CHAPTER III

RESULTS

3.1 Haemocytes and total RNA preparation

Haemolymph was collected from 3 month-old *P. monodon* and approximately 1 ml was obtained per individual. The haemolymph was centrifuged to separate haemocytes from plasma and haemocytes were used to prepare total RNA using Trizol reagent. The A260/A280 ratio of total RNA which was prepared by this method were 1.5-1.8 indicating accepted quality of total RNA used in this study. The average total RNA obtained from normal shrimps was approximately 19 µg per individual whereas that obtained from infected shrimp was 11 µg per individual. Therefore, total RNA from 15 healthy shrimps were pooled for used in a construction of the normal library whereas that of 20 infected shrimps were used to establish the *Vibrio*-infected cDNA library.

An ethidium bromide stained 1% agarose-formaldehyde gel of total RNA of normal shrimps revealed two predominant bands; 28S rRNA (4.7 kb) and 18S rRNA (1.9 kb) along with smeared RNA with molecular sizes up to approximately 10 kb (Figure 3.1).

3.2 Construction of haemocyte cDNA libraries

3.2.1 The normal library

The haemocyte cDNA library of normal shrimps was constructed by a non-directional cloning approach using Lambda ZapII cloning system. The cDNAs were cloned into the EcoRI-site of λ ZapII. The titering assay of this library showed that its efficiency was approximately 4 x 10⁶ pfu. The titer of the library was inceased to approximately 1 x 10¹⁰ pfu/ml after

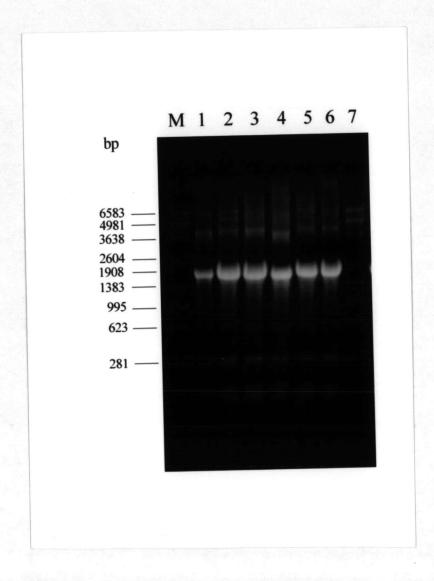


Figure 3.1 Total RNA from haemocytes of 6 normal shrimps (lanes 1-6) electrophoresed on 1% formaldehyde agarose gel. Lane M: RNA marker

amplification. The average insert length of EST clones in this library was 858 bp as determined by colony PCR (Figure 3.2) or enzymatic digestion.

3.2.2 The infected library

The haemocyte cDNA library of infected shrimps was constructed by a directional cloning procedure using a Lambda ZipLox cloning system. The cDNAs, with *Not*I at the 3' end and *Sal*I at the 5' end, were cloned into the *Not*I and *Sal*I arms of the λ ZipLox. The titer of the infected library was 2.5 x 10^5 pfu and become 2 x 10^{10} pfu/ml after amplification. The average insert length of the EST clones in this library was 964 bp as determined by colony PCR or enzymatic digestion (Figure 3.3).

3.3 EST analysis

3.3.1 Homology search

For the normal library, 615 EST clones were randomly selected and partially sequenced at the 5' region of the clones using an automated DNA sequencer (LC4000, LICOR). An average nucleotide sequences of cDNA insert is 607 bp, corresponding to a total insert sequence length of 352 kb. The nucleotide sequences of each clone were analyzed by homology searches against data in the GenBank based on nucleotide similarity (BLASTN) and similarity of translated protein sequence (BLASTX) (Altschul et al., 1990). A putative function of each EST was assigned according to the greatest significant similarity of a particular EST with that of the matched gene in the GenBank.

A total of 317 EST clones (51.5%) represented gene homologues whereas the remaining clones (48.5%) did not match to any sequence in the GenBank. One hundred and nine clones (35%) of the matched EST were identified as known genes by both BLASTN and BLASTX programs while the remaining 65% (205 clones) were recognized only by the BLASTX program (Table 3.1). From the matched EST clones, 231 clones (75%) of which had the orientation of the original mRNA when sequencing with M₁₃ forward primer.

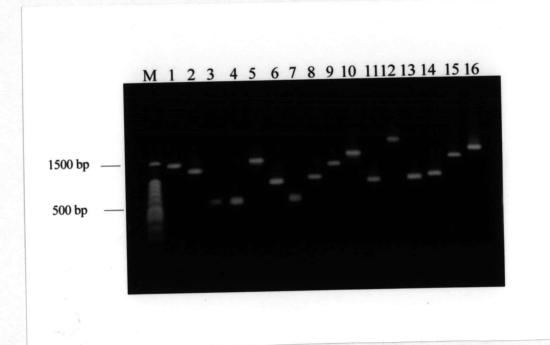
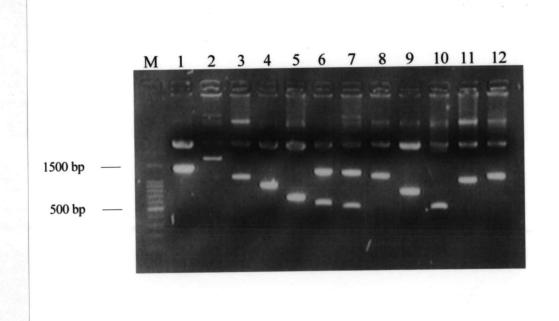



Figure 3.2 Determination of insert sizes of recombinant clones from the normal library using colony PCR. The PCR product form each clone was electrophoresed on 1% agarose gel(lanes 1-16). A DNA ladder 100 bp(M) was used as a DNA marker.

Figure 3.3 Determination of insert sizes of recombinant clones from the *V. harveyi* -infected library by digestion of recombinant plasmids with restriction endonuclease. The digested DNA form each clone was electrophoresed on 1% agarose gel (lanes 1-12). A DNA ladder 100 bp(M) was used as a DNA marker.

For the infected library, 447 EST clones were randomly selected and partial sequenced at the 5' region of the clones. An average nucleotide sequence of cDNA inserts is 549 bp, corresponding to a total insert of 246 kb. The nucleotide sequence of each clone from the infected library was analyzed as described for the normal library.

A total of 215 EST clones (48.1%) showed significant similarity with deposited sequences whereas 232 EST clones (51.9%) did not match with any gene in the GenBank. Homologies of 81clones (38 %) from the matched ESTs were found by both BLASTN and BLASTX while the remaining 62 % (134 clones) were identified only by BLASTX program (Table 3.1).

ESTs in both libraries significantly matched to genes previously identified in many organisms including *Penaeid specises* (49 clones of the normal library and 30 clones of the infected library); *P. monodon* (31 clones in the normal library and 20 clones in the infected library), *P. vannamei* (10 clones in the normal library and 9 clones in the infected libraryt), *P. notialis* (8 clones in the normal library), *P. setiferus* (1 clone in the infected library). The ESTs, which are homologous to genes in other crustaceans, were 41 clones (13.3%) and 31 clones (14.4%) from normal and infected libraries, respectively. Sixty-six clones (21.4%) of normal library and 47 clones (21.9%) of infected library were homologues of genes previously reported in other arthropods. Of these, homologues of *Drosophilia melanogaster* genes were the largest group (38 clones in normal library and 30 clones in infected library).

Homologous genes in other animals were found for 147 clones (47.7%) and 99 clones (46.0%) from normal and infected library, respectively. Within this group, homologous genes in mammalis were the largest group (81 clones in normal library and 64 clones in the infected library). Homologues of genes in plant, fungi and bacteria were found for 5 clones (1.6%) and 8 clones (37.1%) from normal and infected libraries, respectively.

Table 3.1 Summary of sequences and clones represented in the cDNA libraries.

	Normal library	Infected library
No. of clone sequenced	615	447
Matched clones	308(50.1%)	215(48.1)
Penaeid shrimps	49(15.9%)	30(14.0%)
Other crustaceans	41(13.3%)	31(14.4%)
Other arthropods	66(21.4%)	47(21.9%)
Other animals	147(47.7%)	99(46.0%)
Non-animal	5(1.6%)	8(3.7%)
Total nucleotide sequenced (kb)	352	246
Average sequenced length (bp)	607	549

A plot between the number of clones sequenced versus the number of newly identified unique sequences illustrated that newly unique genes can still be further identified because the curves still did not reach a plateau of identification. The ability to isolate new sequences of the normal library was 32%, 40%, 31%, 34%, 25% and 19% when 100, 200, 300, 400, 500 and 600 recombinant clones were sequenced. Likewise, 39%, 23%, 33%, and 17% newly unique sequences of the *Vibrio*-infected library could be identified when 100, 200, 300 and 400 recombinant clones were sequenced. The data suggested a more rapid saturation of the infected library than that of the normal library (Figure 3.4).

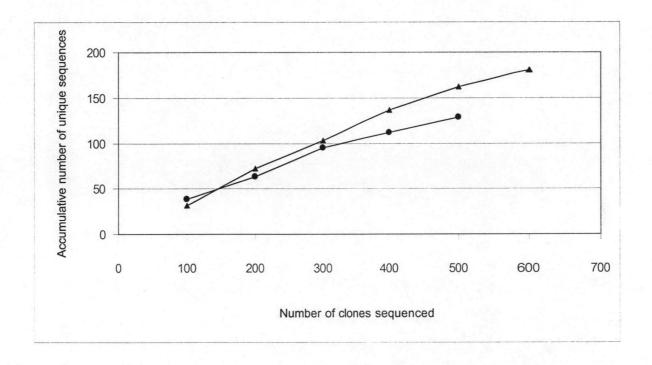


Figure 3.4 The possibility to isolate newly unique sequences of the normal cDNA library () and V. hraveyi-infected library () was determined by relationship between numbers of clones sequenced and accumulative numbers of unique sequences obtained.

3.3.2 Classification of putative identified clones

Matched ESTs from both libraries detected as homologues of genes whose the function was well defined were classified into 6 broad functional categories based on significant sequence homology according to the criteria proposed by Adams et al., (1991). These were genes involving with (1) gene expression, regulation and protein synthesis, (2) internal/external structure and motility, (3) metabolism, (4) defense and homeostasis, (5) signaling and communication, and (6) cell division/DNA synthesis, repair and replication. The ESTs, homologue of genes with unknown gene functions were classified unknown genes with the complete open reading frame (ORF) and summarized in Table 3.2 (Details of each clone are shown in appendix A).

Table 3.2 Matched ESTs in each functional category

Functional category	Norma	ıl library	Infecte	d library
	No. in the category	% of ESTs analysed	No. in the category	% of ESTs analysed
1. Gene expression, regulation and protein synthesis	80	13	91	20.4
2. Internal/external structure and motility	47	7.6	11	2.5
3. Metabolism	68	11.1	36	8.1
4. Defense and homeostasis	65	10.6	50	11.2
5. Signaling and communication	12	2.0	3	0.7
6. Cell division/DNA synthesis,	6	1.0	5	1.1
repair and replication				
Unidentified function	30	4.9	19	4.3
Unknown gene	307	49.9	232	51.9
Unknown with ORF	47	7.6	58	13.0
Total ESTs	615	100	447	100

The percentage of EST clones in each category illustrated that ESTs for gene expression, regulation and protein synthesis were the largest group in both normal and infected libraries. ESTs having cell division/DNA synthesis and signaling/communication function were the smallest group for normal and infected libraries, respectively. Three categorized ESTs: Internal/external structure and motility, Signaling and communication, and unidentified function of the normal library were more abundant than those in the infected library. Conversely, the percentage of EST clones in gene expression, regulation and protein synthesis was more abundantly expressed in the infected library. The percentage of EST clones homologues of genes in metabolism, defense and homeostasis, and cell devision/DNA synthesis, repair and replication from the normal library were comparable to those from the infected library.

Five hundred and thirty-two matched ESTs represent 288 different putative proteins and the frequency of each identified protein in the normal library and the *V. harveyi* infected library are shown in Tables 3.3-3.9.

Gene expression, regulation and protein synthesis

Putative genes of this group are the highest abundant EST clones found in both cDNA libraries. A total of 171 clones (32.7% of the matched EST clones) representing 94 different genes were identified (Table 3.3). Major putative proteins included a group of ribosomal proteins of small (54 clones) and large subunits (61 clones), followed by the group of elongation factors (13 clones), and eukaryotic translation initiation factors (5 clones), respectively. Other genes were ubiquitin-conjugating enzymes, transcription initiation factor, snRNP-associated protein, etc. Redundant clones were found. Among overall sequenced clones, elongation factor-1 alpha showed the highest redundancy (9 clones). This putative gene was the most abundant clone in the normal library whereas 40S ribosomal protein S15 and 60S ribosomal protein L8 were the most abundant clones in the infected library.

