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CHAPTER I 

INTRODUCTION AND PmLIMINARIES 

In this introductory chapter, we present a number of elementary concepts, notations 

and propositions on semigroups and rings which will be used for this research. 

Let N,Z and R denote the set of natural numbers (positive integers), the set of 

integers and the set of real numbers. For any set X,  let (XI denote the cardinality 

of X. 

A d g r o u p  S with zero 0 is d e d  a zem a m n i p u p  if xy = 0 for (dl x, y E S. 

A d g m ~ p  of a up$igambrsLi~p .~ fSwhich i sa l soa&roup .  A 

gmup with xt.8 b r r d p u p  $ w i k h m  O s d  that S\ (0) is asubgroup of 8. 



in 1953 [16] and 1956 [17], respectively. Every left ideal and every right ideal of a 

s e m i p u p  or a ring is dearly a quasi-ideal. The following example shows that the 

converse is qot generally true. Then quasi-ideals of both semigroups and rings are 

generalizations of one-sided ideals. 

Example 1.1. Let n  be a positive integer greater than 1  and Mn(F) the set of all 

n  x n  matrices over a field F .  For k, I E {1 ,2 , .  . . , n ) ,  let 

Q ~ ~ ' ) ( F )  = { A  E Mn(F) 1 %  = O  if i # k or 1 # j ) .  

where Aj denotes the entry of the matrix A in the ia row and the j& column. Then 

for k,1 E {1,2 ,..., n ) ,  

t in both the semigroup (Mn(F),  *) and the ring (Mn(F),  +, .) where + and are the 

usual addition and multiplication of matrices. From (1)  and (2), we clearly have 

M , ( F ) Q ~ ~ ) ( F )  n Q ~ ( F ) M , , ( F )  = { A  E M,(F) I Aj = 0 if i + k or j  # I )  = QkL(F) 

t in both (& (F) , *) and (M. (F) , +, a). A h ,  we w 8se from (1) and (2) that QL? ( F )  

is neither s left ideal nor a ri&t ideal of the semigorup (MJF) ,  *) and the ring 

(M. (F) , +, .) if n  > 1.  

It is known that the intersection of any set of quasi-ideals of a semigroup S is 

empty or a quasi-ideal of S ([19], page 10). Also, the intersection of any set 

f - of quasi-ideals of a ring [semigroup with zero] A  is a quasi-ideal of A ([19], page 10). 



In particular, if H and K are a l& i d d  d a right of s 8eanigmup {ring] A, 

then H n K is a q w i - i h d  Of A, and heme AX n XA is a quasi-ldd of A for 

wery a o n a p t y  aubePet X of A. 
4- . - 

For a nonempty rub& X of a mmipoup [ring] A, let (X)p demote-the q u d -  

ideal 6YE A generated by X, that b, (X), is the intmmtion of dl quElsi-id& of 'A 

mnkbing X. The following two facts are well-known. Thf! m n d  one was given by 

H. J. Weinert [22]. 

Theorem 1.2 ([19], page 85). For a nonempty subset X of a semigroup S, 

(X), = (SX n XS) u X. 

In particular, (X), = S X  n XS if S has an identity. 

Theorem 1.3 ([22]). Fur a nonmpty sub& X of a ring R, 

(X), = z X +  RX n X R .  

By a minimal qucrsi-idecrl of a semigroup S (with or without zero) we mean a 

nonzero quasi-ideal of S which does not properly contain a nonzero quasi-ideal of 

S. A minimal quasi-id& of a ring is defined analogously. For convenience, a trivial 

semigroup [ring] will be considered as the (unique) minimal quasi-ideal of itself. 

The following remark is obvious but it is one of our main'tools for this research. 

Remarlc 1.4. A nonzero quasi-id4 Q of a semigroup [ring] A is minimal if and 

only if (x), = Q for every nonzero element x of Q. 



Remark 1.4 shows that every minimal quasi-ideal of a semigroup or a ring is principal, 

that is, it is generated by one element. 

In 1956, 0. Steinfeld 1171 showed that a minimal quasi-ideal of a semigroup S 
i 

without zero must be a subgroup of S and a quasi-ideal of S which is also asubgroup 

of S must be minimal. This result can be seen in [19], the book written by 0. Steinfeld 

in 1978. 

Theorem 1.5 ([lg], page 27). A quasi-ideal Q of a semigroup S without zero is 

minimal if and onlv if Q is a subgroup of S .  

Necesary conditions for any minimal quasi-ideal of a semigroup with zero were proved 

originally by 0. Steinfeld [17] in 1956 which also appear in [19] as follows: 

Theorem 1.6 ([19], page 35). A minimal quasi-id& of a semigroup S with zero is 

either a zero subsemigroup or a subgroup with zero of S .  

Theorem 1.6 has a partial converse as follows: 

Theorem 1.7 ([19], page 37). If a quasi-ideal of a semigroup S with zero is a 

subgroup with zero of S ,  then Q is a minimal quasi-id& of S .  

Necessary conditions for any minimal quasi-ideal of a ring were given by 0. Ste- 

infeld [17] in 1956. These can be men in [I91 as follows: 

Theorem 1.8 ([19], page 35). A minimal quasi-ideal Q of a ring R is either a zero 

subring or a division subring of R .  
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