Chapter V ## Results of Computation by Equations of State In this work, the results of calculation are presented in tables. The accuracy of equations of state in computation of liquid molar volume, vapor molar volume, phase equilibrium compositions in individual phase are meassured in term of absolute error deviation which is defined as (calexpt)*100/expt . Comparisons of experimental and predicted results by SRK, H&K, G&D and P&R equations of state as a function of pressure for individual phase are presented in figures . Two liquid-liquid-vapor equilibrium of ternary system are Methane+Ethane+n-Docosane and CO_2+N_2+n- Nonadecane.For Methane+Ethane+n-Docosane mixtures, comparisons of experimental and predicted results are shown T=298.15 and 303.15 K and those of CO_2+N_2+n- Nonadecane mixtures are shown at T=294.15,297.15 and 301.15 K. METHANE + ETHANE + n-DOCOSANE (TEMP=298.15 K) Table 5.1 | ======================================= | | | ======= | ======== | | ======= | ======= | ======= | ======== | | | | | | ======= | |---|----------|---------|----------|----------|---------|---------|---------|----------|----------|--------|----------|----------|---------|----------|----------| | | | | L1-FHASE | | | | | | | PHASE | | | | V-PHASE | | | ********* | | | | ======= | | ======= | ======= | ======= | | | ======== | | | ======== | ======= | | F[BAR] | 0.1 | C1 | ABS | C2 | 0.2 | ABS | Ci | Ci | ABS | C2 | C2 | ARS | C2 | C2 | ABS | | | EXEL | SRK EUS | DEV(X) | EXPT | SRK EOS | DEV(%) | EXPT | SRK EOS | DEV(%) | EXPT | SRK EOS | DEV(X) | EXPT | SRK EDS | DEV(%) | | I = I = I = I = I | | | | | | | ====== | ======== | | | ======== | | | ======== | | | 45.8800 | 0.0262 | 0.0324 | 23.6541 | 0.9095 | 0.9197 | 1.1215 | 0.0352 | 0.0403 | 14.4886 | 0.9546 | 0.9460 | 0.9009 | 0.9325 | 0.9246 | 0.8472 | | 47.9200 | 0.0304 | 0.0370 | 21.7105 | 0.9007 | 0.9132 | 1.3878 | 0.0426 | 0.0475 | 11.5023 | 0.9490 | 0.9410 | 0.8430 | 0.9217 | 0.9145 | 0.7812 | | 48.9500 | 0.0345 | 0.0422 | 22.3188 | 0.8920 | 0.9052 | 1.4798 | 0.0497 | 0.0546 | 9.8592 | 0.9432 | 0.9336 | 1.0178 | 0.9111 | 0.9038 | 0.8012 | | 49.9900 | 0.0381 | 0.0462 | 21.2598 | 0.8844 | 0.9004 | 1.8091 | 0.0573 | 0.0624 | 8.9005 | 0.9357 | 0.9293 | 0.7900 | 0.9018 | 0.8945 | 0.8095 | | 51.0200 | 0.0415 | 0.0509 | 22.6506 | 0.8769 | 0.8938 | 1.9272 | 0.0649 | 0.0703 | 8.3205 | 0.9300 | 0.9226 | 0.7957 | 0.8929 | 0.8865 | 0.7168 | | 52.0600 | 0.0450 | 0.0556 | 23.5556 | 0.8699 | 0.8874 | 2.0117 | 0.0723 | 0.0784 | 8,4371 | 0.9234 | 0.9155 | 0.8555 | 0.8847 | 0.8793 | 0.6104 | | 53.0900 | 0.0486 | 0.0602 | 23.8683 | 0.8634 | 0.8814 | 2.0848 | 0.0805 | 0.0867 | 7.7019 | 0.9159 | 0.9082 | 0.8407 | 0.8780 | 0.8734 | 0.5239 | | 54.1200 | 0.0529 | 0.0646 | 22.1172 | 0.8547 | 0.8751 | 2.3868 | 0.0883 | 0.0959 | 8.6070 | 0.9091 | 0.9002 | 0.9790 | 0.8723 | 0.8488 | 0.4012 | | 55.1600 | 0.0564 | 0.0691 | 22.5177 | 0.8477 | 0.8689 | 2.5009 | 0.0976 | 0.1047 | 7.2746 | 0.9002 | 0.8921 | 0.8998 | 0.8683 | 0.8655 | 0.3225 | | ========= | | ======= | | | | ====== | ====== | ======= | ======== | | ======== | | ======= | ======== | :======= | | AVG ABS DE | | | 22.6292 | | | 1.8566 | , | | 9.4546 | | • | 0.8803 | | | 0.6460 | | ========= | ======== | ======= | ======== | | | ======= | ======= | ======= | ======== | | ======== | ======== | | ======= | ======= | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{'}-L^{''}$ by S-R-K equation of state($k_{i,j}=0$) of Methane(1)+Ethane (2)+n-Docosane(3)system. | | METHANE + ETHANE + n-DOCOSANE | | | | | (TEMP=298.15 K) Table 5.2 | | | | | ======================================= | | | | |--|--|---------------|--|--|--|--|--|--|--|--|---|--|--|--| | | | | | | | | | | | | A SHARE | | | | | C1
EXPT | C1
H&K EOS | ABS
DEV(%) | C2
EXPT | C2
H&K EOS | ABS
DEV(%) | C2
EXPT | C2
H&K EOS | ABS
DEV(%) | C1
EXPT | C1
H&K EOS | ABS
DEV(%) | C2
EXPT | C2
H&K EOS | ABS
DEV(%) | | 0.035
0.042
0.049
0.057
0.064
0.072
0.080
0.088 | 0.0382
0.0436
0.0526
0.0601
0.0678
0.0758
0.0850 | | 0.9546
0.9490
0.9432
0.9367
0.9300
0.9234
0.9159
0.9091
0.9002 | 0.9684
0.9615
0.9562
0.9473
0.9398
0.9322
0.9241
0.9150
0.9035 | 1.4456
1.3172
1.3783
1.1316
1.0538
0.9530
0.8953
0.6490
0.3666 | 0.9325
0.9217
0.9111
0.9018
0.8929
0.8847
0.8780
0.8723
0.8683 | 0.9297
0.9190
0.9130
0.9004
0.8924
0.8854
0.8797 | 0.3003
0.2929
0.2085
0.1552
0.0560
0.0791
0.1936
0.3554
0.4146 | 0.0262
0.0304
0.0345
0.0381
0.0415
0.0450
0.0486
0.0529
0.0564 | 0.0216
0.0252
0.0275
0.0320
0.0353
0.0385
0.0417 | 17.5573
17.1053
20.2899
16.0105
14.9398
14.4444
14.1975
15.6900
15.6028 | 0.9095
0.9007
0.8920
0.8844
0.8769
0.8699
0.8634
0.8547
0.8477 | 0.9543
0.9473
0.9434
0.9340
0.9276
0.9215
0.9156
0.9097
0.9035 | 4.9258
5.1738
5.7623
5.6083
5.7817
5.9317
6.0459
6.4350
6.5825 | | DEV(%) | | 7.7067 | | | 1.0212 | | ======================================= | 0.2284 | ======= | ======================================= | 16.2042 | | ======== | 5.8052 | Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by Harmens & Knapp equation of state(k, =0)of CO₂ (1)+N₂(2)+n-Nonadecane(3)system. [Data from Fall, D. J. and Luke, K. D. (1986).] METHANE + ETHANE + n-DOCOSANE (TEMP=298.15 K) Table 5.3 | | it minut | Limite | | | | | ======= | ======= | | | | | ======= | | ======= | |---|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--| | 2222222 | | | L1-PHASE | | | | | | L2-f | PHASE | :======= | | | V-PHASE | ======== | | P[BAR] | C1
EXPT | C1
PR EOS | DEV(X) | C2
EXPT | C2
PR EOS | ABS
DEV(%) | C1
EXPT | C1
PR EOS | ABS
DEV(%) | C2
EXPT | C2
PR EDS | ABS
DEV(%) | C2
EXPT | C2
PR EOS | ABS
DEV(%) | | 46.8800
47.9200
48.9500
49.9900
51.0200
52.0600
53.0900
54.1200
55.1600 | 0.0262
0.0304
0.0345
0.0381
0.0415
0.0450
0.0486
0.0529
0.0564 | 0.0343
0.0392
0.0440
0.0488
0.0535
0.0582
0.0629
0.0659
0.0719 | 30.9160
28.9474
27.5362
28.0840
28.9157
29.3333
29.4239
24.5747
27.4823 | 0.9095
0.9007
0.8920
0.8844
0.8769
0.8634
0.8547
0.8477 | 0.9168
0.9098
0.9029
0.8961
0.8894
0.8829
0.8767
0.8695
0.8638 | 0.8026
1.0103
1.2220
1.3229
1.4255
1.4944
1.5404
1.7316
1.8993 | 0.0352
0.0426
0.0497
0.0573
0.0649
0.0723
0.0805
0.0883
0.0976 | 0.0422
0.0497
0.0572
0.0650
0.0729
0.0809
0.0892
0.0989
0.1072 | 19.8864
16.6667
15.0905
13.4380
12.3267
11.8949
10.8075
12.0045
9.8361 | 0.9546
0.9490
0.9432
0.9367
0.9300
0.9234
0.9159
0.9091
0.9002 | 0.9430
0.9377
0.9318
0.9255
0.9189
0.9119
0.9047
0.8962
0.8888 | 1.2152
1.1907
1.2087
1.1957
1.1935
1.2454
1.2228
1.4190
1.2664 | 0.9325
0.9217
0.9111
0.9018
0.8929
0.8847
0.8780
0.8723
0.8683 | 0.9189
0.9091
0.8998
0.8913
0.8834
0.8763
0.8704
0.8650
0.8623 |
1.4584
1.3670
1.2403
1.1643
1.0639
0.9495
0.8656
0.8369
0.6910 | | · AVG ABS DI | =======
EV(%)
======== | 2222222 | 28.3570 | | ======== | 1.3832 | | ======== | 13.5501 | ======================================= | ======== | 1.2397 | | | 1.0708 | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{'}-L^{''}$ by PR equation of state($k_{i,j}=0$) of Methane(1)+Ethane(2)+n-Docosane(3)system. | METHANE + ETHANE + n-DOCOSANE (TEMP=298.15 K) Table 5.4 | METHANE + | FTHANE + | n-DOCOSANE | (TEMP=298.15 K) | | Table 5.4 | ı | |---|-----------|----------|------------|-----------------|--|-----------|---| |---|-----------|----------|------------|-----------------|--|-----------|---| | ======================================= | ======== | | ======== | | | ======== | ======================================= | ======= | ======== | ******** | | ======= | | ======= | ======= | |---|----------|---------|----------|----------|----------|-----------|---|---------|----------|----------|--------|----------|-----------|---------|-----------| | | | | L1-PHASE | | | | je: | | L2-1 | PHASE | | | | V-PHASE | | | ======== | | ======= | ======== | | | ======== | ======== | | ======== | | | | ========= | | ********* | | P[BAR] | C1 | C1 | ABS | C2 | C2 | ABS | C1 | . C1 | ABS | C2 | C2 | ABS | C2 | C2 | ABS | | | EXPT | G&D | DEV(%) | EXPT | G&D | DEV(%) | EXPT | 6&D | DEV(%) | EXPT | G&D | DEV(%) | EXPT | G&D | DEV(X) | | ======== | | .====== | ======== | ======== | | .