CHAPTER II

PARTIALLY ORDERED DISTRIBUTIVE RATIO SEMINEAR-RINGS

In this chapter, some fundamental theorems of partially ordered distributive ratio seminear-rings are given and we also classify all complete ordered distributive ratio seminear-rings.

Definition 2.1. A partial order \leqslant on a distributive ratio seminearring D is said to be compatible if it satisfies the following property: For any $x, y, z \varepsilon D, x \leqslant y$ implies $x+z \leqslant y+z$, $z+x \leqslant z+y, x z \leqslant y z$ and $z x \leqslant z y$.

Definition 2.2. A system $(D,+, \cdots, \leqslant)$ is called a partially ordered distributive ratio seminear-ring if $(\mathrm{D},+, \cdot)$ is a distributive ratio seminear-ring and \leqslant is a compatible partial order on D. If the compatible partial order on D is a total order then ($D,+, \cdot, \leqslant$) is called an ordered distributive ratio seminear-ring.

Example 2.3. (1) Every distributive ratio seminear-ring is a partially ordered distributive ratio seminear-ring with respect to the trivial partial order, that is, $x \leqslant y$ if and only if $x=y$.
(2) Every ratio subseminear-ring of a partially ordered distributive ratio seminear-ring is a partially ordered distributive ratio seminear-ring.
(3) If $(D,+, \cdot, \leqslant)$ is a partially ordered distributive ratio seminear-ring then $(\mathrm{D},+, \cdot, \leqslant \mathrm{fp})$ is a partially ordered distributive
ratio seminear-ring.
(4) $\left(Q^{+},+, \bullet, \leqslant\right)$ and $\left(\mathbb{R}^{+},+, \bullet, \leqslant\right)$ are ordered distributive ratio seminear-rings.
(5) Let (G, \cdot, \leqslant) be a partially ordered group. Define the operation + on G by

$$
\begin{aligned}
& \text { 5.1) } x+y=x \text { for all } x, y \in G \quad \text { or } \\
& \text { 5.2) } x+y=y \text { for all } x, y \varepsilon G \text {. }
\end{aligned}
$$

Then $(G,+, \cdot, \leqslant)$ is a partially ordered distributive ratio seminearring.
(6) Let (G, \cdot, \leqslant) be a lattice ordered group. Define the operation + on G by

$$
\begin{aligned}
& \text { 6.1) } x+y=\sup \{x, y\} \text { for all } x, y \in G \text { or } \\
& 6.2) x+y=\inf \{x, y\} \text { for all } x, y \in G \text {. }
\end{aligned}
$$

Then $(G,+, \cdot, \leqslant)$ is a partially ordered distributive ratio seminearring.

Proposition 2.4. Φ^{+}has only three compatible partial orders, the usual order, the dual of the usual order and the trivial partial order.

Proof: Let \leqslant^{*} be a compatible partial order on Q^{+}. Case 1: $1 \ll^{\star} 2$. Then $2=1+1 \ll^{*} 2+1=3$. It follows by induction that $n<{ }^{*} n+1$ for all $n \in \mathbf{z}^{+}$. This implies that $n<{ }^{*} n+1$ for all $n, l \varepsilon \mathbf{Z}^{+}$. Since for each $m, n \varepsilon \mathbf{z}^{+}, m<n$ implies $\quad n=m+1$ for some $1 \varepsilon \mathbb{Z}^{+}$, we get that for each $m, n \varepsilon \mathbf{z}^{+}$, $\mathrm{m}<\mathrm{n}$ if and only if $\mathrm{m}<^{*} \mathrm{n}$.

Let $x, y \in \mathbb{Q}^{+}$. Then $x=\frac{m}{n}$ and $y=\frac{r}{s}$ for some $m, n, r, s \in \mathbf{z}^{+}$.
Then we have that $\mathrm{ms}<^{*} \mathrm{nr}$ if and only if $\mathrm{ms}<\mathrm{nr}$ which implies that
$\frac{m}{n}<^{*} \frac{s}{r}$ if and only if $\frac{m}{n}<\frac{r}{s}$. Therefore for each $x, y \in Q^{+}, x \leqslant * y$ if and only if $x \leqslant y$. Hence \leqslant^{*} is the usual order on Q^{+}.

Case 2: $2<^{*} 1$. The proof of this case is similar to the proof of Case 1 and shows that \leqslant is the dual of the usual order.

Case 3: 1 is incomparable to 2. We shall show that \leqslant is the trivial partial order.

First, we claim that for any $m, n \varepsilon \mathbb{Z}^{+}, m \leqslant n$ if and only if $m=n . \quad$ Suppose not. Then there exist $m, n \in \mathbb{Z}^{+}$such that $m<^{*} n$.

Subcase 3.1: $m<n$. Then there exist $q, r \varepsilon \mathbb{Z}_{0}^{+}$such that $\mathrm{n}=\mathrm{mq}+\mathrm{r}$ and $0 \leqslant r<m$

Subcase 3.1.1: $r=0$. Then $m<^{*} \mathrm{mq}$, so $1<^{*} q$. Since 1 is incomparable to 2 and $q \varepsilon \mathbb{Z}^{+}$, so $2<q$, we have that $0<q-2$. Therefore $1+(q-2) \leqslant q+(q-2)$, so $q-1 \leqslant 2(q-1)$. Hence $1 \leqslant 2$, a contradiction.

Subcase 3.1.2: $r>0$. Then $m<^{*} \mathrm{mq}+r$, so we get

that $m+(m-r) \leqslant(m q+r)+(m-r)$. Thus $2 m-r<^{*} m(q+1)$, hence $1<\frac{q+1}{2}+\frac{r}{2 m}$.

Let $x=\frac{q+1}{2}+\frac{r}{2 m}$. Then $1<^{*} x$. Also, $1<^{*} x^{n}$ for all $n \varepsilon \mathbb{Z}^{+}$. Since $q \geqslant 1$ and $\frac{r}{2 m}>0, x>1$. Then there exisis an $n \varepsilon \mathbb{Z}^{+}$such that $x^{n}>2$. Therefore $1+\left(x^{n}-2\right) \leqslant x^{n}+\left(x^{n}-2\right)$, so we have that $x^{n}-1 \leqslant 2\left(x^{n}-1\right)$. Hence $1 \leqslant 2$, a contradiction.

Subcase 3.2: $n<m$. The proof of this subcase is similar to the proof of Subcase 3.1 and shows that this subcase cannot occur.

Hence we have the claim.
Let $x, y \in Q^{+}$. Then $x=\frac{m}{n}$ and $y=\frac{r}{s}$ for some $m, n, r, s \in z^{+}$. By the claim, we have that $m s \leqslant^{*} n r$ if and only if $m s=n r$ which implies that $\frac{m}{n} \leqslant \frac{r}{s}$ if and only if $\frac{m}{n}=\frac{r}{s}$. Therefore for each $x, y . \varepsilon \mathbb{Q}^{+}$, $\mathbf{x} \leqslant^{*} y$ if and only if $x=y$. Hence \leqslant^{*} is the trivial partial order on Q^{+}. \#

Remark 2.5. Let D be a partially ordered distributive ratio seminearring. Then the following statements clearly hold:
(1) For any $x, y, z \varepsilon D, x<y$ implies $x z<y z$ and $z x<z y$.
(2) For any $u, v, x, y \in D, u<v$ and $x<y$ imply $u x<v y$ and $u+x \leqslant v+y$.
(3) For any $x, y \in D, x<y$ implies $y^{-1}<x^{-1}$.

Let D be a partially ordered distributive ratio seminear-ring and A a subset of D. The positive cone of A, denoted by P_{A}, is $\{x \in A \mid x \geqslant 1\}$. The following statements hold:
(1) ($\left.P_{D}, \cdot\right)$ is a semigroup with identity.
(2) $\left(P_{D},+\right)$ is a semigroup if and only if $1 \leqslant 1+1$
(3) $P_{D} \cap P_{D}^{-1}=\{1\}$
(4) $x P_{D} x^{-1}=P_{D}$ for all $x \varepsilon D$.
(5) $P_{H}=P_{D} \cap H$ where H is a subset of D.

Proposition 2.6. Let D be a partially ordered distributive ratio seminear-ring. Then the ratio subseminear-ring H is convex in D if and only if P_{H} is a convex subset of P_{D}.

Proof: It is clear that if H is convex in D then P_{H} is convex in P_{D}.

Conversely, assume that P_{H} is a convex subset of P_{D}. To show that. H is convex in D, let $x, y \in H$ and $z \varepsilon D$ be such that $x \leqslant z \leqslant y$. Then $1 \leqslant \mathrm{zx}^{-1} \leqslant \mathrm{yx}^{-1}$, so $\mathrm{zx}^{-1} \varepsilon \mathrm{P}_{\mathrm{D}}$ and $\mathrm{yx}^{-1} \varepsilon \mathrm{P}_{\mathrm{H}}$. By assumption, $z x^{-1} \varepsilon P_{H}$. Thus ${z x^{-1}}$. H, so $z=\left(z^{-1}\right) x \varepsilon H$. Hence H is convex in D. \#

Definition 2.7. Let D be a partially ordered distributive ratio seminear-ring. D is called upper additive if for any $x, y \varepsilon D, 1 \leqslant x$ and $1 \leqslant y$ imply $1 \leqslant x+y$, lower additive if for any $x, y \varepsilon D, x \leqslant 1$ and $y \leqslant 1$ imply $x+y \leqslant 1$, left [right] increasing if $x \leqslant x+y$ $[x \leqslant y+x]$ for all x, y \& D. Left and right decreasing are defined dually.

In Example 2.3, (5) and (6) are both upper and lower additive, $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right)$ is upper additive but not lower additive, $\left(\mathbb{R}^{+},+, \cdot, \xi_{\text {opp }}\right)$ is lower additive but not upper additive, 6.1) is both left and right increasing, 6.2) is both left and right decreasing, 5.1) is left increasing but not right increasing and 5.2) is right increasing but not left increasing.

Proposition 2.8. Let D be a partially ordered distributive ratio seminear-ring. •Then the following statements hold:
(1) D is upper [lower] additive if and only if $1 \leqslant 1+1$ $[1+1 \leqslant 1]$ (hence D is both upper and lower additive if and only if
$1+1=1)$.
(2) D is left [right] increasing if and only if $1+D \subseteq P_{D}$ $\left[D+1 \subseteq P_{D}\right]$ (hence D is both left and right increasing if and only if $\left.(1+D) \cup(D+1) \subseteq P_{D}\right)$.
(3) D is left [right] decreasing if and only if $1+D \subseteq P_{D}^{-1}$ $\left[D+1 \subseteq P_{D}^{-1}\right] \quad$ (hence D is both left and right decreasing if and only if $\left.(1+D) \cup(D+1) \subseteq P_{D}^{-1}\right)$.
(4) D is directed if and only if P_{D} generates (D, \cdot).
(5) D is a lattice if and only if it is directed and P_{D} is
a lattice.
(6) D is complete if and only if every subset of P_{D} has an infimum.
(7) D is totally ordered if and only if $D=P_{D} \cup P_{D}^{-1}$.

Proof: (1) It is clear that if D is upper additive then $1 \leqslant 1+1$. Conversely, assume that $1 \leqslant 1+1$. Let $x, y \in D$ be such that $x \geqslant 1$ and $y \geqslant 1$. Then $x+y \geqslant 1+1 \geqslant 1$. Hence D is upper additive.
(2) It is clear that if D is left increasing then $1+D \subseteq P_{D}$. Conversely, assume that $1+D \subseteq P_{D}$. Let $x, y \varepsilon D$. Then $1+y x^{-1} \varepsilon P_{D}$, so $1+\mathrm{yx}^{-1} \geqslant 1$. Hence $\mathrm{x}+\mathrm{y} \geqslant \mathrm{x}$. Therefore D is left increasing.
(3) The proof is similar to the proof of (2).
(4) Since (D, •) is a group, it follows from Proposition 1.17(1) that D is directed if and only if P_{D} generates ($D,{ }^{\bullet}$).
(5) It is clear that if D is a lattice then it is directed and P_{D} is a lattice.

Conversely, assume that D is directed and P_{D} is a lattice. Let $x \in D$. Since D is directed, $U(x, 1)$ is nonempty. Let $y \varepsilon U(x, 1)$. Then $x \leqslant y$ and $1 \leqslant y$, so $y x^{-1}, y \in P_{D}$. Since P_{D} is a lattice, $\sup \left\{\mathrm{yx}^{-1}, y\right\}$ exists. By Proposition $1.17(3), \sup \left\{y x^{-1}, y\right\}=$ $y \cdot \sup \left\{x^{-1}, 1\right\}$, so $y^{-1} \cdot \sup \left\{y x^{-1}, y\right\}=\sup \left\{x^{-1}, 1\right\}=x^{-1} \cdot \sup \{1, x\}$. Hence we have that $x y^{-1} \cdot \sup \left\{y x^{-1}, y\right\}=\sup \{1, x\}$. Therefore $\sup \{x, 1\}$ exists for all $x \in D$. By Proposition 1.17(2), D is a lattice.
(6) It is clear that if D is complete then every subset of P_{D} has an infimum. For the converse, assume that every subset of P_{D} has an infimum. To show that/D is complete, let A be a subset of D which has a lower bound, say x. Then $x \leqslant a$ for all a εA, so $1 \leqslant a x^{-1}$ for all $a \varepsilon$ D. Hence $A x^{-1} \subseteq P_{D}$. By assumption, inf ($A x^{-1}$) exists, say y. Then we have $y \leqslant a x^{-1}$ for all a εA, so $y x \leqslant a$ for all a εA. Thus yx is a lower bound of A. Let z be a lower bound of A. Then $z \leqslant a$ for all a εA, so $\mathrm{zx}^{-1} \leqslant \mathrm{ax}^{-1}$ for all a $\varepsilon \mathrm{A}$. It follows that $z x^{-1} \leqslant y$, so $z \leqslant y x$. Hence $y x=\inf (A)$. Therefore D is complete.
(7) If D is totally ordered then for each $x \varepsilon D, 1 \leqslant x$ or $x \leqslant 1$ which implies that $D=P_{D} \cup P_{D}^{-1}$. Conversely, assume that $D=P_{D} \cup P_{D}^{-1}$. Let $x, y \varepsilon D$. Then $y x^{-1} \varepsilon P_{D} \cup P_{D}^{-1}$, so we get that $1 \leqslant y x^{-1}$ or $\mathrm{yx}^{-1} \leqslant 1$. Hence $\mathrm{x} \leqslant \mathrm{y}$ or $\mathrm{y} \leqslant \mathrm{x}$. Therefore D is totally ordered. \#

Definition 2.9. A subset A of a distributive ratio seminear-ring D is called an O-set of D if it satisfies the following conditions:
(i) $A \cap A^{-1}=\{1\}$.
(ii) $\quad A^{2} \subseteq A$.
(iii) $\quad x A x^{-1} \subseteq A$ for all $x \in D$.
(iv) $(x+1)^{-1}(x+a),(1+x)^{-1}(a+x) \varepsilon A$ for all $x \varepsilon D, a \varepsilon A$.

