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CHAPTER I

INTRODUCTION

Most first courses in number theory prove a theorem of Fermat which states

that for an odd prime p,

p = x2 + y2, x, y ∈ Z⇔ p ≡ 1 mod 4. (1.1)

Fermat also states that if p is an odd prime

p = x2 + 2y2, x, y ∈ Z⇔ p ≡ 1, 3 mod 8 (1.2)

p = x2 + 3y2, x, y ∈ Z⇔ p = 3 or p ≡ 1 mod 3. (1.3)

B. Fine [8] gave a new proof of (1.1) by using the structure of the modular group

which is group theoretically a free product. Later G. Kern-Isberner and G. Rosen-

berger [10] extended Fine’s method to solve (1.2) and (1.3) by using the Hecke

groups. To this direction, many mathematicians can deal with primes of the form

x2 + dy2 for a positive integer d. Also, G. Kern-Isberner and G. Rosenberger [10]

extended these results for d = 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 37, 58 and as

is well known, Cox [6] answered this problem completely by using class field theory.

It is significantly more difficult to study primes of the form x2 + y2 where x, y

are algebraic integers in a number field than that over Z. I. Niven [17] determined

which algebraic integers can be written as the sum of two integral squares in Q(i).

M. Elia and C. Monico [7] described completely which prime integers in Q(
√

2)

can be represented as the sum of two squares. T. Nagell [14], [15] further studied

the question for the twenty two quadratic fields Q(
√
m) where

m = ±2,±3,±5,±7,±11,±13,±19,±37,±43,±67,±163.

Q. Hourong [9] also studied the problem when an element in a quadratic field,

not necessary an algebraic integer can be represented as the sum of two squares

of elements in the field.
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Let m and d be rational integers such that m is squarefree and d is positive.

The first objective of this thesis is determining all algebraic prime integers that

can be represented in the form x2 + dy2 where x and y are algebraic integers in a

quadratic field Q(
√
m). The second objective of this thesis is studying the number

of representations of algebraic integers of the form x2 + dy2 where x and y are

algebraic integers in number fields.

In Chapter II, we begin by collecting those definitions and results about the

ring of integers, ideal class groups, unit groups, and the Hilbert class field, mainly

without proofs, to be used throughout the entire thesis. We describe the imag-

inary quadratic fields with class number 1, 2 and 4 and describe the imaginary

biquadratic fields with class number 1 and 2.

In Chapter III, we give some conditions on n and d in order that the class

number of Q(
√
m) and Q(

√
m,
√
−d) are 1 and we can determine the primes that

can be written in the form x2+dy2 where x and y are algebraic integers in Q(
√
m).

Moreover, we use Hilbert class field to determine which primes can be written in

the form x2 + dy2 where x and y are algebraic integers in Q(
√
m) for some m and

d.

In Chapter IV, we study the numbers of representations of integers of the form

x2 + dy2 where x and y are algebraic integers in number fields.



CHAPTER II

PRELIMINARIES

In this chapter, we give notations, definitions and theorems used throughout the

thesis. Details and proofs can be found in [12], [13] and [19] unless otherwise

stated.

2.1 The Ring of Integers

Definition 2.1.1. A number field is a finite extension of Q (in C).

Definition 2.1.2. Let K be a number field. An α ∈ K is an algebraic integer if

and only if there exist n ∈ N and a0, a1, . . . , an−1 ∈ Z such that

αn + an−1α
n−1 + . . .+ a1α + a0 = 0.

Remark 2.1.3. An α ∈ Q is an algebraic integer if and only if α ∈ Z.

Definition 2.1.4. All algebraic integers in a number field K form a ring, called

the ring of integers in K and denoted by OK .

Definition 2.1.5. An embedding of L over K in C is a one to one homomorphism

σ : L→ C fixing K pointwise. An embedding of L in C is an embedding of L over

Q in C.

Let K and L be number fields with K ⊆ L and [L : K] = n. Then there exist

n embeddings of L over K in C denoted by σ1 = idL, σ2, . . . , σn.

Definition 2.1.6. For α ∈ L, define the relative trace of α by

TrL/K (α) = σ1 (α) + σ2 (α) + . . .+ σn (α)

and the relative norm of α by

NL/K (α) = σ1 (α)σ2 (α) . . . σn (α) .
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If K = Q, then denote TrL/Q by TrL and NL/Q by NL and call the absolute

trace and absolute norm, respectively.

Definition 2.1.7. Let α1, α2, . . . , αn ∈ L. The discriminant of α1, α2, . . . , αn in

L over K denoted by discL/K (α1, α2, . . . , αn) := det[σi(αj)]
2.

Theorem 2.1.8. Let K be a number field of degree n over Q. Then OK is a free

abelian group (or Z-module) of rank n, i.e., it is isomorphic to the direct sum of

n subgroups each of which is isomorphic to Z.

Definition 2.1.9. A Z-basis {α1, . . . , αn} of OK is called an integral basis of K.

Note. An integral basis of K is also a basis of K over Q.

Proposition 2.1.10. Let {α1, . . . , αn} and {β1, . . . , βn} be any integral bases of

K. Then discK(α1, . . . , αn) = discK(β1, . . . , βn).

Definition 2.1.11. The discriminant of the field K = discK(α1, . . . , αn) where

{α1, . . . , αn} is an integral basis of K over Q, we denote it by disc(K) or δK .

2.2 Factorization of Elements in the Ring of Integers

Definition 2.2.1. Let D be an integral domain.

(1) u ∈ D is a unit if and only if u | 1.

(2) x, y ∈ D are associates or y is an associate of x, in notation x ∼ y, if and

only if there exists a unit u ∈ D such that x = yu.

(3) A nonzero nonunit x ∈ D is prime if and only if for all m,n ∈ D, if x | mn

then x | m or x | n.

Note. If x is prime, then y is prime for every associate y of x.

Proposition 2.2.2. Let D be an integral domain and x, y ∈ D r {0}. Then

(i) x and y are associates if and only if 〈x〉 = 〈y〉.

(ii) x is prime if and only if 〈x〉 is a prime ideal.
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2.3 Decomposition of Ideals

This section will be used for theorems about quadratic and biquadratic fields in

the next chapter.

Theorem 2.3.1. Every nonzero proper ideal in OK can be written uniquely as a

product of prime ideals.

Definition 2.3.2. The norm of a nonzero ideal A in OK , denoted by N(A), is

defined to be | OK/A |.

Theorem 2.3.3. For any α 6= 0 in OK, N(〈α〉) = |NK(α)|.

Remark 2.3.4. If P is a nonzero ideal such that N(P ) = p a prime number, then

P is a prime ideal in OK .

Let L ⊇ K be a finite extension of number fields. Let P be a nonzero prime

ideal in OK . Then POL is a nonzero ideal in OL. We will consider the prime

factorization of POL in OL. From now on, the term prime ideal means nonzero

prime ideal.

Theorem 2.3.5. Let P be a prime ideal in OK and p be a prime ideal in OL.

Then the following are equivalent.

(i) p|POL.

(ii) p ⊃ POL.

(iii) p ⊃ P .

(iv) p ∩ OK = P .

(v) p ∩K = P .

Definition 2.3.6. For P and p satisfying any of the above theorem, we say that

p lies over P or P lies under p.

Definition 2.3.7. Let POL =

g∏
i=1

peii be the prime factorization in OL where P

is a prime ideal in OK .

(1) g is called the decomposition number of P in L.

(2) For each i, ei is called the ramification index of pi over P in L over K,
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denoted by e(pi/P ).

P is ramified in OL (in L) if there exists i such that ei > 1.

P is inert in L if g = 1 and e1 = 1, i.e., POL is a prime ideal.

The field OK/P is embedded in the field OL/p so it can be considered as a

subfield of OL/P .

Definition 2.3.8. The degree of OL/pi over OK/P is called the residue class

degree or inertial degree of pi over P , denoted by f(pi/P ).

Remark 2.3.9. N(pi) =N(P )f where f = f(pi/P ).

Theorem 2.3.10. Let L ⊇ K be a number field extension of degree n and let

p1, . . . , pg be primes in OL lying above a prime P of OK with ramification indices

e1, . . . , eg and residue class degrees f1, . . . , fg. Then n =

g∑
i=1

eifi.

