Chapter V

Results of Computation by Equations of State

In this work, the results of calculation are presented in tables. The accuracy of equations of state in computation of liquid molar volume, vapor molar volume, phase equilibrium compositions in individual phase are meassured in term of absolute error deviation which is defined as (calexpt)*100/expt . Comparisons of experimental and predicted results by SRK, H&K, G&D and P&R equations of state as a function of pressure for individual phase are presented in figures . Two liquid-liquid-vapor equilibrium of ternary system are Methane+Ethane+n-Docosane and CO_2+N_2+n- Nonadecane.For Methane+Ethane+n-Docosane mixtures, comparisons of experimental and predicted results are shown T=298.15 and 303.15 K and those of CO_2+N_2+n- Nonadecane mixtures are shown at T=294.15,297.15 and 301.15 K.

METHANE + ETHANE + n-DOCOSANE (TEMP=298.15 K) Table 5.1

=======================================			=======	========		=======	=======	=======	========						=======
			L1-FHASE							PHASE				V-PHASE	
*********				=======		=======	=======	=======			========			========	=======
F[BAR]	0.1	C1	ABS	C2	0.2	ABS	Ci	Ci	ABS	C2	C2	ARS	C2	C2	ABS
	EXEL	SRK EUS	DEV(X)	EXPT	SRK EOS	DEV(%)	EXPT	SRK EOS	DEV(%)	EXPT	SRK EOS	DEV(X)	EXPT	SRK EDS	DEV(%)
I = I = I = I = I							======	========			========			========	
45.8800	0.0262	0.0324	23.6541	0.9095	0.9197	1.1215	0.0352	0.0403	14.4886	0.9546	0.9460	0.9009	0.9325	0.9246	0.8472
47.9200	0.0304	0.0370	21.7105	0.9007	0.9132	1.3878	0.0426	0.0475	11.5023	0.9490	0.9410	0.8430	0.9217	0.9145	0.7812
48.9500	0.0345	0.0422	22.3188	0.8920	0.9052	1.4798	0.0497	0.0546	9.8592	0.9432	0.9336	1.0178	0.9111	0.9038	0.8012
49.9900	0.0381	0.0462	21.2598	0.8844	0.9004	1.8091	0.0573	0.0624	8.9005	0.9357	0.9293	0.7900	0.9018	0.8945	0.8095
51.0200	0.0415	0.0509	22.6506	0.8769	0.8938	1.9272	0.0649	0.0703	8.3205	0.9300	0.9226	0.7957	0.8929	0.8865	0.7168
52.0600	0.0450	0.0556	23.5556	0.8699	0.8874	2.0117	0.0723	0.0784	8,4371	0.9234	0.9155	0.8555	0.8847	0.8793	0.6104
53.0900	0.0486	0.0602	23.8683	0.8634	0.8814	2.0848	0.0805	0.0867	7.7019	0.9159	0.9082	0.8407	0.8780	0.8734	0.5239
54.1200	0.0529	0.0646	22.1172	0.8547	0.8751	2.3868	0.0883	0.0959	8.6070	0.9091	0.9002	0.9790	0.8723	0.8488	0.4012
55.1600	0.0564	0.0691	22.5177	0.8477	0.8689	2.5009	0.0976	0.1047	7.2746	0.9002	0.8921	0.8998	0.8683	0.8655	0.3225
=========		=======				======	======	=======	========		========		=======	========	:=======
AVG ABS DE			22.6292			1.8566	,		9.4546		•	0.8803			0.6460
=========	========	=======	========			=======	=======	=======	========		========	========		=======	=======

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{'}-L^{''}$ by S-R-K equation of state($k_{i,j}=0$) of Methane(1)+Ethane (2)+n-Docosane(3)system.

	METHANE + ETHANE + n-DOCOSANE					(TEMP=298.15 K) Table 5.2					=======================================			
											A SHARE			
C1 EXPT	C1 H&K EOS	ABS DEV(%)	C2 EXPT	C2 H&K EOS	ABS DEV(%)	C2 EXPT	C2 H&K EOS	ABS DEV(%)	C1 EXPT	C1 H&K EOS	ABS DEV(%)	C2 EXPT	C2 H&K EOS	ABS DEV(%)
0.035 0.042 0.049 0.057 0.064 0.072 0.080 0.088	0.0382 0.0436 0.0526 0.0601 0.0678 0.0758 0.0850		0.9546 0.9490 0.9432 0.9367 0.9300 0.9234 0.9159 0.9091 0.9002	0.9684 0.9615 0.9562 0.9473 0.9398 0.9322 0.9241 0.9150 0.9035	1.4456 1.3172 1.3783 1.1316 1.0538 0.9530 0.8953 0.6490 0.3666	0.9325 0.9217 0.9111 0.9018 0.8929 0.8847 0.8780 0.8723 0.8683	0.9297 0.9190 0.9130 0.9004 0.8924 0.8854 0.8797	0.3003 0.2929 0.2085 0.1552 0.0560 0.0791 0.1936 0.3554 0.4146	0.0262 0.0304 0.0345 0.0381 0.0415 0.0450 0.0486 0.0529 0.0564	0.0216 0.0252 0.0275 0.0320 0.0353 0.0385 0.0417	17.5573 17.1053 20.2899 16.0105 14.9398 14.4444 14.1975 15.6900 15.6028	0.9095 0.9007 0.8920 0.8844 0.8769 0.8699 0.8634 0.8547 0.8477	0.9543 0.9473 0.9434 0.9340 0.9276 0.9215 0.9156 0.9097 0.9035	4.9258 5.1738 5.7623 5.6083 5.7817 5.9317 6.0459 6.4350 6.5825
DEV(%)		7.7067			1.0212		=======================================	0.2284	=======	=======================================	16.2042		========	5.8052

Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by Harmens & Knapp equation of state(k, =0)of CO₂ (1)+N₂(2)+n-Nonadecane(3)system.

[Data from Fall, D. J. and Luke, K. D. (1986).]

METHANE + ETHANE + n-DOCOSANE (TEMP=298.15 K) Table 5.3

	it minut	Limite					=======	=======					=======		=======
2222222			L1-PHASE						L2-f	PHASE	:=======			V-PHASE	========
P[BAR]	C1 EXPT	C1 PR EOS	DEV(X)	C2 EXPT	C2 PR EOS	ABS DEV(%)	C1 EXPT	C1 PR EOS	ABS DEV(%)	C2 EXPT	C2 PR EDS	ABS DEV(%)	C2 EXPT	C2 PR EOS	ABS DEV(%)
46.8800 47.9200 48.9500 49.9900 51.0200 52.0600 53.0900 54.1200 55.1600	0.0262 0.0304 0.0345 0.0381 0.0415 0.0450 0.0486 0.0529 0.0564	0.0343 0.0392 0.0440 0.0488 0.0535 0.0582 0.0629 0.0659 0.0719	30.9160 28.9474 27.5362 28.0840 28.9157 29.3333 29.4239 24.5747 27.4823	0.9095 0.9007 0.8920 0.8844 0.8769 0.8634 0.8547 0.8477	0.9168 0.9098 0.9029 0.8961 0.8894 0.8829 0.8767 0.8695 0.8638	0.8026 1.0103 1.2220 1.3229 1.4255 1.4944 1.5404 1.7316 1.8993	0.0352 0.0426 0.0497 0.0573 0.0649 0.0723 0.0805 0.0883 0.0976	0.0422 0.0497 0.0572 0.0650 0.0729 0.0809 0.0892 0.0989 0.1072	19.8864 16.6667 15.0905 13.4380 12.3267 11.8949 10.8075 12.0045 9.8361	0.9546 0.9490 0.9432 0.9367 0.9300 0.9234 0.9159 0.9091 0.9002	0.9430 0.9377 0.9318 0.9255 0.9189 0.9119 0.9047 0.8962 0.8888	1.2152 1.1907 1.2087 1.1957 1.1935 1.2454 1.2228 1.4190 1.2664	0.9325 0.9217 0.9111 0.9018 0.8929 0.8847 0.8780 0.8723 0.8683	0.9189 0.9091 0.8998 0.8913 0.8834 0.8763 0.8704 0.8650 0.8623	1.4584 1.3670 1.2403 1.1643 1.0639 0.9495 0.8656 0.8369 0.6910
· AVG ABS DI	======= EV(%) ========	2222222	28.3570		========	1.3832		========	13.5501	=======================================	========	1.2397			1.0708

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{'}-L^{''}$ by PR equation of state($k_{i,j}=0$) of Methane(1)+Ethane(2)+n-Docosane(3)system.

