 29.41 
              
          
6 A 5.93 3.62 1.35 1.17  80.27 67.68 13.33 
 B 1.15 0.77 0.54 0.43  62.61 44.16 20.37 
 C 1.86 0.79 0.77 0.60  67.74 24.05 22.08 
 D 7.24 4.07 0.87 0.74  89.78 81.82 14.94 
              
          
7 A 320.97 179.71 9.42 6.13  98.09 96.59 34.93 
 B 5.32 2.82 2.02 1.46  72.56 48.23 27.72 
 C 6.55 4.23 3.55 1.81  72.37 57.21 38.44 
 D 44.81 40.42 4.32 2.54  94.33 93.72 41.20 
              
          
8 A 11444.71 7897.16 114.9 67.73  99.41 99.14 35.43 
 B 26.86 21.94 11.82 7.77  71.07 64.59 34.26 
 C 32.45 24.7 20.35 11.19  62.43 50.65 45.01 
 D 595.06 316.8 80.16 42.09  92.93 86.71 47.49 
              
          
9 A 38685.49 17362.18 918.03 537.83  98.61 96.90 41.41 
 B 114.97 71.86 59.93 41.78  58.44 33.51 30.29 
 C 172.07 134.88 36.98 24.47  85.78 81.86 33.83 
 D 12699.56 5979.77 290.96 161.98  98.72 97.29 44.33 
              
          
10 A 188851.03 83266.98 8327.53 4946.26  97.38 94.06 40.60 
 B 829.99 469.99 259.79 178.60  76.07 57.74 31.25 
 C 1142.34 841.63 325.59 119.05  89.58 85.85 63.44 
 D 48987.75 26561.01 2452.82 1187.83  97.58 95.53 51.57 
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Table 5.1 shows the objective value, the number of iterations, the computational 

time in seconds and the percentage gains among AL-MIP, AL-MIP+ and AL-MIP+GA 

of four architectural patterns vary from 4 to 10 rooms. The column of the objective 

value is used to compare the optimal solutions from all methodologies. All experiments 

have the same objective values even though they are different solutions. These results 

confirm with the theory of mathematical optimization.  

According to the table 5.1, the distinct patterns A, B, C and D of 5-10 room 

configurations illustrate the various computational iterations. A linear configuration 

(pattern A) uses higher computational iterations. A nested wheel configuration (pattern 

D) uses less computational iterations than a linear configuration while a rail (pattern B) 

and a connected configuration (pattern C) use a small numbers in computational 

iterations. This due to the structural connectivity composes of a large number of 

repeated patterns of a circular connection that utilizes the non-circular AL-MIP which 

reduces a feasible region more than a linear and a nested wheel configuration (pattern A 

and D). For a small room number (4-5 rooms), two computational iterations of a rail 

and a connected wheel configuration have similar of computational iterations. Both 

show the similar exponential growth. For a medium room number (6 – 10 rooms), a 

connected wheel configuration presents a quite different computational iteration 

between a rail and a connected wheel configuration that differentiate more than 3 times 

for a 10 rooms. This illustrates that the connected circular constraints as a wheel 

configuration is suitable to use with a wheel configuration. 

Table 5.2 shows the performance among AL-MIP, AL-MIP+ and AL-MIP+GA. 

The percentage gain is computed by subtracting a measure (computational iterations) of 

the AL-MIP and AL-MIP+ from the AL-MIP+GA. The larger the positive value is, the 

better the gain will be. Note that different patterns have different percentage gains. To 

measure the performance gain of AL-MIP+GA, the final column presents the 

percentages AL-MIP+GA comparison with our previous methodology AL-MIP+. For a 

linear configuration (Pattern A), the minimum and maximum iteration percentages are 

26.34 and 47.19 for 4 and 6 rooms. For a rail configuration (Pattern B), the minimum 

and maximum iteration percentages are 26.26 and 53.04 for 4 and 10 rooms. For a 

connected wheel configuration (Pattern C), the minimum and maximum iteration 

percentages are 19.24 and 78.84 for 4 and 6 rooms. For a nested wheel configuration 

(Pattern D), the minimum and maximum iteration percentages are 11.82 and 60.52 of 6 

and 8 rooms respectively. 
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An average computational iteration from 4-10 rooms of a linear configuration 

(Pattern A) is 38.00, a rail configuration (Pattern B) is 38.00, a connected wheel is 

57.19 and a nested wheel is 29.43 respectively. 

According to table 5.2, at the forth and fifth columns, the computational 

iteration percentage gains of valid inequalities present higher reduction of the advised 

AL-MIP than non-circular AL-MIP. In a medium room number (6-10 rooms), an 

advised AL-MIP presents a high reduction in a linear configuration. This presents an 

advised AL-MIP+, is highly suitable for a linear configuration. Moreover, at the final 

column, the learning methodology using GA presents the higher reduction of 

computational iterations in a rail and a connected wheel configuration. This presents a 

room configuration with a higher connection degree among each room is suitable for 

the AL-MIP+GA. 

