

PARTIALLY ORDERED DISTRIBUTIVE NEAR-RINGS

In this chapter, some fundamental theorems of partially ordered distributive near-rings are given.

- Definition 3.1. A partial order ≤ on a distributive near-ring R is said to be compatible if it satisfies the following properties:
- (i) For any x,y,z ϵ R, x \leqslant y implies x + z \leqslant y + z and z + x \leqslant z + y.
- (ii) For any x,y,z ϵ R, x \leqslant y and 0 \leqslant z imply xz \leqslant yz and zx \leqslant zy.
- <u>Definition 3.2.</u> A system $(R,+,\cdot,\leqslant)$ is called a <u>partially ordered</u> <u>distributive near-ring</u> if $(R,+,\cdot)$ is a distributive near-ring and \leqslant is a compatible partial order on R.
- Example 3.3. (1) Every distributive near-ring is a partially ordered distributive near-ring with respect to the trivial partial order.
- (2) Every subnear-ring of a partially ordered distributive near-ring is a partially ordered distributive near-ring.
- (3) $(\mathbb{Z},+,^{\bullet},\leqslant)$, $(\mathbb{Q},+,^{\bullet},\leqslant)$ and $(\mathbb{R},+,^{\bullet},\leqslant)$ are partially ordered distributive near-rings.
- (4) Let $(G,+,\leqslant)$ be a partially ordered group. Define the operation on G by $x \cdot y = 0$ for all $x,y \in G$. Then $(G,+,\cdot,\leqslant)$ is a

partially ordered distributive near-ring.

- (5) Let $n \in \mathbf{Z}^+$ and $M_n(\mathbb{R})$ be the set of all $n \times n$ matrices having entries in \mathbb{R} . Define the relation \leqslant on $M_n(\mathbb{R})$ by $(a_{ij}) \leqslant (b_{ij})$ if and only if $a_{ij} \leqslant b_{ij}$ for all i, $j \in \{1,2,\ldots,n\}$. Then $(M_n(\mathbb{R}),+,\cdot,\leqslant)$ is a partially ordered distributive near-ring
- (6) Let $\mathbb{R}[X]$ be the set of all polynomials with coefficients in \mathbb{R} . Define the relation \leqslant on $\mathbb{R}[X]$ by $\sum_{n=0}^{\infty} a_n X^n \leqslant \sum_{n=0}^{\infty} b_n X^n$ if and only if $a_n \leqslant b_n$ for all $n \in \mathbb{Z}_0^+$. Then $(\mathbb{R}[X],+,\cdot,\leqslant)$ is a partially ordered distributive near-ring.

Let R be a partially ordered distributive near-ring and A a subset of R. The positive cone of A, denoted by P_A , is $\{x \in A \mid x \geqslant 0\}$. The following statements hold:

- (1) $(P_{R},+,\cdot)$ is a distributive seminear-ring containing 0.
- (2) $P_R \cap (-P_R) = \{0\}$.
- (3) $-x + P_R + x = P_R$ for all $x \in R$.
- (4) $P_H = P_R \cap H$ where H is a subset of R.

Proposition 3.4. Let R be a partially ordered distributive near-ring. Then the subnear-ring H is convex in R if and only if P_H is a convex subset of P_R .

 $\underline{\text{Proof}}$: This proof is similar to the proof of Proposition 2.6.

Proposition 3.5. Let R be a partially ordered distributive near-ring. Then the following statements hold:

- (1) R is directed if and only if P_R generates (R,+).
- (2) R is a lattice if and only if it is directed and P_{R} is a lattice.
- (3) R is complete if and only if every subset of $\mathbf{P}_{\mathbf{R}}$ has an infimum.
 - (4) R is totally ordered if and only if $R = P_R \cup (-P_R)$.

<u>Proof</u>: This proof is similar to the proof of Proposition 2.8(4), (5) and (6).

Definition 3.6. A subset A of a distributive near-ring R is called an O-set of R if it satisfies the following conditions:

- (i) $A \cap (-A) = \{0\}.$
- (ii) $A^2 \subseteq A$.
- (iii) $A + A \subseteq A$.
- (iv) $-x + A + x \subseteq A$ for all $x \in R$.