METHANE + ETHANE + n-DOCOSANE (TEMP=298.15 K) Table 5.4	METHANE +	FTHANE +	n-DOCOSANE	(TEMP=298.15 K)		Table 5.4	ı
---	-----------	----------	------------	-----------------	--	-----------	---

=======================================	========		========			========	=======================================	=======	========	********		=======		=======	=======
			L1-PHASE				je:		L2-1	PHASE				V-PHASE	
========		=======	========			========	========		========				=========		*********
P[BAR]	C1	C1	ABS	C2	C2	ABS	C1	. C1	ABS	C2	C2	ABS	C2	C2	ABS
	EXPT	G&D	DEV(%)	EXPT	G&D	DEV(%)	EXPT	6&D	DEV(%)	EXPT	G&D	DEV(%)	EXPT	G&D	DEV(X)
========		.======	========	========		.========		=======	=======				*		
46.8800	0.0262	0.0316	20.6107	0.9095	0.9207	1.2314	0.0352	0.0394	11.9318	0.9546	0.9469	0.8066	0.9325	0.9230	1.0188
47.9200	0.0304	0.0365	20.065B	0.9007	0.9139	1.4655	0.0426	0.0469	10.0939	0.9490	0.9417	0.7692	0.9217	0.9129	0.9548
48.9500	0.0345	0.0414	20.0000	0.8920	0.9069	1.6704	0.0497	0.0546	9.8592	0.9432	0.9355	0.8164	0.9111	0.9044	0.7354
49.9900	0.0381	0.0461	20.9974	0.8844	0.9006	1.8318	0.0573	0.0622	8.5515	0.9367	0.9294	0.7793	0.9018	0.8946	0.7984
51.0200	0.0415	0.0507	22.1687	0.8769	0.8940	1.9501	0.0649	0.0701	8.0123	0.9300	0.9228	0.7742	0.8929	0.8866	0.7056
52.0600	0.0450	0.0554	23.1111	0.8699	0.8877	2.0462	0.0723	0.0782	8.1604	0.9234	0.9157	0.8339	0.8847	0.8793	0.6104
53.0900	0.0486	0.0600	23.4568	0.8634	0.8816	2.1079	0.0805	0.0865	7.4534	0.9159	0.9084	0.8189	0.8780	0.8735	0.5125
54.1200	0.0529	0.0644	21.7391	0.8547	0.8754	2.4219	0.0883	0.0957	8.3805	0.9091	0.9004	0.9570	0.8723	0.8689	0.3898
55.1600	0.0564	0.0688	21.9858	0.8477	0.8692	2.5363	0.0976	0.1045	7.0697	0.9002	0.8923	0.8776	0.8683	0.8655	0.3225
*********	========	=======	=======		========			=======				========			
AVG ABS DE	EV(%)		21.5706			1.9179		*	8.8347			0.8259			0.6720
		=======	=======	=======			========								

Comparisons of experimental and predicted equilibrium mole fraction in V-L¹-L¹¹ by G&D equation of state(k, =0) of Methane(1) +Ethane(2)+n-Docosane(3)system.

[Data from Jangkamolkulchai, A. and Luke, K.D. (1989).]

Table 5.5	METHANE + ETHANE + n-DOCOSANE	T=298.15 K
=======================================		

	=======	=======	L2-PHASE	========	v-phase				
L1-PHASE				-=======		=======	=======		
P[BAR] MOLAR VOL [ML/	G.MOL]	MOLAR	VOL [ML/	6.MOL)	MOLAR	VOL [XL/	3.MOL]		
EXPT SRK EDS	ABS DEV(%)	EXPT	SRK EOS	ABS DEV(%)	EXPT	SRK EOS	ABS DEV(%)		
46.8800 89.3000 110.9000 47.9200 90.2000 112.5000 48.9500 91.0000 114.1000 49.9900 92.2000 115.5000 51.0200 93.5000 116.9000 52.0600 94.4000 118.2000 53.0900 95.3000 119.2000 54.1200 96.4000 120.9000 55.1600 97.3000 122.2000	24.1881 24.7228 25.3846 25.2711 25.0267 25.2119 25.0787 25.4149 25.5910	88.0000 89.1000 90.3000 91.5000 93.1000 95.2000	102.2000 102.4000 102.7000 105.8900 107.1000 108.6000 110.3000 112.7000 114.7000	16.3636 15.2637 17.1650 17.0492 16.6488 15.8613 16.2719	229.9000 221.3000 213.3000 205.2000 197.5000 188.8000 179.8000 169.7000 159.1000	236.6000 217.1000 216.6000 206.7000 196.6000 185.3000 173.8000	7.6120 6.9137 1.7815 5.5556 4.6582 4.1314 3.0590 2.4160 1.5713		
AVG ABS DEV(%)	25.0989			16.3120			4.1887		

Comparisons of experimental and predicted molar volume by S-R-K equation of state(k, =0) as a function of pressure for V-L'-L'' phases of Methane(1)+Ethane(2)+n-Docosane(3)system.

[Data from Jangkamolkulchai, A. and Luke, K.D.(1989).]

Table	5.6				n-DOCOSAI		T=298.15	K	
========	=======	L1-PHASE			L2-PHASE			V-PHASE	
P[BAR]	MOLAR	1000 CO 100	6.MOL]		VOL [ML/			VOL [XL/I	6.MOL]
	EXPI	HAK EOS	ABS DEV(%)	EXFT	H&K EOS	ABS DEV(%)	EXPT	H&K EOS	ARS DEV(%)
46.8800 47.9200 48.9500 49.9900 51.0200 52.0400 53.0900 54.1200 55.1600	89.3000 90.2000 91.0000 72.2000 93.5000 94.4000 95.3000 94.4060 97.3000	98.3000 87.4000 88.8000 87.6000 90.6000 91.6000 92.3000 93.5000 94.5000	3.3595 3.1042 2.4176 2.8200 3.1016 2.9661 3.1480 3.0083 2.8777	86.8990 88.0000 89.1000 90.3000 91.5000 93.1000 95.2000 97.1000 100.4000	84.7000 86.4000 87.9000 89.6000 91.3000 93.1000 95.2000 98.7000	2.4194 1.8182 1.3468 0.7752 0.2186 0.0000 0.0000	229.7000 221.3000 213.3000 205.2000 197.5000 188.8000 179.8000 169.7000 159.1000	217.4000 209.0000 201.0000 192.0000 182.8000 172.5000 162.1000	0.3045 0.8586 2.0159 2.0468 2.7848 3.1780 4.0601 4.4785 5.0711
avg abs Ď			2.9781		=======================================	0.9804	=======================================		2.7576

Comparisons of experimental and predicted molar volume by Harmens & Knapp equation of state(k, section) as a function of pressure for V-L'-L' phases of Methane(1)+Ethane(2)+n-Docosane(3) system.

Table	5.7				+ n-DOCOSA			K	
		L1-PHASE		-	L2-PHASE			V-PHASE	
P[BAR]		R VOL [ML/							5.MOL]
£	EXPT	PR EOS	ABS DEV(%)	EXPT	PR EOS	ABS DEV(%)	EXPT		ABS DEV(%)
46.8800 47.9200 48.9500 49.9900 51.0200 52.0600 53.0900 54.1200 55.1600	89.3000 90.2000 91.0000 92.2000 93.5000 94.4000 95.3000 96.4000	99.3000 100.7000 102.1000 103.4000 104.7000 105.8000 106.7000 109.1000 109.3000	11.1982 11.6408 12.1978 12.1475 11.9786 12.0763 11.9622 13.1743	84.8000 88.0000 89.1000 90.3000 91.5000 93.1000 95.2000	92.2000 93.3000 94.5000 95.8000 97.1000 98.6000 100.3000 102.9000	6.0227 6.0606 6.0908 6.1202 5.9076 5.3571 5.9732	229.9000 221.3000 213.3000 205.2000 197.5000 188.8000 179.8000 169.7000 159.1000	222.3000 213.2000 203.2000 193.9000 184.4000 173.8000 163.1000	1.5224 0.4519 0.0469 0.9747 1.8228 2.3305 3.3370 3.8892 4.9654
AVG ABS D			12.0787			5.8040			2.1490

Comparisons of experimental and predicted molar volume by PR equation of state(k_{13} =0) as a function of pressure for V-L¹-L¹¹ phases of Methane(1)+Ethane(2)+n-Docosane(3)system.

Table	5.8		METHANE +	ETHANE +	n-Docosa	NE	T=298.15	K	
		L1-PHASE			L2-PHASE			V-PHASE	
P[8AR]	MOLAF	R VOL [ML/	-	MOLAF	YOL (ML/	6.MOL)	MOLAF	VOL (ML/	G.MOL)
	EXPT	G&D EOS	ABS DEV(%)	EXPT	G&D EOS	ABS DEV(%)	EXPT	G&D EOS	ABS DEV(%)
46.9800 47.9200 48.9500 49.9900 51.0200 52.0600 53.0900 54.1200 55.1600	70.2000 71.0000 92.2000 93.5000 94.4000 95.3000 96.4000	110.9000 112.5000 114.1000 115.5000 116.9000 118.2000 119.2000 120.9000 122.1000	24.1881 24.7228 25.3846 25.2711 25.0267 25.2119 25.0787 25.4149 25.4882	88.0000 87.1000 90.3000 91.5000 93.1000 95.2000	102.2000 103.3000 104.5000 105.8000 107.2000 108.6000 110.3000 113.0000 115.0000	17.3864 17.2840 17.1650 17.1585 16.6488 15.8613 16.3749	229.9000 221.3000 213.3000 205.2000 197.5000 188.8000 179.8000 169.7000 159.1000	236.7000 222.1000 216.8000 206.9000 196.8000 185.6000 174.2000	7.6555 6.9589 4.1256 5.6530 4.7595 4.2373 3.2258 2.6517 1.8228
AVG ABS DE	V(%)	=======================================	25.0875			16.6847			4.5656

Comparisons of experimental and predicted molar volume by G&D equation of state($k_{13}=0$) as a function of pressure for $V-L^1-L^{11}$ phases of Methane(1)+Ethane(2)+n-Docosane(3)system.

Figure 5.1 Comparisons of experimental and predicted mthane mole fraction by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for L phase of Methane(1) +Ethane(2)+n-Docosane(3)system.

Figure 5.2 Comparisons of experimental and predicted Methane mole fraction by SRK, HK, G&D and PR equations of state($k_{1,j}=0$) as a function of pressure for $L^{1,j}$ phase of Methane(1)+Ethane (2)+n-Docosane(3)system.

Figure 5.3 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for L^{i} phase of Methane(1) +Ethane(2)+n-Docosane(3)system.

Figure 5.4 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for $L^{i,j}$ phase of Methane(1) +Ethane(2)+n-Docosane(3)system.

Figure 5.5 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for vapor phase of Methane(1)+Ethane(2)+n-Docosane(3)system.[Data from Jangkamolkulchai, A. and Luke, K.D.(1989).]

Figure 5.6 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for L phase of Methane(1)+Ethane(2)+n-Docosane(3)system.

Figure 5.7 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,j}=0$) as a function of pressure for $L^{1,j}$ phase of Methane(1) +Ethane(2)+n-Docosane(3)system.