Table 5.3 illustrates the computational time percentages among AL-MIP, AL-

MIP+ and AL-MIP+GA of four architectural patterns varying from 4 to 10 rooms. For a 

linear configuration (Pattern A), the percentage gains of the minimum and the 

maximum are 13.33 and 41.05 of 6 and 8 rooms. For a rail configuration (Pattern B), 

the percentage gains of the minimum and the maximum are 20.00 and 27.72 of 4 and 7 

rooms. For a connected wheel configuration (Pattern A), the percentage gains of the 

minimum and the maximum are 20.00 and 63.44 of 4 and 10 rooms. For a nested wheel 

configuration (Pattern D), the percentage gains of the minimum and the maximum are 

14.49 and 51.57 of 6 and 10 rooms. 

An average computational time from 4-10 rooms of a linear configuration 

(Pattern A) is 27.82, a rail configuration (Pattern B) is 22.03, a connected wheel is 

35.59 and a nested wheel is 48.48, respectively. 

To summarize all patterns, AL-MIP+GA achieves the iterations and time more 

than 44% and 25% for 5 rooms while AL-MIP+GA achieve the iterations and time 

more than 45% and 43% for 10 rooms respectively. These results illustrate, the larger 

the problem is the larger the percentage gain will be. For a linear configuration (pattern 

B) and a rail configuration (pattern C), we can achieve more than average 40% of the 

iteration improvement over 6 rooms. This due to the structural connectivity composes 

of a large number of repeated patterns of circular connections. The memory usages also 

improve for a larger problem sizes due to the small number of iterations. 
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• Fitness and the Candidate Special Order Set Results 

As far as GA is concerned, the fitness curve and the candidate SOS vary from 4-

10 rooms of patterns A, B, C and D. These can illustrate using the figure 5.6 to figure 

5.12, respectively. 
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Figure 5.6: The 4 rooms fitness of computational iterations  

(a) between room A and room D, (b) between room B and room C and  

(c) illustrates 4 rooms candidate SOS variable pij and qij of pattern A, B, D and D. 

 

 

 

 

 

 

 

 

 

 

 

4 Rooms: the candidate SOS 

Branching 
Orders 

Pattern A Pattern B Pattern C Pattern D 

1 q14 q34 q23 p34 
2 q24 p24 q14 q12 
3 q24 q34 p34 q24 
4 p14 q24 p13 p34 
5 q14 p23 p24 p34 
6 p24 q12 q12 q13 
7 q13 p14 p13 p12 
8 p13 p34 q13 p13 
9 q13 q12 q24 p34 

10 p24 q23 q13 p34 
11 p14 p14 p24 p12 
12 q24 q14  q34 
13  p12  q34 
14  p23   
15     
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Figure 5.7: The 5 rooms fitness of computational iterations 

(a) between room A and room D, (b) between room B and room C and 

(c) illustrates 5 rooms candidate SOS variable pij and qij of pattern A, B, D and D. 

 

 

 

 

 

 

 

 

5 Rooms: the candidate SOS 

Branching 
Orders 

Pattern A Pattern B Pattern C Pattern D 

1 q1,2 p1,5 q1,5 q1,3 
2 q1,3 p1,4 p2,5 p2,5 
3 p2,4 p1,4 q4,5 p2,4 
4 q2,5 q3,5 p2,5 q2,4 
5 p1,3 q4,5 q2,5 p2,3 
6 q2,5 p2,5 p3,5 q2,3 
7 q2,4 p2,5 q2,4 q1,3 
8 p3,5 q2,5 p1,3 q3,5 
9 q3,5 q1,4 p2,5 p1,3 

10 p1,5 q3,5 p1,5 p1,4 
11 p1,4 p1,3 p2,5 p1,3 
12 q1,4 q3,5 p2,5 p2,4 
13 q1,5 p1,5 q4,5 q2,4 
14 p1,3 p2,5 q3,5 p1,4 
15 p2,5 q1,3 q2,5 q2,4 
16 q2,5 p2,5 p4,5 p3,5 
17  q2,5 p2,5 q1,3 
18  p2,5 q1,2 q3,5 
19  q1,5  p2,5 
20  q4,5  q1,2 
21    q2,5 
22     
23     
24     
25     
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Figure 5.8: The 6 rooms fitness of computational iterations 

(b) between room A and room D, (b) between room B and room C and 

(c) illustrates 6 rooms candidate SOS variable pij and qij of pattern A, B, D and D. 