Table 3.3 Gene expression and protein coding gene transcripts isolated from normal and *V. harveyi* infected *P. monodon* haemocytes

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones
5S ribosomal protein	Mus musculus	2.00E-93	98	689	2		2
16S ribosomal RNA gene, mitochondria RNA	Penaeus monodon	0	99	699	3	•	3
40S ribosomal protein S3	Oryziaa latipes	1.00E-93	84	774	4	1	5
40S ribosomal protein S4	Gallus gallus	1.00E-105	83	812	2	1	3
40S ribosomal protein S5	Homo sapiens	4.00E-74	95	601		2	2
40S ribosome protein S7	Xanopus laevis	9.00E-75	84	631	1	2	3
40S ribosomal protein S8	Apis mellifera	6.00E-78	77	647	3	1	4
40S ribosomal protein S10	Rattus rattus	8.00E-50	80	540		1	1
40S ribosomal protein S11	Xenopus laevis	3.00E-62	85	553	-	2	2
40S ribosomal protein S12	Homo sapiens	5.00E-53	85	557		4	4
40S ribosomal protein S15	Homo sapiens	2.00E-47	68	470		5	5
40S ribosomal protein S15A	Drosophila melanogaster	2.00E-62	96	409	1	-	1
40S ribosomal protein S16	Homo sapiens	4.00E-69	96	620	1	1	2
40S ribosomal protein S17	Homo sapiens	3.00E-59	94	450	1	2	3
40S ribosomal protein S18	Cherax destructor	1.00E-67	99	504		2	2
40s ribosomal protein S18	Homo saprin	1.00E-63	94	494	1	-	1
40S ribosomal protein S20	Xenopus laevis	8.00E-47	95	455		2	2
40S ribosomal protein S24	Fugu rubripes	3.00E-50	86	458	2	1	3
40S ribosomal protein S25	Drosophila melanogaster	4.00E-29	89	394		1	1
40S ribosomal protein S26	Homo sapein	8.00E-45	90	579	1		1
40S ribosomal protein S27a	Homo sapein	1.00E-54	75	465	2		2
40S ribosomal protein S28	Cricetulus griseus	3.00E-19	97	302		1	1
40S ribosomal protein S29	Homo sapein	7.00E-12	75	210	1	-	1
40S ribosomal protein S30	Rattus rattus	5.00E-24	62	751	3		3
40S ribosome protein S32	Drosophila melanogaster	2.00E-55	90	473	1		1
60S ribosomal protein Po	Drosophila melanogaster	3.00E-33	83	441		1	1
60S ribosomal protein like	Arabidopsis thaliana	1.00E-34	72	474	1		1
60S ribosomal protein L3	Mus musculus	E-119	86	804		2	2

Table 3.3 Gene expression and protein coding gene transcripts isolated from normal and *V. harveyi* infected *P. monodon* haemocytes (continued)

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones
60S ribosomal protein L5	Bombyx mori	4.00E-59	78	625	1	-	1
60S ribosomal protein L5A	Xenopus laevis	E-105	79	600		3	3
60A ribosomal protein L6	Homo sapiens	6.00E-26	67	707	1	-	1
60A ribosomal protein L7A	Gallus gallus	1.00E-62	68	864	1	-	1
60A ribosomal protein L8	Aedes albopictus	E-112	94	807		5	5
60S ribosomal protein L10	Drosophila melanogaster	7.00E-96	95	571	1	1	2
60S ribosomal protein L11	Drosophila melanogaster	2.00E-58	92	470	1	-	1
60S ribosomal protein L12	Rattus rattus	7.00E-69	89	691	-	1	1
60S ribosomal protein L13	Gallus gallus	1.00E-43	72	465	-	2	2
60S ribosomal protein L14	Rattus norvegicus	2.00E-29	61	644	1	-	1
ribosomal protein L14	Xenopus laevis	2.00E-18	79	312	-	2	2
60S ribosomal protein L17	Rattus rattus	2.00E-58	79	620	3	-	3
60S ribosomal protein L17A	Drosophila melanogaster	2.00E-68	93	601	-	2	2
60S ribosomal protein L18a	Homo sapiens	8.00E-64	80	569	-	3	3
60S ribosomal protein L19	Drosophila melanogaster	6.00E-50	74	560	2		2
60S ribosomal protein L22	Tripneuster gratilla	8.00E-21	60	633	-	1	1
60S ribosomal protein L24	Homo sapiens	1.00E-33	70	518	-	3	3
60S ribosomal protein L26	Homo sapiens	8.00E-51	83	460	1	-	1
60S ribosomal protein L27A	Rattus rattus	1.00E-49	75	516	-	2	2
60S ribosomal protein L28	Homo sapiens	1.00E-13	64	362	,	1	1
60S ribosomal protein L29	spodoptera frugiperda	6.00E-12	65	330	0	2	2
60S ribosomal protein L30	Homo sapiens	1.00E-47	90	411	1	1	2
60S ribosomal protein L31	Heliothis virescene	3.00E-32	67	395		1	1
60S ribosomal protein L35a	Homo sapiens	2.00E-38	79	381	-	2	2
60S ribosomal protein L37	Homo sapiens	4.00E-24	74	335	1		_1
60S ribosomal protein L37A	Ostertagia ostertagi	1.00E-28	71	324	1	2	3
60S ribosomal protein L39	Drosophila melanogaster	3.00E-19	87	269	-	2	2
60S acidic ribosomal protein P2	Sus scrofa	1.00E-14	79	394	-	2	2

Table 3.3 Gene expression and protein coding gene transcripts isolated from normal and *V. harveyi* infected *P. monodon* haemocytes (continued)

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones
60S ribosomal protein CEP52	Drosophila melanogaster	1.00E-65	98	520	1		1
60S ribosomal protein eL12'	Artemia sp.	2.00E-20	89	406		2	2
60S ribosomal protein, Large P2	Homo sapiens	5.00E-06	65	403		1	1
33kDa transcription co-activator	Homo sapiens	1.00E-54	78	845	1		1
Bmsqd-2	Bombyx mori	1.00E-33	89	600		1	1
cellular nucleic acid binding protein	Xenopus laevis	1.00E-36	52	751	1		1
chromatin-specific transcription elongation factor	Homo sapiens	9.00E-51	69	827	1		1
double stranded RNA binding nuclear protein, ILF3	Homo sapiens	2.00E-06	58	535	1	٠.	1
Ef2b gene product [alt 2]	Drosophila melanogaster	2.00E-60	88	673	-	1	1
elongation factor-1 alpha	Salmo salar	E-111	90	769	5	4	9
elongation factor-1 beta	Bombyx mori	5.00E-37	85	458	1		1
elongation factor 2	Arnadillium vulgare	E-133	95	820	1	1	2
eukaryotic translation initiation factor XeIF-4A III	Xenopus laevis	1.00E-133	97	815	2		2
eukaryotic translation initiation factor2, beta subunit2	Drosophila melanogaster	5.00E-09	77	520		1	1
eukaryotic translation initiation factor3, subunit2	Mus musculus	1.00E-39	88	704	1		1
eukaryotic translation initiation factor3, subunit5	Homo sapiens	4.00E-08	75	296		1	1
LMPX of lamprey	Petromyzon marinus	2.00E-71	86	718	1		1
large subunit ribosomal protein rpl 44	Ades triseriatus	1.00E-42	81	369	2	1	3
multicatalytic endopeptidase complex	Homo sapiens	2.00E-82	87	760	1	-	1
nascent polypeptide-associated complex alpha chain	Mus musculus	1.00E-17	52	619	1		1
polyubiquitin	Cricetulus griseus	7.00E-47	95	315	1		1
probable reverse transcriptase	Ades triseriatus	3.00E-05	46	454	1		1
Probable threonyl-tRNA synthetase	Caenorhabditis elegans	1.00E-112	79	826	1	-	1
protein arginine methy transferase	Mus musculus	3.00E-40	52	689	1	-	1
protein synthesis initiation factor 4A	Mus musculus	2.00E-84	84	657	1		1
putative reverse transcriptase	Takifugu rubripes	8.00E-21	56	620	1		1
QM protein	Bombyx mandarina	1.00E-110	91	690	1	1	2
RpL 19 gene product	Drosophila melanogaster	1.00E-63	79	620	-	1	1

Table 3.3 Gene expression and protein coding gene transcripts isolated from normal and *V. harveyi* infected *P. monodon* haemocytes (continued)

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones
RpS 9 gene product	Drosophila melanogaster	9.00E-78	87	626	1	1	2
RpS 25 gene product	Drosophila melanogaster	8.00E-29	89	960	2		2
snRNP-associated protein	Dario rerio	2.00E-31	74	418	1		1
transcription co-repressor Sin3	Xenopus laevis	6.00E-11	81	419		1	1
transcription initiation factor TFIID 110 kDa subunit	Drosophila melanogaster	1.00E-21	54	955	1		1
translationally controlled tumor protein homolog	Drosophila melanogaster	4.00E-35	72	557		2	2
ubiquitin and ribosomal protein S27a precursor	Homo sapiens	3.00E-58	77	792		1	1
ubiquitin-conjugating enzyme E2-24 kDa	Drosophila melanogaster	3.00E-73	99	862	2		2
ubiquitin-conjugating enzyme E2L	Homo sapiens	4.00E-71	94	792		1	1
von Hippel-Lindau binding protein 1	Homo sapiens	3.00E-12	84	378	1	•	1

Internal/external structure and motility

A total of 58 clones (11.1 % of the matched EST clones), representing 29 different genes were homologues of genes of internal/external structure and motility, (Table 3.4). The major putative protein found in this category was actin-related proteins (29 clones), followed by a group of tubulin genes (11 clones). Other genes were ubiquitin-like protein SMT2, myosin regulatory light chain, cytoplasmid beta chain, etc. Beta actin was the highest dominant clones (7 clones) in the normal library whereas no predominant clone was found in the infected library.

Metabolism

One hundred and four clones (19.9% of the matched EST clones) representing 55 different putative genes involved in metabolism (Table 3.5). This group includes putative mitochondrial gene products, for example, cytochrome b, cytochrom c subunits, ATP synthease, ATPase subunit b, NADH dehydrogenase subunits, etc. The major transcripts were those of cytochrome C oxidase subunits (35 clones), followed those of ATPase subunits (14 clones) and NADH dehydrogenase subunits (6 clones), respectively. The remaining putative genes identified were aldehyde reductase, steroid dehydrogenase, proteasome subunits, glucose-6 phosphatase, arginase, etc. Cytochrome c oxidase subunit I was the most abundant putative gene in both libraries (13 clones in the normal and 7 clones in the infected library).

Defense and homeostasis

One hundred and fifteen clones (65 clones from the normal library and 50 clones from the infected library) representing 10.8% of the total clones sequenced, are putative immune-related genes. These clones represented 34 different immune genes and were categorized in 5 different subgroups (Table 3.6).

The first subgroup was antimicrobial protein/peptides which were predominated in both libraries. Gene transcripts in this group were composed

Table 3.4 Internal/External structure and motility related gene products isolated from normal and *V. harveyi* intected *P. monoaon* naemocytes

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones
actin related protein	Lumbricus rubellus	7.00E-23	99	677	1	•	1
actin related protein 2/3 complex, subunit3	Homo sapiens	1.00E-63	80	829	-	1	1
actin, alpha cardiac muscle	African clawed frog	6.00E-67	87	800	1		1
actin, clone 403	Artemia sp	1.00E-120	99	784	6	-	6
actin, cytoplasmic A3	Bombyx mori	1.00E-110	98	642	2	-	2
actin1	Atlantic horseshoe crab	1.00E-125	98	800	6	1	7
actin2	Daucus carota	1.00E-58	96	731	1		1
actin3	Limulus polyphemus	1.00E-109	98	671	1	-	1
alpha-2-tubulin	Gecarcinus lateralis	1.00E-29	66	542	2	-	2
beta actin	Penaeus vannamei	1.00E-156	96	909	7	1	8
beta tub 56D gene product (alt1)	Drosophila melanogaster	1.00E-141	97	938	1	-	1
calponin homolog	Schistosoma japonicus	2.00E-27	63	615	1		1
cytoplasmic beta chain	Xenopus laevis	1.00E-126	95	907	2		2
dynein light chain, cytoplasmic	Drosophila melanogaster	3.00E-45	99	729	1	-	1
feritin 2 light chain homolog	Drosophila melanogaster	2.00E-04	48	904	1	-	1
gamma-actin	Mus musculus	1.00E-44	100	402		1	1
INNEXIN INX3	Drosophila melanogaster	1.00E-34	55	0		1	1
myosin regulatory light chain	Drosophila melanogaster	1.00E-69	95	536	1	2	3
Plelota protein	Drosophila melanogaster	2.00E-54	73	558		1	1
profilin	Drosophila melanogaster	3.00E-20	59	800	2	-	2
SMC 1 protein	Drosophila melanogaster	1.00E-85	76	930	1	-	1
stromelysin-3 precusor	Xenopus laevis	3.00E-25	49	661	1		1
tubulin alpha-1- chain	Homarus americanus	1.00E-171	92	985	2	2	4
tubulin alpha-3 chain	Homarus americanus	3.00E-76	91	522	1		1
tubulin beta	Homo sapiens	1.00E-107	72	885	3	_	3
Ubiquitin-like protein SMT2	Caenorhabditis elegans	4.00E-31	83	849	1		1
ras-related protein RAB-1A	Lymnaea stagnalis	8.00E-96	90	923	1	-	1
SEC 61, gamma subunit	Mus musculus	2.00E-10	59	353	-	1	-1
protein complex subunit34	Homo sapiens	2.00E-19	84	738	1	٠.	1

Table 3.5 Metabolism-related transcripts isolated from normal and V. harveyi infected P. monodon

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones	The second second second
ATP syntase coupling factor 6,mitochondrial pre	cu Drosophila melanogaster	1.00E-22	73	432	•	1	1	TO A CALL OF
ATP synthase alpha chain, mitochondrial precur	SOI Drosophila melanogaster	2.00E-14	80	630	1	-	1	
ATP synthase FO subunit 6	Penaeus monodon	3.00E-85	91	823	5	2	7	
ATP synthase oligomycin sensitivity conferral	Drosophila melanogaster	8.00E-57	75	758		3	3	
protein precursor								
ATP synthase subunit C	Manduca sexta	4.00E-12	61	777	2	-	2	
ATPase subunit 6	Penaeus notialis	3.00E-72	70	748	2		2	
ATPsyn-gamma gene product	Drosophila melanogaster	3.00E-69	71	710	1	-	1	
cytochrome B	Drosophila melanogaster	E-105	74	867	2	2	4	
cytochrome C oxidase subunit VI precusor	Thunnus niloticus	2.00E-18	76	503	. 1		1	
cytochrome C oxidase subunit I	Penaeus monodon	E-135	93	809	13	7	20	
cytochrome C oxidase subunit II	Penaeus monodon	8.00E-98	85	671	3	3	6	
cytochrome C oxidase subunit III	Penaeus monodon	1.00E-105	84	765	6		6	
cytochrome C oxidase subunit VIb	Saccharomyces cerevisiae	1.00E-20	70	552	-	1	1	
cytochrome C oxidase subunit VIIc	Rattus norvegicus	5.00E-09	72	417	1	-	1	
NADH dehydrogenase subunit I	Penaeus monodon	E-104	94	676		1	1	
NADH dehydrogenase subunit II	Penaeus monodon	1.00E-100	77	804	1	-	1	
NADH dehydrogenase subunit IV	Penaeus monodon	6.00E-80	78	611	1	1	2	
NADH dehydrogenase subunit V	Penaeus monodon	1.00E-108	88	898	1	-	1	
NADH dehydrogenase subunit VI	Penaeus monodon	3.00E-32	75	385		1	1	
NADH-Ubiquinone oxidoreductase 42 kDa	Drosophila melanogaster	6.00E-37	75	710	2		2	
subunit mitochondrial								
2,4-dienoyl-CoA reductase (NADH)	Rattus norvegicus	7.00E-93	73	507		1	1	
acyl coenzyme A dehydrogenase, long chain	Rattus norvegicus	1.00E-81	86	930	1	-	1	
ADP-ribosylation factor6	Gallus gallus	3.00E-97	97	661		1	1	
aldehyde reductase	Sus scrofa	6.00E-37	66	708	1		1	
amino acid starvation-induced protein	Rattus norvegicus	2.00E-33	68	534		1	1	
Apg 12	Homo sapiens	2.00E-32	72	724	1		1	
arginase	Xenopus laevis	2.00E-45	65	638	-	1	1	
arginine kinase	Callinectes sapidus	3.00E-38	98	527	-	1	1	

Table 3.5 Metabolism-related transcripts isolated from normal and *V. harveyi* infected *P. monodon* (continued)