Figure 5.8 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for vapor phase of Methane(1)+Ethane(2)+n-Docosane(3)system.

	TEINHNE.	r CINHNE 1	า ก-มบบบอล	NE.	[1=303.1	3 k}	Idbi	95.9							
			L1-PHASE					=======================================	L2-	PHASE				V-PHASE	222222
P[BAR	C1 EXPT	C1 SRK EOS	ABS DEV(%)	C2 EXPT	C2 SRK EOS	ABS DEV(%)	C1 EXPT	C1 SRK EOS	ABS DEV(%)	C2 EXPT	C2 SRK EDS	ABS DEV(X)	C2 EXPT	C2 SRK EOS	ABS DEV(%)
47.350 47.920 48.610 49.100 49.640 50.190 51.020 51.710 52.430	0 0.0077 0 0.0106 0 0.0126 0 0.0147 0 0.0168 0 0.0199 0 0.0225	0.0104 0.0137 0.0160 0.0185 0.0212 0.0250 0.0281	26.5306 26.1905 25.6281	0.9252 0.9204 0.9145 0.9108 0.9068 0.9026 0.8965 0.8916 0.8867	0.9422 0.9383 0.9336 0.9305 0.9269 0.9233 0.9180 0.9137 0.9093	1.8374 1.9448 2.0886 2.1629 2.2166 2.2934 2.3982 2.4787 2.5488	0.0092 0.0129 0.0173 0.0202 0.0236 0.0271 0.0331 0.0382 0.0436	0.0141 0.0189 0.0224	10.8696 9.3023 9.2486 10.8911 11.4407 11.8081 10.8761 9.9476 9.6330	0.9837 0.9807 0.9771 0.9747 0.9717 0.9686 0.9634 0.9588 0.9539	0.9810 0.9779 0.9741 0.9712 0.9678 0.9642 0.9589 0.9542 0.9491	0.2745 0.2855 0.3070 0.3591 0.4014 0.4543 0.4671 0.4798 0.5032	0.9871 0.9806 0.9723 0.9677 0.9625 0.9573 0.9506 0.9453 0.9404	0.9823 0.9762 0.9690 0.9643 0.9592 0.9543 0.9478 0.9428 0.9381	0.4863 0.4487 0.3394 0.3513 0.3429 0.3134 0.2946 0.2645 0.2446
AVG ABS	DEV(%)		29.1261			2.2188			10.4463			0.3924			0.3428

Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by S-R-K equation of state(k, =0) of Methane(1)+Ethane(2)+n-Docosane(3) system.

[Data from Jangkamolkulchai, A. and Luke, K.D.(1989).]

	METHANE +	ETHANE +	n-DCCOSAI	¥Ε	(T=303.15	K)	Т	able 5	. 10						
L. 11111		=======================================	L1-PHASE						. L2-1	PHASE				V-PHASE	
P[BAR]	C1 EXPT	C1 H&K EOS	ABS DEV(%)	C2 EXPT	C2 H&K EOS	ABS DEV(%)	C1 EXPT.	C1 H&K EOS	ABS DEV(%)	C2 EXPT	C2 H&K EDS	ABS DEV(%)	C2 EXPT	C2 H&K EOS	ABS DEV(%)
47.3500 47.9200 48.6100 49.1000 49.6400 50.1900 51.7100 52.4300	0.0077 0.0106 0.0126 0.0147 0.0168 0.0199 0.0225	0.0028 0.0049 0.0074 0.0091 0.0109 0.0127 0.0154 0.0177 0.0200	47.1698 36.3636 30.1887 27.7778 25.8503 24.4048 22.6131 21.3333 20.6349		0.9630 0.9589 0.9541 0.9510 0.9476 0.9441 0.9387 0.9344 0.9302	4.5978 4.7072	0.0092 0.0129 0.0173 0.0202 0.0236 0.0271 0.0331 0.0382 0.0435	0.0045 0.0080 0.0124 0.0156 0.0190 0.0226 0.0286 0.0336 0.0391	37.9845 28.3237 22.7723 19.4915 16.6052 13.5952	0.9837 0.9807 0.9771 0.9747 0.9717 0.9686 0.9634 0.9588 0.9539	0.9953 0.9918 0.9874 0.9843 0.9809 0.9773 0.9714 0.9664 0.9609	1.1792 1.1318 1.0541 0.9849 0.9468 0.8982 0.8304 0.7927 0.7338	0.9871 0.9806 0.9723 0.9677 0.9625 0.9573 0.9506 0.9453 0.9404	0.9912 0.9848 0.9773 0.9725 0.9674 0.9625 0.9556 0.9504 0.9455	0.4154 0.4283 0.5142 0.4960 0.5091 0.5432 0.5260 0.5395 0.5423
AVG ABS	DEV(%)	:=======	28.4818			4.5026			23.5803			0.9502			0.5016

Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by Harmens & Knapp equation of state(k, =0)of Methane(1)+Ethane(2)+n-Docosane(3)system.

[Data from Jangkamolkulchai, A. and Luke, K.D. (1989).]

METHANE + ETHANE + n-DOCOSANE

(T=303.15 K)

Table 5.11

========															
	L1-PHASE								L2-F	HASE				V-PHASE	
=========			========				********		========					=======================================	
P[BAR]	C1	Ci	ABS	C2	C2	ABS	Ci	Ci	ABS	C2	C2	ABS	C2	C2	ABS
	EXPT	PR EDS	DEV(%)	EXPT	PR EOS	DEV(%)	EXPT	PR EOS	DEV(%)	EXPT	PR EOS	DEV(%)	EXPT	PR EOS	DEV(%)
	========	========	========			=======	======	=======			=======	=======	=======	========	========
47.3500	0.0053	0.0097	83.0189	0.9252	0.9390	1.4916	0.0092	0.0127	38.0435	0.9837	0.9774	0.6404	0.9871	0.9781	0.9118
47.9200	0.0077	0.0124	61.0390	0.9204	0.9351	1.5971	0.0129	0.0166	28.6822	0.9807	0.9744	0.6424	0.9806	0.9722	0.8566
48.6100	0.0106	0.0157	48.1132	0.9145	0.9304	0.9304	0.0173	0.0213	23.1214	0.9771	0.9707	0.6550	0.9723	0.9654	0.7097
49.1000	0.0126	0.0180	42.8571	0.9108	0.9272	1.8006	0.0202	0.0249	23.2673	0.9747	0.9678	0.7079	0.9677	0.9607	0.7234
49.6400	0.0147	0.0206	40.1361	0.9068	0.9235	1.8416	0.0236	0.0288	22.0339	0.9717	0.9644	0.7513	0.9625	0.9557	0.7065
50.1900	0.0168	0.0232	38.0952	0.9026	0.9198	1.9056	0.0271	0.0328	21.0332	0.9688	0.9608	0.8053	0.9573	0.9509	0.6685
51.0200	0.0199	0.0271	36.1809	0.8965	0.9144	1.9967	0.0331	0.0391	18.1269	0.9634	0.9556	0.8096	0.9506	0.9445	0.6417
51.7100	0.0225	0.0302	34.2222	0.8916	0.9100	2.0637	0.0382	0.0445	16.4921	0.9588	0.9509	0.8239	0.9453	0.9395	0.6136
52.4300	0.0252	0.0335	32.9365	0.8867	0.9055	2.1202	0.0436	0.0503	15.3670	0.9539	0.9459	0.8387	0.9404	0.9348	0.5955
========				========		*======	======		========				========	=====	
AVG ABS DI	AVG ABS DEV(%) 46.2888			1.7497 22.9075							0.7416			0.7141	
========	========		=======	========		=======		=======	========			========		=======	========

Comparisons of experimental and predicted molar volume by PR equation of state(k, =0) as a function of pressure for V-L'-L' phases of Methane(1)+Ethane(2)+n-Docosane(3)system.

[Data from Jangkamolkulchai, A. and Luke, K.D.(1989).]

METHANE + ETHANE + n-DOCOSANE (T=303.15 K) Table 5.12

91	L1-PHASE							L2-PHASE						V-PHASE		
P(BAR)	C1 EXPT	C1 G&D EOS	ABS DEV(%)	C2 EXPT	C2 G&D EOS	ABS DEV(%)	C1 EXPT	C1 G&D EOS	ABS DEV(%)	C2 EXPT	C2 G&D EOS	ABS DEV(%)	C2 EXPT	C2 G&D EOS	ABS DEV(%)	
47.3500 47.9200 48.6100 49.1000 49.6400 50.1900 51.0200 51.7100 52.4300	0.0053 0.0077 0.0106 0.0126 0.0147 0.0168 0.0199 0.0225 0.0252	0.0076 0.0103 0.0136 0.0159 0.0185 0.0211 0.0249 0.0280 0.0312	43.3962 33.7662 28.3019 26.1905 25.8503 25.5952 25.1256 24.4444 23.8095	0.9252 0.9204 0.9145 0.9108 0.9068 0.9026 0.8965 0.8916	0.9422 0.9383 0.9337 0.9305 0.9270 0.9234 0.9181 0.9138 0.9095	2.1629 2.2276 2.3045 2.4094 2.4899	0.0092 0.0129 0.0173 0.0202 0.0236 0.0271 0.0331 0.0382 0.0436	0.0101 0.0140 0.0188 0.0223 0.0262 0.0302 0.0365 0.0419	9.7826 8.5271 8.6705 10.3960 11.0169 11.4391 10.2719 9.6859 9.1743	0.9837 0.9807 0.9771 0.9747 0.9717 0.9686 0.9634 0.9588 0.9539	0.9810 0.9780 0.9742 0.9713 0.9679 0.9644 0.9590 0.9543 0.9492	0.2745 0.2753 0.2968 0.3488 0.3911 0.4336 0.4567 0.4693	0.9871 0.9806 0.9723 0.9677 0.9625 0.9573 0.9506 0.9453	0.9823 0.9763 0.9691 0.9644 0.9593 0.9544 0.9479 0.9429 0.9382	0.4863 0.4385 0.3291 0.3410 0.3325 0.3029 0.2840 0.2539 0.2339	
========	52.4300 0.0252 0.0312 ====================================					2.2275								.7302		

Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by G&D equation of state(k, =0)of Methane(1)+Ethane(2)+n-Docosane(3)system.