 

 

6 rooms: the candidate SOS 

Branching 
Orders 

Pattern A Pattern B Pattern C Pattern D 

1 q2,4 p2,5 p5,6 q3,6 
2 q1,5 p1,3 p2,5 q2,4 
3 q1,6 p1,5 q5,6 q2,5 
4 p1,2 p1,4 p2,6 p2,4 
5 p1,2 p3,5 p2,5 p1,4 
6 p1,6 q1,5 p1,5 p2,6 
7 q2,6 q2,5 p3,5 p2,4 
8 q3,6 p1,5 p2,6 q2,6 
9 p3,6 p1,5 p2,6 p1,4 
10 q1,4 q1,3 q1,5 p1,4 
11 q1,5 p1,4 p4,6 p2,5 
12 q1,5 q1,2 q2,4 p1,5 
13 q2,5 p5,6 p5,6 q2,6 
14 q1,3 q3,6 q4,5 q1,3 
15 q1,3 q1,3 q1,6 p2,6 
16 q1,4 p1,4 p2,6 q1,3 
17 q1,6 q2,6 q5,6 q1,3 
18 q1,6 p5,6 p4,5 p4,6 
19 q3,6 p3,6 p1,5 q1,3 
20 q1,5 p2,6 q2,5 p1,2 
21 q2,6 p3,6 p3,6 p4,6 
22 p1,4 q4,6 q2,6 q4,6 
23 p3,6 p1,4 q4,6 q3,6 
24 q2,4 p1,6 p1,6 q1,5 
25  p1,4 q2,6 p3,6 
26  p2,5 q1,6 q1,3 
27  q1,6 q3,6 p4,6 
28  p1,3 p2,6 q1,5 
29  p1,4  p3,6 
30  q4,6  p1,2 
31  q1,5   
32  q3,6   
33     
34     
35     
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Figure 5.9: The 7 rooms fitness of computational iterations 

(c) between room A and room D, (b) between room B and room C and 

(c) illustrates 7 rooms candidate SOS variable pij and qij of pattern A, B, D and D. 
 

 

 

 

 

7 rooms: the candidate SOS 

Branching 
Orders 

Pattern A Pattern B Pattern C Pattern D 

1 p5,6 q1,5 p2,5 p3,4 
2 q3,7 q1,3 p6,7 p3,7 
3 p2,5 q2,6 p2,5 q3,7 
4 p1,4 p2,5 q2,7 q5,7 
5 q1,4 p1,3 q1,7 q1,4 
6 q2,7 p1,3 p2,5 p2,5 
7 p4,7 p5,6 q3,6 p4,7 
8 p2,5 q1,6 q1,6 p5,7 
9 q1,3 p1,7 p1,7 q2,5 
10 q4,7 q1,6 q4,7 q2,4 
11 p1,5 p5,6 p2,5 q2,4 
12 p1,4 q1,3 p2,7 p2,5 
13 q5,7 p6,7 p4,7 q5,6 
14 p1,6 p1,4 p1,4 q3,7 
15 p1,4 p1,6 q2,7 p4,6 
16 q3,7 q2,5 q4,5 q1,2 
17 p2,5 q1,7 p6,7 p2,5 
18 p2,5 p1,7 p4,5 q4,6 
19 p1,7 q1,7 q1,6 q4,7 
20 p2,5 p2,7 p1,6 q2,4 
21 q2,4 p2,7 q1,5 q5,7 
22 p3,7 p4,7 q3,7 q3,6 
23 q3,7 q1,2 q1,6 p5,6 
24 q2,4 p6,7 q6,7 q1,4 
25 q3,5 p4,6 p1,7 q1,2 
26 q1,4 p1,5 q1,2 p5,7 
27  q1,5 p3,7  
28   q2,6  
29     
30     
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Figure 5.10: The 8 rooms fitness of computational iterations 

(d) between room A and room D, (b) between room B and room C and 

(c) illustrates 8 rooms candidate SOS variable pij and qij of pattern A, B, D and D. 

 

8 rooms: the candidate SOS 

Branching 
Orders 

Pattern A Pattern B Pattern C Pattern D 

1 p5,8 q2,8 q2,8 q4,7 
2 q2,5 q2,7 q2,6 p1,3 
3 q1,4 q1,4 q1,5 q4,8 
4 p1,8 p1,8 p1,8 p1,4 
5 q2,6 q2,6 q2,5 q3,6 
6 p3,8 q2,5 p2,8 p3,5 
7 q5,7 p3,8 q1,6 q4,6 
8 p4,8 p2,8 p2,6 p2,6 
9 q1,4 q2,7 p2,5 p4,7 
10 q1,3 q4,7 q4,8 q1,3 
11 p3,8 p4,8 q4,6 p4,8 
12 p4,7 p1,7 q5,7 p4,6 
13 q5,8 p2,8 p5,8 q1,4 
14 q1,6 p2,5 p4,8 p3,6 
15 p2,8 q3,8 p1,6 q1,3 
16 p1,4 q3,7 p4,6 p2,4 
17 q1,6 p1,6 q3,8 p1,4 
18 q4,8 q3,6 q3,7 p1,3 
19 p3,7 p3,8 p1,5 p3,6 
20 p1,8 q1,7 q3,6 q2,6 
21 q1,4 p3,7 q1,8 q2,4 
22 p3,6 p3,6 p3,8 q3,5 
23 q4,8 q5,8 p3,7 p2,6 
24 q1,8 q4,8 p5,7 q1,7 
25 p2,4 p4,7 p3,6 p3,6 
26 p1,5 q3,6 q1,7 q1,4 
27 q2,7 q1,8 q1,6 q4,6 
28 p2,5 q1,6 q5,8 p1,7 
29 p3,8 p5,8 p5,7 p1,4 
30 q3,8 q1,5 q1,8 q5,8 
31 q3,5 q4,7 p2,5 q3,6 
32  p1,5 q1,7 p5,8 
33  p1,4 p1,7 p2,4 
34    q1,4 
35    p1,4 
36     
37     
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Figure 5.11: The 9 rooms fitness of computational iterations 