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones	
calmodulin	Drosophila melanogaster	2.00E-80	100	747	2	•	2	
chain A, Triosephosphate isomerase	Gallus gallus	3.00E-54	70	654	1		1	
chain H, cytochrome Bc1 complex	Gallus gallus	4.00E-14	66	593	1		1	
glucose-6phophatase	Mus musculus	2.00E-33	58	768	2	-	2	
glutamyl-tRNA (Glu) aminotransferase	Deinococcus radiodurans	5.00E-10	56	557		1	1	
glutathione s-transferase	Rattus norvegicus	8.00E-04	54	370		1	1	
GTP-binding nuclear protein RHEB homolog	Drosophila melanogaster	4.00E-70	83	726	2		2	
guanine nucleotide-binding protein beta subunit	Oreochromis niloticus	3.00E-82	88	747	2	-	2	
guanine nucleotide-binding protein gamma-1	Drosophila melanogaster	3.00E-14	77	397		1	1	
Na/K-ATPase beta subunit isoform 3	Drosophila melanogaster	8.00E-24	55	692		1	1	
non-selenium glutathione phospholipid	Sus scrofa	1.00E-29	57	572	1	-	1	
hydroperoxidase								
nucleoside diphosphate kinase	Columba livia	4.00E-49	84	456	1	-	1	
peroxisomal Ca-dependent solute carrier	Orycotolagus cuniculus	4.00E-63	75	942	1	•	1	
PKCq-interacting protein PICOT	Homo sapiens	3.00E-52	67	707	1	-	1	
protein-glutamine	Oryctolaqus cuniculus	3.00E-08	53	750	1	1.00	1	
pterin-4a-carbinolamine dehydratase	Drosophila melanogaster	1.00E-18	76	280	1	·	1	
putative steroid dehydrogenase	Mus musculus	8.00E-35	64	728	1	-	1	
RIKEN cDNA 2510049/19 gene	Mus musculus	5.00E-18	60	432		1	1	
stromal cell derived factor2	Mus musculus	2.00E-39	59	800	1		1	
unspecific monooxygenase	Nicotiana tabacum	9.00E-19	60	689		2	2	
vacuolar ATP synthase subunit G	Manduca sexta	2.00E-20	68	626	1		1	
26S proteasome regulatory subunit	Anopheles stephens	5.00E-65	86	760	1	, <u> </u>	1	
proteasome 25 kDa subunit	Drosophila melanogaster	6.00E-72	79	520		1	1	
proteasome beta chain precursor	Mus musculus	9.00E-21	65	673	1		1	
proteasome subunit alpha type 6	Mus musculus	2.00E-30	80	816	1		1	
proteasome subunit beta type 2	Homo sapiens	3.00E-53	69	764	1		1	
putative senescence-associated protein	Pisum sativum	2.00E-29	84	669		1	1	

Table 3.6 Immune related genes isolated from normal and Vibrio harveyi infected shrimps P. monodon

Putative identification	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones
1. Antimicrobial molecules							
antilipopolysaccharide factor	Atlantic horseshoe crab	7.00E-19	64	512	5	16	21
Crustin	Litopenaeus setiferus	1.00E-42	65	515	5	8	13
Penaeidin-2 precursor	Litopenaeus setiferus	2.00E-05	57	651	1	3	4
Penaeidin-3c precursor	Litopenaeus setiferus	1.00E-18	66	412	6	2	8
Penaedine-3k precursor	Litopenaeus setiferus	9.00E-11	54	647		1	1
P lysozyme structural	Mus musculus	2.00E-26	67	541	2	2	4
2. ProPO systems and oxidative enzyme Clottable protein	Penaeus monodon	E-130	98	458	3	3	6
Cytosolic manganese superoxidase	Callinectes sapidus	E-129	86	930		1	1
Dismutase precursor							
		2.00F 10	76	221			1
Glutathione peroxidase	Homo sapiens	3.00E-18	76	331	1	•	
Haemocyte protein-glutamine	Tachypleus tridentatus	2.00E-48	76	746	4		4
gamma-glutamyltransferase							
peroxidase	Aedes aegypti	1.00E-21	52	747	1	•	1
Prophenoloxidase	Penaeus monodon	1.00E-51	80	465	1	•	1
prophenoloxidase activating factor	Holotrichia diomphalia	7.00E-18	70	550	1	2	3
3. Proteinases and inhibitor Gene MAC25 protein (Kazal	Homo sapiens	9.00E-10	53	405		3	3
proteinase inhibitor homology)							
Haemocyte protease-1	Manduca sexta	1.00E-12	57	700	1		1
proteinase inhibitor-signal crayfish		5.00E-31	60	503	8	1	9
Cathepsin B-like cytoeine	Sarcophaga perregrina	6.00E-18	88	659	1		1
proteinase, 29 k precursor Serine protease	Pacifastacus leniusculus	4.00E-79	79		1	1	2
Whey acidic protein (putative	Trichosurus vulpecula	5.00E-06	48	712	1	1	2
Protease inhibitor)							
4. Heat shock protein							
Heat shock protein 10	Gallus gallus	2.00E-25	73	665	1		1
내내가 하다 내용 전기를 하고 있다면 하는 것이 없는데 하는데 하는데 하는데 되었다.		9.00E-95	76	772	1	1	2
Heat shock protein 70	Hydra magripapillata	2.00E-56	90	806	1	1	2
Heat shock protein 90	Gallus gallus	9.00E-27	70	618	2	or a selection of	2
5. Other immune molecule	Outius guitus	7.00L-27	70	010	-		-
Fc fragment of IgE	Homo sapiens	5.00E-07	67	533		1	1
Protein c	Mouse	3.00E-10	63	708	1		1
Protein-kinase c inhibitor	Bovine	2.00E-38	78	756	1		1
Thymosin beta-9 and beta 8	Bovine	2.00E04	77	706	2.		2
Thymosin beta-11	Oncorhynchus mykiss	4.00E-27	64	872	3		3
Perlucin	Haliotis cuniculus	7.00E-16	54	575	2		2
Cyclophilin 18	Oryctolagus cuniculus	8.00e-58	72	756	1		1
Chaperonin containing t-complex Polypeptide 1	Homo sapiens	9.00E-67	77	637	3		3
Catalase	Campylobacter jejuni	3.00E-09	93	575	1 .		1
Peptide-prolyl cis-trans isomer 5	Drosophila melanogaster	3.00E-68	81	816	4	3	7

of anti-lipopolysaccharide factor (ALF), crustins, penaeidins and lysozyme. The second subgroup was those in the Prophenoloxidase systems and oxidative enzymes; Prophenoloxidase (proPO), prophenoloxidase activating factor (ppAA), haemocyte-glutamine gamma-glutamyl transferase (TGase), clottable protein, gluthathione peroxidase, peroxidase, cytosolic manganese superoxide dismutase. The third subgroup of immune-related genes was proteinases and their inhibitors. They were proteinase inhibitors, gene MAC 25 protein (Kazal proteinase inhibitor homologue), whey acidic protein, serine protease, haemocyte protease-1 and probable cathepsinB-like cystein proteinase. The fourth subgroup was heat shock proteins (HSP). Gene transcripts in this group are composed of those for HSP10, HSP70 and HSP90. The last group includes other immune-related molecules such as perluci, thymosin beta-11, thymosin beta-9 and beta-8, and protein C etc.

The predominant clone of these immune genes in the normal library is proteinase inhibitor (8 clones, 12.3% of immune genes in the normal library). Interestingly, the EST homologues of ALF were greatly increased in the infected library (16 clones, 32% of the total immune genes in infected library).

Signaling and communication

Fifteen clones (28% of the match EST clones) representing 15 different genes identified as putative genes of signaling and communication were identified (Table 3.7). Thus, redundancy of recombinant clones was not found in this group. Several receptors such as a sialoglycoprotein receptor, GABA-A receptor were found.

Cell division/DNA synthesis, repair and replication

This group was the smallest group, composed of 11 clones (1.1% of the matched EST clones), representing 4 different genes (Table 3.8). The predominant proteins are histone 1 (5 clones), followed by histone 3 (4 clones).

Table 3.7 Signaling and communication isolated-related transcripts from normal and *V. harveyi* infected *P. monodon* haemocytes

Gene	Closest species	Probability	Matched	Sequence	Frequency	Frequency	Total
			(%)	Length	(normal	(infected	clones
				(pb),	shrimp)	shrimp)	
11-1 polypeptide	Plasmodium faciparum	6.00E-04	56	565	1		1
agrin precursor	Homo sapiens	6.00E-06	48	428	1		1
asialoglycoprotein receptor	Mus musculus	2.00E-05	45	922	1	•	1
beta 2-chimeric	Mus musculus	2.00E-39	63	799	1		1
COP9 (constitutive photomorphogenic) subunit 4	Mus musculus	5.00E-78	87	829	1		1
gamma-aminobutyric acid (GABA-A)	Rattus norvegicus	1.00E-07	45	677		1	1
ecptor, subunit epsilon							
cupffer cell receptor	Rattus norvegicus	1.00E-13	44	670	1		1
LIV-1 protein, estrogen regulated	Homo sapiens	1.00E-04	67	934	1		1
ow-density lipoprotein receptor	Homo sapiens	1.00E-12	51	751	1		1
elated proteion-deleted in tumor							
noesin / ezrin / radixin	Drosophila melanogaster	2.00E-48	72	934	1		1
PDGF/VEGF-llike protein	Drosophila melanogaster	2.00E-09	52	696		1	1
outative VLDL lipoprotein receptor precursor	Mus musculus	2.00E-05	44	730		1	1
ex-lethal protein homolog	Ceratitis capitata	1.00E-50	74	615	1	-	1
hak-8 (lethal) protein	Drosophila melanogaster	5.00E-17	65	788	1	4.7	1
ranslocon-associated protein	Canis familiaris	8.00E-39	73	499	1		1

Table 3.8 Cell division/DNA synthesis, repair and replication-related transcripts isolated from normal and *V.harveyi* infected *P. monodon* haemocytes

Gene	Closest species	Probability	Matched	Sequence	Frequency	Frequency	Total
			(%)	Length	(normal	(infected	clones
				(bp)	shrimp)	shrimp)	
H3 histone	Homo sapiens	9.00E-63	96	827	2	2	4
Histone 1	Mytilus edulis	3.00E-20	75	542	2	3	5
tankyrase	Homo sapiens	8.00E-11	44	436	1	•	1
SPARC-related protein	Mus musculus	3.00E-05	46	657	1		1

Non-identified functional genes

A total of 49 clones (9.4%) were homologous to genes which non-identified function (Table 3.9). Hypothetical proteins are the largest group. In a total, 12 clones are from the normal library and 6 clones were found from the infected library. Other gene transcripts classified to this group were CG gene products of *D. Melanogaster* KIAA protein etc.

Unknown genes

Unmatched ESTs; 307 clones (49.9%) and 232 clones (51.9%) from the normal and infected libraries, were respectively identified. Using the software Genetyx-Win program to examine the ORF of unmatched ESTs sizes greater than 300 bp in length revealed that 47 ESTs from the normal library and 58 ESTs from the infected had ORF of the genes (Table 3.2).

Table 3.9 Un-identified functional transcripts isolated from normal and *V. harveyi* infected *P. monodon* haemocytes

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total clones
15 kDa selenoprotein	Homo sapiens	8.00E-15	65	332	1		1
hypothetical 68.8kD protein	Yeast	5.00E-04	65	800	2		2
hypothetical 39.6kD protein	Yeast	4.00E-20	60	576	1		1
hypothetical 36.9 kDa protein	Caenorhabditis elegans	5.00E-10	63	515	1	2	3
KIAA1177 protein	Homo sapiens	2.00E-21	78	408	1		1
hypothetical protein F 26E4.9	Caenorhabditis elegans	3.00E-19	69	564	1		1
hypothetical protein 18K protein	goldfish-mitochondrion	1.00E-04	65	920	2	-	2
hypothetical protein R17.2	Caenorhabditis elegans	3.00E-13	55	636	1		1
KIAA0924 protein	Homo sapiens	2.00E-07	64	666	1		1
KIAA0152 gene product	Homo sapiens	1.00E-42	72	531	1	4.	1
KIAA0670 protein	Homo sapiens	7.00E-25	47	737	1		1
selenoprotein w muscle 1	Rattus norvegicus	2.00E-23	74	829	3	-	3
hypothetical protein	Drosophila melanogaster	3.00E-42	58	872	2		2
Ha3611gene product	Homo sapiens	2.00E-08	87	371	1		1
CG6866 gene product	Drosophila melanogaster	7.00E-18	49	710	1	_	1
po 1 polyprotein	Volvox carteri	5.00E-04	84	573	1		1
tPhLP	Mus musculus	7.00E-39	55	834	1		1
probeta 2 gene product	Drosophila melanogaster	2.00E-62	78	724	1	-	1
CG14429 gene product	Drosophila melanogaster	3.00E-18	82	767	1	<u>.</u>	1
Mo23 gene product	Drosophila melanogaster	1.00E-20	95	941	1		1
hypothetical protein F08F1.8	Caenorhabditis elegans	1.00E-12	52	898	1		1
hypothetical protein Y45F10D.4	Caenorhabditis elegans	7.00E-58	91	875	1	_	1
hrp 65-3 isoform	Chironomus tentans	8.00E-06	45	843	1		1
brain protein I3	Homo sapiens	9.00E-14	71	723	2		2
hypothetical 36.9 kDa protein	Caenorhabditis elegans	1.00E-13	63	483		1	1
nypothetical protein	Homo sapiens	4.00E-04	57	463		1	1
KIAA 1594 protein	Homo sapiens	1.00E-18	60	372		1	1
nypothetical protein FJ12878	Homo sapiens	2.00E-58	58	845		1	1

Table 3.9 Un-identified functional transcripts isolated from normal and *V. harveyi* infected *P. monodon* haemocytes (continued)

Gene	Closest species	Probability	Matched (%)	Sequence Length (bp)	Frequency (normal shrimp)	Frequency (infected shrimp)	Total
unnamed protein product	Mus musculus	2.00E-04	51	616	•	1	1
ebiP7015	Anopheles gambiae	3.00E-40	84	805	-	1	1
CG14206 gene product	Drosophila melanogaster	4.00E-48	79	543		1	1
BcDNA GH02921	Drosophila melanogaster	2.00E-21	52	557	-	1	1
CG6001 gene product	Drosophila melanogaster	1.00E-105	85	922	•	1	1
CG9354 genr product	Drosophila melanogaster	5.00E-29	73	386	•	1	1
CG8444 gene product	Drosophila melanogaster	2.00E-11	59	636		1	1
PTD007 protein	Homo sapiens	2.00E-11	51	568	-	1	1
p105 coactivator	Rattus norvegicus	5.00E-14	72	764		1	1
AK012526 putative	Mus musculus	4.00E-06	65	362		1	1
AK002940 putative	Mus musculus	6.00E-41	78	423		1	1
hypothetical protein F26E4.9	Caenorhabditis elegans	1.00E -2 0	70	132	-	1	1
hypothetical protein; CGI-117 protein	Homo sapiens	1.00E-08	81	519	-	1	1
hypothetical protein 51.8 kDa protein	Leishmania major	1.00E - 04	62	586		1	1
RE63456p	Drosophila melanogaster	7.00E-30	75	367	<u>-</u>	1	1

3.4 Full-length of immune related genes

Nucleotide sequences that were homologous with defense and homeostasis or immune related genes were searched for the open reading frame (ORF) using the Genetyx-Win. 6 different genes contained complete ORF. They were ALFs, penaeidin, proteinase inhibotors, crustins, a heat shock protein 10 and a cytosolic manganese superoxide dismutase.