[Data from Jangkamolkulchai, A. and Luke, K.D. (1989).]

Table 5.13	METHANE		n-DOCOSA	(T=303.1			
L	1-PHASE		LZ-FHASE				
	VOL [HL/6.MOL]					6.MOL)	
EXPT	SRK ABS EOS DEV(%)	EXPT	SRK EOS	ABS DEV(%)	EXPT	SRK EDS	ABS DEV(%)
47.3500 92.1000 1 47.9200 92.7000 1 48.6100 93.2000 1 49.1000 93.7000 1 49.6400 94.1000 1 50.1900 94.6000 1 51.0200 95.3000 1 51.7100 95.9000 1 52.4300 96.2000 1	15.4000 24.4876 16.4000 24.8927 17.0000 24.8666 17.7000 25.0797 18.4000 25.1586 19.5000 25.3935 20.3000 25.4432	91.1000 92.2000 93.1000 94.0000 95.1000 97.1000	107.1000 110.1000 111.3000 112.2000 113.0000 113.7000 116.1000 117.8000	20.8562 20.7158 20.5156 20.2128 19.7687 19.5675 18.6304	215.4000 210.3000 203.9000 197.0000 192.5000 187.6000 180.0000 173.3000 166.3000	221.3000 216.2000 209.9000 203.7000 197.6000 186.2000 177.5000	5.3853 5.2306 6.0324 6.5482 5.8182 5.3305 3.4444 2.4235 1.5033
AVG ABS DEV(%)	25.0590			19.8505		:=======	4.6352

Comparisons of experimental and predicted molar volume by S-R-K equation of state($k_{13}=0$) as a function of pressure for V-L'-L' phases of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

[Data from Fall, D.J. and Luke, K.D. (1986).]

Table 5.14 METHANE + ETHANE + n-DOCOSANE

(T=303.15 K)

=======		=======										
		L1-PHASE			L2-PHASE		V-PHASE					
P[BAR]	AOLAR	VOL [ML/	G.MOL)	MOLA	R VOL [ML/	6.MOL]	MOLA	R VOL [ML/	6.MOL)			
	EXPT	H&K EOS	ABS DEV(%)	EXPT	H&K EDS	ABS DEV(%)	EXPT	H&X Eos	ABS DEV(%)			
47.3500 47.9200 48.6100 49.1000 49.6400 50.1900 51.0200 51.7100 52.4300	92.1000 92.7000 93.2000 93.7000 94.1000 94.6000 95.3000 95.9000 96.2000	88,9000 89,5000 90,2000 90,6000 91,1000 91,6000 92,4000 93,6000 93,6000	3.4745 3.4520 3.2189 3.3084 3.1881 3.1712 3.0430 3.0240 2.7027	90.2000 91.1000 92.2000 93.1000 94.0000 95.1000 97.1000 99.3000 102.1000	92.7000 94.3000 95.4000 96.4000 97.5000 100.2000 102.3000	1.7563 2.2777 2.4705 2.5532 2.5237 3.1926 3.0211	215.4000 210.3000 203.9000 197.0000 192.5000 187.6000 180.0000 173.3000 166.3000	204.6000 201.2000 195.4000 190.0000 185.0000 175.1000 167.8000	2.7391 2.7104 1.3242 0.8122 1.2987 1.3859 2.7222 3.1737 3.6681			
======= AVG ABS D =======	====== EV(%) =======		3.1759			2.4544			2.2038			

Comparisons of experimental and predicted molar volume by Harmens & Knapp equation of state(k =0) as a function of pressure for V-L -L 11 phases of Methane(1)+Ethane(2)+n-Docosane(3) system.

Table	5.15		METHANE +	ETHANE +	n-DOCOSA	NE =======	(T=303.1				
22222333		L1-PHASE			L2-PHASE		V-PHASE				
P[BAR]	MOLAF	R VOL [ML/			VOL [ML/		MOLAR VOL [ML/6.MOL]				
	EXPT	PR EOS	ABS DEV(%)	EXPT	PR EOS	ABS DEV(%)	EXPT	PR EOS	ABS DEV(%)		
47.3500 47.9200 48.5100 49.1000 49.6400 50.1900 51.0200 51.7100 52.4300	92.7000 93.2000 93.7000 94.1000 94.6000 95.3000 95.9000	102.7000 103.4000 104.3000 104.8000 105.4000 106.0000 107.0000 107.7000 108.4000	11.5092 11.5426 11.7099 11.8463 12.0085 12.0507 12.2770 12.3045 12.6819	93.1000 94.0000 95.1000 97.1000	98.9000 99.9000 101.1000 102.0000 102.7000 103.6000 105.8000 107.5000 109.6000	9.6597 9.6529 9.5596 9.2553 8.9380 8.9598 8.2578		206.9000 202.3000 196.3000 190.6000 185.0000	1.4392 1.6167 0.7847 0.3553 0.9870 1.3859 3.0000 3.8084 4.7505		
AVG ABS I			12.0145			9.0305		3222222	2.0142		

Comparisons of experimental and predicted molar volume by PR equation of state($k_1=0$) as a function of pressure for $V-L^{\dagger}-L^{\dagger}$ phases of Methane(1)+Ethane(2)+n-Docosane(3)system.

Table	5.16	1	METHANE +	ETHANE +	n-DOCOSA	(T=303.15 K)				
***********	 L	1-PHASE			L2-PHASE		y-phase			
P[BAR]	MOLAR	VOL [ML/	G.MOL]	MOLAR	VOL [ML/	6.MOL]	MOLAR VOL [ML/G.MOL]			
	EXPT	6&D EOS	ABS DEV(%)	EXPT	S&D EDS	ARS DEV(%)	EXPT	6&D EOS	ABS DEV(%)	
47.3500 47.9200 48.6100 49.1000 49.6400 50.1900 51.0200 51.7100 52.4300	92.7000 1 92.7000 1 93.2000 1 93.7000 1 94.1000 1 94.6000 1 95.3000 1 96.2000 1	15.4000 16.4000 17.0000 17.7000 118.4000 119.4000 120.3000	24.4300 24.4876 24.8927 24.8666 25.0797 25.1586 25.2886 25.4432 25.7796	91.1000 92.2000 93.1000 94.0000 95.1000 97.1000	109.1000 110.1000 111.4000 112.2000 113.0000 113.7000 116.1000 117.7000 119.7000	20.8562 20.8243 20.5156 20.2128 19.7687 19.5675 18.7311	215.4000 210.3000 203.9000 197.0000 192.5000 187.6000 180.0000 173.3000 166.3000	221.4000 216.4000 210.1000 203.9000 197.9000 186.6000 178.0000	5.4318 5.2782 6.1305 6.6497 5.9221 5.4904 3.6667 2.7121 1.7438	
AVG ABS [========	=======	25.0474	========	=======	19.8737 ======	======= /	=======================================	4.7806	

Comparisons of experimental and predicted molar volume by G&D equation of state(k, =0) as a function of pressure for V-L'-L' phases of Methane(1)+Ethane(2)+n-Docosane(3)system.

Figure 5.9 Comparisons of experimental and predicted mthane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for L' phase of Methane(1) +Ethane(2)+n-Docosane(3)system.

Figure 5.10 Comparisons of experimental and predicted Methane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for L' phase of Methane(1)+Ethane (2)+n-Docosane(3)system.

Figure 5.11 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for L phase of Methane(1) +Ethane(2)+n-Docosane(3)system.

Figure 5.12 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for $L^{i,j}$ phase of Methane(1) +Ethane(2)+n-Docosane(3)system.

Figure 5.13 Comparisons of experimental and predicted ethane mole fraction by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for vapor phase of Methane(1)+Ethane(2)+n-Docosane(3)system.[Data from Jangkamolkulchai, A. and Luke, K.D.(1989).]

Figure 5.14 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{i,j}$ =0) as a function of pressure for L phase of Methane(1)+Ethane(2)+n-Docosane(3)system.

Figure 5.15 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{13}=0$) as a function of pressure for L^{11} phase of Methane(1) +Ethane(2)+n-Docosane(3)system.

Figure 5.16 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state(k, =0) as a function of pressure for vapor phase of Methane(1)+Ethane(2)+n-Docosane(3)system.

Table 5.17

========																	
			L1-PHASE			L2-PHASE								V-PHASE			
=======	========	========		=======	=======	=======	======	=======			=======		=======				
P[BAR]	CO2 EXPT	CO2 SRK EOS	ABS DEV(%)	N2 EXPT	N2 SRK EOS	ABS DEV(%)	CO2	CO2 SRK EOS	ABS DEV(%)	N2 EXPT	N2 SRK EOS	ABS DEV(%)	CO2 EXPT	CO2 SRK EOS	ABS DEV(%)		
. =======			=======	=======	========	=======================================	=======	========									
65.5000	0.6992	0.9214	31.7792	0.0066	0.0215	225.7576	0.9778	0.9345	4.4283	0.0153	0.0285	86.2745	0.9460	0.9026	4.5877		
68.9500	0.6935	0.9168	32.1990	0.0101	0.0271	168.3168	0.9705	0.9287	4.3071	0.0230	0.0366	59.1304	0.9243	0.8835	4.4142		
72.3900		0.9120	32.6160	0.0133	0.0325	144.3609	0.9625	0.9219	4.2182	0.0312	0.0435	39.4231	0.9059	0.8476	4.2278		
75.8400	0.6833	0.9083	32.9284	0.0162	0.0380	134.5679	0.9543	0.9170	3.9086	0.0398	0.0532	33.6683	0.8900	0.8535	4.1011		
79.2900	0.6772	0.9043	33.5351	0.0195	0.0432	121.5385	0.9454	0.9110	3.6387	0.0490	0.0620	26,5306	0.8779	0.8429	3.9868		
82.7400	0.6718	0.9012	34.1471	0.0225	0.0482	114.2222	0.9358	0.9053	3.2592	0.0591	0.0713	20.6430	0.8486	0.8359	3.7647		
86.1800	0.6649	0.8975	34.9827	0.0256	0.0533	108.2031	0.9252	0.8984	2.8967	0.0701	0.0815	16.2625	0.8631	0.8321	3.5917		
========	========	=======	========	=======	=======	*======	=======	========		=======	=======	========	======				
AVG ABS	DEV(%)		32.8675			151.4606			3.9600		. 7	44.2783			4.1804		
========	========	========															

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{'}-L^{''}$ by S-R-K equation of state($K_{13}=0$)of $CO_{2}(1)+N_{2}(2)+n-K$ Nonadecane(3)system.

