การ เกิดกราฟต์ เคเพลิ เมอร์ของอะคริ เลเนตริลในแป้งมันสาปะหลังค้วยรังสีแกมมา

นายเจริญ นาคะสรรค์

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาคามหลักสูตรบริญญาวิทยาศาสตรมหาบัณฑิต

ภาควิชาวิทยาศาสตร์ เพลิเมอร์

บัณชิฑวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

พ.ศ. 2534

ISBN 974-579-171-7

ลิขสิทธ์ของบัณฑิควิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

Graft Copolymerization of Acrylonitrile onto Cassava Starch
via Gamma Radiation

MR. CHAROEN NAKASON

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

Program of Polymer Science

Graduate School

Chulalongkorn University

1991

ISBN 974-579-171-7

Copyright of the Graduate School, Chulalongkorn University

Thesis Title

Graft Copolymerization of Acrylonitrile onto

Cassava Starch via Gamma Radiation.

Ву

Mr. Charoen Nakason

Department

Polymer Science

Thesis Advisor

Associate Professor Suda Kiatkamjornwong, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

The Vojiaskay. Dean of Graduate School (Professor Thavorn Vajrabhaya, Ph.D.)

Thesis Committee

Totage Samuel Chirman

(Associate Professor Pattarapan Prasassarakich, Ph.D.)

Inda Ketham Thesis Advisor

(Associate Professor Suda Kiatkamjornwong, Ph.D.)

Jariya Boonjanat Member

(Associate Professor Jariya Boonjawat, Ph.D.)

J. Olwajarernon Member

(Mrs. Jindarom Chavajarernpun, M.S.)

พิมพ์ต้นฉบับบทคัดย่อ ใทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

CHAROEN NAKASON : GRAFT COPOLYMERIZATION OF ACRYLONITRILE ONTO CASSAVA STARCH VIA GAMMA RADIATION: ASSO. PROF. SUDA KIATKAMJORNWONG, Ph.D. 149 PP.

Native cassava starch was chemically modified into starch-g-polyacrylonitrile under a grafting copolymerization of acrylonitrile onto the polysaccharide backbone via gamma ray initiation method. Prior to the grafting reaction, starch was gelatinized at 85°C.

In addition to the cassava starch-g-polyacrylonitrile a homopolymer of polyacrylonitrile (PAN) was a by-product which was latter removed by extraction with dimethyl formamide (DMF). The purified grafted copolymer was subsequently saponified with an 8.5 % aqueous solution of potassium hydroxide at 100°C to convert the nitrile groups into a mixture of acrylamide and carboxylate groups which were responsible for water absorbency.

Infrared spectrometer was used as a tool to follow up the chemical changes of grafting and saponification. The saponified starch-g-PAN was then characterized in terms of grafting efficiency, percent add-on, the amount of polyacrylonitrile formation, percent conversion of monomer, grafting ratio, grafting frequency, and viscosity average molecular weight of grafted PAN. This information provided a guideline to judge an optimum total dose (kgy), dose rate (gray/min) of gamma rays, and ratio between starch/acrylonitrile.

Water absorption of newly synthesized copolymer was carried out in deionized distillated water, NaCl, MgCl2, K3PO4. 3H2O, KCl, NH4Cl, and (NH4)2HPO4 solutions. The water absorption capacity in pure water was ranged 31 to 665 times their original dried weight. Water absorption capacity in saline solutions decreased dramatically with increasing the salt concentrations. Water retention in sand by mixing it with the grafted copolymer at concentrations of Ø.5, 1.0, 2.0, and 3.0 % showed a linear relationship of water increase with increasing amount of absorbent added.

ภาควิชา ผนสหา ปิโดรเคมี-โผลเมอร์	, 44
สาขาวิชา เริกอาศาศภร์โพลิเมอร์	์ ลายมือชื่อ
ปีการศึกษา <u>4533</u>	ลายมือชื่อ

orden Otaln L. ออาจารย์ที่ปรึกษา

ลายมือชื่ออาจารย์ที่ปรีกษาร่วม

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เรียงแผ่นเดียว

CHAROEN NAKASON: GRAFT COPOLYMERIZATION OF ACRYLONITRILE ONTO CASSAVA STARCH VIA GAMMA RADIATION: ASSO. PROF. SUDA KIATKAMJORNWONG, Ph.D. 149 PP.