Definition 2.3.11. Let L ⊇ K be a number field extension of degree n and P

be a prime ideal in OK such that POL = pe11 pe22 . . . p
eg
g where pi are distinct prime

ideals of OL.

(1) P is totally ramified in L if g = 1 and e1 = n, so f1 = 1 and POL = pn1 .

(2) P splits completely in L if g = n, so ei = 1, f1 = 1 for all i and POL =

p1p2 . . . pn.

Theorem 2.3.12. Let L ⊇ K be a Galois extension number field of degree n and

pi, pj be primes in OL lying above a prime P of OK. Then e(pi/P ) = e(pj/P ) and

f(pi/P ) = f(pj/P ), i.e., POL = (p1 . . . pg)
e, hence n = efg where e = e(pi/P )

and f = f(pi/P ).

2.4 Quadratic and Biquadratic Fields

We collect necessary results of quadratic and biquadratic fields here. These prop-

erties will be used in Chapter III.

Definition 2.4.1. A quadratic field is a number field of degree 2 over Q.

Note. A quadratic field is of the form Q(
√
m) where m is a squarefree integer.
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Theorem 2.4.2. Let K = Q(
√
m) where m is a squarefree integer.

(i) If m ≡ 1 mod 4, then
{

1, 1+
√
m

2

}
is an integral basis of K, i.e.,

OK = Z⊕ Z · 1 +
√
m

2
.

(ii) If m ≡ 2 or 3 mod 4, then {1,
√
m} is an integral basis of K, i.e.,

OK = Z⊕ Z ·
√
m.

Next, the decomposition of principal ideals generated by 2 in quadratic fields

can be determined in the following theorem [12].

Theorem 2.4.3. Let K = Q(
√
m) where n is a squarefree integer.

(i) If m ≡ 2, 3 mod 4, then 2OK = p2 for some prime ideal p of OK.

(ii) If m ≡ 1 mod 8, then 2OK = pp′, where p 6= p′ are prime in OK.

(iii) If m ≡ 5 mod 8, then 2OK is prime in OK.

Definition 2.4.4. Let p be an odd prime, and let a be an integer such that

(a, p) = 1. The Legendre symbol (a/p) is defined by

(
a

p

)
=

1 if a is a quadratic residue modulo p

−1 if a is a quadratic nonresidue modulo p.

Theorem 2.4.5. Let K = Q(
√
m) where m is a squarefree integer, and let p be

an odd prime.

(i) If p | m, then pOK = p2 for some prime ideal p of OK.

(ii) If p - m and (m/p) = 1, then pOK = pp′, where p 6= p′ are prime in OK.

(iii) If p - m and (m/p) = −1, then pOK is prime in OK.

Definition 2.4.6. A biquadratic field is an extension of degree four over Q of the

form Q(
√
m,
√
n) where m,n are distinct squarefree integers. A biquadratic field

Q(
√
m,
√
n) is called real if both m and n are positive and is called imaginary if

m or n are negative.

Theorem 2.4.7. Let L = Q(
√
m,
√
n) where m and n are distinct squarefree

integers and k = mn
d2

where d = (m,n).
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(i) If m ≡ 3, n ≡ k ≡ 2 mod 4, then
{

1,
√
m,
√
n,
√
n+
√
k

2

}
is an integral basis of

L, i.e.,

OL = Z⊕ Z ·
√
m⊕ Z ·

√
n⊕ Z ·

√
n+
√
k

2
.

(ii) If m ≡ 1, n ≡ k ≡ 2 or 3 mod 4, then
{

1, 1+
√
m

2
,
√
n,
√
n+
√
k

2

}
is an integral

basis of L, i.e.,

OL = Z⊕ Z · 1 +
√
m

2
⊕ Z ·

√
n⊕ Z ·

√
n+
√
k

2
.

(iii) If m ≡ n ≡ k ≡ 1 mod 4, then
{

1, 1+
√
m

2
, 1+

√
n

2
,
(

1+
√
m

2

)(
1+
√
k

2

)}
is an

integral basis of L, i.e.,

OL = Z⊕ Z · 1 +
√
m

2
⊕ Z · 1 +

√
n

2
⊕ Z ·

(
1 +
√
m

2

)(
1 +
√
k

2

)
.

The study of the decomposition of principal ideals generated by an odd prime

in biquadratic fields can be found in [5].

Theorem 2.4.8. Let L = Q(
√
m,
√
n) where m and n are distinct squarefree

integers and k = mn
d2

where d = (m,n), and let p be an odd prime.

(i) If p | m, p | n, p - k and (k/p) = 1, then pOL = p21p
2
2 where p1 and p2 are

distinct primes in OL.

(ii) If p | m, p | n, p - k and (k/p) = −1, then pOL = p21 where p1 is prime in OL.

(iii) If p - mnk, (m/p) = 1 and (n/p) = 1, then pOL = p1p2p3p4 where p1, p2, p3

and p4 are distinct primes in OL.

(iv) If p - mnk, (m/p) = −1 and (n/p) = −1, then pOL = p1p2 where p1 and p2

are distinct primes in OL.

2.5 Ideal Class Groups and Unit Groups

Definition 2.5.1. Let D be an integral domain with the field of quotients K.

Let I be a D−submodule of K. I is a fractional ideal if there exists d ∈ Dr {0}

such that dI ⊆ D.

Let IK be the set of all nonzero fractional ideals of K. Then IK is a group

under multiplication of ideals. The most important subgroup of IK is the subgroup
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PK of principal fractional ideals, i.e., those of the form αOK for some nonzero

α ∈ K. The quotient IK/PK is the ideal class group and is denoted by C(OK).

The basic fact is that C(OK) is a finite abelian group and the order of C(OK) is

called the class number of K, denoted by hK .

The following theorem can be found in [1] and [19].

Theorem 2.5.2. Let K = Q(
√
m) be an imaginary quadratic field where m is

negative squarefree integer. Then

(i) only for −m = 1, 2, 3, 7, 11, 19, 43, 67 and 163, we have hK = 1.

(ii) only for −m = 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403

and 427, we have hK = 2.

(iii) only for −m = 14, 17, 21, 30, 33, 34, 39, 42, 46, 55, 57, 70, 73, 78, 82, 85, 93, 97,

102, 130, 133, 142, 155, 177, 190, 193, 195, 203, 219, 253, 259, 291, 323, 355, 435, 483,

555, 595, 627, 667, 715, 723, 763, 795, 955, 1003, 1027, 1227, 1243, 1387, 1411, 1435,

1507 and 1555, we have hK = 4.

This theorem says that there are 9 imaginary quadratic fields of class number 1,

exactly 18 imaginary quadratic fields of class number 2 and exactly 54 imaginary

quadratic fields of class number 4.

The set of all units in OK is denoted by O×K . It is a group under multiplication.

Theorem 2.5.3. Let K = Q(
√
m,
√
n) be a biquadratic field and let k1, k2 and

k3 be the quadratic subfields of K. Let Γ be a subgroup of O×K generated by units

which are also in Oki for i = 1, 2, 3. Then

hK =


1
4
Qhk1hk2hk3 if K is real

1
2
Qhk1hk2hk3 if K is complex.

where Q = [O×K : Γ] denotes the index of Γ in O×K.

We use Theorem 2.5.2 and Theorem 2.5.3 to determine all imaginary bi-

quadratic fields of class number 1 and 2 and the proofs can be found in [2] and

[3].
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Theorem 2.5.4. (i) There are 47 imaginary biquadratic fields of class number 1.

(ii) There are 160 imaginary biquadratic fields of class number 2.

The examples of imaginary quadratic fields of class number 1 which we use in

this thesis are Q(
√
−2,
√
−7), Q(

√
29,
√
−2), Q(

√
2,
√
−11) and Q(

√
5,
√
−2) and

the example of imaginary quadratic fields of class number 2 which we use in this

thesis is Q(
√

17,
√
−1).

Theorem 2.5.5. Let K = Q(
√
−m) where m is a positive squarefree integer.

(i) If m = 1, then O×K = {±1,±i}.

