CHAPTER I

PRELIMINARIES

In this chapter we shall give some notations, definitions and theorems used in this thesis. Our notations are

2 is the set of all integers,

2 is the set of all positive integers,

Q+ is the set of all positive rational numbers,

R is the set of all positive real numbers,

 \mathbf{Z}_{n} , $n \in \mathbf{Z}^{+}$, is the set of congruence classes modulo n in \mathbf{Z}_{n}

 $\mathbf{Z}_{0}^{+} = \mathbf{Z}^{+}\mathbf{U} \{0\}.$

Definition 1.1. A triple (S,+,.) is said to be a <u>right seminear-ring</u> iff S is a set and + and . are binary operations on S such that

- (a) (S,+) is a semigroup,
- (b) (S,.) is a semigroup,
- (c) \forall x, y, z \in S (x+y)z = xz+yz. (right distributive law)

 A <u>left seminear-ring</u> is similarly defined. If (S,+,.) is both a left and a right seminear-ring, then it is a <u>semiring</u>.

Throughout this thesis we shall only study right seminear-ring All definitions and theorems stated for right seminear-rings have a dual statement and proof for left seminear-rings. So from now on the word "seminear-ring" will mean a right seminear-ring. The reason that we choose right seminear-rings is that seminear-rings of maps (the most important examples) are all right distributive (see Example 1.4)

Example 1.2. \mathbf{z} , \mathbf{z}^{\dagger} and \mathbf{z}_{0}^{\dagger} with the usual addition and multiplication are seminear-rings.

Example 1.3. Let S be a nonempty set. Define + and . on S by x + y = y and $x \cdot y = x$ for all x, $y \in S$. Then $(S, +, \cdot)$ is a seminear-ring.

Example 1.4. Let (S,+) be a semigroup (not necessarily commutative). Let $M(S) \in \{f: S \to S \mid f \text{ is a map}\}$. Define + and . on M(S) by (f+g)(x) = f(x) + g(x) and (fg)(x) = f(g(x)) for all $x \in S$. Then $(M(S),+,\cdot)$ is a seminear-ring which is not left distributive if $\|S\| > 1$.

<u>Definition 1.5.</u> A seminear-ring (N,+,.) is said to be a <u>near-ring</u> iff (N,+) is a group. We shall always denote the identity of (N,+) by 0 and the additive inverse of $x \in N$ by -x.

Example 1.6. Let (N,+) be a group (not necessarily commutative) with identity 0. Then the following sets with + and . defined in Example 1.4 are near-rings:

- (1) $M(N) = \{f: N \rightarrow N \mid f \text{ is a map}\}.$
- (2) $M_0(N) = \{ f: N \to N \mid f(0) = 0 \}.$
- (3) $M_c(N) = \{ f: N \rightarrow N \mid f \text{ is constant} \}.$

Lemma 1.7. Let N be a near-ring. Then 0.x = 0 for all $x \in N$. Also, (-x).y = -(x.y) for all x, $y \in N$.

<u>Proof.</u> Let N be a near-ring. Let $x \in \mathbb{N}$. Then $0 \cdot x = (0 + 0) \cdot x = 0 \cdot x + 0 \cdot x$, so $0 \cdot x = 0$ since a group has only one idempotent. Let x, $y \in \mathbb{N}$. Then $x \cdot y + (-x) \cdot y = (x + (-x)) \cdot y = 0 \cdot y$ = 0, so $(-x) \cdot y = -(x \cdot y) \cdot y$

Remark. In a near-ring N it is possible that $x.0 \neq 0$ and $x.(-y) \neq -(x.y)$. See Example 1.6.

<u>Definition 1.8.</u> A near-ring $(N,+,\cdot)$ is said to be a <u>near-field</u> iff $(N \setminus \{0\}, \cdot)$ is a group.

Example 1.9. Let $M_c(\mathbf{Z}_2) = \{f \colon \mathbf{Z}_2 \not = \mathbf{Z}_2 \mid f \text{ is constant}\}$. Thus $M_c(\mathbf{Z}_2) = \{f_0, f_1\}$ where $f_0(\mathbf{x}) = \overline{0}$ and $f_1(\mathbf{x}) = \overline{1}$ for all $\mathbf{x} \in \mathbf{Z}_2$. Let + and \cdot be defined as in Example 1.4. Clearly, $(M_c(\mathbf{Z}_2), +)$ is a group, $(M_c(\mathbf{Z}_2), \cdot)$ is a semigroup, $(M_c(\mathbf{Z}_2), \cdot)$ is a group and the right distributive law holds in $M_c(\mathbf{Z}_2)$, Therefore $(M_c(\mathbf{Z}_2), +, \cdot)$ is a near-field.

<u>Proposition 1.10.</u> Let N be a near-field. If $\| N \| > 2$, then x.0 = 0.x = 0 for all $x \in \mathbb{N}$.

