ฤทธิ์ของอินโคลอัลควลอยค์จากต้นเครือสี่เหลี่ยม ใน การลคการเกร็งตัวของกล้ามเนื้อเรียบ

นางสาวเกคีนี สร้อยสุวรรณ

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมหาบัณฑิต ภาควิชาสรีรวิทยา บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย พ.ศ. 2528 ISBN 974-564-582-6

ฤทธิ์ของอินโคลอัลคาลอยค์จากต้น เครือสี่ เหลี่ยม ใน การลคการ เกร็งตัวของกล้าม เนื้อ เรียบ

นางสาวเกศินี สร้อยสุวรรณ

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญา เภสัชศาสตรมหาบัณฑิต ภาควิชาสรีรวิทยา บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย พ.ศ. 2528 ISBN 974-564-582-6

ANTISPASMODIC ACTIVITY OF INDOLE ALKALOIDS FROM UNCARIA SALACCENSIS

Miss Gesinee Sroysuwan

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science in Pharmacy

Department of Physiology

Graduate School

Chulalongkorn University

1985

ISBN 974-564-582-6

Thesis Title

Antispasmodic Activity of Indole Alkaloids from

Uncaria salaccensis

By

Miss Gesinee Sroysuwan

Department

Physiology

Thesis Advisor

Associate Professor Prasan Dhumma-Upakorn, Ph.D.

Co-Advisor

Associate Professor Pavich Tongroach, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree.

(Associate Professor Supradit Bunnag, Ph.D.)

Thesis Committee

S. Jaidel Chairman

(Assistant Professor Sumlee Jaidee)

Prasau Dhummaeyakom Member

(Associate Professor Prasan Dhumma-Upakorn, Ph.D.)

Parele Tongrade. Member

(Associate Professor Pavich Tongroach, Ph.D.)

Sharade Ponglux Member

(Associate Professor Dhavadee Ponglux, Ph.D.)

Copyright of the Graduate School, Chulalongkorn University

หัวข้อวิทยานิพนธ์

ฤทธิ์ของอินโคลอัลกาลอยค์จากพันเครือสี่เหลี่ยมในการลกการ

เกร็งตัวของกลามเนื้อเรียบ

ที่อนิสิต

นางสาวเกศีนี สรอยสุวรรณ

อาจารย์ที่ปรึกษา

รองศาสตราจารย์ คร. ประสาน ธรรมอุปกรณ์

อาจารย์ที่ปรึกษา

รองศาสตราจารย์ คร. ภาวิช ทองโรจน์

ภาควิชา

สรีรวิทยา

ปีการศึกษา

2527

บทคัดยอ

อินโคลอัลกาลอยค์ ซึ่งสกัคจากตนเครือสี่เหลี่ยม (Uncaria salaccensis) มี

19-epi-3-isoajmalicine (I-1), 3-isoajmalicine (I-2), uncarine B (O-1)
และ mitraphylline(O-2) ได้ทำการศึกษาฤทธิ์ของอัลกาลอยค์เหล่านี้ต่อลำไสของกระต่าย
และหนูตะเภาที่แยกออกมาเพื่อศึกษาถึงฤทธิ์ในการลดการเกร็งตัวและฤทธิ์ในการยับยั้งการหดตัว
ที่เกิดจาก 5-hydroxytryptamine(5-HT) จากนั้นได้ทำการศึกษาต่อในเส้นเลือดเอออร์ต่า
ที่แยกออกมา พบว่า อัลกาลอยค์ทุกตัวมีฤทธิ์ลดการหดตัวของลำไส้กระต่ายและความตึงขณะพักของ
ลำไส้หนูตะเภา ในลำไสของหนูตะเภาที่แยกออกมา I-1 ยับยั้งการเกร็งตัวที่เกิดจาก 5-HT
ขณะเดียวกันไม่มีผลต่อการเกร็งตัวที่เกิดจาก carbachol, histamine และ barium I-2
ยับยั้งการเกร็งตัวที่เกิดจากทั้ง 5-HT และ carbachol แต่เห็นผลในการยับยั้งมารเกร็งตัวที่เกิดจาก 5-HT ใดมากกว่าขณะเดียวกันไม่มีผลต่อการเกร็งตัวที่เกิดจาก histamine และ barium
O-1 และ O-2 ในขนาดที่สู่งลดการเกร็งตัวที่เกิดจาก carbachol แต่ไม่มีผลต่อสารตัวอื่นๆ
ในเส้นเลือดเอออร์ตาที่แยกออกมา ได้ผลเช่นเดียวกันคือเฉพาะ I-1 และ I-2 สามารถลด
ฤทธิ์ในการเกร็งตัวของ 5-HT จากผลการหดลองนี้ชี้ให้เห็นว่า อัลกาลอยค์2ตัวคือ I-1
และ I-2 มีคุณสมบัติในการเป็น antiserotonergic โดย I-1 มีความจำเพาะมากกว่า
I-2