[Data from Fall, D.J. and Luke, K.D. (1986).]

CD2+N2+n-NONADECANE	IIV SYSTEM	(T=294.15 K)	i

Table 5.18

========															
			L1-PHASE				L2-PHASE							V-PHASE	
==========		=======	========	=======	*======	*******	# # # # # # # # # # # # # # # # # # #						=======	========	========
P[BAR]	CD2	CO2	ABS	N2	N2	ABS	C02	C02	ABS	N2	N2	ABS	C02	C02	ABS
	EXPT	HAK EOS	DEV(%)	EXPT	H&K EDS	DEV(%)	EXPT	H&K EOS	DEV(%)	EXPT	H&K EDS	DEV(%)	EXPT	H&K EOS	DEV(%)
45.5000	0.6992	0.9556	36.6705	0.0066	0.0087	31.8182	0.9778	0.9819	0.4193	0.0153	0.0170	11.1111	0.9460	0.9267	2.0402
68,9500	0.6935	0.9515	37.2026	0.0101	0.0116	14.8515	0.9705	0.9757	0.5358	0.0230	0.0233	1.3043	0.9243	0.9075	1.8176
72.3900	0.6877	0.9450	37.4146	0.0133	0.0146	9.7744	0.9625	0.9684	0.6130	0.0312	0.0278	10.8974	0.9059	0.8926	1.4682
75.8400	0.6833	0.9429	37.9921	0.0162	0.0173	6.7901	0.9543	0.9625	0.8593	0.0398	0.0367	7.7889	0.8900	0.8765	1.5169
79.2900	0.6772	0.9382	38.5411	0.0195	0.0202	3.5897	0.9454	0.9552	1.0366	0.0490	0.0441	10.0000	0.8779	0.8651	1.4580
82.7400	0.6718	0.9339	39.0146	0.0225	0.0230	2.2222	0.9358	0.9471	1.2075	0.0591	0.0523	11.5059	0.8886	0.8568	1.3585
86.1800	0.6649	0.9286	39.6601	0.0256	0.0258	0.7812	0.9252	0.9381	1.3943	0.0701	0.0614	12.4108	0.8631	0.8521	1.2745
=======================================		=======			=======	=======	=======	=======	=======			========	========		
AVG ABS DE	AVG ABS DEV(%) 37.8059					11.5077 0.7786 8.7680								1.6099	
========		=======	=======						========	=======	=======	=======		========	========

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by Harmens & Knapp equation of state($k_{13}=0$) of CO_2 (1)+ N_2 (2)+n-Nonadecane(3)system.

[Data from Fall, D. J. and Luke, K. D. (1986).]

Table 5.19

=======================================	***************************************															
			L1-PHASE						L2-	PHASE				V-PHASE		
========					========			***************************************							========	
P[BAR]	C02	C02	ABS	N2	N2	ABS	C02	C02	ABS	N2	N2	ABS	CD2	C02 ·	ABS	
	EXPT	PR .EOS	DEV(%)	EXPT	PR EDS	DEV(%)	EXPT	PR EOS	DEV(%)	EXPT	PR EDS	DEV(%)	EXPT	PR EDS	DEV(%)	
========		=======	=======	=======	=======	=========	=======	========	=======			========		=======	========	
65.5000	0.6992	0.8756	25.2288	0.0066	0.0248	275.7576	0.9778	0.9257	5.3283	0.0153	0.0321	109.8039	0.9460	0.8939	5.5074	
68.9500	0.6935	0.8700	25.4506	0.0101	0.0309	205.9406	0.9705	0.9188	5.3272	0.0230	0.040B	77.3913	0.9243	0.8743	5.4095	
72.3900	0.6877	0.8659	25.9125	0.0133	0.0365	174.4361	0.9625	0.9120	5.2468	0.0312	0.0519	66.3462	0.9059	0.8533	5.8064	
75.8400	0.6833	0.8593	25.7574	0.0162	0.0428	164.1975	0.9543	0.9048	5.1870	0.0398	0.0587	47.4874	0.8900	0.8433	5.2472	
79.2900	0.6772	0.8541	26.1223	0.0195	0.0487	149.7436	0.9454	0.8976	5.0561	0.0490	0.0682	39.1837	0.8779	0.8319	5.2398	
82.7400	0.6718	0.8499	26.5109	0.0225	0.0543	141.3333	0.9358	0.8907	4.8194	0.0591	0.0784	32.6565	0.8886	0.8241	5.1232	
86.1800	0.6649	0.8451	27.1018	0.0256	0.0601	134.7656	0.9252	0.8828	4.5828	0.0701	0.0897	27.9601	0.8631	0.8193	5.0747	
=========				========		========						========		=======	=======	
AVG ABS DE			25.8304			185.2348			5.1608			62.1448			5.3889	

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by PR equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

[Data from Fall, D.J. and Luke, K.D. (1986).]

CO2+N2+n-NONADECANE LLV SYSTEM (T=294.15 K)

Table 5.20

========															
			L1-PHASE						L2-	PHASE				V-PHASE	
========	=======		========		========	=======		=======	=======	========	=======	=======	=======	-=======	========
P[BAR]	CO2	C02	ABS	N2	N2	ABS	CO2	CD2	ABS	N2	N2	ABS	C02	CO2	ABS
	EXPT	G&D EDS	DEV(%)	EXPT	6&D EDS	DEV(%)	EXPT	G&D EOS	DEV(%)	EXPT	G&D EOS	DEV(%)	EXPT	G&D EDS	DEV(%)
=========	=======		========		========	=======	=======		=======	=======	========				========
45.5000	0.6992	0.9216	31.8078	0.0066	0.0214	224.2424	0.9778	0.9347	4.4079	0.0153	0.0284	85.6209	0.9460	0.9028	4.5666
68.9500	0.6935	0.9171	32.2422	0.0101	0.0270	167.3267	0.9705	0.9290	4.2761	0.0230	0.0364	58.2609	0.9243	0.8837	4.3925
72.3900	0.6877	0.9100	32.3251	0.0133	0.0332	149.6241	0.9625	0.9250	3.8961	0.0312	0.0456	46.1538	0.9059	0.8679	4.1947
75.8400	0.6833	0.9087	32.9870	0.0162	0.0377	132.7160	0.9543	0.9174	3.8667	0.0398	0.0529	32.9146	0.8900	0.8537	4.0787
79.2900	0.6772	0.9047	33.5942	0.0195	0.0430	120.5128	0.9454	0.9114	3.5964	0.0490	0.0617	25.9184	0.8779	0.8432	3.9526
82.7400	0.6718	0.9017	34.2215	.0.0225	0.0479	112.8889	0.9358	0.9058	3.2058	0.0591	0.0709	19.9662	0.8686	0.8362	3.7301
86.1800	0.6649	0.8981	35.0729	0.0256	0.0530	107.0313	0.9252	0.8990	2.8318	0.0701	0.0812	15.8345	0.8631	0.8324	3.5569
			========		========	=======	======		=======	========	=======	========	========		=======
AVG ABS DE	EV(%)		32.8630		1	151.2185		***	3.8748			44.8058			4.1525

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by G&D equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

[Data from Fall, D. J. and Luke, K. D. (1986).]

	CO2+NZ+n-	-NONADECAN	E =======	T=294.15	K ========	LLV SYSTE	M Tel	ble 5.	21
		L1-PHASE			L2-FHASE	4 1	-	V-PHASE	
F(BAR)	MOLAS	VOL [AL/	G.HOL)	MOLAR	VOL [ML	/G.MOL]	MOLAI	R VOL [ML/	6.MOL]
	EXPT	SRK EOS	ABS DEV(%)	EXFT	SRK EDS	ABS DEV(%)	ЕХРТ	SRK EOS	ABS DEV(%)
68.9500 72.3900 75.8400 79.2900 82.7400	132.0000 132.6000 133.4000 133.7000 134.6000 135.2000 136.4000	193.5000 194.6000 195.1000 196.2000 197.2000	45.9848 45.9276 45.8771 45.9237 45.7652 45.8580 45.7478	58.9000 59.2000 59.8000 60.9000 62.2000 63.7000 66.0000	70.5000 70.8000 71.0000 71.5000 72.1000 72.8000 73.8000	19.5946 18.7291 17.4056 15.9164	170.4000 161.9000 151.9000 141.7000 131.3000	140.9000	10.6922 8.5094 7.2267 7.2416 7.1983 7.3115 6.9536
AVG ABS (DEV(%)		45.8894			17.6043			8.0299

		L1-PHASE			L2-PHASE			V-PHASE	
P[BAR]	MOLAF	YOL [XL/			VOL (ML/	6.MOL]	18.0	VOL [ML/	
	ЕХРТ	H&K E09	ABS DEV(%)	EXPT	H&K EOS	ABS DEV(%)	EXPT	H&K EDS	ABS DEV(%
68.9500 72.3900 75.8400 79.2900 82.7400	132.0000 132.6000 133.4000 133.7000 134.6000 135.2000 136.4000	147.7000 148.6000 149.1000 150.1000 150.9000	11.3636 11.3876 11.3943 11.5183 11.5156 11.6124 11.5836	58.9000 59.2000 59.8000 60.9000 62.2000 63.7000 66.0000	57.0000 57.4000 57.9000 58.5000 59.2000 60.1000 61.3000	3.0405 3.1773 3.9409 4.8232 5.6515	177.7000 170.4000 161.9000 151.9000 141.7000 131.3000 120.8000	170.2000 159.9000 150.2000 139.8000 129.5000	1.7445 0.1174 1.2353 1.1192 1.3409 1.3709 2.0695
AVG ABS			11.4822	=======	22227777	4.4258			1.2854

Comparisons of experimental and predicted molar volume by SRK and Harmens & Knapp equation of state($k_{1,j}=0$) as a function of pressure for V-L¹-L¹¹ phases of $CO_2(1)+N_2(2)+n-$

Nonadecane(3) system.