Note that for any distributive ratio seminear-ring $D,\{1\}$ is an O-set of D and for any partially ordered distributive ratio seminear-ring D^{\prime}, the positive cone of D^{\prime} is an O-set of D^{\prime}.

Theorem 2.10. Every distributive ratio seminear-ring has a maximal O-set.

Proof: Let D be a distributive ratio seminear-ring and let $A=\{A \subseteq D \mid A$ is an $O-$ set of $D\}$. Note that. A is nonempty since $\{1\}$ belongs to a and a is a partially ordered set with respect to set inclusion. Let $\left\{\mathrm{A}_{\alpha}\right\}_{\alpha \varepsilon I}$ be a chain in a and $J=\bigcup_{\alpha \varepsilon I} A_{\alpha}$. clearly, J is an upper bound of the chain $\left\{A_{\alpha}\right\}_{\alpha \in I}$.

We shall show that J is an 0 -set of D. Let $x \in J \cap J^{-1}$. Then $x \in A_{\alpha}$ for some $\alpha \varepsilon I$ and $x=y^{-1}$ for some $y \varepsilon J$. We have that $y \in A_{B}$ for some $B \in I$. Since $\left\{A_{\alpha}\right\}_{\alpha \varepsilon I}$ is a chain in $a, A_{\alpha} \subseteq A_{\beta}$ or $A_{B} \subseteq A_{\alpha}$. Without loss of generality, assume that $A_{\alpha} \subseteq A_{\beta}$. Then $x \in A_{B}$, so $x \in A_{\beta} \cap A_{B}^{-1}$. But A_{B} is an O-set of D, so $x=1$. Hence $J \cap J^{-1}=\{1\}$.

To show that $J^{2} \subseteq J$, let $x, y \varepsilon J$. Then $x \varepsilon A_{\alpha}$ and $y \varepsilon A_{B}$, for some $\alpha, \beta \in$. Without loss of generality, assume that $A_{\alpha} \subseteq A_{\beta}$. Then $x \in A_{B}$. Since $A_{B}^{2} \subseteq A_{B}$, xy εA_{B}. Hence $x y \varepsilon J$. Therefore $\mathrm{J}^{2} \subseteq J$.

To show that $x J x^{-1} \subseteq J$ for all $x \in D$, let $x \in D$ and $y \varepsilon J$. Then $y \varepsilon A_{\alpha}$ for some $\alpha \varepsilon I$. Since $x A_{\alpha} x^{-1} \subseteq A_{\alpha}$, $x y x^{-1} \varepsilon A_{\alpha}$. Hence $x y x^{-1} \varepsilon J$. Therefore $x J x^{-1} \subseteq J$.

Let $x \in D$ and $y \in J$. Then $y \in A_{\alpha}$ for some $\alpha \in I$. Since A_{α} is an O-set of $D,(x+1)^{-1}(x+y),(1+x)^{-1}(y+x) \in A_{\alpha}$. Hence $(x+1)^{-1}(x+y),(1+x)^{-1}(y+x) \varepsilon J$.

Therefore J is an O-set of D, that is, $J \varepsilon a$. By Zorn's Lemma, a contains a maximal element.

Let D be a distributive ratio seminear-ring and A an 0 -set of D. Define a relation \leqslant on D by $x \leqslant y$ if and only if $x^{-1} y \in A$ for all $x, y \in D$. Using the same proof as in Theorem 1.19 , we get that \leqslant is a partial order on D and for any $x, y, z \varepsilon D, x \leqslant y$ implies that $x z \leqslant y z$ and $z x \leqslant z y$.

To prove that for any $x, y, z \varepsilon D, x \leqslant y$ implies $x+z \leqslant y+z$ and $z+x \leqslant z+y$, it suffices to prove that for any $x, y \varepsilon D, x \leqslant y$ implies $x+1 \leqslant y+1$ and $1+x \leqslant 1+y$. Let $x, y \varepsilon D$ be such that $x \leqslant y$. Then $x^{-1} y \in A$. Since A is an 0 -set of $D,(x+1)^{-1}(y+1)=$ $\left(x\left(1+x^{-1}\right)\right)^{-1}(y+1)=\left(1+x^{-1}\right)^{-1}\left(x^{-1} y+x^{-1}\right) \varepsilon$ A. Hence $x+1 \leqslant y+1$ Similarly, $1+x \leqslant 1+y$.

Therefore \leqslant is a compatible partial order on D. Note that the relation \leqslant^{*} on D which is defined by $x \leqslant \leqslant^{*} y$ if and only if $\mathrm{yx}^{-1} \varepsilon A$ for all $x, y \in D$ is also a compatible partial order on D and $\leqslant=\leqslant$ since A has the property that $x A x^{-1} \subseteq A$ for all $x \in D$. The proof that \leqslant is the unique compatible partial order on D having A as its positive cone is the same as the proof given in the note, page 9. Hence we have the following theorem.

Theorem 2.11. A subset A of a distributive ratio seminear-ring D is an O-set of D if and only if there exists a unique compatible partial order \leqslant on D such that A is the positive cone induced by \leqslant.

Note that for a distributive ratio seminear-ring D, the set of all O-sets of D and the set of all compatible partial orders on D are partially ordered set with respect to set inclusion. Then we have two corollaries, the first one is obtained from Theorem 2.11 by using the same proof given in Corollary 1.20 .

Corollary 2.12. Let D be a distributive ratio seminear-ring, a the set of all O-sets of D and $\sqrt{2}$ the set of all compatible partial orders on D. Then,A and $\frac{2}{2}$ are order isomorphic.

Corollary 2.13. Every distributive ratio seminear-ring has a maximal compatible partial order.

Definition 2.14. Let D and D^{\prime} be partially ordered distributive ratio seminear-rings. A map $f: D \rightarrow D^{\prime}$ is called an order homomorphism of D into D^{\prime} if f is isotone and a homomorphism. An order homomorphism $f: D \rightarrow D^{\prime}$ is called an order monomorphism if f is injective and $f\left(P_{D}\right)=P_{f(D)}$, an order epimorphism if f is onto and $f\left(P_{D}\right)=P_{D}$, and an order isomorphism if f is a bijection and f^{-1} is isotone. D and D' are said to be an order isomprphic if there exists an order isomorphism of D onto D^{\prime} and we denote this by $D \simeq D^{\prime}$.

Proposition 2.15. Let (D, \leqslant) and ($D^{\prime}, \leqslant^{\prime}$) be partially ordered distributive ratio seminear-rings. Then the following statements
hold :
(1) If $f: D \rightarrow D^{\prime}$ is a homomorphism then f is isotone if and only if $f\left(P_{D}\right) \subseteq P_{D^{\prime}}$.
(2) If $f: D \rightarrow D^{\prime}$ is an order homomorphism then ker f is a convex C-set of D.

Proof: (1) Assume that $f: D \rightarrow D^{\prime}$ is a homomorphism. It is clear that if f is isotone then $f\left(P_{D}\right) \subseteq P_{D}$. Conversely, assume that $f\left(P_{D}\right) \subseteq P_{D}$, Let $x, y \in D$ be such that $x \leqslant y$. Then $y x^{-1} \varepsilon P_{D}$, so that $f(y) f(x)^{-1}=f\left(y x^{-1}\right) \varepsilon P^{\prime}$. Hence $f(x) \leqslant f(y)$. Therefore f is isotone.
(2) Assume that $f: D \rightarrow D^{\prime}$ is an order homomorphism. By Proposition 1.33 , ker f is a C-set of D. Let $x, y \varepsilon$ ker f and $z \varepsilon D$ be such that $x \leqslant z \leqslant y$. Then $1^{\prime}=f(x) \leqslant f(z) \leqslant f(y)=1^{\prime}$, so $f(z)=1^{\prime}$. Hence $z \varepsilon$ ker f. Therefore ker f is convex.

Theorem 2.16. Let (D, \leqslant) be a partially ordered distributive ratio seminear-ring and C a convex C-set of D. Then there exists a compatible partial order on D / C such that the projection map π is an order epimorphism.

Proof: Define a relation \leqslant^{*} on D / C as follows: For α, $\beta \varepsilon D_{C}, \alpha \leqslant \beta$ if and only if there exist a $\varepsilon \alpha$ and $b \varepsilon \beta$ such that $a \leqslant b . \quad$ Clearly, \leqslant is reflexive. Let $\alpha, \beta \varepsilon D / C$ be such that $\alpha \leqslant \beta$ and $B \leqslant \alpha$. Then there exist $a, d \varepsilon \alpha$ and $b, c \varepsilon \beta$ such that $a \leqslant b$ and $c \leqslant d$. Then $d^{-1} a \leqslant d^{-1} b \leqslant c^{-1} b$. By definition of α and B, we have $d^{-1} a, c^{-1} b \in c$. But C is convex, so $d^{-1} b \in C$. Then
$\alpha=[d]=[b]=\beta$. Hence \leqslant is anti-symmetric. Let $\alpha, \beta, \gamma \varepsilon \frac{D}{C}$ be such that $\alpha \leqslant \beta$ and $\beta \leqslant \gamma$. Then there exist $a \varepsilon \alpha, b, c \in \beta$ and $d \in \gamma$ such that $a \leqslant b$ and $c \leqslant d$. Hence $a \leqslant b=c\left(c^{-1} b\right) \leqslant d\left(c^{-1} b\right)$. This implies that $\alpha=[a] \leqslant \leqslant^{*}\left[d c^{-1} b\right]=[d]\left[c^{-1}\right][b]=\gamma \beta^{-1} \beta=\gamma$. Thus \leqslant^{*} is transitive. Therefore \leqslant^{*} is a partial order on D / C.

Next, we shall show that \leqslant^{*} is compatible. Let $\alpha, \beta, \gamma \varepsilon D / C$ be such that $\alpha \leqslant \beta$. Then there exist $a \varepsilon \alpha$ and $b \in \beta$ such that $a \leqslant b$. Choose $c \in \gamma$. Thus $a+c \leqslant b+c$ and $a c \leqslant b c$. Then we have that $[a]+[c]=[a+c] \leqslant[b+c]=[b]+[c]$ and $[a][c]=[a c] \leqslant \leqslant^{*}[b c]=[b][c]$. Hence $\alpha+\gamma \leqslant \beta+\gamma$ and $\alpha \gamma \leqslant^{*} \beta \gamma$. Similarly, $\gamma+\alpha \leqslant \gamma+\beta$ and $\gamma \alpha \leqslant \gamma \beta$. Therefore $\leqslant *$ is compatible.

We have that $\pi: D \rightarrow D / C$ is an epimorphism. By definition of \leqslant, π is isotone. Then $\pi\left(P_{D}\right) \subseteq P_{D}$ by Proposition $2.15(1)$. To show that $P_{D / C} \subseteq \pi\left(P_{D}\right)$, let $\alpha \in P_{D / C}$. Then $[1] \leqslant \alpha$, so that there exist a $\varepsilon[1]$ and $\mathrm{b} \varepsilon \alpha$ such that $\mathrm{a} \leqslant \mathrm{b}$. Thus $\mathrm{ba}^{-1} \varepsilon \mathrm{P}_{\mathrm{D}}$. Now, $\pi\left(\mathrm{ba}^{-1}\right)=\left[\mathrm{ba}^{-1}\right]=$ $[b][a]^{-1}=[b][1]=[b]=\alpha$ which implies that $\alpha \varepsilon \pi\left(P_{D}\right)$. Then $P_{D_{C}} \subseteq \pi\left(P_{D}\right)$. Therefore $\pi\left(P_{D}\right)=P_{D / C}$. Hence π is an order epimorphism.\#

Definition 2.17. Let D be a distributive ratio seminear-ring and C a C-set of D. A compatible partial order on C is a partial order \leqslant on C such that
(i) for any $x, y, z \varepsilon C, x \leqslant y$ implies $x z \leqslant y z$ and $z x \leqslant z y$,
(ii) for any $x \in D, x P_{C}^{*} x^{-1} \subseteq P_{C}^{*}$ where $P_{C}^{*}=\{x \in C / x \geqslant 1\}$ and
(iii) $(x+1)^{-1}(x+y),(1+x)^{-1}(y+x) \varepsilon P_{C}^{*}$ for all $x \varepsilon D, y \in P_{C}^{*}$.

Remark 2.18. (1) If D is a partially ordered distributive ratio seminear-ring and C is a C-set of D then the restriction of the partial order on D to C gives a compatible partial order on C
(2) Let D be a distributive ratio seminear-ring and C a ratio subseminear-ring of D which is also a C-set and let \leqslant be a partial order on C. If \leqslant is a compatible partial order on C as a C-set then \leqslant is a partial order compatible with the ratio subseminear-ring structure of C.

Proof: (1) Obvious.