(e) between room A and room D,  (b) between room B and room C and 

(c) illustrates 9 rooms candidate SOS variable pij and qij of pattern A, B, D and D. 

 

9 rooms : the candidate SOS 

Branching 
Orders 

Pattern A Pattern B Pattern C Pattern D 

1 p5,8 q2,9 q2,9 q5,6 
2 p3,6 p3,7 p4,6 p1,7 
3 p1,9 q2,8 q3,9 q5,9 
4 q2,7 q4,7 p1,6 p2,6 
5 p5,9 p4,9 q3,8 q5,3 
6 q1,5 p1,7 q2,8 q3,7 
7 q4,7 p4,8 q4,6 q1,3 
8 p5,6 q6,9 p4,9 q3,9 
9 q1,4 q2,7 q2,7 p5,6 
10 q5,9 q2,6 p3,6 q6,8 
11 p2,5 q2,5 q2,6 p5,3 
12 p2,9 q3,8 p2,9 q1,7 
13 q1,8 q1,5 q1,6 q3,9 
14 q3,9 q1,4 q4,8 p5,6 
15 p2,5 q5,8 q4,7 q1,3 
16 q1,3 p5,9 q1,5 p7,9 
17 p1,8 p1,9 p1,9 p1,7 
18 q1,4 p1,8 p2,8 p1,3 
19 q3,8 q4,8 q2,6 p6,8 
20 q5,9 p2,9 q4,9 q2,8 
21 p7,9 q2,7 p3,6 q7,9 
22 p2,8 p1,6 q5,9 p2,8 
23 p6,9 p2,8 p4,8 p2,6 
24 q1,9 p2,5 p4,7 q1,4 
25 p1,4 q3,9 q3,7 p3,9 
26 q2,8 q3,7 p3,8 p1,4 
27 p3,8 p5,8 q5,8 q7,9 
28 p5,,8 q4,9 q1,9 q5,,3 
29 q1,6 p3,8 p5,,8 p7,9 
30 p4,7 p3,6 p5,7 q3,7 
31 q7,9 p6,9 q1,8 p5,9 
32 q3,7 q5,9 q1,7 q3,9 
33 q1,7 p4,7 p2,8 p3,7 
34 p3,6 q1,9 p1,8 q2,6 
35 q6,9 q1,7 q5,7 p3,9 
36 p2,8 q3,6 p5,9 q1,4 
37  p3,9 p1,7 q6,8 
38  q1,6 p1,6 p1,4 
39  p1,5 p1,5 p5,9 
40  p1,4  q2,8 
41    q2,6 
42     
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Figure 5.12: The 10 rooms fitness of computational iterations 
(f) between room A and room D, (b) between room B and room C and 

(c) illustrates 10 rooms candidate SOS variable pij and qij of pattern A, B, D and D. 

10 rooms: the candidate SOS 

Branching 
Orders 

Pattern A Pattern B Pattern C Pattern D 

1 p4,8 q2,10 q2,10 q5,9
2 p1,5 q2,9 p4,10 p2,10 
3 q3,6 p4,7 q2,9 q1,9 
4 q2,5 q1,8 p3,8 q3,10 
5 p4,7 q2,8 q1,8 p6,9 
6 q2,7 q4,7 p3,7 q5,8 
7 p5,9 q2,7 q2,8 q1,10 
8 p2,9 q3,9 p1,9 q3,7 
9 p1,10 q2,6 q2,6 p1,9 
10 q1,5 q1,4 q5,10 p5,9 
11 q4,10 p1,10 p2,9 p5,8 
12 p2,9 q2,5 q1,6 q6,9 
13 p2,5 p5,10 p2,8 q3,10 
14 q4,8 p2,10 q1,5 p5,3 
15 q1,5 q1,10 q5,10 q3,9 
16 p2,8 q1,9 p1,10 p6,10 
17 p3,10 p2,9 q4,10 p3,7 
18 q1,4 q1,8 p2,7 p5,2 
19 p2,8 p2,8 q4,9 p1,7 
20 q1,10 q3,7 p3,6 q4,6 
21 p2,5 q4,10 q4,8 q6,8 
22 p1,9 q3,6 p1,10 q3,10 
23 q2,6 q2,7 p3,9 p6,8 
24 q4,7 q1,5 q4,6 q2,8