and manivine,

Thesis Title Antispasmodic Activity of Indole Alkaloids from

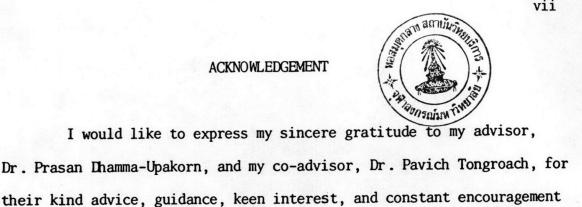
Uncaria salaccensis

Name Miss Gesinee Sroysuwan

Thesis Advisor Associate Professor Prasan Dhumma-Upakorn, Ph.D.

Co-Advisor Associate Professor Pavich Tongroach, Ph.D.

Department Physiology


Academic Year 1984

ABSTRACT

Four indole alkaloids characterized as 19-epi-3-isoajmalicine (I-1), 3-isoajmalicine (I-2), uncarine B (O-1) and mitraphylline (O-2) were isolated from a Thai native plant, Uncaria salaccensis. The alkaloids were tested on isolated intestine of rabbit and guinea-pig in order to determine the antispasmodic activity and antagonistic effect on 5-hydroxytryptamine (5-HT). Further test was also performed on isolated aortic strip to study the alkaloids' effects on antiserotonergic properties. The four alkaloids reduced spontaneous movements of rabbit jejunum as well as the resting tension of ileum from guinea-pig. In guinea-pig ileum, I-1 preferentially antagonized spasmodic action of 5-hydroxytryptamine (5-HT), while the contractile responses to carbachol, histamine and barium, were unaffected. I-2, however, reduced contracture induced by both 5-HT and carbachol, although antagonism with higher degree of preference was observed with 5-HT. The responses to histamine and barium were unaffected by I-2. O-1 and O-2 at high doses reduced contracture induced by carbachol, while the contractile responses to 5-HT, histamine and barium were unaffected. The 5-HT induced contraction on aortic strips were also reduced especially by both of I-1 and I-2. The conclusion has been drawn that the two alkaloids, I-1 and I-2, have antiserotonergic properties, with I-1 being more specific and potent than I-2.

ACKNOWLEDGEMENT

throughout this study.

I would also like to thank Associate Professor Dr. Dhavadee Ponglux and Assistant Professor Sumphan Wongseripipatana of the Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their kindness in extracting the indole alkaloids from Uncaria salaccensis Bakh .f . nom provis, and Dr . Dhavadee for her kindness in suggestion and correction of this thesis.

I am much thankful to Assistant Professor Sumlee Jaidee of the Department of Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for her kind help in suggestion and correction throughout this thesis.

I am also indebted to all staff of the Department of Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for providing advice and facilities used in experimental works.

A part from the financial support from my parents this study programme has been made possible partly by Chulalongkorn University Graduate School for granting my partial financial support (of seven thousand and five hundred bath) to conduct this research. To them my gratitude goes.

Finally, I would like to extend my appreciation to my parents for their extremely useful support and their encouragement given to me.

^oC degree celcieus

 EC_{50} the concentration which produced 50% inhibition of the

control

Fig. figure

g gram

h hour

5-HT 5-hydroxytryptamine (serotonin)

1 liter

M molar

μM micromole

%max percent maximum

min minute

M.W. molecular weight

NA noradrenaline

P probability

S.E. standard error

s second

pA₂ negative logarithm of the molar concentration of the

antagonist which causes a 2-fold increase of the agonist

concentration to obtain the same response

pD₂ negative logarithm of the molar concentration of the

antagonists that produces 50% reduction of the maximal

effects obtained with an agonist.

TABLE OF CONTENTS

		Page
THAI ABSTRAC	Т	iv
ENGLISH ABST	RACT	١
ACKNOWLEDGEM	ENT	vii
ABBREVIATION	I	ix
TABLE OF CON	ITENTS	х
LIST OF TABL	ES	xii
LIST OF FIGU	IRES	xiii
CHAPTER		
I	INTRODUCTION	1
II	MATERIALS AND METHODS	
	1. Preparation of the isolated rabbit jejunum	6
	2. Preparation of the isolated guinea-pig ileum	6
	3. Preparation of the isolated rabbit aortic strip	7
	4. The organ bath	8
	5. Drugs	8
	6. Drug administration	10
	7. Data acquisition	10
III	RESULTS	
	1. Effects of indole alkaloids on isolated rabbit	
	jejunum	12
	2. Effects of indole alkaloids on isolated guinea-	
	pig ileum	17
	2.1 Effects of indole alkaloids on contraction	
	of guinea-pig ileum induced by 5-hydroxy-	
	tryptamine	17