(2) Assume that \leqslant is a compatible partial order on C as a C-set. Let $x, y, z \in C$ be such that $x \leqslant y$. By assumption, $x z \leqslant y z$ and $z x \leqslant z y$. Since $y x^{-1} \varepsilon P_{C}^{*}$, so $\left(z x^{-1}+1\right)^{-1}\left(z x^{-1}+y x^{-1}\right) \varepsilon P_{C}^{*}$ which implies that $z x^{-1}+1 \leqslant z x^{-1}+y x^{-1}$. Hence $z+x \leqslant z+y$. Similarly, $x+z \leqslant y+z$. Therefore \leqslant is a partial order compatible with the ratio seminear-ring structure of C.

Theorem 2.19. Let D be a distributive ratio seminear-ring and C a prime C-set of D. Assume that C has a compatible partial order \leqslant and D / C has a compatible partial order \leqslant. Then there exists a compatible partial order on D such that \leqslant^{*} is the restriction of the partial order on D and the projection map π is an order epimorphism.
 an O-set of D. Let $a \varepsilon A \cap A^{-1}$. Then $a^{-1} \varepsilon A$. Claim that a εP_{C}^{*}.

Suppose that a $\varepsilon \underset{\alpha \in P_{D},}{ }{ }^{\alpha}\{C\}$. Then a $\varepsilon \alpha$ for some $\alpha \varepsilon P_{D_{C}}\{$ \{C\}. Thus
$[a]=\alpha>[1]$. If $a^{-1} \varepsilon P_{C}^{*}$ then $a^{-1} \varepsilon C$, so $a=\left(a^{-1}\right)^{-1} \varepsilon C$ which implies that $\alpha=[a]=[1]$, a contradiction. Hence $a^{-1} \varepsilon \underset{\alpha \in P_{D}}{\cup} \quad \alpha\{c\}$.

Then $a^{-1} \varepsilon \beta$ for some $\beta \in P_{D} \backslash\{C\}$. Thus $\left[a^{-1}\right]=\beta>[1]$. It follows that $[1]>\left[a^{-1}\right]^{-1}=[a]$, a contradiction. Therefore a εP_{C}^{*}, so we have the claim. Then $a \varepsilon C$, so $a^{-1} \varepsilon C$. But $a^{-1} \varepsilon A$, so $a^{-1} \varepsilon P_{C}^{*}$. This implies that $a \in P_{C}^{*} \cap\left(P_{C}^{*}\right)^{-1}$, hence $a=1$. Therefore $A \cap A^{-1}=\{1\}$. To show that $A^{2} \in A$, let $a, b \in A$. If $a, b \in P_{C}^{*}$ then $a b \varepsilon P_{C}^{*}$, so we are done. Assume that $a \not \& P_{C}^{*}$ or $b \not \& P_{C}^{*}$.

Case 1: $\mathrm{a}, \mathrm{b} \varepsilon \underset{\alpha \in \mathrm{P}_{\mathrm{D}} / \mathcal{C}\{\mathrm{c}\}}{ }$. Then $\mathrm{a} \varepsilon \alpha$ and $\mathrm{b} \in \beta$ for some α,
$\beta \in P_{D / C} \backslash\{c\}$. Also, $[a b]=[a][b]=\alpha \beta>[1]$. Hence $[a b] \varepsilon P_{D / C} \backslash\{c\}$, so $a b \varepsilon \bigcup_{\alpha \in P_{D / C}} \alpha_{\{C\}}$

Case 2: $a \varepsilon P_{C}^{*}$ and $b \in \bigcup_{\alpha \in P_{D} / C}{ }^{\alpha}\{c\}$. Then $a \varepsilon C$ and $b \varepsilon \alpha$ for some $\alpha \in P_{D / C} \backslash\{C\}$. Thus $[a b]=[a][b]=[1][b]=[b]=\alpha \varepsilon P_{D / C} \backslash\{c\}$, and hence $\mathrm{ab} \varepsilon \mathrm{U}_{\alpha \in \mathrm{P}_{\mathrm{D}}^{\mathrm{C}}}{ }^{\alpha}\{(\mathrm{C}\}$. Therefore $A^{2} \subseteq A$.

To show that $x A x^{-1} \subseteq A$ for all $x \in D$, let $x \in D$ and a εA. If a εP_{C}^{*} then $x a x^{-1} \varepsilon P_{C}^{*}$, so we are done. Assume that a $\varepsilon \cup_{\alpha \in P_{D} / C}^{\alpha}\{C\}$

Then $a \varepsilon \alpha$ for some $\alpha \varepsilon P_{D / C} \backslash\{C\}$. Thus $\left[x^{-1}\right]=[x][a][x]^{-1}=$ $[x]_{\alpha}[x]^{-1}>[x][x]^{-1}=[1]$, so $\left[\operatorname{xax}^{-1}\right] \varepsilon P_{D / C} \backslash\{C\}$. Hence $\operatorname{xax}^{-1} \varepsilon \bigcup_{\alpha \in P_{D / C}}{ }^{\alpha}{ }_{\{C\}}$, so $\operatorname{xax}^{-1} \varepsilon A$. Therefore $x A x^{-1} \subseteq A$.

Let $x \in D$ and $a \in A$. If $a \in P_{C}^{*}$ then $(x+1)^{-1}(x+a)$, $(1+\mathrm{x})^{-1}(\mathrm{a}+\mathrm{x}) \varepsilon \mathrm{P}_{\mathrm{C}}^{*}$, so we are done. Assume that a $\varepsilon \bigcup_{\alpha \in \mathrm{P}_{\mathrm{D}}^{\mathrm{C}}}{ }^{\alpha}\{\mathrm{C}\}$ a $\varepsilon \alpha$ for some $\alpha \varepsilon P_{D / C}>\{c\}$. Thus $[a]=\alpha>[1]$, so we get that $[x]+[a] \geqslant[x]+[1]$. Hence $\left[(x+1)^{-1}(x+a)\right]=([x]+[1])^{-1}([x]+[a]) \geqslant[1]$. Since $a \notin C$ and C is a prime C-set of D, so $(x+1)^{-1}(x+a) \notin C$ which implies that $\left[(x+1)^{-1}(x+a)\right]>[1]$. Hence $(x+1)^{-1}(x+a) \varepsilon \bigcup_{\alpha \in P_{D / C}} \alpha\{C\}$,
so we get that $(x+1)^{-1}(x+a) \varepsilon A$. Similarly, $(1+x)^{-1}(a+x) \varepsilon A$.
Therefore A is an O-set of D. By Theorem 2.11, there exists a compatible partial order \leqslant on D such that $A=P_{D}$. We shall show that $\leqslant\left.\right|_{C x C}=\leqslant^{*}$. Let $x, y \in C$. Assume that $x \leqslant y$. Then $y x^{-1} \varepsilon P_{D}$, so $\mathrm{yx}^{-1} \varepsilon \mathrm{~A}$. Since $\mathrm{yx}^{-1} \varepsilon C, \mathrm{yx}^{-1} \varepsilon \mathrm{P}_{\mathrm{C}}^{*}$ which implies that $\mathrm{x} \leqslant \leqslant^{*} \mathrm{y}$. Assume that $\mathrm{x} \leqslant^{*} \mathrm{y}$. Then $\mathrm{yx}^{-1} \varepsilon \mathrm{P}_{\mathrm{C}}^{*}$, so $\mathrm{yx}^{-1} \varepsilon A$. Hence $\mathrm{x} \leqslant{ }^{\prime} \mathrm{y}$. Therefore $\leqslant\left.\right|_{C \times C}=\leqslant$.

We shall show that $\pi\left(P_{D}\right)=P_{D} /{ }_{C}$. Let $x \in P_{D}$. If $x \in P_{C}^{*}$ then $\pi(x)=[x]=[1] \varepsilon P_{D / C}$. Assume that $x \in \bigcup_{\alpha \in P_{D / C}} \alpha\{C\}$. Then $x \varepsilon \alpha$ for

Abstract

some $\alpha \in P_{D / C} \backslash\{C\}$. Thus $\pi(x)=[x]=\alpha \varepsilon P_{D / C}$. Hence $\pi\left(P_{D}\right) \subseteq P_{D / C}$. Let $\alpha \varepsilon P_{D / C}$. If $\alpha=[1]$ then $\pi(1)=[1]=\alpha \varepsilon \pi\left(P_{D}\right)$. Assume that

It follows that $\pi(a)=[a]=\alpha \varepsilon \pi\left(P_{D}\right)$. Thus $P_{D} \subseteq \pi\left(P_{D}\right)$. Hence $\pi\left(P_{D}\right)=P_{D_{C}}$. Therefore π is an order epimorphism. \#

From now on, for a partially ordered distributive ratio semi near-ring (D, \leqslant) and a convex C-set C of D, the partial order on D / C will mean the partial order \leqslant which is defined by $\alpha \leqslant \beta$ if and only if there exist $a \varepsilon \alpha$ and $b \in \beta$ such that $a \leqslant b$.

Theorem 2.20. A C-set C of a partially ordered distributive ratio seminear-ring D is the kernel of an order homomorphism if and only if it is convex.

Proof: By Proposition 2.15(2), the kernel of an order homomorphism is convex. Conversely, if C is convex then the projection $\operatorname{map} \pi: D \rightarrow D / C$ is an order homomorphism by Theorem 2.16 and we have that C is the kernel of π.
\#

Theorem 2.21 (First Isomorphism Theorem). Let (D, \leqslant) and ($D^{\prime}, \leqslant{ }^{\prime}$) be partially ordered distributive ratio seminear-rings and $f: D \rightarrow D^{\prime}$ an order epimorphism. Then $D / \operatorname{ker} \mathrm{f} \simeq \mathrm{D}^{\prime}$. Furthermore, there exists an order isomorphism between the set of all ratio subseminear-rings
of D containing ker f and the set of all ratio subseminear-rings of D^{\prime} and there exists an order isomorphism between the set of all C-sets of D containing ker f and the set of all C-sets of D^{\prime}.

Proof: By Proposition 2.15(2), ker f is a convex C-set of D, so D. ker f has a compatible partial order \leqslant. Define $\psi: D / \operatorname{ker} f \rightarrow D^{\prime}$ as follows: Let $\alpha \in D /$ ker f. Choose $x \in \alpha$. Define $\psi(\alpha)=f(x)$. Then ψ is well-defined, bijective and a homomorphism.

To show that ψ is isotone, let $\alpha, \beta \varepsilon D /$ ker f be such that $\alpha \leqslant \beta$. Then there exist $a \varepsilon \alpha$ and $b \varepsilon \beta$ such that $a \leqslant b$. Since f is an order epimorphism, f is isotone. Thus $\psi(\alpha)=f(a) \leqslant f(b)=$ $\psi(B)$. Hence ψ is isotone.

To show that $P_{D} \subseteq \psi\left(P_{D / \text { ker } f}\right)$, let $y \varepsilon P_{D^{\prime}}$. Since
$f\left(P_{D}\right)=P_{D}, y=f(x)$ for some $x \in P_{D}$. Then $[x] \varepsilon P_{D / \text { ker } f}$, so we
get that $\psi([x])=f(x)=y \varepsilon \psi\left(P_{D / \text { ker } f}\right)$. Hence $P_{D} \in \notin\left(P_{D / \text { ker } f}\right)$. Thus $\psi^{-1}\left(P_{D^{\prime}}\right) \subseteq P_{D / \text { ker }} f$ By Proposition $2.15(1), \psi^{-1}$ is isotone. Therefore ψ is an order isomorphism.

Let $\mathcal{D}=\{H \subset D \mid H$ is a ratio subseminear-ring of D containing ker $f\}$ and $D^{\prime}=\left\{L \subseteq D^{\prime} \mid\right.$ Lis a ratio subseminear-ring of $\left.D^{\prime}\right\}$. Since f is a homomorphism, $f(H) \varepsilon \mathcal{D}^{\prime}$ for all $H \varepsilon \mathscr{D}$. Define $\Phi_{1}: \mathscr{D} \rightarrow D^{\prime}$ by $\Phi_{1}(H)=f(H)$ for all $H \varepsilon D^{\prime}$. Since $1^{\prime} \varepsilon L$ for all $L \varepsilon D^{\prime}$, $f^{-1}(L) \varepsilon \mathscr{D}$ for all $L \varepsilon \mathscr{D}^{\prime}$. Define $\Phi_{2}: \mathscr{D}^{\prime} \rightarrow \mathscr{D}$ by $\Phi_{2}(L)=f^{-1}(L)$ for all $L \in \mathscr{D}^{\prime}$. Since f is onto, $\Phi_{1} \cdot \Phi_{2}(L)=\Phi_{1}\left(f^{-1}(L)\right)=$ $f\left(f^{-1}(L)\right)=L=I_{\mathscr{D}^{\prime}}(L)$ for all $L \varepsilon \mathscr{D}^{\prime}$. Hence $\Phi_{1} \cdot \Phi_{2}=I_{D^{\prime}}$

We shall show that $f^{-1}(f(H))=H$ for all $H \varepsilon \mathcal{O}$. Let $H \varepsilon \mathscr{D}$. It is clear that $H \subseteq f^{-1}(f(H))$. Let $x \in f^{-1}(f(H))$. Then $f(x) \varepsilon f(H)$, so $f(x)=f(h)$ for some $h \varepsilon H$. It follows that $x^{-1} \varepsilon$ ker f. But ker $f \subseteq H$, so $x \in H$. Hence $f^{-1}(f(H)) \subseteq H$. Therefore $f^{-1}(f(H))=H$.

Then we have that $\Phi_{2} \circ \Phi_{1}(H)=f^{-1}(f(H))=H=I_{\alpha}(H)$ for all H $\varepsilon \mathscr{D}$. Hence $\Phi_{2}{ }^{\circ} \Phi_{1}=I_{\infty}$. Therefore Φ_{1} is bi jective and $\Phi_{1}^{-1}=\Phi_{2}$. For each $H_{1}, H_{2} \varepsilon \mathcal{D}$, if $H_{1} \subseteq H_{2}$ then $\Phi_{1}\left(H_{1}\right)=f\left(H_{1}\right) \subseteq f\left(H_{2}\right)=\Phi_{1}\left(H_{2}\right)$ and for each $L_{1}, L_{2} \varepsilon \mathcal{D}^{\prime}$, if $L_{1} \subseteq L_{2}$ then $\Phi_{1}^{-1}\left(L_{1}\right)=\Phi_{2}\left(L_{1}\right)=$ $f^{-1}\left(L_{1}\right) \subseteq f^{-1}\left(L_{2}\right)=\Phi_{2}\left(L_{2}\right)=\Phi_{1}^{-1}\left(L_{2}\right)$. This implies that Φ_{1} and Φ_{1}^{-1} are isotone. Hence Φ_{1} is an order isomorphism.