======== | | ======= | ======= | | | | * | | | | 46.8800 | 0.0262 | 0.0316 | 20.6107 | 0.9095 | 0.9207 | 1.2314 | 0.0352 | 0.0394 | 11.9318 | 0.9546 | 0.9469 | 0.8066 | 0.9325 | 0.9230 | 1.0188 | | 47.9200 | 0.0304 | 0.0365 | 20.065B | 0.9007 | 0.9139 | 1.4655 | 0.0426 | 0.0469 | 10.0939 | 0.9490 | 0.9417 | 0.7692 | 0.9217 | 0.9129 | 0.9548 | | 48.9500 | 0.0345 | 0.0414 | 20.0000 | 0.8920 | 0.9069 | 1.6704 | 0.0497 | 0.0546 | 9.8592 | 0.9432 | 0.9355 | 0.8164 | 0.9111 | 0.9044 | 0.7354 | | 49.9900 | 0.0381 | 0.0461 | 20.9974 | 0.8844 | 0.9006 | 1.8318 | 0.0573 | 0.0622 | 8.5515 | 0.9367 | 0.9294 | 0.7793 | 0.9018 | 0.8946 | 0.7984 | | 51.0200 | 0.0415 | 0.0507 | 22.1687 | 0.8769 | 0.8940 | 1.9501 | 0.0649 | 0.0701 | 8.0123 | 0.9300 | 0.9228 | 0.7742 | 0.8929 | 0.8866 | 0.7056 | | 52.0600 | 0.0450 | 0.0554 | 23.1111 | 0.8699 | 0.8877 | 2.0462 | 0.0723 | 0.0782 | 8.1604 | 0.9234 | 0.9157 | 0.8339 | 0.8847 | 0.8793 | 0.6104 | | 53.0900 | 0.0486 | 0.0600 | 23.4568 | 0.8634 | 0.8816 | 2.1079 | 0.0805 | 0.0865 | 7.4534 | 0.9159 | 0.9084 | 0.8189 | 0.8780 | 0.8735 | 0.5125 | | 54.1200 | 0.0529 | 0.0644 | 21.7391 | 0.8547 | 0.8754 | 2.4219 | 0.0883 | 0.0957 | 8.3805 | 0.9091 | 0.9004 | 0.9570 | 0.8723 | 0.8689 | 0.3898 | | 55.1600 | 0.0564 | 0.0688 | 21.9858 | 0.8477 | 0.8692 | 2.5363 | 0.0976 | 0.1045 | 7.0697 | 0.9002 | 0.8923 | 0.8776 | 0.8683 | 0.8655 | 0.3225 | | ********* | ======== | ======= | ======= | | ======== | | | ======= | | | | ======== | | | | | AVG ABS DE | EV(%) | | 21.5706 | | | 1.9179 | | * | 8.8347 | | | 0.8259 | | | 0.6720 | | | | ======= | ======= | ======= | | | ======== | | | | | | | | | Comparisons of experimental and predicted equilibrium mole fraction in V-L¹-L¹¹ by G&D equation of state(k, =0) of Methane(1) +Ethane(2)+n-Docosane(3)system. [Data from Jangkamolkulchai, A. and Luke, K.D. (1989).] | Table 5.5 | METHANE + ETHANE + n-DOCOSANE | T=298.15 K | |---|-------------------------------|------------| | ======================================= | | | | | ======= | ======= | L2-PHASE | ======== | v-phase | | | | | |--|---|--|--|---|--|--|--|--|--| | L1-PHASE | | | | -======= | | ======= | ======= | | | | P[BAR] MOLAR VOL [ML/ | G.MOL] | MOLAR | VOL [ML/ | 6.MOL) | MOLAR | VOL [XL/ | 3.MOL] | | | | EXPT SRK
EDS | ABS
DEV(%) | EXPT | SRK
EOS | ABS
DEV(%) | EXPT | SRK
EOS | ABS
DEV(%) | | | | 46.8800 89.3000 110.9000
47.9200 90.2000 112.5000
48.9500 91.0000 114.1000
49.9900 92.2000 115.5000
51.0200 93.5000 116.9000
52.0600 94.4000 118.2000
53.0900 95.3000 119.2000
54.1200 96.4000 120.9000
55.1600 97.3000 122.2000 | 24.1881
24.7228
25.3846
25.2711
25.0267
25.2119
25.0787
25.4149
25.5910 | 88.0000
89.1000
90.3000
91.5000
93.1000
95.2000 | 102.2000
102.4000
102.7000
105.8900
107.1000
108.6000
110.3000
112.7000
114.7000 | 16.3636
15.2637
17.1650
17.0492
16.6488
15.8613
16.2719 | 229.9000
221.3000
213.3000
205.2000
197.5000
188.8000
179.8000
169.7000
159.1000 | 236.6000
217.1000
216.6000
206.7000
196.6000
185.3000
173.8000 | 7.6120
6.9137
1.7815
5.5556
4.6582
4.1314
3.0590
2.4160
1.5713 | | | | AVG ABS DEV(%) | 25.0989 | | | 16.3120 | | | 4.1887 | | | Comparisons of experimental and predicted molar volume by S-R-K equation of state(k, =0) as a function of pressure for V-L'-L'' phases of Methane(1)+Ethane(2)+n-Docosane(3)system. [Data from Jangkamolkulchai, A. and Luke, K.D.(1989).] | Table | 5.6 | | | | n-DOCOSAI | | T=298.15 | K | | |---|---|---|--|--|--|--|--|--|--| | ======== | ======= | L1-PHASE | | | L2-PHASE | | | V-PHASE | | | P[BAR] | MOLAR | 1000 CO 100 | 6.MOL] | | VOL [ML/ | | | VOL [XL/I | 6.MOL] | | | EXPI | HAK
EOS | ABS
DEV(%) | EXFT | H&K
EOS | ABS
DEV(%) | EXPT | H&K
EOS | ARS
DEV(%) | | 46.8800
47.9200
48.9500
49.9900
51.0200
52.0400
53.0900
54.1200
55.1600 | 89.3000
90.2000
91.0000
72.2000
93.5000
94.4000
95.3000
94.4060
97.3000 | 98.3000
87.4000
88.8000
87.6000
90.6000
91.6000
92.3000
93.5000
94.5000 | 3.3595
3.1042
2.4176
2.8200
3.1016
2.9661
3.1480
3.0083
2.8777 | 86.8990
88.0000
89.1000
90.3000
91.5000
93.1000
95.2000
97.1000
100.4000 | 84.7000
86.4000
87.9000
89.6000
91.3000
93.1000
95.2000
98.7000 | 2.4194
1.8182
1.3468
0.7752
0.2186
0.0000
0.0000 | 229.7000
221.3000
213.3000
205.2000
197.5000
188.8000
179.8000
169.7000
159.1000 | 217.4000
209.0000
201.0000
192.0000
182.8000
172.5000
162.1000 | 0.3045
0.8586
2.0159
2.0468
2.7848
3.1780
4.0601
4.4785
5.0711 | | avg abs Ď | | | 2.9781 | | ======================================= | 0.9804 | ======================================= | | 2.7576 | Comparisons of experimental and predicted molar volume by Harmens & Knapp equation of state(k, section) as a function of pressure for V-L'-L' phases of Methane(1)+Ethane(2)+n-Docosane(3) system. | Table | 5.7 | | | | + n-DOCOSA | | | K | | |---|--|---|--|---|--|--|--|--|--| | | | L1-PHASE | | - | L2-PHASE | | | V-PHASE | | | P[BAR] | | R VOL [ML/ | | | | | | | 5.MOL] | | £ | EXPT | PR
EOS | ABS
DEV(%) | EXPT | PR
EOS | ABS
DEV(%) | EXPT | | ABS
DEV(%) | | 46.8800
47.9200
48.9500
49.9900
51.0200
52.0600
53.0900
54.1200
55.1600 | 89.3000
90.2000
91.0000
92.2000
93.5000
94.4000
95.3000
96.4000 |
99.3000
100.7000
102.1000
103.4000
104.7000
105.8000
106.7000
109.1000
109.3000 | 11.1982
11.6408
12.1978
12.1475
11.9786
12.0763
11.9622
13.1743 | 84.8000
88.0000
89.1000
90.3000
91.5000
93.1000
95.2000 | 92.2000
93.3000
94.5000
95.8000
97.1000
98.6000
100.3000
102.9000 | 6.0227
6.0606
6.0908
6.1202
5.9076
5.3571
5.9732 | 229.9000
221.3000
213.3000
205.2000
197.5000
188.8000
179.8000
169.7000
159.1000 | 222.3000
213.2000
203.2000
193.9000
184.4000
173.8000
163.1000 | 1.5224
0.4519
0.0469
0.9747
1.8228
2.3305
3.3370
3.8892
4.9654 | | AVG ABS D | | | 12.0787 | | | 5.8040 | | | 2.1490 | Comparisons of experimental and predicted molar volume by PR equation of state(k_{13} =0) as a function of pressure for V-L¹-L¹¹ phases of Methane(1)+Ethane(2)+n-Docosane(3)system. | Table | 5.8 | | METHANE + | ETHANE + | n-Docosa | NE | T=298.15 | K | | |---|---|--|---|--|--|---|--|--|--| | | | L1-PHASE | | | L2-PHASE | | | V-PHASE | | | P[8AR] | MOLAF | R VOL [ML/ | - | MOLAF | YOL (ML/ | 6.MOL) | MOLAF | VOL (ML/ | G.MOL) | | | EXPT | G&D
EOS | ABS
DEV(%) | EXPT | G&D
EOS | ABS
DEV(%) | EXPT | G&D
EOS | ABS
DEV(%) | | 46.9800
47.9200
48.9500
49.9900
51.0200
52.0600
53.0900
54.1200
55.1600 | 70.2000
71.0000
92.2000
93.5000
94.4000
95.3000
96.4000 | 110.9000
112.5000
114.1000
115.5000
116.9000
118.2000
119.2000
120.9000
122.1000 | 24.1881
24.7228
25.3846
25.2711
25.0267
25.2119
25.0787
25.4149
25.4882 | 88.0000
87.1000
90.3000
91.5000
93.1000
95.2000 | 102.2000
103.3000
104.5000
105.8000
107.2000
108.6000
110.3000
113.0000
115.0000 | 17.3864
17.2840
17.1650
17.1585
16.6488
15.8613
16.3749 | 229.9000
221.3000
213.3000
205.2000
197.5000
188.8000
179.8000
169.7000
159.1000 | 236.7000
222.1000
216.8000
206.9000
196.8000
185.6000
174.2000 | 7.6555
6.9589
4.1256
5.6530
4.7595
4.2373
3.2258
2.6517
1.8228 | | AVG ABS DE | V(%) | ======================================= | 25.0875 | | | 16.6847 | | | 4.5656 | Comparisons of experimental and predicted molar volume by G&D equation of state($k_{13}=0$) as a function of pressure for $V-L^1-L^{11}$ phases of Methane(1)+Ethane(2)+n-Docosane(3)system. Figure 5.1 Comparisons of experimental and predicted mthane mole fraction by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for L phase of Methane(1) +Ethane(2)+n-Docosane(3)system. Figure 5.2 Comparisons of experimental and predicted Methane mole fraction by SRK, HK, G&D and PR equations of state($k_{1,j}=0$) as a function of pressure for $L^{1,j}$ phase of Methane(1)+Ethane (2)+n-Docosane(3)system. Figure 5.3 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for L^{i} phase of Methane(1) +Ethane(2)+n-Docosane(3)system. Figure 5.4 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for $L^{i,j}$ phase of Methane(1) +Ethane(2)+n-Docosane(3)system. Figure 5.5 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for vapor phase of Methane(1)+Ethane(2)+n-Docosane(3)system.[Data from Jangkamolkulchai, A. and Luke, K.D.(1989).] Figure 5.6 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for L phase of Methane(1)+Ethane(2)+n-Docosane(3)system. Figure 5.7 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,j}=0$) as a function of pressure for $L^{1,j}$ phase of Methane(1) +Ethane(2)+n-Docosane(3)system. Figure 5.8 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for vapor phase of Methane(1)+Ethane(2)+n-Docosane(3)system. | | TEINHNE. | r CINHNE 1 | า ก-มบบบอล | NE. | [1=303.1 | 3 k} | Idbi | 95.9 | | | | | | | | |--|--|--|-------------------------------|--|--|--|--|---|---|--|--|--|--|--|--| | | | | L1-PHASE | | | | | ======================================= | L2- | PHASE | | | | V-PHASE | 222222 | | P[BAR | C1