Anti-lipopolysaccharide factor

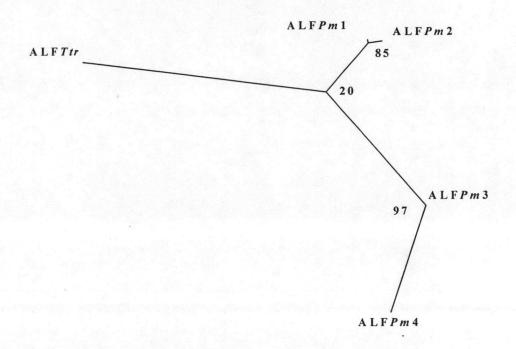
An antilipopolysaccharide factor (ALF) is a basic protein initially found in haemocytes of the horseshoe crab. It inhibits the growth of gram-negative bacteria. In this study, 21 clones (5 clones form the normal library and 16 clones from the infected library) were identified as ALF homologues and 17 clones of these contained complete ORFs. Deduced amino acid sequences suggested that at least 4 types (recognized as ALF*Pm*1-ALF*Pm*4) were existent in *P. monodon* haemocytes. They contained ORFs of 252, 360, 369, and 396 bp encoding 84, 120, 123, and 132 amino acids, respectively (Figure 3.5).

Among clones representing full length ALF, 13 (including 5 clones from the normal library) clones were ALFPm3 whereas the remaining clones were classified as each of ALFPm1, ALFPm2 and ALFPm4, respectively. Nucleotide sequences of ALF were aligned. (Figure 3.5). A putative signal peptide peptide at the NH₂-terminus was located between Ala/Gly (A/G) and Gln (Q) (Figure 3.6). Amino acid sequences of *P. monodon* ALF and *T. tridentatus* were 57% - 65% homology (Figure 3.7). Sequence divergence between different family of *P. monodon* ALF were 0.0330 (ALFPm1-ALFPm2) – 1.6257 (ALFPm4-ALFPm2) (Table 3.10). A phylogenetic tree for ALF revealed that gene duplication of ALFPm1 and ALFPm2 was more recent than ALFPm3 and ALFPm 4 which may have dissociated earlier. All ALFPm families were distantly related with *T. tridentatus* ALF (Figure 3.8).

ALFPm3	ATGCGTGTGTCCGTGCTGGTAAGCCTGGTGCTGGTGGTGTCCCTGGTGGCACTCTTCGCC
ALFPm4	ATGCGTGTGCCGTGCTGGTAAGCCTGGTGCTGGTGGTGTCCCTGGTGGCAGTCTTCGCC
	ATGCGAGTCTTGGTCAGCTTTTTAATGGCACTCAGCCTGATTGCACTTATG
ALFPm1	
ALFPm2	ATGCGAGTCTTGGTCAGCTTTTTAATGGCACTCAGCCTGATTGCACTTATG
ALFTtr	
7 I I Dm2	CCACAGTGCCAGGCTCAAGGGTGGGAGGCTGTGGCAGCGGCCGTCGCCAGCAAGATCGTA
ALF <i>Pm</i> 3	COACAG GOOD COACAG COMMISSION COACAG
ALFPm4	CCACAGTGCCAGGCTCAAGGGTGGGAGGCTGTGGCAGCGGCCGTCGCCAGCAAGATCGTA
ALFPm1	CCACGGTGCCAGGGTCAAGGCGTGCAGGACCTCCTCCCTGCCTTAGTAGAAAAGATCGCT
ALFPm2	CCACGGTGCCAGGGTCAAGGCGTGCAGGACCTCCTCCCTGCCTTAGTAGAAAAGATCGCT
	GATGGTATTTGGACTCAATTGATTTTTACTTTGGTTAATAATTTTGGCT
ALFTtr	* * * * * * * * * * * * * * * * * * *
ALFPm3	GGGTTGTGGAGGAACGAAAAACTGAACTTCTCGG-CCACGAGTGCAAGTTCACCGTCAA
ALFPm4	GGGTTGTGGAGGAACGAAAAACTGAACTTCTCGG-CCACGAGTGCAAGTTCACCGTCAA
ALF Pm1	GGGTTGTGGCACT-CGGATGAGGTGGAGTTCTTGGGCCACAGTTGCAGGTACAGTCAGCG
	GGGTTGTGGCACT-CGGATGAGGTGGAGTTCTTGGGCCACAGTTGCAGGTACAGTCAGCG
ALFPm2	
ALFTtr	ACTTTGTGGCAAT-CTGGTGATTTTCAATTTTTGGATCATGAATGTCATTATAGAATTAA
	***** * * * * * * * * * * *
ALF <i>P</i> m3	GCCTTATTTGAAGAGATTCCAGGTGTACTACAAGGGGAGGATGTGGTGCCCAGGCTGG-A
ALFPm4	GCCTTATTTGAAGAGATTCCAGGTGTACTACAAGGGGAGGATGTGGTGCCCAGGCTGGGA
ALFPm1	CCCTTCCTTCTATAGGTGGGAGCTGTACTTCAATGGAAGGATGTGGTGTCCAGGATGG-G
ALFPm2	CCCTTCCTTCTATAGGTGGGAGCTGTACTTCAATGGAAGGATGTGGTGTCCAGGATGG-G
ALFTtr	ACCAACTTTTAGAAGATTGAAATGGAAATATAAAGGTAAATTTTGGTGTCCATCTTGG-A
ALITEL	** ** ** * * * * * * * * * * * * * * *
ALFPm3	CGGCCATCAGAGGAGAAGCCAGCACACGCAGTCAGTCCGGGGTAGCTGGAAAGACAGCCA
ALFPm4	CGGCCATCAGAGGAGAAGCCAGCACACGCAGTCAGTCCGGGGTAGCTGGAAAGACAGCCA
ALFPm1	CTCCCTTCACTGGCCGATGTGAGTGA
ALFPm2	CTCCCTTCACTGGCCGATCTCGGACCCGCAGCCCCTCCGGCGCCATAGAGCACGCGACGA
ALFTtr	CTTCTATTACTGGTAGAGCTACTAAATCTTCTAGATCTGGTGCTGTTGAACATTCTGTTA
	* * * * * *
ALF <i>Pm</i> 3	AAGACTTCGTTCGGAAAGCTTTCCAGAAAGGTCTCATCTCTCAACAGGAGGCCAACCAGT
	. 프랑프로프로 그 집에는 그 그는 이 프로그리아 이 이 시간에 얼굴에 일었다면 하셨다면 되었다면 얼굴에 되었다면 그 그는 그 사람이 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 하는데 다른데 그 사람이 되었다면 그 그 그 그는데 그는데 그는데 그는데 그는데 그는데 그는데 그는데 그
ALFPm4	AAGACTTCGTTCGGAAAGCTTTCCAGAAAGGTCTCATCTCTCAACAGGAGGCCAACCAGT
ALFPm1	
ALFPm2	GGGACTTCGTGCAGAAGGCGCTGCAGAGTAATCTCATCACGGAGGAAGACGCCAGGATTT
ALFTtr	GAAATTTTGTTGGTCAAGCTAAATCTTCTGGTTTGATTACTCAAAGACAAGCTGAACAAT
ALF <i>Pm</i> 3	GGCTCAGCTCATAG
ALFPm4	GGCTCAGCTCATAGGCCTTTTGCTCTATGAAGAATTGTCAGTGTTCAGCTGCAGTTTGGCA
ALFPm1	
ALFPm2	GGCTTGAGCACTAA
ALFTtr	TTATTTCTCAATATAAT
ALFPm3	
ALFPm4	ATGGAAGCTCTACCATTTTGATTTCTTGTGTTTTTCCTTTCAATACTGAACCGAAGAGTT
	ALCOMICO TO THE CONTROL OF THE CONTR
ALFPm1	
ALFPm2	
ALFTtr	
ALFPm3	
	GAGATATTCATTATGTTAA
ALFPm4	GMGATATICATIATGITAA
ALFPm1	
ALFPm2	
AT ETH =	
ALFTtr	

Figure 3.5 Nucleotide sequence alignment of ALF*Pm*1-ALF*Pm*4 of *P. monodon* with ALF*Ttr* of the horseshoe crab *T. tridentatus*

ALFPm4	MRVSVLVSLVLVVSLVALFAPQCQAQGWEAVAAAVASKIVGLWRNEKTELLGHECKFTVK
ALFPm3	MRVSVLVSLVLVVSLVAVFAPQCQAQGWEAVAAAVASKIVGLWRNEKTELLGHECKFTVK
ALFPm2	MRVLVSFLMALSLIALM-PRCQGQGVQDLLPALVEKIAGLWHSDEVEFLGHSCRYSQR
ALFPm1	MRVLVSFLMALSLIALM-PRCQGQGVQDLLPALVEKIAGLWHSDEVEFLGHSCRYSQR
	** ****::::**:**: *:**. ** : : .*:**.***:::::.*:***.*:::::
ALFPm4	PYLKRFQVYYKGRMWCPGWTAIRGEASTRSQSGVAGKTAKDFVRKAFQK
ALFPm3	PYLKRFQVYYKGRMWCPGWDGHQ-RRSQHTQS-VRGSWKDSQRLRSESFPERSHLSTGGQ
ALFPm2	PSFYRWELYFNGRMWCPGWAPFTGRSRTRSPSGAIEHATRDFVQKALQS
ALFPm1	PSFYRWELYFNGRMWCPGWAPFTGRCEX
	* : *:::*::******
ALFPm4	GLISQQEANQWLSS
ALFPm3	PVAQLIGLLLYEELSVFSCSWQWKLYHFDFLCFSFQY
ALFPm2	NLITEEDARIWLEH
ALFPm1	


Figure 3.6 Nucleotide sequence alignment of ALFPm1-ALFPm4 of P. monodon. Putative signal peptide is underlined.

ALFPm3	MRVSVLVSLVLVVSLVALFAPQCQAQGWEAVAAAVASKIVGLWRNEKTELLGHECKFTVK
ALFPm4	MRVSVLVSLVLVVSLVAVFAPQCQAQGWEAVAAAVASKIVGLWRNEKTELLGHECKFTVK
ALFPm1	MRVLVSFLMALSLIALM-PRCQGQGVQDLLPALVEKIAGLWHSDEVEFLGHSCRYSQR
ALFPm2	MRVLVSFLMALSLIALM-PRCQGQGVQDLLPALVEKIAGLWHSDEVEFLGHSCRYSQR
ALF Ttr	DGIWTQLIFTLVNNLATLWQSGDFQFLDHECHYRIK
	: :::: **: ::*.*.*:: :
ALFPm3	PYLKRFOVYYKGRMWCPGWTAIRGEASTRSQSGVAGKTAKDFVRKAFQK
ALFPm4	PYLKRFQVYYKGRMWCPGWDGHQ-RRSQHTQS-VRGSWKDSQRLRSESFPERSHLSTGGQ
ALFPm1	PSFYRWELYFNGRMWCPGWAPFTGRCE
ALFPm2	PSFYRWELYFNGRMWCPGWAPFTGRSRTRSPSGAIEHATRDFVQKALQS
ALF Ttr	PTFRRLKWKYKGKFWCPSWTSITGRATKSSRSGAVEHSVRNFVGQAKSS
	* : * : ::*::**.*
ALFPm3	GLISQQEANQWLSS
ALFPm4	PVAQLIGLLYEELSVFSCSWQWKLYHFDFLCFSFQYTEELRYSLC
ALFPm1	
ALFPm2	NLITEEDARIWLEH
ALFTtr	GLITQRQAEQFISQYN

Figure 3.7 Amino acid sequence alignment of ALFPm1-ALFPm4 of P. monodon with ALFTtr of the horseshoe crab T. tridentatus

Table 3.10 Genetic distance calculated from amino sequence divergence of ALF in *P. monodon* and an outgroup (ALF*Ttr*)

Genetic distance				
ALFPm3	ALFPm3	ALFPm4	ALFPm1	ALFPm2
ALFPm4	0.5409			
ALFPm1	1.1026	1.1648		
ALFPm2	1.0478	1.6257	0.0330	
ALF <i>Ttr</i>	1.3407	2.3195	1.2315	1.1622

0.1

Figure 3.8 A bootstrapped NJ tree of phylogenetic tree of ALF genes found in the study. Values at the node represent the percentage of times that the particular node occurred in 500 tree generated by bootstraping of the original amino acid sequences.

Penaeidins

Penaeidins are members of a new family of antimicrobial peptides exhibiting Gram-positive antibacterial and antifungal activities and initially isolated from penaeid shrimp. Three putative peptides namely penaeidins2a, - 2b and -2c were previously reported in *P. vannamei*. Thirteen penaeidin homologues were identified in *P. monodon* by the present study. Ten of these contain complete ORFs. Nucleotide sequences of representative sequences were aligned and showed high similarlity between these ESTs (Figure 3.9).

All ESTs contained an ORF of 222 bp coding for a protein of 74 amino acids. The putative signal peptide was predicted at NH₂-terminal composing of 19 amino acid residues that are almost identical to that of *P.vannamei* (Figure 3.10). The sequences after the putative signal peptide were composed of a proline-rich region followed by a COOH-terminal region containing 6 cysteine residues at conserved locations. Deduced amino acid sequences were aligned and suggested 3 different peptides which were different from one other by a single amino acid. These newly isolated sequences revealed the highest homology to Pen-2 of *P. vannamei* (Figures 3.9-3.10). They were then named as PenPm2a, PenPm2b, PenPm2c, respectively. The genetic distance (Table 3.11) and phylogenetic analysis indicated that putative penaeidins in *P. monodon* were more closely related within species (0.0136 – 0.0276) than between species (0.5713 – 0.6004) (Figure 3.11).