Let $\mathscr{C}=\{C \subseteq D \mid C$ is a C-set of D containing ker $f\}$ and $\mathscr{G}^{\prime}=\left\{C^{\prime} \subseteq D^{\prime} \mid C^{\prime}\right.$ is a C-set of $\left.D^{\prime}\right\}$. Since f is onto, by Proposition 1.33(3), for any C-set C of $D, f(C)$ is a C-set of D^{\prime}. Define $\eta_{1}: \mathscr{C} \rightarrow \mathscr{L}^{\prime}$ by $\eta_{1}(C)=f(c)$ for all $c \varepsilon \mathscr{C}$. Since $1^{\prime} \varepsilon c$ for all $C^{\prime} \varepsilon \mathscr{C}^{\prime}$, by Proposition $1.33(2), f^{-1}\left(C^{\prime}\right) \varepsilon \mathscr{C}$ for all $C^{\prime} \varepsilon \mathscr{C}^{\prime}$. Define $\eta_{2}: \mathscr{C}^{\prime} \rightarrow \mathscr{C}$ by $\eta_{2}\left(C^{\prime}\right)=f^{-1}\left(C^{\prime}\right)$ for all $c^{\prime} \varepsilon \mathscr{C}^{\prime}$. Using the same proof as above, we get that η_{1} is an order isomorphism. Hence the theorem is proved.

Remark 2.22. Let D be a partially ordered distributive ratio seminear-ring, H a ratio subseminear-ring of D and C a convex C-set of D. Then $\mathrm{H} \cap \mathrm{C}$ is a convex C -set of H and HC is a ratio subsemi near-ring of D.

Proof: It is clear that $H \cap C$ is convex in H. Since H is a ratio subseminear-ring of D and C is a multiplicative normal subgroup of $D, H \cap C$ is a multiplicative normal subgroup of H. Let $x \in H$ and $y \in H \cap C$. Then $(x+1)^{-1}(x+y) \varepsilon H$. Since C is a C-set of D, $(x+1)^{-1}(x+y) \varepsilon C$. Thus $(x+1)^{-1}(x+y) \in H \cap C$. Similarly, $(1+x)^{-1}(y+x) \varepsilon H \cap C$. Hence $H \cap C$ is a C-set of H.

To show that $H C$ is a ratio subseminear-ring of D, let x, $y \in H C$. Then $x=h_{1} c_{1}$ and $y=h_{2} c_{2}$ for some $h_{1}, h_{2} \varepsilon H, c_{1}, c_{2} \varepsilon C$. Thus $x y^{-1}=\left(h_{1} c_{1}\right)\left(h_{2} c_{2}\right)^{-1}=h_{1} c_{1} c_{2}^{-1} h_{2}^{-1}=\left(h_{1} h_{2}^{-1}\right)\left(h_{2}\left(c_{1} c_{2}^{-1}\right) h_{2}^{-1}\right) \varepsilon$ HC. Since C is a C-set, $\left(h_{2}^{-1} h_{1}+1\right)^{-1}\left(h_{2}^{-1} h_{1}+c_{2} c_{1}^{-1}\right) \varepsilon c$. Hence we have that $x+y=h_{1} c_{1}+h_{2} c_{2}=h_{2}\left(h_{2}^{-1} h_{1}+c_{2} c_{1}^{-1}\right) c_{1}=$ $\left[h_{2}\left(h_{2}^{-1} h_{1}+1\right)\right]\left[\left(h_{2}^{-1} \cdot h_{1}+1\right)^{-1}\left(h_{2}^{-1} h_{1}+c_{2} c_{1}^{-1}\right) c_{1}\right] \varepsilon$ HC. Therefore HC is a ratio subseminear-ring of D.

Theorem 2.23 (Second Isomorphism Theorem). Let (D, \leqslant) be a partially ordered distributive ratio seminear-ring, H a ratio subseminear-ring of D and C a convex C-set of D such that $P_{H C}=P_{H}$. Then $H / H \cap C \simeq H C / C$.

Proof: Define $f: H \rightarrow H C / C$ by $f(x)=[x]$ for all $x \varepsilon H$.
Then f is onto and a homomorphism. It follows from the definition of the partial order $\leqslant *$ on $H C / C$ that for each $x \varepsilon H, x \geqslant 1$ implies $f(x)=[x]{ }^{*} \geqslant[1]$, hence $f\left(P_{H}\right) \subseteq P_{H C / C}$.

To show that $\mathrm{P}_{\mathrm{HC} / \mathrm{C}} E \mathrm{f}\left(\mathrm{P}_{\mathrm{H}}\right)$, let $\alpha \varepsilon \mathrm{P}_{\mathrm{HC} / \mathrm{C}}$. By Theorem 2.16,
the projection map $\pi: \mathrm{HC} \rightarrow \mathrm{HC} / \mathrm{C}$ is an order epimorphism, so

$$
\begin{aligned}
& \pi\left(P_{H C}\right)=P_{H C / C} \cdot \text { Then } \alpha=\pi(x)=[x] \text { for some } x \varepsilon P_{H C} \cdot \text { Since } \\
& P_{H C}=P_{H}, x \varepsilon P_{H} \text { which implies that } f(x)=[x]=\alpha \varepsilon f\left(P_{H}\right) \text {. Thus } \\
& P_{H C / C} \subseteq f\left(P_{H}\right) .
\end{aligned}
$$

$$
\text { Therefore } f\left(P_{H}\right)=P_{H C / C} \text {. Then } f \text { is an order epimorphism. }
$$

$$
\text { By Theorem } 2.21, H / \text { ker } f \simeq H C / C \text {. But for each } x \in H, f(x)=[x]=[1]
$$ if and only if $x \in C$, so we have that ker $f=H \cap C$.

Hence the theorem is proved. \#

Remark 2.24 Let (D, \leqslant) be a partially ordered distributive ratio seminear-ring, K a ratio subseminear-ring of D and H a subset of D such that H and K are convex C-sets of D and $H \subseteq K$. Then K / H is a convex C-set of $D / H^{\text {. }}$

Proof: To show that K / H is convex in D / H, let $\alpha, \beta \varepsilon K / H$ and $\gamma \varepsilon \mathrm{D} / \mathrm{H}$ be such that $\alpha \leqslant \gamma \leqslant^{*} \beta$ where \leqslant^{*} is a partial order
 and $c \leqslant d$. Then $a\left(b^{-1} c\right) \leqslant b\left(b^{-1} c\right)=c \leqslant d$. By definition of γ, $b^{-1} c \varepsilon H$. Since $H \subseteq K$ and $a \varepsilon K, a b^{-1} c \varepsilon K$. But K is convex, so c εK. Hence $\gamma=[c] \varepsilon K / H$. Therefore K / H is convex in D / H.

Since K is a multiplicative normal subgroup of $D, K / H$ is a multiplicative normal subgroup of D / H. Let $x \in D$ and $y \varepsilon K$. Since K is a C-set of $D,(x+1)^{-1}(x+y) \varepsilon K$. Hence $([x]+[1])^{-1}([x]+[y])=\left[(x+1)^{-1}(x+y)\right] \varepsilon K / H$. Similarly, $([1]+[x])^{-1}([y]+[x]) \varepsilon K / H$. Therefore K / H is a C-set of $D / H^{\text {. }}$

Theorem 2.25 (Third Isomorphism Theorem). Let (D, \leqslant) be a partially ordered distributive ratio seminear-ring, K a ratio subseminear-ring of D and H a subset of D such that H and K are convex C-sets of D and $H \subseteq K . \quad$ Then $(D / H) /(K / H) \simeq D / K$.

Proof: Define $f: D / H \rightarrow D / K$ by $f(x H)=x K$ for all $x \varepsilon D$.
Then f is well-defined, onto and a homomorphism. To show that f is isotone, let $\alpha, \beta \varepsilon \mathrm{D} / \mathrm{H}$ be such that $\alpha \leqslant \beta$ where \leqslant^{*} is a partial order on D / H. Then there exist $a \varepsilon \alpha$ and $b \varepsilon \beta$ such that $a \leqslant b$. It follows from the definition of the partial order $\leqslant^{* *}$ on D / K that $f(\alpha)=f(a H)=a K \leqslant{ }^{* *} b K=f(b H)=f(\beta)$. Hence f is isotone. By Proposition 2.15(1), $f\left(P_{D / H}\right) \subseteq P_{D / K}$

Next, to show that $P_{D / K} \subseteq f\left(P_{D / H}\right)$, let $\alpha \varepsilon P_{D / K}$. Then $K \leqslant \leqslant^{* *} \alpha$,
so there exist $\mathrm{a} \varepsilon \mathrm{K}$ and $\mathrm{b} \varepsilon \alpha$ such that $\mathrm{a} \leqslant \mathrm{b}$. This implies that $a H \leqslant b H$, so $H \leqslant a^{-1} b H$. Thus $a^{-1} b H \varepsilon P_{D / H}$. Since a εK, we get that $f\left(a^{-1} b H\right)=a^{-1} b K=a^{-1} K b K=b K=\alpha \varepsilon f\left(P_{D / H}\right)$. Hence $\mathrm{P}_{\mathrm{D} / \mathrm{K}} \subseteq \mathrm{f}\left(\mathrm{P}_{\mathrm{D} / \mathrm{H}}\right)$.

Thus $f\left(P_{D / H}\right)=P_{D / K}$. Therefore f is an order epimorphism.
By Theorem $2.21,(D / H) /$ ker $f \simeq D / K$. But for each $x \varepsilon D, f(x H)=x K=K$ if and only if $x \in K$, so we have that ker $f=K / H^{*}$

Hence the theorem is proved.
\#

Theorem 2.26. Let (D, \leqslant) and $\left(D^{\prime}, \leqslant^{\prime}\right)$ be partially ordered distributive ratio seminear-rings and $f: D \rightarrow D^{\prime}$ an order epimorphism.

If C^{\prime} is a convex C-set of D^{\prime} then $D / f^{-1}\left(C^{\prime}\right) \simeq D / C^{\prime}$

Proof: Assume that C^{\prime} is a convex C-set of D^{\prime}. By Proposition 1.9 and $1.33(2), f^{-1}\left(C^{\prime}\right)$ is a convex C-set of D. Define $g: D \rightarrow D / C^{\prime}$, by $g(x)=[f(x)]$ for all $x \in D$. Since f is an order homomorphism of D onto D^{\prime}, g is an order homomorphism of D onto D^{\prime} / C^{\prime}. Then $g\left(P_{D}\right) \subseteq P_{D} / C^{\prime}$, by Proposition $2.15(1)$. To show that $P_{D / C} \subseteq g\left(P_{D}\right)$, let $\alpha \varepsilon P_{D} / C_{C}$, By Theorem 2.16, the projection map $\pi: D^{\prime} \rightarrow D^{\prime} / C$, is an order epimorphism, so $\pi\left(P_{D^{\prime}}\right)=P_{D^{\prime}} / C^{\prime}$. Then $\alpha=\pi(y)=[y]$ for some $y \varepsilon P_{D^{\prime}}$. Since f is an order epimorphism, so $f\left(P_{D}\right)=P_{D}$. Then $y=f(x)$ for some $x \in P_{D}$. Thus $g(x)=[f(x)]=[y]=\alpha \varepsilon g\left(P_{D}\right)$. Hence $P_{D} /{ }_{C}, \subseteq g\left(P_{D}\right)$. Thus $g\left(P_{D}\right)=P_{D} / C^{\prime}$. Therefore g is an order epimorphism.

By Theorem 2.21, $D / \operatorname{ker} g \simeq D^{\prime} / C^{\prime}$ But for each $x \in D, g(x)=[f(x)]=$ [1'] if and only if $f(x) \varepsilon C^{\prime}$, so we have that ker $g=f^{-1}\left(C^{\prime}\right)$. Hence the theorem is proved.

Definition 2.27. Let $\left\{\left(D_{\alpha}, \leqslant_{\alpha}\right)\right\}_{\alpha \in I}$ be a family of partially ordered distributive ratio seminear-rings. The direct product of the family $\left\{\left(D_{\alpha}, \leqslant_{\alpha}\right)\right\}_{\alpha \varepsilon I}$, denoted by ${ }_{\alpha \varepsilon I} I_{\alpha}$, is the set of all elements $\left(x_{\alpha}\right)_{\alpha \varepsilon I}$ in the Cartesian product of the family $\left\{\left(D_{\alpha}, \leqslant_{\alpha}\right)\right\}_{\alpha \varepsilon I}$ together with operations + and \cdot and the partial order \leqslant on $\alpha \frac{I I}{}{ }^{D} D_{\alpha}$ rare defined by

$$
\left(x_{\alpha}\right)_{\alpha \varepsilon I}+\left(y_{\alpha}\right)_{\alpha \varepsilon I}=\left(x_{\alpha}+y_{\alpha}\right)_{\alpha \varepsilon I},
$$

$$
\begin{aligned}
& \left(x_{\alpha}\right)_{\alpha \varepsilon I} \cdot\left(y_{\alpha}\right)_{\alpha \varepsilon I}=\left(x_{\alpha} y_{\alpha}\right)_{\alpha \varepsilon I} \text { and } \\
& \left(x_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(y_{\alpha}\right)_{\alpha \varepsilon I} \text { if and only if } x_{\alpha} \leqslant{ }_{\alpha} y_{\alpha} \text { for all } \alpha \varepsilon I .
\end{aligned}
$$

Note that (II $D_{\alpha},+, \cdot, \leqslant$) is a partially ordered distributive $\alpha \varepsilon I$
ratio seminear-ring and $P_{\alpha \in I} D_{\alpha}=\underset{\alpha \in I}{I I} P_{D_{\alpha}}$. So we see that given some examples of partially ordered distributive ratio seminear-rings we can construct new examples of partially ordered distributive ratio seminear-rings using the direct product.

