ULTRA-FINE ELECTROSPUN NANOCOMPOSITE FIBERS OF POLYMER-CONDUCTIVE POLYMER-NANOPARTICLE

Mr.Prasit Pisesweerayos

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Nanoscience and Technology (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2012 Copyright of Chulalongkorn University

บทกัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในกลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the Graduate School.

อัลตราไฟน์อิเล็กโทรสปันนาโนคอมโพสิตไฟเบอร์ของสารพอลิเมอร์ – พอลิเมอร์นำกระแส – อนุภาคนาโน

นายประสิทธิ์ พิเศษวีรยศ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาวิทยาศาสตร์นาโนและเทคโนโลยี (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2555 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	ULTRA-FINE ELECTROSPUN NANOCOMPOSITE FIBERS OF		
	POLYMER-CONDUCTIVE POLYMER-NANOPARTICLE		
Ву	Mr.Prasit Pisesweerayos		
Field of Study	Nanoscience and Technology		
Thesis Advisor	Professor Pitt Supaphol, Ph.D.		
Thesis Co-advisor	Assistant Professor Toemsak Srikhirin, Ph.D.		
	Assistant Professor Somsak Dangtip, Ph.D.		

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

..... Dean of the Graduate School

(Associate Professor Amorn Petsom, Ph.D.)

THESIS COMMITTEE

...... Chairman

(Associate Professor Vudhichai Parasuk, Ph.D.)

...... Thesis Advisor

(Professor Pitt Supaphol, Ph.D.)

...... Thesis Co-advisor

(Assistant Professor Toemsak Srikhirin, Ph.D.)

...... Thesis Co-advisor

(Assistant Professor Somsak Dangtip, Ph.D.)

..... Examiner

(Assistant Professor Sukkaneste Tungasamita, PhD.)

..... Examiner

(Ratthapol Rangkupan, Ph.D.)

..... External Examiner

(Assistant Professor Tanakorn Osotchan, Ph.D.)

ประสิทธิ์ พิเศษวีรยศ : อัลตราไฟน์อิเล็กโทรสปันนาโนคอมโพสิตไฟเบอร์ของสาร พอลิเมอร์ – พอลิเมอร์นำกระแส – อนุภาคนาโน (ULTRA-FINE ELECTROSPUN NANOCOMPOSITE FIBERS OF POLYMER-CONDUCTIVE POLYMER-NANOPARTICLE) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : ศ.คร.พิชญ์ ศุภผล, อ. ที่ปรึกษา วิทยานิพนธ์ร่วม : ผศ.คร.เติมศักดิ์ ศรีกิรินทร์, ผศ.คร.สมศักดิ์ แคงติ๊บ, 153 หน้า.

งานวิจัยนี้ได้ทำการสร้างรวมถึงศึกษาคุณสมบัติ และตรวจสอบ อัลตราไฟน์ไฟเบอร์ ้งองสารพอลิเมอร์ที่ผสมด้วยสารพอลิเมอร์นำกระแส สารพอลิเมอร์ผสมด้วยอนภาค บาโบ และนาโนคอมโพสิตของสารพอลิเมอร์ที่ผสมด้วย สาร พอลิเมอร์นำกระแสกับอนภาคนาโน โดยได้มีการศึกษารายละเอียดเกี่ยวกับลักษณะทางสัณฐานที่เกี่ยวข้องรวมถึงรปร่าง และขนาด ้งองอัลตราไฟน์ไฟเบอร์ที่ผสมด้วยพอลิเอทิลีนไดออกซีไทโอฟีน-พอลิสไตรีนซัลโฟเนต และ อนุภาคเงินนาโน ในการนี้ได้มีการพิจารณานำกระบวนการอิเล็กโทรสปินนิ่งมาใช้สำหรับการ สร้างอัลตราไฟน์นาโนคอมโพสิตไฟเบอร์ของสารพอลิเมอร์ พอลิเมอร์นำกระแส และ อนภาค ้เงินนาโน กระบวนการคังกล่าวเป็นเทคนิคพิเศษที่ต้องใช้หลอคฉีคพร้อมหัวเข็ม อปกรณ์ให้ ้ความต่างศักย์ไฟฟ้าและเป้าอลูมิเนียมฟอยล์ ในการศึกษาการสังเคราะห์อัลตราไฟน์นาโนคอม ้โพสิตไฟเบอร์ที่สร้างขึ้นโดยกระบวนการอิเล็กโทรสปินนิ่งนั้นได้มีการสรุปผลภายใต้เงื่อนไข ้ คือ ให้ความต่างศักย์ไฟฟ้าตั้งแต่ช่วง 12.5 ถึง 22.5 กิโลโวลต์ กำหนดระยะห่างระหว่างหัวเข็ม ้ที่ฉีคไฟเบอร์กับเป้ารับไฟเบอร์เท่ากับ 15 เซนติเมตร โคยใช้เวลานาน 5 นาทีสำหรับการสร้าง ้ไฟเบอร์แบบสุ่ม และใช้เวลานาน 20, 30 และ45 นาที สำหรับการสร้างไฟเบอร์แบบเรียงใน ้ทิศทางเดียวกันทั้งไฟเบอร์ขนานเชิงเดี่ยว และไฟเบอร์ขนานแบบกลุ่มประสานที่สร้างจากการ ผสมสารพีวีเอด้วยสารพีดอด-พีเอสเอส และสารของอนุภาคเงินนาโนที่ความเข้มข้นต่างๆ ซึ่ง ผู้วิจัยได้ทำการวัดค่าเส้นผ่าศูนย์กลางของไฟเบอร์ได้ประมาณ 0.1 ถึง 0.33 ไมโครเมตร

งานวิจัยนี้แสดงให้เห็นว่า อัลตราไฟน์นาโนคอมโพสิตไฟเบอร์ของสาร พอลิเมอร์ พอลิเมอร์นำกระแส และ อนุภาคนาโนที่สร้างขึ้น สามารถนำกระแสไฟฟ้าได้ดีขึ้นถ้าเพิ่มความ เข้มข้นของสารพีดอด-พีเอสเอสและอนุภาคเงินนาโน โดยค่าการนำกระแสของไฟเบอร์ที่ใช้ เทคนิคการสร้างแบบไฟเบอร์ขนานเชิงเดี่ยวอยู่ในช่วง 4.23 ถึง 92.18 S/cm และสำหรับไฟ เบอร์ขนานแบบกลุ่มประสานจะอยู่ในช่วง 1.94 to 13.57 S/cm สาขาวิชา <u>วิทยาศาสตร์นาโนและเทคโนโลยี</u> ลายมือชื่อนิสิต ปีการศึกษา <u>2555</u> ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก...... ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม......

.....

5087773220 : MAJOR NANOSCIENCE AND TECHNOLOGY

KEYWORDS : POLYMER / CONDUCTIVE POLYMERS / ELECTRICAL CONDUCTIVITY / ULTRA-FINE FIBERS / NANOPARTICLE / NANOCOMPOSITE / ELECTROSPUN

PRASIT PISESWEERAYOS: ULTRA-FINE ELECTROSPUN NANOCOMPOSITE FIBERS OF POLYMER-CONDUCTIVE POLYMER-NANOPARTICLE. ADVISOR : PROF. PITT SUPAPHOL, Ph.D., CO-ADVISORS : ASST. PROF. TOEMSAK SRIKHIRIN, Ph.D., ASST. PROF. SOMSAK DANGTIP, Ph.D., 153 pp.

In this research, ultra-fine fibers of polymer – conductive polymer blend, polymer – nanoparticle and polymer – conductive polymer – nanoparticle nanocomposite are fabricated, characterized, and investigated. Poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate) blended with silver nanoparticles and correlated morphology are studied in details including the shapes and sizes of ultra-fine fibers. Electrospinning processes are considered as ultra-fine nanocomposite fibers of polymer-conductive polymer-nanoparticle formation. (This specific technique requires a syringe with a needle, a high voltage unit, and an aluminum foil (screen) as a collector.) The fabrication conditions for the electrospinning processes in the synthesis of ultra-fine nanocomposite fibers in this study are initially summarized whereby voltages between 12.5-22.5 kV are applied on a collecting distance of 15 cm in 5 minutes for random fiber formation and 20, 30, and 45 minutes of both aligned single fiber and aligned fiber mat formation which are generated from PVA blended with various PEDOT/PSS and AgNPs concentrations. The fiber diameters resulting from these permutations by the researcher in this review varied from 0.1 µm to 0.33 µm.

This research illustrates the ultra-fine electrospun nanocomposite fibers of polymer-conductive polymer-nanoparticle which conduct higher electrical conductivity when loading higher PEDOT/PSS, and AgNPs concentrations to form ultra-fine fibers. The range of conductivity is varied from 4.23 to 92.18 S/cm, under the aligned single fibers technique, and from 1.94 to 13.57 S/cm, under the aligned fiber mat technique.

Field of Study : <u>Nanoscience and Technology</u>	Student's Signature	
Academic Year : 2012	Advisor's Signature	
	Co-advisor's Signature	

ACKNOWLEDGEMENTS

I would like to thank all people who support, assist, and encourage me to complete my research, especially Professor Dr. Pitt Supaphol who gave me a conductive polymer concept of electrospinning process benefiting my research on nanoscience and technology. His scientific know-how inspired me to conduct research with confidence. Without his encouragement, I would not have been a successful researcher in the conductive polymer field.

I also thank Assistant Professor Dr. Toemsak Srikhirin and Assistant Professor Dr. Somsak Dangtip for providing me with a research laboratory, including electrical measurement tools, and for giving me advice on how to take accurate measurements of electrical properties of conductive polymer fibers and other related works.

I could not have made it through hard times without the full support of Associate Professor Dr. Sanong Ekgasit who gave me a high concentration Silver nanoparticles (AgNPs) for my material preparation.

I am deeply indebted to my lecturers, namely Associate Professor Dr. Vudhichai Parasuk, Assistant Professor Dr. Sukkaneste Tungasmita, and Dr. Ratthapol Rangkupan in the nanoscience and technology program at Chulalongkorn University.

My grateful thanks go to all who provided me with the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund).

I am also grateful to Mr. Punyachai Learngarunsri and Mr. Wasusate Sortonchaiyakul who facilitated me during the conductivity measurement process.

CONTENTS

ABSTRACT (THAI)			
ABSTRACT (ENGLISH)			
ACK	NOWLEDGEMENTS	vi	
CON	TENTS	vii	
LIST	OF TABLES	X	
LIST	OF FIGURES	xii	
LIST OF ABBREVIATIONS			
CHA	PTER		
ΙΠ	NTRODUCTION	1	
II E	BACKGROUND AND THEORETICAL CONTEXT	3	
	2.1 Conductive Polymers	3	
	2.2 Electrospinning Process	5	
	2.3 Electrospun Ultra-fine Fibers	7	
	2.4 Nanoparticles	7	
	2.5 Electrical Conductivity	8	
III L	ITERATURE REVIEW	11	
	3.1 Electrospinning of Blend Conductive Polymers	11	
	3.2 Electrospinning of Poly (3, 4-ethylenedioxythiophene) (PEDOT)	13	
	3.3 Ultra-fine Fibers Blended with Silver Nanoparticles (AgNPs)	14	
	3.4 Electrically Conductive Properties of Ultra-fine Fibers	15	
IV E	XPERIMENTAL PART	18	
	4.1 Scope of Work	18	
	4.2 Conceptual Design for Material Structure	18	
	4.3 Materials	19	
	4.3.1 BAYTRON-P	19	
	4.3.2 Highly concentrated Silver Nanoparticles (AgNPs)	20	

CHAPTER	PAGE
4.3.3 PVA	20
4.4 Fabrication	20
4.4.1 Randomized Fiber Formation	20
4.4.2 Aligned Fiber formation	23
4.5 Characterization	27
4.6 Electrical Conductivity Measurement	29
4.6.1 The 4-probe Conductivity Measurement	29
4.6.2 The 2-probe Conductivity Measurement	30
V RESULTS AND DISCUSSION	
5.1 Morphology of Blended Ultra-fine Fibers	34
5.1.1 SEM Measurement	37
5.1.1.1 The results of randomized fibers	37
5.1.1.2 The results of aligned single fibers	43
5.1.1.3 The results of aligned fiber mat	45
5.1.2 TEM Measurement	48
5.1.3 AFM Measurement	50
5.1.4 XRD Measurement	53
5.1.5 FT-IR Measurement	57
5.2 Electrical Conductivity Property	58
5.2.1 Type of Major Carriers and Its Mobility	58
5.2.2 The 4-probe Conductivity of Randomized Fibers	
5.2.3 The 2-probe Conductivity of Aligned Fibers	63
VI CONCLUSIONS AND FUTURE PROSPECTS	74
6.1 Conclusions	
6.2 Future Prospects	
REFERENCES	
APPENDICES	
APPENDIX A Tables of Characterization Results of Randomized Fibers	
1. Illustrated the randomized fiber images by SEM	
2. Illustrated the randomized fiber images by TEM	

CHAPTER	PAGE
APPENDIX B Tables of Characterization Results of Aligned Fibers	98
1. Illustrated the aligned single fiber images by SEM	98
2. Illustrated the aligned single fiber images by TEM	101
3. Illustrated the aligned fiber mat images by SEM	105
4. Illustrated the aligned fiber mat images by TEM	109
APPENDIX C Table of Electrical Conductivity Measurement Result of	
Randomized Fibers by Using The 4-probe Technique	115
APPENDIX D Table of Electrical Conductivity Measurement Result of Aligned	
Single Fibers by Using The 2-probe Technique	132
APPENDIX E Table of Electrical Conductivity Measurement Result of Aligned	
Fiber Mat by Using The 2-probe Technique	140
APPENDIX F Table of AgNPs lattice structure	152
VITAE	153

ix

LIST OF TABLES

Table 1 Sample conductive polymers and their molecular structures [3, 4]	4
Table 2 Summary of electrospinning conditions for conductive polymers	12
Table 3 Summary of electrical conductivity of some conducting polymers	16
Table 4 Electrospinning conditions for randomized fiber (RD) formation	22
Table 5 Electrospinning conditions for aligned single fibers (SF) formation	25
Table 6 Electrospinning conditions for aligned fiber mat (FM) formation	26
Table 7 Comparison of the diameter of AgNPs and PEDOT/PSS shape	35
Table 8 Summarizes the diameters of randomized fibers of different mixed solutions and	
applied voltages	37
Table 9 Summarizes the fiber thickness of randomized single fiber sheet of different	
mixed solutions and applied voltages	40
Table 10 Element of randomized fibers of 10% PVA: 0.25% AgNPs, at 12.5 kV, is	
analyzed by using the EDS mode, under SEM measurement	43
Table 11 Summarizes the diameters of aligned single fibers of different mixed solutions	
and applied voltages	44
Table 12 Summarizes the diameters of aligned fiber mat of different mixed solutions and	
applied voltages	45
Table 13 Summarizes the element analysis of randomized fibers by using the EDS mode	
under TEM system	48
Table 14 Summarizes the 3 dimension analysis of randomized and aligned fibers with	
different conditions by using the AFM	50
Table 15 Summarizes the fiber structure analysis of randomized and aligned fibers with	
different conditions by using the XRD	53
Table 16 Characterizes PEDOT/PSS to present the functional group by using the KBr	
disk, FT-IR	57
Table 17 Resistivity measurement result of randomized fibers by using the 4-probe	
measurement (in 5 minutes' time of fiber collection)	59
Table 18 Resistivity measurement result of aligned single fibers by using the 2-probe	
measurement (item no.1 to 21: under 20 minutes of fiber collecting time, item no.22:	

under 45 minutes of fiber collecting time, and item no.23: under 30 minutes of fiber	
collecting time)	63
Table 19 Resistivity measurement result of aligned fiber mat by using the 2-probe	
measurement (item no.1 to 30: under 20 minutes of fiber collecting time, item no.31 to	
33: under 30 minutes of fiber collecting time, and item no.34 to 36: under 45 minutes of	
fiber collecting time)	67

LIST OF FIGURES

Figure 1 Schematics electrospinning apparatus	6
Figure 2 Simple band structure: (a) no energy gapmetal,	
(b) narrow band gapsemiconductors and	
(c) wide band gapinsulators	9
Figure 3 Band structure of electronically conductive polymer	
LUMO: Lowest Unoccupied Molecular Orbital	
HOMO: Highest Occupied Molecular Orbital	10
Figure 4 Collecting ultra-fine fibers on the surface of aluminum foil	21
Figure 5 High speed drum for fiber alignment (a) aligned fiber collection on the rolling	
aluminum foil which was attached to the rotating drum surface (b) the aligned fiber	
collection on the square plastic of 1.5x1.5 cm2 with two separate rectangle ITO pieces	
(1.5x0.5 cm2size of each ITO piece) on its previous surface	24
Figure 6 1.5x1.5 cm square plastic, polyethylene, with two separate rectangle ITO pieces	
(1.5x0.5 cm2 size for ITO piece each)	24
Figure 7 4-probe Conductivity Measurement	29
Figure 8 Designed circuit of the two resistors is connected as a parallel circuit and	
presents the 2-probe measurement according to the four steps from (a), (b), (c), and (d)	31
Figure 9 Average resistivity (Ω cm) of 10% PVA fibers blended with PEDOT/PSS	
concentrations of 0.052, 0.084, and 0.1% (each concentration was fabricated at 12.5, 15,	
17.5, 20 and 22.5 K in 5 min.) by using the 4-probe measurement	62
Figure 10 Average resistivity (Ω cm) of 10% PVA fibers blended with AgNPs	
concentrations of 0.25, 0.5, and 0.75% (each concentration was fabricated at 12.5, 15,	
17.5, 20 and 22.5 kV in 5 min.) by using the 4-probe measurement	62
Figuge11 Average resistivity (Ω cm) of 0.084% PEDOT/PSS and 10% PVA fibers	
blended with AgNPs concentrations of 0.25, 0.5, and 0.75% (each concentration was	
fabricated at 12.5, 15, 17.5, 20, and 22.5 kV in 5 min.) by using the 4-probe measurement	63
Figure 12 Conductivity of 10% PVA fibers blended with PEDOT/PSS concentrations of	
0.052, 0.084, and $0.1%$ at the various diameters (each concentration was fabricated at	
12.5, 15, and 17.5 kV in 20 min.) by using the 2-probe measurements	66

Figure 13 Conductivity of 10% PVA fibers blended with AgNPs concentrations of 0.25,	
0.5, and 0.75% at the various diameters (each concentration was fabricated at 12.5, 15,	
and 17.5 kV in 20 min.) by using the 2-probe measurements	66
Figure 14 Comparison of conductivity of 10% PVA fibers blended with 0.25% AgNPs,	
10% PVA fibers blended with 0.084% PEDOT/PSS, and 10% PVA fibers blended with	
0.084% PEDOT/PSS and 0.25% AgNPs at 17.5 kV, at the various diameters, (in 20, 30,	
and 45 min.) by using the 2-probe measurements	67
Figure 15 Conductivity of 10% PVA fibers blended with PEDOT/PSS concentrations of	
0.052, 0.084, and $0.1%$ at the various diameters (each concentration was fabricated at	
12.5, 15, and 17.5 kV in 20 min.) by using the 2-probe measurements	71
Figure 16 Conductivity of 10% PVA fibers blended with AgNPs concentrations of 0.25,	
0.5, and 0.75% at the various diameters (each concentration was fabricated at 12.5, 15,	
and 17.5 kV in 20 min) by using the 2-probe measurement	72
Figure 17 Conductivity of 10% PVA fibers blended with 0.084% PEDOT/PSS and	
AgNPs concentrations of 0.25, 0.5, and 0.75% at the various diameters (each	
concentration was fabricated at 12.5, 15, and 17.5 kV in 20 min.) by using the 2-probe	
measurement	72
Figure 18 Conductivity of 10% PVA fibers blended with 0.084% PEDOT/PSS and	
0.25% AgNPs at 12.5, 15, and 17.5 kV (in 20, 30 and 45 min) by using the 2-probe	
measurement	73

LIST OF ABBREVIATIONS

PVA	Poly(vinyl alcohol)
PEDOT/PSS	Poly(3,4-ethylenedioxythiophene)/ poly(styrenesulfonate)
AgNPs	Silver nanoparticles
P3DDT	Poly-3-dodecylthiophene
PEO	Polyethylene Oxide
P3HT	Poly-3-hexylthiophene
PCL	Poly(E -caprolactone)
AgNO ₃	Silver Nitrate
PAN	Polyacrylonitrile
РРу	Polypyrrole
PMO-PPV	Poly(2-methoxy-5-octoxy)-1,4-phenylene vinylene)-alt-1,4-(phenylene
	vinylene)
MEH-PPV	Poly[2-methoxy-5-(2-ethylhexyloxy)-p-phenylenevinylene]
PPV	Poly(phenylene vinylene)
PS	Polystyrene
PANI	Polyaniline
PLCL	Poly(L-lactide-co- E -caprolactone)
PHT	Poly(3-hexylthiophene)
PTA	Phosphotungstic Acid

CHAPTER I

INTRODUCTION

Conductive polymers and their applications have been approached, developed and implemented in recent years mostly in the laboratory and manufacturing. The successful commercial applications of the conductive polymers have continuously improved in efficiency when delivering their intrinsic properties. Mostly, the conductive polymers have been investigated by researchers in terms of electrical and optical properties. Over past 20 years, these types of polymer have attracted much interest because they simultaneously show their physical and chemical properties and the electrical characteristics of metals [1]. Indeed, these polymers have a high commercial potential to generate an even greater range of innovative consumer and industrial products such as diodes, biosensors, electrochemical devices, light-emitting diodes (LEDs), photovoltaic cells, and field-effect transistors (FET) [2]. Thus, many researchers are focusing on doing more research on conductive polymers by using the novel techniques and the variety nanomaterials of conductive polymers to produce nanoparticles, nanorods, thin films, ultra-fine fibers and etc. Moreover, nanocomposite will play a key role in the rapidly developing area of conductive ultra-fine fibers due to the possibility of conductivity enhancement with low cost technology. Nanocomposites are the primary material to improve electrical properties due to its blending of other higher conductivity materials with traditional conducting polymers.

This has stimulated many researchers to focus their areas of interest on "the development of synthesis, fabrication and processing methodologies of conductive polymers with the specific properties of electrical and optical conductivities". Now there is much emphasis placed on the development of suitable materials for their applications which is the subject of our scientific effort. In this few years, the techniques of blended materials have become popular and familiar with experienced researchers for studying and investigating the electrical conductivities. Although the most researchers have been gained the advantages of this technique, they still need to fix the limitations and problems of material properties during fabrication processes. However, the critical concern in the development of conductive ultra-fine fibers is how to improve their electrical and optical properties within acceptable economies of production.

In this study, ultra-fine electropsun fibers of polymer – conductive polymer blend, polymer – nanoparticle nanocomposite and polymer – conductive polymer – nanoparticle nanocomposite be fabricated, characterized and investigated. Among various conductive polymers, PEDOT has advantage of environmental stability, non-toxicity and easy process. They have great potential for nanoapplications such as the fields of nanoelectronics, nanomedicine and bio-sensing. PEDOT/PSS blended with silver nanoparticles and correlated with morphology will be studied in details including the shapes and sizes of ultra-fine fibers. The physical property and electrical conductivity of these ultra-fine fibers blends and their nanocomposites will be studied by varying the concentrations of conductive polymers and nanoparticles.

CHAPTER II

BACKGROUND AND THEORETICAL CONTEXT

2.1 Conductive Polymers

Among the various polymer solutions, conducting or conjugated polymers have attracted researcher's attention most since they have been discovered to have electrical and optical properties. The extremely essential aspect of conducting polymers is their ability to exhibit like metal or semiconductors such as electronic conductors. They have the advantages of more flexibility, ease of use, and extremely small size. Moreover, their nanostructures are regarded as larger in special surface areas and lighter in weight. These materials have been developed mostly by physicists, engineers and chemists for such electronic devices as field-effect transistors (FETs), light-emitting diodes (LEDs), electronic sensors and others utilizing their optical and electrical properties.

Conductive polymers are a specific class of organic polymers which consists of Carbon (C) and Hydrogen (H) atoms. The alternating single and multiple bonds (e.g. double bonds such as C=C-C=C-C...C=C-C) along the main chain of the molecular structure of conductive polymers or conjugated polymers are major features of these materials to exhibit ¶-conjugation electrons and repeat themselves along the chain. Their unique properties of ¶-conjugation electrons are the primary differences from other traditional polymers or plastic materials which are electrical insulators. In contrast, conductive polymers exhibit electrical conductivity at room temperature. A delocalised bond structure in the backbones of the conductive polymers over their entire molecules is the identifying characteristic which causes such ¶-orbital arrangements. The term of the conjugation lengths are defined as the distances (of the delocalization) of ¶-conjugation electrons that are confined along them.

There are many classes of conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, Poly (3, 4-ethylenedioxythiophene) (PEDOT), and poly (phenylene vinylene) [3] to name a few. These conductive polymers with a short brief of their families and molecular structures are illustrated in Table1.

In comparison, conventional conductive polymers such as polythiophene, polyaniline, and polypyrrole have undergone significant improvements and their properties enhanced, especially in charge storage devices with their specialized conductivity requirements. Since metallic materials like gold, silver, carbon, and conducting polymers have been used to prepare nanomaterials, many researchers are expressing exponential interest in blending nano-metalmaterials into conductive polymers collectively called nanocomposites.

Table 1 Sample conductive polymers and their molecular structures [3, 4].

Conductive Polymers	Molecular Structures
Polyacetylene (PA)	tota
PA is a linear chain type conjugated	5676 - 567 11
hydrocarbon polymer which has increased its	
conductivity by chemical doping.	
Polypyrrole (PPy)	L.J.
PPy is very widely utilized as a synthesis	H
medium because it can be easily prepared via	
the oxidation process of pyrrole monomers.	
Polythiophene (PT)	A
PT finds its most useful application in the	r s n
development of environmentally and	
thermally stable materials. There is a variety	
of applications using PT such as in sensors,	
light emitting diodes, and field-effect	
transistors.	
Poly (phenylene vinylene) (PPV)	+
PPV can be synthesized by specific methods	<u> </u>
such as Wessling–Zimmerman and the Gilch	
polymerization technique.	

2.2 Electrospinning Process

There are various techniques-- such as drawing extrusion, melt spinning, vapors grown and electrospinning-- to fabricate fibers [5]. Generally, the selected techniques depend on the researcher's purpose and their final application target segment. Electrospinning process has been extensively used in ultra-fine fibers fabrication as it is considered a relatively simple process for producing polymeric ultra-fine fibers and microfibers. The electrostatic processing strategy can be used to fabricate fibrous polymer mats comprising of fiber diameters ranging from several microns down to 100 nm or less [6]. The advantages of this well known process are continuous production and inexpensive process. This technique is used to precisely control the number of the filaments produced by changing voltage at the biased collector, viscosity, and the other conditions. Subsequently, the diameter of the fibers is varied by a post-deposition stretching process. The process uses an electric field to generate and elongate charge jet and deposit polymer fibers onto a target substrate. Main components of electrospinning apparatus can be categorized into three parts i.e. (1) a syringe or capillary tube with a needle of small diameter; (2) a high voltage supplier; and (3) an aluminum foil (screen) as collector as shown in Figure 1. The effectiveness of the electrospinning process is determined by the preparation and control of a mixture of polymer solutions producing the ultra-fine fibers, the collecting distance and the various intensities of the electric field which is biased by adjusting the high voltage supplier.

The factors affecting ultra-fine fibers transformation in polymer solutions will be delved into in the further review. Focus will be extended to the areas of **solution variables** (in terms of solvent properties, polymer properties (dipole moment/ dielectric constant/ boiling point) and solution properties (concentration/ viscosity/ conductivity/ surface tension)); **processing parameters** (such as needle size, applied voltage, collecting distance, and polarity); and **ambient parameters** (such as humidity, air flow rate, and temperature).

Figure 1 Schematics electrospinning apparatus

2.3 Electrospun Ultra-fine Fibers

There are multiple methodologies evolved for the production of conducting polymers such as thin films, nanoparticles, nanocomposite and ultra-fine fibers. Normally, polymeric ultrafine fibers are generated with diameters in the nanometer to micrometer range by an electrospinning process as illustrated in Figure 1. The conductive polymers are typically dissolved in proper solvent and these solutions can be formed as ultra-fine fibers by electrospinning process. The ultra-fine fibers synthesis is the favorite laboratory exercise due to their special properties of extremely high surface area-to-volume ratios compared to conventional nonwovens. Moreover, the advantages of ultra-fine fibers fabricated by these processes for a variety of applications are high length to diameter ratio, high porosity with small pore size of nonwoven fabric, low bulk density, and flexibility in surface functionalities.

2.4 Nanoparticles

Presently, nanoparticles are becoming a part of our daily life in the form of textiles, cosmetics, food packaging, biosensors, etc. The commercial applications blended with nanoparticles such as wound dressing, detergents or antimicrobial coatings are already launched in the market. Nanoparticles are defined as particles with the sizes of 100 nm or less. The properties of nanoparticles are different from bulk material properties (larger in size than 100nm). The advantage of nanoparticles mainly is high surface area to volume ratio. Moreover, the optical properties of nanoparticles as fluorescence are crucially applied for a variety of industrial applications. Their potential applications are mostly developed in biomedical and engineering areas.

Jyongsik Jang [4] found that spherical Polypyrrole (PPy) nanoparticles have been synthesized by chemical oxidation polymerization with the aid of surfactant or stabilizer in an aqueous solution. The microemulsion polymerization has been extensively utilized to synthesize various nanometer-sized conducting polymer particles. In order to synthesize conducting polymer nanoparticle as a core, various water soluble polymers such as poly (vinyl alcohol) (PVA), poly (vinyl methyl ether), cationic and anionic polyelectrolytes have been used as polymeric stabilizers. This water soluble polymer is physisorbed onto the surface of conducting polymer core due to hydrogen bonding in most cases.

2.5 Electrical Conductivity

Since conjugated polymers can be fabricated to emphasize their electrical property through doping, significant current research has focused in the field of conducting polymer films. On the other hand, nanostructures such as ultra-fine fibers, nanotubes, and nanowires have seen more extensive commercial development due to their functional properties. Of this threesome, ultra-fine fibers have the advantages of more flexibility, ease of use, and minute size. Moreover, their nanostructures are considered to have a larger critical surface area to weight ratio. Their unusual conducting properties led to studies enhancing their functional efficiency and extending the application base, especially those utilizing their electrical characteristics.

In essence, the synthesis and subsequent applications of electronically conducting polymers is based on their specially delocalized band-like electronic structure of their conjugated molecules. The conductive ability of ultra-fine fibers has been identified in terms of transport charge carriers along the polymer backbone, in particular, as the carriers hop among polymer chains. The basic description of their electrical and transport properties has been well discoursed in traditional conductive polymers studies. In this regard, the theory of **Band Energy** of materials is commonly called upon to illustrate the difference between metal (conductors), semiconductors, and insulators as depicted in Figure 2.

There is no energy gap between valence and conduction band in metal. Therefore, the metal, Figure 2(a), is easily induced to conduct electricity under an applied electric field. On the other hand, for insulators in Figure 2(c), the large amount of electrons already in the highest occupied band (valence band) results in a wide gap whereby electrons cannot move freely under an electric field. In Figure 2 (b), the valence band is filled with electrons while the conduction band is illustrated without electrons in ground state. Under the right conditions, the electrons can jump over the narrow band gap from the valence band, full with electrons, to the conduction band. This underscores the partial conductivity of semiconductors.

Figure 2 Simple band structure: (a) no energy gap---metal,

(b) narrow band gap---semiconductors, and (c) wide band gap--insulators

The electrical conductivity of polymers can find similarities to the band energy of semiconductors previously schematically depicted in Figure 2. In Figure 3, the band structure of electrically conductive polymers is illustrated as the band gap energy of solid state semiconductors. The energy space divide, forbidden energy states, between the highest occupied and lowest unoccupied molecular orbital, is called the **band gap**. The lower band, Highest Occupied Molecular Orbital (HOMO) is called the **valence** band and the top band, the Lowest Unoccupied Molecular Orbital, is referred to as the **conduction** band.