EXPT | C1
SRK EOS | ABS
DEV(%) | C2
EXPT | C2
SRK EOS | ABS
DEV(%) | C1
EXPT | C1
SRK EOS | ABS
DEV(%) | C2
EXPT | C2
SRK EDS | ABS
DEV(X) | C2
EXPT | C2
SRK EOS | ABS
DEV(%) | | 47.350
47.920
48.610
49.100
49.640
50.190
51.020
51.710
52.430 | 0 0.0077
0 0.0106
0 0.0126
0 0.0147
0 0.0168
0 0.0199
0 0.0225 | 0.0104
0.0137
0.0160
0.0185
0.0212
0.0250
0.0281 | 26.5306
26.1905
25.6281 | 0.9252
0.9204
0.9145
0.9108
0.9068
0.9026
0.8965
0.8916
0.8867 | 0.9422
0.9383
0.9336
0.9305
0.9269
0.9233
0.9180
0.9137
0.9093 | 1.8374
1.9448
2.0886
2.1629
2.2166
2.2934
2.3982
2.4787
2.5488 | 0.0092
0.0129
0.0173
0.0202
0.0236
0.0271
0.0331
0.0382
0.0436 | 0.0141
0.0189
0.0224 | 10.8696
9.3023
9.2486
10.8911
11.4407
11.8081
10.8761
9.9476
9.6330 | 0.9837
0.9807
0.9771
0.9747
0.9717
0.9686
0.9634
0.9588
0.9539 | 0.9810
0.9779
0.9741
0.9712
0.9678
0.9642
0.9589
0.9542
0.9491 | 0.2745
0.2855
0.3070
0.3591
0.4014
0.4543
0.4671
0.4798
0.5032 | 0.9871
0.9806
0.9723
0.9677
0.9625
0.9573
0.9506
0.9453
0.9404 | 0.9823
0.9762
0.9690
0.9643
0.9592
0.9543
0.9478
0.9428
0.9381 | 0.4863
0.4487
0.3394
0.3513
0.3429
0.3134
0.2946
0.2645
0.2446 | | AVG ABS | DEV(%) | | 29.1261 | | | 2.2188 | | | 10.4463 | | | 0.3924 | | | 0.3428 | Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by S-R-K equation of state(k, =0) of Methane(1)+Ethane(2)+n-Docosane(3) system. [Data from Jangkamolkulchai, A. and Luke, K.D.(1989).] | | METHANE + | ETHANE + | n-DCCOSAI | ¥Ε | (T=303.15 | K) | Т | able 5 | . 10 | | | | | | | |--|--|--|---|------------|--|------------------|--|--|--|--|--|--|--|--|--| | L. 11111 | | ======================================= | L1-PHASE | | | | | | . L2-1 | PHASE | | | | V-PHASE | | | P[BAR] | C1
EXPT | C1
H&K EOS | ABS
DEV(%) | C2
EXPT | C2
H&K EOS |
ABS
DEV(%) | C1
EXPT. | C1
H&K EOS | ABS
DEV(%) | C2
EXPT | C2
H&K EDS | ABS
DEV(%) | C2
EXPT | C2
H&K EOS | ABS
DEV(%) | | 47.3500
47.9200
48.6100
49.1000
49.6400
50.1900
51.7100
52.4300 | 0.0077
0.0106
0.0126
0.0147
0.0168
0.0199
0.0225 | 0.0028
0.0049
0.0074
0.0091
0.0109
0.0127
0.0154
0.0177
0.0200 | 47.1698
36.3636
30.1887
27.7778
25.8503
24.4048
22.6131
21.3333
20.6349 | | 0.9630
0.9589
0.9541
0.9510
0.9476
0.9441
0.9387
0.9344
0.9302 | 4.5978
4.7072 | 0.0092
0.0129
0.0173
0.0202
0.0236
0.0271
0.0331
0.0382
0.0435 | 0.0045
0.0080
0.0124
0.0156
0.0190
0.0226
0.0286
0.0336
0.0391 | 37.9845
28.3237
22.7723
19.4915
16.6052
13.5952 | 0.9837
0.9807
0.9771
0.9747
0.9717
0.9686
0.9634
0.9588
0.9539 | 0.9953
0.9918
0.9874
0.9843
0.9809
0.9773
0.9714
0.9664
0.9609 | 1.1792
1.1318
1.0541
0.9849
0.9468
0.8982
0.8304
0.7927
0.7338 | 0.9871
0.9806
0.9723
0.9677
0.9625
0.9573
0.9506
0.9453
0.9404 | 0.9912
0.9848
0.9773
0.9725
0.9674
0.9625
0.9556
0.9504
0.9455 | 0.4154
0.4283
0.5142
0.4960
0.5091
0.5432
0.5260
0.5395
0.5423 | | AVG ABS | DEV(%) | :======= | 28.4818 | | | 4.5026 | | | 23.5803 | | | 0.9502 | | | 0.5016 | Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by Harmens & Knapp equation of state(k, =0)of Methane(1)+Ethane(2)+n-Docosane(3)system. [Data from Jangkamolkulchai, A. and Luke, K.D. (1989).] METHANE + ETHANE + n-DOCOSANE (T=303.15 K) Table 5.11 | ======== | | | | | | | | | | | | | | | | |------------|------------------------|----------|----------|----------------|--------|---------|----------|---------|----------|--------|---------|----------|----------|---|----------| | | L1-PHASE | | | | | | | | L2-F | HASE | | | | V-PHASE | | | ========= | | | ======== | | | | ******** | | ======== | | | | | ======================================= | | | P[BAR] | C1 | Ci | ABS | C2 | C2 | ABS | Ci | Ci | ABS | C2 | C2 | ABS | C2 | C2 | ABS | | | EXPT | PR EDS | DEV(%) | EXPT | PR EOS | DEV(%) | | | ======== | ======== | ======== | | | ======= | ====== | ======= | | | ======= | ======= | ======= | ======== | ======== | | 47.3500 | 0.0053 | 0.0097 | 83.0189 | 0.9252 | 0.9390 | 1.4916 | 0.0092 | 0.0127 | 38.0435 | 0.9837 | 0.9774 | 0.6404 | 0.9871 | 0.9781 | 0.9118 | | 47.9200 | 0.0077 | 0.0124 | 61.0390 | 0.9204 | 0.9351 | 1.5971 | 0.0129 | 0.0166 | 28.6822 | 0.9807 | 0.9744 | 0.6424 | 0.9806 | 0.9722 | 0.8566 | | 48.6100 | 0.0106 | 0.0157 | 48.1132 | 0.9145 | 0.9304 | 0.9304 | 0.0173 | 0.0213 | 23.1214 | 0.9771 | 0.9707 | 0.6550 | 0.9723 | 0.9654 | 0.7097 | | 49.1000 | 0.0126 | 0.0180 | 42.8571 | 0.9108 | 0.9272 | 1.8006 | 0.0202 | 0.0249 | 23.2673 | 0.9747 | 0.9678 | 0.7079 | 0.9677 | 0.9607 | 0.7234 | | 49.6400 | 0.0147 | 0.0206 | 40.1361 | 0.9068 | 0.9235 | 1.8416 | 0.0236 | 0.0288 | 22.0339 | 0.9717 | 0.9644 | 0.7513 | 0.9625 | 0.9557 | 0.7065 | | 50.1900 | 0.0168 | 0.0232 | 38.0952 | 0.9026 | 0.9198 | 1.9056 | 0.0271 | 0.0328 | 21.0332 | 0.9688 | 0.9608 | 0.8053 | 0.9573 | 0.9509 | 0.6685 | | 51.0200 | 0.0199 | 0.0271 | 36.1809 | 0.8965 | 0.9144 | 1.9967 | 0.0331 | 0.0391 | 18.1269 | 0.9634 | 0.9556 | 0.8096 | 0.9506 | 0.9445 | 0.6417 | | 51.7100 | 0.0225 | 0.0302 | 34.2222 | 0.8916 | 0.9100 | 2.0637 | 0.0382 | 0.0445 | 16.4921 | 0.9588 | 0.9509 | 0.8239 | 0.9453 | 0.9395 | 0.6136 | | 52.4300 | 0.0252 | 0.0335 | 32.9365 | 0.8867 | 0.9055 | 2.1202 | 0.0436 | 0.0503 | 15.3670 | 0.9539 | 0.9459 | 0.8387 | 0.9404 | 0.9348 | 0.5955 | | ======== | | | | ======== | | *====== | ====== | | ======== | | | | ======== | ===== | | | AVG ABS DI | AVG ABS DEV(%) 46.2888 | | | 1.7497 22.9075 | | | | | | | 0.7416 | | | 0.7141 | | | ======== | ======== | | ======= | ======== | | ======= | | ======= | ======== | | | ======== | | ======= | ======== | Comparisons of experimental and predicted molar volume by PR equation of state(k, =0) as a function of pressure for V-L'-L' phases of Methane(1)+Ethane(2)+n-Docosane(3)system. [Data from Jangkamolkulchai, A. and Luke, K.D.(1989).] METHANE + ETHANE + n-DOCOSANE (T=303.15 K) Table 5.12 | 91 | L1-PHASE | | | | | | | L2-PHASE | | | | | | V-PHASE | | | |---|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--| | P(BAR) | C1
EXPT | C1
G&D EOS | ABS
DEV(%) | C2
EXPT | C2
G&D EOS | ABS
DEV(%) | C1
EXPT | C1
G&D EOS | ABS
DEV(%) | C2
EXPT | C2
G&D EOS | ABS
DEV(%) | C2
EXPT | C2
G&D EOS | ABS
DEV(%) | | | 47.3500
47.9200
48.6100
49.1000
49.6400
50.1900
51.0200
51.7100
52.4300 | 0.0053
0.0077
0.0106
0.0126
0.0147
0.0168
0.0199
0.0225
0.0252 | 0.0076
0.0103
0.0136
0.0159
0.0185
0.0211
0.0249
0.0280
0.0312 | 43.3962
33.7662
28.3019
26.1905
25.8503
25.5952
25.1256
24.4444
23.8095 | 0.9252
0.9204
0.9145
0.9108
0.9068
0.9026
0.8965
0.8916 | 0.9422
0.9383
0.9337
0.9305
0.9270
0.9234
0.9181
0.9138
0.9095 | 2.1629
2.2276
2.3045
2.4094
2.4899 | 0.0092
0.0129
0.0173
0.0202
0.0236
0.0271
0.0331
0.0382
0.0436 | 0.0101
0.0140
0.0188
0.0223
0.0262
0.0302
0.0365
0.0419 | 9.7826
8.5271
8.6705
10.3960
11.0169
11.4391
10.2719
9.6859
9.1743 | 0.9837
0.9807
0.9771
0.9747
0.9717
0.9686
0.9634
0.9588
0.9539 | 0.9810
0.9780
0.9742
0.9713
0.9679
0.9644
0.9590
0.9543
0.9492 | 0.2745
0.2753
0.2968
0.3488
0.3911
0.4336
0.4567
0.4693 | 0.9871
0.9806
0.9723
0.9677
0.9625
0.9573
0.9506
0.9453 | 0.9823
0.9763
0.9691
0.9644
0.9593
0.9544
0.9479
0.9429
0.9382 | 0.4863
0.4385
0.3291
0.3410
0.3325
0.3029
0.2840
0.2539
0.2339 | | | ======== | 52.4300 0.0252 0.0312
==================================== | | | | | 2.2275 | | | | | | | | .7302 | | | Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by G&D equation of state(k, =0)of Methane(1)+Ethane(2)+n-Docosane(3)system. [Data from Jangkamolkulchai, A. and Luke, K.D. (1989).] | Table 5.13 | METHANE | | n-DOCOSA | (T=303.1 | | | | |---|---|--|--|---|--|--|--| | L | 1-PHASE | | LZ-FHASE | | | | | | | VOL [HL/6.MOL] | | | | | 6.MOL) | | | EXPT | SRK ABS
EOS DEV(%) | EXPT | SRK
EOS | ABS
DEV(%) | EXPT | SRK
EDS | ABS
DEV(%) | | 47.3500 92.1000 1
47.9200 92.7000 1
48.6100 93.2000 1
49.1000 93.7000 1
49.6400 94.1000 1
50.1900 94.6000 1
51.0200 95.3000 1
51.7100 95.9000 1
52.4300 96.2000 1 | 15.4000 24.4876
16.4000 24.8927
17.0000 24.8666
17.7000 25.0797
18.4000 25.1586
19.5000 25.3935
20.3000 25.4432 | 91.1000
92.2000
93.1000
94.0000
95.1000
97.1000 | 107.1000
110.1000
111.3000
112.2000
113.0000
113.7000
116.1000
117.8000 | 20.8562
20.7158
20.5156
20.2128
19.7687
19.5675
18.6304 | 215.4000
210.3000
203.9000
197.0000
192.5000
187.6000
180.0000
173.3000
166.3000 | 221.3000
216.2000
209.9000
203.7000
197.6000
186.2000
177.5000 | 5.3853
5.2306
6.0324
6.5482
5.8182
5.3305
3.4444
2.4235