Proposition 2.28. Let $\left\{\left(D_{\alpha}, \leqslant_{\alpha}\right)\right\}_{\alpha \in I}$ be a family of partially ordered distributive ratio seminear-rings. Then the following statements hold:
(1) II D_{α} is upper [lower] additive if and only if D_{α} is upper [lower] additive for all $\alpha \varepsilon I$.
(2) $\underset{\alpha \in I}{ } D_{\alpha}$ is left [right] increasing if and only if D_{α} is left [right] increasing for all $\alpha \in I$.
(3) $\underset{\alpha \in I}{ } D_{\alpha}$ is left [right] decreasing if and only if D_{α} is left [right] decreasing for all $\alpha \varepsilon$ I.
(4) II $_{\alpha \in I} D_{\alpha}$ is directed if and only if D_{α} is directed for all $\alpha \varepsilon$ I.
(5) $\underset{\alpha \in I}{\text { II }} D$ is a lattice if and only if D_{α} is a lattice for all $\alpha \varepsilon$ I.
(6) $\underset{\alpha \in I}{ } D_{\alpha}$ is complete if and only if D_{α} is complete for all $\alpha \varepsilon$ I.
(7) $\underset{\alpha \varepsilon I}{ } D_{\alpha}$ is totally ordered if and only if either $I=\{\alpha\}$ and D_{α} is totally ordered or there exists an $\alpha_{0} \varepsilon I$ such that $D_{\alpha_{0}}$ is totally ordered and $\left|D_{\alpha}\right|=1$ for all $\alpha \in I \backslash\left\{\alpha_{0}\right\}$.

Proof: (1) It follows from the fact that
$\left(1_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(1_{\alpha}\right)_{\alpha \varepsilon I}+\left(1_{\alpha}\right)_{\alpha \varepsilon I}$ if and only if $1_{\alpha} \leqslant \alpha{ }_{\alpha}{ }_{\alpha}+1_{\alpha}$ for all $\alpha \varepsilon I$ and Proposition 2.8(1).
(2) Assume that $\left(1_{\alpha}\right)_{\alpha \varepsilon I}+\prod_{\alpha \varepsilon I} D_{\alpha} \subseteq \operatorname{IIII}_{\alpha \varepsilon I} P_{D_{\alpha}}$. To show that that $1_{\alpha}+D_{\alpha} \subseteq P_{D_{\alpha}}$ for all $\alpha \varepsilon I$, let $\alpha_{0} \varepsilon I$ and $x_{\alpha} \varepsilon D_{\alpha_{0}}$. Let $\mathrm{x}_{\alpha}=1_{\alpha}$ for all $\alpha \varepsilon I>\left\{\alpha_{0}\right\}$. Then $\left(\mathrm{x}_{\alpha}\right)_{\alpha \varepsilon I} \varepsilon_{\alpha \in I} \mathrm{II}_{\alpha} \mathrm{D}_{\alpha}$. By assumption, $\left(1_{\alpha}+x_{\alpha}\right)_{\alpha \varepsilon I}=\left(1_{\alpha}\right)_{\alpha \varepsilon I}+\left(x_{\alpha}\right)_{\alpha \varepsilon I} \prod_{\alpha \varepsilon I} P_{D_{\alpha}}$, so $1_{\alpha_{0}}+x_{\alpha_{0}} \varepsilon P_{D_{D_{0}}}$. Hence ${ }^{1} \alpha_{0}+D_{\alpha_{0}} \subseteq P_{D_{\alpha_{0}}}$.

Conversely, assume that ${ }^{1}{ }_{\alpha}+D_{\alpha} \subseteq P_{D_{\alpha}}$ for all $\alpha \varepsilon I$. Let
$\left(x_{\alpha}\right)_{\alpha \varepsilon I} \varepsilon \underset{\alpha \varepsilon I}{\text { II }} D_{\alpha}$. Then $1_{\alpha}+x_{\alpha} \varepsilon P_{D_{\alpha}}$ for all $\alpha \varepsilon I$, so that
$\left(1_{\alpha}\right)_{\alpha \varepsilon I}+\left(x_{\alpha}\right)_{\alpha \varepsilon I}=\left(1_{\alpha}+x_{\alpha}\right)_{\alpha \varepsilon I} \varepsilon$ II $_{\alpha \varepsilon I} P_{D_{\alpha}}$. Hence
$\left(1_{\alpha}\right)_{\alpha \varepsilon I}+\underset{\alpha \varepsilon I}{\text { II }} D_{\alpha} \subseteq \underset{\alpha \varepsilon I}{ } P_{D_{\alpha}}$.
This proves that $\left(1_{\alpha}\right)_{\alpha \varepsilon I}+\underset{\alpha \varepsilon I}{ }{ }^{\text {II }}{ }_{\alpha} \subseteq$ II $_{\alpha \varepsilon I} P_{D_{\alpha}}$ if and only if ${ }^{1}{ }_{\alpha}+D_{\alpha} \subseteq P_{D_{\alpha}}$ for all $\alpha \varepsilon$ I. By Proposition 2.8(2), II $_{\alpha \in I} D_{\alpha}$ is left increasing if and only if D_{α} is left increasing for all $\alpha \varepsilon I$.
(3) The proof is similar to the proof of (2) by using Proposition 2.8(3).
(4) Assume that III $_{\alpha \in I} D_{\alpha}$ is directed. To show that D_{α} is directed for all $\alpha \varepsilon I$, let $\alpha_{0} \varepsilon I$ and $x_{\alpha_{0}} \varepsilon D_{\alpha_{0}}$. Let $x_{\alpha}=1_{\alpha}$ for all $\alpha \varepsilon I \backslash\left\{\alpha_{0}\right\}$. By assumption, $U\left(\left(x_{\alpha}\right){ }_{\alpha \varepsilon I},\left(1_{\alpha}\right)_{\alpha \varepsilon I}\right)$ is nonempty. Let $\left(y_{\alpha}\right)_{\alpha \varepsilon I} \varepsilon U\left(\left(x_{\alpha}\right)_{\alpha \varepsilon I},\left(1_{\alpha}\right)_{\alpha \varepsilon I}\right)$. Then $\left(x_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(y_{\alpha}\right)_{\alpha \varepsilon I}$ and $\left(1_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(y_{\alpha}\right)_{\alpha \varepsilon I}$, so $x_{\alpha} \leqslant \alpha_{0} y_{\alpha}$ and $1_{\alpha_{0}} \leqslant{ }_{0} y_{\alpha_{0}}$. Hence $y_{\alpha_{0}} \varepsilon U\left(x_{\alpha_{0}},{ }^{1} \alpha_{\alpha_{0}}\right)$. Therefore $U\left(x_{\alpha_{0}},{ }^{1} \alpha_{0}\right)$ is nonempty for all $x_{\alpha_{0}} \varepsilon^{D_{\alpha_{0}}}$. By Proposition $1.16, \mathrm{D}_{\alpha_{0}}$ is directed.

Conversely, assume that D_{α} is directed for all $\alpha \in$ I. Let $\left(x_{\alpha}\right)_{\alpha \in I}{ }^{\varepsilon}{\underset{\alpha \varepsilon I}{ }} D_{\alpha}$. Then $U\left(x_{\alpha}, 1_{\alpha}\right)$ is a nonempty subset of D_{α} for all $\alpha \varepsilon$ I. For each $\alpha \varepsilon$ I, let $y_{\alpha} \varepsilon U\left(x_{\alpha}, I_{\alpha}\right)$. Thus for any $\alpha \varepsilon I$, $x_{\alpha} \leqslant_{\alpha} y_{\alpha}$ and $1_{\alpha} \leqslant y_{\alpha} y_{\alpha}$ it follows that $\left(x_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(y_{\alpha}\right)_{\alpha \varepsilon I}$ and $\left(1_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(y_{\alpha}\right)_{\alpha \varepsilon I}$. Then $\left(y_{\alpha}\right)_{\alpha \varepsilon I} \varepsilon U\left(\left(x_{\alpha}\right)_{\alpha \varepsilon I},\left(1_{\alpha}\right)_{\alpha \varepsilon I}\right)$. Hence $\mathrm{U}\left(\left(\mathrm{x}_{\alpha}\right)_{\alpha \varepsilon I I^{\prime}}\left(1_{\alpha}\right)_{\alpha \varepsilon I}\right)$ is nonempty for all $\left(x_{\alpha}\right)_{\alpha \in I} \varepsilon_{\alpha \in I} D_{\alpha} \cdot$ By Proposition $1.16, \mathrm{II}_{\alpha \in I} \mathrm{D}_{\alpha}$ is directed.
(5) Assume that II $_{\alpha \in I} D_{\alpha}$ is a lattice. To show that D_{α} is a lattice for all $\alpha \varepsilon$ I, let $\alpha_{o} \varepsilon I$ and $x_{\alpha} \varepsilon D_{\alpha_{0}}$. Let $x_{\alpha}=1_{\alpha}$ for all $\alpha \varepsilon I \backslash\left\{\alpha_{0}\right\}$. By assumption and Proposition 1.17(2), $\sup \left\{\left(x_{\alpha}\right)_{\alpha \varepsilon I},\left(1_{\alpha}\right)_{\alpha \varepsilon I}\right\}$ exists, say $\left(y_{\alpha}\right)_{\alpha \varepsilon I} . \operatorname{Then} x_{\alpha_{0}} \leqslant_{\alpha} y_{\alpha_{0}}$ and ${ }^{1} \alpha_{0} \leqslant y_{\alpha_{0}} y_{\alpha_{0}}$, so $y_{\alpha_{0}}$ is an upper bound of $x_{\alpha_{0}}$ and $1_{\alpha_{0}}$. Let $z_{\alpha_{0}} \varepsilon^{D_{\alpha_{0}}}$ be
an upper bound of $x_{\alpha_{0}}$ and $1_{\alpha_{0}}$. Let $z_{\alpha}=1_{\alpha}$ for all $\alpha \varepsilon I \backslash\left\{\alpha_{0}\right\}$.
Then $\left(x_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(z_{\alpha}\right)_{\alpha \varepsilon I}$ and $\left(1_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(z_{\alpha}\right)_{\alpha \varepsilon I}$ which implies that $\left(y_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(z_{\alpha}\right)_{\alpha \varepsilon I}$. Thus $y_{\alpha_{0}} \leqslant z_{\alpha_{0}}$, hence $y_{\alpha_{0}}=\sup \left\{x_{\alpha_{0}}, 1_{\alpha_{0}}\right\}$. Therefore sup $\left\{\mathrm{x}_{\alpha_{0}}, 1_{\alpha_{0}}\right\}$ exists for all $\mathrm{x}_{\alpha_{0}} \varepsilon \mathrm{D}_{\alpha_{0}}$. By Proposition $1.17(2), \mathrm{D}_{\alpha_{0}}$ is a lattice.

Conversely, assume that D_{α} is a lattice for all $\alpha \varepsilon$ I. Let $\left(x_{\alpha}\right)_{\alpha \in I}{ }^{\varepsilon} \underset{\alpha \in I}{ } D_{\alpha}$. For each $\alpha \varepsilon$ I, let $y_{\alpha}=\sup \left\{x_{\alpha},{ }_{\alpha}\right\}$. Then for any $\alpha \varepsilon I, x_{\alpha} \leqslant y_{\alpha}$ and $1 \leqslant_{\alpha} y_{\alpha}$, so we get that $\left(x_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(y_{\alpha}\right)_{\alpha \varepsilon I}$ and $\left(1_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(y_{\alpha}\right){ }_{\alpha \in I}$. Thus ($y_{\alpha \cdot \alpha \varepsilon I}$ is an upper bound of $\left(x_{\alpha}\right)_{\alpha \varepsilon I}$ and $\left(1_{\alpha}\right){ }_{\alpha \varepsilon I}$. Let $\left(z_{\alpha}\right)_{\alpha \varepsilon I}$ be an upper bound of $\left(x_{\alpha}\right)_{\alpha \varepsilon I}$ and $\left(1_{\alpha}\right)_{\alpha \varepsilon I}$. Then for each $\alpha \varepsilon I, x_{\alpha} \leqslant_{\alpha} z_{\alpha}$ and $1_{\alpha} \leqslant_{\alpha} z_{\alpha}$, so we get that $y_{\alpha} \leqslant_{\alpha} z_{\alpha}$ for all $\alpha \varepsilon$ I. Thus $\left(y_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(z_{\alpha}\right)_{\alpha \varepsilon I}$. Hence
 is a lattice.
(6) Assume that every subset of II $_{\alpha \varepsilon I} P_{D_{\alpha}}$ has an infimum. To show that for each $\alpha \varepsilon I$, every subset of $P_{D_{\alpha}}$ has an infimum, let $\alpha_{0} \varepsilon$ I and let $A_{\alpha_{0}}$ be a subset of $P_{D_{\alpha_{0}}}$. Let $A_{\alpha}=\left\{1_{\alpha}\right\}$ for all $\alpha \varepsilon \mathrm{I} \backslash\left\{\alpha_{0}\right\}$. Then $\prod_{\alpha \in I} \mathrm{~A}_{\alpha} \subseteq \mathrm{II}_{\alpha \in \mathrm{I}} \mathrm{P}_{\mathrm{D}}{ }_{\alpha}$. By assumption, inf $\left(\right.$ II $\left._{\alpha \in I} \mathrm{~A}_{\alpha}\right)$ exists, say $\left(x_{\alpha}\right)_{\alpha \varepsilon I}$. Thus $\left(x_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(a_{\alpha}\right)_{\alpha \varepsilon I}$ for all $\left(a_{\alpha}\right)_{\alpha \varepsilon I} \varepsilon \underset{\alpha \varepsilon I}{ } A_{\alpha}$ which implies that $x_{\alpha_{0}} \leqslant_{\alpha_{0}} a_{\alpha_{0}}$ for all $a_{\alpha_{0}} \varepsilon A_{\alpha_{0}}$. Let $y_{\alpha_{0}}$ be a lower
bound of $A_{\alpha_{0}}$. Let $y_{\alpha}=1_{\alpha}$ for all $\alpha \in I \backslash\left\{\alpha_{0}\right\}$. Then $\left(y_{\alpha}\right)_{\alpha \varepsilon I}$ is a lower bound of III $A_{\alpha \in I}$, so $\left(y_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(x_{\alpha}\right)_{\alpha \varepsilon I}$. Hence $y_{\alpha_{0}} \leqslant \alpha_{0} x_{\alpha}$, so we get that $x_{\alpha_{0}}=\inf \left(A_{\alpha_{0}}\right)$.