<u>Proof.</u> Let N be a near-field and $\|N\| > 2$. Suppose there exists x in N such that $x.0 \neq 0$. Since $(N \setminus \{0\}, .)$ is a group, there is a y in N such that $(x.0) \cdot y = y(x.0) = 1$, the identity of $(N \setminus \{0\}, .)$. By Lemma 1.7, $0 \cdot y = 0$. Thus $x.0 = x.(0 \cdot y) = (x.0) \cdot y = 1$, so x.0 = 1. Let $z \in N \setminus \{0, 1\}$. Then $z = 1 \cdot z = (x.0) \cdot z = x.(0 \cdot z) = x.0 = 1$, so z = 1, a contradiction. Therefore x.0 = 0 for all $x \in N$. By Lemma 1.7, $x.0 = 0 \cdot x = 0$ for all $x \in N$.

#

Remark. From this proposition we see that if a near-field N is not isomorphic to $M_c(\mathbb{Z}_2)$ then $x \cdot 0 = 0 \cdot x = 0$ for all $x \in \mathbb{N}$.

Definition 1.11. Let G be a group and G_1 , G_2 subgroups of G. Then G is said to be a Zappa-Szép product of G_1 and G_2 iff $G = G_1G_2$ and $G_1 \cap G_2 = \{1\}$ where 1 is the identity of G. If G is a Zappa-Szép product of G_1 and G_2 we shall denote this by $G = G_1 \cdot G_2 \cdot G_2 \cdot G_3 \cdot G_4 \cdot G_4 \cdot G_5 \cdot G_6 \cdot$

Example 1.12. (1) Let G be a group with $G = G_1^x G_2^x$ for some subgroups G_1 , G_2 of G. Then $G = G_1 * G_2^x$. Note that in this case G_1 , $G_2 \in G_2^x$.

(2) Let S_3 be the symmetric group on three elements. Thus $S_3 = \{(1), (12), (13), (23), (123), (132)\}$. Let $A = \{(1), (12)\}$. and $A_3 = \{(1), (123), (132)\}$. Then A and A_3 are subgroups of S_3 . Since $(13) = (132)(12) \in A_3A$ and $(23) = (123)(12) \in A_3A$, $S_3 = A_3A$. Therefore $S_3 = A_3 * A$. Since $(13)(12)(13) = (23) \not\in A_3$, $A \not\in S_3$. Thus $S_3 \not= A_3 * A$. Hence we have an example of a Zappa-Szép product which is not a direct product.

<u>Lemma 1.13.</u> Let (G, \cdot) be a group such that $G = G_1 * G_2$ for some subgroups G_1, G_2 of G. Then

- (1) $G = G_2 * G_1$
- (2) For all $g \in G$ there exist unique g_1 , $g_1 \in G_1$, g_2 , $g_2 \in G_2$ such that $g = g_1g_2 = g_2g_1$.
- (3) For all $g_1 \in G_1$, $g_2 \in G_2$ there exist unique $\bar{x} \in G_1$, $\bar{y} \in G_2$ such that $\bar{x}g_2 = \bar{y}g_1$.
- Proof. (1) We must show that $G = G_2G_1$. To show this, let $g \in G$. Since $G = G_1G_2$, $g^{-1} = g_1g_2$ for some $g_1 \in G_1$, $g_2 \in G_2$. Thus $g = g_2 = g_1$ which is in G_2G_1 . Hence $G = G_2G_1$. Therefore $G = G_2 * G_1$.
- (2) Let $g \in G$. Since $G = G_1 * G_2 = G_2 * G_1$, there are g_1 , $\overline{g}_1 \in G_1$, g_2 , $\overline{g}_2 \in G_2$ such that $g = g_1 g_2 = \overline{g}_2 \overline{g}_1$. Suppose h_1 , $\overline{h}_1 \in G_1$, h_2 , $\overline{h}_2 \in G_2$ are such that $g = h_1 h_2 = \overline{h}_2 \overline{h}_1$. Thus $g_1 g_2 = h_1 h_2$ and $\overline{g}_2 \overline{g}_1 = \overline{h}_2 \overline{h}_1$. So $h_1 g_1 = h_2 g_2^{-1} \in G_1 \cap G_2 = \{1\}$ and $\overline{g}_1 \overline{h}_1^{-1} = \overline{g}_2^{-1} \overline{h}_2 \in G_1 \cap G_2 = \{1\}$. Therefore $h_1 = g_1$, $h_1 = g_1$, $h_2 = g_2$ and $h_2 = g_2$.

(3) Let $g_1 \in G_1$ and $g_2 \in G_2$. Since $G = G_2 * G_1$, there are unique $x_1 \in G_1$, $x_2 \in G_2$ such that $g_1 g_2^{-1} = x_2 x_1$. Thus $x_2^{-1} g_1 = x_1 g_2$. Suppose $y_1 \in G_1$, $y_2 \in G_2$ are such that $y_2 g_1 = y_1 g_2$. Thus $g_1 g_2^{-1} = y_2^{-1} y_1$, so $y_1 = x_1$ and $y_2 = x_2^{-1}$. Put $x_1 = x_1$ and $y_2 = x_2^{-1}$.

<u>Definition 1.14.</u> Let S be a semigroup. S is said to be a <u>band</u> iff $x^2 = x$ for all $x \in S$. S is said to be a <u>rectangular band</u> iff xyx = x for all x, $y \in S$.