(ii) If m = 3, then O×K = {±1, 1±
√
−3

2
, −1±

√
−3

2
}.

(iii) If m 6= 1, 3, then O×K = {±1}.

Theorem 2.5.6 (Dirichlet’s Unit Theorem). Let K be a number field of degree

n = r + 2s over Q where r is the number of real embeddings of K and s is the

number of nonconjugate complex embeddings of K. Then O×K ∼= WK × V where

WK is the cyclic group of even order of all roots of unity in K and V is a free

abelian group of rank t = r + s − 1, i.e., there are units u1, . . . , ut such that for

all u ∈ O×K, u can be written uniquely in the form u = wua11 , . . . , u
at
t where ai ∈ Z

and w ∈ WK.

Let K = Q(
√
m) be a real quadratic field where m is a positive squarefree

integer. ThenK has two real embeddings, so r = 2 and s = 0, and t = r+s−1 = 1.

SinceK ⊂ R, the only root of unity are±1, i.e.,WK = 〈−1〉. HenceO×K ∼=WK×V

where V is a free abelian group of rank 1. It can be shown that there is a positive

element u1 ∈ O×K such that for each u ∈ O×K , u = ±uk1 where k ∈ Z. The element

u1 is called the fundamental unit in K.

2.6 The Hilbert Class Field

In this section definitions, theorems and their proofs are found in [6].
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Definition 2.6.1. An extension K ⊂ L is abelian if it is Galois and Gal(L/K) is

an abelian group.

Definition 2.6.2. A real infinite prime is an embedding σ : K → R and a complex

infinite prime is a pair of complex conjugate embeddings σ, σ̄ : K → C, σ 6= σ̄.

Prime ideals of OK are often called finite primes to distinguish them from the

infinite primes.

Definition 2.6.3. Given an extension K ⊂ L, an infinite prime σ of K ramifies

in L provided that σ is real but it has an extension to L which is complex.

Example 2.6.4. The infinite prime of Q is unramified in Q(
√

2) but ramified in

Q(
√
−2).

Definition 2.6.5. An extension K ⊂ L is unramified if it is unramified at all

primes, finite or infinite.

Theorem 2.6.6. Given a number field K, there is a finite Galois extension L of

K such that:

(i) L is an unramified abelian extension of K.

(ii) Any unramified abelian extension of K lies in L.

Definition 2.6.7. The field L of Theorem 2.6.6 is called the Hilbert class field of

K.

The Hilbert class field is the maximal unramified abelian extension of K and

is clearly unique.

Theorem 2.6.8. If L is the Hilbert class field of K, then the Galois group of L

over K is isomophic to the ideal class group of K , i.e.,

Gal(L/K) ' C(OK).

Theorem 2.6.9. Let L be the Hilbert class field of a number field K, and let p

be a prime ideal of K. Then

p splits completely in L⇔ p is a principal ideal.



CHAPTER III

PRIMES OF THE FORM x2 + dy2 IN SOME

QUADRATIC FIELDS

M. Elia and C. Monico [7] described which prime integers in Q(
√

2) can be rep-

resented as the sum of two integral squares. Their method depended on the fact

that the class numbers of Q(
√

2,
√
−1) and Q(

√
2) are 1. We will generalize this

to determine the prime integers in Q(
√
m) that can be represented in the form

x2 + dy2 where d is a positive integer under some conditions. In Section 3.1, we

work for the case that the class numbers of Q(
√
m,
√
−d) and Q(

√
m) are 1. Then

we use Hilbert class fields for the case without the class numbers condition.

3.1 The Case of Class Number One

Let K = Q(
√
m) and L = Q(

√
m,
√
−d) where m, d are squarefree integers satis-

fying the following properties.

(1) d > 0.

(2) If m < 0, then −1 = x2 + dy2 has a solution in OK and if m > 0, then

N(u) = −1 where u is the fundamental unit of Q(
√
m).

(3) The units of Q(
√
m,
√
−d) are ±ul where l is an integer and u is the funda-

mental unit of Q(
√
−md) if m < 0 and of Q(

√
m) if m > 0.

(4) m ≡ 1 mod 4 and −d ≡ 2, 3 mod 4 or m ≡ 2, 3 mod 4 and −d ≡ 1 mod 4.

(5) The class number of both Q(
√
m) and Q(

√
m,
√
−d) is 1.

(6) (m, d) = 1.

Lemma 3.1.1. (i) If m ≡ 1 mod 4 and − d ≡ 2, 3 mod 4, then

OL =

{
r + s

√
m

2
+
√
−dt+ u

√
m

2
|r, s, t, u ∈ Z, r ≡ s mod 2 and t ≡ u mod 2

}
.



13

(ii) If m ≡ 2, 3 mod 4 and − d ≡ 1 mod 4, then

OL =

{
r + s

√
m

2
+
√
−dt+ u

√
m

2
|r, s, t, u ∈ Z, r ≡ t mod 2 and s ≡ u mod 2

}
.

Proof. (i) Assume that m ≡ 1 mod 4 and −d ≡ 2, 3 mod 4.

By Theorem 2.4.7, {1, 1+
√
m

2
,
√
−d,

√
−d+

√
−dm

2
} is an integral basis of L, i.e. OL =

Z · 1⊕+Z · 1+
√
m

2
⊕ Z ·

√
−d⊕ Z ·

√
−d+

√
−dm

2
. Then

e ∈ OL ⇔ e = x+ y(
1 +
√
m

2
) + z

√
−d+ w(

√
−d+

√
−dm

2
) for some x, y, z, w ∈ Z

⇔ e = (
2x+ y

2
+
y

2

√
m) + (

2z + w

2
+
w

2

√
m)
√
−d for some x, y, z, w ∈ Z

⇔ e =
r + s

√
m

2
+
√
−dt+ u

√
m

2
where r ≡ s mod 2 and t ≡ u mod 2.

(ii) Assume that m ≡ 2, 3 mod 4 and −d ≡ 1 mod 4.

By Theorem 2.4.7, {1, 1+
√
−d

2
,
√
m,
√
m+
√
−dm

2
} is an integral basis of L, i.e. OL =

Z · 1⊕+Z · 1+
√
−d

2
⊕ Z ·

√
m⊕ Z ·

√
m+
√
−dm

2
. Then

e ∈ OL ⇔ e = x+ y(
1 +
√
−d

2
) + z

√
m+ w(

√
m+

√
−dm

2
) for some x, y, z, w ∈ Z

⇔ e = (
2x+ y

2
+

2z + w

2

√
m) + (

y

2
+
w

2

√
m)
√
−d for some x, y, z, w ∈ Z

⇔ e =
r + s

√
m

2
+
√
−dt+ u

√
m

2
where r ≡ t mod 2 and s ≡ u mod 2.

Lemma 3.1.2. Let K = Q(
√
m) and k ∈ Z. Let π be a prime integer in OK such

that πOK lies over a prime number p where p - mk. Then there exists α ∈ OK

such that α2 ≡ k mod π if and only if (mk/p) = 1.

Proof. Case 1. m ≡ 2, 3 mod 4: Assume that a + b
√
m ∈ OK such that (a +

b
√
m)2 ≡ k mod P . Then (a − b

√
m)2 ≡ k mod π′ where π′ is the nontriv-

ial conjugate of π, so [(a + b
√
m)2 − k][(a − b

√
m)2 − k] ≡ 0 mod ππ′. Thus

(a2−mb2−k)2−4mkb2 ≡ 0 mod N(π). Since p | N(π), (a2−mb2−k)2−4mkb2 ≡

0 mod p. Hence (mk/p) = (4mkb2/p) = 1.

Convesely, assume that (mk/p) = 1. Then (m/p) = (k/p) = 1 or (m/p) =

(k/p) = −1.
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Case 1.1. (m/p) = (k/p) = 1: Since (k/p) = 1, there exists x ∈ Z such that

x2 ≡ k mod p. Since π | p, x2 ≡ k mod π.