Conversely, assume that for each $\alpha \in I$, every subset of $P_{D_{\alpha}}$ has an infimum. Let A be a subset of $\operatorname{II}_{\alpha \varepsilon I} P_{D_{\alpha}}$. Then $A=$.II $_{\alpha \in I} A_{\alpha}$
where $A_{\alpha} \subseteq P_{D_{\alpha}}$ for all $\alpha \in I$. For each $\alpha \varepsilon I$, let $x_{\alpha}=\inf \left(A_{\alpha}\right)$.

Let $\left(a_{\alpha}\right)_{\alpha \varepsilon I} \in A$. Then for each $\alpha \varepsilon I, x_{\alpha} \leqslant a_{\alpha}$, so $\left(x_{\alpha}\right){ }_{\alpha \varepsilon I} \leqslant\left(a_{\alpha}\right)_{\alpha \varepsilon I}$ Hence $\left(x_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(a_{\alpha}\right)$ for $\operatorname{all}\left(a_{\alpha}\right)_{\alpha \varepsilon I} \varepsilon A$, so that $\left(x_{\alpha}\right)_{\alpha \varepsilon I}$ is a lower bound of A. Let $\left(y_{\alpha}\right) \alpha_{\alpha \varepsilon I}$ be a lower bound of A. Then we have that y_{α} is a lower bound of A_{α} for all $\alpha \in$ I. Hence $y_{\alpha} \leqslant_{\alpha} x_{\alpha}$ for all $\alpha \varepsilon I$, so $\left(y_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(x_{\alpha}\right)_{\alpha \varepsilon I}$. Therefore $\left(x_{\alpha}\right)_{\alpha \varepsilon I}=\inf (A)$. Also, every subset of $\operatorname{II}_{\alpha \in I} P_{D_{\alpha}}$ has an infimum.

This proves that every subset of $I I$. P_{D} has an infimum if and only if for each $\alpha \varepsilon I$, every subset of $\mathrm{P}_{\mathrm{D}_{\alpha}}$ has an infimum. By Proposition $2.8(6), \quad I_{\alpha \varepsilon I} D_{\alpha}$ is complete if and only if D_{α} is complete for all $\alpha \varepsilon$ I.
(7) Assume that II $_{\alpha \in I} D_{\alpha}$ is totally ordered. Suppose that $|I|>1$. Claim that for each $\alpha \in I$, if $\left|D_{\alpha}\right|>1$ then the partial order on D_{α} is a total order. Let $\alpha_{0} \varepsilon I$ be such that $\left|D_{\alpha_{0}}\right|>1$. Let $x_{\alpha_{0}} \varepsilon D_{\alpha_{0}}$ and $x_{\alpha}=1_{\alpha}$ for all $\alpha \varepsilon I \backslash\left\{\alpha_{0}\right\}$. Then
$\left(1_{\alpha:}\right)_{\alpha \varepsilon I} \leqslant\left(x_{\alpha}\right)_{\alpha \varepsilon I}$ or $\left(x_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(1_{\alpha}\right)_{\alpha \varepsilon I}$, so $1_{\alpha_{0}} \leqslant \alpha_{0} x_{\alpha_{0}}$ or $\mathrm{x}_{\alpha_{0}} \leqslant_{\alpha_{0}} 1_{\alpha_{0}}$. This implies that $\mathrm{D}_{\alpha_{0}} \subseteq \mathrm{P}_{\mathrm{D}_{\alpha_{0}}} \cup \mathrm{P}_{\mathrm{D}_{\alpha_{0}}^{-1}}^{-1}$. Hence $D_{\alpha_{0}}=P_{D_{\alpha_{0}}} \cup P_{D_{\alpha_{0}}}^{-1}$. By Proposition $2.8(7), D_{\alpha_{0}}$ is totally ordered.

Hence we have the claim.

$$
\text { If }\left|D_{\alpha}\right|=1 \text { for all } \alpha \varepsilon I \text { then } D_{\alpha}=\left\{1_{\alpha}\right\} \text { for all } \alpha \varepsilon I
$$

Assume that there exists an $\alpha_{0} \varepsilon I$ such that $\left|D_{\alpha_{0}}\right|>1$. By the claim, $\mathrm{D}_{\alpha_{0}}$ is totally ordered. This implies that $\mathrm{P}_{\mathrm{D}_{\alpha_{0}}} \neq\left\{1_{\alpha_{0}}\right\}$.

Next, we shall show that $\left|D_{\alpha}\right|=1$ for all $\alpha \varepsilon I \backslash\left\{\alpha_{0}\right\}$.
Suppose not. Then there exists a $\beta \in I \backslash\left\{\alpha_{0}\right\}$ such that $\left|D_{\beta}\right|>1$.
By the claim, D_{β} is totally ordered which implies that $P_{D_{\beta}} \neq\left\{1_{\beta}\right\}$.
Let $x_{\alpha_{0}} \in P_{D_{\alpha}} \backslash\left\{1_{\alpha}\right\}$ and $y_{\beta} \varepsilon P_{D_{B}} \backslash\left\{1_{\beta}\right\}$. Let $x_{\alpha}=1_{\alpha}$ for all
$\alpha \varepsilon I \backslash\left\{\alpha_{0}\right\}$ and $y_{\alpha}=1_{\alpha}$ for all $\alpha \in I \backslash\{\beta\}$. Thus $\left(x_{\alpha}\right)_{\alpha \in I} \leqslant\left(y_{\alpha}\right)_{\alpha \varepsilon I}$ or $\left(y_{\alpha}\right)_{\alpha \varepsilon I} \leqslant\left(x_{\alpha}\right)_{\alpha \varepsilon I}$, so we have that $x_{\alpha} \leqslant 1_{\alpha_{0}}$ or $y_{\beta} \leqslant 1_{\beta}$, a
contradiction. Hence $\left|D_{\alpha}\right|=1$ for all $\alpha \varepsilon I \backslash\left\{\alpha_{0}\right\}$.
The converse is obvious.
\#
. Next, we shall characterize those distributive seminear-rings which can be the positive cones of a partially ordered distributive ratio seminear-ring

Theorem 2.29. Let P be a distributive seminear-ring with multiplicative identity 1. Then there exists a partially ordered distributive
ratio seminear-ring having P as its positive cone if and only if P satisfies the following properties:
(i) $\quad \mathrm{P}$ is multiplicatively cancellative.
(ii) $\mathrm{Pa}=\mathrm{aP}$ for all $\mathrm{a} \varepsilon \mathrm{P}$.
(iii) For any $a, b \varepsilon P, a b=1$ implies $a=b=1$.
(iv) $a+c b \varepsilon P(a+b)$ and $c b+a \varepsilon P(b+a)$ for $a l l a, b, c \varepsilon P$. Moreover, if P satisfies properties (i) - (iv) then there exist a partially ordered distributive ratio seminear-ring D and a monomorphism i: P \rightarrow D such that
(1) $i(P)$ is the positive cone of D and
(2) if D^{\prime} is a partially ordered distributive ratio seminear-ring and $j: P \rightarrow D^{\prime}$ is a monomorphism such that $j(P)$ is the positive cone of D^{\prime} then there exists a unique order monomorphism $f: D \rightarrow D^{\prime}$ such that $f \circ i=j$, that is, D is the smallest partially ordered distributive ratio seminear-ring having P as its positive cone up to isomorphism.

Furthermore, D is directed and upper additive.

Proof: Since the positive cone of a partially ordered distributive ratio seminear-ring D has properties (i) - (iv), so if P is isomorphic to the positive cone of D then P also has properties (i) - (iv).

Conversely, assume that P satisfies properties (i) - (iv). By properties (i) and (ii) of P, we get that for any $a, x \in P$ there exists a unique $x_{a} \varepsilon P$ such that $x a=a x_{a}$. Using the same proof as in Theorem 1.21 we get that
(1) $\quad(x y)_{a}=x_{a} y_{a}$ and
(2) $\quad\left(x_{a}\right)_{b}=x_{a b}$
for all $a, b, x, y \in P$. From $a(x+y)_{a}=(x+y) a=x a+y a=a x_{a}+a y_{a}=$ $a\left(x_{a}+y_{a}\right)$ for all $a, x, y \in P$, we have that
(3) $\quad(x+y)_{a}=x_{a}+y_{a}$
for all $\mathrm{a}, \mathrm{x}, \mathrm{y} \varepsilon \mathrm{P}$.

Define a ralation \sim on $P \times P$ as follows: For $a, b, c, d \varepsilon P$, $(a, b) \sim(c, d)$ if and only if $a d, b=c b$. Using the same proof as in Theorem 1.21 we get that \sim is an equivalence relation. Let $D=\frac{P \times P}{\sim}$. Define operations + and on D by

$$
\begin{aligned}
& {[(a, b)] \cdot[(c, d)]=\left[\left(a c_{b}, d b\right)\right] \text { and }} \\
& {[(a, b)]+[(c, d)]=[(a d+c b d, b d)]}
\end{aligned}
$$

for all $a, b, c, d \in P$. Using the same proof as in Theorem 1.21 we get that - is well-defined and (D, \cdot) is a group with $[(1,1)]$ as the identity and $[(b, a)]$ as the inverse of $[(a, b)]$ for $a l l a, b \varepsilon P$.

Now, we shall show that + is well-defined. Let $v, w, x, y \varepsilon P$ be such that $(v, w) \varepsilon[(a, b)]$ and $(x, y) \varepsilon[(c, d)]$. Then $(a, b) \sim(v, w)$ and $(c, d) \sim(x, y)$, so $a w_{b}=v b$ and $c y_{d}=x d$

From

$$
\begin{align*}
\left(a d+c b_{a}\right)(w y)_{b d} & =a d(w y)_{b d}+c b_{d}(w y)_{b d} \\
& =a d\left((w y)_{b}\right)_{d}+c\left(b(w y)_{b}\right)_{d} \quad \text { (by (1) and (2)) } \\
& =a(w y)_{b} d+c((w y) b)_{d} \\
& =a w_{b} y_{b} d+c\left(\left(y w_{y}\right) b\right)_{d} \quad \text { (by (1)) } \tag{1}\\
& =v b y_{b} d+c y_{d}\left(w_{y} b\right)_{d} \quad \text { (by (*) and (1)) } \tag{*}
\end{align*}
$$

$$
\begin{aligned}
& =v y b d+x d\left(w_{y} b\right) d \\
& =v y b d+x w_{y} b d \\
& =\left(v y+x w_{y}\right) b d
\end{aligned}
$$

we have that $\left(a d+c b_{d}, b d\right) \sim\left(v y+x w_{y}\right.$, wy). It follows that
$[(a, b)]+[(c, d)]=\left[\left(a d+c b_{d}, b d\right)\right]=\left[\left(v y+x w_{y}, w y\right)\right]=[(v, w)]+[(x, y)]$.
Hence + is well - defined.
To show that + is associative, let $a, b, c, d, x, y \in P$. Then

$$
\begin{equation*}
\left(c b_{d}\right) y+x\left(d b_{d}\right) y=c\left(b_{d} y\right)+x\left(d_{y}\left(b_{d}\right)_{y}\right) \tag{1}
\end{equation*}
$$

$$
=c\left(y\left(b_{d}\right)_{y}\right)+\left(x d_{y}\right) b_{d y}
$$

$$
=(c y) b_{d y^{+}}\left(x d_{y}\right) b_{d y} \quad \text { by (2)) }
$$

$$
\begin{equation*}
=(c y+x d y) b_{d y} \tag{**}
\end{equation*}
$$

Hence

$$
\begin{aligned}
([(a, b)]+[(c, d)])+[(x, y)] & =\left[\left(a d+c b_{d}, b d\right)\right]+[(x, y)] \\
& =\left[\left(\left(a d+c b_{d}\right) y+x(b d)_{y},(b d) y\right)\right] \\
& =\left[\left((a d) y+\left(c b_{d}\right) y+x\left(d b_{d}\right) y, b(d y)\right)\right] \\
& =\left[\left(a(d y)+\left(c y+x d_{y}\right) b_{d y}, b(d y)\right)\right] \quad(b y(* *)) \\
& =[(a, b)]+\left[\left(c y+x d_{y}, d y\right)\right] \\
& =[(a, b)]+([(c, d)]+[(x, y)]) .
\end{aligned}
$$

Therefore + is associative.
To show that - is distributive over + in D, let a, b, c, d, $x, y \in P$. Then

$$
\text { (I) }\left\{\begin{aligned}
&(a d)_{x_{d d}}=a\left(d\left(x_{b}\right)_{d}\right)=a\left(x_{b} d\right)=\left(a x_{b}\right) d, \\
&\left(c b b_{d}\right) x_{b d}=c\left(b_{d}\left(x_{b}\right)_{d}\right)=c\left(b x_{b}\right)_{d}=c(x b)_{d}=c x_{d} b_{d} \\
&\left((y b)\left(d y_{d}\right)\right)_{y b d}=\left((y b d)_{d}\right)_{y b d} \\
&=(y b d)_{y b d}\left(y_{d}\right)_{y b d} \quad \text { (by (1)) } \\
&=y b d\left(y_{d}\right)_{y b d} \\
&=y_{d}(y b d)
\end{aligned}\right.
$$

$$
\begin{equation*}
b_{d} y_{d}=(b y)_{d}=\left(y b y_{d}^{\prime}=\left(y_{y} b^{\prime}\right)_{d}=(y b)_{y d}\right. \text {. } \tag{II}
\end{equation*}
$$

Hence

$$
\begin{align*}
((a d+c b &) x_{b d}\right)((y b)(y d)) y(b d) \\
& =\left((a d) x_{b d}+\left(c b b_{d}\right) x_{b d}\right)\left((y b)\left(d y_{d}\right)\right) \\
& =\left(\left(a x_{b}\right) d+\left(c x_{d}\right) b_{d}\right) y_{d}(y b d) \tag{byI}\\
& =\left(\left(a x_{b}\right) d y_{d}+\left(c x_{d}\right) b_{d} y_{d}\right) y(b d) \\
& =\left(\left(a x_{b}\right)(y d)+\left(c x_{d}\right)(y b)_{y d}\right) y(b d)
\end{align*}
$$

(by II).