1.5033 | | AVG ABS DEV(%) | 25.0590 | | | 19.8505 | | :======= | 4.6352 | Comparisons of experimental and predicted molar volume by S-R-K equation of state($k_{13}=0$) as a function of pressure for V-L'-L' phases of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. [Data from Fall, D.J. and Luke, K.D. (1986).] Table 5.14
METHANE + ETHANE + n-DOCOSANE (T=303.15 K) | ======= | | ======= | | | | | | | | | | | |---|---|---|--|--|---|--|--|--|--|--|--|--| | | | L1-PHASE | | | L2-PHASE | | V-PHASE | | | | | | | P[BAR] | AOLAR | VOL [ML/ | G.MOL) | MOLA | R VOL [ML/ | 6.MOL] | MOLA | R VOL [ML/ | 6.MOL) | | | | | | EXPT | H&K
EOS | ABS
DEV(%) | EXPT | H&K
EDS | ABS
DEV(%) | EXPT | H&X
Eos | ABS
DEV(%) | | | | | 47.3500
47.9200
48.6100
49.1000
49.6400
50.1900
51.0200
51.7100
52.4300 | 92.1000
92.7000
93.2000
93.7000
94.1000
94.6000
95.3000
95.9000
96.2000 | 88,9000
89,5000
90,2000
90,6000
91,1000
91,6000
92,4000
93,6000
93,6000 | 3.4745
3.4520
3.2189
3.3084
3.1881
3.1712
3.0430
3.0240
2.7027 | 90.2000
91.1000
92.2000
93.1000
94.0000
95.1000
97.1000
99.3000
102.1000 | 92.7000
94.3000
95.4000
96.4000
97.5000
100.2000
102.3000 | 1.7563
2.2777
2.4705
2.5532
2.5237
3.1926
3.0211 | 215.4000
210.3000
203.9000
197.0000
192.5000
187.6000
180.0000
173.3000
166.3000 | 204.6000
201.2000
195.4000
190.0000
185.0000
175.1000
167.8000 | 2.7391
2.7104
1.3242
0.8122
1.2987
1.3859
2.7222
3.1737
3.6681 | | | | | =======
AVG ABS D
======= | ======
EV(%)
======= | | 3.1759 | | | 2.4544 | | | 2.2038 | | | | Comparisons of experimental and predicted molar volume by Harmens & Knapp equation of state(k =0) as a function of pressure for V-L -L 11 phases of Methane(1)+Ethane(2)+n-Docosane(3) system. | Table | 5.15 | | METHANE + | ETHANE + | n-DOCOSA | NE
======= | (T=303.1 | | | | | |---|---|--|---|--|--|--|----------------------|--|--|--|--| | 22222333 | | L1-PHASE | | | L2-PHASE | | V-PHASE | | | | | | P[BAR] | MOLAF | R VOL [ML/ | | | VOL [ML/ | | MOLAR VOL [ML/6.MOL] | | | | | | | EXPT | PR
EOS | ABS
DEV(%) | EXPT | PR
EOS | ABS
DEV(%) | EXPT | PR
EOS | ABS
DEV(%) | | | | 47.3500
47.9200
48.5100
49.1000
49.6400
50.1900
51.0200
51.7100
52.4300 | 92.7000
93.2000
93.7000
94.1000
94.6000
95.3000
95.9000 | 102.7000
103.4000
104.3000
104.8000
105.4000
106.0000
107.0000
107.7000
108.4000 | 11.5092
11.5426
11.7099
11.8463
12.0085
12.0507
12.2770
12.3045
12.6819 | 93.1000
94.0000
95.1000
97.1000 | 98.9000
99.9000
101.1000
102.0000
102.7000
103.6000
105.8000
107.5000
109.6000 | 9.6597
9.6529
9.5596
9.2553
8.9380
8.9598
8.2578 | | 206.9000
202.3000
196.3000
190.6000
185.0000 | 1.4392
1.6167
0.7847
0.3553
0.9870
1.3859
3.0000
3.8084
4.7505 | | | | AVG ABS I | | | 12.0145 | | | 9.0305 | | 3222222 | 2.0142 | | | Comparisons of experimental and predicted molar volume by PR equation of state($k_1=0$) as a function of pressure for $V-L^{\dagger}-L^{\dagger}$ phases of Methane(1)+Ethane(2)+n-Docosane(3)system. | Table | 5.16 | 1 | METHANE + | ETHANE + | n-DOCOSA | (T=303.15 K) | | | | | |---|--|--|---|--|--|---|--|--|--|--| | *********** |
L | 1-PHASE | | | L2-PHASE | | y-phase | | | | | P[BAR] | MOLAR | VOL [ML/ | G.MOL] | MOLAR | VOL [ML/ | 6.MOL] | MOLAR VOL [ML/G.MOL] | | | | | | EXPT | 6&D
EOS | ABS
DEV(%) | EXPT | S&D
EDS | ARS
DEV(%) | EXPT | 6&D
EOS | ABS
DEV(%) | | | 47.3500
47.9200
48.6100
49.1000
49.6400
50.1900
51.0200
51.7100
52.4300 | 92.7000 1
92.7000 1
93.2000 1
93.7000 1
94.1000 1
94.6000 1
95.3000 1
96.2000 1 | 15.4000
16.4000
17.0000
17.7000
118.4000
119.4000
120.3000 | 24.4300
24.4876
24.8927
24.8666
25.0797
25.1586
25.2886
25.4432
25.7796 | 91.1000
92.2000
93.1000
94.0000
95.1000
97.1000 | 109.1000
110.1000
111.4000
112.2000
113.0000
113.7000
116.1000
117.7000
119.7000 | 20.8562
20.8243
20.5156
20.2128
19.7687
19.5675
18.7311 | 215.4000
210.3000
203.9000
197.0000
192.5000
187.6000
180.0000
173.3000
166.3000 | 221.4000
216.4000
210.1000
203.9000
197.9000
186.6000
178.0000 | 5.4318
5.2782
6.1305
6.6497
5.9221
5.4904
3.6667
2.7121
1.7438 | | | AVG ABS [| ======== | ======= | 25.0474 | ======== | ======= | 19.8737
====== | =======
/ | ======================================= | 4.7806 | | Comparisons of experimental and predicted molar volume by G&D equation of state(k, =0) as a function of pressure for V-L'-L' phases of Methane(1)+Ethane(2)+n-Docosane(3)system. Figure 5.9 Comparisons of experimental and predicted mthane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for L' phase of Methane(1) +Ethane(2)+n-Docosane(3)system. Figure 5.10 Comparisons of experimental and predicted Methane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for L' phase of Methane(1)+Ethane (2)+n-Docosane(3)system. Figure 5.11 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for L phase of Methane(1) +Ethane(2)+n-Docosane(3)system. Figure 5.12 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for $L^{i,j}$ phase of Methane(1) +Ethane(2)+n-Docosane(3)system. Figure 5.13 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for vapor phase of Methane(1)+Ethane(2)+n-Docosane(3)system.[Data from Jangkamolkulchai, A. and Luke, K.D.(1989).] Figure 5.14 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{i,j}$ =0) as a function of pressure for L phase of Methane(1)+Ethane(2)+n-Docosane(3)system. Figure 5.15 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{13}=0$) as a function of pressure for L^{11} phase of Methane(1) +Ethane(2)+n-Docosane(3)system. Figure 5.16 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for vapor phase of Methane(1)+Ethane(2)+n-Docosane(3)system. Table 5.17 | ======== | | | | | | | | | | | | | | | | | | |-----------|-------------|----------------|---------------|------------|---------------|---|---------|----------------|---------------|------------|---------------|---------------|-------------|----------------|---------------|--|--| | | | | L1-PHASE | | | L2-PHASE | | | | | | | | V-PHASE | | | | | ======= | ======== | ======== | | ======= | ======= | ======= | ====== | ======= | | | ======= | | ======= | | | | | | P[BAR] | CO2
EXPT | CO2
SRK EOS | ABS
DEV(%) | N2
EXPT | N2
SRK EOS | ABS
DEV(%) | CO2 | CO2
SRK EOS | ABS
DEV(%) | N2
EXPT | N2
SRK EOS | ABS
DEV(%) | CO2
EXPT | CO2
SRK EOS | ABS
DEV(%) | | | | . ======= | | | ======= | ======= | ======== | ======================================= | ======= | ======== | | | | | | | | | | | 65.5000 | 0.6992 | 0.9214 | 31.7792 | 0.0066 | 0.0215 | 225.7576 | 0.9778 | 0.9345 | 4.4283 | 0.0153 | 0.0285 | 86.2745 | 0.9460 | 0.9026 | 4.5877 | | | | 68.9500 | 0.6935 | 0.9168 | 32.1990 | 0.0101 | 0.0271 | 168.3168 | 0.9705 | 0.9287 |
4.3071 | 0.0230 | 0.0366 | 59.1304 | 0.9243 | 0.8835 | 4.4142 | | | | 72.3900 | | 0.9120 | 32.6160 | 0.0133 | 0.0325 | 144.3609 | 0.9625 | 0.9219 | 4.2182 | 0.0312 | 0.0435 | 39.4231 | 0.9059 | 0.8476 | 4.2278 | | | | 75.8400 | 0.6833 | 0.9083 | 32.9284 | 0.0162 | 0.0380 | 134.5679 | 0.9543 | 0.9170 | 3.9086 | 0.0398 | 0.0532 | 33.6683 | 0.8900 | 0.8535 | 4.1011 | | | | 79.2900 | 0.6772 | 0.9043 | 33.5351 | 0.0195 | 0.0432 | 121.5385 | 0.9454 | 0.9110 | 3.6387 | 0.0490 | 0.0620 | 26,5306 | 0.8779 | 0.8429 | 3.9868 | | | | 82.7400 | 0.6718 | 0.9012 | 34.1471 | 0.0225 | 0.0482 | 114.2222 | 0.9358 | 0.9053 | 3.2592 | 0.0591 | 0.0713 | 20.6430 | 0.8486 | 0.8359 | 3.7647 | | | | 86.1800 | 0.6649 | 0.8975 | 34.9827 | 0.0256 | 0.0533 | 108.2031 | 0.9252 | 0.8984 | 2.8967 | 0.0701 | 0.0815 | 16.2625 | 0.8631 | 0.8321 | 3.5917 | | | | ======== | ======== | ======= | ======== | ======= | ======= | *====== | ======= | ======== | | ======= | ======= | ======== | ====== | | | | | | AVG ABS | DEV(%) | | 32.8675 | | | 151.4606 | | | 3.9600 | | . 