Case 1.2. (m/p) = (k/p) = −1: Since (m/p) = −1, we may let π = p. Since

(m, p) = 1, there exists m′ ∈ Z such that mm′ ≡ 1 mod p. Since (m/p) = −1,

(m′/p) = −1 and so (km′/p) = 1. Thus there exists b ∈ Z such that b2 ≡

km′ mod p. Hence (b
√
m)2 = b2m ≡ k mod π.

Case 2. m ≡ 1 mod 4: Assume that a+b
√
m

2
∈ OK such that (a+b

√
m

2
)2 ≡ k mod π.

Then (a−b
√
m

2
)2 ≡ k mod π′ where π′ is the nontrivial conjugate of π. Thus

[(a+b
√
m

2
)2 − k][(a−b

√
m

2
)2 − k] ≡ 0 mod ππ′. Hence (a

2−mb2

4
− k)2 − mkb2 ≡

0 mod N(π). Since p | N(π), (a
2−mb2

4
− k)2 −mkb2 ≡ 0 mod p and so (mk/p) =

(mkb2/p) = 1.

Convesely, Assume that (mk/p) = 1. Then (m/p) = (k/p) = 1 or (m/p) =

(k/p) = −1.

Case 2.1. (m/p) = (k/p) = 1: Since (k/p) = 1, there exists x ∈ Z such that

x2 ≡ k mod p. Since π | p, x2 ≡ k mod π.

Case 2.2. (m/p) = (k/p) = −1: Since (m/p) = −1, we may let π = p. Since

(m, p) = 1, there exists m′ ∈ Z such that mm′ ≡ 1 mod p. Since (m/p) = −1,

(m′/p) = −1 and so (km′/p) = 1. Thus there exists b ∈ Z such that b2 ≡

km′ mod p. Hence (b
√
m)2 = b2m ≡ k mod π.

3.1.1 Imaginary Quadratic Fields

Let K = Q(
√
m) where m < 0 so that −1 = x2 +dy2 has a solution in OK . Hence

the identity

(x2 + dy2)(z2 + dw2) = (xz − dyw)2 + d(yz + xw)2

implies that prime integers π and −π in Q(
√
m) can or cannot simultaneously be

written in the form x2 + dy2.
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Theorem 3.1.3. Let π be a prime integer in K = Q(
√
m) such that πOK lies

over an odd prime p where p - md in Z.

(1) For m ≡ 1 mod 4 and −d ≡ 2, 3 mod 4, we have

π = x2 + dy2 for some x, y ∈ OK ⇔ (m/p) = (−d/p) = 1 or (m/p) = −1.

(2) For m ≡ 2, 3 mod 4 and −d ≡ 1 mod 4, we have

(2.1) π cannot be written in the form x2 + dy2 where x, y ∈ OK, if (m/p) = 1

and (−d/p) = −1

(2.2) 4π can be written in the form (r+s
√
m)2 +d(t+u

√
m)2 where r, s, t and

u are rational integers. Furthermore, if one of the numbers r, s, t and u is odd,

then P cannot be written in the form x2 + dy2 where x, y ∈ OK, if (m/p) = 1 =

(−d/p) = 1 or (m/p) = −1.

Proof. Let π be a prime integer in K = Q(
√
m) such that πOK lies over a prime

p where p - md in Z. Assume that (m/p) = 1 and (−d/p) = −1. Suppose for

a contradiction that π = x2 + dy2 for some x, y ∈ OK . Then x2 ≡ −dy2 mod π.

Since (y, π) = 1, there exists y′ ∈ OK such that yy′ ≡ 1 mod π and so (xy′)2 ≡

−d mod π. By Lemma 3.1.2, (−dm/p) = 1. This is a contradiction.

Next, suppose that (m/p) = (−d/p) = 1 or (m/p) = −1. By Lemma 2.4.5

and Lemma 2.4.8, πOL splits completely in L, i.e. πOL = p1p2. Since L is a

PID, we may let p1 = ( r+s
√
m

2
+
√
−d t+u

√
m

2
) and p2 = ( r+s

√
m

2
−
√
−d t+u

√
m

2
).

Then πOL = (( r+s
√
m

2
)2 + d( t+u

√
m

2
)2). Since a unit of OL is of the form ±ul,

π = ±ul(( r+s
√
m

2
)2 + d( t+u

√
m

2
)2). Since π, ( r+s

√
m

2
)2 + d( t+u

√
m

2
)2 ∈ OK and u ∈

Q(
√
−md), l must be zero and π = ±( r+s

√
m

2
)2 + d( t+u

√
m

2
)2.

For m ≡ 1 mod 4 and −d ≡ 2, 3 mod 4, r+s
√
m

2
, t+u

√
m

2
∈ OK and so π can be

written in the form x2 + dy2.

For m ≡ 2, 3 mod 4 and −d ≡ 1 mod 4, we have 4π is of the form (r + s
√
m)2 +

d(t+ u
√
m)2.

Next, assume that one of the r, s, t and u is odd. Suppose on the contrary

that π can be written in the form (x + y
√
m)2 + d(z + w

√
m)2. Then ((x +

y
√
m)+

√
−d(z+w

√
m)) = (( r+s

√
m

2
)+
√
−d( t+u

√
m

2
)) which implies that ( r+s

√
m

2
)+

√
−d( t+u

√
m

2
) = ±ul((x+ y

√
m) +

√
−d(z + w

√
m)). This is a contradiction.
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Theorem 3.1.4. Let π be a prime integer in K = Q(
√
−2) such that πOK lies

over a prime p in Z.

(i) If p = 2, then π cannot be written in the form x2 + 7y2 where x, y ∈ OK.

(ii) If p = 7, then π can be written in the form x2 + 7y2 where x, y ∈ OK.

(iii) If (−2/p) = 1 and (−7/p) = −1, then π cannot be written in the form x2+7y2

where x, y ∈ OK.

(iv) If (−2/p) = (−7/p) = 1 or (−2/p) = −1, then 4π can be written in the form

(r+s
√
−2)2 +7(t+u

√
−2)2 where r, s, t and u are rational integers. Furthermore

if one of the numbers r, s, t and u is odd, then P cannot be written in the form

x2 + 7y2 where x, y ∈ OK.

Proof. First, note that −1 = (2
√
−2)2 + 7(1)2.

(i) For p = 2, p is ramified in K and so π = ±
√
−2. Suppose for a contradiction

that ±
√
−2 can be written in the form x2 + 7y2 where x, y ∈ OK . Then ±

√
−2 =

(r+ s
√
−2)2 + 7(t+u

√
−2)2 for some r, s, t, u ∈ Z. Then ±1 = 2(rs+ 7tu), which

is a contradiction. Hence π cannot be written in the form x2 + 7y2.

(ii) For p = 7, p is inert in K and so π = ±7. Since 7 = 02 + 7 · 12, π can be

written in the form x2 + 7y2.

(iii) and (iv) follow immediately from Theorem 3.1.3.

3.1.2 Real Quadratic Fields

Let K = Q(
√
m) where m > 0 so that N(u) = −1 where u is the fundamental

unit of Q(
√
m).

An element r+s
√
m in K is called totally positive if both r+s

√
m and r−s

√
m

are positive. It is clear that any prime integer in K which can be represented in

the form x2 + dy2 is necessarily totally positive, so we restrict our attention to

such primes in the following theorem.

Theorem 3.1.5. Let π be a totally positive prime integer in K = Q(
√
m) such

that πOK lies over an odd prime p where p - md in Z.

(1) For m ≡ 1 mod 4 and −d ≡ 2, 3 mod 4, we have

π = x2 + dy2 for some x, y ∈ OK ⇔ (m/p) = (−d/p) = 1 or (m/p) = −1.
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(2) For m ≡ 2, 3 mod 4 and −d ≡ 1 mod 4, we have

(2.1) If (m/p) = 1 and (−d/p) = −1, then π cannot be written in the form

x2 + dy2 where x, y ∈ OK

(2.2) If (m/p) = 1 = (−d/p) = 1 or (m/p) = −1, then 4π can be written

in the form (r + s
√
m)2 + d(t + u

√
m)2 where r, s, t and u are rational integers.

Furthermore, if one of the numbers r, s, t and u is odd, then π cannot be written

in the form x2 + dy2 where x, y ∈ OK.