PenPm2b	ATGCGTCTCGTGGTCTGCCTGGTCTTCCTGGCCTTCGCCCTGGTCTGCCAAGCCCAA
PenPm2c	ATGCGTCTCGTGGTCTGCCTGGTCTTCCTGGCCTCCTTCGCCCTGGTCTGCCAAGCCCAA
Pen Pm2a	ATGCGTCTCGTGGTCTGCCTGGTCTTCCTGGCCTCGTCTGGTCTGCCAAGCCCAA
Pen-2	ATGCGCCTCGTGGTCTGCCTGGTCTTCTTGGCCTCCTTCGCCCTGGTCTGCCAAGGCGAA
10 2	**** ********* ***** ******************
Pen Pm2b	GGGTACCAGGGTGGTTACACACGCCCGTTCCCCAGACCACCCTATGGGGGAGGAT-ATCA
Pen Pm2c	GGGTACCAGGGTGGTTACACACGCCCGTTCCCCAGACCACCCTATGGGGGAGGAT-ATCA
Pen <i>Pm</i> 2a	GGGTACCAGGGTGGTTACACACGCCCGTTCCCCCAGACCAACCTATGGGGGAGGAT-ATCA
Pen-2	GCGTACAGGGGCGGTTACACAGGCCCGATACCCAGGCCACCACCCATTGGAAGACCACCG
1011 2	* *** *** ****** **** * **** * * * * * *
Pen Pm2b	TCCAGTTCCTGTTTGTACTTCATGCCACAGGCTTAGCCCCCTTACAAGCTCGTGCTTGCT
Pen Pm2c	TCCAGTTCCTGTTTGCACTTCATGCCACAGGCTTAGCCCCCTTACAAGCTCGTGCTTGCT
Pen <i>Pm</i> 2a	TCCAGTTCCTGTTTGCACTTCATGCCACAGGCTTAGCACCCTTACAAGCTCGTGCTTGCT
Pen-2	TTCAGA-CCTGTTTGCAATGCATGCTACAGACTTTCCGTCTCAGATGCTCGCAATTGCTG
1011 2	* *** ****** * * **** *** * * * * * * *
Pen Pm2b	CAGGCAGTTAGGACGTTGTTGTGATGCAAAGCAAACATATGGTTGA
Pen Pm2c	CAGGCAGTTAAGACGTTGTTGTGATGCAAAGCAAACATATGGTTGA
Pen Pm2a	CAGGCAGTTAG
Pen-2	CATCAAGTTCGGAAGCTGTTGTCACTTAGTAAAAGGATAA
FEII-2	** ***

Figure 3.9 Nucleotide sequence alignment of Pen*Pm*2a-Pen*Pm*2c of *P. monodon* with pen-2 of *P. vannamei*

PenPm2a	MRLVVCLVFLASFALVCQAQGYQGGYTRPFPRPTYGGGYHPVPVCTSCHRLSPLQARACC
PenPm2c	MRLVVCLVFLASFALVCQAQGYQGGYTRPFPRPPYGGGYHPVPVCTSCHRLSPLQARACC
PenPm2b	MRLVVCLVFLASFALVCQAQGYQGGYTRPFPRPPYGGGYHPVPVCTSCHRLSPLQARACC
Pen2	MRLVVCLVFLASFALVCQGEAYRGGYTGPIPRPPPIGRPPFRPVCNACYRLSVSDARNCC

Pen Pm2a	RQLGRCCDAKQTYG
PenPm2c	RQLRRCCDAKQTYG
PenPm2b	RQLGRCCDAKQTYG
Pen2	IKFGSCCHLVKG
	:: **. :

Figure 3.10 Amino acid sequence alignment of Pen*Pm*2a-Pen*Pm*2c of *P. monodon* with pen-2 of *P. vannamei*. Putative signal peptide is underlined.

Table 3.11 Genetic distance calculated from amino sequence divergence of penaeidins in *P. monodon* and an outgroup (Pen2)

Genetic distance				
PenPm2a	PenPm2a	PenPm2c	PenPm2b	
PenPm2c	0.0275			
PenPm2b	0.0136	0.0136		
Pen2	0.6003	0.6003	0.5713	

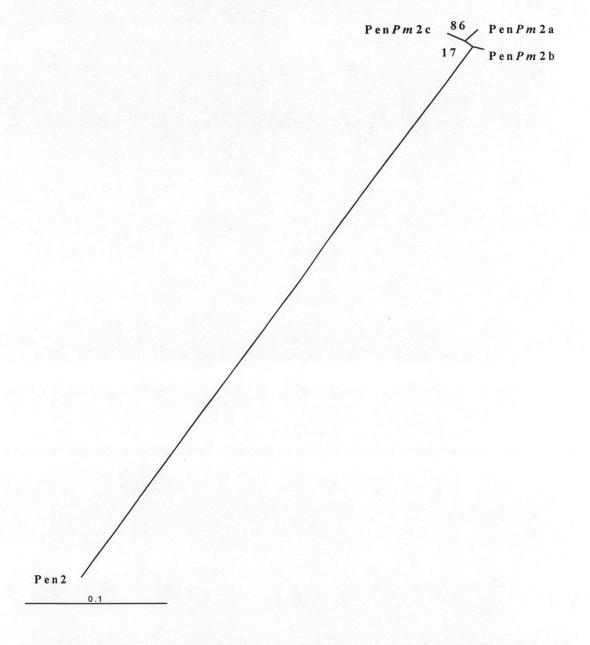


Figure 3.11 A bootstrapped NJ tree of phylogenetic tree of penaeidin genes found in the study. Values at the node represent the percentage of times that the particular node occurred in 500 tree generated by bootstraping of the original amino acid sequences.

Serine protinase inhibitors

Nine clones which were homologues of serine proteinase inhibitors of the Kazal family were identified. Four full-length clones obtained contained the ORFs of 804, 666 and 651 bp encoding for 268, 222 and 217 amino acid acids, respectively (Figure 3.12). From their deduced amino acids, 3 different proteins (SPIPm1, SPIPm2 and SPIPm3) were recognized. These putative protinase inhibitors showed 50-65% homology to a four-domain Kazal inhibitor from crayfish, *Pacifastacus leniusculus* (Figure 3.13). A putative signal peptide at the NH₂-terminal was predicted (Figure 3.13). From the deduced amino acid sequence of *P. monodon* inhibitors, they differ in the number of the Kazal domain. Each domain contains 6 cysteine residues. SPIPm1 and SPIPm2 contain complete 5 and 4 Kazal domains, respectively whereas SPIPm3 has 2 complete and 2 incomplete Kazal domains.

The genetic distance (Table 3.12) and phylogenetic tree (Figure 3.14) showed closed relationships between SPIPm1-3 and crayfish where SPIPm1 and SPIPm3 showed the closest relationship and clustered together. SPIPm3 and that of the crayfish were located in different branches of the tree.

Crustin

Thirteen clones are homologues of crustins, which inhibited the growth of Gram-postive bacteria, previously reported in *P. vanamei* and *P. sertiferus*. Two crustin homologue clones contained an identical complete ORFs (Crustin*Pm*1) of 435 bp encoding for a protein of 84 amino acids and con tained 19 residues of a signal peptide. Nucleotide sequences of Crustin*Ps* and Crustin*Pm*1 are highly similar (Figure 3.15). The deduced amino acid alignment suggested 5 different peptides (called crustin*Pm*1-crustin*Pm*5) (Figure 3.15). Crustin*Pm*3 was similar to crustin*Pm*1 and crustin*Pm*2 at domain I, whereas crustin*Pm*3 was more similar with crustin*Pm*4 and crustin*Pm*5 at domain II. The deduced amino acid of this protein showed 65%

SPI Pm1	AATAGGCCAGAGGGCAACGGTTTATTGCTCACAGTGTCAGCAATAA
SPIPm3	
SPIPm2	A
OL LIMIT	* * * * * * * * * * * *
SPIPM1	AGTGTATGGTAAAGGTGGCCTGCCGTGCCCTAAGTGCGGTACTGAGCTTGCCGAGGTGAA
SPIPm2 SPIPm3	TTTTGAAGAAGAAAACGGACCTTGTGACAGGAAATGGAAATACCTTCTGGAGATTTA
CDT D=0	TTTTGAAGAAGAAAACGGACCTTGTGACAGGAAATGGAAATACCTTCTGGAGATTTA
	** * * * ** * * * * * *
SPI Pm1	AACGCTAAAAGATTTTAAAAATGCTGATGGTAAACCTGGCTATTTTGCTCAAGAACTACA
SPIPM2 SPIPM3	GTATTCGAACATTTGTCTGTTGAATAATGCAGCGTGTTTAGATTCCTCTA
SPIPm2	TTACTACAACGAGTGCTTCTTCACTAAAGCTTCTTGTTGGGATAGGTCCA
	* * * * * * * * * * * * * * * * * * *
SPI Pml	ACTGTGCTGGTGGATGAAATTAAAGCTGTATTAGCCTTTTGCTATTCAAC-AAGGTGGTAC
SPI <i>Pm</i> 3	TGAATGCAACACGTCTGTACTGAAGAAT-ATTACCC-GTGTGCGGAAGC-ATGGTGTCAC
SPIPm2	TGAGTGCCACGCCACTTGCCCCCTGATCCACGACCCTGTTTGTGGCACTGACGATAGGAC
SIIIMI	** ** * ** * * * * * * * * *
SPI Pml	TTTTCGGCGGGTATCCATCCTCAAAAAGCGGCTGG-AGAGGTGACTCCTCAAGCATTG
SPI Pm2 SPI Pm3	TTCAAGGTTGCCATACAGTGTCGTGGGTTGCAGATTG-CAAAGGTCTCTGATACTCGCT-G
CDT Dm?	TTGCAGGCTGCCATACAGTGTCGTGGGTTGCAGATTG-CAAAGAGGCACGACCAGGCTTG
	* * *** *** * * * * * * * *
SPI Pm1	ATTATGGACAATCACATTGTG-GTGGGTGTTGGTAATATCTATGCCAATGAGTCACTG
SPI <i>Pm</i> 3	CCCAAGAACTACAGGCCTGTGTGTGGCAGCGACGGTGTAACTTACAACAACGACTGCTTC
SPIPm2	CCTGAGGTATACGACCCTGTGTGTGGAAGCAACGGCCAGACTTACACGAACGA
	* * * * * * * *
SPI Pm1	GCTGATTATTTACAGCAAAAAGCGAAGGGTAAGCGCACCGCGATAAAGCAATTT
SPIPM3	GATCTTAAGAAGGTTCGAGACGGTAACTGCGACTGCACTCCTCTCATCGGCTGT
SPIPm2	TCGCTCGACAAGGCGTCTGAAGGAGCTTGTGGCTGGGGTATCCATTGCCTGCAGTACTGC
SPIPIIII	* * * * * * * * * * * * * * * * * * *
SPIPm3 SPIPm1	GTGATGGCAAGACTTATGATAACGACTGCTATTTCCAGGCAGCTGTTTGCAAGAATCCCA GATACAAAACATCATGTCTTAGCGAAATTAGGTCCTGAGCCGTTAACCGATGTATTCACT
SPIPM2 SPIPM3	GTGATGGCAAGACTTATGATAACGACTGCTATTTCCAGGCAGCTGTTTGCAAGAATCC-A
SPIPm2	CAGACAACAAGACCTATCTCAACGAGTGTGTCTTCGAGGTGGCTTCTTGCTGGGATCA-T
SPI Pm1	GAAATCCTACGTTATAACGATCCACGTCGTTTTTGGGGCTTATGGCAACCIGII
SPIPm3	TGGTTGCAACCCCAATGTTGCGTGCCCTGAGATCTATGCTCCCGTGTGTGGCA
SPIPm2	TGAATGCCTCAAGGCCTGCCCCACGACCTTTGCCCCTGTGTGTGGGGT TGGTTGCAACCCCAATGTTGCGTGCCCTGAGATCTATGCTCCCGTGTGTGGCA
	* * * * * * * * * * *
SPI Pm1	TTACCTGCTGGAACGGCTCCTGAAAAGCACGATCATGTTGATTTGGCATTATCGAGCGGG
SPIPm3	TGAGAATGACAGAACCTGCAACGGTGCTTTCGTTTCCAAGAAGCACGATGGACGTTG
SPIPm2	ACAGGCTATGATAAAGTGCCAGGGATGGAATATCACCAAGACACACGACCAAGCATG
SPI Pml	TTAGATACGCCTGTTGGTAGTGCCATTGTGCATTTGGGGATGTCGGGAAGTTTGCGTGTT * ** ***** * * * * * * * * * * * * *
SPIPm3	GTATATGCCCCTGTGTGCGGGACCAACGGGAAAACTTACTCGAACTTATGCCAACT
SPIPm2	GTGTATGATCCTGTGTGCCAGTAACGGCTGGACTTACAACAACGACTGCGAACT
	* * ** * ** * *
SPI Pm1	ATTAATCAAATAAAGCAACAACCGATTACTAAAGTACGCCGTCGAGCGAAATATTTGTTG
SPIPm3	GTGGCTCTGATGGAAAAACGTATGACAGCCGATGCCCAGGATTATGCCCCGCG
SPIPm2	-TGTCTTTAATGACGCCAACTCCGATCATGATTGTATCGGCTACTGTCCTGAA
JI II III I	* * * * * * *
SPIPM3 SPIPM1	CAAACAGTAACGGATATTGTTATTCGTAATGGACGCTTACGTTGGCCAATTCCAGATGAT
SPIPM2 SPIPM3	CGGAAAGGGGGGAAAATCCGACTCTGCGCCAAACACTGTA-CGACCATCTCCCCTGTGT
SPIPm2	ATGTTGTTGTGCAAGATTACTCTTATCCATCTCCTGTTGCAAGGATTTGC
SPI Pm1	ATGCCTGAATTACCTGAGGTTGAGGTAACCCGTTTAGGAATTACCCCACATGTTTTACAT
SPI Pm3	-ATGGCCAACAAGTGGCACTCTTGACCCTTCTTGCAGTGGCCGTTGCAGTCTCTGGCTA
SPI Pm2	

Figure 3.12 Multiple nucleotide sequence alignment of SPIPm1-3 of P. monodon

SPIPle

AAR

CPSI-CPLNYKPVCGSDLKTYGNSCQLNAAICRNPSLKKLYDGP----CIDKP CPSI-CPLDYNPVCGTDGKTYSNLCALRIEACNNPHLNLRVDYQGE---CRP CRNG-CTLQYDPKCGTDGKTYSNLCDLEVAACNNPQLNLKVAYKGE---CKQ CPTI-CTQQYDPVCGTDGKTYGNSCELGVAACNNPQLNNKIAYKGA---CNF PQQQT

SPIPm1

MANKVALLTLLAVAVAVSGYGKGGKIRL

CAKH--CTTIS-PVCGSDGKTYDSRCHLENAA-CGGVSVTFHHAGPCPPPKR
CPGI--CPAVYAPVCGTNGKTYSNLCQLENDRTCNGAFVSKKHDGRCG
CNPIVACPEIYAPVCGSDGKTYDNDCYFQAAV-CKNPDLKKVRDGNCD
CTPLIGCPKNYRPVCGSDGVTYNNDCFFKVAQ-CKNPALVKVSDTRCE
CNHV--CTEEYYPVCGSNGVTYSNICLLNNAA-CLDSSIYKVSDGICG
RRLYLZ

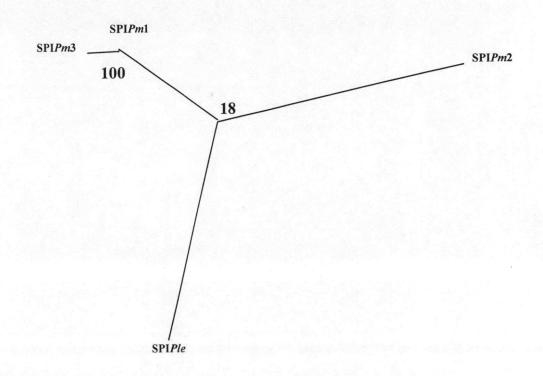
SPIPm2

MLLCKITLIHLLLQGFAVFNDANSDHD

CIGY--CPEVYDPVCASNGWTYNNDCELQAMIKCQGWNITKTHDQACE CLKA--CPTTFAPVCGSDNKTYLNECVFEVAS-CWDHSLDKASEGACGWGIH CLQY--CPEVYDPVCGSNGQTYTNECELQAAIQCRGLQIAKRHDQACE CHAT--CPLIHDPVCGTDDRTYYNECFFTKAS-CWDRSILKKKNGPCD RKWKYLLEI

SPIPm3

MANKVALLTLLAVAVAVSGYGKGGKIRL


CAKH--CTTIS-PVCGSDGKTYDSRCPGL----CPAVYA

PVCGTNGKTYSNLCQLENDRTCNGAFVSKKH-DGRCG
CNPNVACPEIYAPVCGSDGKTYDNDCYFQAAV-CKNPDL-KKVRDGNCD
CTPLIGCPKNYRPVCGSDGVTYNNDCFFKVAQ-CKNPALV-KVSDTRCE
CLLNNAACLDSSIYKVSDGICGRKMYL

Figure 3.13 Deduced amino acids of proteinase inhibitors of P. monodon (SPIPm1-3) and crayfish, Pacifastacus leniusculus (SPIPle) were aligned. Kazal motifs were arranged. Putative signal peptide is underlined.