Figure 3 The band structure of electronically conductive polymer LUMO: Lowest Unoccupied Molecular Orbital HOMO: Highest Occupied Molecular Orbital

Presently, advanced studies emphasize the enhancement of polymer electrical properties via the development of nouveau techniques and new combination of materials such as nanocomposites. These composites are the primary substrate on which future improvements to material electrical properties are expected. This is due to their blending of other higher conductive elements with traditional conducting polymers.

It is useful to note here that polymer conductivity is frequently quantified by the equation below. Electrical Conductivity, σ , is determined in terms of the density of charge carriers (number of electrons = n), the mobility (μ) of the charge carriers, and charge carriers (q) as

$$\sigma = n \mu |q|$$

where the unit of conductivity, σ , is measured in S.cm⁻¹; the unit of number of charge carriers, n, in cm⁻³; the unit of mobility of the charge carriers, μ , in cm².V⁻¹.s⁻¹; the unit of charge carried by carriers, q, is Coulomb [3]

CHAPTER III

LITERATURE REVIEW

3.1 Electrospinning of Blend Conductive Polymers

Amongst the various polymer solutions, conductive polymers have attracted researcher's attention most ever since they were discovered to have electrical and optical properties. Electrospun conducting fibers are produced from various substrates such as blend solutions (conductive and nonconductive polymers), template synthesis and hybrid solutions [1, 7, 8]. Ioannis S. Chronakis et al. [1] utilized electrospinning process to study conductive polypyrrole nanofibers which were obtained using polyethylene oxide (PEO) as template polymer in aqueous solutions. They also prepared pure (without carriers) polypyrrole conductive ultra-fine fibers by electrospinning organic solvent soluble polypyrrole using the functional doping agent di(2-ethylhexyl) sulfosuccinate sodium salt (NaDEHS). They reported that electrospun conducting fibers blended with water soluble polypyrrole using the functional doping agent NaDEHS with PEO.

Additionally, Andrea Bianco and his group [5] also used the electrospinning technique for obtaining functionalized polymeric fibers. They blended polyethyleneoxide (PEO), poly-3dodecylthiophene (P3DDT) and spun from a chloroform solution. The fibers diameters were approximately 1 µm and both polymer components occurred in the fibers as separated phases. Washing the fibers with acetonitrile, the PEO matrix was completely removed. This process is fast, long lasting and homogenizes fibers of P3DDT.

Rajesh et al. [7] reviewed the recent progress in the development of nano-structured conducting polymers / nanocomposites for sensor applications. They investigated and presented an overview of various recent synthetic approaches involving template free and template oriented techniques suitable for the growth of nanomaterials from conjugated polymers, and the advantages of their applications in production of nanodevices.

The electrospinning process followed by a suitable washing step is to make it possible to orient fibers with a high molecular level. This was highlighted by Rui Chen et al. [8] who studied the properties of $AgNO_3$ / polyacrylonitrile hybrid ultra-fine fibers which were also prepared using an electrospinning technique.

The fiber diameters resulting from diverse electrospinning studies are shown in Table 2. The researchers applied voltages between 7-40 kV and relied on a specific collecting distance and solution type. The fiber diameters resulting from the studies varied from 70 nm up to 5.8 μ m. The diameter size varied according to collecting distances, applied voltages, the jet sizes and the polymer contents in the jet fluids. As shown, the results of the experiments produced some polymer ultra-fine fibers with diameters in excess of 1 μ m and a smallest size of 70 nm.

Table 2 Summary of electrospinning conditions for conductive polymers.

			Applied voltage		
No.	Materials	Concentration	and collecting	Fiber diameters	References
			distance		
1.	PPy/PEO	PEO:1.5 and 2.5 wt%	30 kV, 20 cm	70-300 nm	[1]
		PPy: 20 to 80wt%			
2.	P3DDT/PE	10.8 wt% in CHCI ₃	7-13 kV, 30 cm	938 nm	[5]
	0				
3.	PS/MEH-	8.5, 16, 23.5% (w/v) in	12-21 kV, 10 cm	Chloroform:	[9]
	PPV	Chloroform and 1,2-		2.31±0.66 to	
		Dichloroethane		5.11±0.68 μm	
				1,2-	
				Dichloroethane:	
				1.25±0.37 to	
				1.66±0.58 μm	
4.	PS/MEH-	8.5 % (w/v) in 1,2-	7.5 to 15 kV, 10	0.165 µm to	[10]
	PPV	Dichloroethane (DCE)	cm	1.190 µm	
5.	PPy/PAN;	10 wt%, 36 wt%, 52 wt%,	~13.7 kV, 12 cm	300-750 nm	[8]
	AgNO3	62 wt% and 69 wt% in			
		PAN			
6.	P3HT-PEO	75 wt% in THF or CHCl3	14 kV, 10 cm	400-500 nm	[11]

			Applied voltage		
No.	Materials	Concentration	and collecting	Fiber diameters	References
			distance		
7.	P3HT:PCL	11-13 wt% in CHCI3	18 kV, 7 cm	300 nm/ 250 nm	[12]
				after removing	
				PCL	
8.	PMO-PPV	0.2 g PMO-PPV (or 0.2 g	40 kV, 15-20 cm	70-200 nm	[13]
		Eu(ODBM) ₃ phen) and 1 g			
		PMMA in 10 mL mixed			
		solvent composed of			
		chloroform and			
		tetrahydrofuran and N,N-			
		dimethylformamide (2:1:1).			
9.	PPV/PVA	0.6 wt% (PPV 50 :PVA 50)	10 kV, 20 cm	250-1000 nm	[14]
10.	PPV	0.4 wt%	15 kV, 20 cm	653 nm	[15]
		in ethanol/water			
11.	PVP/MEH-	6 wt%/ (0.1 wt%, 0.4 wt%,	17 kV, 20 cm	1.2 μm (MEH-	[16]
	PPV	1.0 wt%, 3.0 wt%)		PPV 1.0 wt%)	
				5.8 μm (MEH-	
				PPV 3.0 wt%)	
12.	MEH-PPV	MEH-PPV: 0.5098 g in	15 kV, 18-25 cm	471-673 nm	[17]
		chlorobenzene : 25 ml			
13.	PANI	10.6 % to 19.1 % in hot	12 or 18 kV, 13	370 nm	[18]
		sulfuric acid solution	cm		

3.2 Electrospinning of Poly (3, 4-ethylenedioxythiophene) (PEDOT)

Conductive PEDOT solutions are normally found as water dispersions of poly (3,4ethylenedioxythiophene) (PEDOT)/ poly(4-styrenesulfonate) (PSS), PEDOT/PSS, which are produced as commercial products, Baytron-P, by Bayer. PEDOT is a conductive polymer depended on 3, 4-ethylenedioxylthiophene or EDOT monomer. Advantages of PEDOT properties are very attractive to many researchers in terms of high stability, moderate band gap, optical transparency in its conducting state and low redox potential. PEDOT have rather low conductivities. However, dimethyl sulfoxide (DMSO) or ethylene glycol (EG) can be used as a secondary dopant to increase their conductivities. The related researches of PEDOT are referred as followed.

J.L. Duvail et al. [19] synthesized electrochemically aqueous solution of PEDOT nanofibers by using the template method and investigated their morphology by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The researchers report a comparative study of resonant Raman spectra for the nanofibers and PEDOT films. Finally, they found that PEDOT were in an insulating state close to the metal–insulator transition, the temperature dependence of the fibers' conductance was larger than for the films, and this variation increases when the diameter was reduced.

B. J. Goo et al, [20] fabricated electrically conducting PEDOT nanofiber using the electrospinning technique. They varied electrical high voltage of 10 to 20 kV to produce these nanofibers. They investigated the capacitance properties by cyclic voltammetry (CV) and charge/discharge experiment. Additionally, they examined the surface morphology of PEDOT nano-fiber by SEM.

Wee-Eong Teo and Seeram Ramakrishna [21] introduced electrospinning as a potential technology for use as a platform for multifunctional, hierarchically organized nanocomposites. They reported that a nanocomposite system with up to five distinct levels of organization can be constructed using electrospun fibers. Additionally, they explained how electrospun multifunctional, hierarchically organized nanocomposites could be used in applications such as healthcare, environmental and defense and security.

3.3 Ultra-fine Fibers Blended with Silver Nanoparticles (AgNPs)

Among a number of nanoparticles, silver nanoparticles are created from silver, i.e. silver particles (AgNPs) of between 1 nm and 100 nm in size. AgNPs are very popular and effective for anti-microbial activity. Nowadays, AgNPs are widely synthesized in laboratory scale. However, a mass production of AgNPs for industrial scale is considered as a necessary factor for many applications.

Won Keun Son et al. [22] found that polymer nanofibers containing AgNPs on their surface could be produced by UV irradiation of polymer nanofibers electrospun with small amounts of silver nitrate (AgNO₃). Either electrospinning polymer solutions containing metal nanoparticles or reducing metal salts or complexes in electrospun polymer nanofibers were used to produce the incorporation of metal nanoparticles into polymer nanofibers. Finally, they found that AgNPs with an average size of 21 nm demonstrated strong antimicrobial activity.

3.4 Electrically Conductive Properties of Ultra-fine Fibers

Electrically conductive properties of ultra-fine fibers have been investigated by several groups of researchers. Ioannis S. Chronakis et al. [1] studied both the electrical conductivity and the average diameter of PPy nanofibers by varying the ratio of PPy/PEO content. They measured the conductivity by using a two-point method in accordance with ASTM 4496-04 standard. They showed that conductivity readings through the thickness of the electrospun PPy/PEO ultra-fine fibers increased by two orders of magnitude from the lowest to the highest concentration of PPy ranging from about 4.9×10^{-8} to 1.2×10^{-5} S/cm.

Alexis Laforgue et al. [11] fabricated P3HT–PEO blended with ultra-fine fibers by electrospinning process in chloroform solutions. They studied the morphology, its striated surfaces and structural arrangement of the polymers, coupled with its conductivity. The maximum electrical conductivity found for unaligned mats was 0.16 S/cm and increased to 0.3 S/cm when the ultra-fine fibers were closely aligned in a preferred direction.

Indong Jun et al. [23] investigated the effects of PANI incorporated fibers on the proliferation and differentiation of skeletal myoblasts. They implemented electrospinning process to fabricate PLCL/PANI random fibers with various concentrations of PANI. They discovered that PLCL/PANI-0 fibers did not show any detectable conductivity. In contrast to the PLCL/PANI-0 fibers, incorporation of PANI into PLCL fibers significantly increased the conductivity according to the amount of PANI; from 0.160±0.046 S/cm for the PLCL/PANI-15 fibers to 0.296±0.064 S/cm for the PLCL/PANI-30 fibers.

Yu Wang et al. [24] produced and measured PAN (polyacrylonitrile) ultra-fine fibers. The PAN fibers were measured before and after carbonization. Eventually PAN and PAN-based graphite ultra-fine fibers were obtained by electrospinning process and subsequent pyrolysis. The graphitization of the PAN ultra-fine fibers led to a sharp increase in conductivity to around 490 S/m. Similarly, other research groups have focused on the conductive polymer nanocomposites to continuously improve their electrical conductive properties.

The results of electrical conductivity of conducting polymers from some research groups are shown in Table 3. Among the sample solutions from Table 3, PANI, ref. 18, Qiao-Zhen Yu et al., with 370 nm fiber diameters illustrates the highest conductivity of 52.9 S/cm, while PPy/PEO, ref. 1, Ioannis S. Chronakis et al., with 70-300 nm fiber diameters indicates the lowest conductivity of 4.9×10^{-8} S/cm to 1.2×10^{-5} S/cm. The results of the tests on these materials (of P3HT-PEO, AgNO₃/PAN, PPy/PEO, PANI, and PLCL/PANI) are highlighted in terms of their concentration, fiber diameters and electrical conductivity ranges were from 4.9×10^{-8} S/cm to 52.9 S/cm. In essence, they exhibit electrical and transport properties similar to those of traditional conductive polymers. They are crucial to the search for improved electrical properties by blending various higher conductive materials with traditional conducting polymers.

Table 3 Summary of electrical conductivity of some conducting polymers

No.	Materials	Concentration	Fiber diameters	Conductivity	References
1.	PPy/PEO	PEO:1.5 and 2.5 wt%	70-300 nm	4.9×10^{-8} S/cm to	[1]
		PPy: 20 to 80wt%		1.2×10^{-5} S/cm	
2.	PPy/PAN;	10 wt%, 36 wt%, 52	300-750 nm	\sim 1.3 × 10 ⁻³ S/cm	[8]
	AgNO3	wt%, 62 wt% and 69			
		wt% in PAN			
3.	P3HT-PEO	75 wt% in THF or	400-500 nm	0.16 S/cm and	[11]
		CHC13		increased to 0.3	
				S/cm	

No.	Materials	Concentration	Fiber diameters	Conductivity	References
4.	PANI	10.6 % to 19.1 % in hot	370 nm	52.9 S/cm	[18]
		sulfuric acid solution			
5.	PLCL/	4.3% (w/v)/0mg,	516 ±117,	N/A., 0.160±0.046	[23]
	PANI	5.1%(w/v)/45mg, and	499±125, and	S/cm, and	
		6.3%(w/v)/90mg	466±100 nm	0.296±0.064 S/cm	
		(100/0, 85/15, and			
		70/30)			

CHAPTER IV

EXPERIMENT PART

4.1 Scope of Work

Ultra-fine electrospun fibers of polymer - conductive polymer blend, polymer nanoparticle nanocomposite and polymer - conductive polymer - nanoparticle nanocomposite were fabricated. Then, physical property and electrical conductivity of these ultra-fine fibers blends and their nanocomposites will be characterized. The electrical conductive ultra-fine fibers will be prepared from Poly(3, 4-ethylene dioxythiophene)/Poly (styrene sulfonate) (PEDOT/PSS) using Poly(vinyl alcohol) (PVA) as carrier. Actually, PEDOT/PSS have rather low conductivities. Although the conductivity of PEDOT/ PSS can be increased and varied by several orders of magnitude, relying on which method or technique is used for fabricating ultra-fine fibers, the reason for this characteristic is essentially unknown. So, PEDOT/PSS and its correlations with the morphology will be studied in details including the shapes and sizes of these PEDOT/PSS ultra-fine fibers. Moreover, silver (Ag) nanoparticles will be investigated in electrical conductivity after blending them into PEDOT/PSS and PVA solution to form blended ultra-fine fibers. The physical property and electrical conductivity of these ultra-fine fiber blends will study both randomized and aligned fibers by varying the applied voltages and the fiber collecting times in the electrospinning process and the concentrates of conductive polymers and nanoparticles.

4.2 Conceptual Design for Material Structure

The following section explains an experimental method together with ultra-fine fibers fabrication system (including apparatus) and characterization that will be processed at the Petroleum and Petrochemical College, Chulalongkorn University. The electrical conductivity measurement of ultra-fine fibers will be conducted at Center of Intelligent Materials and Systems, Faculty of Science, Mahidol University.

Conceptual Design for Material Structure

The material structure in this study will be considered a conceptual design as shown in the following diagrams.

4.3 Materials

4.3.1 BAYTRON-P Poly (3, 4-ethylene dioxythiophene)/Poly (styrene sulfonate) (PEDOT/PSS) from Bayer is a blue liquid aqueous dispersion will be used as conductive polymers. BAYTRON-P is a trademark, protected for H.C. Starck GmbH, Goslar. The original concentration of PEDOT/PSS, under the centrifuge technique, is 1.2574% w/v

Physical Characteristics:

Solid content	1.2 - 1.4%
Viscosity	60 - 100 mPa.s
pH - value	1.5 - 2.5
Surface resistance	max. 1 MOhm

4.3.2 Highly concentrated Silver Nanoparticles (AgNPs), about 7% w/v, were synthesized at the Center of Innovative Nanotechnology, Chulalongkorn University. The particle sizes of AgNPs after being synthesized by TEM were about 20-40 nm.

4.3.3 PVA, analytical grade, was purchased from Carlo Erba. The 12% w/v concentration of PVA in DI water was prepared by dissolving it in the 12 grams of grained PVA in 100 ml. of DI water and keeping it warm at 60°C -70°C about 3-4 hours. Finally, the 12 % w/v concentration of PVA will be diluted and mixed with PEDOT/PSS and AgNPs to form ultra-fine fibers used in the electrospinning processes with the proper ratios as shown in Table 4. In this work, PVA solutions were preserved at 10% w/v for generating any ultra-fine fibers.

4.4 Fabrication

4.4.1 Randomized Fiber Formation

The electrospinning apparatus was prepared to randomize the fiber formation as shown in Figure 1. Then, before generating fibers, all work steps were processed as follows:

1. In this work, use 1.5x1.5 cm. square size of 0.5 mm. thickness of glass substrate attached to 20x29 cm² of aluminum foil surface as a target (which was coated with ultra-fine fibers under the spinning process) for fiber characterization and 4-probe electrical conductivity measurement.

2. Clean all glass substrates with DI water (WDI) under the ultrasonic system, acetone and methanol before spinning processes take place.

3. Prepare all materials with the proper ratios for generating ultra-fine fibers as shown in Table 4. The fabrication processes were carried on with different mixed solutions (as

shown in Table 4). In each mixed solution, the high voltages were applied to five levels (12.5, 15, 17.5, 20, 22.5 kV) within the same conditions of collecting distance (15 cm.) and spinning time (5 min).

4. Collect fibers as shown in Figure 4

Figure 4 Collecting ultra-fine fibers on the surface of the aluminum foil

5. Repeat the processes of No.1-4 by varying the concentrates of AgNPs and the concentrates of PEDOT/PSS as shown in Table 4.

6. Characterize ultra-fine electrospun fibers by using SEM, TEM, XRD, AFM and FTIR properly.

7. Measure the electrical conductivity of randomized ultra-fine electrospun fibers by the Hall Effect Measurement as the 4-probe technique.

Fiber	Items	Chemical Material Mix	Applied	Collecting	Spinning
Types		(Concentration Ratio)	Voltage (kV)	Distance	Periods
				(cm)	(min)
RD	1	PVA 10% 6ml.: WDI 1.2ml.	12.5, 15,	15	5
			17.5, 20 and		
			22.5		
RD	2	PVA 10% 6ml.: PEDOT/PSS	12.5, 15,	15	5
		0.084% 0.48ml: WDI 0.72ml.	17.5, 20 and		
			22.5		
RD	3	PVA 10% 6ml.: PEDOT/PSS	12.5, 15,	15	5
		0.052% 0.3ml.: WDI 0.9ml.	17.5, 20 and		
			22.5		
RD	4	PVA 10% 6ml.: PEDOT/PSS	12.5, 15,	15	5
		0.1% 0.57ml.: WDI 0.63ml.	17.5, 20 and		
			22.5		
RD	5	PVA 10% 6ml.: AgNPs 0.25%	12.5, 15,	15	5
		0.19ml.: WDI 1.010 ml.	17.5, 20 and		
			22.5		
RD	6	PVA10% 6 ml.: AgNPs 0.5%	12.5, 15,	15	5
		0.381 ml.: WDI 0.819ml.	17.5, 20 and		
			22.5		
RD	7	PVA10% 6 ml.: AgNPs 0.75%	12.5, 15,	15	5
		0.571 ml.: WDI 0.629ml.	17.5, 20 and		
			22.5		
RD	8	PVA10% 6 ml.: AgNPs 0.25%	12.5, 15,	15	5
		0.19 ml.: PEDOT/PSS 0.084%	17.5, 20 and		
		0.48ml.: WDI 0.53ml.	22.5		

Table 4 Electrospinning conditions for randomized fiber (RD) formation
Fiber	Items	Chemical Material Mix	Applied	Collecting	Spinning
Types		(Concentration Ratio)	Voltage (kV)	Distance	Periods
				(cm)	(min)
RD	9	PVA10% 6 ml.: AgNPs 0.5%	12.5, 15,	15	5
		0.381 ml.: PEDOT/PSS 0.084%	17.5, 20 and		
		0.48ml.: WDI 0.339ml.	22.5		
RD	10	PVA10% 6 ml.: AgNPs 0.75%	12.5, 15,	15	5
		0.571 ml.: PEDOT/PSS 0.084%	17.5, 20 and		
		0.48ml.: WDI 0.149ml.	22.5		

4.4.2 Aligned Fiber Formation

The electrospinning apparatus for aligned fiber formation was prepared as shown in Figure 1, but only to replace the fixed square target previously mentioned in the randomized fiber formation with the high speed drum aligning fibers during the fiber generation. The high speed rotating drum was used to collect the aligned fibers while the electric filed was applied in the electrospinning system. The drum speed was set at about 1,012.13 - 1,015.56 rpm to generate well-aligned ultra-fine fibers during the electrospinning process. Then, before generating the fibers, all work steps were processed as follows:

1. Calibrate the rotating speed levels of high speed drum by varying applied voltages and counting the rotating speed in round per minute (rpm) by using the digital non-contact Tachometer, UNI-T Model UT371/372.

2. Replace the fixed square target as shown in Figure 1 with the high speed drum as the rotating target to align the ultra-fine fibers for both aligned single fibers and aligned fiber mat. The rotating speed was set at level 5, about 1,012.13 - 1,015.56 rpm for this operation. In case of aligned fiber formation with rare fiber collection like single fiber, the drum anti-clockwise rotating direction was applied. On the other hand, more fiber collection as aligned fiber mat was generated by setting the rotating drum direction under clockwise technique. The electrospinning apparatus for fiber alignment was shown in Figure 5 (a) and (b).

Figure 5 High speed drum for fiber alignment (a) aligned fiber collection on the rolling aluminum foil which was attached to the rotating drum surface (b) the aligned fiber collection on the square plastic of $1.5 \times 1.5 \text{ cm}^2$ with two separate rectangle ITO pieces ($1.5 \times 0.5 \text{ cm}^2$ size of each ITO piece) on its previous surface.

3. Use $1.5x1.5 \text{ cm}^2$ square size of plastic substrate with the two separate $1.5x0.5 \text{ cm}^2$ rectangle ITO bars. Figure 6, attach to aluminum foil surface as a target (which will be coated with aligned fibers under the spinning process) for fiber characterization and 2-probe electrical conductivity measurement.

Figure 6 $1.5 \times 1.5 \text{ cm}^2$ square plastic, polyethylene, with two separate rectangle ITO pieces (1.5x0.5 cm² size for ITO piece each) 4. Prepare all materials with the proper ratios for generating aligned single fibers and aligned fiber mat as shown in Table 5 and 6 respectively. The fabrication processes were conducted with different mixed solutions. In each mixed solutions, the high voltages were applied to three levels (12.5, 15, and 17.5kV) within the same conditions of collecting distance (15 cm.) and spinning time (20, 30 and 45 min).

Aligned	Items	Chemical Material Mix	Applied	Collecting	Spinning
Fiber		(Concentration Ratio)	Voltage (kV)	Distance	Periods
Types				(cm)	(min)
SF	1	PVA 10% 6ml.: WDI 1.2ml.	12.5, 15, and	15	20
			17.5		
SF	2	PVA 10% 6ml.: PEDOT/PSS	12.5, 15, and	15	20
		0.084% 0.48ml: WDI 0.72ml.	17.5		
SF	3	PVA 10% 6ml.: PEDOT/PSS	12.5, 15, and	15	20
		0.052% 0.3ml.: WDI 0.9ml.	17.5		
SF	4	PVA 10% 6ml.: PEDOT/PSS	12.5, 15, and	15	20
		0.1% 0.57ml.: WDI 0.63ml.	17.5		
SF	5	PVA 10% 6ml.: AgNPs 0.25%	12.5, 15, and	15	20
		0.19ml.: WDI 1.010 ml.	17.5		
SF	6	PVA10% 6 ml.: AgNPs 0.5%	12.5, 15, and	15	20
		0.381 ml.: WDI 0.819ml.	17.5		
SF	7	PVA10% 6 ml.: AgNPs 0.75%	12.5, 15, and	15	20
		0.571 ml.: WDI 0.629ml.	17.5		
SF	8	PVA10% 6 ml.: AgNPs 0.25%	17.5	15	30 and 45
		0.19 ml.: PEDOT/PSS 0.084%			
		0.48ml.: WDI 0.53ml.			

Table 5 Electrospinning conditions for the aligned single fiber (SF) formation

Aligned	Items	Chemical Material Mix	Applied	Collecting	Spinning
Fiber		(Concentration Ratio)	Voltage (kV)	Distance	Periods
Types				(cm)	(min)
FM	1	PVA 10% 3ml.: WDI 0.6ml.	12.5, 15, and	15	20
			17.5		
FM	2	PVA 10% 3ml.: PEDOT 0.084%	12.5, 15, and	15	20
		0.24ml.: WDI 0.36ml	17.5		
FM	3	PVA 10% 3ml.: PEDOT 0.052%	12.5, 15, and	15	20
		0.15ml,: WDI 0.45ml	17.5		
FM	4	PVA 10% 3ml.: PEDOT 0.1%	12.5, 15, and	15	20
		0.285ml.: WDI 0.315ml	17.5		
FM	5	PVA10% 3 ml.: AgNPs 0.25%	12.5, 15, and	15	20
		0.266ml.: wDI 0.334ml.	17.5		
FM	6	PVA10% 3 ml.: AgNPs 0.5%	12.5, 15, and	15	20
		0.533 ml.: WDI 0.067ml.	17.5		
FM	7	PVA10% 3 ml.: AgNPs 0.75%	12.5, 15, and	15	20
		0.799ml.: WDI – ml.	17.5		
FM	8	PVA10% 6 ml.: AgNPs 0.25%	12.5, 15, and	15	20
		0.19 ml.: PEDOT/PSS 0.084%	17.5		
		0.48ml.: WDI 0.53ml.			
FM	9	PVA10% 6 ml.: AgNPs 0.5%	12.5, 15, and	15	20
		0.381 ml.: PEDOT/PSS 0.084%	17.5		
		0.48ml.: WDI 0.339ml.			
FM	10	PVA10% 6 ml.: AgNPs 0.75%	12.5, 15, and	15	20
		0.571 ml.: PEDOT/PSS 0.084%	17.5		
		0.48ml.: WDI 0.149ml.			

Table 6 Electrospinning conditions for the aligned fiber mat (FM) formation

Aligned	Items	Chemical Material Mix	Applied	Collecting	Spinning
Fiber		(Concentration Ratio)	Voltage (kV)	Distance	Periods
Types				(cm)	(min)
FM	11	PVA10% 6 ml.: AgNPs 0.25%	12.5 and 15	15	30 and 45
		0.19 ml.: PEDOT/PSS 0.084%			
		0.48ml.: WDI 0.53ml.			
FM	12	PVA10% 3 ml.: AgNPs 0.25%	17.5	15	30 and 45
		0.266 ml.: PEDOT/PSS 0.084%			
		0.24ml.: WDI 0.094ml.			

5. Collect fibers as shown in Figure 5

6. Repeat the processes of No.1-5 by varying AgNPs and PEDOT/PSS concentrates and collecting times as shown in Table 5 and 6.

7. Characterize aligned electrospun fibers by using SEM, TEM, XRD, and AFM properly.

8. Measure the electrical conductivity of aligned single fibers and aligned fiber mat by using the 2-probe electrical conductivity technique.

4.5 Characterization

Electrospun ultra-fine fibers, with and without silver nanoparticles and coated on the glass substrates, were characterized to study their morphologies such as the diameters of fiber by using Scanning Electron Microscope (SEM), JSM-5410LV. The SEM technique was routinely used to illustrate high-resolution images of electrospun fibers and to show chemical compositions or elements by using EDS (Energy Dispersive X-Ray Spectrometer).

The Transmission Electron Microscope (TEM), JEOL model JEM-2100, was used to identify and analyze materials mixed in the fibers. The small details in the fibers or different materials were studied at the nanometre levels. The possibility for high magnifications had made the TEM a valuable tool in this research. The EDS, optional technique in TEM, was mostly used

for qualitative elemental analysis by using the software controller named JEOL untitled - analysis program (Gatan Digital Micrograph), simply to determine which elements were present in the specific area of fibers.

The Atomic Force Microscopy (AFM) was used to analyze fabricated fibers in a threedimensional surface profile, unlike the SEM which provides a two-dimensional projection or a two-dimensional image of fibers. In this case, the non-contact or tapping mode of AFM, SEIKO model SPA 400, was used to operate for the fiber mat surface.

The X-ray Diffraction (XRD) technique was used to analyze the detailed information about the chemical composition and crystallographic structure of fabricated ultra-fine fibers.

The Fourier Transform Infrared Spectroscopy (FTIR) was used to characterize ultra-fine fibers especially polymer fibers by pressing KBr Disks, with and without silver nanoparticles.

4.6 Electrical Conductivity Measurement

4.6.1 The 4-probe Conductivity Measurement

The 4-probe Conductivity Measurement, the Ecopia HMS-3000, was used to measure the electrical conductivities of electrospun ultra-fine fibers of each sample condition that randomly spread over the $1.5 \times 1.5 \text{ cm}^2$ glass as shown in Figure 7.

Figure 7 4-probe Conductivity Measurement

	Story
(a) HMS-3000 with the standard 0.55T sample kit	(b) Sample holder with the PCB and IC socket on board
(c) Magnet introduced from north to south and south to north	(d) Square sample glass was held by the 4 probes of the
polarity	sample holder and was inserted into the magnetic
	chamber
Image: Control of the contro	(e) Measurement menu on the screen monitor

The equipment of 4-probe conductivity measurement from Figure 7 was arranged as a complete circuit for electrical measurement. The measurement steps are described as follows:

1. Connect a computer, Figure 7 (a), and magnet unit, Figure 7 (b), to the main equipment of Hall Effect Measurement System as shown in Figure 7 (a)

2. Prepare installed software, HMS 3000 v. 3.51.3(2), to record all measured data. The measurement factors displayed as abbreviations on the computer monitor, Figure 7 (e), are presented as follows:

Bulk Concentration	= Nb	Sheet Concentration	= NS
Mobility	$=\mu$	Conductivity	= SIGMA
Resistivity	= rho	Average Hall Coefficient	= RH
A-C Cross Hall Coefficient	= RHA	B-D Cross Hall Coefficient	= RHB
Magneto-Resistance	= DELTA	Ratio of Vertical/Horizontal	= ALPHA

3. Calibrate the measurement system by setting the parameters as I = 5mA, $D = 6.69 \mu m$ (depends on the fiber thickness), Delay = 0.1 [s], B = 0.55 [T], measurement number = 1000 [times]. Then, insert the sample holder including PCB and IC socket on the board, without any samples, as shown in Figure 7 (d) into the magnetic chamber and place the magnet from north to south and south to north polarity. The results of measurement factors from software menu, Figure 7 (e), are operated and saved as text files.

4. Place the sample of fiber on the surface of sample holder and follow the measurement steps from above items 1 to 3. Every condition of fiber samples is measured with the same measurement processes.

4.6.2 The 2-probe Conductivity Measurement

The 2-probe conductivity technique was implemented to measure the electrical conductivity of aligned ultrafine-fibers which were laid on 1.5×1.5 cm² plastics with 2 ITO

separate bars. The designed circuit using the two parallel resistors for the 2-probe conductivity measurement is shown in the Figure 8 (a).