Native cassava starch was chemically modified into starch-g-poly-acrylonitrile under a grafting copolymerization of acrylonitrile onto the polysaccharide backbone via gamma ray initiation method. Prior to the grafting reaction, starch was gelatinized at 85°C.

In addition to the cassava starch-g-polyacrylonitrile a homopolymer of polyacrylonitrile (PAN) was a by-product which was latter removed by extraction with dimethyl formamide (DMF). The purified grafted copolymer was subsequently saponified with an 8.5 % aqueous solution of potassium hydroxide at 1000°C to convert the nitrile groups into a mixture of acrylamide and carboxylate groups which were responsible for water absorbency.

Infrared spectrometer was used as a tool to follow up the chemical changes of grafting and saponification. The saponified starch-g-PAN was then characterized in terms of grafting efficiency, percent add-on, the amount of polyacrylonitrile formation, percent conversion of monomer, grafting ratio, grafting frequency, and viscosity average molecular weight of grafted PAN. This information provided a guideline to judge an optimum total dose (kgy), dose rate (gray/min) of gamma rays, and ratio between starch/acrylonitrile.

Water absorption of newly synthesized copolymer was carried out in deionized distillated water, NaCl, MgCl₂, K₃PO₄. 3H₂O, KCl, NH₄Cl, and (NH₄)₂HPO₄ solutions. The water absorption capacity in pure water was ranged 31 to 665 times their original dried weight. Water absorption capacity in saline solutions decreased dramatically with increasing the salt concentrations. Water retention in sand by mixing it with the grafted copolymer at concentrations of Ø.5, 1.Ø, 2.Ø, and 3.Ø% showed a linear relationship of water increase with increasing amount of absorbent added.

ภาควิชา ผนสหาปิโดรเดาไ-โมลิเมอร์
สาขาวิชา ลิทยาศาสภร์โพลิเมอร์
ปีการศึกษา

ACKNOWLEDGEMENT

The author wishes to express his deep gratitude to Associate Professor Dr. Suda Kiatkamjornwong, his advisor, for kindly helping, guiding, and encouraging the author throughout the course of this research. He is grateful to Mrs. Jindarom Chavacharoenpan, the Office of Atomic Energy for Peace, for her kindly helping and guiding about radiation technique. Appreciations are also expressed to the Department of Materials Science for providing the facility in laboratory, equipment, and some of chemicals and also Graduate School of Chulalonkorn University for the research financial aids. In addition, he would like to thank his thesis committee: Associate Professor Dr. Pattarapan Prasasarakich, Associate Professor Dr. Jariya Boonjawat and Mrs. Jindarom Chavajarernpun for their comments and suggestions; and to his friends for their assistance and encouragement.

Last but certainly not least, he would like to extend his appreciation to his parents, brothers and sisters, who have given their encouragement and love throughout his study for the Masters degree.

CONTENTS

	PAGE
ABSTRACT (IN ENGLISH)	i
ABSTRACT (IN THAI)	ii
ACKNOWLEDGEMENT	iii
LIST OF TABLES	x
LIST OF FIGURES	xii
NOMENCLATURE	
CHAPTER	
I INTRODUCTION	1
1.1 Introduction	1
1.2 Objectives	9
1.3 Scopes of the Investigation	10
II THEORY and LITERATURE REVIEW	13
2.1 Theoretical Background	13
2.1.1 Starch	13
2.1.2 Graft Copolymerization of Vinyl	
Monomer onto Starch via Radiation	
Induced Synthesis	16
2.1.3 Saponification of the Graft	
Copolymer of Starch-g-PAN	23
2.2 Terminology and Definition	24
2.2.1 Gelatization of Starch	24
2.2.2 Percent Add-on	27
2.2.3 Grafting Efficiency	27
2.2.4 Percentage Conversion	28
2.2.5 Grafting Ratio	28

CHAPTER		PAGE
	2.2.6 Grafting Frequency	28
	2.3 Preparation Scheme	29
	2.4 Survey of Related Literature	31
III	EXPERIMENTAL	5Ø
	3.1 Chemicals, Equipment, and Glassware	5Ø
	3.1.1 Chemicals	5Ø
	3.1.2 Equipment and Glassware	51
٠	3.2 Procedure	52
	3.2.1 Gelatinization of Cassava Starch	52
	3.2.2 Grafting of Acrylonitrile onto	
	Cassava Starch	52
	3.2.2.1 Simultaneous Irradiation	
	Technique	52
	3.2.2.2 Preirradiation Technique	55
	3.2.3 Homopolymer Extraction by DMF	57
	3.2.4 Copolymer Characterization	57
	3.2.4.1 Saponification of	
	Starch-g-PAN	57
	3.2.4.2 Determination of Per Cent	
	Add-on	58
	3.2.4.3 Determination of	
	Per Cent Conversion	58
	3.2.4.4 Determination of) (1)
	Homopolymer Formation	58
	3.2.4.5 Determination of	
	Grafting Efficiency	59