25 p5,9 p2,8 P3,10 p4,7

26 q3,9 p2,5 q1,9 q2,6

27 p4,6 q3,10 q4,7 p3,10

28 p5,8 q1,6 q1,8 p2,6

29 q1,6 p1,9 p4,9 q1,4

30 p1,10 p3,7 q3,6 q3,6

31 p4,9 q1,10 p4,8 q7,9

32 q1,5 p3,6 q5,6 q4,7

33 q6,8 q6,10 p4,7 p7,9

34 p7,9 p3,9 q3,10 q3,7

35 q6,10 p5,9 p4,6 p1,10

36 p5,9 p5,8 q3,9 q3,9

37 q1,10 q6,9 p5,9 p1,8

38 p3,9 p6,10 q1,10 p3,7

39 p3,6 q5,9 p5,8 p3,9

40 q1,9 q3,8 q3,8 q1,4

41 p3,10 p3,10 p1,9 q2,8

42 q5,8 q5,8 q3,7 p3,6
43 p6,9 p5,8 q5,8 q2,6 
44 p1,9 p4,8 p2,10 q1,9 
45 p3,6 p6,9 p5,7 p2,8
46 q4,8 q5,10 q1,7 p6,9 
47 q5,7 q1,7 q5,7 p2,6

48 p2,9 p1,8 p5,10 q1,8

49 q3,9 q4,8 p1,8 p4,6

50 p4,9 p1,7 p1,7

51 p1,7 q2,7 p3,9

52 p1,6 p1,6 p1,4

53 q4,8 p1,5 p1,3

54 p1,5  
55 p1,4  
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The GA design process is executed with a random initial population. In order to 

show the improvement of the AL-MIP+GA, the populations are made up of 30, the 

numbers of generations of the genetic search process are set at 100, the crossover 

probability is set at 0.01 and the mutation probability is set at 0.001. Our AL-MIP+GA 

normally terminate after the repeated process of generations reaching the required 

generations. The strong gene present the candidate SOS that will appropriately use to 

speed up computational solution time of AL-MIP+. 

Figure 5.6 to 5.12 illustrate computational iterations of a typical run. The 

vertical axis of 4-10 room configurations represents the computational iteration scales 

where the upward direction corresponds to the improvement of computational 

iterations. The horizontal axis represents the change of generations. 

From the fitness results, each figure illustrates the improvement behaviors of the 

computational iterations as the generations increase. In order to understand this 

behavior, figure 5.6 to figure 5.12 illustrate the fitness curve comparisons. Due to the 

different of the computational scales between pattern A, D and pattern B, C, we use two 

fitness figures to illustrate the computational iterations for each case.  At the beginning 

of a period, the fitness curve presents the higher growth between generations 1 to 40. 

This presents our AL-MIP+GA corresponding to a general learning rate GA (Chen et 

al., 1993 and Goldberg, 1989). The candidate SOS variables are found after 40 

generations which the mutation will be adopted to increase the better fitness value of 

the candidate SOS. 

Moreover, we illustrate the candidate SOS among pattern A, B, C and D in each 

case on figure 5.6(c) to figure 5.12(c). Each case, patterns A, B, C and D present a 

nonequivalent length of candidate SOS from a nonequivalent connectivity degree. The 

length of candidate SOS will increase corresponded to the increase of room numbers. 

Finally, the AL-MIP+GA model described here illustrate the potential uses in 

the MIP branch and bound algorithm. The candidate SOS used a robustness GA can 

reduce an average computational iteration and time more than a thirty percent compared 

to the AL-MIP+ model. 
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• The efficiency of AL-MIP+ model 

To verify an efficiency of AL-MIP+ model we extent the numbers of room from 

11 to 15 room configurations of patterns A, B, C and D. These experiments are tested 

on the similar environments from the previous section. The computational iterations and 

time from 4 to 15 room configurations can be illustrated as follows. 

 

Table 5.4: computational iteration and time comparisons of 4 to 15 rooms. 