Figure 8 Designed circuit of the two resistors is connected as a parallel circuit and presents the 2-probe measurement according to the four steps from (a), (b), (c), and (d)

The supply voltage, V, shows across both resistors, $R_{\scriptscriptstyle 0}$ and $R_{\scriptscriptstyle 1}so:$

$$V = I_0 R_0 = I_1 R_1 = IR$$
(3)

$$R = R_0 R_1 / (R_0 + R_1)$$
(4)

From (3) and (4)..... $V = I[R_0R_1 / (R_0 + R_1)]$

 $R_{0}R_{1} = [V(R_{0}+R_{1})]/I$ $R_{1} = [V(R_{0}+R_{1})]/IR_{0}$ $R_{1} = (VR_{0}+VR_{1})/IR_{0} \dots (5)$ $R_{1}(IR_{0}) = VR_{0}+VR_{1}$ $R_{1}(IR_{0})-VR_{1} = VR_{0}$ $R_{1}(IR_{0}-V) = VR_{0}$ $R_{1} = (VR_{0})/(IR_{0}-V) \dots (6)$

Where: V - the supply voltage (volts)

 \mathbf{R}_0 - the known resistance (ohm)

 \mathbf{R}_1 - the unknown resistance (sample) (ohm)

 V_0 - the potential across R_0 (volt)

 V_1 - the potential across R_1 (volt)

I_0 , I_1 , and I – the current flow through resistance 0, resistance 1, and the circuit respectively (amp)

The two main units of 228A voltage/current source and 617 programmable electrometer, KEITHLEY, are used to link the circuit for the 2-probe measurement technique as shown in Figure 8 (d). In case of the current measurement accuracy, a three- minute period of time is allowed for each current value record. The whole process of 2-probe measurement is presented in order as shown in Figures 8 (a), (b), (c), and (d).

CHAPTER V

RESULTS AND DISCUSSION

The electrospinning process is demonstrated in the experimental part using both randomized fiber and aligned fiber techniques to form the ultra-fine fibers. The fabricated conditions of the electrospinning processes in the synthesis of conductive polymers in this study are initially summarized whereby voltages between 12.5-22.5 KV are applied on a collecting distance of 15 cm. in 5 minutes for randomized fiber formation and 20, 30, and 45 minutes of both aligned single fiber and aligned fiber mat formation generated from PVA blended with various PEDOT/PSS and AgNPs concentrations. The fiber diameters resulting from these permutations by the researcher in this review varied from 0.1020 μ m to 0.3300 μ m (the randomized fiber diameter range = 0.114 to 0.298 μ m, the aligned single fiber diameter range = 0.15 to 0.33 μ m, and the aligned fiber mat diameter range = 0.102 to 0.218 μ m.). In this work, the average particle size of AgNPS is 18.65 nm. From the results of spinning process, there are many randomized fibers and aligned fibers on the targets while producing the ultra-fine fibers at 20 and 22.5 kV and very few ultra-fine fibers are found when applying voltages at 12.5, 15, and 17.5 kV. In case of fiber alignment, the aligned fibers were obtained due to the effect of the sheering force of the drum rotating speed. The polymer jets were aligned very well while applying voltage from 12.5 to 17.5kV at about 1,012.13 – 1,015.56 rpm of drum speed.

5.1 Morphology of Blended Ultra-fine Fibers

The morphology of PVA, PEDOT/PSS, and silver nanoparticles solutions mainly were investigated by SEM and TEM. The shape of AgNPs diameters and PEDOT/PSS shape in the based solution were measured through the TEM images which were taken by using sample grids before the process of fiber generations. In this part, the diameter of AgNPs and PEDOT/PSS shape both in DI water and PVA solution are presented as followed.

Table 7 Comparison of the diameter of AgNPs and PEDOT/PSS shape

(1) AgNPs concentration: 10.01% w/v (2) PEDOT/PSS concentration: 1.2574% w/v

No.	Solutions	Material Name	Particle Size/ Diameter (nm)	Standard Deviation (nm)	Average Size (nm)	TEM Images
1	AgNPs 563 μl: Water DI 2.874 ml	AgNPs	18.47	2.33	-	
2	AgNPs 563 μl: Water DI 2.874 ml	AgNPs	19.41	2.26	-	ат Т
3	AgNPs 563 μl : Water DI 2.874 ml	AgNPs	19.71	5.91	-	
4	AgNPs 563 μl: Water DI 2.874 ml	AgNPs	17.02	3.73	18.65 (item 1- 4)	

-						
No.	Solutions	Material Name	Particle Size/ Diameter (nm)	Standard Deviation (nm)	Average Size (nm)	TEM Images
5	PEDOT/PSS: Water (1:30) PEDOT-Positive Charge (Dye with 1%PTA in 1 min.)	PEDOT/PSS	570	70.71	570	1.03 1.03 1.00 1.00
6	PEDOT/PSS: PVA 10% (Dye with 1%PTA in 0.5 min)	PEDOT/PSS	25.72	5.22	25.72	22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25
7	AgNPs 0.3230%: PEDOT/PSS 1.2574%: PTA 1% (water based)	AgNPs & PEDOT/PSS	21.01	8.02	21.01	лан ла по ла ла ла ла ла ла ла ла ла ла ла ла ла ла л
8	PVA 1.5%: AgNPs 0.625825%: PEDOT/PSS 1.2574%: PTA 1%	AgNPs & PVA	21.58	7.05	21.58	E C C C C C C C C C C C C C C C C C C C

The average particle size of AgNPs, in DI water, from items number 1 to 4 of Table 7 is 18.6519 nm while the average sizes of PEDOT/PSS both in water and PVA are 25.7180, item number 5, and 570 nm, item number 6. It can confirm that average particle sizes of AgNPs in this work are smaller than that of PEDOT/PSS. The images of items number 7 and 8 of Table 7 present the dispersion of AgNPs: PEDOT/PSS in water base and AgNPs: PEDOT/PSS in PVA.

5.1.1 SEM Measurement

5.1.1.1 The results of randomized fibers

The SEM images of randomized fiber samples were illustrated in Appendix A (1) and the SemAfore, software application, was used to measure the fiber diameters as shown in Table 8. The fiber diameters are varied from 0.1140 to 0.2980 μ m range. The average diameters of each type of mixed solutions are smaller when increasing the applied voltage such as from 12.5 kV to 22.5 kV. For instance, the average fiber diameters of 10% PVA decrease from 0.1860 μ m, 0.1700 μ m, 0.1640 μ m, 0.1560 μ m, and 0.1440 μ m while the applied voltages increase from 12.5 kV, 15.0 kV, 17.5 kV, 20.5kV, and 22.5kV as shown in Table 8, items number from 1 to 5 respectively. Meanwhile, the thickness of fiber sheets is measured by using SemAfore. The average thickness of randomized fiber sheets, cross section images, is 6.69 μ m as illustrated in more details in Table 9.

Table 8 Summarizes the diameters of randomized fibers of different mixed solutions and applied voltages.

	Randomized Fibers			Fiber Diameter (µm)		AgNPs Cluster	
						(µm)	
Items	Material Concentration Ratios	Collection	Applied	Average	Standard	Average	Length
	(w/v)	Times	Voltages	Diameter	Deviation	Widths	
		(min)	(kV)				
1	PVA 10%	5	22.5	0.144	0.0114	N/A	N/A
2	PVA 10%	5	20	0.156	0.0134	N/A	N/A
3	PVA 10%	5	17.5	0.164	0.0241	N/A	N/A
4	PVA 10%	5	15	0.17	0.0122	N/A	N/A
5	PVA 10%	5	12.5	0.186	0.0152	N/A	N/A
6	PVA 10%: PEDOT 0.052%	5	22.5	0.118	0.0217	N/A	N/A
7	PVA 10%: PEDOT 0.052%	5	20	0.122	0.0217	N/A	N/A

	Randomized Fibe	ers		Fiber Diameter (µm)		AgNPs Cluster	
						(μ	m)
Items	Material Concentration Ratios	Collection	Applied	Average	Standard	Average	Length
	(w/v)	Times	Voltages	Diameter	Deviation	Widths	
		(min)	(kV)				
8	PVA 10%: PEDOT 0.052%	5	17.5	0.132	0.0192	N/A	N/A
9	PVA 10%: PEDOT 0.052%	5	15	0.138	0.0164	N/A	N/A
10	PVA 10%: PEDOT 0.052%	5	12.5	0.146	0.023	N/A	N/A
11	PVA 10%: PEDOT 0.084%	5	22.5	0.134	0.0055	N/A	N/A
12	PVA 10%: PEDOT 0.084%	5	20	0.14	0.0141	N/A	N/A
13	PVA 10%: PEDOT 0.084%	5	17.5	0.152	0.0148	N/A	N/A
14	PVA 10%: PEDOT 0.084%	5	15	0.164	0.0134	N/A	N/A
15	PVA 10%: PEDOT 0.084%	5	12.5	0.168	0.0084	N/A	N/A
16	PVA 10%: PEDOT 0.1%	5	22.5	0.114	0.0207	N/A	N/A
17	PVA 10%: PEDOT 0.1%	5	20	0.12	0.02	N/A	N/A
18	PVA 10%: PEDOT 0.1%	5	17.5	0.126	0.0241	N/A	N/A
19	PVA 10%: PEDOT 0.1%	5	15	0.134	0.0321	N/A	N/A
20	PVA 10%: PEDOT 0.1%	5	12.5	0.142	0.0303	N/A	N/A
21	PVA 10%: AgNPs 0.25%	5	22.5	0.144	0.0297	1.5	2.45
22	PVA 10%: AgNPs 0.25%	5	20	0.158	0.0148	0.67	1.56
23	PVA 10%: AgNPs 0.25%	5	17.5	0.166	0.0089	0.57	1.28
24	PVA 10%: AgNPs 0.25%	5	15	0.182	0.0217	0.7367	1.84
25	PVA 10%: AgNPs 0.25%	5	12.5	0.194	0.0241	0.67	1.26
26	PVA10%: AgNPs 0.5%	5	22.5	0.12	0.0283	0.7733	2.78
27	PVA10%: AgNPs 0.5%	5	20	0.124	0.0397	0.9033	1.95
28	PVA10%: AgNPs 0.5%	5	17.5	0.128	0.0303	0.7633	2.54
29	PVA10%: AgNPs 0.5%	5	15	0.138	0.0192	0.4067	1.01
30	PVA10%: AgNPs 0.5%	5	12.5	0.162	0.0084	0.4933	1.28
31	PVA10%: AgNPs 0.75%	5	22.5	0.114	0.0297	0.5733	1.11
32	PVA10%: AgNPs 0.75%	5	20	0.118	0.0228	0.49	1.34

Randomized Fiber		ers		Fiber Diameter (µm)		AgNPs Cluster	
						(μ	m)
Items	Material Concentration Ratios	Collection	Applied	Average	Standard	Average	Length
	(w/v)	Times	Voltages	Diameter	Deviation	Widths	
		(min)	(kV)				
33	PVA10%: AgNPs 0.75%	5	17.5	0.122	0.0327	0.82	1.42
34	PVA10%: AgNPs 0.75%	5	15	0.128	0.013	1.5767	1.83
35	PVA10%: AgNPs 0.75%	5	12.5	0.138	0.0192	1.07	1.73
36	PVA10%: AgNPs 0.25%:	5	22.5	0.172	0.0327	0.39	0.88
	PEDOT/PSS 0.084%						
37	PVA10%: AgNPs 0.25%:	5	20	0.202	0.0259	0.5133	1.09
	PEDOT/PSS 0.084%						
38	PVA10%: AgNPs 0.25%:	5	17.5	0.228	0.037	0.6933	1.67
	PEDOT/PSS 0.084%						
39	PVA10%: AgNPs 0.25%:	5	15	0.24	0.01	0.6567	1.23
	PEDOT/PSS 0.084%						
40	PVA10%: AgNPs 0.25%:	5	12.5	0.298	0.0228	0.6233	1.42
	PEDOT/PSS 0.084%						
41	PVA10%: AgNPs 0.5%:	5	22.5	0.168	0.0164	0.7033	1.37
	PEDOT/PSS 0.084%						
42	PVA10%: AgNPs 0.5%:	5	20	0.172	0.013	0.8033	1.18
	PEDOT/PSS 0.084%						
43	PVA10%: AgNPs 0.5%:	5	17.5	0.18	0.0158	0.6567	1.51
	PEDOT/PSS 0.084%						
44	PVA10%: AgNPs 0.5%:	5	15	0.188	0.0239	1.4567	1.68
	PEDOT/PSS 0.084%						
45	PVA10%: AgNPs 0.5%:	5	12.5	0.208	0.0084	0.5	1.83
	PEDOT/PSS 0.084%						
46	PVA10%: AgNPs 0.75%:	5	22.5	0.168	0.0228	0.94	1.55
	PEDOT/PSS 0.084%						
47	PVA10%: AgNPs 0.75%:	5	20	0.178	0.0148	0.9667	1.87
	PEDOT/PSS 0.084%						

Randomized Fibers				Fiber Diameter (µm)		AgNPs Cluster	
						(µ	m)
Items	Material Concentration Ratios	Collection	Applied	Average	Standard	Average	Length
	(w/v)	Times	Voltages	Diameter	Deviation	Widths	
		(min)	(kV)				
48	PVA10%: AgNPs 0.75%:	5	17.5	0.186	0.0167	0.3833	1.05
	PEDOT/PSS 0.084%						
49	PVA10%: AgNPs 0.75%:	5	15	0.21	0.0141	0.6033	1.3
	PEDOT/PSS 0.084%						
50	PVA10%: AgNPs 0.75%:	5	12.5	0.2158	0.0086	0.9933	2.28
	PEDOT/PSS 0.084%						

Table 9 Summarizes the fiber thickness of randomized single fiber sheet of different mixed solutions and applied voltages

Items	Material	Applied	Average	STDEV	SEM Images
	Concentration	Voltages	Thickness		
	Ratios (w/v)	(kV)	(µm)		
1	PVA10%: PEDOT/PSS 0.084%	17.5	9.38	0.8575	15kU X3,500 5µm 000000
2	PVA10%: PEDOT/PSS 0.084%	20	6.02	0.4307	60 5.7 659 5.7 6.3 5.8 6.4 5.0 15k V. X.3. 50.0 5μm 9.00000

Items	Material Concentration Ratios (w/v)	Applied Voltages (kV)	Average Thickness (μm)	STDEV	SEM Images
3	PVA10%: PEDOT/PSS 0.084%	22.5	4.10	0.3153	38 373 432 413 419 488 439 434 434 419 38 378 432 413 419 488 439 434 434 419 15kU X3,500 54m 000000
4	PVA10%: AgNPs0.25% (#1)	17.5	6.01	0.7897	
5	PVA10%: AgNPs0.25% (#2)	20	4.18	0.4712	15kU X3,500 <u>5µm</u> вавара
6	PVA10%: AgNPs 0.25%	22.5	9.87	1.7460	13 13 14 14 15 15 15 15 15 15 15 15 15 15

Items	Material	Applied	Average	STDEV	SEM Images
	Concentration	Voltages	Thickness		
	Ratios (w/v)	(kV)	(µm)		
7	PVA10%: AgNPs0.25%: PEDOT/PSS 0.084%(#2)	12.5	4.80	0.6266	5.6 40 4.17 4.64 4.57 4.7 610 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
8	PVA10%: AgNPs0.25%: PEDOT/PSS 0.084%	15	3.86	1.7816	ла 2.4 2.8 2.0 1.5kU X3.500 5 м т. 8888800
9	PVA10%: AgNPs0.25%: PEDOT/PSS 0.084%	22.5	2.70	0.6844	138 2.5 2.51 3.10 2.51 2.51 3.5 1.73 2.61 1.73 2.55 2.51 3.10 2.51 2.51 3.55 1.73 2.61 1.73 1.5kU X3.588 5Hm 8888988

Moreover, the randomized fiber elements are investigated by EDS technique confirming the element of mixed solution on the aluminum foil substrates. AgNPs is denoted by the following images and is recorded by EDS as shown in Table 10.

Table 10 Element of randomized fibers of 10% PVA: 0.25% AgNPs, at 12.5 kV, is analyzed by using the EDS mode, under SEM measurement.

5.1.1.2 The results of aligned single fibers

The SEM images of aligned single fiber samples were illustrated in Appendix B (1) and the SemAfore, software application, was used to measure the fiber diameters as shown in Table 11. The fiber diameters are varied from 0.1520 to 0.33 μ m range. The average diameters of each type of mixed solutions are smaller when increasing the applied voltage such as from 12.5 kV to 17.5 kV. For instance, the average fiber diameter of 10% PVA decreases from $0.2600 \ \mu m$, $0.2040 \ \mu m$, and $0.1820 \ \mu m$ while the applied voltages increase from 12.5 kV, 15.0 kV, and 17.5 kV as shown in Table 11, items number from 1 to 3 respectively.

Table 11 Summarizes the diameters of aligned single fibers of different mixed solutions and applied voltages.

Aligned Single Fibers				Fiber Diameter (µm)		AgNPs Cluster	
					(µm)		
Items	Material Concentration	Collection	Applied	Average	Standard	Average	Length
	Ratios (w/v)	Times	Voltages	Diameter	Deviation	Widths	
		(min)	(kV)				
1	PVA 10%	20	17.5	0.182	0.0045	N/A	N/A
2	PVA 10%	20	15	0.204	0.0279	N/A	N/A
3	PVA 10%	20	12.5	0.26	0.043	N/A	N/A
4	PVA 10%: PEDOT 0.052%	20	17.5	0.17	0.052	N/A	N/A
5	PVA 10%: PEDOT 0.052%	20	15	0.23	0.0548	N/A	N/A
6	PVA 10%: PEDOT 0.052%	20	12.5	0.33	0.086	N/A	N/A
7	PVA 10%: PEDOT 0.084%	20	17.5	0.156	0.0182	N/A	N/A
8	PVA 10%: PEDOT 0.084%	20	15	0.168	0.0311	N/A	N/A
9	PVA 10%: PEDOT 0.084%	20	12.5	0.172	0.0084	N/A	N/A
10	PVA 10%: PEDOT 0.1%	20	17.5	0.194	0.0134	N/A	N/A
11	PVA 10%: PEDOT 0.1%	20	15	0.268	0.0249	N/A	N/A
12	PVA 10%: PEDOT 0.1%	20	12.5	0.27	0.0255	N/A	N/A
13	PVA 10%: AgNPs 0.25%	20	17.5	0.178	0.0356	N/A	N/A
14	PVA 10%: AgNPs 0.25%	20	15	0.188	0.013	N/A	N/A
15	PVA 10%: AgNPs 0.25%	20	12.5	0.21	0.0158	N/A	N/A
16	PVA10%: AgNPs 0.5%	20	17.5	0.248	0.061	N/A	N/A
17	PVA10%: AgNPs 0.5%	20	15	0.258	0.013	N/A	N/A
18	PVA10%: AgNPs 0.5%	20	12.5	0.272	0.0421	N/A	N/A
19	PVA10%: AgNPs 0.75%	20	17.5	0.152	0.0295	N/A	N/A

Aligned Single Fibers					Fiber Diameter (µm)		AgNPs Cluster	
						(µm)		
Items	Material Concentration	Collection	Applied	Average	Standard	Average	Length	
	Ratios (w/v)	Times	Voltages	Diameter	Deviation	Widths		
		(min)	(kV)					
20	PVA10%: AgNPs 0.75%	20	15	0.218	0.0084	N/A	N/A	
21	PVA10%: AgNPs 0.75%	20	12.5	0.224	0.0089	N/A	N/A	
22	PVA10%: AgNPs 0.25%:	45	17.5	0.158	0.0045	N/A	N/A	
	PEDOT/PSS 0.084%							
23	PVA10%: AgNPs 0.25%:	30	17.5	0.188	0.0192	N/A	N/A	
	PEDOT/PSS 0.084%							

5.1.1.3 The results of aligned fiber mat

The SEM images of aligned fiber mat samples were illustrated in Appendix B (3) and the SemAfore, software application, was used to measure the fiber diameters as shown in Table 12. The fiber diameters are varied from 0.1020 to 0.218 μ m range. The average diameters of each type of mixed solutions are smaller when increasing the applied voltages such as from 12.5 kV to 17.5 kV. For instance, the average fiber diameter of 10% PVA decreases from 0.1320 μ m, 0.1200 μ m, and 0.1060 μ m while the applied voltages increase from 12.5 kV, 15.0 kV, and 17.5 kV as shown in Table 12, items number from 1 to 3 respectively.

Table 12 Summarizes the diameters of aligned fiber mat of different mixed solutions and applied voltages.

Aligned Fiber Mat					Fiber Diameter (µm)		AgNPs Cluster	
						(µ	m)	
Items	Material Concentration Ratios	Collection	Applied	Average	Standard	Average	Length	
	(w/v)	Times	Voltages	Diameter	Deviation	Widths		
		(min)	(kV)					
1	PVA 10%	20	17.5	0.106	0.0114	N/A	N/A	
2	PVA 10%	20	15	0.12	0.0245	N/A	N/A	
3	PVA 10%	20	12.5	0.132	0.0084	N/A	N/A	

Aligned Fiber Mat				Fiber Diameter (µm)		AgNPs Cluster	
						(µ	m)
Items	Material Concentration Ratios	Collection	Applied	Average	Standard	Average	Length
	(w/v)	Times	Voltages	Diameter	Deviation	Widths	
		(min)	(kV)				
4	PVA 10%: PEDOT 0.052%	20	17.5	0.102	0.013	N/A	N/A
5	PVA 10%: PEDOT 0.052%	20	15	0.108	0.0084	N/A	N/A
6	PVA 10%: PEDOT 0.052%	20	12.5	0.116	0.0055	N/A	N/A
7	PVA 10%: PEDOT 0.084%	20	17.5	0.102	0.013	N/A	N/A
8	PVA 10%: PEDOT 0.084%	20	15	0.112	0.013	N/A	N/A
9	PVA 10%: PEDOT 0.084%	20	12.5	0.122	0.0228	N/A	N/A
10	PVA 10%: PEDOT 0.1%	20	17.5	0.114	0.0114	N/A	N/A
11	PVA 10%: PEDOT 0.1%	20	15	0.12	0.0071	N/A	N/A
12	PVA 10%: PEDOT 0.1%	20	12.5	0.126	0.0055	N/A	N/A
13	PVA10%: AgNPs 0.25%	20	17.5	0.12	0.0187	0.5233	1.04
14	PVA10%: AgNPs 0.25%	20	15	0.13	0.0224	0.4433	1.05
15	PVA10%: AgNPs 0.25%	20	12.5	0.14	0.0412	0.3433	1.02
16	PVA10%: AgNPs 0.5%	20	17.5	0.12	0.0158	0.36	0.82
17	PVA10%: AgNPs 0.5%	20	15	0.13	0.0255	0.81	2.24
18	PVA10%: AgNPs 0.5%	20	12.5	0.142	0.0192	0.68	1.98
19	PVA10%: AgNPs 0.75%	20	17.5	0.136	0.0358	0.6967	1.2
20	PVA10%: AgNPs 0.75%	20	15	0.148	0.011	0.7467	2.36
21	PVA10%: AgNPs 0.75%	20	12.5	0.158	0.0311	0.4433	1.09
22	PVA10%: AgNPs 0.25%:	20	17.5	0.136	0.0297	0.64	1.2
	PEDOT/PSS 0.084%						
23	PVA10%: AgNPs 0.25%:	20	15	0.156	0.0114	0.4333	1.13
	PEDOT/PSS 0.084%						
24	PVA10%: AgNPs 0.25%:	20	12.5	0.192	0.0239	0.5067	1.19
	PEDOT/PSS 0.084%						
25	PVA10%: AgNPs 0.5%:	20	17.5	0.136	0.0358	0.7267	1.33
	PEDOT/PSS 0.084%						

Aligned Fiber Mat				Fiber Diameter (µm)		AgNPs Cluster	
						(µ	m)
Items	Material Concentration Ratios	Collection	Applied	Average	Standard	Average	Length
	(w/v)	Times	Voltages	Diameter	Deviation	Widths	
		(min)	(kV)				
26	PVA10%: AgNPs 0.5%:	20	15	0.144	0.0261	0.6733	1.99
	PEDOT/PSS 0.084%						
27	PVA10%: AgNPs 0.5%:	20	12.5	0.218	0.0228	0.8267	1.93
	PEDOT/PSS 0.084%						
28	PVA10%: AgNPs 0.75%:	20	17.5	0.136	0.0207	0.4167	0.69
	PEDOT/PSS 0.084%						
29	PVA10%: AgNPs 0.75%:	20	15	0.152	0.0148	0.7633	1.72
	PEDOT/PSS 0.084%						
30	PVA10%: AgNPs 0.75%:	20	12.5	0.176	0.0313	0.4833	1.61
	PEDOT/PSS 0.084%						
31	PVA10%: AgNPs 0.25%:	30	17.5	0.13	0.0274	0.7267	2.67
	PEDOT/PSS 0.084%						
32	PVA10%: AgNPs 0.25%:	30	15	0.136	0.0428	0.3967	2.9
	PEDOT/PSS 0.084%						
33	PVA10%: AgNPs 0.25%:	30	12.5	0.14	0.0122	0.5267	1.36
	PEDOT/PSS 0.084%						
34	PVA10%: AgNPs 0.25%:	45	17.5	0.112	0.0239	0.5333	1.08
	PEDOT/PSS 0.084%						
35	PVA10%: AgNPs 0.25%:	45	15	0.114	0.0114	1.1667	1.74
	PEDOT/PSS 0.084%						
36	PVA10%: AgNPs 0.25%:	45	12.5	0.128	0.0259	0.6267	1.55
	PEDOT/PSS 0.084%						

The TEM images of the randomized fiber, aligned single fiber, and aligned fiber mat were illustrated in Appendix A (2), B (2), and B (4) respectively. The difference of fiber patterns depends on fiber generation techniques. Thus, in case of the randomized fibers, the fabricated fibers show their images, by TEM, as a disordered direction on the sample grids which are confirmed by the SEM images. On the other hand, the fabricated fibers produced and collected on the rotation drum are mostly aligned in the same direction. Therefore, the images of aligned single fibers and aligned fiber mat technique are different from those of randomized fibers. The aligned single fibers are rarely found on the sample substrate while many aligned fibers are formed as aligned fiber mats. Furthermore, the electrospun fibers are well-alignment in a large quantity at the low applied voltages between 12.5 kV and 17.5 kV.

The EDS mode, TEM system, is used to analyze the elements of fiber materials as shown in Table 13.

Table 13 Summarizes the element analysis of randomized fibers by using the EDS mode under TEM system.

The three dimension images of randomized and aligned fibers, by AFM measurement, were presented in Table 14.

Table 14 Summarizes the 3 dimension analysis of randomized and aligned fibers with different conditions by using the AFM.

Items	Material Concentration	Applied Voltages	AFM images (3D)	AFM images (Top Views)
	Randomized Fibe	ers		
1	PVA 10%	12.5	The prestive state of the state	(m) (m) (m) (m) (m) (m) (m) (m)
2	PVA 10%: PEDOT 0.084%	12.5	Image: second	Image: space of the space o

Items	Material	Applied	AEM imagas (2D)	AEM images (Ten Views)
	Concentration	Voltages	Arim images (5D)	AFWI images (Top views)
	Ratios (w/v)	(kV)		
3	PVA10%: AgNPs 1%: PEDOT/PSS 0.084%	12.5	Image: Wide State S	0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 (m) 204754 5 5
	Aligned Fibers	5		
4	PVA10%: AgNPs 0.25%: PEDOT/PSS 0.084%	12.5	Image: Construction of the co	
5	PVA10%: AgNPs 0.25%: PEDOT/PSS 0.084%	15	Here: production is not shown in the shown is not sho	

Items	Material Concentration Ratios (w/v)	Applied Voltages (kV)	AFM images (3D)	AFM images (Top Views)
6	PVA10%: AgNPs 0.25%: PEDOT/PSS 0.084%	17.5	(uu) gu (m) gu (m	
7	PVA10%: AgNPs 0.5%: PEDOT/PSS 0.084%	12.5	Performance of the second seco	
8	PVA10%: AgNPs 0.75%: PEDOT/PSS 0.084%	12.5	Fit : (p+spDL).qd (m) The : (p+spDL).qd (m) Con 2 : Con 2 :	0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1

XRD is used to characterize the fiber morphology to understand more about the material structure of AgNPs such as lattice planes as shown in Table 15. The AgNPs peaks on the graph images of each condition are compared to the standard database to see the plane of lattice in Appendix F.

Table 15 Summarizes the fiber structure analysis of randomized and aligned fibers with different conditions by using the XRD.

FT-IR is used to characterize the fiber morphology to understand more about the polymer structures of PEDOT/PSS as shown in Table 16.

Table 16 Characterizes PEDOT/PSS to present the functional group by using the KBr disk, FT-IR.

5.2 Electrical Conductivity Property

5.2.1 Type of Major Carriers and Its Mobility

The electrical conductivity property arises when loading more concentration of PEDOT/PSS and AgNPs to form the ultra-fine nanocomposite fibers. Usually, PEDOT is a conductive polymer which carries positive charges and AgNPs carries positive charges as well. The charges themselves also have conductivity property of ultra-fine nanocomposite fibers. The conductivity of PEDOT/PSS can be described as a conjugated system which is based on connected p-orbitals with delocalized electrons in the ultra-fine fibers with alternating single and multiple bonds. In this work, the charge carrier mobility is increased when increasing the concentration of PEDOT/PSS and AgNPs.

5.2.2 The 4-probe Conductivity of Randomized Fibers

The 4-probe conductivity of randomized fibers is presented in terms of resistivity. So, conductivity trend is described as shown in Table 17 and Figure 9 to 12.