\sim	T A	7		
	НΑ		r.	п

	3.2.4.6	Determinat	cion of t	he	
		Viscosity	Average	Molecular	
		Weight			59
	3.2.4.7	Determinat	ion of		
	- 1	Grafting F	requency		59
	3.2.4.8	Determinat	ion of		
		Grafting R	atio		6Ø
3.3 Water	Absorption	on/Retenti	on Capac	city of	
the Co	polymer.				6Ø
3.3.1	In Deion	ized Disti	lled Wat	er	6Ø
3.3.2	In Sodium	n Chloride	and Mag	nesium	
	Chloride	Solutions			6Ø
3.3.3	In Ammon	ium Chlori	de, Pota	ssium	
	Chloride	and tri-	Potassiu	m	
	Phosphate	e tri-hydr	ate Solu	tions	61
3.3.4	In Sand A	Alone and	Sand with	h	
	Saponifie	ed Starch-	g-PAN		61
IV RESULTS and	d DISCUSS	SION	• • • • • • • •		62
4.1 Simulta	aneous Ir	radiation	Techniqu	1e	62
4.1.1	Reduction	of Homop	olymer		62
4.1.2	Effect of	Total Do	se (kgy)	on	
(Graft Cop	olymeriza	tion		65
4	1.1.2.1 R	elationsh	ip betwee	en Total	
,	D	ose and %	homopoly	mer	65

CHAPTER

4.1.2.2 Relationship between Total	
Dose and Grafting	
Efficiency	68
4.1.2.3 Relationship between Total	
Dose and % Conversion	68
4.1.2.4 Relationship between Total	
Dose and % Add-on	70
4.1.2.5 Relationship between Total	
Dose and Grafting Ratio	71
4.1.2.6 Relationship between Total	
Dose Viscosity Average	
Molecular Weight and	
Grafting Frequency	72
4.1.2.7 Relationship between Water	
Absorption and Total Dose	74
4.1.3 Effect of Dose Rate (gray/min) on	
Graft Copolymerization	78
4.1.3.1 Relationship of Dose Rate	
and % Homopolymer	8Ø
4.1.3.2 Relationship of Dose Rate	
and % Grafting Efficiency	8Ø
4.1.3.3 Relationship of Dose Rate	
and % Conversion of	
Monomer	82
4.1.3.4 Relationship of Dose Rate	
and % Add-on	84

	viii
CHAPTER	PAGE
4.1.3.5 Relationship of Dose Rate	
and Grafting Ratio	85
4.1.3.6 Relationship of Dose Rate	
and Viscosity Average	
Molecular Weight	86
4.1.3.7 Relationship of Dose Rate	
and Grafting Frequency	88
4.1.3.8 Relationship of Dose Rate	
and Water Absorption	89
4.1.4 Effect of Starch(g)/AN(ml) Ratios	
on Graft Copolymerization	92
4.1.4.1 Infrared Analyses	92
4.1.4.2 Effect of Starch-to-AN Ratio	
on Homopolymer	95
4.1.4.3 Effect of Starch-to-AN Ratio	
on Grafting Efficiency	96
4.1.4.4 Effect of Starch-to-AN Ratio	
on % Conversion	97
4.1.4.5 Effect of Starch-to-AN Ratio	
on % Add-on	99
4.1.4.6 Effect of Starch-to-AN Ratio	
on Grafting Ratio	100
4.1.4.7 Effect of Starch-to-AN Ratio	
on Viscosity Average	
Molecular Weight	102

149

C	H	٨	D	m	T	D
	п	n	Г	1	Ľ	п

REFERENCES.....

APPENDIX A.....