7 | 44.2783 | | | 4.1804 | | | | ======== | ======== | ======== | | | | | | | | | | | | | | | | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{'}-L^{''}$ by S-R-K equation of state($K_{13}=0$)of $CO_{2}(1)+N_{2}(2)+n-K$ Nonadecane(3)system. [Data from Fall, D.J. and Luke, K.D. (1986).] | CD2+N2+n-NONADECANE | IIV SYSTEM | (T=294.15 K) | i | |---------------------|------------|--------------|---| | | | | | Table 5.18 | ======== | | | | | | | | | | | | | | | | |---|------------------------|---------|----------|---------|---------|-----------------------|---------------------------------------|---------|----------|---------|---------|----------|----------|----------|----------| | | | | L1-PHASE | | | | L2-PHASE | | | | | | | V-PHASE | | | ========== | | ======= | ======== | ======= | *====== | ******* | # # # # # # # # # # # # # # # # # # # | | | | | | ======= | ======== | ======== | | P[BAR] | CD2 | CO2 | ABS | N2 | N2 | ABS | C02 | C02 | ABS | N2 | N2 | ABS | C02 | C02 | ABS | | | EXPT | HAK EOS | DEV(%) | EXPT | H&K EDS | DEV(%) | EXPT | H&K EOS | DEV(%) | EXPT | H&K EDS | DEV(%) | EXPT | H&K EOS | DEV(%) | | | | | | | | | | | | | | | | | | | 45.5000 | 0.6992 | 0.9556 | 36.6705 | 0.0066 | 0.0087 | 31.8182 | 0.9778 | 0.9819 | 0.4193 | 0.0153 | 0.0170 | 11.1111 | 0.9460 | 0.9267 | 2.0402 | | 68,9500 | 0.6935 | 0.9515 | 37.2026 | 0.0101 | 0.0116 | 14.8515 | 0.9705 | 0.9757 | 0.5358 | 0.0230 | 0.0233 | 1.3043 | 0.9243 | 0.9075 | 1.8176 | | 72.3900 | 0.6877 | 0.9450 | 37.4146 | 0.0133 | 0.0146 | 9.7744 | 0.9625 | 0.9684 | 0.6130 | 0.0312 | 0.0278 | 10.8974 | 0.9059 | 0.8926 | 1.4682 | | 75.8400 | 0.6833 | 0.9429 | 37.9921 | 0.0162 | 0.0173 | 6.7901 | 0.9543 | 0.9625 | 0.8593 | 0.0398 | 0.0367 | 7.7889 | 0.8900 | 0.8765 | 1.5169 | | 79.2900 | 0.6772 | 0.9382 | 38.5411 | 0.0195 | 0.0202 | 3.5897 | 0.9454 | 0.9552 | 1.0366 | 0.0490 | 0.0441 | 10.0000 | 0.8779 | 0.8651 | 1.4580 | | 82.7400 | 0.6718 | 0.9339 | 39.0146 | 0.0225 | 0.0230 | 2.2222 | 0.9358 | 0.9471 | 1.2075 | 0.0591 | 0.0523 | 11.5059 | 0.8886 | 0.8568 | 1.3585 | | 86.1800 | 0.6649 | 0.9286 | 39.6601 | 0.0256 | 0.0258 | 0.7812 | 0.9252 | 0.9381 | 1.3943 | 0.0701 | 0.0614 | 12.4108 | 0.8631 | 0.8521 | 1.2745 | | ======================================= | | ======= | | | ======= | ======= | ======= | ======= | ======= | | | ======== | ======== | | | | AVG ABS DE | AVG ABS DEV(%) 37.8059 | | | | | 11.5077 0.7786 8.7680 | | | | | | | | 1.6099 | | | ======== | | ======= | ======= | | | | | | ======== | ======= | ======= | ======= | | ======== | ======== | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by Harmens & Knapp equation of state($k_{13}=0$) of CO_2 (1)+ N_2 (2)+n-Nonadecane(3)system. [Data from Fall, D. J. and Luke, K. D. (1986).] Table 5.19 | ======================================= | *************************************** | | | | | | | | | | | | | | | | |---|---|---------|----------|----------|----------|-----------|---------|---|---------|--------|--------|----------|--------|---------|----------|--| | | | | L1-PHASE | | | | | | L2- | PHASE | | | | V-PHASE | | | | ======== | | | | | ======== | | | *************************************** | | | | | | | ======== | | | P[BAR] | C02 | C02 | ABS | N2 | N2 | ABS | C02 | C02 | ABS | N2 | N2 | ABS | CD2 | C02 · | ABS | | | | EXPT | PR .EOS | DEV(%) | EXPT | PR EDS | DEV(%) | EXPT | PR EOS | DEV(%) | EXPT | PR EDS | DEV(%) | EXPT | PR EDS | DEV(%) | | | ======== | | ======= | ======= | ======= | ======= | ========= | ======= | ======== | ======= | | | ======== | | ======= | ======== | | | 65.5000 | 0.6992 | 0.8756 | 25.2288 | 0.0066 | 0.0248 | 275.7576 | 0.9778 | 0.9257 | 5.3283 | 0.0153 | 0.0321 | 109.8039 | 0.9460 | 0.8939 | 5.5074 | | | 68.9500 | 0.6935 | 0.8700 | 25.4506 | 0.0101 | 0.0309 | 205.9406 | 0.9705 | 0.9188 | 5.3272 | 0.0230 | 0.040B | 77.3913 | 0.9243 | 0.8743 | 5.4095 | | | 72.3900 | 0.6877 | 0.8659 | 25.9125 | 0.0133 | 0.0365 | 174.4361 | 0.9625 | 0.9120 | 5.2468 | 0.0312 | 0.0519 | 66.3462 | 0.9059 | 0.8533 | 5.8064 | | | 75.8400 | 0.6833 | 0.8593 | 25.7574 | 0.0162 | 0.0428 | 164.1975 | 0.9543 | 0.9048 | 5.1870 | 0.0398 | 0.0587 | 47.4874 | 0.8900 | 0.8433 | 5.2472 | | | 79.2900 | 0.6772 | 0.8541 | 26.1223 | 0.0195 | 0.0487 | 149.7436 | 0.9454 | 0.8976 | 5.0561 | 0.0490 | 0.0682 | 39.1837 | 0.8779 | 0.8319 | 5.2398 | | | 82.7400 | 0.6718 | 0.8499 | 26.5109 | 0.0225 | 0.0543 | 141.3333 | 0.9358 | 0.8907 | 4.8194 | 0.0591 | 0.0784 | 32.6565 | 0.8886 | 0.8241 | 5.1232 | | | 86.1800 | 0.6649 | 0.8451 | 27.1018 | 0.0256 | 0.0601 | 134.7656 | 0.9252 | 0.8828 | 4.5828 | 0.0701 | 0.0897 | 27.9601 | 0.8631 | 0.8193 | 5.0747 | | | ========= | | | | ======== | | ======== | | | | | | ======== | | ======= | ======= | | | AVG ABS DE | | | 25.8304 | | | 185.2348 | | | 5.1608 | | | 62.1448 | | | 5.3889 | | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by PR equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. [Data from Fall, D.J. and Luke, K.D. (1986).] CO2+N2+n-NONADECANE LLV SYSTEM (T=294.15 K) Table 5.20 | ======== | | | | | | | | | | | | | | | | |------------|---------|---------|----------|---------|----------|----------|---------|---------|---------|----------|----------|----------|----------|----------|----------| | | | | L1-PHASE | | | | | | L2- | PHASE | | | | V-PHASE | | | ======== | ======= | | ======== | | ======== | ======= | | ======= | ======= | ======== | ======= | ======= | ======= | -======= | ======== | | P[BAR] | CO2 | C02 | ABS | N2 | N2 | ABS | CO2 | CD2 | ABS | N2 | N2 | ABS | C02 | CO2 | ABS | | | EXPT | G&D EDS | DEV(%) | EXPT | 6&D EDS | DEV(%) | EXPT | G&D EOS | DEV(%) | EXPT | G&D EOS | DEV(%) | EXPT | G&D EDS | DEV(%) | | ========= | ======= | | ======== | | ======== | ======= | ======= | | ======= | ======= | ======== | | | | ======== | | 45.5000 | 0.6992 | 0.9216 | 31.8078 | 0.0066 | 0.0214 | 224.2424 | 0.9778 | 0.9347 | 4.4079 | 0.0153 | 0.0284 | 85.6209 | 0.9460 | 0.9028 | 4.5666 | | 68.9500 | 0.6935 | 0.9171 | 32.2422 | 0.0101 | 0.0270 | 167.3267 | 0.9705 | 0.9290 | 4.2761 | 0.0230 | 0.0364 | 58.2609 | 0.9243 | 0.8837 | 4.3925 | | 72.3900 | 0.6877 | 0.9100 | 32.3251 | 0.0133 | 0.0332 | 149.6241 | 0.9625 | 0.9250 | 3.8961 | 0.0312 | 0.0456 | 46.1538 | 0.9059 | 0.8679 | 4.1947 | | 75.8400 | 0.6833 | 0.9087 | 32.9870 | 0.0162 | 0.0377 | 132.7160 | 0.9543 | 0.9174 | 3.8667 | 0.0398 | 0.0529 | 32.9146 | 0.8900 | 0.8537 | 4.0787 | | 79.2900 | 0.6772 | 0.9047 | 33.5942 | 0.0195 | 0.0430 | 120.5128 | 0.9454 | 0.9114 | 3.5964 | 0.0490 | 0.0617 | 25.9184 | 0.8779 | 0.8432 | 3.9526 | | 82.7400 | 0.6718 | 0.9017 | 34.2215 | .0.0225 | 0.0479 | 112.8889 | 0.9358 | 0.9058 | 3.2058 | 0.0591 | 0.0709 | 19.9662 | 0.8686 | 0.8362 | 3.7301 | | 86.1800 | 0.6649 | 0.8981 | 35.0729 | 0.0256 | 0.0530 | 107.0313 | 0.9252 | 0.8990 | 2.8318 | 0.0701 | 0.0812 | 15.8345 | 0.8631 | 0.8324 | 3.5569 | | | | | ======== | | ======== | ======= | ====== | | ======= | ======== | ======= | ======== | ======== | | ======= | | AVG ABS DE | EV(%) | | 32.8630 | | 1 | 151.2185 | | *** | 3.8748 | | | 44.8058 | | | 4.1525 | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by G&D equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. [Data from Fall, D. J. and Luke, K. D. (1986).] | | CO2+NZ+n- | -NONADECAN | E
======= | T=294.15 | K
======== | LLV SYSTE | M Tel | ble 5. | 21 | |---|--|--|---|---|---|--|--|------------|---| | | | L1-PHASE | | | L2-FHASE | 4 1 | - | V-PHASE | | | F(BAR) | MOLAS | VOL [AL/ | G.HOL) | MOLAR | VOL [ML | /G.MOL] | MOLAI | R VOL [ML/ | 6.MOL] | | | EXPT | SRK
EOS | ABS
DEV(%) | EXFT | SRK
EDS | ABS
DEV(%) | ЕХРТ | SRK
EOS | ABS
DEV(%) | | 68.9500
72.3900
75.8400
79.2900
82.7400 | 132.0000
132.6000
133.4000
133.7000
134.6000
135.2000
136.4000 | 193.5000
194.6000
195.1000
196.2000
197.2000 | 45.9848
45.9276
45.8771
45.9237
45.7652
45.8580
45.7478 | 58.9000
59.2000
59.8000
60.9000
62.2000
63.7000
66.0000 |
70.5000
70.8000
71.0000
71.5000
72.1000
72.8000
73.8000 | 19.5946
18.7291
17.4056
15.9164 | 170.4000
161.9000
151.9000
141.7000
131.3000 | 140.9000 | 10.6922
8.5094
7.2267
7.2416
7.1983
7.3115
6.9536 | | AVG ABS (| DEV(%) | | 45.8894 | | | 17.6043 | | | 8.0299 | | | | L1-PHASE | | | L2-PHASE | | | V-PHASE | | |---|--|--|---|---|---|--|--|--|--| | P[BAR] | MOLAF | YOL [XL/ | | | VOL (ML/ | 6.MOL] | 18.0 | VOL [ML/ | | | | ЕХРТ | H&K
E09 | ABS
DEV(%) | EXPT | H&K
EOS | ABS
DEV(%) | EXPT | H&K
EDS | ABS
DEV(% | | 68.9500
72.3900
75.8400
79.2900
82.7400 | 132.0000
132.6000
133.4000
133.7000
134.6000
135.2000
136.4000 | 147.7000
148.6000
149.1000
150.1000
150.9000 | 11.3636
11.3876
11.3943
11.5183
11.5156
11.6124
11.5836 | 58.9000
59.2000
59.8000
60.9000
62.2000
63.7000
66.0000 | 57.0000
57.4000
57.9000
58.5000
59.2000
60.1000
61.3000 | 3.0405
3.1773
3.9409
4.8232
5.6515 | 177.7000
170.4000
161.9000
151.9000
141.7000
131.3000
120.8000 | 170.2000
159.9000
150.2000
139.8000
129.5000 | 1.7445
0.1174
1.2353
1.1192
1.3409
1.3709
2.0695 | | AVG ABS | | | 11.4822 | ======= | 22227777 | 4.4258 | | | 1.2854 | Comparisons of experimental and predicted molar volume by SRK and Harmens & Knapp equation of state($k_{1,j}=0$) as a function of pressure for V-L¹-L¹¹ phases of $CO_2(1)+N_2(2)+n-$ Nonadecane(3) system. |) | CO2+N2+n | -NONADECAN | IE