Randomized Fibers

Applied Voltage (kV)	Fiber Thickness (µm)	Fiber Thickness (cm)
22.5	9.7	0.00097
20	8.62	0.000862
17.5	7.54	0.000754
15	6.47	0.000647
12.5	5.39	0.000539

The fiber sheet thickness (D) = $6.69 \mu m (0.000669 cm)$
Tał	ole	17	Resistivity	measurement	result	of	randomized	fibers	by	using	the	4-probe
measuremen	nt (in 5	minutes' ti	me of fiber col	lection)						

No.	Materials	Applied	Average	Sheet	Bulk	Conductivity
		Voltages	Diameter (µm)	Resistivity	Resistivity	(Siemens/cm)
		(kV)		(Ω/sq)	(ohm -cm)	
The a	pplied current = 10 nA					
1	PVA10%	22.5	0.144	13.20	0.012804	78.10
2	PVA10%	20	0.156	16.40	0.014137	70.74
3	PVA10%	17.5	0.164	12.10	0.009123	109.61
4	PVA10%	15	0.17	26.40	0.017081	58.55
5	PVA10%	12.5	0.186	308.00	0.166012	6.02
6	PVA10%: PEDOT/PSS	22.5	0.118	6.38	0.006189	161.59
	0.052%					
7	PVA10%: PEDOT/PSS	20	0.122	9.62	0.008292	120.59
	0.052%					
8	PVA10%: PEDOT/PSS	17.5	0.132	9.63	0.007261	137.72
	0.052%					
9	PVA10%: PEDOT/PSS	15	0.138	0.42	0.000274	3653.89
	0.052%					
10	PVA10%: PEDOT/PSS	12.5	0.146	109.00	0.058751	17.02
	0.052%					
11	PVA10%: PEDOT/PSS	22.5	0.134	0.53	0.000518	1930.58
	0.084%					
12	PVA10%: PEDOT/PSS	20	0.14	1.08	0.000931	1074.16
	0.084%					
13	PVA10%: PEDOT/PSS	17.5	0.152	1.09	0.000822	1216.75
	0.084%					
14	PVA10%: PEDOT/PSS	15	0.164	13.10	0.008476	117.98
	0.084%					

No.	Materials	Applied	Average	Sheet	Bulk	Conductivity
		Voltages	Diameter (µm)	Resistivity	Resistivity	(Siemens/cm)
		(kV)		(Ω/sq)	(ohm -cm)	
15	PVA10%: PEDOT/PSS	12.5	0.168	6.73	0.003627	275.67
	0.084%					
16	PVA10%: PEDOT/PSS	22.5	0.114	3.57	0.003463	288.78
	0.1%					
17	PVA10%: PEDOT/PSS	20	0.12	0.34	0.000290	3442.41
	0.1%					
18	PVA10%: PEDOT/PSS	17.5	0.126	4.40	0.003318	301.42
	0.1%					
19	PVA10%: PEDOT/PSS	15	0.134	3.71	0.002400	416.60
	0.1%					
20	PVA10%: PEDOT/PSS	12.5	0.142	6.28	0.003385	295.43
	0.1%					
21	PVA10%: AgNPs 0.25%	22.5	0.144	18.80	0.018236	54.84
22	PVA10%: AgNPs 0.25%	20	0.158	4.59	0.003957	252.74
23	PVA10%: AgNPs 0.25%	17.5	0.166	1.27	0.000958	1044.30
24	PVA10%: AgNPs 0.25%	15	0.182	10.10	0.006535	153.03
25	PVA10%: AgNPs 0.25%	12.5	0.194	26.40	0.014230	70.28
26	PVA10%: AgNPs 0.5%	22.5	0.12	0.32	0.000314	3181.88
27	PVA10%: AgNPs 0.5%	20	0.124	19.80	0.017068	58.59
28	PVA10%: AgNPs 0.5%	17.5	0.128	21.10	0.015909	62.86
29	PVA10%: AgNPs 0.5%	15	0.138	0.13	0.000081	12364.76
30	PVA10%: AgNPs 0.5%	12.5	0.162	0.20	0.000107	9370.14
31	PVA10%: AgNPs 0.75%	22.5	0.114	41.70	0.040449	24.72
32	PVA10%: AgNPs 0.75%	20	0.118	14.90	0.012844	77.86
33	PVA10%: AgNPs 0.75%	17.5	0.122	20.90	0.015759	63.46
34	PVA10%: AgNPs 0.75%	15	0.128	33.20	0.021480	46.55
35	PVA10%: AgNPs 0.75%	12.5	0.138	0.15	0.000082	12205.84

No.	Materials	Applied	Average	Sheet	Bulk	Conductivity
		Voltages	Diameter (µm)	Resistivity	Resistivity	(Siemens/cm)
		(kV)		(Ω/sq)	(ohm -cm)	
The a	pplied current = 20 nA					
36	PVA10%: AgNPs 0.25%:	22.5	0.172	0.34	0.000327	3059.13
	PEDOT/PSS 0.084%					
37	PVA10%: AgNPs 0.25%:	20	0.202	0.37	0.000321	3118.53
	PEDOT/PSS 0.084%					
38	PVA10%: AgNPs 0.25%:	17.5	0.228	0.34	0.000253	3947.20
	PEDOT/PSS 0.084%					
39	PVA10%: AgNPs 0.25%:	15	0.24	0.35	0.000224	4467.04
	PEDOT/PSS 0.084%					
40	PVA10%: AgNPs 0.25%:	12.5	0.298	0.36	0.000196	5096.94
	PEDOT/PSS 0.084%					
41	PVA10%: AgNPs 0.5%:	22.5	0.168	0.30	0.000294	3402.40
	PEDOT/PSS 0.084%					
42	PVA10%: AgNPs 0.5%:	20	0.172	0.62	0.000537	1862.11
	PEDOT/PSS 0.084%					
43	PVA10%: AgNPs 0.5%:	17.5	0.18	0.31	0.000232	4306.04
	PEDOT/PSS 0.084%					
44	PVA10%: AgNPs 0.5%:	15	0.188	0.33	0.000214	4683.62
	PEDOT/PSS 0.084%					
45	PVA10%: AgNPs 0.5%:	12.5	0.208	0.34	0.000182	5505.30
	PEDOT/PSS 0.084%					
46	PVA10%: AgNPs 0.75%:	22.5	0.168	0.08	0.000077	13066.26
	PEDOT/PSS 0.084%					
47	PVA10%: AgNPs 0.75%:	20	0.178	0.11	0.000094	10643.05
	PEDOT/PSS 0.084%					
48	PVA10%: AgNPs 0.75%:	17.5	0.186	0.11	0.000081	12280.18
	PEDOT/PSS 0.084%					
49	PVA10%: AgNPs 0.75%:	15	0.21	0.16	0.000100	9971.58
	PEDOT/PSS 0.084%					
50	PVA10%: AgNPs 0.75%:	12.5	0.2158	0.28	0.000149	6697.79
	PEDOT/PSS 0.084%					

Figure 9 Average resistivity (Ω cm) of 10% PVA fibers blended with PEDOT/PSS concentrations of 0.052, 0.084, and 0.1% (each concentration was fabricated at 12.5, 15, 17.5, 20 and 22.5 K in 5 min.) by using the 4-probe measurement.

Figure 10 Average resistivity (Ω cm) of 10% PVA fibers blended with AgNPs concentrations of 0.25, 0.5, and 0.75% (each concentration was fabricated at 12.5, 15, 17.5, 20 and 22.5 kV in 5 min.) by using the 4-probe measurement.

Figure 11 Average resistivity (Ω cm) of 0.084% PEDOT/PSS and 10% PVA fibers blended with AgNPs concentrations of 0.25, 0.5, and 0.75% (each concentration was fabricated at 12.5, 15, 17.5, 20, and 22.5 kV in 5 min.) by using the 4-probe measurement.

5.2.3 The 2-probe Conductivity of Aligned Fibers

The 2-probe conductivity of aligned fibers is presented in terms of resistivity. So, the conductivity trend of aligned single fibers is described as shown in Table 18 and Figure 13 to 15 while the conductivity trend of aligned fiber mat is described as shown in Table 19 and Figure 16 to 20. It means that the resistivity is decreased when current is increased.

Aligned Single Fibers

Table 18 Resistivity measurement result of aligned single fibers by using the 2-probe measurement (item no.1 to 21: under 20 minutes of fiber collecting time, item no.22: under 45 minutes of fiber collecting time, and item no.23: under 30 minutes of fiber collecting time)

Fiber Length (1) = $0.6 \text{ cm} (60000 \ \mu\text{m})$

No.	Materials	Applied	Average	Resistance	Resistivity	Conductivity
		Voltages	Diameter	(MΩ):	(Ohm.cm)	(Siemens/cm)
		(kV) in 20	(µm)	abs $R_1 =$		
		min.		$(V*R_0)/(I*R_0-$		
				V)		
1	PVA 10%	17.5	0.182	2361.2904	0.102384	9.77
2	PVA 10%	15	0.204	2228.0031	0.121371	8.24
3	PVA 10%	12.5	0.26	1803.3754	0.159577	6.27
4	PVA 10%:	17.5	0.17	707.9786	0.026783	37.34
	PEDOT/PSS 0.052%					
5	PVA 10%:	15	0.23	1000.2138	0.069261	14.44
	PEDOT/PSS 0.052%					
6	PVA 10%:	12.5	0.33	1657.0357	0.236210	4.23
	PEDOT/PSS 0.052%					
7	PVA 10%:	17.5	0.156	664.7584	0.021176	47.22
	PEDOT/PSS 0.084%					
8	PVA 10%:	15	0.168	824.5442	0.030463	32.83
	PEDOT/PSS 0.084%					
9	PVA 10%:	12.5	0.172	1061.4299	0.041104	24.33
	PEDOT/PSS 0.084%					
10	PVA 10%:	17.5	0.194	428.7931	0.021125	47.34
	PEDOT/PSS 0.1%					
11	PVA 10%:	15	0.268	512.2734	0.048163	20.76
	PEDOT/PSS 0.1%					
12	PVA 10%:	12.5	0.27	649.6600	0.061994	16.13
	PEDOT/PSS 0.1%					
13	PVA 10%: AgNPs	17.5	0.178	848.1452	0.035176	28.43
	0.25%					
14	PVA 10%: AgNPs	15	0.188	854.9982	0.039557	25.28
	0.25%					
15	PVA 10%: AgNPs	12.5	0.21	887.2247	0.051217	19.52
	0.25%					

No.	Materials	Applied	Average	Resistance	Resistivity	Conductivity
		Voltages	Diameter	(MΩ):	(Ohm.cm)	(Siemens/cm)
		(kV) in 20	(µm)	abs $R_1 =$		
		min.		$(V*R_0)/(I*R_0-$		
				V)		
16	PVA 10%: AgNPs	17.5	0.248	810.2673	0.065233	15.33
	0.5%					
17	PVA 10%: AgNPs	15	0.258	822.5981	0.071675	13.95
	0.5%					
18	PVA 10%: AgNPs	12.5	0.272	873.0309	0.084549	11.83
	0.5%					
19	PVA 10%: AgNPs	17.5	0.152	765.3350	0.023146	43.20
	0.75%					
20	PVA 10%: AgNPs	15	0.218	814.0245	0.050639	19.75
	0.75%					
21	PVA 10%: AgNPs	12.5	0.224	859.7234	0.056467	17.71
	0.75%					
22	PVA 10%: AgNPs	17.5, 45 min.	0.158	331.9741	0.010848	92.18
	0.25%: PEDOT/PSS					
	0.084%					
23	PVA 10%: AgNPs	17.5, 30 min.	0.188	442.4737	0.020471	48.85
	0.25%: PEDOT/PSS					
	0.084%					

Figure 12 Conductivity of 10% PVA fibers blended with PEDOT/PSS concentrations of 0.052, 0.084, and 0.1% at the various diameters (each concentration was fabricated at 12.5, 15, and 17.5 kV in 20 min.) by using the 2-probe measurements.

Figure 13 Conductivity of 10% PVA fibers blended with AgNPs concentrations of 0.25, 0.5, and 0.75% at the various diameters (each concentration was fabricated at 12.5, 15, and 17.5 kV in 20 min.) by using the 2-probe measurements.

Figure 14 Comparison of conductivity of 10% PVA fibers blended with 0.25% AgNPs, 10% PVA fibers blended with 0.084% PEDOT/PSS, and 10% PVA fibers blended with 0.084% PEDOT/PSS and 0.25% AgNPs at 17.5 kV, at the various diameters, (in 20, 30, and 45 min.) by using the 2-probe measurements.

Aligned Fiber Mat

Table 19 Resistivity measurement result of aligned fiber mat by using the 2-probe measurement (item no.1 to 30: under 20 minutes of fiber collecting time, item no.31 to 33: under 30 minutes of fiber collecting time, and item no.34 to 36: under 45 minutes of fiber collecting time)

Fiber Length (1) = $0.6 \text{ cm} (60000 \text{ } \mu\text{m})$

No.	Materials	Applied	Average	Resistance (MQ):	Resistivity	Conductivity
		Voltages	Diameter	abs $R_1 =$	(Ohm.cm)	(Siemens/cm)
		(kV) in 20	(µm)	$(V*R_0)/(I*R_0-V)$		
		min.				
1	PVA 10%	17.5	0.106	15439.9702	0.227089	4.40
2	PVA 10%	15	0.12	13081.9021	0.246588	4.06
3	PVA 10%	12.5	0.132	12910.4233	0.294460	3.40
4	PVA 10%: PEDOT/PSS 0.052%	17.5	0.102	10420.0946	0.141909	7.05
5	PVA 10%: PEDOT/PSS 0.052%	15	0.108	10636.7204	0.162403	6.16
6	PVA 10%: PEDOT/PSS 0.052%	12.5	0.116	11788.1059	0.207634	4.82
7	PVA 10%: PEDOT/PSS 0.084%	17.5	0.102	10377.3709	0.141327	7.08
8	PVA 10%: PEDOT/PSS 0.084%	15	0.112	10595.8637	0.173985	5.75
9	PVA 10%: PEDOT/PSS 0.084%	12.5	0.122	11439.5954	0.222879	4.49
10	PVA 10%: PEDOT/PSS 0.1%	17.5	0.114	9936.2982	0.169034	5.92
11	PVA 10%: PEDOT/PSS 0.1%	15	0.12	9964.0793	0.187818	5.32
12	PVA 10%: PEDOT/PSS 0.1%	12.5	0.126	9975.7801	0.207313	4.82
13	PVA 10%: AgNPs 0.25%	17.5	0.12	5128.5315	0.096671	10.34
14	PVA 10%: AgNPs 0.25%	15	0.13	6849.3383	0.151521	6.60
15	PVA 10%: AgNPs 0.25%	12.5	0.14	9667.9062	0.248043	4.03
16	PVA 10%: AgNPs 0.5%	17.5	0.12	4984.8048	0.093961	10.64

No.	Materials	Applied	Average	Resistance (MQ):	Resistivity	Conductivity
		Voltages	Diameter	abs $R_1 =$	(Ohm.cm)	(Siemens/cm)
		(kV) in 20	(µm)	$(V*R_0)/(I*R_0-V)$		
		min.				
17	PVA 10%: AgNPs	15	0.13	6428.8499	0.142219	7.03
	0.5%					
18	PVA 10%: AgNPs	12.5	0.142	9165.3431	0.241916	4.13
	0.5%					
19	PVA 10%: AgNPs	17.5	0.136	4588.0097	0.111081	9.00
	0.75%					
20	PVA 10%: AgNPs	15	0.148	5727.3694	0.164217	6.09
	0.75%					
21	PVA 10%: AgNPs	12.5	0.158	8397.9561	0.274427	3.64
	0.75%					
22	PVA 10%: AgNPs	17.5	0.136	6105.1072	0.147812	6.77
	0.25%: PEDOT/PSS					
	0.084%					
23	PVA 10%: AgNPs	15	0.156	5006.6356	0.159490	6.27
	0.25%: PEDOT/PSS					
	0.084%					
24	PVA 10%: AgNPs	12.5	0.192	9212.6030	0.444553	2.25
	0.25%: PEDOT/PSS					
	0.084%					
25	PVA 10%: AgNPs	17.5	0.136	4840.5768	0.117196	8.53
	0.5%: PEDOT/PSS					
	0.084%					
26	PVA 10%: AgNPs	15	0.144	5969.6689	0.162037	6.17
	0.5%: PEDOT/PSS					
	0.084%					
27	PVA 10%: AgNPs	12.5	0.218	8278.3662	0.514987	1.94
	0.5%: PEDOT/PSS					
	0.084%					

No.	Materials	Applied	Average	Resistance (M Ω):	Resistivity	Conductivity
		Voltages	Diameter	abs $R_1 =$	(Ohm.cm)	(Siemens/cm)
		(kV) in 20	(µm)	$(V*R_0)/(I*R_0-V)$		
		min.				
28	PVA 10%: AgNPs	17.5	0.136	4453.1577	0.107816	9.28
	0.75%: PEDOT/PSS					
	0.084%					
29	PVA 10%: AgNPs	15	0.152	5598.0103	0.169301	5.91
	0.75%: PEDOT/PSS					
	0.084%					
30	PVA 10%: AgNPs	12.5	0.176	7791.8986	0.315942	3.17
	0.75%: PEDOT/PSS					
	0.084%					
31	PVA 10%: AgNPs	17.5, 30 min.	0.13	4973.1168	0.110016	9.09
	0.25%: PEDOT/PSS					
	0.084%					
32	PVA 10%: AgNPs	15.0, 30 min.	0.136	16845.1114	0.407840	2.45
	0.25%: PEDOT/PSS					
	0.084%					
33	PVA 10%: AgNPs	12.5, 30 min.	0.14	18787.4888	0.482018	2.07
	0.25%: PEDOT/PSS					
	0.084%					
34	PVA 10%: AgNPs	17.5, 45 min.	0.112	4489.4992	0.073718	13.57
	0.25%: PEDOT/PSS					
	0.084%					
35	PVA 10%: AgNPs	15.0, 45 min.	0.114	15566.0400	0.264805	3.78
	0.25%: PEDOT/PSS					
	0.084%					
36	PVA 10%: AgNPs	12.5, 45 min.	0.128	18148.9895	0.389234	2.57
	0.25%: PEDOT/PSS					
	0.084%					

Figure 15 Conductivity of 10% PVA fibers blended with PEDOT/PSS concentrations of 0.052, 0.084, and 0.1% at the various diameters (each concentration was fabricated at 12.5, 15, and 17.5 kV in 20 min.) by using the 2-probe measurements.

Figure 16 Conductivity of 10% PVA fibers blended with AgNPs concentrations of 0.25, 0.5, and 0.75% at the various diameters (each concentration was fabricated at 12.5, 15, and 17.5 kV in 20 min) by using the 2-probe measurement.

Figure 17 Conductivity of 10% PVA fibers blended with 0.084% PEDOT/PSS and AgNPs concentrations of 0.25, 0.5, and 0.75% at the various diameters (each concentration was fabricated at 12.5, 15, and 17.5 kV in 20 min.) by using the 2-probe measurement.

Figure 18 Conductivity of 10% PVA fibers blended with 0.084% PEDOT/PSS and 0.25% AgNPs at 12.5, 15, and 17.5 kV (in 20, 30 and 45 min) by using the 2-probe measurement.

CHAPTER VI

CONCLUSIONS AND FUTURE PROSPECTS

6.1 Conclusions

In the key points of this research, the ultra-fine electrospun nanocomposite fibers of polymer-conductive polymer-nanoparticle with the fiber diameters ranging 0.1 to 0.33 μ m have been successfully produced by varying concentrations and high voltages. The three different techniques such as fiber randomization, single fiber alignment, and fiber mat alignment are implemented to generate ultra-fine fibers in order to obtain the conductive property. The relationship between ultra-fine fiber diameters and conductivity of these fibers is investigated due to the effect of various diameter sizes and ultra-fine fiber density generated by different techniques and conditions. With the higher voltage application in the electrospinning process, the higher electrostatic force affects fiber jets and formed fibers collected from the collecting target with smaller fiber diameters and denser fibers. Therefore, the conductivity of nanocomposite ultra-fine fibers is increased while loading more concentration of PEDOT/PSS and AgNPs. Because the high surface area-to-volume ratios of silver nanoparticles (AgNPs) blended in conductive polymers (PEDOT/PSS) and polymers (PVA) benefit the higher conductive property of these products. Thus, the ultra-fine electrospun nanocomposite fibers of polymer-conductive polymer-nanoparticle will yield higher electrical conductivity when loading higher PEDOT/PSS and AgNPs concentrations to form ultra-fine fibers. Finally, the developed ultra-fine electrospun nanocomposite fibers have enhanced their electrical properties within acceptable economies of production because the cost of fiber production under the electrospinning process is very low.

With the concepts of conductivity measurement, the 4-probe is used to measure the conductivity of randomized fibers since they were considered to be anisotropic samples, whereas the 2-probe is used to measure the conductivity of aligned single fibers and aligned fiber mat. Therefore, the conductive results of 4-probe and 2-probe measurements cannot be compared directly in similar conditions because their measurement techniques are based on different patterns of fibers gathering on the sample surfaces. In this regard, the conductive results of the randomized fibers are not consistent, whereas the aligned single fibers and aligned fiber mat are more consistent. Therefore, the conductive results from the 4-probe measurement are investigated to prove that the randomized fibers just obtain the conductive property, but their

conductive value cannot be compared with the aligned single fibers and aligned fiber mat within the same conditions. From the measurement results using TEM, the distribution of AgNPS in the ultra-fine fibers show that most of the silver nanoparticles are not evenly spread along fiber lengths. Instead, they cluster around the fiber lengths. In this regard, it affects the conductive property of ultra-fine fibers. However, the range of conductivity is varied from 4.23 to 92.18 S/cm, under the aligned single fiber technique, and from 1.94 to 13.57 S/cm, under the aligned fiber mat technique. The highest conductivity obtained from this work is about 92.18 S/cm higher than that of 52.9 S/cm of PANI which was measured by Qiao-Zhen Yu et al. [18].

In this study, the new technique of fiber alignment has been found to generate aligned single fibers. This technique is similar to fiber mat alignment, but it is set on the clockwise high speed drum instead of the anticlockwise high speed drum in the electrospinning process. Usually, the anti-clockwise high speed drum is equipped as a target to collect many ultra-fine fibers under different applied voltages. This is due to the fact that the direction of the anti-clockwise high speed drum moves in the same direction of the fiber jets and therefore there is no force against the direction of the fiber jets, causing many fibers to gather on the drum surface. Thus, ultra-fine fibers resulted from the aligned fiber mat techniques are frequently found on the fiber collecting drum within a period of 1 to 5 minutes. However, the fibers are not well-aligned. If it takes longer up to 20 minutes, many fibers will be well-aligned. In contrast, the clockwise high speed drum, aligned single fiber technique, causes the aligned fibers to gather less on the rotating drum owing to the wind blown by the high speed drum moving against the jet direction, forcing many aligned fibers to gather on both sides of the drum. There are few aligned fibers fall onto the drum surface with a longer period of 20 minutes. Thus, the clockwise high speed drum technique is suitable for generating aligned single fibers. Apparently, with the pictures taken by TEM and SEM, the fibers from two fiber alignment techniques will be well-aligned if voltages between 12.5 and 17.5 kV are applied. If the spinning process for fiber alignment is applied with voltage lower than 12.5 kV or higher than 17.5 kV, the fibers will not be well-aligned.

The researcher has contributed substantially to the whole electrospinning process. As for the measurement part, the researcher has worked mostly on the 4- probe measurement and 2probe measurement while using SEM, TEM, XRD, AFM, and FT-IR in the measurement process.

6.2 Future Prospects

Electrospinning process is mostly applied to further research and development in this field of study since it can be used for generating fibers by incorporating various polymers. Ultrafine fibers were found to possess some unique characteristics such as a high surface area per unit mass, noticeable conductive and mechanical properties, a light weight coupled with a low production cost.

The presence of conductive polymers in the fields of nano-sensors, nano-electronics and nano-medicine are being continuously widened both in laboratory research and in industrial applications. Currently, the critical concern in the future development of conductive ultra-fine fibers applications is how to improve their electrical, optical and mechanical properties within acceptable economies of production.

At this stage, it is important to note some considerations that are hindering the progress of conductive ultra-fine fibers development. To begin with, the electrospinning process itself has some limitations especially regarding consistency of fiber diameters. Bead defect can also be problematic. Another is the current lack of recognition given to this important scientific field which in turn has resulted in insufficient research and development funding to seek out new materials for greater commercial applications.

The findings of this study will be useful for further research on electrical conductivity improvement and for further implementation in nano-electronic applications and nanosensors. The research on ultra-fine fibers blended with nanoparticles will be beneficial to further research in Thailand. Moreover, the cost of production will be reduced and beneficial to the economy. Finally, the fabrication technique and efficiency of nanocomposite will be improved and enhanced by using the new scientific method which can distribute silver nanoparticles along the length of ultra-fine fibers on a consistent rather than a clustered basis.

Last, but not least, improvements in the designs of electrospinning equipment and more sophisticated production processes need to be refined which ultimately lower manufacturing costs and enhance commercial applications. The latter is essential to intensify Research and Development on conductive ultra-fine fibers and progress here, in turn, is a handshake to its greater industrial utilization.

REFERENCES

- Chronakis, I.S., Grapenson, S, and Jakob, A. Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. <u>Polymer</u> 47 (2006): 1597–1603.
- [2] Saxena, V., and Malhotra, B.D. Prospects of conducting polymers in molecular electronics. <u>Current Applied Physics</u> 3 (2003): 293–305.
- [3] Supaphol, P., Aramwit, P., Sangsanoh, P., Changsarn, S., Chuangchote, S., and Villiers, M.M.d. Conductive polymers: Materials and applications. <u>Novel Polymers anf</u> <u>Nanoscience</u> (2008): 1.
- [4] Jang, J. Conducting Polymer Nanomaterials and Their Applications. <u>Adv Polym Sci</u> (2006) 199: 189–259.
- [5] Bianco, A., Bertarelli, C., Frisk, S., Rabolt, J.F., Gallazzi, M.C., and Zerbi G. Electrospun polyalkylthiophene/polyethyleneoxide fibers: Optical characterization. <u>Synthetic Metals</u> 157 (2007): 276–281.
- [6] Ahn, Y.C., et al. Development of high efficiency nanofilters made of nanofibers. <u>Current Applied Physics 6</u> (2006): 1030–1035.
- [7] Rajesh, Ahuja, T., and Kumar, D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. <u>Sensors and Actuators B</u> 136 (2009): 275–286.
- [8] Chen R., Zhao, S., Han, G., and Dong, J. Fabrication of the silver / polypyrrole / polyacrylonitrile composite nanofibrous mats. <u>Materials Letters</u> 62 (2008): 4031–4034.
- [9] Wutticharoenmongkol, P., Supapol, P., Srikhirin, T., Kerdcharoen T., and Osotchan, T. Electrospinning of Polystyrene/poly(2-methoxy-5-(20-ethylhexyloxy)-1,4-phenylene vinylene) Blends. Journal of Polymer Science: Part B: Polymer Physics Vol. 43 (2005): 1881–1891.

[10] Chuangchote, S., Srikhirin, T., and Supaphol, P. Color Change of Electrospun Polystyrene/

MEH-PPV Fibers from Orange to Yellow through Partial Decomposition of MEH Side Groups. <u>Macromol. Rapid Commun.</u> (2007): 28, 651–659.

- [11] Laforgue, A., and Robitaille, L. Fabrication of poly-3-hexylthiophene/polyethylene oxide nanofibers using electrospinning. <u>Synthetic Metals</u> 158 (2008): 577–584.
- [12] Lee, S., Moon, G.D., and Jeong, U. Continuous production of uniform poly(3hexylthiophene) (P3HT) nanofibers by electrospinning and their electrical properties. <u>J.</u> <u>Mater. Chem.</u>, 2009: 19, 743–748.
- [13] Tan, S., Feng, X., Zhao, B., Zou, Y., and Huang, X. Preparation and photoluminescence properties of electrospun nanofibers containing PMO-PPV and Eu(ODBM)3phen. <u>Materials Letters</u> 62 (2008): 2419–2421.
- [14] Zhang, W., et al. Preparation and study of PPV/PVA nanofibers via electrospinning PPV precursor alcohol solution. <u>European Polymer Journal</u> 43 (2007): 802–807.
- [15] Zhang, W., et al. Preparation of poly(phenylene vinylene) nanofibers by electrospinning. <u>Materials Science and Engineering A</u> 443 (2007): 292–295.
- [16] Zhao, Q., Huang, Z., Wang, C., Zhao, Q., Sun, H., and Wang, D. Preparation of PVP/MEH-PPV composite polymer fibers by electrospinning and study of their photoelectronic character. <u>Materials Letters</u> 61 (2007): 2159–2163.
- [17] Zhao, Q., Xin, Y., Huang, Z., Liu, S., Yang, C., and Li, Y. Using poly[2-methoxy-5-(20ethyl-hexyloxy)-1,4-phenylene vinylene] as shell to fabricate the highly fluorescent nanofibers by coaxial electrospinning. <u>Polymer</u> 48 (2007): 4311-4315.

- [18] Yu, Q.Z., Shi, M.M., Deng, M., Wang, M., and Chen, H.Z. Morphology and conductivity of polyaniline sub-micron fibers prepared by electrospinning. <u>Materials Science and Engineering B</u> 150 (2008): 70–76.
- [19] Duvail, J.L., Re'tho, P., Garreau, S., Louarn, G., Godon, C., and Demoustier-Champagne, S.
 Transport and vibrational properties of poly(3,4-ethylenedioxythiophene) nanofibers. <u>Synthetic Metals</u> 131 (2002): 123–128.
- [20] Goo, B. J., Ha, T. M., Han, J. E., Cho, S. H., and Lee, J. Y. Fabrication and Electrochemical Properties of PEDOT Nano-fiber by Electrospinning Technique. <u>Department of</u> <u>Chemical Engineering, Sungkyunkwun University, Suwon, Gyeonggi-do 440-746,</u> <u>Korea</u>: 1.
- [21] Teo, W.E., and Ramakrishna, S. Electrospun nanofibers as a platform for multifunctional, hierarchically organized Nanocomposite. <u>Composites Science and Technology</u> 69 (2009): 1804–1817.
- [22] Son, W.K., Youk, J.H., and Park, W.H. Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate Polymers 65 (2006): 430–434.
- [23] Jun, I., Jeong, and S., Shin, H. The stimulation of myoblast differentiation by electrically conductive sub-micron fibers. <u>Biomaterials</u> 30 (2009): 2038–2047.
- [24] Wang, Y., Serrano, S., and Santiago-Aviles, J. J. Conductivity measurement of electrospun PAN-based carbon nanofiber. <u>Journal of Materials Science Letters</u> 21 (2002): 1055 – 1057.

- [25] Limsavarn, L., Sritaveesinsub, V., and Dubas, S.T. Polyelectrolyte assisted silver nanoparticles synthesis and thin film formation. <u>Materials Letters</u> 61 (2007): 3048–3051.
- [26] Kumar, D., and Sharma, R.C. Advances in Conductive Polymers. <u>Eur. Polym. J.</u> Vol.34, No.8 (1998): 1053-1060.
- [27] Ishii, Y., Sakai, H., and Murata, H. A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers. <u>Materials Letters</u> 62 (2008): 3370–3372.
- [28] Jiang, Z., Huang, Z., Yang, P., Chen, J., Xin, Y., and Xu, J. High PL-efficiency ZnO nanocrystallites/PPV composite nanofibers. <u>Composites Science and Technology</u> 68 (2008): 3240–3244.
- [29] Wang, X., et al. Investigation of Dielectric Strength of Electrospun Nanofiber Based Thermal Interface Material. <u>IEEE Xplore</u> (2007): 1-6.
- [30] Guimard, N.K., Sessler, J.L., and Schmidt, C.E. Design of a Novel Electrically Conducting Biocompatible Polymer with Degradable Linkages for Biomedical Applications. <u>Materials Research Society</u> (2010): 15086-7537.
- [31] Adhikari, B., and Majumdar, S. Polymers in sensor applications. <u>Prog. Polym. Sci.</u> 29 (2004): 699–766.
- [32] Schoch, K.F., and Jr. Update on Electrically Conductive Polymers and Their Applications. <u>IEEE Electrical Insulation Magazine</u> Vol. 10, N0.3 (May/June 1994): 1.
- [33] Babel, A., Li, D., Xia, Y., and Jenekhe, S.A. Electrospun Nanofibers of Blends of Conjugated Polymers: Morphology, Optical Properties, and Field-Effect Transistors. <u>Macromolecules</u> 38 (11) (2005): 4705-4711.
- [34] Aussawasathien, D., Dong, J.H., and Dai, L. Electrospun Polymer Nanofiber Sensors. <u>Synthetic Metals</u> 154 (2005): 37–40.