)	CO2+N2+n	-NONADECAN	IE 	T=294.15	K	LLV SYSTEM	Tab	le 5.2	3
		L1-PHASE			L2-PHASE		======	V-PHASE	
F[BAR]	MOLA	R VOL [ML/	6.MOL]	MOLAR	NOT [HT	/6.MOL]	MOLA	R VOL (ML/	6.MOL]
	ЕХРТ	PR EOS	ABS DEV(%)	EXPT	PR EOS	ABS DEV(%)	EXPT	PR EOS	ABS DEV(%)
65.5000 1 68.9500 1 72.3900 1 75.8400 1 79.2900 1 82.7400 1 86.1800 1	32.0000 32.6000 33.4000 33.7000 34.6000 35.2000	173.1000 174.0000 174.5000 175.5000 176.4000	30.5303 30.5430 30.4348 30.5161 30.3863 30.4734 30.3519	58,9000 59,2000 59,8000 60,9000 62,2000 63,7000 66,0000	63.8000 64.1000 64.3000 64.9000 65.5000 66.3000 67.3000	8.3192 17 8.2770 17 7.5251 16 6.5681 13 5.3055 14 4.0816 13 1.9697 12	70.4000 51.9000 51.9000 \$1.7000 \$1.3000	174.7000 163.7000 153.5000 142.9000 132.3000	4.7833 2.5235 1.1118 1.0533 0.8469 0.7616 0.2483
AVG ABS DI	====== EV(%) =======		30.4623			6.0066	:======		1.6184

-		LUZ+NZ+n	-unuanerau	t 	1=294.13	Κ	LLV 51511	Tab	le 5.2	4
_			L1-PHASE			L2-PHASE			V-PHASE	
_	P[BAR]	MOLA	R VOL [ML/	6.MOL]	MOLAR	VOL [ML/	G.HOL]	MOLAF	VOL [ML/	G.MOL]
		ЕХРТ	6&D EOS	ABS DEV(%)	ЕХРТ	6&D EOS	ABS DEV(%)	EXPT	6& D EOS	ABS DEV(%)
	68.9500 72.3900 75.8400 79.2900 82.7400	132.6000 133.4000 133.7000 134.6000	195.1000 196.2000 197.2000	45.9848 45.9276 45.8771 45.9237 45.7652 45.8580 45.7478	58.9000 59.2000 59.8000 60.9000 62.2000 63.7000 64.0000	70.5000 70.8000 71.0000 71.5000 72.1000 72.8000 73.8000	19.5946 18.7291 17.4056 15.9164 14.2857	177.7000 170.4000 161.9000 151.9000 141.7000 131.3000 120.8000	185.0000 173.7000 163.1000 152.1000 141.1000	10.7485 8.5681 7.2884 7.3733 7.3394 7.4638 7.1192
7.5	VG ABS	DEV(%)		45.8692			16.7777			7.9858

Comparisons of experimental and predicted molar volume by PR and G&D equations of state(k_{13} =0) as a function of pressure for V-L¹-L¹¹ phases of $CO_2(1)+N_2(2)+n$ -Nonadecane(3)system. [Data from Fall,D.J. and Luke,K.D.(1986).]

Figure 5.17 Comparisons of experimental and predicted CO_2 mole fraction by SRK, HK, G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for L^1 phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.18 Comparisons of experimental and predicted N_2 mole fraction by SRK,HK,G&D and PR equations of state($k_{1,j}=0$) as a function of pressure for L^1 phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.19 Comparisons of experimental and predicted N_2 mole fraction by SRK,HK,G&D and PR equations of state(k_{13} =0) as a function of pressure for L^{11} phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)system.$

Figure 5.20 Comparisons of experimental and predicted CO_2 mole fraction by SRK,HK,G&D and PR equations of state(k_{13} =0) as a function of pressure for vapor phase of $CO_2(1)+N_2(2)$ +n-Nonadecane(3)system.

Figure 5.21 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,3}=0$) as a function of pressure for L' phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.22 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{i,j}=0$) as a function of pressure for L^{11} phase of $CO_2(1)+N_2(2)+n-Nonadecane(3) system.$

Figure 5.23 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for vapor phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Table 5.25

CO2+N2+n-NONADECANE(TEMP=297.15 K)

		L	.1-PHASE						. L2-I	PHASE				V-PHASE	
P[BAR]	CO2 EXPT	CO2 SRK EOS	ABS DEV(%)	N2 EXPT	N2 SRK EOS	ABS DEV(%)	CO2 EXPT	CO2 SRK EOS	ABS DEV(%)	N2 EXPT	N2 SRX EOS	ABS DEV(%)	CO? EXPT	CO2 SRK EOS	ABS DEV(%)
65.5000 68.9500 72.3900 75.8400 79.2900 82.7400	0.7092 0.7028 0.6963 0.6896 0.6829 0.6764	0.9448 0.9390 0.9339 0.9291 0.9237 0.9185	33.6084 34.1232 34.7303 35.2614	0.0072 0.0108	0.0277	133.3333 106.4815 73.1250 79.8913	0.9833 0.9752 0.9669 0.9576	0.9550 0.9478 0.9404 0.9322	2.8781 2.8097 2.7407 2.6525		0.0252 0.0343 0.0436 0.0536	157.1429 78.7234 52.4444 40.1929 32.0197 26.3158		0.9524 0.9314 0.9145 0.9002 0.8890 0.8820	2.6176 2.5936 2.6092 2.4913 2.4792 2.4336
AVS ABS D	EV(%)		34.4560			115.1702			2.7416			64.4732			2.5374

Comparisons of experimental and predicted equilibrium mole fraction in V-L'-L'' by S-R-K equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-N$ onadecane(3)system. [Data from Fall,D.J. and Luke,K.D.(1986).]

ADD. NO.	MANUARFOAME	TEMP=297	4 5 1/1
111147140-	ALL PROPERTY	I I L M L = /U /	1 - 1
LULIGEIII	HUHRULLAND	1 1 1 1 1 1 - 4 1 1	. 1 . 6 .

Table 5.26

			L1-PHASE						L2-	PHASE				V-PHASE	
P[BAR]	CD2 EXPT	CO2 H&K EOS	ABS. DEV(X)	N2 EXPT	N2 H&K EOS	ABS DEV(%)	CO2 EXPT	CO2 H&K EOS	ABS DEV(%)	N2 EXPT	N2 H&K EOS	ABS DEV(%)	· CO2 EXPT	CO2 H&K EDS	ABS DEV(%)
65.5000 68.9500 72.3900 75.8400 79.2900 82.7400	0.7092 0.7028 0.6963 0.6896 0.6829 0.6764	0.9562 0.9516 0.9479 0.9425	35.4625 36.0558 36.6552 37.4565 38.0144 38.6310	0.0034 0.0072 0.0108 0.0160 0.0184 0.0221	0.0068 0.0096 0.0124 0.0152	14.7059 5.5556 11.1111 22.5000 17.3913 18.5520	0.9909 0.9833 0.9752 0.9669 0.9576 0.9471	0.9906 0.9835 0.9760 0.9681 0.9596 0.9500	0.0303 0.0203 0.0820 0.1241 0.2089 0.3062	0.0063 0.0141 0.0225 0.0311 0.0406 0.0513	0.0161	42.8571 14.1844 4.8889 1.6077 0.9852 2.9240	0.9780 0.9562 0.9390 0.9232 0.9116 0.9040	0.9691 0.9491 0.9326 0.9184 0.9076 0.9009	0.9100 0.7425 0.6816 0.5199 0.4388 0.3429
AVG ABS D	EV(%)		37.0476			14.9693			0.1286			11.2412			0.6060

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{1}-L^{11}$ by Harmens & Knapp equation of state($k_{13}=0$)of CO_{2} (1)+ N_{2} (2)+n-Nonadecane(3)system.
[Data from Fall, D. J. and Luke, K. D. (1986).]