 | T=294.15 | K | LLV SYSTEM | Tab | le 5.2 | 3 | |---|--|--|---|---|---|---|---|--|--| | | | L1-PHASE | | | L2-PHASE | | ====== | V-PHASE | | | F[BAR] | MOLA | R VOL [ML/ | 6.MOL] | MOLAR | NOT [HT | /6.MOL] | MOLA | R VOL (ML/ | 6.MOL] | | | ЕХРТ | PR
EOS | ABS
DEV(%) | EXPT | PR
EOS | ABS
DEV(%) | EXPT | PR
EOS | ABS
DEV(%) | | 65.5000 1
68.9500 1
72.3900 1
75.8400 1
79.2900 1
82.7400 1
86.1800 1 | 32.0000
32.6000
33.4000
33.7000
34.6000
35.2000 | 173.1000
174.0000
174.5000
175.5000
176.4000 | 30.5303
30.5430
30.4348
30.5161
30.3863
30.4734
30.3519 | 58,9000
59,2000
59,8000
60,9000
62,2000
63,7000
66,0000 | 63.8000
64.1000
64.3000
64.9000
65.5000
66.3000
67.3000 | 8.3192 17
8.2770 17
7.5251 16
6.5681 13
5.3055 14
4.0816 13
1.9697 12 | 70.4000
51.9000
51.9000
\$1.7000
\$1.3000 | 174.7000
163.7000
153.5000
142.9000
132.3000 | 4.7833
2.5235
1.1118
1.0533
0.8469
0.7616
0.2483 | | AVG ABS DI | ======
EV(%)
======= | | 30.4623 | | | 6.0066 | :====== | | 1.6184 | | - | | LUZ+NZ+n | -unuanerau | t
 | 1=294.13 | Κ | LLV 51511 | Tab | le 5.2 | 4 | |-----|---|--|----------------------------------|---|---|---|---|--|--|---| | _ | | | L1-PHASE | | | L2-PHASE | | | V-PHASE | | | _ | P[BAR] | MOLA | R VOL [ML/ | 6.MOL] | MOLAR | VOL [ML/ | G.HOL] | MOLAF | VOL [ML/ | G.MOL] | | | | ЕХРТ | 6&D
EOS | ABS
DEV(%) | ЕХРТ | 6&D
EOS | ABS
DEV(%) | EXPT | 6& D
EOS | ABS
DEV(%) | | | 68.9500
72.3900
75.8400
79.2900
82.7400 | 132.6000
133.4000
133.7000
134.6000 | 195.1000
196.2000
197.2000 | 45.9848
45.9276
45.8771
45.9237
45.7652
45.8580
45.7478 | 58.9000
59.2000
59.8000
60.9000
62.2000
63.7000
64.0000 | 70.5000
70.8000
71.0000
71.5000
72.1000
72.8000
73.8000 | 19.5946
18.7291
17.4056
15.9164
14.2857 | 177.7000
170.4000
161.9000
151.9000
141.7000
131.3000
120.8000 | 185.0000
173.7000
163.1000
152.1000
141.1000 | 10.7485
8.5681
7.2884
7.3733
7.3394
7.4638
7.1192 | | 7.5 | VG ABS | DEV(%) | | 45.8692 | | | 16.7777 | | | 7.9858 | Comparisons of experimental and predicted molar volume by PR and G&D equations of state(k_{13} =0) as a function of pressure for V-L¹-L¹¹ phases of $CO_2(1)+N_2(2)+n$ -Nonadecane(3)system. [Data from Fall,D.J. and Luke,K.D.(1986).] Figure 5.17 Comparisons of experimental and predicted CO_2 mole fraction by SRK, HK, G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for L^1 phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.18 Comparisons of experimental and predicted N_2 mole fraction by SRK,HK,G&D and PR equations of state($k_{1,j}=0$) as a function of pressure for L^1 phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.19 Comparisons of experimental and predicted N_2 mole fraction by SRK,HK,G&D and PR equations of state(k_{13} =0) as a function of pressure for L^{11} phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)system.$ Figure 5.20 Comparisons of experimental and predicted CO_2 mole fraction by SRK,HK,G&D and PR equations of state(k_{13} =0) as a function of pressure for vapor phase of $CO_2(1)+N_2(2)$ +n-Nonadecane(3)system. Figure 5.21 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,3}=0$) as a function of pressure for L' phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.22 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for L^{11} phase of $CO_2(1)+N_2(2)+n-Nonadecane(3) system.$ Figure 5.23 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for vapor phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Table 5.25 CO2+N2+n-NONADECANE(TEMP=297.15 K) | | | L | .1-PHASE | | | | | | . L2-I | PHASE | | | | V-PHASE | | |--|--|--|--|------------------|---------------|--|--------------------------------------|--------------------------------------|--------------------------------------|------------|--------------------------------------|---|-------------|--|--| | P[BAR] | CO2
EXPT | CO2
SRK EOS | ABS
DEV(%) | N2
EXPT | N2
SRK EOS | ABS
DEV(%) | CO2
EXPT | CO2
SRK EOS | ABS
DEV(%) | N2
EXPT | N2
SRX EOS | ABS
DEV(%) | CO?
EXPT | CO2
SRK EOS | ABS
DEV(%) | | 65.5000
68.9500
72.3900
75.8400
79.2900
82.7400 | 0.7092
0.7028
0.6963
0.6896
0.6829
0.6764 | 0.9448
0.9390
0.9339
0.9291
0.9237
0.9185 | 33.6084
34.1232
34.7303
35.2614 | 0.0072
0.0108 | 0.0277 | 133.3333
106.4815
73.1250
79.8913 | 0.9833
0.9752
0.9669
0.9576 | 0.9550
0.9478
0.9404
0.9322 | 2.8781
2.8097
2.7407
2.6525 | | 0.0252
0.0343
0.0436
0.0536 | 157.1429
78.7234
52.4444
40.1929
32.0197
26.3158 | | 0.9524
0.9314
0.9145
0.9002
0.8890
0.8820 | 2.6176
2.5936
2.6092
2.4913
2.4792
2.4336 | | AVS ABS D | EV(%) | | 34.4560 | | | 115.1702 | | | 2.7416 | | | 64.4732 | | | 2.5374 | Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by S-R-K equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-N$ onadecane(3)system. [Data from Fall,D.J. and Luke,K.D.(1986).] | ADD. NO. | MANUARFOAME | TEMP=297 | 4 5 1/1 | |------------|--------------|---------------------|-----------| | 111147140- | ALL PROPERTY | I I L M L = /U / | 1 - 1 | | LULIGEIII | HUHRULLAND | 1 1 1 1 1 1 - 4 1 1 | . 1 . 6 . | Table 5.26 | | | | L1-PHASE | | | | | | L2- | PHASE | | | | V-PHASE | | |--|--|--------------------------------------
--|--|--------------------------------------|---|--|--|--|--|---------------|--|--|--|--| | P[BAR] | CD2
EXPT | CO2
H&K EOS | ABS. DEV(X) | N2
EXPT | N2
H&K EOS | ABS
DEV(%) | CO2
EXPT | CO2
H&K EOS | ABS
DEV(%) | N2
EXPT | N2
H&K EOS | ABS
DEV(%) | · CO2
EXPT | CO2
H&K EDS | ABS
DEV(%) | | 65.5000
68.9500
72.3900
75.8400
79.2900
82.7400 | 0.7092
0.7028
0.6963
0.6896
0.6829
0.6764 | 0.9562
0.9516
0.9479
0.9425 | 35.4625
36.0558
36.6552
37.4565
38.0144
38.6310 | 0.0034
0.0072
0.0108
0.0160
0.0184
0.0221 | 0.0068
0.0096
0.0124
0.0152 | 14.7059
5.5556
11.1111
22.5000
17.3913
18.5520 | 0.9909
0.9833
0.9752
0.9669
0.9576
0.9471 | 0.9906
0.9835
0.9760
0.9681
0.9596
0.9500 | 0.0303
0.0203
0.0820
0.1241
0.2089
0.3062 | 0.0063
0.0141
0.0225
0.0311
0.0406
0.0513 | 0.0161 | 42.8571
14.1844
4.8889
1.6077
0.9852
2.9240 | 0.9780
0.9562
0.9390
0.9232
0.9116
0.9040 | 0.9691
0.9491
0.9326
0.9184
0.9076
0.9009 | 0.9100
0.7425
0.6816
0.5199
0.4388
0.3429 | | AVG ABS D | EV(%) | | 37.0476 | | | 14.9693 | | | 0.1286 | | | 11.2412 | | | 0.6060 | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{1}-L^{11}$ by Harmens & Knapp equation of state($k_{13}=0$)of CO_{2} (1)+ N_{2} (2)+n-Nonadecane(3)system. [Data from Fall, D. J. and Luke, K. D. (1986).] | CO2+N2+n-NONADECANE | SVSTEM | IT=297 | 15 | K1 | |---------------------|---------|--------|----|-----| | LUZTNZTI KUNHDELHNE | 3131611 | (1-4)/ | 10 | V 1 | Table 5.27 | ======================================= | | | | | | ======== | ======= | | | | | | | | | |---|----------|---------|-----------|------------|---------|---|---------|----------|----------|--------|---------|----------|--|---|---------| | | | | L1-PHASE | | | | | | L2-1 | PHASE | | | 7(%) EXPT PR EO6 DEV(% 2571 0.9780 0.9379 4.100 3397 0.9562 0.9176 4.036 5556 0.9390 0.9011 4.036 0932 0.9232 0.8871 3.910 7537 0.9116 0.8760 3.905 | | | | ======== | ======= | ======= | ========= | | | ======== | ======= | ======= | | | ======= | | | ======= | ======= | | P[BAR] | C02 | C02 | ABS | N2 | N2 | ABS | C02 | C02 | ABS | N2 | N2 | ABS | C02 | CD2 | ABS | | | EXPT | PR EOS | DEV(%) | EXPT | PR EOS | DEV(%) | EXPT | PR EDS | DEV(%) | EXPT | PR EOS | DEV(%) | EXPT | PR EOS | DEV(%) | | | | | | | ======= | | ======= | ======= | | | ======= | | ======= | ======================================= | | | 65.5000 | 0.7092 | 0.8943 | 26.0998 | 0.0034 | 0.0152 | 347.0588 | 0.9909 | 0.9486 | 4.2688 | 0.0063 | 0.0216 | 242.8571 | 0.9780 | 0.9379 | 4.1002 | | 68.9500 | 0.7028 | 0.8884 | 26.4087 | 0.0072 | 0.0212 | 194.4444 | 0.9833 | 0.9409 | 4.3120 | 0.0141 | 0.0308 | 118.4397 | 0.9562 | 0.9176 | 4.0368 | | 72.3900 | 0.6963 | 0.8830 | 26.8132 | 0.0108 | 0.0272 | 151.8519 | 0.9752 | 0.9335 | 4.2760 | 0.0225 | 0.0404 | 79.5556 | 0.9390 | 0.9011 | 4.0362 | | 75.8400 | 0.6896 | 0.8781 | 27.3347 | 0.0160 | 0.0329 | 105.6250 | 0.9669 | 0.9260 | 4.2300 | 0.0311 | 0.0501 | 61.0932 | 0.9232 | 0.8871 | 3.9103 | | 79.2900 | 0.6829 | 0.8725 | 27.7639 | 0.0184 | 0.0388 | 110.8696 | 0.9576 | 0.9177 | 4.1667 | 0.0406 | 0.0608 | 49.7537 | 0.9116 | 0.8760 | 3.9052 | | 82.7400 | 0.6764 | 0.8670 | 28.1786 | 0.0221 | 0.0448 | 102.7149 | 0.9471 | 0.9086 | 4.0650 | 0.0513 | 0.0728 | 41.9103 | 0.9040 | 0.8687 | 3.9049 | | ======== | | | ======= | | | | ====== | ======== | | | | | | | | | AV6 ABS DI | EV(%) | | 27.0998 | | | 168.7608 | | | 4.2198 | | | 98.9349 | | | 3.9823 | | ========= | ======== | ======= | ======= | ========== | | ======================================= | ======= | ======== | ======== | | ******* | ======== | ======= | | | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{1}-L^{11}$ by PR equation of state($k_{13}=0$)of $CO_{2}(1)+N_{2}(2)+n-Nonadecane(3)$ system. CO2+N2+n-NONADECANE SYSTEM (T=297.15 K) Table 5.28 | | | | L1-PHASE | | | | | (PT G&D EOS DEV(%) EXPT G&D EOS DEV(%) EXPT