  Pattern A Pattern B Pattern C Pattern D 

 Computations Computations Computations Computations 
Room 
numbers Iterations Time 

(sec) Iterations Time 
(sec) Iterations Time 

(sec) Iterations Time 
(sec) 

                  
4 6.15E+02 0.03 6.17E+02 0.04 6.55E+02 0.04 5.51E+02 0.03 

5 6.99E+03 0.18 3.65E+03 0.11 5.04E+03 0.11 5.56E+03 0.12 

6 4.38E+04 1.17 1.62E+04 0.43 2.55E+04 0.60 2.71E+04 0.74 

7 2.51E+05 6.13 5.65E+04 1.46 9.22E+04 1.81 1.35E+05 2.54 

8 3.00E+06 67.73 2.79E+05 7.77 5.92E+05 11.19 1.75E+06 42.09 

9 1.71E+07 537.83 1.53E+06 41.78 8.55E+05 24.47 3.77E+06 161.98 

10 4.15E+07 4946.26 3.63E+06 178.6 4.21E+06 119.05 2.61E+07 687.83 

11 3.53E+08 31656.06 8.72E+06 723.09 1.17E+07 465.26 2.17E+08 3858.99 

12 1.62E+09 101299.41 2.36E+07 2045.1 2.03E+07 1521.23 5.64E+08 10633.37 

13 2.90E+09 227923.66 3.34E+07 2079.12 3.84E+07 5443.72 1.99E+09 37485.80 

14 1.80E+10 501432.05 1.17E+08 15610.25 8.47E+07 34185.90 1.23E+10 121011.97 

15 5.58E+10 902577.69 2.00E+08 37337.12 2.78E+08 67981.47 2.22E+10 509821.54 

                  
 

As the results, the AL-MIP+ model presents the effectiveness to solve the larger 

scale problem from 4 to 15 room configurations which has the exponential growth of 

the computational iterations and time.  Particularly, pattern A and D present the large 

increases of computational iterations comparing to pattern B and C, see figure 5.13. 

Moreover the running time of pattern A and D present more than a week to achieve the 

solution for the 15 room configurations. With the results of the growth function confirm 

that an architectural layout design is an NP hard problem. Therefore it is not easily 

solved by using a conventional technique. 
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Figure 5.13: The computational iteration comparisons from 4 to 15 rooms 

(a) between room A and room D and (b) between room B and room C. 

 

 

 

 



CHAPTER VI 

Conclusions and Suggestions 
 

6.1  Conclusions and Suggestions 
 

We propose the feasibility of the AL-MIP, the AL-MIP+ and the AL-MIP+GA to solve 

an architectural layout design optimization. Dealing with a medium-sized problem (5-

10 rooms), the AL-MIP+ helps reduce the computational iterations and time 

considerably. The experiments show the feasibility of using AL-MIP model included 

two valid inequalities. The average computational time for 10 room configurations of 

pattern B, C and D, can be solved in a few minute with the global optimal. More than 

one third can be reduced the computational iterations and time from AL-MIP due to a 

smaller feasible region. 

The AL-MIP+GA based on the learning methodology using GA is adopted to 

reduce the computational iterations and time. This GA identifies the current best 

candidate of a Special Order Set (a strong gene) which achieves an average of 30 to 70 

percentage gain reductions compare to the AL-MIP+ while the computational iterations 

and time illustrate an average more than 90 percent reduction gains comparing to AL-

MIP. Indeed, the graphical results of 10 room configurations, see figure 6.1 presents an 

achievement of the global optimal solution.  

The AL-MIP included valid inequalities and learning methodology reveal a 

significant potential for computational optimization algorithms. The consistency 

between mathematical formulation and machine learning creates a distinct MIP as an 

optimization methodology. 

 

• Applying AL-MIP+GA 

In order to apply the AL-MIP+GA for the architectural layout design, the 

candidate SOS can be used to reduce the computational iterations and time by adding to 

the problem as a preprocess data. Indeed, some architectural layout design patterns 

might be often used in a layout design. For example a linear pattern that is used as a 

pattern of circulation of museum design and a pattern of circulation of factory design. 

Therefore, a regularly architectural layout design pattern can be swiftly solved using the 

candidate SOS which we have stored from the AL-MIP+GA. In the other words, we can 
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save the computational iterations and time by learning the candidate SOS that has been 

regularly used and store as a preprocess data.  

 

 

 
Pattern A    Pattern B 

 

 
Pattern C    Pattern D 

 

Figure 6.1: The graphical results of 10 room configurations of patterns A, B, C and D.  
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• Conclusions 

In this thesis, several results of architectural layout design problem using the 

AL-MIP, the AL-MIP+ and the AL-MIP+GA can be concluded as follows. 

 

1. The AL-MIP, the AL-MIP+ and the AL-MIP+GA can be utilized with 

architectural layout design problem that helps architects solve the medium-

sized problem within a reasonable time. 

2. The valid inequalities can be used to reduce the search space while still 

maintain the integer optimal solutions. 

3. The candidate SOS can reduce the search space from the MIP branch and 

bound Algorithm. 

4. GA is the robustness learning methodology for the MIP branch and bound 

algorithm. 

5. This thesis presents the distinct MIP methods that consist of valid 

inequalities and learning methodology. 

 

 

6.2 Suggestions 
 

Due to the nature of design problems, the fitness function of the quality of the solutions 

during the genetic process can be computationally very demanding. Great efforts have 

been made towards reducing the number of evaluations needed before the final solution 

is reached.  

Moreover, our approach can be further developed a possible perspective 

direction for improvement an architectural layout design problem. 