Note that for any distributive near-ring R, $\{0\}$ is an O-set of R and for any partially ordered distributive near-ring R', the positive cone of R' is an O-set of R'.

Theorem 3.7. Every distributive near-ring has a maximal O-set.

Proof: This proof is similar to the proof of Theorem 2.10.#

Let R be a distributive near-ring and A an O-set of R. Define a relation \leq on R as follows: For x,y \in R, x \leq y if and only if y - x \in A. The proof that \leq is a partial order on R and for any x,y,z \in R, x \leq y implies that x + z \leq y + z and z + x \leq z + y is similar to the proof of Theorem 1.19. Let x,y,z \in R be such that x \leq y and z \Rightarrow 0. Then y - x, z \in A. Since $A^2 \subseteq A$, so yz - xz = (y-x)z \in A which implies that xz \leq yz. Similarly, zx \leq zy. Hence \leq is a compatible partial order on R. The proof that \leq is the unique compatible partial order on R having A as its positive cone is similar to the proof given in the note, page 9. Hence we have the following theorem.

Theorem 3.8. A subset A of a distributive near-ring R is an O-set of R if and only if there exists a unique compatible partial order \leq on R such that A is the positive cone induced by \leq .

Corollary 3.9. Let R be a distributive near-ring, $\mathcal A$ the set of all O-sets of R and $\mathcal A$ the set of all compatible partial orders on R. Then $\mathcal A$ and $\mathcal A$ are order isomorphic.

Corollary 3.10. Every distributive near-ring has a maximal compatible partial order.

Corollary 3.11. Let $\mathcal R$ be the set of all compatible partial orders on $\mathbb Z$ and $\mathcal C$ the set of all subseminear-rings of $\mathbf Z_0^+$ containing 0. Then $\mathcal R$ and $\mathcal C$ are order isomorphic.

Proof: Let A be an O-set of Z. Suppose that there exists

an $n \in \mathbb{Z}^-$ such that $n \in \mathbb{A}$. Then $n^2 \in \mathbb{A}$. But $-n^2 = n + n + \ldots + n$ (n times), so $-n^2 \in \mathbb{A}$. Hence $n^2 \in \mathbb{A} \cap (-\mathbb{A})$, so n = 0, a contradiction. Therefore every 0-set of \mathbb{Z} is a subset of \mathbb{Z}_0^+ . We see that every subseminear-ring of \mathbb{Z}_0^+ containing 0 is an 0-set of \mathbb{Z} . Then we get that \mathcal{C} is order isomorphic to the set of all 0-sets of \mathbb{Z} by the identity map. Hence, by Corollary 3.9, \mathbb{A} is order isomorphic to \mathcal{C} .

Note that J is a subseminear-ring of \mathbf{Z}_0^+ containing 0 if and only if J is a seminear-ring ideal of \mathbf{Z}_0^+ (that is, (J,+) is a subsemigroup of \mathbf{Z}_0^+ , $J\mathbf{Z}_0^+ \subseteq J$ and \mathbf{Z}_0^+ J \subseteq J). Hence by Corollary 3.11, \mathbf{Z}_0^+ is order isomorphic to the set of all seminear-ring ideals in \mathbf{Z}_0^+ .

Definition 3.12. Let R and R' be partially ordered distributive near-rings. A map $f: R \to R'$ is called an order homomorphism of R into R' if f is isotone and a homomorphism. An order homomorphism $f: R \to R'$ is called an order monomorphism if f is injective and $f(P_R) = P_{f(R)}$, an order epimorphism if f is onto and $f(P_R) = P_{R'}$, an order isomorphism if f is a bijection and f^{-1} is isotone. R and R' are said to be order isomorphic if there exists an order isomorphism of R onto R' and we denote this by $R \cong R'$.

<u>Proposition 3.13</u>. Let R and R' be partially ordered distributive near-rings. Then the following statements hold:

(1) If f: R \rightarrow R' is a homomorphism then f is isotone if and only if $f(P_R) \subseteq P_R'$.

(2) If $f: R \to R'$ is an order homomorphism then ker f is a convex ideal in R.