1909 0.9627 2.8459 0.0063 0.0162 157.1429 0.9786
1833 0.9552 2.8577 0.0141 0.0250 77.3050 0.9566
1752 0.9481 2.7789 0.0225 0.0341 51.5556 0.9396 | | | | | V-PHASE | | | |---|---------|----------|----------|---------|---------|----------|---------|---|---------|---------|---------|----------|---------|---------|---------| | ========= | ======= | ======== | ======== | | ======= | *======= | ====== | | ======= | ======= | ======= | ======= | -====== | | ======= | | P[BAR] | C02 | C02 | ABS | N2 | N2 | ABS | CO2 | C02 | ABS | N2 | N2 | ABS | C02 | C02 | ABS | | | EXPT | G&D EOS | DEV(%) | EXPT | GAD EOS | DEV(%) | EXPT | G&D EOS | DEV(%) | EXPT | G&D EOS | DEV(%) | EXPT | G&D EDS | DEV(%) | | | | | | ======= | | ======= | ======= | ======= | ======= | | ======= | | | | ====== | | 45.5000 | 0.7092 | 0.9449 | 33.2346 | 0.0034 | 0.0109 | 220.5882 | 0.9909 | 0.9627 | 2.8459 | 0.0063 | 0.0162 | 157.1429 | 0.9780 | 0.9524 | 2.6176 | | 68.9500 | 0.7028 | 0.9392 | 33.6369 | 0.0072 | 0.0166 | 130.5556 | 0.9833 | 0.9552 | 2.8577 | 0.0141 | 0.0250 | 77.3050 | 0.9562 | 0.9316 | 2.5727 | | 72.3900 | 0.6963 | 0.9342 | 34.1663 | 0.0108 | 0.0221 | 104.6296 | 0.9752 | 0.9481 | 2.7789 | 0.0225 | 0.0341 | 51.5556 | 0.9390 | 0.9147 | 2.5879 | | 75.8400 | 0.6896 | 0.9294 | 34.7738 | 0.0160 | 0.0275 | 71.8750 | 0.9669 | 0.9407 | 2.7097 | 0.0311 | 0.0434 | 39.5498 | 0.9232 | 0.9004 | 2.4697 | | 79.2900 | 0.6829 | 0.9241 | 35.3200 | 0.0184 | 0.0329 | 78.8043 | 0.9576 | 0.9325 | 2.6211 | 0.0406 | 0.0534 | 31.5271 | 0.9116 | 0.8892 | 2,4572 | | 82.7400 | 0.6764 | 0.9189 | 35.8516 | 0.0221 | 0.0383 | 73.3032 | 0.9471 | 0.9237 | 2.4707 | 0.0513 | 0.0645 | 25.7310 | 0.9040 | 0.8822 | 2.4115 | | ======================================= | ======= | ======= | | | ======= | ======= | ======= | | ======= | | | ======== | | | ======= | | AVG ABS DE | V(%) | | 34.4972 | | | 113.2927 | | | 2.7140 | | | 63.8019 | | | 2.5194 | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by G&D equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. | | L!-PHA | SE | | L2-PHASE V-PHASE | | | | | | |--|--|--|--|--|--------------------------------------|--|--|--|--| | P[BAR] | MOLAR VOL [| ML/6.MOL] | MOLAR | VOL [ML/ | '6.MOL] | MOLA | R VOL [XL/ | S.MOL] | | | | EXPT H&K
EOS | ABS
DEV(%) | EXPT | H&K
EDS | ABS
DEV(%) | EXPT | H&X
EOS | ABS
DEV(%) | | | 68.9500 131
72.3900 132
75.8400 132
79.2900 133 | .5000 144.700
.3000 145.800
.1000 146.800
.8000 147.300
.7000 148.800
.6000 149.800 | 00 11.0434
00 11.1279
00 10.9187
00 11.2939 | 59.9000
60.2000
61.3000
62.6000
64.6000
67.3000 | 61.2000
61.9000
62.9000
64.0000
65.3000
66.9000 | 2.8239
2.6101
2.2364
1.0836 | 168.9000
154.7000
144.6000
132.5000 | 172.3000
161.7000
149.8000
139.9000
129.5000
115.8000 | 3.7430
4.2629
3.1674
3.2503
3.0189
3.5803 | | | AVS ABS DEV(| %) | 11.1044 | | ======== | 2.1795 | | | 3.5038 | | Table 5.30 CO2+N2+n-NONADECANE(TEMP=297.15 K) | | | L1-PHASE | - 4 | | L2-PHASE | | | V-PHASE | | | |--|--|------------|--|--|--|--|--|--|--|--| | P[BAR] | MOLA | /JK] JOV R | G.XOL] | MOLAR | VOL [ML | /G.MOL] | MOLA | R VOL (XL) | '6.MOL] | | | | ЕХРТ | SRK
EDS | ABS
DEV(%) | ЕХРТ | SRK
EOS | ABS
DEV(Z) | EXPT | SRK
EOS | ABS
DEV(%) | | | 68.9500
72.3900
75.8400
79.2900 | 131.3000
132.1000
132.8000
133.7000 | | 45.6355
45.6207
45.6472
45.3313
45.6993
45.5423 | 60.2000
61.3000
62.6000
64.5000 | 73.7000
74.2000
74.8000
75.6000
76.5000
77.5000 | 23.2558
22.0228
20.7668
18.4211 | 168.9000
154.7000
144.6000
132.5000 |
188.8000
176.8000
163.9000
152.8000
140.6000
127.2000 | 5.4749
4.6773
5.9470
5.5708
6.1132
5.9117 | | | AVS ABS D |)EV(%) | | 45.5794 | | | 20.8554 | | | 5.6325 | | Comparisons of experimental and predicted molar volume by SRK and Harmens & Knapp equation of state($k_{i,j}=0$) as a function of pressure for V- $\Gamma_{i} - \Gamma_{i}$ phases of $CO_{2}(1)+N_{2}(2)+n-$ Nonadecane(3) system. Table 5.31 CD2+N2+n-NONADECANE(TEMP=297.15 K) | | | L1-PHASE | | | L2-PHASE | | V-PHASE | | | | |--|--|--|--|--|--|--|--|--|--|--| | P[BAR] | MOLAF | R VOL [ML/ | G.MOL] | MOLAR | VOL [ML/ | 6.MOL] | HOLAF | VOL [ML/ | G.MOL] | | | | EXPT | PR
EOS | ABS
DEV(%) | EXPT | PR
EOS | ABS
DEV(%) | EXPT | PR
EOS | ABS
DEV(%) | | | 68.9500
72.3900
75.8400
79.2900 | 130.6000
131.3000
132.1000
132.8000
133.7000
134.6000 | 171.0000
172.1000
172.6000
174.2000 | 30.2450
30.2361
30.2801
29.9699
30.2917
30.1634 | 59.0000
60.2000
61.3000
62.6000
64.6000
67.3000 | 66.7000
67.1000
67.9000
68.6000
69.6000
71.0000 | 11.4618
10.7667
9.5847
7.7399 | 179.0000
168.9000
154.7000
144.6000
132.5000
120.1000 | 166.6000
154.1000
143.6000
131.9000 | 0.4469
1.3618
0.3878
0.6916
0.4528
0.7494 | | | AVG ABS I | DEV(%) | | 30.1977 | | | 9.6836 | | | 0.6817 | | Table 5.32 CO2+N2+n-NONADECANE(TEMP=297.15 K) | ======================================= | | L1-FHASE | | | LZ-PHASE | | V-PHASE . | | | | |--|--|--|--|--|--|--|--|--|--|--| | P[BAR] | MOLAF | ? VOL [ML/ | 6.KOL] | MOLAR | VOL (ML/ | 6.MOL] | MOLAR VOL [ML/G.MOL] | | | | | | EXPT | G&D
EOS | ABS
DEV(%) | ЕХРТ | 6&D
EOS | ABS
DEV(%) | EXPT | G&D
EOS | ABS
DEV(%) | | | 68.9500
72.3900
75.8400
79.2900 | 130.6000
131.3000
132.1000
132.8000
133.7000
134.6000 | 191.2000
192.4000
193.0000
194.8000 | 45.6355
45.6207
45.6472
45.3313
45.6993
45.5423 | 59.0000
60.2000
61.3000
62.6000
64.6000
67.3000 | 73.7000
74.2000
74.9000
75.6000
76.6000
77.9000 | 23.2558
22.1860
20.7668
18.5759 | 179,0000
168,9000
154,7000
144,6000
132,5000
120,1000 | 176.9000
164.0000
153.0000
140.8000 | 5.4749
4.7365
6.0116
5.8091
6.2642
6.0783 | | | AVG ABS | DEV(%) | | 45.5794 | | 222222 | 20.9083 | | | 5.7291 | | Comparisons of experimental and predicted molar volume by PR and G&D equations of state($k_{i,j}=0$) as a function of pressure for $V-L^{i-1}$ phases of $CO_2(1)+N_2(2)+n$ -Nonadecane(3)system. [Data from Fall, D. J. and Luke, K. D. (1986).] Figure 5.24 Comparisons of experimental and predicted CO_2 mole fraction by SRK, HK, G&D and PR equations of state($k_{13}=0$) as a function of pressure for L^1 phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.25 Comparisons of experimental and predicted CO_2 mole fraction by SRK,HK,G&D and PR equations of state($k_{1,3}=0$) as a function of pressure for $L^{(1)}$ phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.26 Comparisons of experimental and predicted CO_2 mole fraction by SRK,HK,G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for vapor phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.27 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{13}=0$) as a function of pressure for L phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.28 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,j}=0$) as a function of pressure for $L^{(1)}$ phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.29 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{13}=0$) as a function of pressure for vapor phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. CO2+N2+n-NONADECANE LLV SYSTEM (T=301.15 K) Table 5.33 | ========= | | ======== | *======= | | ======= | ======= | ====== | ======== | ======= | ******** | | ======== | ======== | | ======= | |-------------------------------|----------------------------|----------------|---------------------------|----------------------------|----------------------------------|---------------|-------------|----------------------------|----------------------------|----------------------------|---------------|--------------------------------|----------------------------|----------------------------|----------------------------| | | L1-PHASE | | | | | | | | L2- | PHASE | | V-PHASE | | | | | P[BAR] | CO2
EXPT | CD2
SRK EOS | ABS
DEV(%) | N2
EXPT | N2
SRK EOS | ABS
DEV(%) | CO2
EXPT | CO2
SRK EOS | ABS
DEV(%) | N2
EXPT | N2
SRK EOS | ABS
DEV(%) | CD2
EXPT | CO2