Table 3.12 Genetic distance calculated from amino sequence divergence of SPI in *P. monodon* and an outgroup (SPI*Ple*)

Genetic distance				
SPIPm1	SPIPm1	SPIPm3	SPIPm2	
SPIPm3	0.0762			
SPIPm2	1.0101	1.0553		
Crayfish	1.0950	1.2116	1.4087	

0.1

Figure 3.14 A bootstrapped NJ tree of phylogenetic tree of SPIs genes found in the study. Values at the node represent the percentage of times that the particular node occurred in 500 tree generated by bootstraping of the original amino acid sequences.

homology with that of *P. setiferus* (Figure 3.16). The putative signal peptide was predicted at the NH₂-terminal and located between ala (A) and gln (Q) (Figure 3.15a). The protein contains glycine-rich repeat region at NH₂-terminal and 2 domains of cysteine-rich residues. A 4-disulfide core (4-DSC) domain from 8 cystein residues was found in conserved arrangement at Domain II. This domain called Whey acidic protein (WAP). Domain II of the WAP appeared more conserved than did Domain I.

The genetic distance (Table 3.13) and phylogenetic tree (Figure 3.17) illustrated that CrustinPm1 and CrustinPm2 were closely related to that of P. sertiferus. The closest relationship was found between CrustinPm4 and CrustinPm5 whereas CrustinPm3 was allocated into a separate branch.

Heat shock protein 10

A clone from the normal library coding a homologue of a small heat shock protein (HSP10) contained the complete ORF of 309 bp, encoding a 102 amino acid protein. The nucleotide sequence of this gene homologue was aligned with that previously reported in vertebrates (Figure 3.18). Deduced amino acid of *P. monodon* heat shock protein 10 showed 73 to 75% homology with those of vertebrates, *Mus Musculus*, *Homo sapiens* and *Gallus gallus* (Figure 3.19). These proteins showed the amino-terminal conserved motif of cnp10, PXX(D/N)(K/R) (bold face).

Large genetic distance (Table 3.14) was observed between heat shock protein 10 of *P. monodon* and that of others (0.6870 – 0.0.7598) while much lower genetic distance was observed between heat shock protein of *H. sapiens*, *M. musculus* and *G. gallus* (Figure 3.20). A phylogenetiv tree revealed clear differentiation between *P. monodon* heat shock protein 10 and that of 3 vertebrate species.

Figure 3.15 Multiple sequence alignment of nucleotide (a) and deduced amino acid (b) of crustin Pm1 of P. monodon with a crustin of P. setiferus. Putative signal peptide is underlined.

Figure 3.16 Sequence alignment of deduced amino acid of crustinPm1-5 of P. monodon

Table 3.13 Genetic distance calculated from amino sequence divergence of crustins in P. monodon. Crustin previously found in the P. sertiferus (crustinLs) use as an outgroup.

Genetic distance					
Crustin <i>Ls</i>	CrustinLs	CrustinPM1	CrustinPM2	CrustinPM4	CrustinPM5
CrustinPM1	0.3341				
CrustinPM2	0.4478	0.4602			
CrustinPM4	1.0667	1.2296	1.1421		
CrustinPM5	1.1312	1.2409	1.2472	0.1949	
CrustinPM3	0.6171	0.7891	0.7548	0.7622	0.9829

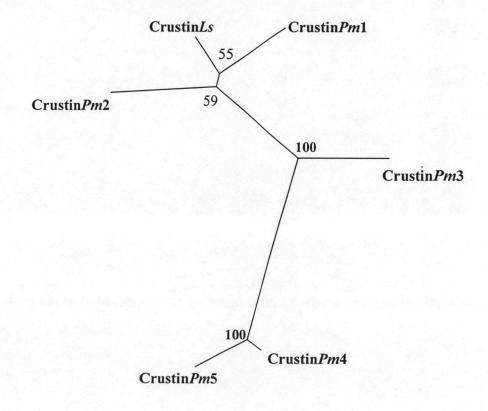


Figure 3.17 A bootstrapped NJ tree of phylogenetic tree of crustin genes found in the study. Values at the node represent the percentage of times that the particular node occurred in 500 tree generated by bootstraping of the original amino acid sequences.

0.1

Figure 3.18 Nucleotide sequence alignment of *P. monodon* heat shock protein 10 homologue with other mammalian HSP10; *Hs*= *Homo sapiens*, *Mm=Mus musculus*, *Gg=Galus galus* (Dickson et al., 1994).

Hsp10Mm	MAGQAFRKFLPLFDRVLVERSAAETYTKGGIMLPEKSQGKVLQATVVAVGSGGKGKSGEI
Hsp10Hs	MAGQAFRKFLPLFDRVLVERSAAETVTKGGIMLPEKSQGKVLQATVVAVGSGSKGKGGEI
Hsp10Gg	MAGKAFRKFLPLFDRVLVERCAAETVTKGGIMIPEKAQGKVLQATVVAVGSGARGKDGEI
Hsp10Pm	MAG-ALKKFVPLFDRVLVQKAEALTRTAKGILIPEKSVPKVLTGKVVAVGEGARTDAGTT
	*** *::**:*******::. * * * ***::***: *******.*.: . *
Hsp10Mm	EPVSVKVGDLKVLLPEYGGTKVVLDDKDYFLFRDSDILGKYVD-
Hsp10Hs	QPVSVKVGD-KVLLPEYGGTKVVLDDKDYFLLRDGDILGKYVD-
Hsp10Gg	HPVSVKVGE-KVLLPEYGGTKIVLEDKDYYLFRDGDILGKYLD-
Hsp10Pm	IPPCVTVGD-EVMLPEFGGTKVTLEEKDYYLFRESELLAKMKNE
	* .*.**: :*:***:.*::***:*::*.::*.*

Figure 3.19 Sequence alignment of deduced amino acids of P. monodon heat shock protein 10 homologue with other mammalian Hsp10; $Hs=Homo\ sapiens$, $Mm=Mus\ musculus$, $Gg=Galus\ galus$ (Dickson et al., 1994). The amino-terminal conserved motif of Hsp10 was in bold face (PXX(D/N)(K/R)).

Table 3.14 Genetic distance calculated from amino acid sequence divergence of HSP10 of *P. monodon* and other vertetrates; *Hs= Homo sapiens*, *Mm=Mus musculus*, *Gg=Galus galus*.

Genetic distance				
Hsp10 <i>Hs</i>	Hsp10Hs	Hsp10Mm	Hsp10Gg	
Hsp10Mm	0.0831			
Hsp10Gg	0.1520	0.1641		
Hsp10Pm	0.7597	0.7348	0.6870	

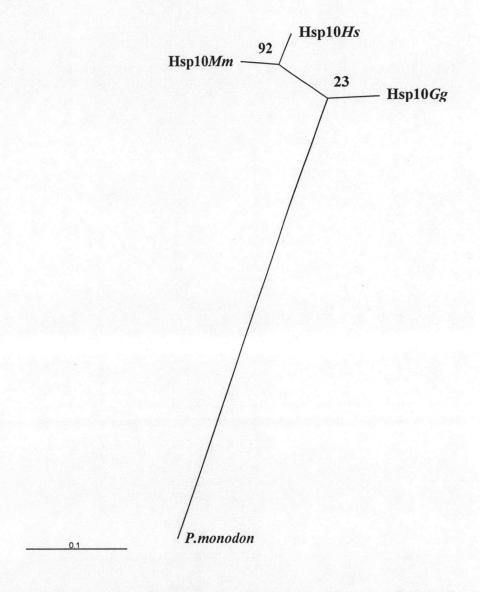


Figure 3.20 A bootstrapped NJ tree of phylogenetic tree of HSP10 genes from *P. monodon* and that of *M. muusculus*, *H. sapiens* and *G. gallus*. Values at the node represent the percentage of times that the particular node occurred in 500 tree generated by bootstraping of the original amino acid sequences.

Cytosolic manganese superoxide dismutase

Cytosolic manganese superoxide dimutase (MnSOD) is an enzyme that reduced the superoxide radical O₂ into hydrogen peroxide and molecular oygen. In this study, a clone containing a complete ORF was identified from the infected library and subsequently clarified to be a homologue of cytosolic manganese superoxide dismutase. It is composed of 819 bp, coding a 273 amino acid protein which showed 86% homology with that of blue crab, Callinectes sapidus (Figure 3.21). Multiple amino acid sequence alignment of of P. monodon MnSOD and that of C. sapidus and Ganoderma microsporum (Figure 3.21) showed 4 conserved residues known to be involved in metal binding (His-112, His-159, Asp-244 and His-248) (Figure 3.22). consensus sequence DXWEH located between Asp-244 and His-248. MnSODPm contained a puitative N-glycosylation site (NHT/S) within the molecule. The genetic distance (Table 3.15) and phylogenetic tree (Figure 3.23) revealed close relationship between MnSODPm and MnSODCs but distantly related relationships were observed when compare MnSODPM and MnSOD*Cs* with MnSOD*Gm*.

MnSODCs MnSODPm	AATGGCAGAGAAGGATCTATACATTGCTGCCCTTGAGAAGAAGCTGGCTG
MnSODCs MnSODPm	TGGTATTGAAGTTGATCAGATCAAGAAAAACCAGCTAGCCAATGCTTCAAGTGAGGCACG TGGAATTGAGGTGGATCAGATCA
MnSODCs MnSODPm	TTCCATTCGTGAGATGGCTGAGTACGTGGAGGGCATCCAGGTAAAGCAAGC
MnSODCs MnSODPm	TATTACTGGTCAGGTGAATCCTCAGGTGGCTGCCATGTTTTCCCATATTAAGGCGGAGCT TCAGGCTGGTACAGTCAGTCCTCAGATTGCACAGATGTTTGCCCATATCAATGCTGAATT * **** ** ****** ** ****** ** ** ** **
MnSODCs MnSODPm	AGGTGAGGAGCGTGGAGTACATTCCCTGCCACCTCTTGGATATGACTATGGTGCCCTGGA GGGTGAGGAACGAGGTGCTCATGCTTTGCCGCCTCTCAAGTATGATTTCAATGCCCTTGA ******* ** ** ** ** *** **** **** ***
MnSODCs MnSODPm	ACCCCATATCTGCACCACCATCATGCAGATCCATCACACCAAACACCATCAAGGATACAT ACTCCACATCTCTGGCATGATCATGGAGATCCACCACACAAAGCATCACCAGGGCTACAT ** *** ***
MnSODCs MnSODPm	CAACAACCTGAAGGCAGCTGTAGAAAAGCTTACAGAAGCAGAGAGAG
MnSODCs MnSODPm	TGCTATGAATGCACTCCTTCCGGCCATCAAGTTCAATGGAGGTGGCCATTTGAACCATAC TGCAATGAATGCCCTTCTACCAGCTATCAAGTTCAATGGAGGTGGCCACTTGAACCACAC *** ******* ** ** ** **********
MnSODCs MnSODPm	AATCTTCTGGACTAACATGGCTCCAGGAGCTGGAGGAGAACCCTCAGGATCCATTGCTGA CATCTTCTGGACCAACATGGCTCCTGATGCTGGTGGTGAGCCAGAAGGAGCAATTGCACA ********* ********* * ***** * * * * *
MnSODCs MnSODPm	GATGATCAACAGGGATTTTGGCTCATTCCAGTCCTTCAAGGAAAAGTTCTCAGGTGCCAG AGCCATTGATGATAGCTTTGGATCATTCCAGTCCTTTAAGGACAAATTTTCTGCTGCCAG **
MnSODCs MnSODPm	TGTTGCTGTGAAAGGATCTGGCTGGGGTTGGCTTGTGCCCTAAGGATGACAAGCT CGTTGGAGTGAAAGGCTCTGGCTGGGATGGCTCGGGTATTGCCCCAATAACAACAAGCT **** ****** ******** ******* ** * ******
MnSODCs MnSODPm	TGCTGTTGCCACCTGCCAGAACCAGGATCCCCTGCAGATCACCCATGGTCTTGTGCCATT TGAGATCGCCACTTGCCAGAACCAGGATCCCTTGCAGATCACTCATGGCCTGGTTCCATT ** * ***** *************************
MnSODCs MnSODPm	GCTGGGTTTGGATGTGTGGGAGCATGCCTATTATCTCCAGTATAAGAACCTGCGTGCCGA GCTCGGTCTTGATGTCTGGGAGCATGCTTACTACCTTCAGTACAAGAACCTCCGTGCAGA *** *** * ***** ********** ** ** ** ****
MnSODCs MnSODPm	TTATGTTAAAGCCTTCTTCAATGTGATCAACTGGGCCAACGTGAATGAGCGTTTTGAAGC TTACGTGAAGGCCTTCTTCAATGTCATCAACTGG-CCGATGTGA
MnSODCs MnSODPm	AGCTCGTAAGGCAGCTGGACACTGA