Proof. Let π be a prime integer in K = Q(
√
m) such that πOK lies over a prime

p where p - md in Z. Assume that (m/p) = 1 and (−d/p) = −1. Suppose for

a contradiction that π = x2 + dy2 for some x, y ∈ OK . Then x2 ≡ −dy2 mod π.

Since (y, π) = 1, there exists y′ ∈ OK such that yy′ ≡ 1 mod π and so (xy′)2 ≡

−d mod π. By Lemma 3.1.2, (−dm/p) = 1. This is a contradiction.

Suppose that (m/p) = (−d/p) = 1 or (m/p) = −1. By Lemma 2.4.5 and

Lemma 2.4.8, π splits completely in L. Thus πOL = p1p2. Since L is a PID,

we may let p1 = ( r+s
√
m

2
+
√
−d t+u

√
m

2
) and p2 = ( r+s

√
m

2
−
√
−d t+u

√
m

2
). Then

πOL = (( r+s
√
m

2
)2 + d( t+u

√
m

2
)2). Since a unit of OL is of the form ±ul and π is

positive, π = ul(( r+s
√
m

2
)2 + d( t+u

√
m

2
)2). Since π is totally positive, l is even and

π = ( r+s
√
m

2
ul/2)2 + d( t+u

√
m

2
ul/2)2.

For m ≡ 1 mod 4 and −d ≡ 2, 3 mod 4, r+s
√
m

2
ul/2, t+u

√
m

2
ul/2 ∈ OK and so π can

be written in the form x2 + dy2.

For m ≡ 2, 3 mod 4 and −d ≡ 1 mod 4, we have 4π is of the form (r + s
√
m)2 +

d(t+ u
√
m)2.

Next, assume that one of the r, s, t and u is odd. Suppose on the contrary

that π can be written in the form (x + y
√
m)2 + d(z + w

√
m)2. Then ((x +

y
√
m)+

√
−d(z+w

√
m)) = (( r+s

√
m

2
)+
√
−d( t+u

√
m

2
)) which implies that ( r+s

√
m

2
)+

√
−d( t+u

√
m

2
) = ±ul((x+ y

√
m) +

√
−d(z + w

√
m)). This is a contradiction.

Example 3.1.6. Let π be a totally positive prime integer in K = Q(
√

29) such

that πOK lies over a prime p in Z.

(i) If p = 2, then π cannot be written in the form x2 + 2y2 where x, y ∈ OK .

(ii) If p = 29, then π can be written in the form x2 + 2y2 where x, y ∈ OK .
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(iii) If p 6= 2, 29, then π can be written in the form x2 + 2y2 where x, y ∈ OK if

and only if (29/p) = (−2/p) = 1 or (29/p) = −1.

Proof. (i) For p = 2, p is inert in K and so π = (5+
√
29

2
)l2. Since π is totally

positve, l is even. Thus π = x2 + 2y2 by setting x = 0 and y = (5+
√
29

2
)l/2.

(ii) For p = 29, p is ramified in K and so π = (5+
√
29

2
)l
√

29. Suppose for a

contradiction that π = x2 + 2y2 for some x, y ∈ OK . Then (5+
√
29

2
)l
√

29 =

( r+s
√
29

2
)2+2( t+u

√
29

2
)2 where r ≡ s mod 2 and t ≡ u mod 2. Since π is totally posi-

tive, l is odd. Thus (5+
√
29

2
)
√

29 = (R+S
√
29

2
)2+2(T+U

√
29

2
)2 for some R, S, T, U ∈ Z.

Hence R2 + 29S2 + 2T 2 + 58U2 = 58 and so R = S = T = 0 and U = ±1. This is

a contradiction.

(iii) The result follows immediately from Theorem 3.1.5.

Theorem 3.1.7. Let π be a totally positive prime integer in K = Q(
√

2) such

that πOK lies over a prime p in Z.

(i) If p = 2, then π cannot be written in the form x2 + 11y2 where x, y ∈ OK.

(ii) If p = 11, then π can be written in the form x2 + 11y2 where x, y ∈ OK.

(iii) If (2/p) = 1 and (−11/p) = −1, then π cannot be written in the form x2+11y2

where x, y ∈ OK

(iv) If (2/p) = 1 and (−11/p) = 1 or (2/p) = −1, then 4π can be written in

the form (a + b
√

2)2 + 11(c + d
√

2)2 where a, b, c and d are rational integers.

Furthermore, if one of the numbers a, b, c and d is odd, then π cannot be written

in the form x2 + 11y2 where x, y ∈ OK.

Proof. (i) For p = 2, π = (1 +
√

2)l
√

2 where l ∈ Z. Since the coefficient of
√

2 in

π is odd, π cannot be written in the form x2 + 11y2.

(ii) For p = 11, p is inert in K and so π = (1 +
√

2)l11 where l ∈ Z. Since π is

totally positive, l is even. Therefore π can be written in the form x2 + 11y2 by

setting x = 0 and y = (1 +
√

2)l/2.

(iii) Assume that (2/p) = 1 and (−11/p) = −1. Suppose for a contradiction that

π = x2 + 11y2 for some x, y ∈ OK . Then x2 ≡ −11y2 mod π. Since (y, π) = 1,

there exists y′ ∈ OK such that yy′ ≡ 1 mod π and so (xy′)2 ≡ −11 mod π. By

Lemma 3.1.2, (−22/p) = 1. This is a contradiction.
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(iv) Assume that (2/p) = (−11/p) = 1 or (2/p) = −1. Let L = Q(
√

2,
√
−11).

By Lemma 2.4.5 and Lemma 2.4.8, π splits completely in L. Thus πOL = p1p2.

Since Q(
√

2,
√
−11) is a PID, we may let p1 = (A+B

√
2

2
+
√
−11C+D

√
2

2
) and p2 =

(A+B
√
2

2
−
√
−11C+D

√
2

2
). Then πOL = ((A+B

√
2

2
)2 + 11(C+D

√
2

2
)2). Since a unit of

OL is of the form ±(1+
√

2)l, π = ±(1+
√

2)l((A+B
√
2

2
)2 +11(C+D

√
2

2
)2). Since π is

totally positive, l is even and π = (A+B
√
2

2
(1 +

√
2)l/2)2 + 11(C+D

√
2

2
(1 +

√
2)l/2)2.

Hence 4π is of the form (a+ b
√

2)2 + 11(c+ d
√

2)2.

Next, assume that one of the a, b, c and d is odd. Suppose on the contrary

that π can be written in the form (x + y
√

2)2 + 11(z + w
√

2)2. Then ((x +

y
√

2)+
√
−11(z+w

√
2)) = ((a+b

√
2

2
)+
√
−11( c+d

√
2

2
)) which implies that (a+b

√
2

2
)+

√
−11( c+d

√
2

2
) = ±(1+

√
2)l((x+y

√
2)+
√
−11(z+w

√
2)). This is a contradiction.
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3.2 General Case

In this section we will solve the same problem for more values of n and d without

condition on class numbers by using Hilbert class fields.

The Hilbert class field M of a number field L is defined to be the maximal

unramified abelian extension of L. The following properties of the Hilbert class

field will be used. First, for any prime ideal p of L,

p splits completely in M ⇐⇒ p is a principal ideal (3.1)

and secondly the Galois group of M over L is isomophic to the ideal class group

of L, i.e.,

Gal(M/L) ' C(OL).

We use the first property in the main theorem and the second property to compute

the Hilbert class field.

Throughout this section, we let K = Q(
√
m) and L = Q(

√
m,
√
−d) where m

and d are positive squarefree integers such that m ≡ 1 mod 4 and N(u0) = −1

where u0 is a fundamental unit of Q(
√
m), −d ≡ 2, 3 mod 4 and (m, d) = 1. First,

we investigate the ring of integers OL and the unit group O×L of L.

Lemma 3.2.1. OL = OK [
√
−d].

Proof. Sincem ≡ 1 mod 4,−d ≡ 2, 3 mod 4 and (m, d) = 1, {1, 1+
√
m

2
,
√
−d,

√
−d+

√
−dm

2
}

is an integral basis of L, i.e. OL = Z · 1 ⊕ Z · 1+
√
m

2
⊕ Z ·

√
−d ⊕ Z ·

√
−d+

√
−dm

2
.