[35] Du, Z., Li, C., Li, L., Zhang, M., Xu, S., and Wang, T. Simple fabrication of a sensitive hydrogen peroxide biosensor using enzymes immobilized in processable polyaniline nanofibers/chitosan film. <u>Materials Science and Engineering C</u> 29 (2009): 1794–1797. APPENDICES

1. PVA 10%, 12.5 kV	26. PVA10%: AgNPs 0.5%, 12.5 kV	
2. PVA 10%, 15 kV	27. PVA10%: AgNPs 0.5%, 15 kV	
3. PVA 10%, 17.5 kV	28. PVA10%: AgNPs 0.5%, 17.5 kV	
4. PVA 10%, 20 kV	29. PVA10%: AgNPs 0.5%, 20 kV	

1. Illustrated the randomized fiber images by SEM

5. PVA 10%, 22.5 kV	30. PVA10%: AgNPs 0.5%, 22.5 kV	
6. PVA 10%: PEDOT 0.052%, 12.5 kV	31. PVA10%: AgNPs 0.75%, 12.5 kV	
7. PVA 10%: PEDOT 0.052%, 15 kV	32. PVA10%: AgNPs 0.75%, 15 kV	TI T
8. PVA 10%: PEDOT 0.052%, 17.5 kV	33. PVA10%: AgNPs 0.75%, 17.5 kV	
9. PVA 10%: PEDOT 0.052%, 20 kV	34. PVA10%: AgNPs 0.75%, 20 kV	

10. PVA 10%: PEDOT 0.052%, 22.5 kV	35. PVA10%: AgNPs 0.75%, 22.5 kV	
11. PVA 10%: PEDOT 0.084%, 12.5 kV	36. PVA10%: AgNPs 0.25%: PEDOT/PSS 0.084%, 12.5 kV	TO MIDUODI INF DODD
12. PVA 10%: PEDOT 0.084%, 15 kV	37. PVA10%: AgNPs 0.25%: PEDOT/PSS 0.084%, 15 kV	155U × 10 × 003
13. PVA 10%: PEDOT 0.084%, 17.5 kV	38. PVA10%: AgNPs 0.25%: PEDOT/PSS 0.084%, 17.5 kV	
14. PVA 10%: PEDOT 0.084%, 20 kV	39. PVA10%: AgNPs 0.25%: PEDOT/PSS 0.084%, 20 kV	bill bill

15.		40.	
PVA		PVA10%:	
10%:		AgNPs	ATTI-
PEDOT		0.25%:	
0.084%,		PEDOT/PSS	
22.5 kV	15k0 K10 000	0.084%, 22.5	
		kV	
16.		41.	
PVA		PVA10%:	
10%:		AgNPs	
PEDOT		0.5%:	0.200 1.83 0.440 0.652 0.445 0.210
0.1%,		PEDOT/PSS	
12.5 kV		0.084%, 12.5	15kU ¥10,000 IHm 000000
		kV	
17.		42.	0.114
PVA		PVA10%:	
10%:		AgNPs	1.51 T.80 J. A. Samo
PEDOT		0.5%:	0.153 0.153
0.1%,		PEDOT/PSS	8,213
15 kV		0.084%, 15	15KU X10,000 1PM 000000
		kV	
18.		43.	
PVA		PVA10%:	D.EZT
10%:		AgNPs	Lun
PEDOT		0.5%:	8.770 8.555 8.566
0.1%,		PEDOT/PSS	2 131
17.5 kV		0.084%, 17.5	15KU X10,000 14m 000000
		kV	
19.		44.	
PVA		PVA10%:	
10%:		AgNPs	
PEDOT		0.5%:	0.770 0.841 0.944 0.172 0.173
0.1%,		PEDOT/PSS	
20 kV	1540 FTO PRO THE REPORT	0.084%, 20	15k0 %18.000 IFm 800008
		kV	

20.		45.	
PVA		PVA10%:	
10%:		AgNPs	
PEDOT	A879	0.5%:	6.53 6.02 i 1.37 6.63
0.1%,		PEDOT/PSS	810
22.5 kV	15KV X10-880 1Ha 800000	0.084%, 22.5	15kU X10.000 1Pm 000000
		kV	
21.		46.	
PVA		PVA10%:	
10%:	127 0.552 2.751	AgNPs	6 1.1 6 4.162 1.26
AgNPs		0.75%:	433
0.25%,		PEDOT/PSS	
12.5 kV	And A lar and the product	0.084%, 12.5	15kU X10.000 14 40000
		kV	
22.		47.	L231
PVA		PVA10%:	0.552 0.555 0.580 1.53 0.190
10%:	8.453 TES 8.533 1.727	AgNPs	
AgNPs		0.75%:	8.16
0.25%,		PEDOT/PSS	0.52
15 kV	1540 918.000 INA 00000	0.084%, 15	15kV X10,000 14m 000000
		kV	
23.		48.	THE REAL PROPERTY OF THE PROPERTY OF THE REAL PROPE
PVA		PVA10%:	1.0452 1.86 1.922
10%:		AgNPs	
AgNPs		0.75%:	
0.25%,		PEDOT/PSS	
17.5 kV	Here and the postor	0.084%, 17.5	15kU X18.000 "" 14m 900000
		kV	
24.		49.	
PVA	155° 1177 1181	PVA10%:	
10%:		AgNPs	B.109
AgNPs		0.75%:	6.462 6.475
0.25%,		PEDOT/PSS	
20 kV	And serve and the second	0.084%, 20	15k0 X18-000 14m 808889
		kV	

2. Illustrated the randomized fiber images by TEM

TEM Magnification: 2µm and 200 nm.

	Chemical Concentration Ratios (w/v)	Voltages	Low Mag.: ~2µm	High Mag.: ~200 nm.
		(kV)		
1	PVA10%	12.5		<u>2017т.</u>
2	PVA10%	15		
3	PVA10%	17.5		<u>80m</u>
4	PVA10%	20		Шт
5	PVA10%	22.5		20 m
6	PVA 10%: PEDOT/PSS 0.052%	12.5		

7	PVA 10%: PEDOT/PSS 0.052%	15		SUM
8	PVA 10%: PEDOT/PSS 0.052%	17.5		SUMI,
9	PVA 10%: PEDOT/PSS 0.052%	20		200 nm
10	PVA 10%: PEDOT/PSS 0.052%	22.5		100 nm
11	PVA 10%: PEDOT 0.084%	12.5	2.00	<u>201200</u>
12	PVA 10%: PEDOT 0.084%	15	200	<u>Mann</u>
13	PVA 10%: PEDOT 0.084%	17.5	bá ma	<u>200 mn</u>

14	PVA 10%: PEDOT 0.084%	20		100 prt
15	PVA 10%: PEDOT 0.084%	22.5	2.m_	200m_
16	PVA 10%: PEDOT 0.1%	12.5		<u>109 m</u>
17	PVA 10%: PEDOT 0.1%	15		100 mm
18	PVA 10%: PEDOT 0.1%	17.5		<u>107m</u>
19	PVA 10%: PEDOT 0.1%	20	2 m	<u>107 nu</u>
20	PVA 10%: PEDOT 0.1%	22.5		100 m.

21	PVA 10% + AgNPs 0.25%	12.5	<u>J.m.</u>	<u>bine</u>
22	PVA 10% + AgNPs 0.25%	15	<u>Ann</u>	Mar I
23	PVA 10% + AgNPs 0.25%	17.5	· · · · · · · · · · · · · · · · · · ·	•
24	PVA 10% + AgNPs 0.25%	20	2,000	<u>102m</u>
25	PVA 10% + AgNPs 0.25%	22.5	<u>20.000</u>	C
26	PVA10% +AgNPs 0.5%	12.5		<u>Muni</u>
27	PVA10% +AgNPs 0.5%	15	<u>103 100</u>	<u>200 nm</u>

28	PVA10% +AgNPs 0.5%	17.5		in the second se
			<u>1.5 m</u>	200 nm
29	PVA10% +AgNPs 0.5%	20	bā m	XM au
30	PVA10% +AgNPs 0.5%	22.5	<u>bở tun</u>	20mm
31	PVA10% +AgNPs 0.75%	12.5	<u>bă no</u>	<u>200 an</u>
32	PVA10% +AgNPs 0.75%	15	<u>kë m</u>	
33	PVA10% +AgNPs 0.75%	17.5		-
34	PVA10% +AgNPs 0.75%	20	United and a second sec	
35	PVA10% +AgNPs 0.75%	22.5	<u>ыл</u> и	Man.
----	--	------	--------------	-------
36	PVA10%+AgNPs 0.25% + PEDOT/PSS 0.084%	12.5	<u>/ 100</u>	20 m
37	PVA10%+AgNPs 0.25% + PEDOT/PSS 0.084%	15		No.
38	PVA10%+AgNPs 0.25% + PEDOT/PSS 0.084%	17.5	<u>иани,</u>	Hann
39	PVA10%+AgNPs 0.25% + PEDOT/PSS 0.084%	20		20 mm
40	PVA10%+AgNPs 0.25% + PEDOT/PSS 0.084%	22.5	<u>-</u>	20 m
41	PVA10%+AgNPs 0.5%+ PEDOT/PSS 0.084%	12.5		

42	PVA10%+AgNPs 0.5%+ PEDOT/PSS 0.084%	15	
43	PVA10%+AgNPs 0.5%+ PEDOT/PSS 0.084%	17.5	20 m
44	PVA10%+AgNPs 0.5%+ PEDOT/PSS 0.084%	20	
45	PVA10%+AgNPs 0.5%+ PEDOT/PSS 0.084%	22.5	
46	PVA10%+AgNPs 0.75%+ PEDOT/PSS 0.084%	12.5	A COLOR
47	PVA10%+AgNPs 0.75%+ PEDOT/PSS 0.084%	15	and the second sec
48	PVA10%+AgNPs 0.75%+ PEDOT/PSS 0.084%	17.5	

49	PVA10%+AgNPs 0.75%+ PEDOT/PSS 0.084%	20	
50	PVA10%+AgNPs 0.75%+ PEDOT/PSS 0.084%	22.5	

Appendix B Tables of Characterization Results of Aligned fibers

1. PVA 10%, 12.5 kV	950 1233 1237 1237 1237 1237 1237 1237 1237	13. PVA 10%: AgNPs 0.25%, 12.5 kV	алу алу алу алу алу алу алу алу алу алу
2. PVA 10%, 15 kV	230 512 512 512 512 512 512 15kU x10.000 14m 000000	14. PVA 10%: AgNPs 0.25%, 15 kV	али сан тап 1561 у10.002 Тит 060000
3. PVA 10%, 17.5 kV	ан ан ан 10 10 10 10 10 10 10 10 10 10 10 10 10	15. PVA 10%: AgNPs 0.25%, 17.5 kV	102 III 102 III 103 104 100 100 100 100 100 100 100 100 100
4. PVA 10%: PEDOT 0.052%, 12.5 kV	1956 1956 1957 1959 1959 1958 1958 1958 1958 1958 1958	16. PVA10%: AgNPs 0.5%, 12.5 kV	1775 1277 1277 1277 1277 1277 1277 1277

1. Illustrated the aligned single fiber images by SEM

5. PVA 10%: PEDOT 0.052%, 15 kV	270 270 270 270 270 270 270 270 270 270	17. PVA10%: AgNPs 0.5%, 15 kV	77 77 750 154 1540 ×10,000 10 <u>179</u> 000000
6. PVA 10%: PEDOT 0.052%, 17.5 kV	ми тли тли тли тли тли тли тли тли тли тл	18. PVA10%: AgNPs 0.5%, 17.5 kV	15kU X10.000 11mm 000000
7. PVA 10%: PEDOT 0.084%, 12.5 kV	ин ин ин 110 15kU (X 10, 600 15kU (X 10, 600 1) 100 100 100 100 100 100 100 100 10	19. PVA10%: AgNPs 0.75%, 12.5 kV	127 138 133 15k U X 10.000 133 j. j.m. 000000
8. PVA 10%: PEDOT 0.084%, 15 kV	аци али али 1940-2000 - 2000 - 1144 - 2005-20	20. PVA10%: AgNPs 0.75%, 15 kV	027 027 15ku x10.000 14m 000000
9. PVA 10%: PEDOT 0.084%, 17.5 kV	12kn ×10 00 1hm 00000 012 00 015 015 015	21. PVA10%: AgNPs 0.75%, 17.5 kV	алт нат 15к0 %10,000 дин дана 17к0 %10,000

10.		22. PVA10%	1
PVA	0241	: AgNPs	
10%:	0316	0.25%:	8.175
PEDOT		PEDOT/PSS	
0.1%,		0.084%, 17.5	
12.5 kV	15kU X10,000 1µm 000000	kV, 30 min.	1540 X19,000 346 000000
11.		23. PVA10%	i ar an at
PVA	- 114	: AgNPs	
10%:	120	0.25%:	1 4100 ATM
PEDOT	0.261	PEDOT/PSS	0.650
0.1%,	am	0.084%, 17.5	A15
15 kV	15kU X10,000 1µm 000000	kV, 45 min.	15kU 240,000 IFM 000000
12.			
PVA	8.201		
10%:			
PEDOT	0.196		
0.1%,	0.112		
17.5 kV	15kU X10,000 1µm 000000		

	Chemical Concentration Ratios (w/v)	Voltages (kV)	Low Magnification	High Magnification
1	PVA10%	12.5	<u>2 µп</u>	
2	PVA10%	15	U.S. LINT	
3	PVA10%	17.5	<u>2000</u>	
4	PVA 10%: PEDOT/PSS 0.052%	12.5		
5	PVA 10%: PEDOT/PSS 0.052%	15	2.00	
6	PVA 10%: PEDOT/PSS 0.052%	17.5	<u>200 m</u>	

2. Illustrated the aligned single fiber images by TEM

7	PVA 10%: PEDOT 0.084%	12.5		
8	PVA 10%: PEDOT 0.084%	15	2	
9	PVA 10%: PEDOT 0.084%	17.5	-	
10	PVA 10%: PEDOT 0.1%	12.5	2	
11	PVA 10%: PEDOT 0.1%	15	20 AUT	
12	PVA 10%: PEDOT 0.1%	17.5	и <u>ия на -</u>	
13	PVA 10% + AgNPs 0.25%	12.5		2000

14	PVA 10% + AgNPs 0.25%	15	<u>لاتس</u>	
15	PVA 10% + AgNPs 0.25%	17.5	<u>uzuu</u>	<u>2011-111</u>
16	PVA10% +AgNPs 0.5%	12.5		
17	PVA10% +AgNPs 0.5%	15	<u>bë un .</u>	Life un
18	PVA10% +AgNPs 0.5%	17.5	200 million	<u>102-m</u>
19	PVA10% +AgNPs 0.75%	12.5		
20	PVA10% +AgNPs 0.75%	15		20 m

21	PVA10% +AgNPs 0.75%	17.5	а ж	200 mm.
22	PVA10%+AgNPs 0.25% + PEDOT/PSS 0.084%	17.5, 30 min.	200 mm	2011 aug
23	PVA10%+AgNPs 0.25% + PEDOT/PSS 0.084%	17.5, 45 min.	<u>batuu</u>	<u>Mit nu</u>

3. Illustrated the aligned fiber mat images by SEM

1. PVA 10%, 12.5 kV		19. PVA10%: AgNPs 0.75%, 12.5 kV	AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND AND
2. PVA 10%, 15 kV	TTO TTO TTO TTO TTO TTO TTO TTO TTO TTO	20. PVA10%: AgNPs 0.75%, 15 kV	100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
3. PVA 10%, 17.5 kV		21. PVA10%: AgNPs 0.75%, 17.5 kV	ант алт алт алт алт алт алт алт ал
4. PVA 10%: PEDOT 0.052%, 12.5 kV		22. PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 12.5 kV	ал на на н

5. PVA 10%: PEDOT 0.052%, 15 kV	23. PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 15 kV	алт то бал бал бал бал бал бал бал бал бал бал
6. PVA 10%: PEDOT 0.052%, 17.5 kV	24. PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 17.5 kV	
7. PVA 10%: PEDOT 0.084%, 12.5 kV	25. PVA10% +AgNPs 0.5%+ PEDOT/PSS 0.084%, 12.5 kV	1 5k V X 10.000 1P h 00000
8. PVA 10%: PEDOT 0.084%, 15 kV	26. PVA10% +AgNPs 0.5%+ PEDOT/PSS 0.084%, 15 kV	LEILU VIELOGE IM DEGEGE
9. PVA 10%: PEDOT 0.084%, 17.5 kV	27. PVA10% +AgNPs 0.5%+ PEDOT/PSS 0.084%, 17.5 kV	LTT LOO ALLAND

10. PVA 10%: PEDOT 0.1%, 12.5 kV		28. PVA10% +AgNPs 0.75%+ PEDOT/PSS 0.084%, 12.5 kV	
11. PVA 10%: PEDOT 0.1%, 15 kV		29. PVA10% +AgNPs 0.75%+ PEDOT/PSS 0.084%, 15 kV	
12. PVA 10%: PEDOT 0.1%, 17.5 kV		30. PVA10% +AgNPs 0.75%+ PEDOT/PSS 0.084%, 17.5 kV	177 177 177 177 177 177 177 177 177 177
13. PVA 10%: AgNPs 0.25%, 12.5 kV	150 150 150 150 150 150 150 150	31. PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 12.5 kV, 30 min.	100 100 100 100 100 100 100 100
14. PVA 10%: AgNPs 0.25%, 15 kV	ASD ASD ASD ASD ASD ASD ASD ASD	32. PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 15 kV, 30 min.	STRED 45KU X/16.000 17mm

15. PVA 10%: AgNPs 0.25%, 17.5 kV	THE	33. PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 12.5 kV, 45 min.	LID LID LID LID LID LID LID LID
16. PVA10%: AgNPs 0.5%, 12.5 kV	655 850 850 850 850 857 857 857 15KV X18,088 17mm	34. PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 15 kV, 45 min.	uno 0.000 107 to 107 to 10
17. PVA10%: AgNPs 0.5%, 15 kV	417 419 419 419 419 419 419 419 419	35 PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 17.5 kV, 30 min.	130 197 488 191 - 297 489 198 - 288 588 588 588 588 588 588 588
18. PVA10%: AgNPs 0.5%, 17.5 kV	1000 100 1000 1	36. PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%, 17.5 kV, 45 min.	

4. Illustrated the aligned fiber mat images by TEM

	Chemical Concentration Ratios (w/v)	Voltages	Mag.: ~2 µ m	Mag.: ~200 nm.
		(kV)		
1	PVA10%	12.5		100 pr
2	PVA10%	15		
3	PVA10%	17.5		
4	PVA 10%: PEDOT/PSS 0.052%	12.5		<u>100 nm</u>
5	PVA 10%: PEDOT/PSS 0.052%	15		
6	PVA 10%: PEDOT/PSS 0.052%	17.5		<u>200 nor</u>

TEM Magnification: 2μ m and 200 nm.

7	PVA 10%: PEDOT 0.084%	12.5	Ju m
8	PVA 10%: PEDOT 0.084%	15	
9	PVA 10%: PEDOT 0.084%	17.5	
10	PVA 10%: PEDOT 0.1%	12.5	200 nm
11	PVA 10%: PEDOT 0.1%	15	
12	PVA 10%: PEDOT 0.1%	17.5	20 m
13	PVA 10% + AgNPs 0.25%	12.5	- LUMA

14	PVA 10% + AgNPs 0.25%	15	
15	PVA 10% + AgNPs 0.25%	17.5	
16	PVA10% +AgNPs 0.5%	12.5	200 apr
17	PVA10% +AgNPs 0.5%	15	All an
18	PVA10% +AgNPs 0.5%	17.5	
19	PVA10% +AgNPs 0.75%	12.5	
20	PVA10% +AgNPs 0.75%	15	

21	PVA10% +AgNPs 0.75%	17.5	
22	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	12.5	10.00
23	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	15	10mm
24	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	17.5	
25	PVA10% +AgNPs 0.5%+ PEDOT/PSS 0.084%	12.5	
26	PVA10% +AgNPs 0.5%+ PEDOT/PSS 0.084%	15	and the second
27	PVA10% +AgNPs 0.5%+ PEDOT/PSS 0.084%	17.5	

28	PVA10% +AgNPs 0.75%+ PEDOT/PSS 0.084%	12.5	
29	PVA10% +AgNPs 0.75%+ PEDOT/PSS 0.084%	15	
30	PVA10% +AgNPs 0.75%+ PEDOT/PSS 0.084%	17.5	
31	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	12.5 kV, 30 min.	
32	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	15 kV, 30 min.	
33	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	12.5 kV, 45 min.	Man.
34	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	15 kV, 45 min.	

35	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	17.5 kV, 30 min.	200 n.c-
36	PVA10% : AgNPs 0.25%: PEDOT/PSS 0.084%	17.5 kV, 45 min.	bullet.

Appendix C Table of Electrical Conductivity Measurement Result of Randomized Fibers by Using The 4-probe Technique

Fiber Layer Thickness (D) = $6.69 \ \mu m$

1. PVA 10%, 12.5 kV

DATE	User_N	Name	Sample_1	Name							
02-09-2012	. Use	er_1	Sample	e_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	u		rho	1	RH	RHA	RHB	NS	SIGM	A DELTA	ALPHA
-5.148E+1	16 3.940	E-01 3	3.077E+02	2 -1.21	2E+02 -2.7	788E+02	3.631E+01	-3.444E+13	3 3.249E-0	03 3.013E+02	-9.933E-01
Vab	Vbc	V	ac V	mac	V-mac	Vcd	Vda	Vbd	Vmbd	V-mbd	
+I:											
6253.060	-1897.18	0 -317.	.966 -543	39.670	-3738.620	-957.161	-1286.520	-1765.250	-2302.830	-2074.080	
-I:											
-1268.570	1747.34	0 -3283	7.570 -49	03.470	-4119.270	-658.683	2582.600	3642.430 -	-2545.080 ·	-2435.740	

2. PVA 10%, 15.0 kV

DATE	User_1	Name	Sample_N	ame							
02-09-2012	Use	er_1	Sample_	_1							
I(mA)	В	D	D_T	MN 7	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	u		rho	RH		RHA	RHB	NS	SIGMA	DELTA	ALPHA
-3.652E+1	6 6.482	E+00	2.637E+01	-1.709E-	+02 -	3.756E+02	3.367E+01	-2.443E+13	3.792E-02	2.835E+02	-1.220E+00
Vab	Vbc	Va	c Vm	ac V-r	nac	Vcd	Vda V	/bd Vmb	od V-mb	d	
+I:											
6732.960 -	1842.54	0 -488.0	599 -5499.	440 -3096	.750	-999.460 -1	074.870 -17	16.330 -2346.	870 -2174.8	70	
-I:											
-1700.760	1520.20	0 -3592.	940 -5065	.620 -389	7.940	-736.671 2	2845.660 35	25.840 -2603.	.880 -2542.6	10	

DATE	User_	Name	Sample_N	ame							
02-09-2012	Us	er_1	Sample_	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ι	1	rho	RI	H	RHA	RHB	NS	SIGMA	DELTA	ALPHA
2.910E+16	5 1.778	8E+01	1.207E+01	2.145	E+02	4.695E+02	-4.039E+01	1.947E+13	8.288E-02	2.588E+02	-1.487E+00
Vab	Vbc	Va	c Vm	ac V	-mac	Vcd	Vda	Vbd Vm	bd V-mb	d	
+I:											
6759.030 -	1683.87	0 -843.	893 -2139	.050 -5	534.38	0 -999.247	-959.414 -1	731.170 -1964	4.000 -2688.9	940	
-I:											
-2340.940	1425.49	0 -3719	.370 -3325	.880 -52	77.370	-1172.380	2727.670 3	3151.740 -228	8.800 -2880.	920	

4. PVA 10%, 20.0 kV

DATE	User_1	Name	Sample_N	ame						
02-09-2012	Use	er_1	Sample_	_1						
I(mA)	В	D	D_T	MN T(I	K)					
10.000	0.550	6.690	0.100	1000 30	0					
Nb	u		rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
1.576E+17	7 2.413	E+00 1	1.641E+01	3.960E+01	8.928E+01	-1.007E+01	1.054E+14	6.094E-02	2.501E+02	-1.464E+00
Vab	Vbc	Va	c Vma	ac V-ma	v Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:										
7033.450 -	2095.730	0 -228.0	089 -2872.4	470 -3653.8	20 -999.460	-948.275 -1	058.640 -2027	7.160 -2193.	400	
-I:										
-2841.590	1373.890	0 -3579.	450 - 3764.	.810 -4252.5	60 -1333.930	3140.240 3	029.870 -2392	2.140 -2525.	250	

5. PVA 10%, 22.5 kV

DATE	User_N	lame s	Sample_Na	ame								
02-09-2012	User	r_1	Sample_	1								
I(mA)	В	D	D_T	MN	T(K)							
10.000	0.550 6	6.690	0.100	1000	300							
Nb	u		rho	RE	[RHA	RHB	N	5	SIGMA	DELTA	ALPHA
-1.873E+17	7 2.529E	E+00 1	.318E+01	-3.3341	E+01 -	9.658E+01	2.991E+	01 -1.253	E+14	7.588E-02	2.757E+02	-1.358E+00
Vab	Vbc	Vac	v Vma	c V	mac	Vcd	Vda	Vbd	Vmb	d V-mbo	đ	
+I:												
6368.210 -	1225.260	-152.5	54 -3055.6	510 -27	57.720	-959.137	-999.460 -	1000.520 -	-2472.6	520 -2445.2:	50	
-I:												
-1745.810	1695.920	-2912.5	590 -3700.	740 - 37	30.460	-717.972	2946.030	3320.170	-2650.6	500 -2721.5	90	

6. PVA 10%+PEDOT/PSS 0.084%, 12.5 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	Us	er_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ι	ı	rho	R	н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
3.095E+1	6 2.997	/E+01	6.728E+00	2.017	E+02	4.256E+02	-2.224E+01	2.071E+13	1.486E-01	2.888E+02	-1.233E+00
Vab	Vbc	Va	c Vm	ac V	/-mac	Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:											
6582.090 -	-2130.61	0 -625.	020 -2651.	920 -58	353.510	-999.460	-1023.980 -1	679.840 -2396	5.490 -2918.	770	
-I·				_							
-2021 500	1434 16	0 -4163	670 - 3676	370 -54	178 400	-1102 420	2601.020.3	3152 160 -266	5 750 -3115	900	
2021.300	1454.10	105	.070 -5070	.570-5	7/0.490	1172.420	2071.020	152,100 -2000	5.750 -5115.	200	

7. PVA 10% + PEDOT/PSS 0.084%, 15.0 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	Us	ser_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	1	u	rho	RI	H	RHA	RHB	NS	SIGMA	DELTA	ALPHA
6.196E+1	6 7.70	5E+00	1.307E+01	1.0071	E+02	1.775E+02	2.402E+01	4.145E+13	7.649E-02	3.099E+02	-1.193E+00
Vab	Vbc	Va	c Vm	ac V	-mac	Vcd	Vda	Vbd Vm	ıbd V-mb	od	
+I:											
6780.460 -	2204.22	20 -549.	091 -4467.	490 -58	25.400	-999.460 -	1054.220 -10	688.350 -252	5.070 -2405.	510	
-I:											
-1904.850	1465.35	50 -3963	.140 -4656	.590 -54	30.910	-1065.270	2565.120 3	160.640 -279	9.220 -2758.	.650	

8. PVA 10% + PEDOT/PSS 0.084%, 17.5 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	Us	er_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	τ	1	rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-1.829E+1	7 3.130)E+01	1.091E+00	-3.413	E+01	-6.045E+01	-7.815E+0	0 -1.223E+14	9.169E-01	2.165E+02	-5.466E-01
Vab	Vbc	Va	c Vm	ac V	/-mac	Vcd	Vda	Vbd Vmb	od V-mb	d	
+I:											
6975.720 -	3235.09	0 -978.	957 -2236.	880 -22	30.000	-1382.160 -	2059.320 -1	489.990 -1894	.770 -2406.3	300	
-I:											
-300.333	3226.630) -2264.	170 -3296.	340 - 34	88.250	-1219.430	2902.420 3	3165.630 -2207	.880 -2693.7	710	

9. PVA 10% + PEDOT/PSS 0.084%, 20.0 kV

DATE User	_Name Sample_	Name						
02-09-2012 U	ser_1 Sampl	e_1						
I(mA) B	D D_T	MN T(K)					
10.000 0.550	6.690 0.100	1000 300						
Nb	u rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-5.154E+17 1.12	1E+01 1.080E+0	00 -1.211E+01	-2.902E+01	4.799E+00	-3.448E+14	9.255E-01	2.448E+02	-8.086E-01
Vab Vbc	Vac Vi	nac V-mac	Vcd	Vda V	/bd Vmb	od V-mb	d	
+I:								
7181.740 -1376.9	10 93.728 -2141	.000 -2235.150	-1285.470 -2	2193.960 -140	9.920 -2017.	760 -2229.9	60	
-T:								
-286 689 3226 94	0 -2115 150 -328	5 300 -3474 89	0 -1257 660	3245 410 306	64 500 -2352	110 -2580 0	190	

10. PVA 10% + PEDOT/PSS 0.084%, 22.5 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	Us	er_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ı	1	rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-1.279E+1	7 9.15	1E+01	5.335E-01	-4.881	E+01 -	1.039E+02	6.222E+00	-8.555E+13	1.875E+00	2.458E+02	-5.915E-01
Vab	Vbc	Va	c Vm	ac V	/-mac	Vcd	Vda	Vbd Vm	bd V-mb	d	
+I:											
6809.350 -	2735.31	0 -905.	324 -3336.	300 - 27	31.740	-1353.370 -	1987.350 -1	519.650 -2135	5.570 -2134.0)60	
-I:											
-118.906 2	2909.74	0 -2541.	690 -4035.	560 - 37	72.510	-1151.650	2571.540 32	240.600 -2477	.600 -2496.5	50	

11. PVA 10% + PEDOT/PSS 0.052%, 12.5 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	Us	er_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ı	1	rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-7.096E+1	6 8.07	6E-01 1	.089E+02	-8.796	E+01 -1	.782E+02	2.241E+00	-4.747E+13	9.181E-03	1.944E+02	-8.330E-01
Vab	Vbc	Va	c Vm	ac	V-mac	Vcd	Vda	Vbd V	mbd V-n	nbd	
+I:											
6814.510 -	3194.34	0 -1015.	710 - 2990	.450 -1	701.360	-1037.300	-2088.300 -1	428.590 -208	85.540 -2012	.770	
-I:											
-1816.360	2104.37	0 -3256.	750 -3852	.730 -3	149.540	-1233.730	3202.660 3	074.150 -243	1.070 -2365.	670	

12. PVA 10% + PEDOT/PSS 0.052%, 15.0 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	Us	ser_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	1	u	rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-1.065E+1	7 1.38	7E+02	4.226E-01	-5.863	E+01 -1	.236E+02	6.313E+0	0 -7.122E+13	2.366E+00	2.389E+02	-7.573E-01
Vab	Vbc	Va	c Vm	ac V	/-mac	Vcd	Vda	Vbd Vm	bd V-mbo	1	
+I:											
6608.470 -	-1474.96	50 -36.1	45 -2751.:	550 -20	90.430 -1	195.640 -2	2128.640 -1	476.660 -2132	.690 -2259.32	20	
-I·										-	
-140 344	2038 54	0 -2567	000 -3586	520 - 33	31 700 -	1123 800	2802 340 3	103 730 -2383	430 -2530 8	20	
140.044	2750.54	2307.	JJ0 3380.	520-55	51.790 -	1125.000	2002.340	105.750 -2585	2350.8	20	

13. PVA 10% + PEDOT/PSS 0.052%, 17.5 kV

DATE	User_	Name	Sample_N	ame							
02-09-2012	Us	er_1	Sample	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	u	I	rho	RF	ł	RHA	RHB	NS	SIGMA	DELTA	ALPHA
4.399E+16	6 1.473	E+01	9.634E+00	1.419I	E+02 2	2.437E+02	4.008E+01	2.943E+13	1.038E-01	2.785E+02	-1.128E+00
Vab	Vbc	Va	c Vm	ac V	-mac	Vcd	Vda	Vbd Vm	bd V-mł	od	
+I:											
6962.370 -3	3204.19	0 -896.	287 -2908	.760 -50)37.180) -999.460	-999.460 -1	013.990 -267	7.360 -2574	.300	
-I:											
-3030.050	1380.01	0 -4142	.980 -3636	.110 -49	63.040	-1308.620	3033.760 2	982.680 -279	2.640 -2821	.370	

14. PVA 10% + PEDOT/PSS 0.052%, 20.0 kV

DATE	User_	Name	Sample_N	ame						
02-09-2012	Us	ser_1	Sample	_1						
I(mA)	В	D	D_T	MN T	(K)					
10.000	0.550	6.690	0.100	1000 3	00					
Nb	ı	u	rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
1.152E+1	7 5.633	3E+00	9.621E+00	5.419E+0	01 1.107E+02	2 -2.287E+00	7.706E+13	1.039E-01	2.605E+02	-5.936E-01
Vab	Vbc	Va	c Vm	ac V-m	ac Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:										
6371.940 -	2123.06	50 -916.	941 -2833.	720 -3815.	780 -1229.140	-1983.650 -14	461.230 -225	7.600 -2564.	520	
-I:										
174.478 2	2801.03	0 -2734.	820 -3612.	600 -4230.	740 -900.377	2621.770 32	221.320 -250	5.370 -2804.	770	