CO2+N2+n-NONADECANE	SVSTEM	IT=297	15	K1
LUZTNZTI KUNHDELHNE	3131611	(1-4)/	10	V 1

Table 5.27

=======================================						========	=======								
			L1-PHASE						L2-1	PHASE			7(%) EXPT PR EO6 DEV(% 2571 0.9780 0.9379 4.100 3397 0.9562 0.9176 4.036 5556 0.9390 0.9011 4.036 0932 0.9232 0.8871 3.910 7537 0.9116 0.8760 3.905		
========	=======	=======	=========			========	=======	=======			=======			=======	=======
P[BAR]	C02	C02	ABS	N2	N2	ABS	C02	C02	ABS	N2	N2	ABS	C02	CD2	ABS
	EXPT	PR EOS	DEV(%)	EXPT	PR EOS	DEV(%)	EXPT	PR EDS	DEV(%)	EXPT	PR EOS	DEV(%)	EXPT	PR EOS	DEV(%)
					=======		=======	=======			=======		=======	=======================================	
65.5000	0.7092	0.8943	26.0998	0.0034	0.0152	347.0588	0.9909	0.9486	4.2688	0.0063	0.0216	242.8571	0.9780	0.9379	4.1002
68.9500	0.7028	0.8884	26.4087	0.0072	0.0212	194.4444	0.9833	0.9409	4.3120	0.0141	0.0308	118.4397	0.9562	0.9176	4.0368
72.3900	0.6963	0.8830	26.8132	0.0108	0.0272	151.8519	0.9752	0.9335	4.2760	0.0225	0.0404	79.5556	0.9390	0.9011	4.0362
75.8400	0.6896	0.8781	27.3347	0.0160	0.0329	105.6250	0.9669	0.9260	4.2300	0.0311	0.0501	61.0932	0.9232	0.8871	3.9103
79.2900	0.6829	0.8725	27.7639	0.0184	0.0388	110.8696	0.9576	0.9177	4.1667	0.0406	0.0608	49.7537	0.9116	0.8760	3.9052
82.7400	0.6764	0.8670	28.1786	0.0221	0.0448	102.7149	0.9471	0.9086	4.0650	0.0513	0.0728	41.9103	0.9040	0.8687	3.9049
========			=======				======	========							
AV6 ABS DI	EV(%)		27.0998			168.7608			4.2198			98.9349			3.9823
=========	========	=======	=======	==========		=======================================	=======	========	========		*******	========	=======		

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{1}-L^{11}$ by PR equation of state($k_{13}=0$)of $CO_{2}(1)+N_{2}(2)+n-Nonadecane(3)$ system.

CO2+N2+n-NONADECANE SYSTEM (T=297.15 K) Table 5.28

			L1-PHASE					(PT G&D EOS DEV(%) EXPT G&D EOS DEV(%) EXPT 1909 0.9627 2.8459 0.0063 0.0162 157.1429 0.9786 1833 0.9552 2.8577 0.0141 0.0250 77.3050 0.9566 1752 0.9481 2.7789 0.0225 0.0341 51.5556 0.9396					V-PHASE		
=========	=======	========	========		=======	*=======	======		=======	=======	=======	=======	-======		=======
P[BAR]	C02	C02	ABS	N2	N2	ABS	CO2	C02	ABS	N2	N2	ABS	C02	C02	ABS
	EXPT	G&D EOS	DEV(%)	EXPT	GAD EOS	DEV(%)	EXPT	G&D EOS	DEV(%)	EXPT	G&D EOS	DEV(%)	EXPT	G&D EDS	DEV(%)
				=======		=======	=======	=======	=======		=======				======
45.5000	0.7092	0.9449	33.2346	0.0034	0.0109	220.5882	0.9909	0.9627	2.8459	0.0063	0.0162	157.1429	0.9780	0.9524	2.6176
68.9500	0.7028	0.9392	33.6369	0.0072	0.0166	130.5556	0.9833	0.9552	2.8577	0.0141	0.0250	77.3050	0.9562	0.9316	2.5727
72.3900	0.6963	0.9342	34.1663	0.0108	0.0221	104.6296	0.9752	0.9481	2.7789	0.0225	0.0341	51.5556	0.9390	0.9147	2.5879
75.8400	0.6896	0.9294	34.7738	0.0160	0.0275	71.8750	0.9669	0.9407	2.7097	0.0311	0.0434	39.5498	0.9232	0.9004	2.4697
79.2900	0.6829	0.9241	35.3200	0.0184	0.0329	78.8043	0.9576	0.9325	2.6211	0.0406	0.0534	31.5271	0.9116	0.8892	2,4572
82.7400	0.6764	0.9189	35.8516	0.0221	0.0383	73.3032	0.9471	0.9237	2.4707	0.0513	0.0645	25.7310	0.9040	0.8822	2.4115
=======================================	=======	=======			=======	=======	=======		=======			========			=======
AVG ABS DE	V(%)		34.4972			113.2927			2.7140			63.8019			2.5194

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by G&D equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

	L!-PHA	SE		L2-PHASE V-PHASE					
P[BAR]	MOLAR VOL [ML/6.MOL]	MOLAR	VOL [ML/	'6.MOL]	MOLA	R VOL [XL/	S.MOL]	
	EXPT H&K EOS	ABS DEV(%)	EXPT	H&K EDS	ABS DEV(%)	EXPT	H&X EOS	ABS DEV(%)	
68.9500 131 72.3900 132 75.8400 132 79.2900 133	.5000 144.700 .3000 145.800 .1000 146.800 .8000 147.300 .7000 148.800 .6000 149.800	00 11.0434 00 11.1279 00 10.9187 00 11.2939	59.9000 60.2000 61.3000 62.6000 64.6000 67.3000	61.2000 61.9000 62.9000 64.0000 65.3000 66.9000	2.8239 2.6101 2.2364 1.0836	168.9000 154.7000 144.6000 132.5000	172.3000 161.7000 149.8000 139.9000 129.5000 115.8000	3.7430 4.2629 3.1674 3.2503 3.0189 3.5803	
AVS ABS DEV(%)	11.1044		========	2.1795			3.5038	

Table 5.30

CO2+N2+n-NONADECANE(TEMP=297.15 K)

		L1-PHASE	- 4		L2-PHASE			V-PHASE		
P[BAR]	MOLA	/JK] JOV R	G.XOL]	MOLAR	VOL [ML	/G.MOL]	MOLA	R VOL (XL)	'6.MOL]	
	ЕХРТ	SRK EDS	ABS DEV(%)	ЕХРТ	SRK EOS	ABS DEV(Z)	EXPT	SRK EOS	ABS DEV(%)	
68.9500 72.3900 75.8400 79.2900	131.3000 132.1000 132.8000 133.7000		45.6355 45.6207 45.6472 45.3313 45.6993 45.5423	60.2000 61.3000 62.6000 64.5000	73.7000 74.2000 74.8000 75.6000 76.5000 77.5000	23.2558 22.0228 20.7668 18.4211	168.9000 154.7000 144.6000 132.5000	188.8000 176.8000 163.9000 152.8000 140.6000 127.2000	5.4749 4.6773 5.9470 5.5708 6.1132 5.9117	
AVS ABS D)EV(%)		45.5794			20.8554			5.6325	

Comparisons of experimental and predicted molar volume by SRK and Harmens & Knapp equation of state($k_{i,j}=0$) as a function of pressure for V- $\Gamma_{i} - \Gamma_{i}$ phases of $CO_{2}(1)+N_{2}(2)+n-$

Nonadecane(3) system.

Table 5.31

CD2+N2+n-NONADECANE(TEMP=297.15 K)

		L1-PHASE			L2-PHASE		V-PHASE			
P[BAR]	MOLAF	R VOL [ML/	G.MOL]	MOLAR	VOL [ML/	6.MOL]	HOLAF	VOL [ML/	G.MOL]	
	EXPT	PR EOS	ABS DEV(%)	EXPT	PR EOS	ABS DEV(%)	EXPT	PR EOS	ABS DEV(%)	
68.9500 72.3900 75.8400 79.2900	130.6000 131.3000 132.1000 132.8000 133.7000 134.6000	171.0000 172.1000 172.6000 174.2000	30.2450 30.2361 30.2801 29.9699 30.2917 30.1634	59.0000 60.2000 61.3000 62.6000 64.6000 67.3000	66.7000 67.1000 67.9000 68.6000 69.6000 71.0000	11.4618 10.7667 9.5847 7.7399	179.0000 168.9000 154.7000 144.6000 132.5000 120.1000	166.6000 154.1000 143.6000 131.9000	0.4469 1.3618 0.3878 0.6916 0.4528 0.7494	
AVG ABS I	DEV(%)		30.1977			9.6836			0.6817	

Table 5.32

CO2+N2+n-NONADECANE(TEMP=297.15 K)

=======================================		L1-FHASE			LZ-PHASE		V-PHASE .			
P[BAR]	MOLAF	? VOL [ML/	6.KOL]	MOLAR	VOL (ML/	6.MOL]	MOLAR VOL [ML/G.MOL]			
	EXPT	G&D EOS	ABS DEV(%)	ЕХРТ	6&D EOS	ABS DEV(%)	EXPT	G&D EOS	ABS DEV(%)	
68.9500 72.3900 75.8400 79.2900	130.6000 131.3000 132.1000 132.8000 133.7000 134.6000	191.2000 192.4000 193.0000 194.8000	45.6355 45.6207 45.6472 45.3313 45.6993 45.5423	59.0000 60.2000 61.3000 62.6000 64.6000 67.3000	73.7000 74.2000 74.9000 75.6000 76.6000 77.9000	23.2558 22.1860 20.7668 18.5759	179,0000 168,9000 154,7000 144,6000 132,5000 120,1000	176.9000 164.0000 153.0000 140.8000	5.4749 4.7365 6.0116 5.8091 6.2642 6.0783	
AVG ABS	DEV(%)		45.5794		222222	20.9083			5.7291	

Comparisons of experimental and predicted molar volume by PR and G&D equations of state($k_{i,j}=0$) as a function of pressure for $V-L^{i-1}$ phases of $CO_2(1)+N_2(2)+n$ -Nonadecane(3)system.

[Data from Fall, D. J. and Luke, K. D. (1986).]

