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CHAPTER I

PRELIMINARIES

In this chapter we shall give some notations, definitions and
theorems used in this thesis. Our notations are -

42 is the set of all integer;s;'

2% is the set of all positive integers,

Q+ is the set of all positive rational numbers,

R* is the set of all positive real numbers;

Zn, n€2+,is the set of congruence classes modulo n in 2;

+ o+
20-_-2’0{0}.

Definition 1.1. A triple (S,+,.) is said to be a right seminear-ring
iff S is a set and + and . are binary operations on S such that

(a) (Sy+) is a semigroup,
(b) (Sy.) is a semigroup,
(¢) V=x y5 2€S (x4y)z = xz4yz. (right distributive law)

A left seminear-ring is similarly defined. If (S,+,.) is both a left

and a right semihear—ring, then it is agemiring,

Throughout this thesis we shall only study right seminear-ring
All definitions and theorems stated for right seminear-rings have a
dual statement and proof for left seminear-rings. So from now on the
word "seminear-ring" will mean a right seminear-ring. The reason that
we choose right seminear-rings is that seminear-rings of maps (the

most important examples) are all right distributive (see Example 1.4)
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Example 1.2. %, Z and ZB with the usual addition and multiplication

are seminear-rings.

Example 1.3. Let S be a nonempty set. Define + and « on Sbyx +y =y

and X.y = x for all x, y€S. Then (S,+y.) is a seminear-ring.

Example 1.4e Let (S,+) be a semigroup (not necessarily commutative).
Let M(S) «{f: S»5 | f is a map}. Define + and « on M(S) by

(f + 8)(x) = £(x) + g(x) and (£g)(x) = £(g(x)) for all x €S.

Then (M(S),+,.) is a seminear-ring which is not left distributive if

Sk>1.

Definition 1.5 A seminear-ring (N,+,.) is said to be a near-ring iff

(N,+) is a group. We shall always denote the identity of (N,+) by O

and the additive inverse of x€ N by -x.

Example 1.6. Let (N,+) be a group (not necessarily commutative) with
identity O. Then the following sets with + and . defined in Example 1.4
are near-rings:

(1) M(N) ={f: NoN | £ is a map}.

(2) my(n) ={£: N+N | £(0) = O}.

(3) MO(N) ={f: NN | f is constant}.

Lemma 1.7. Let N be a near-rings Then O.x = O for all x€N. Also,

(=x).y = =(xey) for all x, y €N,

Proof. Let N be a near-ring. Let x¢ Ne. Then
Oux = (0 + 0)ex = 0ux # OuX, 50 O.x = O since agroup has only
one idempotent. Let X, y € Ne Then xey +(=x)ey = (x + (~x))ey = Oy

= 0y 50 (=x)ey = =(x.y).
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Remark. In a near-ring N it is possible that x.0 # 0 and x.(=y) # =(x.y)e

See Example 1.6.

Definition 1.8. A near-ring (N,+,.) is said to be a near-field iff

(N~{0},.) is a group.

Example 1.9. Let Mc(zz) ={f: 212, | f is constant}. Thus

Mc(zz) = {fo, £,} where fo(x) =0 and f1(x) =7 for all x€Z,. Let
+ and . be defined as in Example 1.4. Clearly, (Mc(zz),+) is a group,
(Mc(zz),.) is a semigroup, (MC(ZZ)‘{fO},.) is a group and the right
distributive law holds in Mc(zz), Therefore (mc(zz),+,.) is a

near-field.

Proposition 1,10 Let N be a near-fielde If ANK) 2, then x.0 = Ou.x =0

for all x¢ N.