R		PAGE
	4.1.4.8 Effect of Starch-to-AN Ratio	
	on Grafting Frequency	1Ø3
	4.1.4.9 Effect of Starch-to-AN Ratio	
	on Water Absorption	104
	4.1.4.10 Effect of NaCl Concentration	1
	on Water Absorption	107
	4.1.4.11 Effect of MgCl ₂ Solutions	
	on Water Absorption	111
	$4.1.4.12$ Effect of $\mathrm{K_3PO_4.3H_2O}$, KCl ,	
	$\mathrm{NH_4Cl}$, and $\mathrm{(NH_4)_2HPO_4}$	
	Solutions on Water	v.
	Absorption	114
	4.1.4.13 Water Absorption in Sand	
	Alone and Sand With	
	Saponified Starch-g-PAN	118
	4.2 Preirradiation Technique	122
٧	CONCLUSION and SUGGESTION	123
	5.1 Conclusion	123
	5.2 Suggestion and Future Work	127
CES	3	129
X A	1	143

LIST OF TABLES

TABLE			PAGE
	3.1	Chemicals	51
	4.1	Effect of Homopolymer Suppressors on	
		Percentage of Homopolymer Formation	63
	4.2	Effect of Total Dose (kgy) on Grafting of	
		Acrylonitrile onto Cassava Starch	66
	4.3	Effect of Total Dose on Viscosity Average	
		Molecular Weight and Grafting Frequency	73
	4.4	Deionized Distillated Water Absorption as	
		a Function of Total Dose	76
	4.5	Effect of Dose Rate on Grafting of	
		Acrylonitrile onto Cassava Starch	79
	4.6	Effect of Dose Rate on Viscosity Average	
		Molecular Weight and Grafting Frequency	87
	4.7	Effect of Dose Rate on Water Absorption	
		in Deionized Distillated Water	9Ø
	4.8	Effect of Starch(g)/AN(ml) on Graft	
		Copolymerization of Acrylonitrile onto	
		Cassava Starch	96
	4.9	Effect of Starch(g)/AN(ml) Ratios on the	
ž.,		Molecular Weight and the Grafting Frequency	102
	4.10	Effect of the Concentration of AN on Water	
		Absorption in Deionized Distillated Water .	1Ø5
•	4.11	Effect of NaCl Concentrations on Water	
		Absorption	1Ø8

TABLE			PAGE
	4.12	Effect of Different MgCl ₂ Concentrations	
		on Water Absorption	111
	4.13	Effect of $\emptyset.9\%$ w/w of $K_3PO_4.H_2O$, $KC1$,	
		$\mathrm{NH_4Cl}$, and $(\mathrm{NH_4})_{\mathrm{2}}\mathrm{HPO_4}$ on the Water Absorption	n
		of the Saponified Starch-g-PAN	115
	4.14	Water Retention on Sand Mixed with	
		Different Concentrations of Saponified	
		Starch-g-Polyacrylonitrile	119

LIST OF FIGURES

FIGURE	. P.	AGE
2.	.1 Chemical structure of amylose chain	15
2.	2 Branched structure of amylopectin	16
2.	3 Saponification of the starch-g-PAN	24
2.	4 Structure of molecules in a cooked starch	
	paste	26
2.	5 Preparation of saponified starch-g-PAN	3Ø
4.	1 Effect of total irradiation dose on %	
	homopolymer formed	69
4.	2 Effect of total dose on % grafting	
	efficiency	69
4.	3 Effect of total dose on % conversion of	
	monomer	7Ø
4.	4 Effect of total dose on % add-on	71
4.	5 Effect of total dose on % grafting ratio	72
4.	6 Effect of total dose on viscosity average	
	molecular weight (\bar{M}_{V}) of the grafted PAN	75
4.	7 Effect of total dose on grafting frequency .	75
4.	8 Effect of total dose on water absorption	
	of saponified starch-g-polyacrylonitrile	77
4.	9 Water absorption as a function of % add-on	
	obtained by various total doses	77
4.10	Effect of pitch diameter on dose rate of gamma	
	radiation	78
4.1	1 Effect of dose rate on % homopolymer	
	formation	81

			kiii
FIGUE	RE		PAGE
	4.12	Effect of dose rate on % grafting	
o ^t		efficiency	81
	4.13	Effect of dose rate on % conversion of	
		monomer	83
	4.14	Relationship of irradiation time and dose	
		rate	84
	4.15	Effect of dose rate on % add-on	85
	4.16	Effect of dose rate on % grafting ratio	85
	4.17	Effect of dose rate on viscosity average	
		molecular weight of the grafted PAN	88
	4.18	Effect of dose rate on grafting frequency .	89
	4.19	Effect of dose rate on water absorption by	
		saponified starch-g-PAN in deionized water.	91
	4.20	Water absorption as a function of % add-on	
		obtained by various dose rates	91
	4.21	Infrared spectrum of the dried cassava starch	93
	4.22	Infrared spectrum of the graft copolymer	
		after grafting	93
	4.23	Infrared spectrum of the graft copolymer	
	*	after DMF extract	94
	4.24	Infrared spectrum of the saponified graft	
		copolymer	94
	4.25	Effect of the concentration of AN on %	
		homopolymer formation	98
	4.26	Effect of the concentration of AN on %	
		grafting efficiency	