Then

e ∈ OL ⇔ e = x+ y(
1 +
√
m

2
) + z

√
−d+ w(

√
−d+

√
−dm

2
) for some x, y, z, w ∈ Z

⇔ e = (
2x+ y

2
+
y

2

√
m) + (

2z + w

2
+
w

2

√
m)
√
−d for some x, y, z, w ∈ Z

⇔ e = a+ b
√
−d for some a, b ∈ OK .

Therefore OL = OK [
√
−d].
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Lemma 3.2.2. Let u0 be the fundamental unit of K. Then

O×L =

 {±ul0,±iul0 | l ∈ Z} , if d = 1

{±ul0 | l ∈ Z} , if d > 1
.

Proof. Let u ∈ O×L . Then u = (x+y
√
m

2
) +
√
−d( z+w

√
m

2
) where x ≡ y mod 2

and z ≡ w mod 2. Since u is a unit of OL, NL/K(u) is a unit of OK and so

(x+y
√
m

2
)2 + d( z+w

√
m

2
)2 = ul00 for some l0 ∈ Z. Since the term in the left hand side

is totally positive, ul00 is also totally positive and so l0 is even. Thus l0 = 2l for

some l ∈ Z. Let X, Y, Z and W be integers such that X+Y
√
m

2
= x+y

√
m

2
u−l0 and

Z+W
√
m

2
= z+w

√
m

2
u−l0 . Then (X+Y

√
m

2
)2 + d(Z+W

√
m

2
)2 = 1 and hence X2 +mY 2 +

dZ2 + dmW 2 = 4. Since m ≥ 5, Y = W = 0. If d = 1, then X = ±2, Z = 0 or

X = 0, Z = ±2 and so u = ±ul0 or u = ±iul0. If d > 1, then X = ±2, Z = 0 and

so u = ±ul0.

The following lemma is an immediate consequence of Theorem 2.4.5 and The-

orem 2.4.8.

Lemma 3.2.3. Let E = Q(
√
m) and F = Q(

√
m,
√
n) where m and n are distinct

squarefree integers and k = mn
d2

where d = (m,n). Let P be a prime in E such

that POE lies over an odd prime p in Z where p - mn. Then

(i) P is unramified in F , and

(ii) P splits completely in F ⇐⇒ (n/p) = (m/p) = 1 or (m/p) = −1.

Proposition 3.2.4. Let E ⊂ F be a Galois extension, where F = E(α) for some

α ∈ OF . Let f(x) ∈ OE[x] be the monic minimal polynomial of α over E. If p is

a prime in OE and f(x) is separable modulo p, then

p splits completely in F ⇐⇒ f(x) ≡ 0 mod p has a solution in OE.

These are the main results of this section

Lemma 3.2.5. Let M be the Hilbert class field of L and let τ denote the complex

conjugation. Then τ(M) = M and consequently M is Galois over K.
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Proof. Since M is an unramified abelian extension of L, τ(M) is an unramified

abelian extension of τ(L) = L. Since M is the maximal such extension, we

have τ(M) ⊂ M and then τ(M) = M since they have the same degree over L.

Then τ ∈ Gal(M/K). To show M is Galois over K, it suffices to show that

Fix(Gal(M/K)) ⊂ K. Let u ∈ Fix(Gal(M/K)). Then u ∈ M and σ(u) = u for

all σ ∈ Gal(M/K). Since K ⊂ L and M is Galois over L, Fix(Gal(M/K)) ⊂

Fix(Gal(M/L)) = L. Therefore u ∈ L. Let u = x+ y
√
−d where x, y ∈ K. Since

τ(u) = u, y = 0. Hence u ∈ K.

Theorem 3.2.6. Let M be the Hilbert class field of L. If π is a totally positive

prime in OK such that πOK lies over an odd prime p where p - nd, then

π = x2 + dy2 for some x, y ∈ OK ⇐⇒ π splits completely in M.

Proof. Let π be a totally positive prime in OK such that πOK lies over an odd

prime p where p - nd. By Lemma 3.2.3, π is unramified in L. Next, claim that

π = x2 + dy2 ⇔ πOL = pp̄, p 6= p̄ and p is principal in OL

⇔ πOL = pp̄, p 6= p̄ and p splits completely in M

⇔ π splits completely in M.

To prove the first equivalence, suppose that π = x2 + dy2 = (x +
√
−dy) · (x −

√
−dy). Setting p = (x+

√
−dy)OL, then p̄ = (x−

√
−dy)OL and πOL = pp̄ must

be the prime decomposition of πOL in OL. Note that p 6= p̄ since π is unramified

in L. Conversely, suppose that πOL = pp̄, where p 6= p̄ and p is principal. We

can write p = (x0 +
√
−dy0)OL. This implies that p̄ = (x0 −

√
−dy0)OL and

πOL = (x20 + dy20)OL, by Lemma 3.2.2, it follows that π = ul0(x
2
0 + dy20). Since

π and x20 + dy20 are totally positive, ul0 is totally positive. Thus ūl0 > 0. Since

N(u0) = −1, ū0 < 0 and so l is even. Therefore π = x2 + dy2 where x = x0u
l/2
0

and y = y0u
l/2
0 .

The second equivalence follows from (3.1) and the third one follows immedi-

ately from Lemma 3.2.5 and the fact that if K ⊂ L ⊂ M , where M and L are

Galois over K, then a prime π of OK splits completely in M if and only if it splits

completely in L and some prime of OL containing π splits completely in M .



23

The next step is to give a more elementary way of saying that π splits com-

pletely in M . We have the following criterion:

Theorem 3.2.7. Let M be the Hilbert class field of L. Then

(i) there is a real algebraic integer α such that M = L(α), and

(ii) if f(x) ∈ OK [x] is its monic minimal polynomial and π is as in Theorem 3.2.6

which does not divide the discriminant of f(x), then

π splits completely in M ⇐⇒

 (m/p) = (−d/p) = 1 or (m/p) = −1 and

f(x) ≡ 0 mod π has a solution in OK

 .

Proof. (i) Since K ⊂M ∩R is finite separable extension, M ∩R = K(α) for some

α ∈ OM ∩ R. Then [M : K(α)] = [M : M ∩ R] = [MR : R] = [C : R] = 2. Since

K(α) ⊂ L(α) ⊂ M , L(α) = K(α) or M = L(α). Since α is real and K is a real

quadratic field, L(α) 6= K(α). Therefore M = L(α).

(ii) Let f(x) ∈ OK [x] be the monic minimal polynomial of α over K. Since

[L(α) : K(α)] = [L : K] = 2, [L(α) : L] = [K(α) : K]. Thus f(x) is also the monic

mimimal polynomial of α over L. Let π be a prime not dividing the discriminant

of f(x). This tells us that f(x) is separable modulo π. By Lemma 3.2.3 we have

πOL = pp̄, p 6= p̄⇐⇒ (m/p) = (−d/p) = 1 or (m/p) = −1.

We may assume that π splits completely in L, so that OK/πOK ' OL/p. Since

f(x) is separable over OK/πOK , it is separable over OL/p, and then Proposition

3.2.4 shows that

p splits completely in M ⇐⇒ f(x) ≡ 0 mod p is solvable in OL

⇐⇒ f(x) ≡ 0 mod π is solvable in OK .

The theorem now follows from the last equivalence in the proof of Theorem 3.2.6.

In order to use Theorem 3.2.6, we need to compute the Hilbert class field M

of L. We know from Theorem 2.6.8 that

[M : L] = |Gal(M/L)| = |C(OL)| = hL.
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Thus the degree of M over L is the class number of L. Cohn [5] gives the formula

to compute the class number of a biquadratic field. Thus we will use these facts

to find the Hilbert class field in the following theorems.

Theorem 3.2.8. Let π be a totally positive prime in K = Q(
√

5) such that πOK

lies over a prime p in Z.

(i) If p = 2, then π can be written in the form x2 + 2y2 where x, y ∈ OK.

(ii) If p = 5, then π cannot be written in the form x2 + 2y2 where x, y ∈ OK.