SRK EOS | ABS
DEV(%) | | 72.3900
75.8400
79.2900 | 0.7137
0.7079
0.7016 | 0.9385 | 32.5067 · 32.5752 33.1385 | 0.0036
0.0067
0.0093 | 0.0120 2
0.0182 1
0.0233 1 | 71.6418 | 0.9785 | 0.9675
0.9574
0.9492 | 2.0848
2.1564
1.9827 | 0.0099
0.0195
0.0302 | 0.0312 | 104.0404
60.0000
40.3974 | 0.9782
0.9639
0.9521 | 0.9582
0.9426
0.9333 | 2.0446
2.2098
1.9746 | | AVG ABS DE | V(%) | | 32.7401 | | 1 | 85.1709 | : | | 2.0746 | | | 68.1459 | ======== | | 2.0763 | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{'}-L^{''}$ by SRK equation of state($k_{1,1}=0$) of $CO_{2}(1)+N_{2}(2)+n-Nonadecane(3)$ system. [Data from Fall, D. J. and Luke, K. D. (1986).] CO2+N2+n-NONADECANE LLV SYSTEM (T=301.15 K) Table 5.34 | | L1-PHASE | | | | | | | | ` L2-f | HASE | | | | | V-PHASE | | |-------------------------------|----------------------------|----------------|-------------------------------|----------------------------|----------------------------|---------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--| | P[BAR] | CO2
EXPT | CO2
H&K EOS | ABS
DEV(%) | N2
EXPT | N2
H&K EOS | ABS
DEV(%) | CO2
EXPT | CO2
H&K EOS | ABS
DEV(%) | N2
EXPT | N2
H&K EOS | ABS
DEV(%) | CO2
EXPT | CO2
H&K, EOS | ABS
DEV(%) | | | 72.3900
75.8400
79.2900 | 0.7137
0.7079
0.7016 | 0.9442 | 33.0391
33.3804
33.8940 | 0.0036
0.0067
0.0093 | 0.0040
0.0069
0.0096 | | 0.9891
0.9785
0.9684 | 0.9890
0.9807
0.9710 | 0.0911
0.2248
0.2685 | 0.0099
0.0195
0.0302 | 0.0107
0.0191
0.0289 | 8.0808
2.0513
4.3046 | 0.9782
0.9639
0.9521 | 0.9754
0.9615
0.9513 | 0.2862
0.2490
0.0840 | | | AVG ABS DE | V(%) | | 33.4378 | | | 5.7740 | | | 0.1948 | | | 4.8122 | | | 0.2064 | | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by Harmens & Knapp equation of state(k, =0)of CO (1)+N, (2)+n-Nonadecane(3)system. CO2+N2+n-NONADECANE LLV SYSTEM (T=301.15 K) Table 5.35 | 22222222 | ======= | ======= | ======== | ======== | | ======= | ======= | | | ======= | ======== | *======= | ====== | | ======= | | |-------------------------------|----------------------------|----------------------------|-------------------------------|----------------------------|--------------|----------------------------------|-------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------------|----------------------------|----------------------------|----------------------------|--| | | | | L1-PHASE | | | | | | | HASE | | | | V-PHASE | | | | P[BAR] | CO2
EXPT | CO2
PR EOS | ABS
DEV(%) | N2
EXPT | N2
PR EOS | ABS
DEV(%) | CO2
EXPT | CO2
PR EOS | ABS
DEV(%) | N2
EXPT | N2
PR EOS | ABS
DEV(%) | CO2
EXPT | CO2
PR EOS | ABS
DEV(%) | | | 72.3900
75.8400
79.2900 | 0.7137
0.7079
0.7016 | 0.8854
0.8973
0.8898 | 24.0577
26.7552
26.8244 | 0.0036
0.0067
0.0093 | 0.0166 | 700.0000
147.7612
150.5376 | 0.9785 | 0.9360
0.9543
0.9440 | 5.2727
2.4732
2.5196 | 0.0099
0.0195
0.0302 | 0.0508
0.0270
0.0388 | 413.1313
38.4615
28.4768 | 0.9782
0.9639
0.9521 | 0.9205
0.9452
0.9297 | 5.8986
1.9400
2.3527 | | | AVG ABS DE | V(%) | | 25.8791 | | | 332.7663 | | | 3.4218 | | | 160.0232 | | | 3.3971 | | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by PR equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. [Data from Fall, D. J. and Luke, K. D. (1986).] CO2+N2+n-NONADECANE LLV SYSTEM (T=301.15 K) Table 5.36 | 14 DIACE | | | | | | ======= | ======= |
======== | | ======= | ======== | ======== | | | | |-------------------------------|----------------------------|----------------|-------------------------------|----------------------------|----------------------------------|---------|------------------|----------------------------|----------------------------|----------------------------|---|--------------------|----------------------------|----------------------------|----------------------------| | 2222222 | L1-PHASE | | | | | | ======= | | | HASE | 000 THE DAY WAS AND AND AND AND AND AND | | V-PHASE | | | | P[BAR] | CO2
EXPT | CO2
G&D EOS | ABS
DEV(%) | N2
EXPT | N2
G&D EOS | ABS | CO2
EXPT | CO2
G&D EOS | ABS
DEV(%) | N2
EXPT | N2
G&D EOS | ABS
DEV(%) | CO2
EXPT | CO2
G&D E O S | ABS
DEV(%) | | 72.3900
75.8400
79.2900 | 0.7137
0.7079
0.7016 | | 32.5207
32.6035
33.1813 | 0.0036
0.0067
0.0093 | 0.0119 2
0.0180 1
0.0231 1 | 48.3871 | 0.9785
0.9684 | 0.9677
0.9577
0.9495 | 2.0646
2.1257
1.9517 | 0.0099
0.0195
0.0302 | 0.0201 10
0.0311
0.0422 | 59.4872
39.7351 | 0.9782
0.9639
0.9521 | 0.9583
0.9428
0.9336 | 2.0343
2.1890
1.9431 | | AVG ABS DE | V(%) | | 32.7685 | | | 82.5331 | | | 2.0473 | | | 67.4175 | | | 2.0555 | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by G&D equation of state($k_{1,j}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)system.$ | CO2+N2+n-NONADECANE | T=301.15 K LLV SYSTEM | Table 5.37 | |--|-------------------------------|--| | ,L1-PHASE | L2-PHASE | V-PHASE | | P[BAR] MOLAR VOL [ML/S.MCL] | MOLAR VOL [ML/S.MOL] | MOLAR VOL [ML/G.MOL] | | EXPT H&K ABS
EOS DEV() | EXPT H&K ABS
() EOS DEV(%) | EXPT H&K ABS EOS DEV(Z) | | 72.3700 130.6000 143.6000 9.9541
75.8400 131.3000 144.6000 10.1293
79.2900 132.2000 145.8000 10.2874 | 67.2000 68.7000 2.2321 13 | 6.9000 134.3000 8.5773
0.7000 120.7000 7.6511
4.1000 109.6000 3.9439 | | AV6 ABS DEV(%) 10.1237 | 2.8334 | 6.7241 | | ======= | CO2+N2+n | -NONADECAI | IE
 | T=301.15 | Κ | LLV SYST | EM Tal | ble 5. | 38 | |-----------|----------|----------------------------------|---------------|----------|------------|---------------|----------|------------|----------------------------| | | | L1-PHASE | | | L2-PHASE | | | V-PHASE | | | P[BAR] | HOLA | R VOL [ML/ | s.Mol] | · MOLAR | VOL [ML | /S.MOL] | AJOK | R VOL (ML | /6.MOL] | | ====== | EXPT | SRK
EOS | ABS
DEV(%) | ЕХРТ | SRK
EOS | ABS
DEV(%) | EXPT | SRK
EOS | A8S
DEV(%) | | 75.8400 | 131.3000 | 188.6000
189.7000
171.2000 | 44.4783 | | 81.1000 | 20.6845 | 130.7000 | 133.9000 | 1.3615
2.4484
5.6769 | | AVG ASS I |)EV(%) | | 44.5060 | | | 20.9783 | | | 3.1687 | Comparisons of experimental and predicted equilibrium mole fraction in $V-L^!-L^{!!}$ by SRK and Harmens & Knapp equation of state($k_{ij}=0$) of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. [Data from Fall, D. J. and Luke, K. D. (1986).] | | CO2+N2+n | -NONADECAN | E. | T=301.15 | K | LLV SYSTE | M Tab | 1e 5. | 39 | |-----------|----------|----------------------------------|-------------------------------|----------|-------------------------------|---------------|----------------------------------|------------|----------------------------| | | | L1-PHASE | | | L2-PHASE | | | V-PHASE | | | P[BAR] | MOLAI | R VOL [ML/ | 6.MOL) | MOLAR | VOL [ML/ | G.MOL) | MOLAF | R VOL (ML. | /6.MOL] | | | ЕХРТ | PR
EOS | ABS
DEV(%) | EXPT | PR
EOS | ABS
DEV(Z) | EXPT | PR
EOS | ABS
DEV(%) | | 75.8400 | 131.3000 | 171.0000
168.7000
169.6000 | 30.9342
28.4844
28.2905 | 67.2000 | 76.9000
73.3000
74.2000 | 9.0774 | 146.9000
130.7000
114.1000 | 139.4000 | 2.1784
6.6565
9.8160 | | AVG ABS C |)EY(%) | | 29.2363 | | | 10.8649 | | | 6.2169 | | | CO2+N2+n | -NONADECAI | VE | T=301.15 | K | LLV SYSTE | M Tab | 105.4 | 0 | |-----------|----------|----------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------|----------------------------------|------------|----------------------------| | | | L1-PHASE | | | L2-PHASE | | | V-PHASE | | | P[BAR] | MOLA | R VOL (XL) | /G.MOL] | MOLAR | VOL [HL/ | '6.MOL] | MOLA | R VOL [ML/ | 6.MOL] | | | EXPT | 6&D
EOS | ABS
DEV(%) | EXPT | G&D
Eos | ABS
DEV(%) | EXPT | 6&D
EOS | ABS
DEV(%) | | 75.8400 | 131.3000 | 188.6000
189.7000
189.7000 | 44.4104
44.4783
43.4947 | 64.3000
67.2000
71.4000 | 80.3000
81.2000
81.2000 | 20.8333 | 146.9000
130.7000
114.1000 | 134.1000 | 1.4976
2.6014
5.9597 | | AVG ABS I |)EV(%) | | 44.1278 | | | 19.8141 | | | 3.3529 | Comparisons of experimental and predicted molar volume by PR and G&D equations of state($k_{i,j}=0$) as a function of pressure for $V-L^{i-1}$ phases of $CO_2(1)+N_2(2)+n$ -Nonadecane(3)system. [Data from Fall, D. J. and Luke, K. D. (1986).] Figure 5.30 Comparisons of experimental and predicted molar volume by SRK,HK,G&D and PR equations of state($k_{13}=0$) as a function of pressure for L phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system. Figure 5.31 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for L^{11} phase of $CO_2(1)+N_2(2)+n-Nonadecane(3) system.$ Figure 5.32 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for vapor phase of $CO_{2}(1)+N_{2}(2)+n-Nonadecane(3)$ system.