FIGURE		PAGI
4.27	Effect of the concentration of AN on %	
	conversion of monomer	. 98
4.28	Effect of the concentration of AN on %	
	add-on	. 101
4.29	Effect of the concentration of AN on %	
	grafting ratio	. 101
4.30	Effect of the concentration of AN on the	
	viscosity average molecular weight of	
	grafted polyacrylonitrile	. 103
4.31	Effect of the concentration of AN on the	
	grafting frequency	. 104
4.32	Effect of the concentration of AN on the	
	water absorption of saponified starch-g-PAN	
	in deionized distillated water	. 107
4.33	Water absorption of the saponified	
	starch-g-PAN in NaCl solutions of $\emptyset.1$, $\emptyset.5$,	
	1.0, and 2.0 % w/v	. 112
4.34	Water absorption of the saponified	
	starch-g-PAN in MgCl ₂ solutions of Ø.1,	
	Ø.5, 1.0, and 2.0 % w/v	. 113
4.35	Comparative water absorption study between	
	deionized distillated water and Ø.1 % w/v	
	solutions of NaCl and MgCl ₂	. 114
4.36	Water absorption of the saponified	
	starch-g-PAN in KCl, K3PO4.3H2O, NH4Cl and	
	(NH ₄) ₂ HPO ₄ solutions of Ø.9 % w/w	117

-	-	-		-	-
F		~	11	D	L.
•		"	16	п	г.

-		~	-
\mathbf{D}	Λ	•	L
	м	LT	г

4.37	Relationships between swelling degree and	
	ionization degree of polymer electrolyte,	
	crosslinking density of polymer network,	
	ionic strength of salt solution and pH of	
	polymer solution	118
4.38	Water retention of sand mixed with the	
	saponified starch-g-PAN with different	*
	concentration of graft copolymer	12Ø
4.39	Water retention of sand mixed with the	
	saponified starch-g-PAN with different	
	AN concentrations	121

LIST OF ABBREVIATIONS

OI.

องศาเซลเซียส

OC

degrees Celsius

Ce(IV)

cerium ion

CAN

ceric ammonium nitrate

AN

acrylonitrile

S-PAN

starch-polyacrylonitrile

HSPAN

hydrolyzed soponified

polyacrylonitrile

HWAP

high water absorbing polymer

DMF

N,N - dimethylformamide

PAN

polyacrylonitrile

WRV

water retention value

M.W.

molecular weight

 \overline{M}_{v}

viscosity average molecular weight

G value

the number of free radicals formed

per 100 e.v. absorbed, is a measure

of radiation sensitivity

kgy

kilogray

%

per cent

Mn 3+

manganese (III)

AGU

anhydroglucose unit

 \propto

alpha

8

gamma

D.P.

degree of polymerization

BU

bushel unit

gram g milliliter ml M molarity cm^{-1} unit of wavenumber microns micrometers C=N nitrile group w/v weight by volume W/W weight by weight Co6Ø cobalt-60 Ι intensity of radiation P backbone polymer р. polymer radical M grafting monomer PM_{m} graft copolymer PM_n graft copolymer PM_{m+n} graft copolymer rate of initiation of polymer radical rate of initiation of graft ri reaction rate of propagation rp rate of termination rt rate constant for initiation of k polymer radicals rate constant for initiation of

graft reaction

ki

kp

propagation rate constant

k_t

termination rate constant

Eur. Polym. J

European Polymers Journal

Makromol. Chem.

Makromolekulare Chemie

J. Polym. Sci. A

Journal of Polymer Science, part A

J. Polym. Sci. C

Journal of Polymer Science, Part C

J. Appl. Polym. Sci. Journal Applied Polymer Science

J. Macromol. Sci.

Journal of Macromolecular Science

Chem.

and Chemistry

Polym. lett.

Polymer letter

Chem. Tech.

Chemical Technology

Radiat. Phys. Chem.

Radiation Physics and Chemistry