Proof: This proof is similar to the proof of Proposition 2.15 by using Proposition 1.36(1). #

Theorem 3.14. Let (R,\leqslant) be a partially ordered distributive near-ring and J a convex ideal of R. Then there exists a compatible partial order on R_J such that the projection map π is an order epimorphism.

Proof: Define a relation $\stackrel{\star}{\leftarrow}$ on R_{J} as follows: For $\alpha,\beta \in R_{J}$, $\alpha \stackrel{\star}{\leftarrow} \beta$ if and only if there exist a ϵ α and b ϵ β such that a $\stackrel{\star}{\leftarrow} b$. The proof that $\stackrel{\star}{\leftarrow}$ is a partial order on R_{J} and for any $\alpha,\beta,\gamma \in R_{J}$, $\alpha \stackrel{\star}{\leftarrow} \beta$ implies $\alpha + \gamma \stackrel{\star}{\leftarrow} \beta + \gamma$ and $\gamma + \alpha \stackrel{\star}{\leftarrow} \gamma + \beta$ is similar to the proof of Theorem 2.16. Let $\alpha,\beta,\gamma \in R_{J}$ be such that $\alpha \stackrel{\star}{\leftarrow} \beta$ and $[0] \stackrel{\star}{\leftarrow} \gamma$. Then there exist a $\epsilon \alpha$, b $\epsilon \beta$, c $\epsilon [0]$ and d $\epsilon \gamma$ such that a $\stackrel{\star}{\leftarrow} b$ and c $\stackrel{\star}{\leftarrow} d$. Thus $0 \stackrel{\star}{\leftarrow} d$ - c which implies that $a(d-c) \stackrel{\star}{\leftarrow} b(d-c)$. Since [d-c] = [d] - [c] = [d] - [0] = [d], so we get that $[a][d] = [a][d-c] = [a(d-c)] \stackrel{\star}{\leftarrow} [b(d-c)] = [b][d-c] = [b][d]$. Hence $\alpha\gamma \stackrel{\star}{\leftarrow} \beta\gamma$. Similarly, $\gamma\alpha \stackrel{\star}{\leftarrow} \gamma\beta$. Therefore $\stackrel{\star}{\leftarrow} b$ is compatible. The proof that α is an order epimorphism is similar to the proof of Theorem 2.16.

Definition 3.15. Let R be a distributive near-ring and J an ideal of R. A compatible partial order on J is a partial order ≼ on J such that

- (i) for any x,y,z ϵ J, x \leqslant y implies x + z \leqslant y + z and z + x \leqslant z + y,
 - (ii) $(P_J^*)^2 \subseteq P_J^*$ where $P_J^* = \{x \in J \mid x > 0\}$ and
 - (iii) $-x + P_J^* + x \subseteq P_J^*$ for all $x \in R$.
- Remark 3.16. (1) If R is a partially ordered distributive near-ring and J an ideal of R then the restriction of the partial order on R to J gives a compatible partial order on J.
- (2) Let R be a distributive near-ring and J a subnear-ring of R which is also an ideal and let ≤ be a partial order on J. If ≤ is a compatible partial order on J as an ideal then ≤ is a partial order compatible with the subnear-ring structure of J.
- Theorem 3.17. Let R be a distributive near-ring and J a prime ideal of R. Assume that R_J has a compatible partial order \leqslant and J has a compatible partial order \leqslant such that ba, ab ϵ P_J^* for all a ϵ P_J^* , [b] ϵ P_{R_J} $\{J\}$. Then there exists a compatible partial order on R such that \leqslant is the restriction of the partial order on R and the projection map π is an order epimorphism.

<u>Proof</u>: Let $A = P_J^* \cup (\bigcup_{\alpha \in P_{R_J}} \alpha)$. The proof that

 $A \cap (-A) = \{0\}$, $A + A \subseteq A$ and $-x + A + x \subseteq A$ is similar to the proof of Theorem 2.19. To show that $A^2 \subseteq A$, let a,b $\in A$. If a,b $\in P_J^*$ then ab $\in P_J^*$, so we are done. Assume that a $\notin P_J^*$ or b $\notin P_J^*$.