Figure 3.21 Nucleotide sequence alignment of P. monodon cytosolic manganese superoxide dismutase (MnSODPm) homologue with those of C. sapidus (MnSODCs) and G. micrsporum (MnSODGm).

```
{\tt MnSODCs} \qquad 1 \qquad {\tt MAE-KDLYIAALEKKLAELSGIEVDQIKKNQLANASSEARSIREMAEYVEGIQVKQAGQV}
MnSODGm
MnSODCs 60 ITGQVNPQVAAMFSHIKAELGEERGVHSLPPLGYDYGALEPHICTTIMQIHHTKHHQGYI
{\tt MnSOD}{\it Pm} 61 QAGTVSPQIAQMFAHINAELGEERGAHALPPLKYDFNALELHISGMIMEI{\tt H}HTKHHQGYI
MnSODGm 1 ------MAHVLPDLPYAYNALEPFISQQIMELHHKKHHQTYV
                                       .* ** * * :.*** .*. **::**.*** *:
MnSODCs 120 NNLKAAVEKLTEAEKANDIGAMNALLPAIKFNGGGHLNHTIFWTNMAPG-----AGGE MnSODPm 121 NNLIAATKKLVESEAANDVNAMNALLPAIKFNGGGHLNHTIFWTNMAPD-----AGGE
MnSODGm 37 NSLNAAEQAYAKASTPKER---IALQSALKFNGGGHINHSLFWKNLAPAKSEGKGNGGAL
                                    ** .*:******:**.**
             *.* ** : .::. .::
MnSODCs 173 PSGSIAEMINRDFGSFQSFKEKFSGASVAVKGSGWGWLGYCPKDDKLAVATCQNQDPLQI
MnSODPm 174 PEGAIAQAIDDSFGSFQSFKDKFSAASVGVKGSGWGWLGYCPNNNKLEIATCQNQDPLQI
MnSODGm 94 ADGPLKSAIEQNWGSVDNFIKEFNATTAAIQGSGWGWLGLNPATKRLWITTTANQDPL-L
             ..*.: . *: .:**.:.* .:*..:::******
                                                       * .:* ::*
MnSODCs 233 THGLVPLLGLDVWEHAYYLQYKNLRADYVKAFFNVINWANVNERFEAARKAAGH
MnSODPm 234 THGLVPLLGLDVWEHAYYLQYKNLRADYVKAFFNVINWPM-----
MnSODGm 153 SH--VPIIGVDIWEHAFYLQYLNVKADYLAAIWIVINFKEAERRLIEATK----
             :* **::*:*:**** *::***: *:: ***:
```

Figure 3.22 Sequence alignment of deduced amino acids of P. monodon cytosolic manganese superoxide dismutase (MnSODPm) homologue with those of C. sapidus (MnSODCs) and G. micrsporum (MnSODGm). The conserved (DXWEH) is underlined. The residues involved in metal binding were in bold face.

Table 3.15 Genetic distance calculated from amino acid sequence divergence of MnSOD of *C. sapidus* (Cs), G. microsporum (Gm) and P. monodon.

Genetic distance			
MnSODCs	MnSODCs	MnSODPm	
MnSODPm	0.2566		
MnSODGm	0.8931	0.8206	

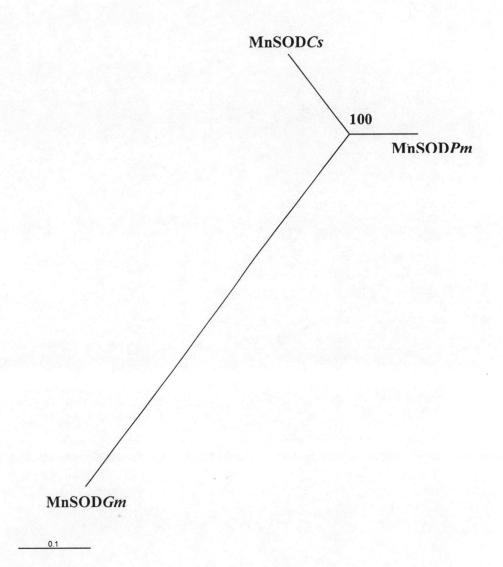


Figure 3.23 A bootstrapped NJ tree of the MnSOD gene found in this study and this of C. sapidus, G. microsporum and P. monodon. Values at the node represent the percentage of times that the particular node occurred in 500 tree generated by bootstrapping of the original amino acid sequences.

3.5 Simi-quantitative analysis of immune-related gene expres

Expression levels of 8 genes including ALF, crustin, penaeidin, HSP 90, HSP 70, lysozyme, serine protease inhibitor and prophenol oxidase, isolated by this study were examined by a semiquantitative RT-PCR. This technique requires the optimization of several parameters involving with PCR amplification to ensure a semiquantitative analysis of the transcripts.

3.5.1 Primer selection and determination of melting temperature (Tm)

Eight primer sets were designed for amplification of interesting genes based on the nucleotide sequence of the EST clones. In addition, primers for β -actin were designed as used as an internal control in a semi-quantitative PCR. The annealing temperatures were calculated for all primers and Tms were 50-60 °C. The annealing temperature at 53 °C was initially chosen. The amplification products of these genes were 250, 254, 216, 220, 419, 184, 170 and 217 bp for ALF, serine protinase inhibitor, crustin, penaeidin, prophenoloxidase, HSP 90, HSP 70 and lysozyme, respectively. Therefore, these transcripts were not size-overlapped with a 317 bp of β -actin amplification product. Non-specific products were not observed for all amplifications. Therefore, these primer sets were used to determine PCR condition for identifying the exponential phase of amplification at the annealing temperature of 53°C.

3.5.2 Determination of the optimal MgCl2 concentration

Determination of the optimal concentration for each primer set was performed using different MgCl₂ concentrations (1-5 mM) using the standard PCR reaction. After the PCR products were run on an agarose gel, the concentration of MgCl₂ that gave the highest yields for each product was chosen (Table 3.16). ALF and serine protiase inhibitor amplification products gave the highest yield at 3 mM and 2 mM, respectively (Figure 3.24 a and b), whereas the remaining genes gave the highest yields at 1.5 mM MgCl₂ (Figure 3.24 c-h). An internal control, β -actin, showed the highest amplification product at all MgCl₂ concentrations (1 to 5 mM) (Figure 3.24 i).

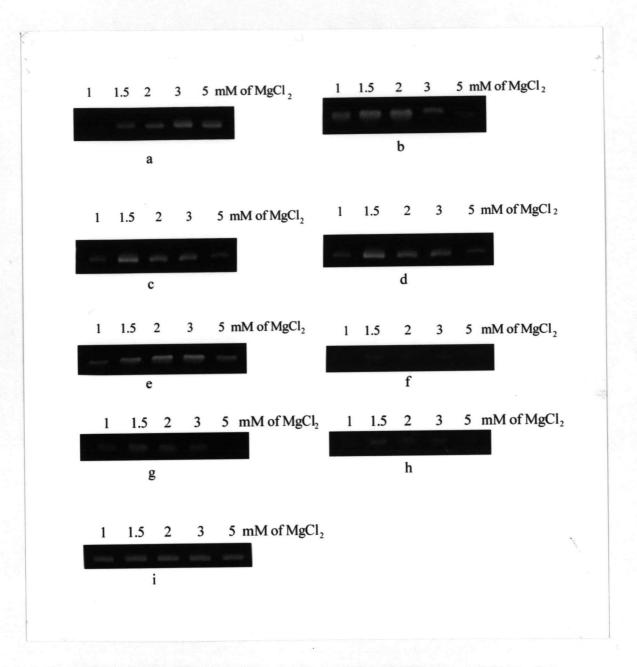


Figure 3.24 Determination of the optimal MgCl₂ concentration for PCR amplification by varying concentration of MgCl₂ from 1-5 mM.

(a) ALF

(b) SPI

(c) proPO

(d) Crustin

(e) Penaeidin

(f) HSP 90

(g) HSP 70

(h) Lysozyme

(i) β-actin

Table 3.16 The optimal MgCl₂ concentrations for amplification of immunerelated gene transcripts

		MgCl ₂	Product
Target mRNA	Primer	(mM)	Size
			(bp)
ALF	5'CGCCAGCAAGATCGTAGGGTTG3' (F)	3	250
	5'AGGCCTATGAGCTGAGCCACTG3' (R)		
SPI	5'TGGCGTGAGTGTCACTTTCCA3' (F)	2	254
	5'AAGTCTTGCCATCACTGCCAC3' (R)		
Crustin	5'TCCCTGGAGGTCAATTCGAGTG3' (F)	1.5	216
	5'AGTCGAACATGCAGGCCTATCC3' (R)		
Penaeidin	5'AGGATATCATCCAGTTCCTG3' (F)	1.5	220
	5'ACCTACATCCTTTCCACAAG3' (R)		
proPO	5'GAGGATATATTTGGCTCCGAAG3' (F)	1.5	419
	5'GGTCGAACGGGAAGCCCATC3' (R)		
HSP 90	5'TCGTCAATACCCAGGCCAA3' (F)	1.5	184
	5'CGACCACAGCATCATCGAAAC3' (R)		
HSP 70	5'GCACCTGCTGTCGGTATTGATC3' (F)	1.5	170
	5'TACAGTGTTGTTGGGGTTCATC3' (R)		
Lysozyme	5'TGGCAGCGATTATGGCAAG3' (F)	1.5	217
	5'GGAACCACGAGACCAGCACTC3' (R)		
β-actin	5'GCTTGCTGATCCACATCTGCT3' (F)	1-5	337
(internal control)	5'ACTACCATCGGCAACGAGA3' (R)		

3.5.3 Determination of cycling parameter

Cycling numbers were important to select the most appropriate number of amplification cycles before reaching a plateau amplification phase. The amplification product showed a sharp DNA band on an agarose gel could then be correctly quantified.

In this experiment, numbers of cycles were determined in a range from 20 to 36 cycles. The number of cycles that gave the highest yield before the product reached a plateau phase was chosen. Four genes (ALF, serine proteinase inhibitor, prophenoloxidase and crustin) showed an approximately contrast yields after 27 cycles (Figure 3.25 a-d). Whereas HSP 90 and HSP 70 showed contrast yields after 30 cycles (Figure 3.25 f-g). Penaeidin, lysozyme and β -actin reached a plateau of amplification after 33 cycles (Figure 3.25 e, h and i). Therefore, 24, 27 and 30 amplification cycles were selected and further investigated for each gene transcript.

3.5.4 Simultaneous amplification of target gene products and an internal control

The semi-quantitative RT-PCR technique is an approach that the target genes and the internal control were simultaneously amplified in the same reaction tube. Therefore, the intensity of the target product and the internal control should be examined when amplification was carried out separately and simultaneously. PCR conditions were further adjusted if necessary.

For simultaneously amplification, competitive effects between target and control primers may be occurred which decreased the intensity of the target and/or the control products when separately amplified. As a result, MgCl₂ concentration was further adjusted to eliminate those effects. As can be seen from figure 3.26, MgCl₂ concentration of all except crustin and penaedin needed to be increased for 0.5-1.0 mm. Of which, HSP 70 and lysozyme required an additional MgCl₂ for 0.5 mM to eliminate effects from primer competition whereas ALF, ProPO, and Penaedin required an additional 1.0 mM MgCl₂.

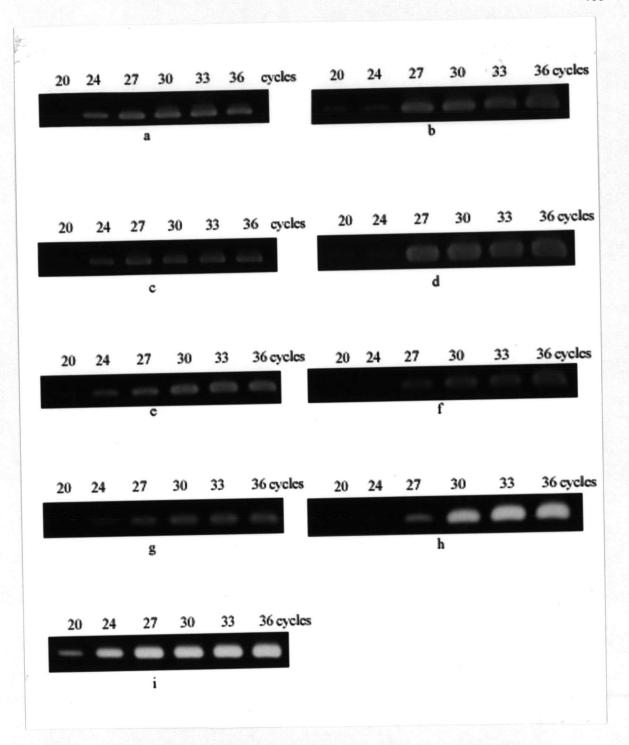


Figure 3.25 Determination of the optimal cycling number of PCR by varying numbers of amplification cycles from 20-36 cycles

(a) ALF

(b) SPI

(c) proPO

(d) Crustin

(e) Penaeidin

(f) HSP 90

(g) HSP 70

(h) Lysozyme

(i) β-actin

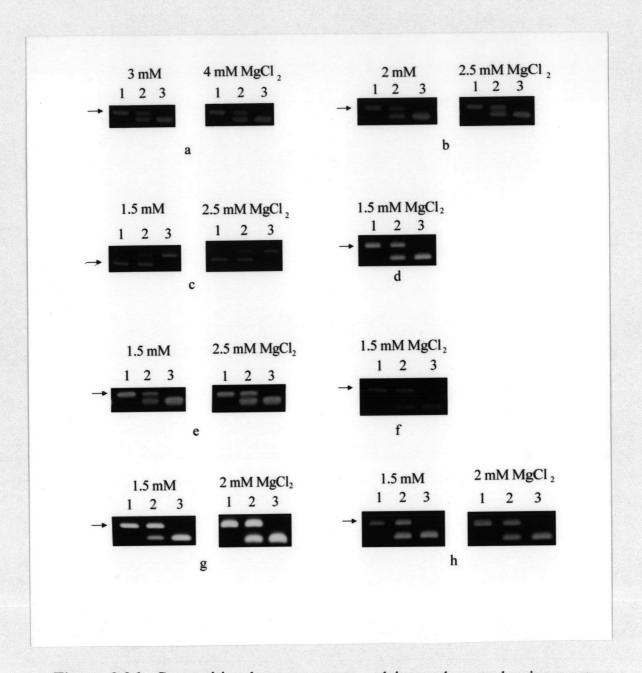


Figure 3.26 Competition between target and internal control primer sets. PCR reactions were simultaneously performed in the same tube. Lane 1:An amplicon from the internal control primer set, lane 3: An amplicon from the target gene primer set, and lane 2: Amplicons from both primer sets. Arrows show PCR product of β -actin.