Proof. Let N be & near-field and [N} 2. Suppose there exists
x in N such that x.0 # 0. Since (N“{0},.) is a group, there is a y in
N such that (x.0).y = y(x.0) = 1, the identity of (N“{O}y.)e.
By Lemma1+7, Oey = Oe Thus X0 = %e(0sy) = (x¢0)ey = 1, 50 x.0 = .1,
Let z€N*{0, 1}« Then z = 14z = (x.0)ez = xe(0e2) = X0 = 1, 50 z = 1,
a contradictions Therefore x.0 = O for all x € N. By Lemma 1.7,

Xe0 = Oex = O for all x € N.
#

Remark. From this proposition we see that if a near-field N is not

isomorphic to MC(ZZ) then x+0 = Oux = O for all xé€N.

DPefinition 1.11. Let G be a group and Gys G, subgroups of Ge Then

G is said to be a Zappa-Szep_product of G, and G, iff G = G,G, and

G,N G, = {1} where 1 is the identity of G. If G is a Zappa=Szep

product of G, and G, we shall denote this by G = G_* G_..
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Example 1.12. (1) Let G be a group with G = G.X szor some subgroups

- * i -
G1, G2 of Go Then G = G1 GZ' Note that in this case G1, GZQ,G.

(2) Let S5 be the symmetric group on three elements.

Thus 5, = {(1), (12), (13), (23), (183), (132)}. Let A = {(1), (12)}:
and A = {(1), (123), (132)}s Then A and A are subgroups of Se
Since (13) = (132)(12)¢ AA and (23) = (123)(12) €AA, S; = Az

Therefore S; = A * A. since (13)(12)(13) = (23) £ 4, A & S, Thus

53 1! A3X A. Hence we have an example of a Zappa-Sze'p product which is

not a direct producte.

Lemma 1.13. Let (Gs+) be a group such that G = G1 * G2 for some
subgroups G1, G2 of Ge Then

. - *
(1) G = G, * Gye

(2) For all g€G there exist unique g4y 8,€Gys 8y 8,€ 06,
such that g = 8,8, = 8,84
(3) For all g,€G,, 8,¢€ Gz there exist unique §€G1, Sv'eGZ

such that §gz = -}}g,'g

Proofs {1) We must Show that G = G,G,+ Te show this, let geG.

- -1 =1
Since G = G1G2, g ,1= 418, for some g1e G1, gze GZ' Thus g = 8, 84

- - *
which is in G2G1. Hence G = G2G1. Therefore G = G2 G1.

(2) Let g€G. Since G =G, * G, = G, * G, there are

1 2
gy §1e Gyr B9 §2eG2 such that g = g,8, = Ez'g','. Suppose h,, 516 Gys

h,,s Bze G, are such that g = hh, = 5251. Thus g,8, = hyh, and

2

o -1 _ =1 _ g=1 3
g8, = B f,. So h1§1 = h,g; €GN G, = (1} and B ;" = 23", €GN G =

1. Therefore h. =g, h =g, h = dh =g
{} erefore h, g1, A g1, ) gzan 2-,”820



(3) Let g€ G, and g,€ G,. Since G =G, * Gys there

2
are unique x1€ G1, x2€ G2 such that 313;1= X Xqe Thus x; 8y = X48p¢
Suppose Y4 € G1, y2€ G2 are such that Y84 = y1gz. Thus g1g'2'1 = y;ly,l,

-1 - - -1
soy1=x1andy2=x2. Putx=x1andy=x2-#

Definition 1.14. Let S be a semigroup. S is saidto be a band iff

x2 = Xx for all x€S. S is said to be a rectangular band iff
4 v

xyx = % for all x, ¥y €S,

Theorem 1.15. Every finite semigroup has an idempotent.

Proof. Let S be a finite semigroup. Let a€S. Thus there

are my né€ z* such that m<n and a" = a”. Let

k=min{n£2+ | " = a” for some m, n€2" such that m<n}.
Thus there is re¢ 2% such that r<k and a* = ak. By the property of k,
a, a2, .v..,ak-1 must be distinct. Therefore there exists a unique

r ¢ {1’ 2’ evsey k-1-} such that ar = ﬂko Let m = k-r. Thus

k-r )+ '
e r ko r Y M mHr_ a2m+r
= .

mr
a =a =a8=8ays0a =a =aa =a By

multiplying am+r= &r successively by am, we obtain a® = alm+r

for-all
1€{(0, 1, 250ee §.