(iii) If p 6= 2, 5, then π can be written in the form x2 + 2y2 where x, y ∈ OK if

and only if (5/p) = (−2/p) = 1 or (5/p) = −1.

Proof. (i) For p = 2, p is inert in K and so π = (1+
√
5

2
)l2 where l ∈ Z. Since π is

totally positive, l is even. Thus π can be written in the form x2 + 2y2 by setting

x = 0 and y = (1+
√
5

2
)l/2.

(ii) For p = 5, p is ramified in K and so π = (1+
√
5

2
)l
√

5. Suppose for a

contradiction that π = x2 + 2y2 for some x, y ∈ OK . Then (1+
√
5

2
)l
√

5 =

(a+b
√
5

2
)2 + 2( c+d

√
5

2
)2 where a ≡ b mod 2 and c ≡ d mod 2. Since π is totally posi-

tive, l is odd. Thus (1+
√
5

2
)
√

5 = (A+B
√
5

2
)2 + 2(C+D

√
5

2
)2 for some A,B,C,D ∈ Z.

Hence A2 + 5B2 + 2C2 + 10D2 = 10 and so A = B = C = 0 and D = ±1. This is

a contradiction.

(iii) Let p 6= 2, 5. Since the class number of L = Q(
√

5,
√
−2) is 1. Then the

Hilbert class field of L is the field L itself. By Theorem 3.2.6 and Theorem 3.2.7,

we have π = x2 + 2y2 for some x, y ∈ OK if and only if (5/p) = (−2/p) = 1 or

(5/p) = −1.

Theorem 3.2.9. Let π be a totally positive prime in K = Q(
√

17) such that πOK

lies over a prime p in Z.

(i) If p = 2, then π cannot be written in the form x2 + y2 where x, y ∈ OK.

(ii) If p = 17, then π can be written in the form x2 + y2 where x, y ∈ OK.

(iii) If p 6= 2, 17, then π can be written in the form x2 + y2 where x, y ∈ OK if

and only if (17/p) = (−1/p) = 1 or (17/p) = −1 and X2 ≡ 1+
√
17

2
mod π has a

solution in OK.



25

Proof. (i) For p = 2, p splits completely in K and so π = (4+
√

17)l(5±
√
17

2
) where

l ∈ Z. Suppose for a contradiction that π = x2 + y2 for some x, y ∈ OK . Then

π = (a+b
√
17

2
)2 + ( c+d

√
17

2
)2 where a ≡ b mod 2 and c ≡ d mod 2. Since π is totally

positive, l is even and so 5±
√
17

2
= (A+B

√
17

2
)2 +(C+D

√
17

2
)2 for some A,B,C,D ∈ Z.

Hence A2 + 17B2 + C2 + 17D2 = 10 and so B = D = 0. This is a contradiction.

(ii) For p = 17, p is ramified in K and so π = (4 +
√

17)l
√

17 where l ∈ Z. Since

π is totally positive, l is odd. Then

π =
(

(4 +
√

17)(l−1)/2(
3 +
√

17

2
)
)2

+
(

(4 +
√

17)(l−1)/2(
5 +
√

17

2
)
)2
.

(iii) Let p 6= 2, 17. We know that the class number of L = Q(
√

17,
√
−1) is 2

and the Hilbert class field of Q(
√
−17) is Q(

√
−17,

√
1+
√
17

2
) (see [6] p. 120).

Since Q(
√
−17) ⊂ L ⊂ L(1+

√
17

2
) = Q(

√
−17,

√
1+
√
17

2
), L(

√
1+
√
17

2
) is also a

Hilbert class field of L. Note that the minimal polynomial of
√

1+
√
17

2
over K is

f(x) = X2 − 1+
√
17

2
. By Theorem 3.2.6 and Theorem 3.2.7, we have π = x2 + 2y2

if and only if (17/p) = (−1/p) = 1 or (17/p) = −1 and X2 ≡ 1+
√
17

2
mod π has a

solution in OK .



CHAPTER IV

THE NUMBERS OF REPRESENTATIONS OF

INTEGERS OF THE FORM x2 + dy2 IN NUMBER

FIELDS

4.1 Preliminaries

There are many papers [6], [14], [15] which give the criteria to determine whether

an algebraic integer can be represented in the form x2+dy2 where x, y are algebraic

integers and d is a positive rational integer. Another interesting problem about

algebraic integers of the form x2 + dy2 where x, y are algebraic integers and d is

positive rational integer is to study the number of these representations. T. Nagell

[16] study the problem of the number of the representation of an integer which

can be represented as the sums of two squares. We will generalize the result of T.

Nagell to the representations of an algebraic integer in a number field of the form

x2 + dy2 where x, y are algebraic integers and d is a positive rational integer.

Let ω be an integer in a number field K and d a positive rational integer. We

say that ω has a representation of the form x2+dy2 if there are integers α and β in

K such that ω = α2 + dβ2. The representation ω = x2 + y2 with x = ±α, y = ±β

and x = ±β, y = ±α and the representation ω = x2 + dy2 for d > 1 with x = ±α

and y = ±β are considered to be one and the same. The relation 1 = 12 + d · 02

is called the trivial representation of the number 1.

Let K be a number field of degree n = r+ 2s over Q where r is the number of

real embeddings of K and s is the number of nonconjugate complex embeddings

of K. Then O×K ∼=WK×V whereWK is the cyclic group of even order of all roots

of unity in K and V is a free abelian group of rank t = r + s − 1, i.e., there are

units u1, . . . , ut such that for all u ∈ O×K , u can be written uniquely in the form
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u = wua11 , . . . , u
at
t where ai ∈ Z and w ∈ WK .

4.2 The Numbers of Representations of Integers of the

Form x2 + dy2 in Number Fields

Theorem 4.2.1. Let K be a number field. If 1 has more representations of the

form x2 +dy2 than the trivial representation, then 1 has infinitely many represen-

tations.

Proof. Assume that

1 = γ2 + dδ2

where γ and δ are integers in K such that γ 6= 1 and δ 6= 0.

For positive integer n, we define

γn + δn
√
−d = (γ + δ

√
−d)n,

where

γn = γn −

 n

2

 γn−2δ2d+

 n

4

 γn−4δ4d2 −+ . . . (4.1)

and

δn =

 n

1

 γn−1δ −

 n

3

 γn−3δ3d+− . . . . (4.2)

Then

γn − δn
√
−d = (γ − δ

√
−d)n

and

(γn + δn
√
−d)(γn − δn

√
−d) = (γ + δ

√
−d)n(γ − δ

√
−d)n = (γ2 + dδ2)n.

Therefore

γ2n + dδ2n = 1.

Thus the Diophantine equation

x2 + dy2 = 1 (4.3)
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has the integral solutions

x = γn, y = δn.

Next, we will prove that these solutions are all different.

Suppose for a contradiction that there are m,n ∈ N such that m 6= n and

γm = γn, δm = δn.

Then

(γ + δ
√
−d)m = (γ + δ

√
−d)n,

and so γ + δ
√
−d is a root of unity. Suppose that

γ + δ
√
−d = ζ

is a primitive Nth root of unity. Since

γ − δ
√
−d = ζ−1,

we get

γ =
1

2
(ζ + ζ−1), δ =

1

2
√
−d

(ζ − ζ−1).

Thus
1

2
(ζ2 − 1) =

√
−dζδ

is an algebraic integer.

If N is a power of 2 and N ≥ 8, then the number

1

2
(ζN/4 − 1) =

1

2
(±i− 1)

must also be an algebraic integer. This is a contradiction.

If N is divisible by the odd prime p, then the number

1

2
(ζ2N/p − 1)

must also be an algebraic integer but 1
2
(ζ2N/p − 1) is the root of the irreducible

polynomial

1

2x
[(2x+ 1)p − 1] = 2p−1xp−1 + . . .+ p(p− 1)x+ p
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which has integral coefficients. This is a contradiction.

Finally, if N = 1, 2, 4, then γ = 0 or δ is not algebraic integer. This is a contra-

diction.

Theorem 4.2.2. Let K be a number field.

(i) Let π be a prime or a unit in K such that π has a representation of the form

x2 + dy2. If 1 has only trivial representation, then π has exactly one representa-

tion. Otherwise π has infinitely many representations.