Theorem 1.15. Every finite semigroup has an idempotent.

<u>Proof.</u> Let S be a finite semigroup. Let a \in S. Thus there are m, $n \in \mathbb{Z}^+$ such that m < n and $a^m = a^n$. Let

Thus there is $r \in \mathbb{Z}^+$ such that $r \in \mathbb{$

Let $n \in \mathbf{Z}^+$.

Case $n \leqslant r$. Then $a^n \in \{a, a^2, \ldots, a^r, a^{r+1}, \ldots, a^{r+m-1}\}$.

Case $n \geqslant r$. Thus there are 1, $i \in \mathbb{Z}_0^+$ such that n-r = 1m+i, $0 \leqslant i \leqslant m$.

Then $a^n = a^r a^{n-r} = a^r a^{1m+i} = a^{1m+r+i} = a^{r+i} \in \{a, a^2, \ldots, a^r, \ldots, a^{r+m-1}\}$.

Hence $\langle a \rangle = \{a, a^2, \ldots, a^r, a^{r+1}, \ldots, a^{r+m-1}\}$ and the order of a is k-1 = m+r-1.

Let $K_a = \{a^r, a^{r+1}, \ldots, a^{r+m-1}\}$. Claim that K_a is a cyclic subgroup of order m. To show that K_a is a subsemigroup of S, let i, $j \in \{0, 1, \ldots, m-1\}$. Thus there exist p, $q \in \mathbb{Z}_0^+$ such that

r+i+j = pm+q, $0 \le q \le m$. Then $a^{r+i} a^{r+j} = a^{r+(r+i+j)} = a^{r+(pm+q)} = a^{(r+pm)+q} = a^{r+q} \in K_a.$

Define f: $K_a \rightarrow (Z_m, +)$ by $f(a^n) = \overline{n}$. Clearly, f is a homomorphism. To show f is one-to-one, let n, $n' \in \{r, r+1, \ldots, r+m-1\}$ be such that $\overline{n} = \overline{n'}$. Assume $n \geqslant n'$. Then n-n' = xm for some $x \in Z_0^+$. Thus $a^n = a^{n'} + xm = a^{(n'-r)+(xm+r)} = a^{(n'-r)+r} = a^n'$. Hence f is one-to-one. Because f is one-to-one and $\|K_a\| = \|Z_m\| = m$, f is onto. Thus $K_a \cong (Z_m, +)$. Since $(Z_m, +)$ is a cyclic group of order m, K_a is a cyclic group of order m. Observe that there exists a unique $n \in \{r, r+1, \ldots, r+m-1\}$ which is a multiple of m and a^n becomes the identity of K_a and a^{n+1} is a group generator of K_a .

From this we have that some power of every element of S is an idempotent $_{\#}$

Lemma 1.16. A semigroup which has a left identity and has the property that every element has a left inverse is a group.

Proof. Let S be a semigroup with a left identity e and suppose that every element of S has a left inverse. Claim that ab = e iff ba = e for all a, $b \in S$. To prove this, let a, $b \in S$ be such that ab = e. Then (ba)(ba) = b(ab)a = b(ea) = ba. Let x be a left inverse of ba. Thus ba = e(ba) = (xba)(ba) = x(baba) = xba = e. Thus we have the claim. Since for all $a \in S$ there exists $b \in S$ such that ba = e, by the claim ab = e. Thus every element of S has a right inverse. Finally, let $a \in S$. Then ae = a(ba) for some $b \in S$

$$= (ab)a$$

= ea = a.

Hence e is a right identity of S. Therefore S is a group.

Definition 1.17. Let S be a semigroup. S is said to be <u>right</u>

<u>cancellative</u> iff for all x, y, z ∈ S yx = zx implies y = z.

<u>Left cancellativity</u> is similarly defined. A semigroup is

<u>cancellative</u> iff it is both left and right cancellative.

Theorem 1.18. Every finite cancellative semigroup is a group.

<u>Proof.</u> Let $G = \{a_1, a_2, \dots, a_n\}$ be a cancellative semigroup of order n. Pick any a in G. Since $aa_i = aa_j$ implies $a_i = a_j$, the elements aa_1, aa_2, \dots, aa_n are all distinct. Thus

 $\{aa_1, aa_2, \dots, aa_n\} = \{a_1, a_2, \dots, a_n\}.$ Similarly, we can show that

 $\{a_1a, a_2a, \ldots, a_na\} = \{a_1, a_2, \ldots, a_n\}$.

Then for all $i \in \{1, 2, \ldots, n\}$ there is an $a_j \in G$ such that $aa_j = a_j$ and there exists an $e \in G$ such that ea = a. Hence $ea_i = e(aa_j) = (ea)a_j = aa_j = a_i$ for all $i \in \{1, 2, \ldots, n\}$, so e is a left identity of G.

Further, for all $a \in G$ there exists an $a_k \in G$ such that $a_k = a$. This implies that each element of G has a left inverse. By Lemma 1.16, G is a group.