(a) ALF

(b) SPI

(c) proPO

(d) Crustin

(e) Penaeidin

(f) HSP 90

(g) HSP 70

(h) Lysozyme

The concentrations of MgCl₂ used for semi-quantitative RT-PCR amplification of immune-related genes in this study were summarized in Table 3.17.

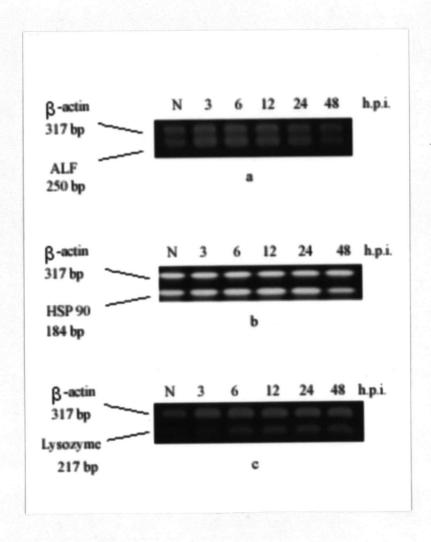
Table 3.17 The optimal MgCl₂ concentration for amplification of immunerelated genes

Gene transcript	MgCl ₂ concentration (mM)		
ALF	4.0		
SPI	2.5		
ProPO	2.5		
Penaeidin	2.5		
HSP 70	2.0		
Lysozyme	2.0		
Crustin	1.5		
HSP 90	1.5		

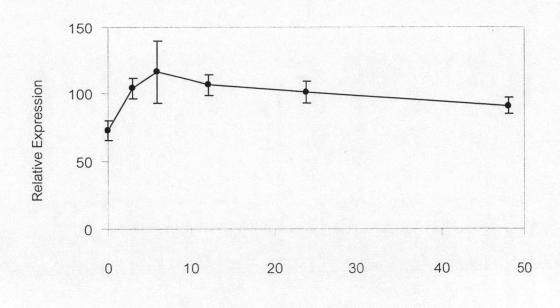
3.5.5 A time course analysis of mRNA expression level against infection of *V. haeveyi*

Conditions optimized for semi-quantitative PCR were used for a time course analysis of mRNA expression level of unchallenged and *V. harveyi* challenged *P. monodon*.

Sub-adult shrimps were injected with 10^7 cfu/ml of V. harveyi. Haemolymph was collected at 0, 6, 12, 24 and 48 hours after injection. At each time point haemolymph from 5 shrimps were pooled. Total RNA were prepared the quantitative experiments were then performed in triplicate using the optimized semi-quantitative RT-PCR technique. The amplification products were run on 1.4% of agarose gel and A ratio of band intensity of the target gene and the control gene was analyzed using Genetools analysis software (Syngene). Results are shown in Table 3.18.


Table 3.18 Expression levels of immune-related gene using a semiquantitative RT-PCR. The experiments were performed in triplicate.

Genes	Relative Expression*					
	0 hour	3 hours	6 hours	12 hours	24 hours	48 hours
ALF	72.67 (±7.09)	104.00 (±7.81)	116.33 (±23.18)	106.67 (±7.64)	101.33 (±8.145)	90.67 (±6.11)
SPI	85.00 (±5.29)	76.33 (±10.21)	69.33 (±3.51)	81.67 (±13.05)	81.67 (±5.86)	79.00 (±7.94)
ProPO	53.67 (±10.02)	43.00 (±7.55)	46.33 (±11.24)	49.00 (±19.47)	55.67 (±5.03)	51.33 (±13.43)
Crustin	106.67 (±4.73)	41.00 (±9.54)	43.67 (±7.64)	51.33 (±18.45)	72.67 (±10.79)	88.33 (±2.89)
Penaeidin	137.33 (±17.62)	76.00 (±12.12)	57.00 (±11.36)	48.33 (±8.74)	79.33 (±9.29)	107.67 (±23.01)
HSP90	28.33 (±1.15)	36.00 (±3.00)	40.00 (±9.17)	42.33 (±2.08)	36.00 (±6.25)	30.00 (±2.00)
HSP70	93.67 (±14.19)	92.33 (±12.10)	87.33 (±10.02)	92.00 (±10.82)	89.67 (±3.79)	88.33 (±3.51)
Lysozyme	38.33 (±15.01)	46.00 (±13.89)	60.00 (±12.17)	65.33 (±6.81)	66.33 (±9.61)	73.33 (±4.93)


^{*} The expression was determined as the signal ratio of the interest gene: β - actin while the expression of β - actin was normalized to 100.

After injection with V. harveyi; expression levels of ALF (Figures 3.27a, 3.28), HSP 90 (Figures 3.27b, 3.29) and lysozyme (Figures 3.27c, 3.30) were significantly increased (p < 0.05, Data are shown in appendix B). Significant expression levels of ALF was observed since 3 hours after injection and was not significantly lowered until 48 hours after injection (72.67 for normal shrimps and 90.67-116.33 for challenged shrimps, p < 0.05). The highest level was 1.6 times above that of normal shrimps at 6 hours after injection. Likewise, expression of HSP 90 was increased significantly after challenged with V. harveyi (p < 0.05). The trend of expression of HSP 90 was similar as that of ALF and the highest level of HSP 90 expression was observed at 12 hours after injection at 1.5 times above the normal condition. Significant expression level of lysozyme was observed since 6 hours after injection (p < 0.05) and still increased during the study period. The highest expression level of lysozyme was observed at 48 hours after injection at 1.9 times above the normal condition.

Injection of V. harveyi caused a significant decrease in the expression of crustin and penaeidin (p < 0.05, Data are shown in appendix B). The expression of crustin was significantly lower than that of the normal since 3 hours after injection of V. harveyi until the end of assay at 48 hours (Figures 3.31a, 3.32). The lowest expression level of crustin in P. monodon was 0.38 times below the normal shrimp at 3 hours after injection. Although expression of penaeidin was significantly decreased after 3 hours of challenged (p < 0.05) (Figures 3.31b, 3.33), the lowest expression was observed at 12 hours after V. harveyi injection (0.35 times that of the normal shrimp). After reaching the lowest level, the expression of crustin and penaeidin were increased significantly after 24 hours (p < 0.05) and 48 hour of injection (p < 0.05), respectively, but the expression level of these time points of both proteins were still lower than that of normal shrimps. Constitutive expression of serine proteinase inhibitor, prophenoloxidase, HSP 70 and lysozyme was observed (Figures 3.33-3.37). The expression levels of these genes were not significantly different to the normal condition at all time points (p > 0.05, Data are shown in appendix B).

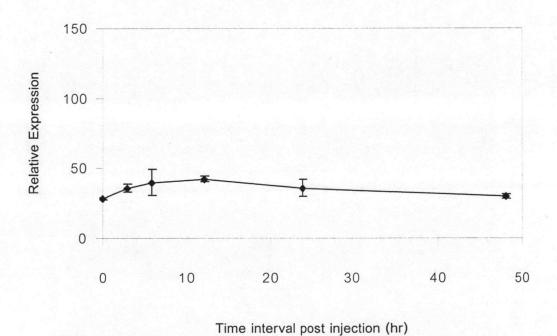


Figure 3.27 Analysis of expression levels of ALF (a), HSP 90 (b) and lysozyme (c) transcripts after injection with *V. harveyi* for 3, 6, 12, 24, 48 hrs. N; Normal shrimp.

Figure 3.28 Relative expression levels of ALF at different time of intervals after injected with *V. harveyi*.

Time interval post-injection (hr)

Figure 3.29 Relative expression levels of HSP90 at different time of intervals after injected with *V. harveyi*.

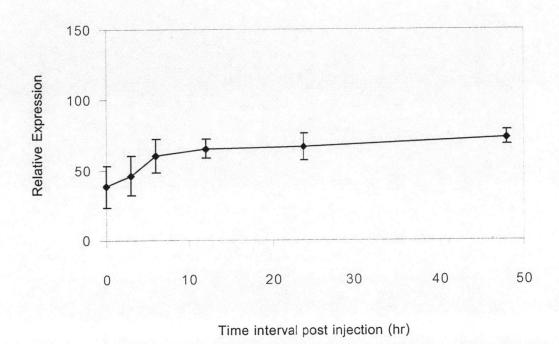
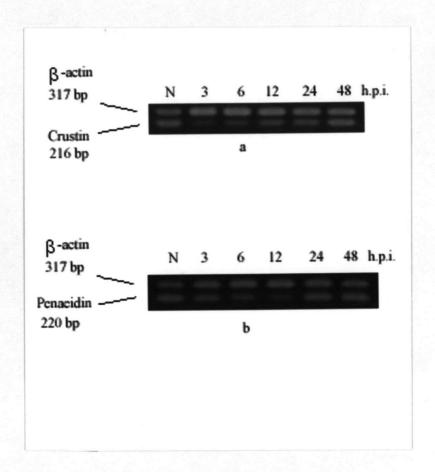



Figure 3.30 Relative expression levels of lysozyme at different time of intervals after injected with *V. harveyi*.

Figure 3.31 Analysis of expression level of crustin (a) and penaeidin (b) transcripts after injection with *V. harveyi* for 3, 6, 12, 24, 48 hrs. N; Normal shrimp.

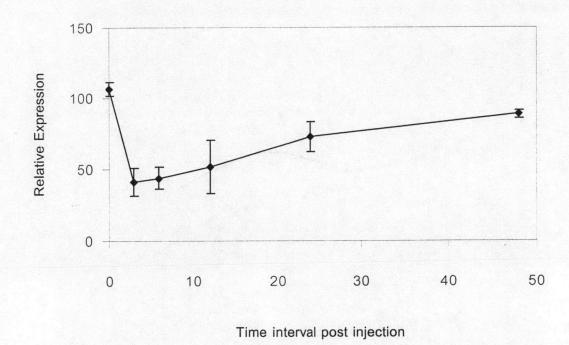


Figure 3.32 Relative expression levels of crustin at different time of intervals after injected with *V. harveyi*.

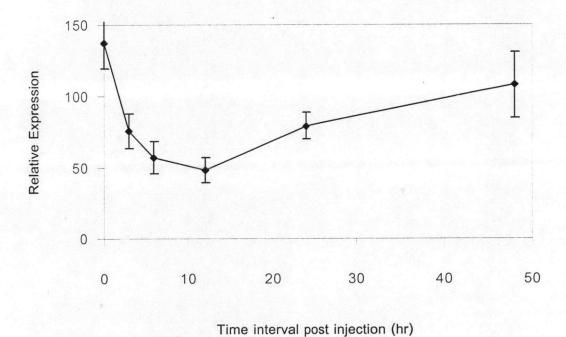


Figure 3.33 Relative expression levels of Penaeidin at different time of intervals after injected with *V. harveyi*.

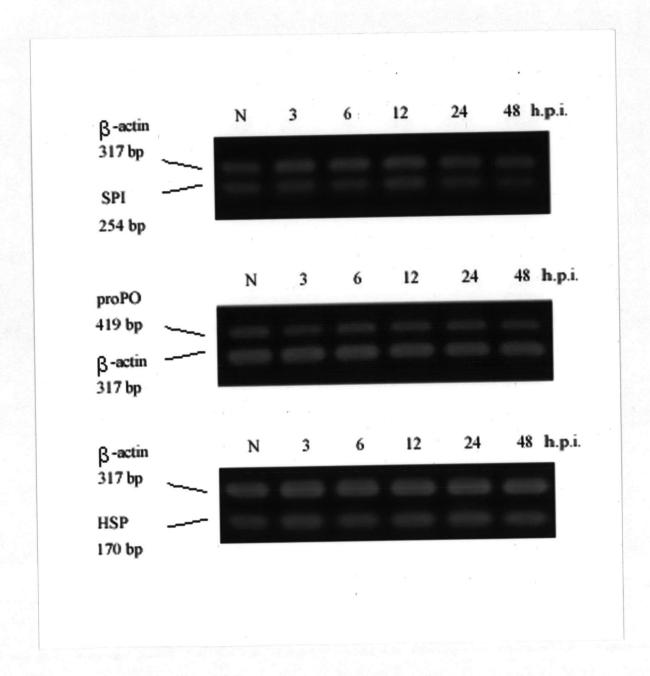


Figure 3.34 Analysis of expression level of srine proteinase inhibitor (a), prophenoloxidase (b) and HSP 70 (c) transcripts after injection with V. harveyi for 3, 6, 12, 24, 48 hrs. N; Normal shrimp.

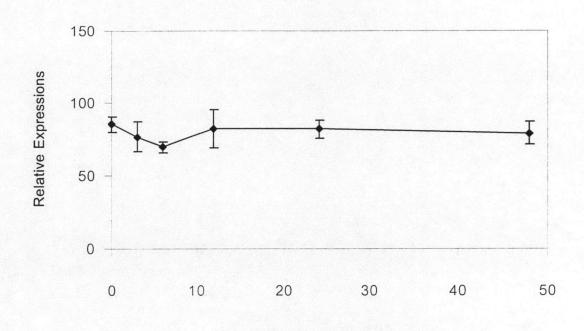
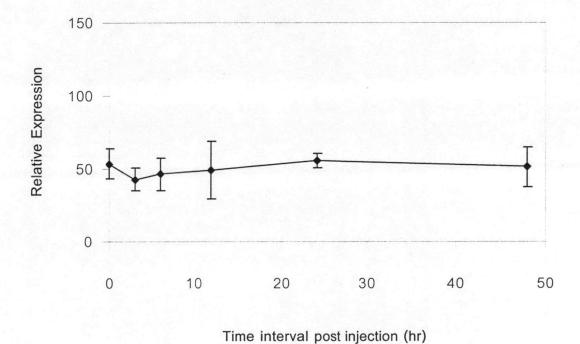
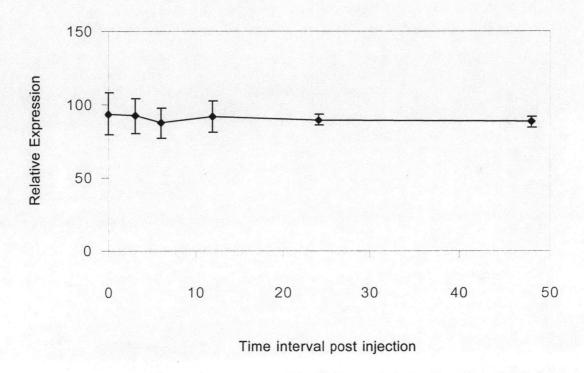




Figure 3.35 Relative expression levels of SPI at different time of intervals after injected with *V. harveyi*.

Time interval post injection (hr)

Figure 3.36 Relative expression levels of proPO at different time of intervals after injected with *V. harveyi*.

Figure 3.37 Expression levels of HSP70 at different time intervals after injected with *V. harveyi*.