 

• Improve Architectural Layout Design Constraints 

New constraints and objectives can be added to the model to improve 

optimization behavior, better represent architectural criteria, and improve the quality of 

layouts 
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• Multiple Floors 

The ability to apply an architectural layout design for a multi-level floor layout 

is an important area since the modern high-rise building is comprised of a multi floor 

design. 

 

• Complex Shapes 

 A more generalized unit component that can represent non-rectangular and non-

orthogonal shapes would be necessary to generalize this idea to handle a practical 

architectural layout design problem. 

 
• Parallel Computing  

For the perspective views, over a medium-sized room (10-20 rooms), our 

approach with the domain expert and the parallel computing should be adopted to 

reduce the computational iterations and time. 
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Appendix A 
 

Practical study 
 

To verify the robustness of algorithm, we experiment based on the studying of 

two stories house. This study, is solved using the fixed position constraint, fixed border 

constraint and unoccupied unit constraints for a non-circular AL-MIP+ model. This 

study allows us to construct non-rectangular boundary shape which is motivated by the 

staircase area. To exhibit the flexibility of these three constraints, a realistic two stories 

house allocated on asymmetric boundary, has been solved using the non-circular AL-

MIP+ model. The initial specification of the requirements is shown in the following 

information. 

 
Two stories house study: room specifications 

 
No.   Room   Width (m.)    Height (m.)      Connect 

                       

min    max       min     max 
 

1st Floor 
1.    Garage x 2 cars  5         6 5          7           2, 4, South  
2.    Living Rm.        5         8 5          8           1, 6   
3.    Dining Rm.        5         7 5          7           4, 6 
4.    Kitchen          5         6 5          7           1, 3 
5.    Staircase   4         4 3          3           6 
6.    Hall 1    4         6 4          6           2, 3, 5, 7 
7.    Bath   3         4 3          4           6 

 
2nd Floor 
8.    Master bedroom  6         7 6          7          10, 11, East 
9.    Bedroom 2   5         7 5          7          10, 11 
10.  Hall 2                 3         5 3          5          8, 9, 11, 12 
11.  Bath                      3         4 3          4          8, 9, 10 
12.  Staircase   4         4 3          3          10 

 
Remark: unit scale in meter. 

 
Based on our non-circular AL-MIP+ model, the total computational time of 

these two stories house are 54.468 seconds. The number of iterations and computational 

time of the first floor are 179282 and 41.625 seconds while the iterations and 

computational time of the second floor are 48369 and 12.843 seconds, respectively. The 

optimal layout design is shown in the figure A.1. 
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Figure A.1: The realistic of two stories house solved by the non-circular AL-MIP cooperate with three 

adjustable constraints and the gray region presents unoccupied unit spaces  

(a) the computational time of 1st floor plan is 41.625 seconds and 

(b) the computational time of 2nd floor plan is 12.843 seconds. 
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Appendix B 
 

GAMS IDE model for AL-MIP+ 
 

 
This appendix section presents the GAMS IDE model for AL-MIP+ methodology. 

 
$ontext 
------------------------------------------------------------------------------------------------------------------------------- 
 GAMS IDE model for AL-MIP+ 
          Developed by Kamol Keatruangkamala 
------------------------------------------------------------------------------------------------------------------------------- 
 
$Offtext 
 
set       ROOM; 

ALIAS(ROOM,i); 
ALIAS(ROOM,j); 
ALIAS(ROOM,k); 

set       LINK(i,j)          
CONNECT(i,j) 

          CONNECT3(i,j,k)          
fixABOVE(i,j) 

          fixLEFT(i,j) 
           fixRIGHT(a,b)  
          fixBOTTOM(a,b); 
 
PARAMETERS 
          DELTA 
          Panel_Width 
          Panel_Height 
         Wmin(i) 
          Wmax(i) 
          Hmin(i) 
          Hmax(i); 
 
 
PARAMETER         WeightLeftCorner(i); 
PARAMETERS        WeightMinDistance 
                   WeightMaxArea; 
 
VARIABLE         z; 
POSITIVE VARIABLES 
                   zx(i,j) 
                   zy(i,j) 
                   za(i); 
 
POSITIVE VARIABLES 
                   x(i) 
                   y(i) 
                   w(i) 
                   h(i); 
BINARY VARIABLES 
                   p(i,j) 
                   q(i,j) 
                   r(i); 
 
        w.lo(i) = Wmin(i); 
        w.up(i) = Wmax(i); 
        h.lo(i) = Hmin(i); 
        h.up(i) = Hmax(i); 
 