15. PVA 10% + PEDOT/PSS 0.052%, 22.5 kV

DATE	User_	Name	Sample_N	Name							
02-09-2012	Us	er_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ι	1	rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-4.148E+1	6 2.360)E+01	6.378E+00	0 -1.505	E+02 -	3.012E+02	1.794E-01	1 -2.775E+13	1.568E-01	2.232E+02	-1.315E+00
Vab	Vbc	Va	ic Vm	ac V	'-mac	Vcd	Vda	Vbd Vm	bd V-mb	d	
+I:											
6835.760 -	1789.44	0 -303.	652 - 3934	.350 -20)43.330	-989.229 -1	110.600 -	1776.070 - 1948	3.750 -2106.9	950	
-I·											
1000.000	1612 10	0 2725	260 1199	560 2	997 000	1224 000	2002 010	2186 260 227	1 260 2422	050	
-1900.900	1013.10	0-3/33	.300 -4186	5.500-52	.07.900	-1234.090	2003.010	5160.500 -2272	+.200 -2433.	050	

16. PVA 10% + PEDOT/PSS 0.1%, 12.5 kV

DATE	User_	Name	Sample_N	ame							
02-09-2012	Us	er_1	Sample	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ι	ı	rho	RF	I	RHA	RHB	NS	SIGMA	DELTA	ALPHA
9.504E+1	6 1.045	5E+01	6.283E+00	6.568H	E+01	1.131E+02	1.823E+01	6.358E+13	1.592E-01	2.603E+02	-5.976E-01
Vab	Vbc	Va	c Vm	ac V	-mac	Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:											
6445.710 -	2222.35	50 -1244	.910 -3105	.130 -41	25.980	-1365.710	-1942.880 -1	1451.720 -208	3.710 -2208	.050	
-I:											
-230.622 2	2990.35	0 -2510.	430 -3832	.640 -44	81.460	-977.308	2592.370	3188.850 -241	8.280 -2602	2.560	

17. PVA 10% + PEDOT/PSS 0.1%, 15.0 kV

DATE	User_N	lame S	Sample_N	ame							
02-09-2012	User	r_1	Sample_	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	u		rho	RH		RHA	RHB	NS	SIGMA	DELTA	ALPHA
2.704E+17	7 6.219E	2+00 3	.712E+00	2.308E	+01 4	4.735E+01	-1.180E+00	1.809E+14	2.694E-01	2.347E+02	-1.423E+00
Vab	Vbc	Vac	v Vma	ac V-	mac	Vcd	Vda	Vbd Vm	bd V-mb	d	
+I:											
6991.870 -	2239.920	-633.3	12 -2359.7	780 -304	19.260	-999.460	-999.460 -1	030.510 -206	3.030 -2475	450	
-I:											
-2842.430	1340.020	-4021.3	370 -3385.	510 - 39	9.290	-1399.690	3008.500 3	3165.850 -233	8.230 -2746.	770	

18. PVA 10% + PEDOT/PSS 0.1%, 17.5 kV

DATE	User_	Name	Sample_N	ame						
02-09-2012	Us	er_1	Sample_	_1						
I(mA)	В	D	D_T	MN T(H	L)					
10.000	0.550	6.690	0.100	1000 30)					
Nb	τ	1	rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
4.182E+1	7 3.393	8E+00	4.399E+00	1.493E+01	2.209E+01	7.767E+00	2.797E+14	2.273E-01	2.228E+02	-1.272E+00
Vab	Vbc	Va	c Vm	ac V-mac	Vcd	Vda	Vbd Vm	bd V-mł	od	
+I:										
7277.680	-3064.99	0 -820.	724 -2557.	860 -2980.0	40 -999.460	-999.460 -1	067.070 -181	9.620 -2026.	160	
-I:										
-3327.890	1296.30	0 -4354	.190 -3503	.670 -3853.2	10 -1472.780	3206.630 3	171.760 -214	4.160 -2376	.240	

19. PVA 10% + PEDOT/PSS 0.1%, 20.0 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	Us	ser_1	Sample_	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	I	u	rho	RH		RHA	RHB	NS	SIGMA	DELTA	ALPHA
4.038E+16	6 4.580	6E+02	3.371E-01	1.546E	+02 2	2.967E+02	1.252E+01	2.701E+13	2.966E+00	2.670E+02	-5.058E-01
Vab	Vbc	Va	c Vm	ac V	-mac	Vcd	Vda	Vbd Vn	nbd V-mb	od	
+I:											
6735.000 -	2446.48	30 -1007	.090 -2403	.040 -48	01.590	-1398.790	-2114.920 -	1625.620 -183	34.070 -2148	.280	
-I:											
99.937 3	722.57	0 -1930	.120 -3303	8.980 -47	26.910	-1108.440	2419.750	3326.870 -212	27.500 -2482	.880	

20. PVA 10% + PEDOT/PSS 0.1%, 22.5 kV

DATE	User_	Name	Sample_N	ame							
02-09-2012	Us	er_1	Sample	_1							
I(mA)	В	D	D_T	MN 1	(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ι	1	rho	RH		RHA	RHB	NS	SIGMA	DELTA	ALPHA
1.232E+17	7 1.420)E+01	3.569E+00	5.066E+	01 8.9	967E+01	1.165E+01	8.243E+13	2.802E-01	2.249E+02	-1.211E+00
Vab	Vbc	Va	c Vm	ac V-n	nac	Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:											
6616.650 -	2107.92	0 -531.	316 -2780	.260 -3714	.410	-999.460	-1262.550 -1	1794.410 -200	3.480 -2211	.190	
-I:											
-1991.450	1600.06	0 -4280	.950 -3624	.140 -4263	.410 -	1388.270	2621.970 3	184.590 -232	3.470 -2569.	.500	

21. PVA 10% +Ag0.25%, 12.5 kV

DATE	User	Name	Sample_N	Jame							
02-09-2012	Us	ser_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	1	u	rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-5.405E+1	6 4.36	7E+00	2.644E+01	-1.155	E+02 -	1.948E+02	-3.619E+0	1 -3.616E+13	3.782E-02	3.093E+02	-5.123E-01
 Vab	Vhc	Va	c Vm	ac V	/-mac	Ved	Vda	Vhd Vmh	d V-mb	 1	
+I·	100	vu	,	ac .	mae	vea	v du	vou vino	u v mot		
6807 740	-3267.09	20 -1048	250 - 4743	060 -3	277 050	-1315 840	1082 480 -	1403 200 -2502	410 -3060	140	
0897.740	-3207.90	50 - 10 - 10	.230 - +7 +3	.000 -3.	577.050	-1313.040	1902.400 -	1403.200 -2392		110	
-I:											
-214.819	3119.83	0 -2270	.250 -4742	2.760 -4	017.310	-903.406	2657.590 2	2817.920 -2824	.650 -3182.	660	

22. PVA 10% +Ag0.25%, 15.0 kV

DATE	User_	Name	Sample_N	ame							
02-09-2012	Us	ser_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	1	u	rho	RI	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
2.708E+1	7 2.272	2E+00	1.014E+01	2.305	E+01 -2	2.380E+01	6.990E+01	1.812E+14	9.857E-02	3.896E+02	-1.289E+00
Vab	Vbc	Va	c Vm	ac V	-mac	Vcd	Vda	Vbd Vm	bd V-mb	d	
+I:											
6455.100 -	-1582.03	30 -146.	281 -6003	.800 -61	11.500	-968.305	-947.650 -1	710.100 -3396	5.670 -2747.	180	
-I:											
-1664.170	1667.66	50 -3578	.490 -5468	.500 -56	54.450	-1261.160	2724.120 3	108.850 -342	8.030 -3008.	390	

23. PVA 10% +Ag0.25%, 17.5 kV

DATE	User_	Name	Sample_N	ame							
02-09-2012	Us	er_1	Sample_	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	υ	I	rho	RH		RHA	RHB	NS	SIGMA	DELTA	ALPHA
1.108E+17	7 4.446	E+01	1.267E+00	5.635E	+01 1	.115E+02	1.150E+00	7.411E+13	7.891E-01	2.301E+02	-1.083E+00
Vab	Vbc	Va	c Vm	ac V-	mac	Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:											
7327.230 -	3813.97	0 -632.	005 -1495.	110 -274	3.450	-923.228 -	2102.770 -1	370.940 -197	6.580 -2253.	030	
-I:											
-3296.830	1312.21	0 -4623	.050 -2882	.080 -376	3.590	-1443.820	3500.450 3	180.430 -235	1.140 -2631.	.370	

24. PVA 10% +Ag0.25%, 20.0 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	Us	er_1	Sample	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ι	1	rho	RH	[RHA	RHB	NS	SIGMA	DELTA	ALPHA
8.066E+1	6 1.687	7E+01	4.589E+00	7.739E	+01 1	1.651E+02	-1.034E+0	1 5.396E+13	2.179E-01	2.559E+02	-1.178E+00
Vab	Vbc	Va	c Vm	ac V-	mac	Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:											
7329.500 -	4022.72	20 -786.	481 -2675.	660 -41	71.710	-999.460	-924.158 -	1060.170 -198	8.340 -2305.	630	
-I·											
-3068 810	1104 81	0 -4925	600 - 3634	520 -45	87 550	-1679 720	3537 270	3176 710 -237	9 580 -2662	860	
5708.010	1104.01	0 7923	.000 .000+	.520 -45	57.550	10/9./20	5551.210	51/0./10 -25/	7.560 -2002.	.000	

25. PVA 10% +Ag0.25%, 22.5 kV

DATE	User	Name	Sample_N	ame							
02-09-2012	Us	er_1	Sample_	_1							
I(mA)	В	D	D_T	MN	Г(К)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ι	ı	rho	RH		RHA	RHB	NS	SIGMA	DELTA	ALPHA
7.902E+1	6 4.207	7E+00	1.878E+01	7.900E-	-01 1	.506E+02	7.411E+00	5.286E+13	5.326E-02	2.162E+02	-1.086E+00
Vab	Vbc	Va	ic Vm	ac V-1	nac	Vcd	Vda	Vbd Vm	bd V-mł	od	
+I:											
6496.820 -	-2126.52	20 -492.	575 -2014.	190 -324	9.400	-982.760	-1268.690 -	1728.440 -208	86.510 -2268	.580	
-I:											
-1567.590	1603.93	0 -3958	.150 -3297	.270 -403	7.290	-1026.230	2637.290 3	3152.810 -243	4.590 -2641.	.030	

26. PVA 10% +Ag0.5%, 12.5 kV

DATE	User_	Name	Sample_N	ame								
02-09-2012	Us	er_1	Sample_	_1								
I(mA)	В	D	D_T	MN	T(K)							
10.000	0.550	6.690	0.100	1000	300							
Nb	ι	1	rho	R	Н	RHA	RHB	NS	5	SIGMA	DELTA	ALPHA
-4.285E+1	7 7.342	7E+01	1.983E-01	-1.4571	E+01 -	3.542E+01	6.282E+0	0 -2.8671	E+14	5.044E+00	2.257E+02	-3.580E-01
Vab	Vbc	Va	c Vm	ac V	'-mac	Vcd	Vda	Vbd	Vmł	od V-mbo	đ	
+I:												
4238.870 -	1838.02	20 -122.	457 -2883.	820 - 27	97.860	-715.593	-1680.950 -1	1422.620	-2164.	.380 -2197.9	00	
-I:												
263.223 1	654.330) -2657.	100 -3601.	940 - 36	32.450	797.398	1901.020 1	1995.030 -	2569.	270 - 2623.4	50	

27. PVA 10% +Ag0.5%, 15.0 kV

DATE	User_N	Vame	Sample_N	lame							
02-09-2012	Use	r_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	u		rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-2.313E+1	6 2.158	E+03	1.251E-01	-2.699	E+02 -5	.415E+02	1.721E+00) -1.547E+13	7.996E+00	2.664E+02	-4.400E-01
Vab	Vbc	Va	c Vm	ac V	'-mac	Vcd	Vda	Vbd Vm	ibd V-mb	d	
+I:											
4503.960 -	2234.320) -374.8	897 -5219.	300 -22	75.440	-851.137 -	1476.330 -1	426.250 -2409	9.970 -2247.1	00	
-I:											
-264.833	1487.550	-3210.5	540 -4661.	780 -34	98.520	727.401 2	2458.270 28	349.590 -2742	2.010 -2584.8	00	

28. PVA 10% +Ag0.5%, 17.5 kV

DATE	User_1	Name	Sample_N	ame							
02-09-2012	Use	er_1	Sample_	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	u		rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-3.188E+17	7 9.260	E-01 2	.114E+01	-1.958	E+01 -	4.503E+01	5.869E+0	0 -2.133E+	14 4.730E-02	2.217E+02	-1.095E+00
Vab	Vbc	Vac	e Vma	ac V	'-mac	Vcd	Vda	Vbd V	Vmbd V-ml	od	
+I:											
7149.510 -	3185.25	0 -814.7	70 -2276.	370 -20	65.760	-999.460	-984.533 -1	1035.930 -2	155.820 -2104.	600	
-I:											
-2994.610	1432.34	0 -4154.	670 -3436	.120 -33	873.580	-963.284	3688.220	3205.280 -24	478.550 -2446.	630	

29. PVA 10% +Ag0.5%, 20.0 kV

DATE	User_Na	ame	Sample_N	ame						
02-09-2012	User	_1	Sample_	1						
I(mA)	В	D	D_T	MN T	(K)					
10.000	0.550 6	6.690	0.100	1000 3	00					
Nb	u		rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
1.349E+17	7 2.342E	+00 1	.976E+01	4.628E+	01 9.124E+01	1.329E+00	9.023E+13	5.061E-02	2.509E+02	-9.386E-01
Vab	Vbc	Vac	e Vma	ac V-m	ac Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:										
6016.480 -2	2057.140	-410.6	525 -2527.	600 -3338.	320 -977.557	-1070.210 -16	570.020 -2330	.470 -2544.9	950	
-I:										
-1512.670	1650.810	-3426.	850 -3573.	.840 -4084	.530 -302.981	3328.470 3	672.470 -2559	9.970 -2778.8	820	

30. PVA 10% +Ag0.5%, 22.5 kV

DATE	User	Name	Sample_N	lame						
02-09-2012	U	ser_1	Sample	_1						
I(mA)	В	D	D_T	MN T	(K)					
10.000	0.550	6.690	0.100	1000 3	00					
Nb		u	rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
1.341E+1	7 1.43	5E+02	3.244E-01	4.655E+0	1 8.588E+01	7.228E+00	8.971E+13	3.083E+00	2.666E+02	-4.574E-01
Vab	Vbc	Va	ic Vm	ac V-m	ac Vcd	Vda	Vbd Vn	nbd V-mb	od	
+I:										
6546.720	-2803.90	00 -945.	424 -2462.	460 -3185.	660 -999.460	-1010.430 -1	650.220 -2262	2.380 -2317.0)80	
-I:										
99.095 3	357.850) -1756.	910 -3545.	430 -3986.	230 -450.249	3160.930 3	558.410 -254	1.030 -2619.5	500	

31. PVA 10% +Ag0.75%, 12.5 kV

DATE	User	Name	Sample N	ame							
02-09-2012	Us	ser_1	Sample_	_1							
I(mA) 10.000	В 0.550	D 6.690	D_T 0.100	MN 1000	T(K) 300						
Nb 2.227E+1	7 1.84	u 1E+02	rho 1.523E-01	RH 2.803E+	01 4.	RHA .182E+01	RHB 1.425E+01	NS 1.490E+14	SIGMA 6.565E+00	DELTA 2.854E+02	ALPHA -5.731E-01
Vab	Vbc	Va	ic Vm	ac V-1	nac	Vcd	Vda	Vbd Vn	ıbd V-mt	od	
5633.370	-999.46	0 -1750.	400 -2757.	110 -3200	0.020	-999.460 -	-1318.730 -1	602.980 -227	8.910 -2379.6	540	
-I: 99.937 3	234.130	-660.1	32 -3683.	830 -398	9.210	-333.346	2820.400 3	672.870 -253	6.590 -2684.1	70	

32. PVA 10% +Ag0.75%, 15.0 kV

DATE	User_N	Name	Sample_N	ame							
02-09-2012	Use	er_1	Sample_	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	u		rho	RF	ł	RHA	RHB	NS	SIGMA	DELTA	ALPHA
1.617E+17	7 1.1631	E+00 3	3.317E+01	3.859I	E+01 (6.633E+01	1.086E+01	1.082E+14	3.014E-02	2.308E+02	-7.103E-01
Vab	Vbc	Va	c Vm	ac V	-mac	Vcd	Vda	Vbd Vm	bd V-mb	od	
+I:											
6667.700 -2	2811.380) -1191.	250 -2355	.620 -31	17.270	-993.261 -	-2045.830 -1	440.880 -1994	4.140 -2157.	150	
-I:											
-1022.550	2475.57() -2804.	650 -3381	.640 -39	925.170) -790.926	3902.750 3	810.140 -2294	4.200 -2492.	910	

33. PVA 10% +Ag0.75%, 17.5 kV

DATE	User_	Name	Sample_N	lame							
02-09-2012	2 Us	er_1	Sample	_1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	ı	1	rho	RI	H	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-1.064E+1	17 2.80	5E+00	2.092E+01	-5.869	E+01 -	1.191E+02	1.721E+00	-7.116E+13	4.780E-02	2.945E+02	-1.045E+00
Vab	Vbc	Va	ic Vm	ac V	-mac	Vcd	Vda V	Vbd Vmb	d V-mb	d	
+I·											
6660.620	-2040 17	0 -211	359 -4318	350 - 36	0 970	-981 912 -1	042 260 -16	45 650 -2313	600 -2299 7	50	
1.	2010.17	0 211.	557 1510.	550 50	50.770	J01,J12 1	012.200 10	15.050 2515.	000 2277.7	50	
-1;										× 0	
-1448.270	1610.76	0 -3289	.160 -4510	.700 -41	84.960	-454.271 3	3000.330 36	88.960 - 2625.	250 - 2617.0	60	

34. PVA 10% +Ag0.75%, 20.0 kV

DATE	User_N	ame S	Sample_N	ame							
02-09-2012	User	_1	Sample_	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550 6	5.690	0.100	1000	300						
Nb	u		rho	RH		RHA	RHB	NS	SIGMA	DELTA	ALPHA
8.314E+16	5 5.051E	+00 1.	486E+01	7.508E	+01	1.405E+02	9.609E+00	0 5.562E+13	6.728E-02	3.113E+02	-1.288E+00
Vab	Vbc	Vac	Vma	ac V-	mac	Vcd	Vda	Vbd Vn	ıbd V-mb	od	
+I:											
6893.800 -	1358.880	135.83	36 -2981.	110 -408	3.610	-989.021	-999.460 -1	003.600 -2187	.010 -2224.7	730	
-I:											
-1577.460	1811.850	-2713.5	30 -3826.	200 -446	66.520	-558.330	3498.890 3	3646.920 -246'	7.190 -2536.:	510	

35. PVA 10% +Ag0.75%, 22.5 kV

DATE	User_l	Name	Sample_N	ame							
02-09-2012	Use	er_1	Sample_	1							
I(mA)	В	D	D_T	MN	T(K)						
10.000	0.550	6.690	0.100	1000	300						
Nb	u		rho	R	Н	RHA	RHB	NS	SIGMA	DELTA	ALPHA
-5.212E+1	6 2.872	E+00	4.169E+01	-1.19	8E+02	-2.402E+02	6.843E-0	1 -3.487E+1	3 2.399E-02	2.614E+02	-1.342E+00
Vab	Vbc	Va	c Vma	ac v	/-mac	Vcd	Vda	Vbd V	mbd V-mb	od	
+I:											
6830.650 -	2004.640	0 -143.	279 -4201	.150 -2	500.490	-999.460	-999.460 -	1098.530 -20	72.600 -2081.	920	
-I:											
-2366.510	1530.320	0 -3766	.740 -4508	.350 -3	597.600	-1357.700	3408.800	3376.710 -24	30.990 -2442.	.560	

36. PVA 10%+Ag0.25%+PEDOT/PSS 0.084%, 12.5 kV

DATE	User_N	Name S	Sample_Na	ame						
01-06-2012	Use	r_1	Sample_1							
I(mA)	В	D	D_T	MN T(K)					
20.000	0.550	6.690	0.100	1000 30	0					
Nb	ι	ı	rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
2.499E+1	6 6.865	5E+02	3.639E-01	2.498E+02	4.111E+02	8.850E+01	1.672E+13	2.748E+00	1.182E+02	9.331E-02
Vab	Vbc	Va	ic Vm	ac V-ma	e Ved	Vda	Vbd Vn	nbd V-mb	d	
+I:										
2370.460	-5752.91	0 -317.	273 3723.	170 348.64	0 -934.693 -6	5193.010 -14	00.210 1508	.090 4386.31	0	
-I:										
1790.790	4738.59	0 -2187	.350 -999.	460 -1670.24	40 1833.450	5251.810 20	068.010 -979	.443 1316.74	40	

37. PVA 10%+Ag0.25%+PEDOT/PSS 0.084%, 15.0 kV

DATE	User	Name	Sample_	Name								
01-06-2012	Use	er_1	Sample	_1								
I(mA)	В	D	D_T	MN	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u		rho	RH	I	RHA	RHB	N	s s	SIGMA	DELTA	ALPHA
-1.545E+1	7 1.167	E+02 3	3.463E-01	-4.041E	+01 -	8.014E+01	-6.842E-	01 -1.033	E+14 2.	.888E+00	1.181E+02	5.042E-02
Vab	Vbc	Va	c Vm	ac V-	mac	Vcd	Vda	Vbd	Vmbd	V-mb	d	
+I:												
2983.090 -	-5764.470	0 -346.7	771 1894.4	470 294	3.480	-999.460 -	4666.380	-1056.040	4514.26	60 4496.36	60	
-I:												
1971.020	4965.660) -1814.	660 -1460.	.340 -93	8.407	912.737	5131.610	2045.760	1543.14	0 1529.74	0	

38. PVA 10%+Ag0.25%+PEDOT/PSS 0.084%, 1.75 kV

DATE	Lloor N	Nama	Samula	Nomo							
DATE	User_1	Name	Sample_	Iname							
01-06-2012	Use	er_1	Sampl	e_1							
I(mA)	в	D	DΤ	MN	т(к)						
1(IIII 1)			D_1	10110	1(11)						
20.000	0.550	6.690	0.100	1000	300						
Nb	11		rho	RF	[RHA	RHB	NS	SIGMA	DELTA	ALPHA
				0 - (1 -)			1.600			1 2005.02	- 42/5 02
6.395E+16	2.903E-	+02 3.3	362E-01	9.761E+0	01 1.4	187E+02	4.653E+01	4.278E+1	3 2.974E+00	1.300E+02	7.436E-02
Vab	Vbc	Va	e Vr	nac V	mac	Vcd	Vda	Vbd	Vmbd V-	mbd	
+1:											
2700.410 -	5584.889	9 -418.1	155 3829	9.670 220	8.990	-999.460	-4664.540 -	1127.610 2	2506.890 4567	.850	
-T·											
								. .			
2021.350	4838.720) -1967.	220 -826	5.259 -146	8.970	1100.160	5153.200	2120.620 -	238.084 1516	.880	

39. PVA 10%+Ag0.25%+PEDOT/PSS 0.084%, 20.0K

DATE	User_1	Name S	Sample_Na	ne						
01-06-2012	Use	er_1	Sample_1							
I(mA)	В	D	D_T N	AN T(K)					
20.000	0.550	6.690	0.100 1	000 300						
Nb	u		rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
2.727E+1	6 6.146	E+02 3	.724E-01	2.289E+02	3.916E+02	6.618E+01	1 1.824E+13	2.685E+00	1.112E+02	1.968E-01
Vab	Vbc	Vac	vmac Vmac	V-mac	Vcd	Vda	Vbd V	mbd V-mb	d	
+I:										
2847.130	-5542.19	0 99.9	37 3715.89	90 -99.946	-999.460	-4688.610 -	1003.070 214	42.890 4804.0	030	
-I:										
4117.690	5008.450) -2015.3	390 -999.46	0 -2239.750	1670.590	5084.370	2043.420 -96	50.172 1265.7	720	

40. PVA 10%+Ag0.25%+PEDOT/PSS 0.084%, 22.5 kV

DATE	User_1	Name	Sample_N	ame								
01-06-2012	Use	er_1	Sample	_1								
I(mA)	В	D	D_T	MN 7	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u		rho	RH		RHA	RHB	NS		SIGMA	DELTA	ALPHA
5.933E+18	8 3.119	E+00 3	3.373E-01	1.052E+	00 -1.7	732E+00	3.837E+0	0 3.969E	2+15	2.964E+00	1.363E+02	2.097E-02
Vab	Vbc	Va	c Vm	ac V-n	nac	Vcd	Vda	Vbd	Vm	bd V-mb	d	
+I:												
3010.510 -	5208.54	0 -616.9	985 3622.	640 3625	440 -9	999.460 -	4344.020 -1	1026.210	2036.	700 2046.53	30	
-I:												
1649.200	4881.780) -1982.	300 -990.	866 -999.	460 7	733.450	5454.800 2	2071.080	-526.	785 -542.18	38	

41. PVA 10%+Ag0.50%+ PEDOT/PSS 0.084%, 12.5 kV

DATE	User_1	Name	Sample_N	lame								
01-06-2012	Use	er_1	Sample	_1								
I(mA)	В	D	D_T	MN	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u		rho	R	H	RHA	RHB	Ν	S	SIGMA	DELTA	ALPHA
-5.189E+16	6 3.575	E+02	3.365E-01	-1.2031	E+02 -2	2.060E+02	-3.465E+0	1 -3.471	E+13	2.972E+00	1.171E+02	1.940E-02
Vab	Vbc	Va	c Vm	ac V	-mac	Vcd	Vda	Vbd	Vmb	od V-mbd	1	
+I:												
2610.220 -	6049.31() -711.	176 1262.	630 357	2.240	-999.460 -	4215.690 -1	104.560	4390.9	060 2378.14	0	
-I:												
1449.170 4	4952.180) -1740.	.950 -1771	.020 -8	16.014	398.638	5470.920 20	019.920	1641.9	40 -142.980)	

42. PVA 10%+Ag0.50%+ PEDOT/PSS 0.084%, 15.0 kV

DATE	User_N	Jame S	ample_N	ame								
01-06-2012	Use	r_1	Sample_	1								
I(mA)	в	D	D_T	MN	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u		rho	RH		RHA	RHB	NS	5	SIGMA	DELTA	ALPHA
-1.157E+18	8 1.6361	E+01 3.	299E-01	-5.396E	+00 -	1.022E+01	-5.719E-0	01 -7.738H	E+14 3.	031E+00	1.349E+02	5.481E-03
Vab	Vbc	Vac	Vma	ic V-	mac	Vcd	Vda	Vbd	Vmbd	V-mb	t	
+I:												
3018.660 -:	5599.220	-745.14	14 3567.4	30 365	7.580	-999.460 -	4277.220 -	1051.180	1851.79	0 1856.06	0	
-I:												
1536.310 4	4901.640	-1902.1	20 -956.1	46 -933	.220	480.120	5448.770	2044.810	-534.622	2 -526.59	1	

43. PVA 10%+Ag0.50%+ PEDOT/PSS 0.084%, 17.5 kV

DATE	User_N	Name	Sample_N	ame								
01-06-2012	Use	er_1	Sample_	_1								
I(mA)	В	D	D_T	MN 7	(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u		rho	RH		RHA	RHB	NS	5	SIGMA	DELTA	ALPHA
-9.214E+17	7 2.1981	E+01 3	3.082E-01	-6.775E+	00 9	0.665E+00	-2.321E+	-01 -6.164	E+14	3.244E+00	1.289E+02	2.390E-03
Vab	Vbc	Vac	c Vm	ac V-n	nac	Vcd	Vda	Vbd	Vmb	d V-mbd	l	
+I:												
2546.290 -	6104.280) -913.8	319 3496.7	700 3578	880 ·	-999.460 -	4410.960	-549.211	2407.0	90 2212.160)	
-I:												
1379.150	4995.330) -1741.2	240 -945.3	304 -799	561	65.242	5274.250	2008.870	-99.94	46 -142.200	1	

44. PVA 10%+Ag0.50%+ PEDOT/PSS 0.084%, 20.0 kV

DATE	User_N	Name	Sample_N	lame								
01-06-2012	Use	er_1	Sample	_1								
I(mA)	В	D	D_T	MN	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u		rho	R	Н	RHA	RHB	NS	S	IGMA	DELTA	ALPHA
8.717E+1	7 1.1501	E+01 6	.227E-01	7.1611	E+00 -1	.683E+01	3.115E+01	1 5.832E+	-14 1.60)6E+00	1.284E+02	1.064E-01
Vab	Vbc	Vac	v Vm	ac	V-mac	Vcd	Vda	Vbd	Vmbd	V-m	ıbd	
+I:												
2738.650 -	6175.350) -1058.2	240 3364	.080 34	67.600	-1050.510	-6511.730 -	1219.140	3125.08	0 2814.	530	
-I:												
4037.830	6001.840	-108.7	34 -529.	864 -5	37.016	227.870	5546.000	1960.740	1033.39	0 517.	974	

45. PVA 10%+Ag0.50%+ PEDOT/PSS 0.084%, 22.5 kV

DATE	User_	Name	Sample_N	lame								
01-06-2012	Us	er_1	Sample	_1								
I(mA)	В	D	D_T	MN	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u	I	rho	R	Н	RHA	RHB	NS	SI	GMA	DELTA	ALPHA
3.752E+1	8 5.497	'E+00	3.026E-01	1.664I	E+00 -4	.217E+00	7.544E+0	0 2.510E	+15 3.30	04E+00	1.329E+02	7.744E-02
Vab	Vbc	Va	ic Vm	ac V	'-mac	Vcd	Vda	Vbd	Vmbd	V-mb	d	
+I:												
3282.020	-4178.29	0 -1432	.880 3547	.510 34	43.710	-981.889	-6649.650 -	1226.810	3798.030	3922.4	-60	
-I:												
4031.400	6187.28	0 139.	352 -157.	896 -28	39.434	15.497	5428.260	1964.350	1674.940	1749.7	50	

46. PVA 10%+Ag0.75%+ PEDOT/PSS 0.084%, 12.5 kV

DATE	User_	Name	Sample_N	lame						
01-06-2012	Us	er_1	Sample	_1						
I(mA)	В	D	D_T	MN T	K)					
20.000	0.550	6.690	0.100	1000 3	00					
Nb	υ	ı	rho	RH	RHA	RHB	NS	SIGMA	DELTA	ALPHA
8.254E+1	6 2.732	2E+02	2.768E-01	7.562E+0	1.274E+02	2 2.384E+0	1 5.522E+13	3.613E+00	1.267E+02	8.360E-02
Vab	Vbc	Va	ic Vm	ac V-ma	ic Vcd	Vda	Vbd V1	nbd V-mb	od	
+I:										
3183.820 -	-4626.63	0 -1412	.420 3467	.310 1648.8	340 -998.447	-6573.390 -	1221.680 343	1.380 4114.8	350	
-I:										
4068.800	6121.33	0 119.	646 -261	.345 -1241.8	360 19.183	5418.560 1	1922.040 135	8.030 1884.7	720	