Case 1: $a,b \in \mathcal{O}$ α . Then $a \in \alpha$ and $b \in \beta$ for some $\alpha \in P$

 $\alpha,\beta\in P_{R_J}\setminus\{J\}$. Also, $[ab]=[a][b]=\alpha\beta\geqslant[0]$. Since $a,b\notin J$ and J is a prime ideal in R, so $ab\notin J$ which implies that [ab]>[0]. Hence $ab\in\bigcup_{\alpha\in P_{R_J}}\alpha$.

By assumption, we get that ab ϵ P_J^* .

Hence $A^2 \subseteq A$. Therefore A is an O-set of R. By Theorem 3.8, there exists a compatible partial order on R such that A is the positive cone of R. Using a proof similar to the proof of Theorem 2.19 we can show that $\stackrel{*}{\leqslant}$ is the restriction of the partial order on R and π is an order epimorphism. #

Theorem 3.18 (First Isomorphism Theorem). Let R and R' be partially ordered distributive near-rings and $f: R \to R'$ an order epimorphism. Then $R_{\ker f} \cong R'$. Furthermore, there exists an order isomorphism between the set of all subnear-rings of R containing ker f and the set of all subnear-rings of R' and there exists an order isomorphism between the set of all ideals of R containing ker f and the set of all ideals of R'.

Proof: The proof is similar to the proof of Theorem 2.21 by using Proposition 1.36 and 3.13. #

Remark 3.19. Let R be a partially ordered distributive near-ring,

H a subnear-rings of R and J a convex ideal in R. Then $H \cap J$ is a convex ideal of H and H + J is a subnear-ring of R.

Proof: If is clear that $H \cap J$ is a convex ideal of H. To show that H + J is a subnear-ring of R, let $x,y \in H + J$. Then $x = h_1 + a_1$ and $y = h_2 + a_2$ for some h_1 , $h_2 \in H$, a_1 , $a_2 \in J$. Hence $x - y = h_1 + a_1 - a_2 - h_2 = (h_1 - h_2) + (h_2 + (a_1 - a_2) - h_2) \in H + J$ and $xy = (h_1 + a_1)(h_2 + a_2) = h_1h_2 + (h_1a_2 + a_1h_2 + a_1a_2) \in H + J$. #

Theorem 3.20 (Second Isomorphism Theorem). Let R be a partially ordered distributive near-ring, H a subnear-ring of R and J a convex ideal in R such that $P_{H+J} = P_H$. Then $H_{H\cap J} \cong H + J_J$.

Proof: The proof is similar to the proof of Theorem 2.23. #

Remark 3.21. Let R be a partially ordered distributive near-ring, H and K convex ideals in R such that H \subseteq K. Then K_H is a convex ideal of R_H.

Proof: This proof is similar to the proof of Remark 2.24.

Theorem 3.22 (Third Isomorphism Theorem). Let R be a partially ordered distributive near-ring, H and K convex ideals in R such that $H \subseteq K$. Then $(R/H)/(K/H) \cong R/K$.

Proof: The proof is similar to the proof of Theorem 2.25.#

Theorem 3.23. Let R and R' be partially ordered distributive

near-rings and f: R \rightarrow R' an order epimorphism. If J' is a convex ideal in R' then R/ $_{f}^{-1}(J)$ \cong R/ $_{J}^{\prime}$.

Proof: The proof is similar to the proof of Theorem 2.26.#

Definition 3.24. Let $\{(R_{\alpha},\leqslant_{\alpha})\}_{\alpha\in I}$ be a family of partially ordered distributive near-rings. The <u>direct product</u> of the family $\{(R_{\alpha},\leqslant_{\alpha})\}_{\alpha\in I}$, denoted by $\prod_{\alpha\in I}R_{\alpha}$, is the set of all elements $(x_{\alpha})_{\alpha\in I}$ in the Cartesian product of the family $\{(R_{\alpha},\leqslant_{\alpha})\}_{\alpha\in I}$ together with operations + and • and the partial order \leqslant on $\prod_{\alpha\in I}R_{\alpha}$ defined by $\prod_{\alpha\in I}R_{\alpha}$