Figure 5.24 Comparisons of experimental and predicted CO_2 mole fraction by SRK, HK, G&D and PR equations of state($k_{13}=0$) as a function of pressure for L^1 phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.25 Comparisons of experimental and predicted CO_2 mole fraction by SRK,HK,G&D and PR equations of state($k_{1,3}=0$) as a function of pressure for $L^{(1)}$ phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.26 Comparisons of experimental and predicted CO_2 mole fraction by SRK,HK,G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for vapor phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.27 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{13}=0$) as a function of pressure for L phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.28 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,j}=0$) as a function of pressure for $L^{(1)}$ phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.29 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{13}=0$) as a function of pressure for vapor phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

CO2+N2+n-NONADECANE LLV SYSTEM (T=301.15 K)

Table 5.33

=========		========	*=======		=======	=======	======	========	=======	********		========	========		=======
	L1-PHASE								L2-	PHASE		V-PHASE			
P[BAR]	CO2 EXPT	CD2 SRK EOS	ABS DEV(%)	N2 EXPT	N2 SRK EOS	ABS DEV(%)	CO2 EXPT	CO2 SRK EOS	ABS DEV(%)	N2 EXPT	N2 SRK EOS	ABS DEV(%)	CD2 EXPT	CO2 SRK EOS	ABS DEV(%)
72.3900 75.8400 79.2900	0.7137 0.7079 0.7016	0.9385	32.5067 · 32.5752 33.1385	0.0036 0.0067 0.0093	0.0120 2 0.0182 1 0.0233 1	71.6418	0.9785	0.9675 0.9574 0.9492	2.0848 2.1564 1.9827	0.0099 0.0195 0.0302	0.0312	104.0404 60.0000 40.3974	0.9782 0.9639 0.9521	0.9582 0.9426 0.9333	2.0446 2.2098 1.9746
AVG ABS DE	V(%)		32.7401		1	85.1709	:		2.0746			68.1459	========		2.0763

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^{'}-L^{''}$ by SRK equation of state($k_{1,1}=0$) of $CO_{2}(1)+N_{2}(2)+n-Nonadecane(3)$ system.

[Data from Fall, D. J. and Luke, K. D. (1986).]

CO2+N2+n-NONADECANE LLV SYSTEM (T=301.15 K)

Table 5.34

	L1-PHASE								` L2-f	HASE					V-PHASE	
P[BAR]	CO2 EXPT	CO2 H&K EOS	ABS DEV(%)	N2 EXPT	N2 H&K EOS	ABS DEV(%)	CO2 EXPT	CO2 H&K EOS	ABS DEV(%)	N2 EXPT	N2 H&K EOS	ABS DEV(%)	CO2 EXPT	CO2 H&K, EOS	ABS DEV(%)	
72.3900 75.8400 79.2900	0.7137 0.7079 0.7016	0.9442	33.0391 33.3804 33.8940	0.0036 0.0067 0.0093	0.0040 0.0069 0.0096		0.9891 0.9785 0.9684	0.9890 0.9807 0.9710	0.0911 0.2248 0.2685	0.0099 0.0195 0.0302	0.0107 0.0191 0.0289	8.0808 2.0513 4.3046	0.9782 0.9639 0.9521	0.9754 0.9615 0.9513	0.2862 0.2490 0.0840	
AVG ABS DE	V(%)		33.4378			5.7740			0.1948			4.8122			0.2064	

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by Harmens & Knapp equation of state(k, =0)of CO (1)+N, (2)+n-Nonadecane(3)system.

CO2+N2+n-NONADECANE LLV SYSTEM (T=301.15 K)

Table 5.35

22222222	=======	=======	========	========		=======	=======			=======	========	*=======	======		=======	
			L1-PHASE							HASE				V-PHASE		
P[BAR]	CO2 EXPT	CO2 PR EOS	ABS DEV(%)	N2 EXPT	N2 PR EOS	ABS DEV(%)	CO2 EXPT	CO2 PR EOS	ABS DEV(%)	N2 EXPT	N2 PR EOS	ABS DEV(%)	CO2 EXPT	CO2 PR EOS	ABS DEV(%)	
72.3900 75.8400 79.2900	0.7137 0.7079 0.7016	0.8854 0.8973 0.8898	24.0577 26.7552 26.8244	0.0036 0.0067 0.0093	0.0166	700.0000 147.7612 150.5376	0.9785	0.9360 0.9543 0.9440	5.2727 2.4732 2.5196	0.0099 0.0195 0.0302	0.0508 0.0270 0.0388	413.1313 38.4615 28.4768	0.9782 0.9639 0.9521	0.9205 0.9452 0.9297	5.8986 1.9400 2.3527	
AVG ABS DE	V(%)		25.8791			332.7663			3.4218			160.0232			3.3971	

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by PR equation of state($k_{13}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

[Data from Fall, D. J. and Luke, K. D. (1986).]

CO2+N2+n-NONADECANE LLV SYSTEM (T=301.15 K)

Table 5.36

14 DIACE						=======	=======	========		=======	========	========			
2222222	L1-PHASE						=======			HASE	000 THE DAY WAS AND AND AND AND AND AND		V-PHASE		
P[BAR]	CO2 EXPT	CO2 G&D EOS	ABS DEV(%)	N2 EXPT	N2 G&D EOS	ABS	CO2 EXPT	CO2 G&D EOS	ABS DEV(%)	N2 EXPT	N2 G&D EOS	ABS DEV(%)	CO2 EXPT	CO2 G&D E O S	ABS DEV(%)
72.3900 75.8400 79.2900	0.7137 0.7079 0.7016		32.5207 32.6035 33.1813	0.0036 0.0067 0.0093	0.0119 2 0.0180 1 0.0231 1	48.3871	0.9785 0.9684	0.9677 0.9577 0.9495	2.0646 2.1257 1.9517	0.0099 0.0195 0.0302	0.0201 10 0.0311 0.0422	59.4872 39.7351	0.9782 0.9639 0.9521	0.9583 0.9428 0.9336	2.0343 2.1890 1.9431
AVG ABS DE	V(%)		32.7685			82.5331			2.0473			67.4175			2.0555

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^1-L^{11}$ by G&D equation of state($k_{1,j}=0$)of $CO_2(1)+N_2(2)+n-Nonadecane(3)system.$

CO2+N2+n-NONADECANE	T=301.15 K LLV SYSTEM	Table 5.37
,L1-PHASE	L2-PHASE	V-PHASE
P[BAR] MOLAR VOL [ML/S.MCL]	MOLAR VOL [ML/S.MOL]	MOLAR VOL [ML/G.MOL]
EXPT H&K ABS EOS DEV()	EXPT H&K ABS () EOS DEV(%)	EXPT H&K ABS EOS DEV(Z)
72.3700 130.6000 143.6000 9.9541 75.8400 131.3000 144.6000 10.1293 79.2900 132.2000 145.8000 10.2874	67.2000 68.7000 2.2321 13	6.9000 134.3000 8.5773 0.7000 120.7000 7.6511 4.1000 109.6000 3.9439
AV6 ABS DEV(%) 10.1237	2.8334	6.7241

=======	CO2+N2+n	-NONADECAI	IE 	T=301.15	Κ	LLV SYST	EM Tal	ble 5.	38
		L1-PHASE			L2-PHASE			V-PHASE	
P[BAR]	HOLA	R VOL [ML/	s.Mol]	· MOLAR	VOL [ML	/S.MOL]	AJOK	R VOL (ML	/6.MOL]
======	EXPT	SRK EOS	ABS DEV(%)	ЕХРТ	SRK EOS	ABS DEV(%)	EXPT	SRK EOS	A8S DEV(%)
75.8400	131.3000	188.6000 189.7000 171.2000	44.4783		81.1000	20.6845	130.7000	133.9000	1.3615 2.4484 5.6769
AVG ASS I)EV(%)		44.5060			20.9783			3.1687

Comparisons of experimental and predicted equilibrium mole fraction in $V-L^!-L^{!!}$ by SRK and Harmens & Knapp equation of state($k_{ij}=0$) of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

[Data from Fall, D. J. and Luke, K. D. (1986).]

	CO2+N2+n	-NONADECAN	E.	T=301.15	K	LLV SYSTE	M Tab	1e 5.	39
		L1-PHASE			L2-PHASE			V-PHASE	
P[BAR]	MOLAI	R VOL [ML/	6.MOL)	MOLAR	VOL [ML/	G.MOL)	MOLAF	R VOL (ML.	/6.MOL]
	ЕХРТ	PR EOS	ABS DEV(%)	EXPT	PR EOS	ABS DEV(Z)	EXPT	PR EOS	ABS DEV(%)
75.8400	131.3000	171.0000 168.7000 169.6000	30.9342 28.4844 28.2905	67.2000	76.9000 73.3000 74.2000	9.0774	146.9000 130.7000 114.1000	139.4000	2.1784 6.6565 9.8160
AVG ABS C)EY(%)		29.2363			10.8649			6.2169

	CO2+N2+n	-NONADECAI	VE	T=301.15	K	LLV SYSTE	M Tab	105.4	0
		L1-PHASE			L2-PHASE			V-PHASE	
P[BAR]	MOLA	R VOL (XL)	/G.MOL]	MOLAR	VOL [HL/	'6.MOL]	MOLA	R VOL [ML/	6.MOL]
	EXPT	6&D EOS	ABS DEV(%)	EXPT	G&D Eos	ABS DEV(%)	EXPT	6&D EOS	ABS DEV(%)
75.8400	131.3000	188.6000 189.7000 189.7000	44.4104 44.4783 43.4947	64.3000 67.2000 71.4000	80.3000 81.2000 81.2000	20.8333	146.9000 130.7000 114.1000	134.1000	1.4976 2.6014 5.9597
AVG ABS I)EV(%)		44.1278			19.8141			3.3529

Comparisons of experimental and predicted molar volume by PR and G&D equations of state($k_{i,j}=0$) as a function of pressure for $V-L^{i-1}$ phases of $CO_2(1)+N_2(2)+n$ -Nonadecane(3)system. [Data from Fall, D. J. and Luke, K. D. (1986).]

Figure 5.30 Comparisons of experimental and predicted molar volume by SRK,HK,G&D and PR equations of state($k_{13}=0$) as a function of pressure for L phase of $CO_2(1)+N_2(2)+n-Nonadecane(3)$ system.

Figure 5.31 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for L^{11} phase of $CO_2(1)+N_2(2)+n-Nonadecane(3) system.$

Figure 5.32 Comparisons of experimental and predicted molar volume by SRK, HK, G&D and PR equations of state($k_{1,1}=0$) as a function of pressure for vapor phase of $CO_{2}(1)+N_{2}(2)+n-Nonadecane(3)$ system.