It follows that
$\left(\left(a d+c b_{d}\right) x_{b d}, y(b d)\right) \imath\left(\left(a x_{b}\right)(y d)+\left(c x_{d}\right)(y b)_{y d},(y b)(y d)\right) \ldots \ldots$. (III).

Therefore
$([(a, b)]+[(c, d)])[(x, y)]=\left[\left(a d+c b_{d}, b d\right)\right][(x, y)]$

$$
\begin{aligned}
& =\left[\left(\left(a d+c b_{d}\right) x_{b d}, y(b d)\right)\right] \\
& =\left[\left(\left(a x_{b}\right)(y d)+\left(c x_{d}\right)(y b)_{y d},(y b)(y d)\right)\right]
\end{aligned}
$$

(by (III))

$$
\begin{aligned}
& =\left[\left(a x_{b}, y b\right)\right]+\left[\left(c x_{d}, y d\right)\right] \\
& =[(a, b)][(x, y)]+[(c, d)][(x, y)] .
\end{aligned}
$$

From
and

$$
\begin{align*}
((b y)(d y))(b d) y & =(b y(d y))_{b d y} \\
& =\left(b d y y_{d y}\right) \text { bdy } \\
& =(b d y)_{b d y}\left(y_{d y}\right) \text { bdy } \\
& =b d y\left(y_{d y}\right)_{b d y} \\
& =y_{d y}(b d y) \tag{IV}
\end{align*}
$$

$$
\begin{equation*}
d_{y} y_{d y}=\left(d_{d}\right)_{y} y_{d y}=d_{d y} y_{d y}=(d y)_{d y}=d y \tag{V}
\end{equation*}
$$

we have that

$$
\begin{aligned}
& x\left(a d+c b_{d}\right) y_{y}((b y)(d y))(b d) y \\
&=x\left((a d) y+\left(c b_{d}\right)_{y}\right) y_{d y}(b d y) \quad(b y(3) \text { and (IV)) } \\
&=\left(x\left(a_{y} d_{y}\right)+x\left(c_{y}\left(b_{d}\right)_{y}\right)\right) y_{d y}(b d) y \\
&=\left(\left(x a_{y}\right) d_{y} y_{d y}+\left(x c_{y}\right) b_{d y} y_{d y}\right)(b d) y \\
&=\left(\left(x a_{y}\right) d y+\left(x c_{y}\right)(b y)_{d y}\right)(b d) y \quad(b y \quad(V) \text { and (1))} .
\end{aligned}
$$

It follows that
$\left(x\left(a d+c b_{d}\right)_{y},(b d) y\right) \sim\left(\left(x a_{y}\right) d y+\left(x c_{y}\right)(b y)_{d y},(b y)(d y)\right)$. (VI).

Hence

$$
\begin{aligned}
{[(x, y)]([(a, b)]+[(c, d)]) } & =[(x, y)]\left[\left(a d+c b_{d}, b d\right)\right] \\
& =\left[\left(x\left(a d+c b_{d}{ }^{\prime} y,(b d) y\right)\right]\right. \\
& =\left[\left(\left(x a_{y}\right) d y+\left(x c_{y}\right)(b y)_{d y},(b y)(d y)\right)\right]
\end{aligned}
$$

(by (VI))

$$
\begin{aligned}
& =[(x a y, b y)]+\left[\left(x c_{y}, d y\right)\right] \\
& =[(x, y)][(a, b)]+[(x, y)][(c, d)] .
\end{aligned}
$$

Therefore ($D,+, \cdot$) is a distributive ratio seminear-ring.
Define i: P \rightarrow D by $i(a)=[(a, 1)]$ for all $a \varepsilon P$. Using the same proof as in Theorem 1.21 we get that i is injective and
$i(a b)=i(a) i(b)$ for all $a, b \varepsilon P$. For any $a, b \varepsilon P, i(a)+i(b)=$ $[(a, 1)]+[(b, 1)]=[(a+b, 1)]=i(a+b)$. Thus i is a homomorphism. Therefore i is a monomorphism.

Now, we shall show that $i(P)$ is an O-set of D. Using the same proof as in Theorem 1.21, we get that $i(P) \cap_{i}(P)^{-1}=\{[(1,1)]\}$, $i(P)^{2} \subseteq i(P)$ and $\alpha i(P) \alpha^{-1} \subseteq i(P)$ for all $\alpha \varepsilon D$. Let $a, b, c \in P$. By property (iv) of P, $a+c b \varepsilon P(a+b)$ and $c b+a \varepsilon p(b+a)$. Then $a+c b=x(a+b)$ and $c b+a=y(b+a)$ for some $x, y \varepsilon P$. Also, we have that $b(a+c b)_{a+b}=b(x(a+b))_{a+b}=b x_{a+b}(a+b)_{a+b}=b x_{a+b}(a+b)$ and $b(c b+a)_{b+a}=b(y(b+a))_{b+a}=b y_{b+a}(b+a)_{b+a}=b y_{b+a}(b+a)$. Since $\mathrm{bP}=\mathrm{Pb}, \mathrm{bx} \mathrm{a}_{\mathrm{a}+\mathrm{b}}=\mathrm{ub}$ and $\mathrm{by} \mathrm{b}_{\mathrm{b}+\mathrm{a}}=\mathrm{vb}$ for some $\mathrm{u}, \mathrm{v} \varepsilon \mathrm{P}$. It follows that $b(a+c b)_{a+b}=u b(a+b)$ and $b(c b+a)_{b+a}=v b(b+a)$.

Hence .

$$
\begin{equation*}
(b(a+c b) a+b, b(a+b)) \sim(u, 1) \tag{VII}
\end{equation*}
$$

$$
\left(b(c b+a)_{b+a}, b(b+a)\right) \sim(v, 1)
$$

and $\quad\left(b(c b+a)_{b+a}, b(b+a)\right) \sim(v, 1)$
(VIII).

Thus

$$
\begin{aligned}
([(a, b)]+[(1,1)])^{-1}([(a, b)]+i(c)) & =[(a+b, b)]^{-1}([(a, b)]+[(c, 1)]) \\
& =[(b, a+b)][(a+c b, b)] \\
& =[(b(a+c b) a+b, b(a+b))] \\
& =[(u, 1)] \quad(b y(\text { VII })) \\
& =i(u)
\end{aligned}
$$

and

$$
\begin{aligned}
([(1,1)]+[(a, b)])^{-1}(i(c)+[(a, b)]) & =[(b+a, b)]^{-1}([(c, 1)]+[(a, b)]) \\
& =[(b, b+a)][(c b+a, b)] \\
& =\left[\left(b(c b+a)_{b+a}, b(b+a)\right)\right] \\
& =[(v, 1)] \quad \text { (by (VIII)) } \\
& =i(v) .
\end{aligned}
$$

Hence $(\alpha+[(1,1)])^{-1}(\alpha+\beta),([(1,1)]+\alpha)^{-1}(\beta+\alpha) \varepsilon i(P)$ for all $\alpha \varepsilon D$, $\beta \varepsilon i(P)$.

Therefore $i(P)$ is an O-set of D. By Theorem 2.11, there exists a unique compatible partial order on D such that $i(P)$ is the positive cone of D. Since $[(1,1)]+[(1,1)]=[(1+1,1)]=i(1+1) \varepsilon P_{D}$, by Proposition 2.8(1), D is upper additive. Since for any $a, b \varepsilon P$, $[(a, b)]=[(a, 1)][(1, b)]=[(a, 1)][(b, 1)]^{-1}=i(a) i(b)^{-1}, i(P)=P_{D}$ generates (D, \cdot). By Proposition 2.8(4), D is directed.

We shall now show that D is the smallest partially ordered distributive ratio seminear-ring having P as its positive cone up to isomorphism. Assume that D^{\prime} is a partially ordered distributive ratio seminear-ring and $j: P \rightarrow D^{\prime}$ is a monomorphism such that $j(P)=P_{D^{\prime}} \quad$ Define $f: D \rightarrow D^{\prime}$ by $f([(a, b)])=j(a) j(b)^{-1}$ for all $\mathrm{a}, \mathrm{b} \in \mathrm{P}$. Using the same prove as in Remark 1.22 we get that f is well-defined, injective, $f\left(P_{D}\right)=P_{f(D)}^{\circ}$ and $f(\alpha \beta)=f(\alpha) f(\beta)$ for all $\alpha, \beta \in D$. Let $a, b, c, d \in P$. Since $d b_{d}=b d$, so $j(d) j\left(b_{d}\right)=j(b) j(d)$. Hence

$$
\begin{equation*}
j\left(b_{d}\right)=j(d)^{-1} j(b) j(d) \tag{***}
\end{equation*}
$$

Thus

$$
\begin{aligned}
f([(a, b)]+[(c, d)]) & =f\left(\left[\left(a d+c b_{d}, b d\right)\right]\right. \\
& =j\left(a d+c b_{d}\right) j(b d)^{-1} \\
& =\left(j(a) j(d)+j(c) j\left(b_{d}\right)\right) j(d)^{-1} j(b)^{-1} \\
& =j(a) j(b)^{-1}+j(c) j(d)^{-1} \quad(b y(* * *)) \\
& =f([(a, b)])+f([(c, d)]) .
\end{aligned}
$$

Hence f is a homomorphism. Therefore f is an order monomorphism. Using the same proof as in Remark 1.22 we get that f is the unique order monomorphism such that $f 0 i=j$. \#

Let D be an ordered distributive ratio seminear-ring such that $1+1=1$. Then for any $x, y, z \in D$, if $x, y \in L I_{D}(1)$ and $x \leqslant z \leqslant y$ then $z \varepsilon L I_{D}(1)$. This statement is also true for $R I_{D}(1)$.

We shall now classify all complete ordered distributive ratio seminear-rings such that $1+1=1$. First, we shall need some lemmas.

Lemma 2.30. Let D be a complete ordered distributive ratio seminarring such that $1+1=1$. Assume that $L I_{D}(1)$ is a proper subset of D. Then the following statements hold:
(1) $\operatorname{If} L I_{D}(1) \cap P_{D} \neq\{1\}$ then $L I_{D}(1)=P_{D}$.
(2) If $L I_{D}(1) \cap P_{D}^{-1} \neq\{1\}$ then $L I_{D}(1)=P_{D}^{-1}$. If $R I_{D}(1)$ is a proper subset of D then the statements (1) and (2) are also true for $R I_{D}(1)$.

Proof: (1) Assume that $L I_{D}(1) \cap P_{D} \neq\{1\}$. Let $x \in L I_{D}(1)$ be such that $x>1$. To show that $P_{D} \subseteq L I_{D}(1)$, let $y \in P_{D}$. Then $y \geqslant 1$. If $y \leqslant x$ then $y \in L I_{D}(1)$, so we are done. Assume that $x<y$. Since D is complete, by Proposition $1.14,(\mathrm{D}, \cdot)$ is Archimedean. Hence there exists an $n \in \mathbb{Z}$ such that $y<x^{n}$. Since $y>1, n \neq 0$. If $\mathrm{n} \varepsilon \mathbb{Z}^{-}$, it follows from $1<\mathrm{x}$ that $\mathrm{x}^{\mathrm{n}}<1$, so $\mathrm{y}<1$, a contradiction. Hence $n \in \mathbb{Z}^{+}$. By Remark $1.29(2), x^{n} \varepsilon L I_{D}(1)$. Since $1 \leqslant y<x^{n}, y \in L I_{D}(1)$. Therefore $P_{D} \subseteq L I_{D}(1)$. Suppose that $P_{D} \subset L I_{D}(1) . \quad$ Let $z \varepsilon L I_{D}(1) \backslash P_{D}$. To show that $P_{D}^{-1} \subseteq L I_{D}(1)$, let $w \in P_{D}^{-1}$. Then $w \leqslant 1$. If $w \geqslant z$ then $w \in L I_{D}(1)$, so we are done. Assume that $w<z$. Since (D, \cdot) is Archimedean, there exists an $\mathrm{n} \varepsilon \mathbb{Z}$ such that $\mathrm{z}^{\mathrm{n}}<\mathrm{w}$. Since $\mathrm{w} \leqslant 1, \mathrm{n} \neq 0$. If $\mathrm{n} \varepsilon \mathbf{Z}^{-}$, it follows from $z<1$ that $1<z^{n}$, so $1<w$, a contradiction. Hence $n \varepsilon \mathbf{z}^{+}$. By Remark $1.29(2), z^{n} \varepsilon L I_{D}(1)$. Since $z^{n}<w \leqslant 1, w \in L I_{D}(1)$. Hence $P_{D}^{-1} \subseteq L I_{D}(1)$. Thus $P_{D} \cup P_{D}^{-1} \subseteq L I_{D}(1)$. Since D is totally ordered, by Proposition $2.8(7), D=P_{D} \cup P_{D}^{-1}$. This implies that $L I_{D}(1)=D$ which contradicts the hypothesis. Therefore $P_{D}=L I_{D}(1)$.
(2) The proof is similar to the proof of (1).