$$\begin{aligned} & (\mathbf{x}_{\alpha})_{\alpha \in \mathbf{I}} + (\mathbf{y}_{\alpha})_{\alpha \in \mathbf{I}} &= & (\mathbf{x}_{\alpha} + \mathbf{y}_{\alpha})_{\alpha \in \mathbf{I}}, \\ & (\mathbf{x}_{\alpha})_{\alpha \in \mathbf{I}} \cdot (\mathbf{y}_{\alpha})_{\alpha \in \mathbf{I}} &= & (\mathbf{x}_{\alpha} \mathbf{y}_{\alpha})_{\alpha \in \mathbf{I}} & \text{and} \\ & (\mathbf{x}_{\alpha})_{\alpha \in \mathbf{I}} &\leq & (\mathbf{y}_{\alpha})_{\alpha \in \mathbf{I}} & \text{if and only if } \mathbf{x}_{\alpha} \leq_{\alpha} \mathbf{y}_{\alpha} & \text{for all } \alpha \in \mathbf{I}. \end{aligned}$$

Note that (Π R_{α} ,+,•, \leqslant) is a partially ordered distributive $\alpha \in \Pi$ near-ring and $P_{\prod} R_{\alpha} = \prod_{\alpha \in \Pi} P_{R_{\alpha}}$. So we see that given some examples of partially ordered distributive near-rings we can construct new examples of partially ordered distributive near-rings using the direct product.

Proposition 3.25. Let $\{(R_{\alpha}, \leqslant_{\alpha})\}_{\alpha \in I}$ be a family of partially ordered distributive near-rings. Then the following statements hold:

(1) II R is directed if and only if R is directed for $\alpha\epsilon\,I$ all $\alpha\,\epsilon\,I$.

- (2) I R $_{\alpha}$ is a lattice if and only if R $_{\alpha}$ is a lattice for $_{\alpha}$ $_{\epsilon}$ I
- all αε I.
 - (3) If R_{α} is complete if and only if R_{α} is complete for $\alpha \in I$

all α ε I.

(4) If R_{α} is totally ordered if and only if either $I = \{\alpha\}$

and D_{α} is totally ordered or there exists an α_0 ϵ I such that D_{α} is totally ordered and $|D_{\alpha}|$ = 1 for all $\alpha \in I \setminus \{\alpha_0\}$.

<u>Proof:</u> The proof is similar to the proof of Proposition 2.28 by using Proposition 3.5.

Finally, we shall characterize those distributive seminear-ringswhich can be the positive cone of a partially ordered distributive near-ring.

- Theorem 3.26. Let P be a distributive seminear-ring with additive identity 0. Then there exists a partially ordered distributive near-ring having P as its positive cone if and only if P satisfies the following properties:
 - (i) P is additively cancellative.
 - (ii) P + a = a + P for all $a \in P$.
 - (iii) For any $a,b \in P$, a+b=0 implies a=b=0.
 - (iv) ab + cd = cd + ab for all $a,b,c,d \in P$.

Moreover, if P satisfies properties (i) - (iv) then there exist a partially ordered distributive near-ring R and a monomorphism i: $P \rightarrow R$ such that

- (1) i(P) is the positive cone of R and
- (2) if R' is a partially ordered distributive near-ring and j: $P \rightarrow R'$ is a monomorphism such that j(P) is the positive cone of R' then there exists a unique order monomorphism $f \colon R \rightarrow R'$ such that $f \circ i = j$, that is, R is the smallest partially ordered distributive near ring having P as its positive cone up to isomorphism. Furthermore, R is directed.

Proof: Since the positive cone of a partially ordered
distributive near-ring R has properties (i)-(iv), so if P is
isomorphic to the positive cone of R then P also has properties (i)(iv).

Conversely, assume that P satisfies properties (i)-(iv). By properties (i) and (ii) of P, we get that for any a,x ϵ P there exists a unique x_a ϵ P such that $x + a = a + x_a$. Clearly, $a_a = a_0 = a$ and $a_a = a_0 = a$ and $a_a = a_0 = a$ for all a ϵ P. Using a proof similar to the proof of Theorem 2.29 we can show that

(1)
$$(x+y)_a = x_a + y_a$$
 and

(2)
$$(x_a)_b = x_{a+b}$$

for all a,b,x,y ϵ P.