47. PVA 10%+Ag0.75%+ PEDOT/PSS 0.084%, 15.0 kV

DATE	User_	Name	Sample_N	lame								
01-06-2012	Us	er_1	Sample	_1								
I(mA)	В	D	D_T	MN	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u	ı	rho	R	Н	RHA	RHB	Ν	S	SIGMA	DELTA	ALPHA
-6.249E+1	6.441	E+01	1.551E-01	-9.989	E+00 -	2.448E+01	4.507E+0	00 -4.1811	E+14	6.448E+00	1.293E+02	6.050E-02
Vab	Vbc	Va	ic Vm	ac V	/-mac	Vcd	Vda	Vbd	Vmb	d V-mbo	1	
+I:												
3306.070	-6084.69	0 -1122	.590 3334	.150 35	31.310	-937.667	-6700.300 -	-1241.750	3763.9	970 3786.96	50	
-I:												
3947.840	6250.31	0 325.	216 -189.	661 -1	53.533	-94.503 5	523.760	1962.610	1692.2	20 1685.57	70	
48. PVA 10%+Ag0.75%+ PEDOT/PSS 0.084%, 17.5 kV

DATE	User_1	Name	Sample_N	Jame								
01-06-2012	Use	er_1	Sample	_1								
I(mA)	В	D	D_T	MN	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u		rho]	RH	RHA	RHB	N	S	SIGMA	DELTA	ALPHA
-1.421E+18	8 4.052	E+01	1.084E-01	-4.39	4E+00 -	2.547E+01	1.669E+	01 -9.505E	E+14 9.1	222E+00	1.288E+02	6.511E-02
Vab	Vbc	Va	c Vm	ac	V-mac	Vcd	Vda	Vbd	Vmbd	V-mb	d	
+I:												
3300.000 -	6178.880	0 -1144	.290 3342	.190 3	550.360	-963.067	-6638.130	-1228.180	3503.70	0 3881.5	50	
-I:												
4009.510 (6175.300) 194.8	360 -259.	347 -	218.722	-87.689	5389.050	1952.230	1462.10	0 1730.2	00	

49. PVA 10%+Ag0.75%+ PEDOT/PSS 0.084%, 20.0 kV

DATE	User_1	Name	Sample_N	ame								
01-06-2012	2 Use	er_1	Sample_	1								
I(mA)	В	D	D_T	MN	T(K)							
20.000	0.550	6.690	0.100	1000	300							
Nb	u		rho	RF	ł	RHA	RHB	NS	5 S	IGMA	DELTA	ALPHA
-8.838E+	16 6.468	E+02	1.092E-01	-7.063E	E+01 -1	.299E+02	-1.135E+0	01 -5.912E	E+13 9.1	57E+00	1.242E+02	6.715E-02
Vab	Vbc	Va	c Vma	ac V	-mac	Vcd	Vda	Vbd	Vmbd	V-mb	d	
+I:												
3317.040	-6215.450	0 -1170.	080 1853.	590 33:	50.330	-1028.980	-6576.770	-1233.380	3979.250	3479.6	10	
-I:												
3995.620	6134.74() 121.	167 -1061	.550 -4	19.271	-73.988	5457.070	1920.900	1796.620	1371.62	20	

50. PVA 10%+Ag0.75%+ PEDOT/PSS 0.084%, 22.5 kV

DATE	User_N	Name Sa	ample_Nam	e							
01-06-2012	Use	r_1	Sample_1								
I(mA)	В	D	D_T M	N T(K)							
20.000	0.550	6.690	0.100 10	00 300							
Nb	u		rho	RH	RHA	RHB	Ν	s s	SIGMA	DELTA	ALPHA
-1.122E+1	8 7.049	E+01 7.8	394E-02 -5	565E+00 -2	2.957E+01	1.844E+	01 -7.504	E+14 1.2	267E+01	1.256E+02	2.378E-02
Vab	Vbc	Vac	Vmac	V-mac	Vcd	Vda	Vbd	Vmbd	V-mbc	1	
+I:											
3303.660	-4689.540	0-1701.89	0 3380.25	3340.030	-999.460	-4491.620	-446.622	3690.770	3798.53	0	
-I:											
3867.740	6379.680	614.19	9 134.725	-99.946 -	1032.170	5109.800	1934.450	1742.840	1729.35	0	

Appendix D Table of Electrical Conductivity Measurement Result of Aligned Single

Fibers by Using The 2-probe Technique

1) PVA1	.0%, 12.5	kV, 20 m	in $(R_0 = 4.0)$	6 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	$R_0 * V$	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0//R_1$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.234	0.2344	0.234	0.234133333	1	0.950581333	4.06	-82.15519102	82.16
0.4785	0.4795	0.4798	0.479266667	2	1.945822667	8.12	-149.8781778	149.88
0.7397	0.7399	0.7397	0.739766667	3	3.003452667	12.18	3527.708052	3527.71
0.9847	0.9847	0.98469	0.984696667	4	3.997868467	16.24	-7618.928471	7618.93
1.2192	1.2196	1.221	1.219933333	5	4.952929333	20.3	-431.2664646	431.27
1.4675	1.4678	1.4687	1.468	6	5.96008	24.36	-610.2204409	610.22
1.7157	1.7158	1.7165	1.716	7	6.96696	28.42	-860.1694915	860.17
1.9634	1.9633	1.9637	1.963466667	8	7.971674667	32.48	-1146.676709	1146.68
								1803.38

2) PVA10%, 15.0 kV, 20 min (R₀=4.06 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (µA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	$R_0 * V$	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0//R_1$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2441	0.244	0.2439	0.244	1	0.99064	4.06	-433.7606838	433.76
0.49	0.4902	0.489	0.489733333	2	1.988317333	8.12	-695.046793	695.05
0.7404	0.7404	0.7403	0.740366667	3	3.005888667	12.18	2068.379939	2068.38
0.9848	0.98478	0.98475	0.984776667	4	3.998193267	16.24	-8988.598207	8988.60
1.2379	1.2384	1.2378	1.238033333	5	5.026415333	20.3	768.493047	768.49
1.4878	1.4886	1.4882	1.4882	6	6.042092	24.36	578.7323007	578.73
1.7382	1.7383	1.7382	1.738233333	7	7.057227333	28.42	496.6158363	496.62
1.9875	1.9876	1.9876	1.987566667	8	8.069520667	32.48	467.1992022	467.20
								2228.00

3) PVA10%	, 17.5 kV,	20 min	$(R_0 = 4.06 \text{ M}\Omega)$
-----------	------------	--------	--------------------------------

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (µA) at	I (μA) at	Voltage	$R_{_{0}}*I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2465	0.2452	0.2447	0.245466667	1	0.996594667	4.06	-1192.247455	1192.25
0.4937	0.4925	0.4924	0.492866667	2	2.001038667	8.12	7817.715019	7817.72
0.742	0.7413	0.7411	0.741466667	3	3.010354667	12.18	1176.281226	1176.28
0.9859	0.9859	0.9857	0.985833333	4	4.002483333	16.24	6539.597315	6539.60
1.2394	1.2389	1.2389	1.239066667	5	5.030610667	20.3	663.1675233	663.17
1.4892	1.4886	1.4889	1.4889	6	6.044934	24.36	542.1284551	542.13
1.7392	1.738	1.7383	1.7385	7	7.05831	28.42	487.394958	487.40
1.988	1.9866	1.9876	1.9874	8	8.068844	32.48	471.7912963	471.79
								2361.29

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}^{}*I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0//R_1$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2465	0.2452	0.2447	0.245466667	1	0.996594667	4.06	-1192.247455	1192.25
0.4937	0.4925	0.4924	0.492866667	2	2.001038667	8.12	7817.715019	7817.72
0.742	0.7413	0.7411	0.741466667	3	3.010354667	12.18	1176.281226	1176.28
0.9904	0.9891	0.9894	0.989633333	4	4.017911333	16.24	906.6885026	906.69
1.2394	1.2389	1.2389	1.239066667	5	5.030610667	20.3	663.1675233	663.17
1.4892	1.4886	1.4889	1.4889	6	6.044934	24.36	542.1284551	542.13
1.7392	1.738	1.7384	1.738533333	7	7.058445333	28.42	486.2663686	486.27
1.988	1.9876	1.9866	1.9874	8	8.068844	32.48	471.7912963	471.79
								1657.04

4) PVA10%+PEDOT/PSS 0.052%, 12.5 kV, 20 min (R₀=4.06 MΩ)

5) PVA10%+PEDOT/PSS 0.052%, 15.0 kV, 20 min (R₀=4.06 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I(\mu A)$ at	$R_0 * V$	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.246	0.2461	0.2461	0.246066667	1	0.999030667	4.06	-4188.445667	4188.45
0.4944	0.4944	0.4945	0.494433333	2	2.007399333	8.12	1097.396162	1097.40
0.7437	0.7438	0.7438	0.743766667	3	3.019692667	12.18	618.5043502	618.50
0.9926	0.9928	0.9927	0.9927	4	4.030362	16.24	534.8791252	534.88
1.2427	1.2428	1.2426	1.2427	5	5.045362	20.3	447.5111327	447.51
1.4929	1.4932	1.4928	1.492966667	6	6.061444667	24.36	396.4542624	396.45
1.743	1.7437	1.7431	1.743266667	7	7.077662667	28.42	365.9415936	365.94
1.9932	1.9933	1.9929	1.993133333	8	8.092121333	32.48	352.5784834	352.58
								1000.21

6) PVA10%+PEDOT/PSS 0.052%, 17.5 kV, 20 min (R₀=4.06 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	R_0^{\prime}/R_1	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2469	0.2465	0.2468	0.246733333	1	1.001737333	4.06	2336.914812	2336.92
0.4952	0.495	0.495	0.495066667	2	2.009970667	8.12	814.388874	814.39
0.7445	0.7443	0.7443	0.744366667	3	3.022128667	12.18	550.4172567	550.42
0.9934	0.9935	0.9933	0.9934	4	4.033204	16.24	489.0976991	489.10
1.2434	1.2437	1.2436	1.243566667	5	5.048880667	20.3	415.2971182	415.30
1.4937	1.4939	1.4938	1.4938	6	6.064828	24.36	375.763559	375.76
1.7444	1.7444	1.7442	1.744333333	7	7.081993333	28.42	346.6135458	346.61
1.9944	1.994	1.9945	1.9943	8	8.096858	32.48	335.3362655	335.34
								707.98

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}^{}*I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0//R_1$	(V)	$R_0^{//R_1}$		V) Mohm	V) Mohm
0.2348	0.2348	0.2349	0.234833333	1	0.953423333	4.06	-87.16810993	87.17
0.48	0.4808	0.4808	0.480533333	2	1.950965333	8.12	-165.5971286	165.60
0.727	0.7278	0.7284	0.727733333	3	2.954597333	12.18	-268.2661811	268.27
0.9775	0.9774	0.9774	0.977433333	4	3.968379333	16.24	-513.5881596	513.59
1.23	1.231	1.23	1.230333333	5	4.995153333	20.3	-4188.445667	4188.45
1.469	1.4698	1.4702	1.4696666667	6	5.966846667	24.36	-734.7677458	734.77
1.7174	1.7173	1.7183	1.7176666667	7	6.973726667	28.42	-1081.705151	1081.71
1.9645	1.965	1.9653	1.964933333	8	7.977629333	32.48	-1451.901299	1451.90
								1061.43

7) PVA10%+PEDOT/PSS 0.084%, 12.5 kV, 20 min (R_0 =4.06 M Ω)

8) PVA10%+PEDOT/PSS 0.084%, 15.0 kV, 20 min (R₀=4.06 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	R_0^*V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2473	0.247	0.2463	0.246866667	1	1.002278667	4.06	1781.74371	1781.74
0.4956	0.4994	0.4947	0.496566667	2	2.016060667	8.12	505.5829978	505.58
0.7451	0.7448	0.7442	0.7447	3	3.023482	12.18	518.6951708	518.70
0.9942	0.9937	0.9936	0.993833333	4	4.034963333	16.24	464.486605	464.49
1.234	1.2336	1.2336	1.233733333	5	5.008957333	20.3	2266.299494	2266.30
1.4942	1.4938	1.4942	1.494066667	6	6.065910667	24.36	369.5911638	369.59
1.7446	1.7445	1.7441	1.7444	7	7.082264	28.42	345.473111	345.47
1.9942	1.9936	1.9932	1.9936666667	8	8.094286667	32.48	344.4813689	344.48
								824.54

9) PVA10%+PEDOT/PSS 0.084%, 17.5 kV, 20 min (R₀=4.06 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0//R_1$	R ₀ //R1	R ₀ //R1	(V)	R_0^{\prime}/R_1		V) Mohm	V) Mohm
0.247	0.2466	0.2466	0.246733333	1	1.001737333	4.06	2336.914812	2336.92
0.4957	0.4955	0.4951	0.495433333	2	2.011459333	8.12	708.5927046	708.59
0.7454	0.7451	0.7447	0.745066667	3	3.024970667	12.18	487.7723195	487.77
0.9946	0.9945	0.9946	0.994566667	4	4.037940667	16.24	428.0367592	428.04
1.2448	1.2446	1.2449	1.244766667	5	5.053752667	20.3	377.6556822	377.66
1.4957	1.4952	1.4951	1.495333333	6	6.071053333	24.36	342.8410584	342.84
1.7458	1.746	1.746	1.745933333	7	7.088489333	28.42	321.1686531	321.17
1.9956	1.9959	1.996	1.995833333	8	8.103083333	32.48	315.0848828	315.08
								664.76

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0//R_1$	(V)	$R_0^{//R_1}$		V) Mohm	V) Mohm
0.2467	0.2468	0.2468	0.246766667	1	1.001872667	4.06	2168.031328	2168.03
0.4954	0.4953	0.4954	0.495366667	2	2.011188667	8.12	725.7343741	725.73
0.745	0.7449	0.7452	0.745033333	3	3.024835333	12.18	490.4303009	490.43
0.994	0.9944	0.9945	0.9943	4	4.036858	16.24	440.6099083	440.61
1.2444	1.2446	1.2444	1.244466667	5	5.052534667	20.3	386.4115124	386.41
1.4947	1.4952	1.4953	1.495066667	6	6.069970667	24.36	348.1458897	348.15
1.7456	1.7462	1.746	1.745933333	7	7.088489333	28.42	321.1686531	321.17
1.9952	1.996	1.9959	1.9957	8	8.102542	32.48	316.7482592	316.75
								649.66

10) PVA10%+PEDOT/PSS 0.1%, 12.5 kV, 20 min (R₀=4.06 MΩ)

11) PVA10%+PEDOT/PSS 0.1%, 15.0 kV, 20 min (R_0 =4.06 M Ω)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	R_0^*V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0//R_1$	R ₀ //R1	$R_0//R_1$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.247	0.2472	0.247	0.247066667	1	1.003090667	4.06	1313.632442	1313.63
0.4957	0.4961	0.4959	0.4959	2	2.013354	8.12	608.0575109	608.06
0.7458	0.7456	0.7456	0.745666667	3	3.027406667	12.18	444.4174167	444.42
0.9947	0.9952	0.9948	0.9949	4	4.039294	16.24	413.2946506	413.29
1.2449	1.2455	1.2453	1.245233333	5	5.055647333	20.3	364.7973548	364.80
1.4954	1.4958	1.4959	1.4957	6	6.072542	24.36	335.8054644	335.81
1.7462	1.7465	1.7467	1.746466667	7	7.090654667	28.42	313.4973747	313.50
1.9968	1.9966	1.9967	1.9967	8	8.106602	32.48	304.6847151	304.68
								512.27

12) PVA10%+PEDOT/PSS 0.1%, 17.5 kV, 20 min (R₀=4.06 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}$ *I (µA) at	R_0^*V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_{0}^{\prime \prime }/R_{1}$	$R_0^{\prime\prime}/R_1$	R ₀ //R1	R_0^{\prime}/R_1	(V)	$R_0^{//R_1}$		V) Mohm	V) Mohm
0.2476	0.2476	0.2474	0.247533333	1	1.004985333	4.06	814.388874	284.82
0.4965	0.4964	0.4961	0.496333333	2	2.015113333	8.12	537.2739303	584.47
0.7462	0.746	0.746	0.746066667	3	3.029030667	12.18	419.5563312	849.16
0.9958	0.9953	0.9954	0.9955	4	4.04173	16.24	389.1684639	1040.62
1.246	1.2458	1.2454	1.245733333	5	5.057677333	20.3	351.9580193	1009.12
1.4964	1.4964	1.4966	1.496466667	6	6.075654667	24.36	321.9893904	927.96
1.7474	1.7473	1.7473	1.747333333	7	7.094173333	28.42	301.7839445	888.69
1.9976	1.9976	1.9977	1.997633333	8	8.110391333	32.48	294.225996	1512.95
								887.22

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_{0}}$ *I (μ A) at	R_0^*V	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		$R_0^{//R_1}$		Mohm	V) Mohm
0.2561	1	1.0138999	3.959	284.822193	284.82
0.5086	2	2.0135474	7.918	584.4663921	584.47
0.7613	3	3.0139867	11.877	849.1638485	849.16
1.0142	4	4.0152178	15.836	1040.62348	1040.62
1.2679	5	5.0196161	19.795	1009.12006	1009.12
1.522	6	6.025598	23.754	927.9631221	927.96
1.776	7	7.031184	27.713	888.6929194	888.69
2.026	8	8.020934	31.672	1512.945448	1512.95
					887.22

13) PVA10%+AgNPs 0.25%, 12.5 kV, 20 min (R_0 =3.959 M Ω)

14) PVA10%+AgNPs 0.25%, 15.0 kV, 20 min (R_0 =3.959 M Ω)

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_0}$ *I (μ A) at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		$R_0^{//R_1}$		Mohm	V) Mohm
0.2548	1	1.0087532	3.959	452.2917333	452.29
0.5075	2	2.0091925	7.918	861.354365	861.35
0.7611	3	3.0131949	11.877	900.1205011	900.12
1.0144	4	4.0160096	15.836	989.1565061	989.16
1.2683	5	5.0211997	19.795	933.7396284	933.74
1.5228	6	6.0287652	23.754	825.7894956	825.79
1.7771	7	7.0355389	27.713	779.7934095	779.79
2.028	8	8.028852	31.672	1097.740191	1097.74
					855.00

15) PVA10%+AgNPs 0.25%, 17.5 kV, 20 min (R_0 =3.959 M Ω)

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_0}^*$ I (µA) at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		R ₀ //R1		Mohm	V) Mohm
0.255	1	1.009545	3.959	414.772132	414.77
0.5078	2	2.0103802	7.918	762.7984047	762.80
0.7612	3	3.0135908	11.877	873.8999912	873.90
1.0143	4	4.0156137	15.836	1014.237497	1014.24
1.268	5	5.020012	19.795	989.1565061	989.16
1.5225	6	6.0275775	23.754	861.354365	861.35
1.7772	7	7.0359348	27.713	771.2022886	771.20
2.028	8	8.028852	31.672	1097.740191	1097.74
					848.15

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_{0}}$ *I (μ A) at	$R_0 * V$	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		R ₀ //R1		Mohm	V) Mohm
0.2567	1	1.0162753	3.959	243.2520445	243.25
0.5084	2	2.0127556	7.918	620.746966	620.75
0.7615	3	3.0147785	11.877	803.6674899	803.67
1.0143	4	4.0156137	15.836	1014.237497	1014.24
1.268	5	5.020012	19.795	989.1565061	989.16
1.5222	6	6.0263898	23.754	900.1205011	900.12
1.7759	7	7.0307881	27.713	900.1205011	900.12
2.026	8	8.020934	31.672	1512.945448	1512.95
					873.03

16) PVA10%+AgNPs 0.5%, 12.5 kV, 20 min (R_0 =3.959 M Ω)

17) PVA10%+AgNPs 0.5%, 15.0 kV, 20 min (R_0 =3.959 M Ω)

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_{0}}$ *I (μ A) at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		R ₀ //R1		Mohm	V) Mohm
0.2549	1	1.0091491	3.959	432.7201583	432.72
0.508	2	2.011172	7.918	708.736126	708.74
0.7612	3	3.0135908	11.877	873.8999912	873.90
1.0145	4	4.0164055	15.836	965.2860321	965.29
1.2684	5	5.0215956	19.795	916.6219045	916.62
1.5229	6	6.0291611	23.754	814.5783252	814.58
1.7772	7	7.0359348	27.713	771.2022886	771.20
2.028	8	8.028852	31.672	1097.740191	1097.74
					822.60

18) PVA10%+AgNPs 0.5%, 17.5 kV, 20 min (R_0 =3.959 M Ω)

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_0}^{}*I(\mu A)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		R ₀ //R1		Mohm	V) Mohm
0.256	1	1.013504	3.959	293.1723934	293.17
0.5085	2	2.0131515	7.918	602.0606015	602.06
0.7615	3	3.0147785	11.877	803.6674899	803.67
1.0144	4	4.0160096	15.836	989.1565061	989.16
1.267	5	5.016053	19.795	1233.102847	1233.10
1.5226	6	6.0279734	23.754	849.1638485	849.16
1.7775	7	7.0371225	27.713	746.5283857	746.53
2.029	8	8.032811	31.672	965.2860321	965.29
					810.27

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_{0}}$ *I (μ A) at	$R_0 * V$	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		R ₀ //R1		Mohm	V) Mohm
0.2614	1	1.0348826	3.959	113.4949803	113.49
0.5107	2	2.0218613	7.918	362.1925503	362.19
0.763	3	3.020717	11.877	573.2972921	573.30
1.0149	4	4.0179891	15.836	880.3108549	880.31
1.2679	5	5.0196161	19.795	1009.12006	1009.12
1.5213	6	6.0228267	23.754	1040.62348	1040.62
1.7749	7	7.0268291	27.713	1032.94557	1032.95
2.025	8	8.016975	31.672	1865.802651	1865.80
					859.72

19) PVA10%+AgNPs 0.75%, 12.5 kV, 20 min (R_0 =3.959 MQ)

20) PVA10%+AgNPs 0.75%, 15.0 kV, 20 min (R_0 =3.959 M Ω)

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_{0}}$ *I (μ A) at	R_0^*V	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		$R_0^{//R_1}$		Mohm	V) Mohm
0.2536	1	1.0040024	3.959	989.1565061	989.16
0.507	2	2.007213	7.918	1097.740191	1097.74
0.7613	3	3.0139867	11.877	849.1638485	849.16
1.015	4	4.018385	15.836	861.354365	861.35
1.2697	5	5.0267423	19.795	740.2130707	740.21
1.5236	6	6.0319324	23.754	743.8839549	743.88
1.7802	7	7.0478118	27.713	579.6267867	579.63
2.033	8	8.048647	31.672	651.0576192	651.06
					814.02

21) PVA10%+AgNPs 0.75%, 17.5 kV, 20 min (R_0 =3.959 M Ω)

I (μA) at R_0/R_1	Voltage (V)	$R_{_0}^{}*I(\mu A)$ at	R_0^*V	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		R ₀ //R1		Mohm	V) Mohm
0.2309	1	0.9141331	3.959	-46.10624117	46.11
0.4834	2	1.9137806	7.918	-91.83548018	91.84
0.7223	3	2.8595857	11.877	-84.58540191	84.59
0.9792	4	3.8766528	15.836	-128.3855653	128.39
1.224	5	4.845816	19.795	-128.3855653	128.39
1.5103	6	5.9792777	23.754	-1146.301328	1146.30
1.7636	7	6.9820924	27.713	-1547.555228	1547.56
2.018	8	7.989262	31.672	-2949.525051	2949.53
					765.33

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_0}$ *I (µA) at	$R_0 * V$	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		R ₀ //R1		Mohm	V) Mohm
0.2573	1	1.0186507	3.959	212.2708531	212.27
0.5108	2	2.0222572	7.918	355.7500494	355.75
0.7655	3	3.0306145	11.877	387.9534208	387.95
1.0181	4	4.0306579	15.836	516.5389671	516.54
1.2722	5	5.0366398	19.795	540.2594992	540.26
1.5273	6	6.0465807	23.754	509.9536933	509.95
1.7823	7	7.0561257	27.713	493.7666702	493.77
2.036	8	8.060524	31.672	523.2965435	523.30
					442.47

22) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 17.5 kV, 30 min (R_0 =3.959 MQ)

23) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 17.5 kV, 45 min (R_0 =3.959 MQ)

I (μA) at $R_0//R_1$	Voltage (V)	$R_{_0}$ *I (µA) at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 - V)$	abs R1=(V*R ₀)/(I*R ₀ -
		R ₀ //R1		Mohm	V) Mohm
0.2577	1	1.0202343	3.959	195.6578681	195.66
0.5118	2	2.0262162	7.918	302.0269909	302.03
0.7668	3	3.0357612	11.877	332.1197275	332.12
1.0212	4	4.0429308	15.836	368.8726975	368.87
1.2764	5	5.0532676	19.795	371.6142646	371.61
1.5325	6	6.0671675	23.754	353.6531805	353.65
1.7902	7	7.0874018	27.713	317.0758497	317.08
2.04	8	8.07636	31.672	414.772132	414.77
					331.97

Appendix E Table of Electrical Conductivity Measurement Result of Aligned Fiber Mat

by Using The 2-probe Technique

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}*I\left(\mu A\right)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2539	0.2539	0.2539	0.2539	1	0.99610048	3.9232	-1006.072542	1006.07
0.5088	0.5087	0.5087	0.508733333	2	1.995862613	7.8464	-1896.462824	1896.46
0.7647	0.7646	0.7646	0.764633333	3	2.999809493	11.7696	-61780.51512	61780.52
1.0197	1.0198	1.0198	1.019766667	4	4.000748587	15.6928	20963.23739	20963.24
1.2755	1.2755	1.2754	1.275466667	5	5.003910827	19.616	5015.819332	5015.82
1.5313	1.5313	1.5312	1.531266667	6	6.007465387	23.5392	3153.111962	3153.11
1.7871	1.787	1.787	1.787033333	7	7.010889173	27.4624	2521.991262	2521.99
2.038	2.038	2.038	2.038	8	7.9954816	31.3856	-6946.175637	6946.18
								12910.42

1) PVA10%, 12.5 kV, 20 min (R₀=3.9232)

2) PVA10%, 15 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I\left(\mu A\right)$ at	R_0^*V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0//R_1$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2543	0.2541	0.2548	0.25445	1	0.99825824	3.9232	-2252.434319	2252.43
0.5093	0.5089	0.5091	0.509	2	1.9969088	7.8464	-2538.302277	2538.30
0.765	0.7646	0.7645	0.76455	3	2.99948256	11.7696	-22745.8256	22745.83
1.02	1.0196	1.0194	1.0195	4	3.9997024	15.6928	-52731.1828	52731.18
1.2758	1.2752	1.2748	1.275	5	5.00208	19.616	9430.769231	9430.77
1.5318	1.5309	1.5304	1.53065	6	6.00504608	23.5392	4664.848754	4664.85
1.7881	1.7867	1.786	1.78635	7	7.00820832	27.4624	3345.678531	3345.68
2.04	2.039	2.037	2.038	8	7.9954816	31.3856	-6946.175637	6946.18
								13081.90

3) PVA10%, 17.5 kV, 20 min (R_0 =3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (µA) at	I (μA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0//R_1$	(V)	$R_0//R_1$		V) Mohm	V) Mohm
0.2543	0.254	0.254	0.2541	1	0.99688512	3.9232	-1259.502774	1259.50
0.5088	0.5089	0.5089	0.5088666667	2	1.996385707	7.8464	-2170.936135	2170.94
0.7645	0.7647	0.7646	0.7646	3	2.99967872	11.7696	-36633.46614	36633.47
1.0193	1.0197	1.0195	1.0195	4	3.9997024	15.6928	-52731.1828	52731.18
1.2749	1.2753	1.2752	1.275133333	5	5.002603093	19.616	7535.649893	7535.65
1.5307	1.5311	1.5309	1.5309	6	6.00602688	23.5392	3905.702453	3905.70
1.7864	1.787	1.7869	1.786766667	7	7.009842987	27.4624	2790.047465	2790.05
2.038	2.039	2.039	2.0386666667	8	7.998097067	31.3856	-16493.27354	16493.27
								15439.97

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2538	0.254	0.254	0.253933333	1	0.996231253	3.9232	-1040.982679	1040.98
0.509	0.5091	0.5092	0.5091	2	1.99730112	7.8464	-2907.280057	2907.28
0.7649	0.7649	0.7648	0.764866667	3	3.000724907	11.7696	16236.02119	16236.02
1.0199	1.02	1.0199	1.019933333	4	4.001402453	15.6928	11189.53453	11189.53
1.2756	1.2757	1.2757	1.275666667	5	5.004695467	19.616	4177.646524	4177.65
1.5315	1.5315	1.5314	1.531466667	6	6.008250027	23.5392	2853.227141	2853.23
1.7864	1.7865	1.7865	1.786466667	7	7.008666027	27.4624	3168.972478	3168.97
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								11788.11

4) PVA10%+PEDOT/PSS 0.052%, 12.5 kV, 20 min (R₀=3.9232)

5) PVA10%+PEDOT/PSS 0.052%, 15 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}*I\left(\mu A\right)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0//R_1$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.254	0.254	0.2539	0.253966667	1	0.996362027	3.9232	-1078.402627	1078.40
0.5092	0.5092	0.5091	0.509166667	2	1.997562667	7.8464	-3219.256018	3219.26
0.7651	0.7651	0.7651	0.7651	3	3.00164032	11.7696	7175.18533	7175.19
1.0201	1.0199	1.0198	1.019933333	4	4.001402453	15.6928	11189.53453	11189.53
1.2757	1.2756	1.2756	1.275633333	5	5.004564693	19.616	4297.331402	4297.33
1.5318	1.5317	1.5318	1.531766667	6	6.009426987	23.5392	2497.001516	2497.00
1.7867	1.7867	1.7866	1.7866666667	7	7.009450667	27.4624	2905.869074	2905.87
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								10636.72

6) PVA10%+PEDOT/PSS 0.052%, 17.5 kV, 20 min (R_0 =3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}^*$ I (µA) at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0^-$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	R_0^{\prime}/R_1	R ₀ //R1	$R_0^{//R_1}$	(V)	R_0^{\prime}/R_1		V) Mohm	V) Mohm
0.254	0.254	0.2541	0.254033333	1	0.996623573	3.9232	-1161.93846	1161.94
0.5092	0.5093	0.5092	0.509233333	2	1.997824213	7.8464	-3606.235905	3606.24
0.7651	0.765	0.7649	0.765	3	3.001248	11.7696	9430.769231	9430.77
1.0201	1.0201	1.0201	1.0201	4	4.00205632	15.6928	7631.497043	7631.50
1.2759	1.2759	1.2758	1.275866667	5	5.005480107	19.616	3579.49237	3579.49
1.5318	1.5319	1.5318	1.531833333	6	6.009688533	23.5392	2429.593747	2429.59
1.7868	1.7867	1.7868	1.786766667	7	7.009842987	27.4624	2790.047465	2790.05
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								10420.09

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}*I\left(\mu A\right)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R_0^{\prime}/R_1		V) Mohm	V) Mohm
0.254	0.2539	0.2539	0.253933333	1	0.996231253	3.9232	-1040.982679	1040.98
0.5089	0.509	0.509	0.508966667	2	1.996778027	7.8464	-2435.277759	2435.28
0.7639	0.764	0.764	0.763966667	3	2.997194027	11.7696	-4194.480347	4194.48
1.0198	1.0198	1.0198	1.0198	4	4.00087936	15.6928	17845.70597	17845.71
1.2755	1.2755	1.2755	1.2755	5	5.0040416	19.616	4853.523357	4853.52
1.5305	1.5306	1.5306	1.530566667	6	6.004719147	23.5392	4988.020433	4988.02
1.7863	1.7863	1.7863	1.7863	7	7.00801216	27.4624	3427.590063	3427.59
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								11439.60

7) PVA10%+PEDOT/PSS 0.084%, 12.5 kV, 20 min (R₀=3.9232)