Lemma 2.31. Let D be a complete ordered distributive ratio seminear-ring such that $1+1=1$ and $|D|>1$. Then exactly one of the following statements hold:
(1) $x+y=\min \{x, y\}$ for all $x, y \varepsilon D$.
(2) $x+y=\max \{x, y\}$ for all $x, y \in D$.
(3) $\mathrm{x}+\mathrm{y}=\mathrm{x}$ for all $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{D}$.
(4) $\mathrm{x}+\mathrm{y}=\mathrm{y}$ for all $\mathrm{x}, \mathrm{y} \varepsilon \mathrm{D}$.

Proof: Case 1: $\operatorname{LI}_{D}(1)=\{1\}$. Let $x \in D$. Then $1+(1+x)=(1+1)+x=1+x$, so $1 \varepsilon \operatorname{LI}_{D}(1+x)$. By Remark 1.29(1), $\operatorname{LI}_{D}(1+x)=(1+x) L I_{D}(1)=\{1+x\}$, so $1=1+x$. Thus $x \in R I_{D}(1)$.

Hence $D \subseteq R I_{D}(1)$. Therefore $R I_{D}(1)=D$. Let $x, y \in D$. Then $\mathrm{yx}^{-1} \varepsilon \mathrm{RI}_{\mathrm{D}}(1)$, so $1+\mathrm{yx}^{-1}=1$ which implies that $\mathrm{x}+\mathrm{y}=\mathrm{x}$. Hence $\mathrm{x}+\mathrm{y}=\mathrm{x}$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{D}$.

Case 2: $\quad \mathrm{LI}_{\mathrm{D}}(1)=\mathrm{D}$. Let $\mathrm{x}, \mathrm{y} \in \mathrm{D}$. Then $\mathrm{xy}^{-1}+1=1$, so $\mathrm{x}+\mathrm{y}=\mathrm{y}$. Hence $x+y=y$ for all $x, y \in D$.

Case 3: $\quad\{1\} \subset \operatorname{LI}_{D}(1) \subset D$. If $R I_{D}(1)=\{1\}$ then $L I_{D}(1)=D$ by using a proof similar to the proof of Case 1 which is a contradiction. If $\mathrm{RI}_{\mathrm{D}}(1)=\mathrm{D}$ then for each $\mathrm{x} \in \mathrm{D}, 1+\mathrm{x}^{-1}=1$, so $\mathrm{x}+1=\mathrm{x}$ for all $x \in D$ which implies that $L I_{D}(1)=\{1\}$, a contradiction. Hence $\{1\} \subset \mathrm{RI}_{\mathrm{D}}(1) \subset \mathrm{D}$. Let $\mathrm{x} \in L \mathrm{I}_{\mathrm{D}}(1) \backslash\{1\}$.

Subcase 3.1: $x>1$. Then $x \in L I_{D}(1) \cap P_{D}$. By Lemma 2.30(1), $L I_{D}(1)=P_{D}$. Let $y \varepsilon R I_{D}(1) \backslash\{1\}$. We shall show that $y>1$. Suppose that $y<1$. Then $y \in R I_{D}(1) \cap P_{D}^{-1}$. By Lemma 2.30, $R I_{D}(1)=P_{D}^{-1}$. Let $a, b \in D$ be such that $a<b$. Then $b a^{-1} \varepsilon P_{D}$, so $b a^{-1} \varepsilon L I_{D}(1)$. Hence $b a^{-1}+1=1$, so $b+a=a$. But $a b^{-1} \varepsilon P_{D}^{-1}$, so $a b^{-1} \varepsilon R I_{D}(1)$. Thus $1+a b^{-1}=1$, so $b+a=b$. This is a contradiction since $a \neq b$. Therefore $\mathrm{y}>1$. Then we have that
$y \in R I_{D}(1) \cap P_{D} \cdot$ By Lemma 2.30, $R_{D}(1)=P_{D}$. Hence $L I_{D}(1)=R I_{D}(1)$ $=P_{D}$.

Let $x, y \in D$. Without loss of generality, assume that $x \leqslant y$. Then $\mathrm{yx}^{-1} \varepsilon \mathrm{P}_{\mathrm{D}}$, so $\mathrm{yx}^{-1}+1=1+\mathrm{yx}^{-1}=1$. Thus $\mathrm{y}+\mathrm{x}=\mathrm{x}+\mathrm{y}=\mathrm{x}=$ $\min \{x, y\}$. Therefore $x+y=\min \{x, y\}$ for all $x, y \in D$.

Subcase 3.2: $\quad x<1$. This proof is similar to the proof of Subcase 3.1 and shows that $x+y=\max \{x, y\}$ for all $x, y \in D . \quad \#$

Theorem 2.32. Let $(D,+, \cdots, \leqslant)$ be a complete ordered distributive ratio seminear-ring such that $1+1=1$. Then $(D,+, \cdot, \leqslant)$ is order isomorphic to exactly one of the following:
(1) $(\{1\},+, \cdot, \leqslant)$.
(2) $\left(\mathbb{R}^{+}, \min , \cdot, \leqslant\right)$.
(3) $\left(\mathbb{R}^{+}, \max , \cdot, \leqslant\right)$.
(4) $\left(\mathbb{R}^{+},+_{\ell}, \cdot, \leqslant\right)$ where $x+{ }_{\ell} y=x$.
(5) $\left(\mathbb{R}^{+},{ }_{r}, \cdot, \leqslant\right)$ where $x+{ }_{r} y=y$.
(6) $\quad\left(\left\{2^{\mathrm{n}} \mid \mathrm{n} \varepsilon \mathrm{z}\right\}, \min , \cdot, \leqslant\right)$.
(7) $\left(\left\{2^{n} \mid n \in \mathbf{Z}\right\}, \max , \cdot, \leqslant\right)$.
(8) $\quad\left(\left\{2^{n} \mid n \in \mathbf{Z}\right\},+_{\ell}, \cdot, \leqslant\right)$.
(9) $\left(\left\{2^{n} \mid n \in \mathbb{Z}\right\},{ }_{r}, \cdot,<\right)$.

Proof: If $|D|=1$ then D is order isomorphic to (1).
Assume that $|D|>1$. Since (D, \cdot, \leqslant) is a complete totally ordered group, by Theorem 1.15, (D, •, s) ia order isomorphic to either $\left(\mathbb{R}^{+}, \cdot, \leqslant\right)$ or $\left(\left\{2^{n} \mid n \varepsilon \mathbb{Z}\right\}, \cdot, \leqslant\right)$.

Case 1: $(D, \cdot, \leqslant) \simeq\left(\mathbb{R}^{+}, \cdot, \leqslant\right)$. Then by Lemma 2.31, $(D,+, \cdot, \leqslant)$ is order isomorphic to either (2), (3), (4) or (5).

Case 2: $(D, \cdot, \leqslant) \simeq\left(\left\{2^{n} \mid n \in z\right\}, \cdot, \leqslant\right)$. Then by Lemma $2.31,(D,+, \cdot, \leqslant)$ is order isomorphic to either (6), (7), (8) or (9).

Finally, we shall show that (1) to (9) are not order isomorphic to each other. Clearly, (1) is not order isomorphic to any of the others and \mathbb{R}^{+}is not isomorphic to $\left\{2^{n} \mid n \in \mathbb{Z}\right\}$. Since (4) and (5) are not additively commutative, so (4) and (5) are not order isomorphic to (2) and (3).

To show that (2) is not order isomorphic to (3), suppose not. Let $f:\left(\mathbb{R}^{+}, \min , \cdot, \leqslant\right) \rightarrow\left(\mathbb{R}^{+}, \max , \cdot, \leqslant\right)$ be an order isomorphism. Since $1<2$, so $f(1)<f(2)$, hence $f(2)=f(1)+f(2)=f(1+2)=f(1)$, a contradiction. Therefore (2) is not order isomorphic to (3).

To show that (4) is not order isomorphic to (5), suppose
not. Let $f:\left(\mathbb{R}^{+},{ }^{+}, \cdot, \leqslant\right) \rightarrow\left(\mathbb{R}^{+},{ }^{+} r^{,}, \leqslant\right)$be an order isomorphism Since $f(1)=f(2){ }_{r} f(1)=f(2+\ell 1)=f(2)$, a contradiction. Hence (4) is not order isomorphic to (5).

Similarly, (6), (7), (8) and (9) are not order isomorphic to each other. \#

Let D be a distributive ratio seminear-ring. For each $n \in \mathbb{Z}^{+}$, we shall denote $1+1+\ldots+1$ (n times) by n.

Definition 2.33. Let D be an ordered distributive ratio seminearring such that $1+1 \neq 1$. D is called Archimedean if for any $x, y \in D$, $x<y$ implies that either
a) there exists an $n \in \mathbb{Z}^{+}$such that $y<n x$ or
b) there exists an $n \varepsilon \mathbf{Z}_{-}^{+}$such that ny $<x$.

Remark 2.34.([3]). Let•D be an ordered distributive ratio seminear-ring and P the prime distributive ratio seminear-ring of D. Then
(i) a) in Definition 2.33 holds if P is order isomorphic to $\left(Q^{+},+, \cdot, \leqslant\right)$.
(ii) b) in Definition 2.33 holds if P is order isomorphic to $\left(Q^{+},+, \cdot \leqslant \mathrm{opp}\right)$.

Let D be an ordered distributive ratio seminear-ring, P the prime distributive ratio seminear-ring of D and $x \in D$. Then we shall use the following notations: $A_{x}=\{y \varepsilon P \mid y<x\}$ and $B_{x}=\{y \in P \mid x<y\}$.

We need the following lemmas to classify all complete ordered distributive ratio seminear-ring which has property that $1+1 \neq 1$. The first, second and third lemmas have been proven in [3], pages $33-35$ and 37.

Lemma 2.35 ([3]). If D is a complete ordered distributive ratio seminear-ring such that $1+1 \neq 1$ then D is Archimedian.
\%
Lemma 2.36 ([3]). Let D be a complete ordered distributive ratio seminear-ring such that the prime distributive ratio seminear-ring of D is order isomorphic to $\left(Q^{+},+, \bullet, \leqslant\right)$. Then the following statements hold:

$$
\text { (1) } \quad 1=\inf \left\{1+n^{-1} \mid n \varepsilon \mathbb{Z}_{.}^{+}\right\}
$$

(2) For any $x, y \in D, x<y$ implies that $n x+1<n y$ for some n $\in \mathbb{Z}^{+}$.
(3) For any $x \in D$ there exists an $n_{0} \varepsilon \mathbb{Z}^{+}$such that for each $\mathrm{n} \in \mathbb{Z}^{+}, \mathrm{n}_{0} \leqslant \mathrm{n}$ implies $\mathrm{n}^{-1}<\mathrm{x}$.

Lemma 2.37 ([3]). Let D be a complete ordered distributive ratio seminear-ring and P the prime distributive ratio seminear-ring of D which is order isomorphic to $\left(\mathbb{Q}^{+},+, \cdot, \leqslant\right)$. Then the following statements hold:
(1) $\sup A_{x}=\inf B_{x}=x$ and $A_{x+y}=A_{x}+A_{y}$ for all $x, y \in D$.
(2) If $f: D \rightarrow D$ is isotone such that $f(x)=x$ for all $x \varepsilon P$ then f is the identity map of D.

Lemma 2.38. Let D be a complete ordered distributive ratio seminearring such that P, the prime distributive ratio seminear-ring of D, is order isomorphic to $\left(Q^{+},+, \cdot, \leqslant\right)$. Then P is the strongly dense in D.

Proof: Let $x, y \in D$ be such that $x<y$. By Lemma 2.36(2), $m_{0} x+1<m_{0} y$ for some $m_{0} \varepsilon \mathbb{Z}^{+}$. Claim that for any $k \varepsilon z^{+}, m_{0} \leqslant k$ implies that $k x+1<k y$. Let $k \in \mathbb{Z}^{+}$be such that $m_{o} \leqslant k$. If $k=m_{o}$ then we are done. Assume that $m_{0}<k$. Then $k=\ell+m_{0}$ for some $\ell \in \mathbb{z}^{+}$. Since $\hat{\alpha}<y$, so $k x+1=\left(\ell+m_{0}\right) x+1=\ell x+\left(m_{0} x+1\right) \leqslant \ell y+m_{0} y=$ $\left(\ell+m_{0}\right) y=k y$. Suppose that $k x+1=k y$. Then $x+k^{-1}=y$. Since $m_{0}<k, k^{-1}<m_{o}^{-1}$. It follows that $y=x+k^{-1} \leqslant x+m_{0}^{-1}$, and hence $m_{0} y \leqslant m_{0} x+1$, a contradiction. Therefore $k x+1<k y$. Hence we have the claim. By Lemma $2.36(3)$, there exists an $n_{0} \varepsilon \mathbb{z}^{+}$such
that $n_{0}^{-1}<x$, so $1<n_{0} x$. Let $\ell \varepsilon z^{+}$be such that $m_{0}<\ell n_{0}$. By the claim, $\left(\ln _{0}\right) x+1<\left(\ln _{0}\right) y$

Since D is complete, by Lemma 2.35, D is Archimedian. Since $1<\ell<\ell\left(n_{0} x\right)$, so there exists an $r \varepsilon \mathbb{Z}^{+}$such that $\left(\ell n_{0}\right) x<r \cdot 1=r$. Let $r_{0}=\min \left\{r \in \mathbb{Z}^{+} \mid\left(\ell n_{0}\right) x<r\right\}$. Then $r_{0}-1 \leqslant\left(\ell n_{0}\right) x<r_{0}$. From $(*)$, we have that $r_{0} \leqslant\left(l n_{0}\right) x+1<\left(\ell n_{0}\right) y$. Thus $\left(\ell n_{0}\right) x<r_{0}<\left(l n_{0}\right) y$, so $x<\left(\ell n_{0}\right)^{-1} r_{0}<y$. Hence P is strongly dense in D.

Theorem 2.39 ([3]). Let ($D,+, \cdot, \varsigma$ be a complete ordered distributive ratio seminear-ring such that $1+1 \neq 1$. Then ($D,+, \cdot, \leqslant$) is either order isomorphic to $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right.$ or $\left(\mathbb{R}^{+},+, \cdot, \leqslant\right.$ opp $)$.