Define a relation \sim on P \times P as follows: For a,b,c,d ϵ P, $(a,b) \sim (c,d) \text{ if and only if } a+d_b=c+b. \text{ The proof that } \sim \text{is an equivalence relation is similar to the proof of Theorem 1.21. Let } \\ R=\frac{P\times P}{\sim} \text{ . Define operations + and } \cdot \text{ on } R \text{ by } \\ [(a,b)]+[(c,d)]=[(a+c_b,d+b)] \text{ and }$

 $[(a,b)] \cdot [(c,d)] = [(ac+bd, ad+bc)]$

for all a,b,c,d ϵ P. Using a proof similar to the proof of Theorem 2.29 we can show that + is well-defined and (R,+) is a group with [(0,0)] as the identity and [(b,a)] as the inverse of [(a,b)] for all a,b ϵ P.

Multiplying (*) by c and d, multiplying (**) by v and w, adding the result equation and the terms wd + ad + bc + bd, we get that $ac + w_bc + vd + bd + vc + vy_d + wx + wd + wd + ad + bc + bd$ $= vc + bc + ad + w_bd + vx + vd + wc + wy_d + wd + ad + bc + bd.$

By property (iv) of P, we have that

ac + $(bc+w_b^c)+(vd+vy_d^c)+bd+vc+wx+wd+wd+ad+bd$ = $vc+bc+ad+(bd+w_b^d)+vx+vd+wc+(wd+wy_d^c)+ad+bc$.

Hence

ac + wc + bc + vy + vd + bd + vc + wx + wd + wd + ad + bd

= vc + bc + ad + wd + bd + vx + vd + wc + wy + wd + ad + bc.

By properties (i) and (iv) of P, we get that

ac + bd + vy + wx + ad + bc = bc + ad + vx + wy + ad + bc,

so that

ac + bd + ad + bc + $(vy+wx)_{ad+bc}$ = ad + bc + vx + wy + ad + bc.

Therefore ac + bd + $(vy+wx)_{ad+bc}$ = (vx+wy)+(ad+bc), so $(ac+bd,ad+bc) \sim (\forall x+wy,vy+wx). \quad \text{Hence } [(ac+bd,ad+bc)] = [(vx+wy,vy+wx)].$

Therefore • is well-defined.

```
To show that • is associative, let a,b,c,d,x,y \epsilon P.
([(a,b)][(c,d)])[(x,y)]
         = [((ac+bd)x + (ad+bc)y, (ac+bd)y + (ad+bc)x)]
         = [(acx+ady+bcy+bdx, acy+adx+bcx+bdy)]
         = [(a(cx+dy) + b(cy+dx), a(cy+dx) + b(cx+dy))]
         = [(a,b)][(cx+dy, cy+dx)]
         = [(a,b)]([(c,d)][(x,y)]).
Hence • is associative.
         To show that • is distributive over + in R, let a,b,c,d,x,y \epsilon P.
Then by properties (i) and (iv), we get that
x(a+c_b) + y(d+b) + (xd+xb+ya+yc_b) + (xd+yc+xb+ya) xd+xb+ya+yc_b
         = xa + xc_{b} + yd + yb + xd + yc + xb + ya + xd + xb + ya + yc_{b}
         = xa + (xb + xc_b) + yd + (yc + yb) + xd + ya + xd + xb + ya + yc_b
         = xa + xc + xb + yd + yb + yc_b + xd + ya + x(d+b) + y(a+c_b)
         = xd + yc_b + xa + yb + (xc+yd) + (xb+ya) + x(d+b) + y(a+c_b)
         = xd + yc_b + xa + yb + xb + ya + (xc+yd)_{xb+ya} + x(d+b) + y(a+c_b),
SO
x(a+c_b) + y(d+b) + (xd+yc+xb+ya)x(d+b) + y(a+c_b)
        = (xa+yb+(xc+yd)_{xb+ya})+(x(d+b)+y(a+c_b)).
Hence
(x(a+c_b) + y(d+b), x(d+b) + y(a+c_b))^{(xa+yb+(xc+yd)} xb+ya, xd+yc+xb+ya)
                                                    .....(3).
Therefore
[(x,y)]([(a,b)]+[(c,d)]) = [(x(a+c_b)+y(d+b), x(d+b)+y(a+c_b))]
```