8) PVA10%+PEDOT/PSS 0.084%, 15 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}^{}*I\left(\mu A\right)$ at	R_0^*V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R_0^{\prime}/R_1		V) Mohm	V) Mohm
0.2539	0.2539	0.2539	0.2539	1	0.99610048	3.9232	-1006.072542	1006.07
0.509	0.5089	0.5089	0.508933333	2	1.996647253	7.8464	-2340.29015	2340.29
0.764	0.764	0.7639	0.763966667	3	2.997194027	11.7696	-4194.480347	4194.48
1.0199	1.0199	1.0199	1.0199	4	4.00127168	15.6928	12340.21137	12340.21
1.2756	1.2755	1.2756	1.275566667	5	5.004303147	19.616	4558.524615	4558.52
1.5307	1.5308	1.5308	1.530766667	6	6.005503787	23.5392	4276.909958	4276.91
1.7864	1.7864	1.7863	1.786366667	7	7.008273707	27.4624	3319.23781	3319.24
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								10595.86

9) PVA10%+PEDOT/PSS 0.084%, 17.5 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I\left(\mu A\right)$ at	R_0^*V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1= $(V*R_0)/(I*R_0-$
R ₀ //R1	$R_0^{//R_1}$	R_0^{\prime}/R_1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2535	0.2542	0.2541	0.253933333	1	0.996231253	3.9232	-1040.982679	1040.98
0.5086	0.5091	0.5089	0.5088666667	2	1.996385707	7.8464	-2170.936135	2170.94
0.7654	0.7654	0.7653	0.765366667	3	3.002686507	11.7696	4381.00532	4381.01
1.0198	1.0202	1.0199	1.0199666667	4	4.001533227	15.6928	10235.14679	10235.15
1.2752	1.2755	1.2756	1.275433333	5	5.003780053	19.616	5189.344771	5189.34
1.531	1.5313	1.5312	1.531166667	6	6.007073067	23.5392	3328.004826	3328.00
1.7859	1.7861	1.7861	1.786033333	7	7.006965973	27.4624	3942.363642	3942.36
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								10377.37

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}^{}\ast I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0^{//R_1}$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.254	0.254	0.254	0.254	1	0.9964928	3.9232	-1118.613139	1118.61
0.5093	0.5092	0.5093	0.509266667	2	1.997954987	7.8464	-3836.8454	3836.85
0.7651	0.7651	0.7651	0.7651	3	3.00164032	11.7696	7175.18533	7175.19
1.0202	1.0202	1.0202	1.0202	4	4.00244864	15.6928	6408.782018	6408.78
1.276	1.2759	1.2759	1.275933333	5	5.005741653	19.616	3416.437542	3416.44
1.5319	1.5319	1.5319	1.5319	6	6.00995008	23.5392	2365.729723	2365.73
1.7868	1.7868	1.7868	1.7868	7	7.00997376	27.4624	2753.465092	2753.47
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								9975.78

10) PVA10%+PEDOT/PSS 0.1%, 12.5 kV, 20 min (R₀=3.9232)

11) PVA10%+PEDOT/PSS 0.1%, 15 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}*I\left(\mu A\right)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.254	0.254	0.254	0.254	1	0.9964928	3.9232	-1118.613139	1118.61
0.5093	0.5093	0.5093	0.5093	2	1.99808576	7.8464	-4098.963557	4098.96
0.7651	0.7651	0.7651	0.7651	3	3.00164032	11.7696	7175.18533	7175.19
1.0202	1.0202	1.0202	1.0202	4	4.00244864	15.6928	6408.782018	6408.78
1.276	1.276	1.2761	1.276033333	5	5.006133973	19.616	3197.927173	3197.93
1.5319	1.5319	1.5319	1.5319	6	6.00995008	23.5392	2365.729723	2365.73
1.7869	1.7869	1.787	1.786933333	7	7.010496853	27.4624	2616.250711	2616.25
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								9964.08

12) PVA10%+PEDOT/PSS 0.1%, 17.5 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}^{}*I\left(\mu A\right)$ at	R_0^*V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	$R_0^{//R_1}$	(V)	R_0^{\prime}/R_1		V) Mohm	V) Mohm
0.254	0.254	0.254	0.254	1	0.9964928	3.9232	-1118.613139	1118.61
0.5093	0.5093	0.5093	0.5093	2	1.99808576	7.8464	-4098.963557	4098.96
0.7651	0.7651	0.7651	0.7651	3	3.00164032	11.7696	7175.18533	7175.19
1.0202	1.0203	1.0202	1.020233333	4	4.002579413	15.6928	6083.864031	6083.86
1.276	1.276	1.276	1.276	5	5.0060032	19.616	3267.590618	3267.59
1.5319	1.5319	1.5319	1.5319	6	6.00995008	23.5392	2365.729723	2365.73
1.7869	1.7869	1.7869	1.7869	7	7.01036608	27.4624	2649.256035	2649.26
2.039	2.039	2.039	2.039	8	7.9994048	31.3856	-52731.1828	52731.18
								9936.30

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2525	0.252	0.2519	0.252133333	1	0.989169493	3.9232	-362.2360542	362.24
0.5065	0.5067	0.5069	0.5067	2	1.98788544	7.8464	-647.6834487	647.68
0.7624	0.7625	0.7626	0.7625	3	2.99144	11.7696	-1374.953271	1374.95
1.0171	1.0173	1.0173	1.017233333	4	3.990809813	15.6928	-1707.560528	1707.56
1.2732	1.273	1.2729	1.273033333	5	4.994364373	19.616	-3480.713177	3480.71
1.5287	1.5287	1.5287	1.5287	6	5.99739584	23.5392	-9039.07594	9039.08
1.7843	1.7845	1.7845	1.784433333	7	7.000688853	27.4624	39866.83184	39866.83
2.036	2.036	2.036	2.036	8	7.9876352	31.3856	-2538.302277	2538.30
								9667.91

13) PVA10%+AgNPs 0.25%, 12.5 kV, 20 min (R_0 =3.9232)

14) PVA10%+AgNPs 0.25%, 15 kV, 20 min (R_0 =3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}^{}\ast I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0^{//R_1}$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2599	0.2563	0.2551	0.2571	1	1.00865472	3.9232	453.3017821	453.30
0.508	0.5086	0.5084	0.508333333	2	1.994293333	7.8464	-1374.953271	1374.95
0.7637	0.7637	0.7636	0.763666667	3	2.996017067	11.7696	-2955.008034	2955.01
1.0181	1.0181	1.0184	1.0182	4	3.99460224	15.6928	-2907.280057	2907.28
1.2738	1.2737	1.2738	1.273766667	5	4.997241387	19.616	-7110.818962	7110.82
1.5297	1.5296	1.5296	1.529633333	6	6.001057493	23.5392	22259.43111	22259.43
1.7899	1.7899	1.7899	1.7899	7	7.02213568	27.4624	1240.639547	1240.64
2.039	2.039	2.038	2.0386666667	8	7.998097067	31.3856	-16493.27354	16493.27
								6849.34

15) PVA10%+AgNPs 0.25%, 17.5 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0//R_1$	R ₀ //R1	$R_0//R_1$	(V)	$R_0^{//R_1}$		V) Mohm	V) Mohm
0.25	0.2508	0.2513	0.2507	1	0.98354624	3.9232	-238.4379011	238.44
0.5066	0.5068	0.5069	0.506766667	2	1.988146987	7.8464	-661.9751264	661.98
0.7629	0.7629	0.7628	0.762866667	3	2.992878507	11.7696	-1652.687077	1652.69
1.0179	1.0179	1.0179	1.0179	4	3.99342528	15.6928	-2386.839287	2386.84
1.2739	1.2739	1.2739	1.2739	5	4.99776448	19.616	-8774.692242	8774.69
1.5297	1.5297	1.5298	1.529733333	6	6.001449813	23.5392	16236.02119	16236.02
1.7896	1.7896	1.7897	1.789633333	7	7.021089493	27.4624	1302.183963	1302.18
2.039	2.038	2.038	2.038333333	8	7.996789333	31.3856	-9775.415282	9775.42
								5128.53

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}^{}\ast I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2521	0.2525	0.2527	0.252433333	1	0.990346453	3.9232	-406.3998586	406.40
0.5077	0.5078	0.5079	0.5078	2	1.99220096	7.8464	-1006.072542	1006.07
0.7637	0.7637	0.7638	0.763733333	3	2.996278613	11.7696	-3162.692043	3162.69
1.0188	1.0189	1.0189	1.018866667	4	3.997217707	15.6928	-5640.239227	5640.24
1.2746	1.2746	1.2746	1.2746	5	5.00051072	19.616	38408.5213	38408.52
1.5305	1.5305	1.5307	1.530566667	6	6.004719147	23.5392	4988.020433	4988.02
1.7864	1.7864	1.7865	1.786433333	7	7.008535253	27.4624	3217.526057	3217.53
2.039	2.039	2.038	2.038666667	8	7.998097067	31.3856	-16493.27354	16493.27
								9165.34

16) PVA10%+AgNPs 0.5%, 12.5 kV, 20 min (R₀=3.9232)

17) PVA10%+AgNPs 0.5%, 15 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}*I\left(\mu A\right)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2539	0.2538	0.2537	0.2538	1	0.99570816	3.9232	-914.1067701	914.11
0.5087	0.5086	0.5086	0.508633333	2	1.995470293	7.8464	-1732.209297	1732.21
0.7644	0.7644	0.7644	0.7644	3	2.99889408	11.7696	-10642.36111	10642.36
1.0194	1.0193	1.0193	1.019333333	4	3.999048533	15.6928	-16493.27354	16493.27
1.2738	1.274	1.274	1.273933333	5	4.997895253	19.616	-9319.886479	9319.89
1.532	1.5309	1.5301	1.531	6	6.0064192	23.5392	3666.999003	3667.00
1.7866	1.7857	1.7854	1.7859	7	7.00644288	27.4624	4262.441641	4262.44
2.038	2.037	2.037	2.037333333	8	7.992866133	31.3856	-4399.521531	4399.52
								6428.85

18) PVA10%+AgNPs 0.5%, 17.5 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}^{}*I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	$R_0^{//R_1}$	(V)	R_0^{\prime}/R_1		V) Mohm	V) Mohm
0.2532	0.2532	0.2532	0.2532	1	0.99335424	3.9232	-590.3312789	590.3312789
0.508	0.5081	0.5082	0.5081	2	1.99337792	7.8464	-1184.884508	1184.884508
0.7642	0.764	0.764	0.764066667	3	2.997586347	11.7696	-4876.259502	4876.259502
1.0191	1.0192	1.0191	1.019133333	4	3.998263893	15.6928	-9039.07594	9039.07594
1.275	1.2751	1.2749	1.275	5	5.00208	19.616	9430.769231	9430.769231
1.5305	1.5305	1.5305	1.5305	6	6.0044576	23.5392	5280.68916	5280.68916
1.7852	1.7853	1.7853	1.785266667	7	7.003958187	27.4624	6938.12655	6938.12655
2.036	2.036	2.036	2.036	8	7.9876352	31.3856	-2538.302277	2538.302277
								4984.804806

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}^*I(\mu A)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R_0^{\prime}/R_1		V) Mohm	V) Mohm
0.2526	0.253	0.2532	0.252933333	1	0.992308053	3.9232	-510.0399379	510.04
0.5081	0.5082	0.5082	0.508166667	2	1.993639467	7.8464	-1233.607245	1233.61
0.7638	0.7638	0.7639	0.763833333	3	2.996670933	11.7696	-3535.405319	3535.41
1.0188	1.0188	1.0188	1.0188	4	3.99695616	15.6928	-5155.592935	5155.59
1.2758	1.2751	1.2749	1.275266667	5	5.003126187	19.616	6274.737273	6274.74
1.5314	1.5308	1.5307	1.530966667	6	6.006288427	23.5392	3743.257455	3743.26
1.7874	1.7867	1.7865	1.786866667	7	7.010235307	27.4624	2683.104756	2683.10
2.04	2.039	2.039	2.039333333	8	8.000712533	31.3856	44047.90419	44047.90
								8397.96

19) PVA10%+AgNPs 0.75%, 12.5 kV, 20 min (R_0 =3.9232)

20) PVA10%+AgNPs 0.75%, 15 kV, 20 min (R_0 =3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2536	0.2536	0.2535	0.253566667	1	0.994792747	3.9232	-753.4106272	753.41
0.5088	0.5088	0.5088	0.5088	2	1.99612416	7.8464	-2024.438573	2024.44
0.7657	0.7656	0.7655	0.7656	3	3.00360192	11.7696	3267.590618	3267.59
1.0198	1.0198	1.0197	1.019766667	4	4.000748587	15.6928	20963.23739	20963.24
1.2754	1.2753	1.2753	1.275333333	5	5.003387733	19.616	5790.302267	5790.30
1.5312	1.5311	1.5311	1.531133333	6	6.006942293	23.5392	3390.695102	3390.70
1.7869	1.7869	1.7868	1.786866667	7	7.010235307	27.4624	2683.104756	2683.10
2.038	2.038	2.038	2.038	8	7.9954816	31.3856	-6946.175637	6946.18
								5727.37

21) PVA10%+AgNPs 0.75%, 17.5 kV, 20 min (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}$ *I (µA) at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2533	0.2533	0.2533	0.2533	1	0.99374656	3.9232	-627.3666974	627.37
0.5082	0.5081	0.5081	0.508133333	2	1.993508693	7.8464	-1208.755094	1208.76
0.7642	0.764	0.764	0.764066667	3	2.997586347	11.7696	-4876.259502	4876.26
1.0192	1.0192	1.0191	1.019166667	4	3.998394667	15.6928	-9775.415282	9775.42
1.2757	1.2756	1.2756	1.275633333	5	5.004564693	19.616	4297.331402	4297.33
1.5311	1.531	1.531	1.531033333	6	6.006549973	23.5392	3593.785624	3593.79
1.7853	1.7853	1.7852	1.785266667	7	7.003958187	27.4624	6938.12655	6938.13
2.037	2.038	2.038	2.037666667	8	7.994173867	31.3856	-5387.037715	5387.04
								4588.01

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_{0}}^{}\ast I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2291	0.2289	0.2289	0.228966667	1	0.995089133	4.346	-884.9761753	884.98
0.4591	0.459	0.4589	0.459	2	1.994814	8.692	-1676.050906	1676.05
0.6897	0.6896	0.6897	0.689666667	3	2.997291333	13.038	-4813.438346	4813.44
0.9196	0.9196	0.9195	0.919566667	4	3.996436733	17.384	-4878.669386	4878.67
1.1501	1.1502	1.1501	1.150133333	5	4.998479467	21.73	-14291.03823	14291.04
1.3809	1.3809	1.3809	1.3809	6	6.0013914	26.076	18740.83657	18740.84
1.6113	1.6114	1.6115	1.6114	7	7.0031444	30.422	9674.977738	9674.98
1.8411	1.8412	1.8413	1.8412	8	8.0018552	34.768	18740.83657	18740.84
								9212.60

22) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 12.5 kV, 20 min (R_0 =4.346)

23) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 15.0 kV, 20 min (R₀=4.346)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.229	0.2291	0.2291	0.229066667	1	0.995523733	4.346	-970.8983677	970.90
0.4591	0.4591	0.4589	0.459033333	2	1.994958867	8.692	-1724.215454	1724.22
0.6898	0.6899	0.6899	0.689866667	3	2.998160533	13.038	-7087.924036	7087.92
0.9198	0.9198	0.9198	0.9198	4	3.9974508	17.384	-6819.39432	6819.39
1.1501	1.15	1.15	1.150033333	5	4.998044867	21.73	-11114.3315	11114.33
1.3812	1.3813	1.3813	1.381266667	6	6.002984933	26.076	8735.873498	8735.87
1.612	1.612	1.612	1.612	7	7.005752	30.422	5288.942976	5288.94
1.8419	1.8419	1.8419	1.8419	8	8.0048974	34.768	7099.277167	7099.28
								6105.11

24) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 17.5 kV, 20 min (R₀=4.346)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (μA) at	Voltage	$R_{o}^{*I}(\mu A)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	R ₀ //R1	R ₀ //R1	R ₀ //R1	(V)	$R_0^{//R_1}$		V) Mohm	V) Mohm
0.229	0.229	0.2291	0.229033333	1	0.995378867	4.346	-940.4619357	940.46
0.4592	0.4592	0.4592	0.4592	2	1.9956832	8.692	-2013.52854	2013.53
0.6898	0.69	0.6898	0.689866667	3	2.998160533	13.038	-7087.924036	7087.92
0.9198	0.9199	0.9199	0.919866667	4	3.997740533	17.384	-7693.851056	7693.85
1.1501	1.15	1.15	1.150033333	5	4.998044867	21.73	-11114.3315	11114.33
1.3829	1.3829	1.3829	1.3829	6	6.0100834	26.076	2586.032489	2586.03
1.615	1.614	1.614	1.614333333	7	7.015892667	30.422	1914.2162	1914.22
1.842	1.8419	1.842	1.841966667	8	8.005187133	34.768	6702.738828	6702.74
								5006.64

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (μA) at	Voltage	$R_{_{0}}*I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2291	0.229	0.229	0.229033	1	0.995379	4.346	-940.4619357	940.46
0.4592	0.4591	0.4591	0.459133	2	1.995393	8.692	-1886.885293	1886.89
0.6899	0.6899	0.6899	0.6899	3	2.998305	13.038	-7693.851056	7693.85
0.9199	0.9198	0.9199	0.919867	4	3.997741	17.384	-7693.851056	7693.85
1.1503	1.1503	1.1503	1.1503	5	4.999204	21.73	-27292.13765	27292.14
1.3813	1.3813	1.3813	1.3813	6	6.00313	26.076	8331.522781	8331.52
1.612	1.612	1.612	1.612	7	7.005752	30.422	5288.942976	5288.94
1.8419	1.8419	1.8419	1.8419	8	8.004897	34.768	7099.277167	7099.28
								8278.37

25) PVA10%+AgNPs 0.5% +PEDOT/PSS 0.084%, 12.5 kV, 20 min (R₀=4.346)

26) PVA10%+AgNPs 0.5% +PEDOT/PSS 0.084%, 15.0 kV, 20 min (R₀=4.346)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	$R_0//R_1$	$R_0 / / R_1$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.229	0.229	0.229	0.229	1	0.995234	4.346	-911.8757868	911.88
0.4591	0.4591	0.4591	0.4591	2	1.995249	8.692	-1829.355558	1829.36
0.6899	0.6899	0.6899	0.6899	3	2.998305	13.038	-7693.851056	7693.85
0.9199	0.9199	0.9199	0.9199	4	3.997885	17.384	-8220.940131	8220.94
1.15	1.15	1.15	1.15	5	4.9979	21.73	-10347.61905	10347.62
1.3814	1.3814	1.3814	1.3814	6	6.003564	26.076	7315.677253	7315.68
1.6121	1.6121	1.6121	1.6121	7	7.006187	30.422	4917.402127	4917.40
1.842	1.842	1.842	1.842	8	8.005332	34.768	6520.630158	6520.63
								5969.67

27) PVA10%+AgNPs 0.5% +PEDOT/PSS 0.084%, 17.5 kV, 20 min (R₀=4.346)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}$ *I (µA) at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	R_0^{\prime}/R_1	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2291	0.2291	0.2291	0.2291	1	0.995669	4.346	-1003.370735	1003.37
0.4592	0.4592	0.4592	0.4592	2	1.995683	8.692	-2013.52854	2013.53
0.6899	0.6899	0.6899	0.6899	3	2.998305	13.038	-7693.851056	7693.85
0.9199	0.92	0.9199	0.919933	4	3.99803	17.384	-8825.560144	8825.56
1.1498	1.15	1.15	1.149933	5	4.99761	21.73	-9093.064777	9093.06
1.383	1.383	1.383	1.383	6	6.010518	26.076	2479.178551	2479.18
1.617	1.6171	1.6171	1.617067	7	7.027772	30.422	1095.430366	1095.43
1.842	1.842	1.842	1.842	8	8.005332	34.768	6520.630158	6520.63
								4840.58

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}^{}\ast I\left(\mu A\right)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2291	0.2291	0.2291	0.2291	1	0.995669	4.346	-1003.370735	1003.37
0.4592	0.4592	0.4592	0.4592	2	1.995683	8.692	-2013.52854	2013.53
0.6899	0.69	0.69	0.689967	3	2.998595	13.038	-9280.596023	9280.60
0.9199	0.9199	0.9199	0.9199	4	3.997885	17.384	-8220.940131	8220.94
1.1507	1.1507	1.1507	1.1507	5	5.000942	21.73	23063.04394	23063.04
1.3814	1.3814	1.3814	1.3814	6	6.003564	26.076	7315.677253	7315.68
1.6121	1.6121	1.6121	1.6121	7	7.006187	30.422	4917.402127	4917.40
1.842	1.842	1.842	1.842	8	8.005332	34.768	6520.630158	6520.63
								7791.90

28) PVA10%+AgNPs 0.75% +PEDOT/PSS 0.084%, 12.5 kV, 20 min (R_0 =4.346)

29) PVA10%+AgNPs 0.75% +PEDOT/PSS 0.084%, 15.0 kV, 20 min (R₀=4.346)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	R_0^*V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0//R_1$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2291	0.229	0.229	0.229033	1	0.995379	4.346	-940.4619357	940.46
0.4592	0.4592	0.4592	0.4592	2	1.995683	8.692	-2013.52854	2013.53
0.6899	0.6899	0.6899	0.6899	3	2.998305	13.038	-7693.851056	7693.85
0.9198	0.9198	0.9198	0.9198	4	3.997451	17.384	-6819.39432	6819.39
1.1509	1.1509	1.1509	1.1509	5	5.001811	21.73	11996.246	11996.25
1.3816	1.3816	1.3816	1.3816	6	6.004434	26.076	5881.45074	5881.45
1.6123	1.6123	1.6123	1.6123	7	7.007056	30.422	4311.630148	4311.63
1.842	1.843	1.842	1.842333	8	8.006781	34.768	5127.519418	5127.52
								5598.01

30) PVA10%+AgNPs 0.75% +PEDOT/PSS 0.084%, 17.5 kV, 20 min (R₀=4.346)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{o}^{*I}(\mu A)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	R_0^{\prime}/R_1	R ₀ //R1	R ₀ //R1	(V)	$R_0^{//R_1}$		V) Mohm	V) Mohm
0.2291	0.229	0.2291	0.229067	1	0.995524	4.346	-970.8983677	970.90
0.4592	0.4592	0.4592	0.4592	2	1.995683	8.692	-2013.52854	2013.53
0.6895	0.6895	0.6895	0.6895	3	2.996567	13.038	-3797.844451	3797.84
0.9198	0.9198	0.9198	0.9198	4	3.997451	17.384	-6819.39432	6819.39
1.151	1.151	1.151	1.151	5	5.002246	21.73	9674.977738	9674.98
1.3818	1.3818	1.3818	1.3818	6	6.005303	26.076	4917.402127	4917.40
1.6125	1.6125	1.6125	1.6125	7	7.007925	30.422	3838.73817	3838.74
1.843	1.843	1.843	1.843	8	8.009678	34.768	3592.477785	3592.48
								4453.16

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_{0}}^{}\ast I\left(\mu A\right)$ at	R ₀ *V	R1=(V*R ₀)/(I*R ₀ -	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2299	0.2296	0.2299	0.2298	1	1.0003194	4.353	13628.67877	13628.68
0.4596	0.4591	0.4589	0.4592	2	1.9988976	8.706	-7897.314949	7897.31
0.6891	0.6888	0.6887	0.6888666667	3	2.9986366	13.059	-9578.260232	9578.26
0.9182	0.918	0.9178	0.918	4	3.996054	17.412	-4412.569691	4412.57
1.1481	1.1478	1.1479	1.147933333	5	4.9969538	21.765	-7144.9675	7144.97
1.3782	1.378	1.378	1.378066667	6	5.9987242	26.118	-20471.86079	20471.86
1.6083	1.6082	1.6081	1.6082	7	7.0004946	30.471	61607.35948	61607.36
1.8376	1.8375	1.8374	1.8375	8	7.9986375	34.824	-25558.89908	25558.90
								18787.49

31) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 12.5 kV, 30 min (R_0 =4.353 MQ)

32) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 12.5 kV, 45 min (R₀=4.353 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	R_0^*V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2298	0.2304	0.23	0.230066667	1	1.0014802	4.353	2940.818808	2940.82
0.4602	0.46	0.4598	0.46	2	2.00238	8.706	3657.983193	3657.98
0.6898	0.6899	0.6898	0.689833333	3	3.0028445	13.059	4590.96502	4590.97
0.9188	0.9189	0.9187	0.9188	4	3.9995364	17.412	-37558.23986	37558.24
1.1485	1.1485	1.1486	1.148533333	5	4.9995656	21.765	-50103.59116	50103.59
1.3792	1.3791	1.3793	1.3792	6	6.0036576	26.118	7140.748031	7140.75
1.6091	1.609	1.6089	1.609	7	7.003977	30.471	7661.805381	7661.81
1.838	1.8381	1.8381	1.838066667	8	8.0011042	34.824	31537.7649	31537.76
								18148.99

33) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 15.0 kV, 30 min (R_0 =4.353 MΩ)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (µA) at	Voltage	$R_{o}^{*I}(\mu A)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	R_{0}^{2}/R_{1}	R ₀ //R1	R ₀ //R1	(V)	$R_0^{//R_1}$		V) Mohm	V) Mohm
0.2304	0.2313	0.2307	0.2308	1	1.004442	4.352	979.8271	979.83
0.4593	0.4595	0.4595	0.459433	2	1.999454	8.704	-15937.5	15937.50
0.689	0.6893	0.689	0.6891	3	2.998963	13.056	-12592.6	12592.59
0.9191	0.9183	0.9181	0.9185	4	3.997312	17.408	-6476.19	6476.19
1.1488	1.148	1.1479	1.148233	5	4.997111	21.76	-7533.23	7533.24
1.3788	1.3779	1.3778	1.378167	6	5.997781	26.112	-11769.2	11769.23
1.6088	1.6089	1.6087	1.6088	7	7.001498	30.464	20341.88	20341.88
1.8383	1.8379	1.8381	1.8381	8	7.999411	34.816	-59130.4	59130.43
								16845.11

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}*I(\mu A)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	R ₀ //R1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2314	0.2318	0.2308	0.231333	1	1.006763	4.352	643.5331	643.53
0.4605	0.4606	0.4604	0.4605	2	2.004096	8.704	2125	2125.00
0.6903	0.6902	0.6989	0.693133	3	3.016516	13.056	790.4934	790.49
0.9194	0.9192	0.9191	0.919233	4	4.000503	17.408	34576.27	34576.27
1.1492	1.149	1.1491	1.1491	5	5.000883	21.76	24637.68	24637.68
1.3791	1.3789	1.379	1.379	6	6.001408	26.112	18545.45	18545.45
1.6093	1.6093	1.6092	1.609267	7	7.003529	30.464	8633.615	8633.62
1.8384	1.8384	1.8386	1.838467	8	8.001007	34.816	34576.27	34576.27
								15566.04

34) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 15.0 kV, 45 min (R_0 =4.353 MQ)

35) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 17.5 kV, 30 min. (R₀=3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (µA) at	I (μA) at	I (μA) at	Voltage	$R_{_0}*I\left(\mu A\right)$ at	R ₀ *V	$R_1 = (V * R_0) / (I * R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
$R_0//R_1$	$R_0//R_1$	R ₀ //R1	$R_0^{//R_1}$	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2544	0.2544	0.2543	0.254366667	1	0.997931307	3.9232	-1896.462824	1896.46
0.5091	0.509	0.509	0.509033333	2	1.997039573	7.8464	-2650.428767	2650.43
0.7652	0.7653	0.7653	0.765266667	3	3.002294187	11.7696	5130.184118	5130.18
1.0194	1.0193	1.0193	1.019333333	4	3.999048533	15.6928	-16493.27354	16493.27
1.2756	1.2756	1.2755	1.275566667	5	5.004303147	19.616	4558.524615	4558.52
1.5308	1.531	1.531	1.530933333	6	6.006157653	23.5392	3822.754989	3822.75
1.788	1.7873	1.7879	1.787733333	7	7.013635413	27.4624	2014.04969	2014.05
2.037	2.037	2.036	2.036666667	8	7.990250667	31.3856	-3219.256018	3219.26
								4973.12

36) PVA10%+AgNPs 0.25% +PEDOT/PSS 0.084%, 17.5 kV, 45 min (R_0 =3.9232)

I: No.1	I: No.2	I: No.3	I: Average					
I (μA) at	I (μA) at	I (μA) at	I (µA) at	Voltage	$R_{_0}$ *I (µA) at	R ₀ *V	$R_1 = (V^*R_0)/(I^*R_0 -$	abs R1=(V*R ₀)/(I*R ₀ -
R ₀ //R1	$R_0^{//R_1}$	R_0^{\prime}/R_1	R_0^{\prime}/R_1	(V)	R ₀ //R1		V) Mohm	V) Mohm
0.2543	0.2544	0.2543	0.254333333	1	0.997800533	3.9232	-1783.705141	1783.71
0.509	0.509	0.508	0.5086666667	2	1.995601067	7.8464	-1783.705141	1783.71
0.7658	0.7659	0.7658	0.765833333	3	3.004517333	11.7696	2605.430933	2605.43
1.02	1.021	1.02	1.020333333	4	4.002971733	15.6928	5280.68916	5280.69
1.275	1.2751	1.275	1.275033333	5	5.002210773	19.616	8872.913249	8872.91
1.5311	1.531	1.531	1.531033333	6	6.006549973	23.5392	3593.785624	3593.79
1.7868	1.7869	1.7864	1.7867	7	7.00958144	27.4624	2866.208002	2866.21
2.037	2.037	2.037	2.037	8	7.9915584	31.3856	-3717.968158	3717.97
								4489.50

Appendix F Table of AgNPs lattice structure

Ag	2th	i	h	k	1
Silver	27.024	100	1	1	
Lattice:	37.934	100	1	1	1
	44.142	80	2	0	0
Face -centered cubic	64.678	80	2	2	0
S.G. : Fm-3m (225)	77,549	90	3	1	1
a = 4.07900					
$\mathbf{Z} = 4$	81.505	50	2	2	2
	98.085	20	4	0	0
Radiation $= 1.540598$	110.063	60	3	3	1
	115.662	60	4	2	0
	136.272	40	4	2	2
	154.355	40	5	1	1
		10	4	4	0
Mol. weight = 107.87	Davey., Phys	s. Rev., volu	me 25, page '	753 (1925)	
Volume [CD] = 67.87					
Dx = 10.557					
Dm = 10.490					

VITAE

Name: Mr. Prasit Pisesweerayos

E-mail: cmprasit@mahidol.ac.th

College of Management, Mahidol University, 69 Vipawadee Rangsit Rd., Bangkok 10400

Business Tel: 0-2206-2057 Mobile Phone: 081-868-4223

Position: Head of Information and Learning Technology

Educational Backgrounds:

2007- present: PhD. Candidate in Nanoscience and Technology, Chulalongkorn University.

- **1998-2001**: Master's Degree in Telecommunications Management, College of Innovative Education, Thammasat University.
- **1978-1981**: Bachelor's Degree in Physics and Electronics, Sri Nakharinwirot University (Bangsaen).

Work Experience:

2004 - present

Employer: College of Management, Mahidol University (CMMU).

Position: Head of Information and Learning Technology

- Develop and execute an IT strategy and master plan to offer high quality support to students, faculty, and staff.
- Monitor the college's QA based on MUQD (Quality Development, Mahidol University) and CHE (Commission on Higher Education สถอ.).
- Implement MUQD's QA and organize the college's QA working group.
- Manage CMMU's QA database using MUFIS and QA software system.

2002 - 2003

Employer: College of Innovative Education, Thammasat University.

Position: Deputy Director in Technology Management (Retail Technology) Program

- In charge of overall curriculums and planning for a Master of Science in Retail Technology Management.
- Devise a plan for Information and Communication Technology (ICT) to support education services and knowledge organizations, especially in e-Learning.
- Give lectures to graduate students.