EQUATIONS 
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         obj_Min 
         za_width(i) 
         za_height(i) 
         abs_plus_x(i,j) 
         abs_minus_x(i,j) 
         abs_plus_y(i,j) 
         abs_minus_y(i,j) 
         widthsize(i) 
         heightsize(i) 
         force_ij_left(i,j) 
         force_ij_bottom(i,j) 
         force_ij_right(i,j) 
         force_ij_top(i,j) 
         join_ij_left(i,j) 
         join_ij_bottom(i,j) 
         join_ij_right(i,j) 
         join_ij_top(i,j) 
         overlap_Up(i,j) 
         overlap_Down(i,j) 
         overlap_Left(i,j) 
         overlap_Right(i,j) 
         not10_a(i,j,k) 
         not11_a(i,j,k) 
         not00_a(i,j,k) 
         not01_a(i,j,k) 
         fixedABOVE(i,j) 
         fixedLEFT(i,j) 
         fixedRIGHT(a,b) 
         fixedBOTTOM(a,b); 
 
         obj_Min..                       z  =e=   sum(i, WeightLeftCorner(i)*(x(i)+y(i))) 
                                                 + WeightMinDistance*sum(LINK(i,j), zx(i,j) + zy(i,j)) 
                                                 - WeightMaxArea*sum(i, za(i)); 
         za_width(i)..                     za(i)  =l=  w(i); 
         za_height(i)..                    za(i)  =l=  h(i); 
         abs_plus_x(LINK(i,j))..           x(i) - x(j) =l= zx(i,j); 
         abs_minus_x(LINK(i,j))..          x(j) - x(i) =l= zx(i,j); 
         abs_plus_y(LINK(i,j))..           y(i) - y(j) =l= zy(i,j); 
         abs_minus_y(LINK(i,j))..          y(j) - y(i) =l= zy(i,j); 
         widthsize(i)..                    x(i) + w(i) =l= Panel_Width; 
         heightsize(i)..                   y(i) + h(i) =l= Panel_Height; 
         force_ij_left(LINK(i,j))..        x(i) + w(i) =l= x(j) + Panel_Width*(p(i,j) +q(i,j)); 
         force_ij_bottom(LINK(i,j))..      y(j) + h(j) =l= y(i) + Panel_Height*(1 +p(i,j) -q(i,j)); 
         force_ij_right(LINK(i,j))..       x(j) + w(j) =l= x(i) + Panel_Width*(1 -p(i,j) +q(i,j)); 
         force_ij_top(LINK(i,j))..         y(i) + h(i) =l= y(j) + Panel_Height*(2 -p(i,j) -q(i,j)); 
         join_ij_left(CONNECT(i,j))..      x(i) + w(i) =g= x(j) - Panel_Width*(p(i,j) -q(i,j)); 
         join_ij_bottom(CONNECT(i,j))..   y(j) + h(j) =g= y(i) - Panel_Height*(1 +p(i,j) -q(i,j)); 
         join_ij_right(CONNECT(i,j))..     x(j) + w(j) =g= x(i) - Panel_Width*(1 -p(i,j) +q(i,j)); 
         join_ij_top(CONNECT(i,j))..       y(i) + h(i) =g= y(j) - Panel_Height*(2 -p(i,j) -q(i,j)); 
         overlap_Up(CONNECT(i,j))..        0 =g= y(i) + DELTA - y(j) - h(j) - Panel_Height*(q(i,j)); 
         overlap_Down(CONNECT(i,j))..     0 =g= y(j) + DELTA - y(i) - h(i) - Panel_Height*(q(i,j)); 
         overlap_Left(CONNECT(i,j))..      0 =g= x(i) + DELTA - x(j) - w(j) - Panel_Width*(1 -q(i,j)); 
         overlap_Right(CONNECT(i,j))..    0 =g= x(j) + DELTA - x(i) - w(i) - Panel_Width*(1 -q(i,j)); 
         not10_a(CONNECT3(i,j,k))..        p(i,k) -q(i,k)    =l= Panel_width*(p(i,j) +q(i,j)); 
         not11_a(CONNECT3(i,j,k))..        p(i,k) +q(i,k)-1  =l= Panel_Width*(1 +p(i,j) -q(i,j)); 
         not00_a(CONNECT3(i,j,k))..        1 -p(i,k) -q(i,k) =l= Panel_width*(1 -p(i,j) +q(i,j)); 
         not01_a(CONNECT3(i,j,k))..        q(i,k) -p(i,k)    =l= Panel_Width*(2 -p(i,j) -q(i,j)); 
         fixedABOVE(fixABOVE(i,j))..      y(i) =l= y(j); 
         fixedLEFT(fixLEFT(i,j))..         x(i) =l= x(j); 
         fixedRight(fixRIGHT(a,b))..       x(a) + w(a) =g= x(b) + w(b); 
         fixedBOTTOM(fixBOTTOM(a,b))..    y(a) + h(a) =g= y(b) + h(b); 
 
MODEL     ALDO    / ALL /; 
SOLVE     ALDO    USING MIP MINIMIZING z; 
DISPLAY  x.l, y.l, w.l, h.l, p.l, q.l, Wmin, Wmax, Hmin, Hmax; 
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