(by(3))

(by (4))

$$= [(xa+yb+(xc+yd)_{xb+ya}, xd+yc+xb+ya)] \qquad (by(3))$$

$$= [(xa+yb, xb+ya)]+[(xc+yd, xd+yc)]$$

$$= [(x,y)][(a,b)]+[(x,y)][(c,d)].$$
From
$$ax + c_bx + dy + by + (ay+c_by+dx+bx) + (cy+dx+ay+bx)_{ay+c_b}y+dx+bx$$

$$= ax + c_bx + dy + by + cy + dx + ay + bx + ay + c_by + dx + bx$$
and property (iv) of P, we have that
$$ax + c_bx + dy + (by+c_by) + ay + dx + bx + (cy+dx+ay+bx)_{ay+c_b}y+dx+bx$$

$$= ax + (bx+c_bx) + dy + by + cy + dx + ay + ay + c_by + dx + bx .$$
Also,
$$ax + c_bx + dy + cy + by + ay + dx + bx + (cy+dx+ay+bx)_{ay+c_b}y+dx+bx$$

$$= ax + cx + bx + dy + by + cy + dx + ay + ay + c_by + dx + bx$$

$$= cy + dx + ax + by + (cx+dy) + (ay+bx) + (a+c_b)y + (d+b)x$$

$$= cy + dx + ax + by + ay + bx + (cx+dy)_{ay+bx} + (a+c_b)y + (d+b)x .$$
By property (i) of P,
$$(ax + c_bx + dy + by) + (cy + dx + ay + bx)_{ay+bx} + (a+c_b)y + (d+b)x .$$
Thus
$$((a+c_b)x + (d+b)y, (a+c_b)y + (d+b)x) \wedge (ax+by + (cx+dy)_{ay+bx}, (cy+dx) + (a_y^2+bx)) .$$
Thus
$$((a+c_b)x + (d+b)y, (a+c_b)y + (d+b)x) \wedge (ax+by + (cx+dy)_{ay+bx}, (cy+dx) + (a_y^2+bx)) .$$
Hence
$$(((a,b))+((c,d)))((x,y)) = (((a+c_b)x + (d+b)y, (a+c_b)y + (d+b)x)) .$$

$$(by (4))$$

= [(ax+by, ay+bx)]+[(cx+dy, cy+dx)]= [(a,b)][(x,y)]+[(c,d)][(x,y)]

Therefore (R,+,•) is a distributive near-ring.

Define i: $P \to R$ by i(a) = [(a,0)] for all $a \in P$. Using a proof similar to the proof of Theorem 2.29 we get that i is a monomorphism and i(P) is an O-set of R. By Theorem 3.8, there exists a compatible partial order on R such that i(P) is the positive cone. Since for any $a,b \in P$, [(a,b)] = [(a,0)]+[(0,b)] = [(a,0)]-[(b,0)] = i(a)-i(b), $i(P) = P_R$ generates (R,+). By Proposition 3.5(1), R is directed.

Assume that R' is a partially ordered distributive near-ring and j: P \rightarrow R' is a monomorphism such that $j(P) = P_R$. Define f: R \rightarrow R' by f([(a,b)]) = j(a) - j(b) for all a,b \in P. Using a proof similar to the proof of Remark 1.22 we get that f is well-defined, injective, $f(P_R) = P_{f(R)}$ and $f(\alpha+\beta) = f(\alpha) + f(\beta)$ for all $\alpha,\beta \in R$. Let a,b,c,d \in P. Then

f([(a,b)][(c,d)]) = f([(ac+bd, ad+bc)]) = j(ac+bd) - j(ad+bc) = j(a)j(c) + j(b)j(d) - j(a)j(d) - j(b)j(c) = j(a)(j(c) - j(d)) - j(b)(j(c) - j(d)) = (j(a) - j(b))(j(c) - j(d)) = f([(a,b)])f([(c,d)]).

Hence f is a homomorphism. Therefore f is an order monomorphism. Using a proof similar to the proof of Remark 1.22 we get that f is the unique order monomorphism such that f \circ i = j. #