Let nez'.
Case n¢ r. Then a’¢ {a, a2,..., a’, ar""],..., am'm'1§.
Case n>r. Thus there are 1, iez; such that n-r = Im+i, 0 i<m.
Then & = afa® * = aralm+i a atWTHL ar”'( {a, a2,...,ar,... » aﬁm-1}.
Hence (a) ={a, az,...,ar, arﬂ.., ar"m"1}and the order of a is

k=1 = m+r-1.
Let K_={a%, a™,..., &™), Clainm that K_ is a cyclic
subgroup of order m. To show that Ka is a subsemigroup of S, let

iy J €{0)1y40ey m=1} .+ Thus there exist p, qGZ; such that



r+i+j = pm+q, 0{q{m. Then
ofL red _ re(reisg) | re(pmaq) | (repm)eq _ reaq K .

Define f: K - (Zm,+) by £(a”) = n. Clearly, f is a homomorphisme
To show f is one-to-one, let n, n e{r, r+lyesey Yr+m=1 } .be such that

- - /
n =n. Assume n) ne Then n-n = xm for some x € 23. Thus
/

/ / /
g g TR a(n -r )+ (xm+r) = a(n -r)+r = a" . Hence f is one-to-one.

Because f is one-to-one and IKa“= IZ = m, £ is onto. Thus K, 4 ('zrﬁ,+)
Since (zm,+) is a cyclic group of order my K is a cyclic group of
order m. Observe that there exists a unique n€(r, r+1y.e.,rén=1}
which is a multiple of m and a" becomes the identity of K, and R
is a group generator of Ka'

From this we have that some power of every element of S is

an idempotent. #

Lemma 1.16. A semigroup which has & left identity and has the property

that every element has a left inverse is a group.

Proof. Let S be a semigroup with a left identity e and suppose
that every element of S has a left inverse. Claim that ab = e iff
ba = e for all ay b€S. To prove this, let a, b €S be such that ab = e.
Then (ba)(ba) = b(ab)a = b(ea) = ba. Let x be a left inverse of ba.
Thus ba = e(ba) = (xba)(ba) = x(baba) = xba = e. Thus we have the
claim. Since for 'all» a€ S there exists b €S such that ba = e, by the
claim ab = e. Thus every element of S has a right inverse. Finally,

let a€S. Then ae = a(ba) for some b€S

(ab)a

= €a = 8.

Hence e is a right identity of Se Therefore S is a group.#



Definition 1.17. Let S be a semigroup. S is said to be right
cancellative iff for all x, y, z€S yx = 2x implies y = z.
Left cancellativity is similarly defimed, A semigroup is

cancellative iff it is both left and right cancellative.

Theorem 1.,18. Every finite cancellative semigroup is a group.

Proof. Let G ={a1, 80000y 8 Y be a cancellative semigroup
of order n. Pick any a in G. Since aa, = aaj implies a, = aj, the
elements aa,y @d,ye+ey 84 are all distinct. Thus

{aa1, 88,900 0) aan}= {a1, Bsseees anﬁ.
Similarly, we can show that

{a1a, 8,85 000 ana§ = {a,l, By eees an}.
Then for all i 6{1, 29000y n}there is an ajeG such that aaj =a,
and there exists an e €G such that ea = a. Hence ea; = e(aaj) = (.ea)a:j
= aa; = a, for all i€{1, 25.4s5 n}, so e is a left identity of G.
Further, for all a €¢G there exists an ake G such that aa = e. This

implies that each element of G has a left inverse. By Lemma 1.16,

G is a group.
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