(ii) Let ω be an integer in K such that ω has a representation of the form x2+dy2.

If 1 has only trivial representation, then ω has a finite number of the representa-

tions. Otherwise, ω has infinitely many representations.

Proof. (i) Assume that 1 has only trivial representation Let π be a prime in K

such that π has two representations of the form x2 + dy2,

π = α2
1 + dβ2

1

and

π = α2
2 + dβ2

2

where α1, α2, β1, β2 are integers in K. Then

π(β2
2 − β2

1) = α2
1β

2
2 − α2

2β
2
1 .

Since π is a prime, either α1β2 − α2β1 or α1β2 + α2β1 must be divisible by π.

Without loss of generality, we may assume that

α1β2 ≡ α2β1 mod π.

Multiplying together the two representations of π, we get

π2 = (α1α2 + dβ1β2)
2 + d(α1β2 − α2β1)

2.

Since α1β2 − α2β1 is divisible by π, so is the number α1α2 + dβ1β2. We put

α1α2 + dβ1β2 = πγ and α1β2 − α2β1 = πδ,
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where γ, δ are integers in K, we get

1 = γ2 + dδ2.

Since 1 has only trivial representation, γ = ±1 and δ = 0. Therefore

α1α2 + dβ1β2 = ±π and α1β2 − α2β1 = 0.

Then

α2 =
β2
β1
α1 and

β2
β1
α2
1 + dβ1β2 = ±π,

and so
β2
β1
π =

β2
β1

(α2
1 + dβ2

1) =
β2
β1
α2
1 + dβ1β2 = ±π.

Hence β2 = ±β1 and α2 = ±α1 and so π has exactly one representation.

Suppose next that the equation (4.3) has an infinitely of solutions x = γn, y = δn

given by (4.1) and (4.2). Let π be a prime in K such that

π = α2 + dβ2

where α and β are integers in K. For positive integer n, define

αn + βn
√
−d = (γn + δn

√
−d)(α + β

√
−d)

where

αn = αγn − dβδn and βn = αδn + βγn.

Thus

αn − βn
√
−d = (γn − δn

√
−d)(α− β

√
−d)

and

(αn + βn
√
−d)(αn − βn

√
−d) = (γ2 + dδ2)(α2 + dβ2) = π.

Hence

π = α2
n + dβ2

n.

We will show that these are all different representations of π.

Suppose for a contradiction that there are m,n ∈ N such that m 6= n and

αm = αn, βm = βn.
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Then we get

γm = γn, δm = δn.

But in the proof of Theorem 4.2.1, γm = γn, δm = δn. where m 6= n leads to a

contradiction. Therefore π has infinitely many representations.

(ii) Assume that 1 has only trivial representation. Let ω be an integer in K.

Suppose for a contradiction that ω has infinitely many representations, i.e.,

ω = α2
n + dβ2

n, n ∈ N

where αn and βn are integers in K and for m 6= n, αn 6= ±αm and βn 6= ±βm.

Since OK/ωOK is finite, there are m,n ∈ N such that m 6= n and

αm ≡ αn mod ω and βm ≡ βn mod ω. (4.4)

Multiplying the two represeentations

ω = α2
m + dβ2

m and ω = α2
n + dβ2

n,

we get

ω2 = (αmαn + dβmβn)2 + d(αmβn − αnβm)2.

It follows from (4.4) that the two numbers

αmαn + dβmβn and αmβn − αnβm

are divisible by ω. Hence we may put

αmαn + dβmβn = ωγ and αmβn − αnβm = ωδ

where γ and δ are integers in K. Then

1 = γ2 + dδ2.

Since 1 has only trivial representation, γ = ±1 and δ = 0. It follows that

αmαn + dβmβn = ±ω and αmβn − αnβm = 0.

Then

αn =
βn
βm

αm and
βn
βm

α2
m + dβmβn = ±ω,
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and so
βn
βm

ω =
βn
βm

(α2
m + dβ2

m) =
βn
βm

α2
m + dβnβm = ±ω.

Hence βn = ±βm and αn = ±αm. This is a contradiction and so the number of

representations must be finite.

Theorem 4.2.3. Let K be a number field and d a positive rational integer. The

following statements are equivalent.

(i) K = Q(
√
−d) or K is totally real.

(ii) 1 has only trivial representation in K.

Proof. Let K be a number field of degree n over Q, r the number of real em-

beddings of K, s the number of nonconjugate complex embeddings of K and

t = r + s− 1 the rank of the unit group of K. Assume that K = Q(
√
−d) or K

is totally real.

Case 1 : K = Q(
√
−d): Let α and β be integers in K such that

α2 + dβ2 = 1.

Then

(α + β
√
−d)(α− β

√
−d) = 1.

Thus α + β
√
−d and α − β

√
−d are units in K. For d 6= 1, 3, the units in K are

±1 so we have the following system

α + β
√
−d = 1 and α− β

√
−d = 1

or

α + β
√
−d = −1 and α− β

√
−d = −1

For d = 1, 3, we have more cases to figure out. Nevertheless, in either cases we

have α = ±1 and β = 0. Hence 1 has only trivial representation.

Case 2 : K is totally real: Let α and β be integers in K such that

α2 + dβ2 = 1.

Then the conjugate equations

1 = (σk(α))2 + d(σk(β))2
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where k = 1, . . . , n also hold. Since the conjugates are all real, we get

|σk(β)| ≤ 1√
d
< 1

for k = 1, . . . , n and d > 1. Thus |N(β)| = |σ1(β)| . . . |σn(β)| < 1. Therefore

N(β) = 0 and so β = 0 and α = ±1. Hence 1 has only trivial representation.

For the converse, assume that K 6= Q(
√
−d) and K is not totally real. We will

prove that 1 has a nontrivial representation.

Case 1 :
√
−d ∈ K. Since K 6= Q(

√
−d), n ≥ 4 and so t ≥ 1. Thus there is a unit

ε in K such that ε is not a root of unity. Then the equation

1 = α2 + dβ2

is satisfied by the following numbers:

α =
1

2
(εm + ε−m) and β =

1

2
√
−d

(εm − ε−m),

where m is the order of the group (OK/2
√
−dOK)×. Note that β is an integer in

K because

εm ≡ 1 mod 2
√
−d and ε−m ≡ 1 mod 2

√
−d

and α is an integer in K because α =
√
−dβ + ε−m. Since ε is not a root of unity,

β 6= 0. Hence 1 has a nontrivial representation.

Case 2 :
√
−d /∈ K. Let L = K(

√
−d). Then the field L has degree 2n over

Q. Let R be the number of real embeddings of L, S the number of nonconjugate

complex embeddings of L and T = R + S − 1 the rank of the unit group of L.

Since
√
−d /∈ R, R = 0 and S = r + 2s and so

T = R + S − 1 = r + 2s− 1 = t+ s.

Since K is not totally real, s ≥ 1 and so

T > t.

Let us consider the ring consisting of the numbers in L of the form λ + ρ
√
−d,

where λ and ρ are integers in K. The unit group G of this ring has the rank
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T . The subgroup G1 consisting of the squares of the units in G clearly has the

same rank T . The units in G1 cannot all be equal to the product of a unit in

K and a root of unity since t < T . Hence we conclude that there exists a unit

E = a+ b
√
−d in the ring, a and b integers in K such that a 6= 1 and b 6= 0, and

such that E2 is not equal to the product of a unit in K and a root of unity. Then

the number E1 = a − b
√
−d is also a unit in L. Hence a2 + db2 is a unit in K.

Then the equation

1 = α2 + dβ2

is satisfied by the following numbers:

α =
E2m + E2m

1

2(a2 + db2)m
and β =

E2m − E2m
1

2
√
−d(a2 + db2)m

where m ∈ N. Since a2 + db2 is a unit in K, α and β are integers in K. If β = 0,

then E2m = E2m
1 . Hence EE−11 must be a root of unity and

E2 = (a2 + db2)(EE−11 )

is a product of units and a root of unity. This is a contradiction. Thus β 6= 0 and

so 1 has a nontrivial representation.
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