		Page
2.2	Effect of indole alkaloids on sustained	
	contraction of guinea-pig ileum induced	
	by carbachol	20
2.3	Effects of indole alkaloids on contraction	
	of guinea-pig ileum induced by histamine	25
2.4	Effects of indole alkaloids on contraction	
	of guinea-pig ileum induced by barium	
	chloride	25
3. Effe	ects of indole alkaloids on isolated aortic	
stri	p of rabbit	25
3.1	Effect of indole alkaloids on sustained	
	contraction of aortic strip induced by	
	5-hydroxytryptamine	35
3.2	Effect of indole alkaloids on contraction	
	of aortic strip induced by noradrenaline	43
V DISCUSS:	ION AND CONCLUSION	51
5		5.5
		60
	2.3 2.4 3. Effe stri 3.1 3.2	contraction of guinea-pig ileum induced by carbachol

LIST OF TABLES

Table		Page
1.	EC ₅₀ of indole alkaloids on spontaneous contraction	
	of isolated rabbit jejunum	16
2.	pD_2 values of indole alkaloids, I-1 and I-2, against	
	spasmodic action of 5-hydroxytryptamine on isolated	
	guinea-pig ileum	22
3.	pD_2 values of indole alkaloids, I-1 and I-2, against	
	spasmodic action of carbochol on isolated guinea-pig	
	ileum	28
4.	pA_2 values of indole alkaloids, I-1 and I-2, on 5-hydroxy-	
	tryptamine induced contraction of the aortic strip	46

Figure		Page
1.	Structures of indole alkaloids	
	A. Structure of indole nucleus	4
	B. Structures of pentacyclic heteroyohimbines	4
	C. Structures of pentacyclic oxindoles	4
2.	Organ bath	9
3.	Cumulative log concentration-response curves of four	
	indole alkaloids (I-1, I-2, O-1 and O-2) on	
	spontaneously contraction of isolated rabbit	
	jejunum	13
4.	A. Trace of dose-response relationship of four indole	
	alkaloids (I-1, I-2, O-1 and O-2) concentration	
	$11 \times 10^{-6} M$ on isolated rabbit jejunum	14
	B. Trace of dose-response relationship of four indole	
	alkaloids (I-1, I-2, O-1 and O-2) concentration	
	$22 \times 10^{-6} M$ on isolated rabbit jejunum	15
5.	Trace of sequential concentration-response relationship	
	of 5-hydroxytryptamine (5-HT) alone and preincubating	
	with I-1 11 x 10^{-6} M on isolated guinea-pig ileum	
	preparation	18
6.	Log concentration-response curves of the inhibition of	
	contraction induced by 5-hydroxytryptamine of I-1 on	
	isolated guinea-pig ileum	19

Figure		Pag
7.	Log concentration-response curves of the inhibition	
	of contraction induced by 5-hydroxytryptamine of	
	I-2 on the isolated guinea-pig ileum	21
8.	Log concentration-response curves of the inhibition of	
	contraction induced by 5-hydroxytryptamine of 0-1 on	
	the isolated guinea-pig ileum	23
9.	Log concentration-response curves of the inhibition of	
	contraction induced by 5-hydroxytryptamine of 0-2 on	
	the isolated guinea-pig ileum	24
10.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by carbachol of	
	I-1 on isolated guinea-pig ileum	26
11.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by carbachol of	
	I-2 on isolated guinea-pig ileum	27
12.	Cumulative log concentration-response curves of the	
	inhibition of contraction induces by carbachol of	
	O-1 on isolated guinea-pig ileum	29
13.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by carbachol of	
	O-2 on isolated guinea-pig ileum	30
14.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by histamine of	
	I-1 on isolated guinea-pig ileum	31
15.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by histamine of	
	I-2 on isolated guinea-pig ileum	32

igure		Page
16.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by histamine of	
	O-1 on isolated guinea-pig ileum	33
17.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by histamine of	
	O-2 on isolated guinea-pig ileum	34
18.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by barium chloride	
	of I-1 on isolated guinea-pig ielum	36
19.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by barium chloride	
	of I-2 on isolated guinea-pig ielum	37
20.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by barium chloride	
	of O-1 on isolated guinea-pig ileum	38
21.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by barium chloride	
	of O-2 on isolated guinea-pig ileum	39
22.	Trace of cumulative concentration-response relationship	
	of 5-hydroxytryptamine (5-HT) alone and preincubating	
	with I-1 11 x 10^{-6} M on isolated aortic strip	40
23.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by 5-hydroxytryptamine	е
	of I-1 on isolated aortic strip	41
24.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by 5-hydroxytryptamine	е
	of I-2 on isolated aortic strip	42

Figure		Pag
25.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by	
	5-hydroxytryptamine of 0-1 on isolated aortic	
	strip	44
26.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by	
	5-hydroxytryptamine of 0-2 on isolated aortic	
	strip	45
27.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by noradrenaline	
	of I-1 on isolated aortic strip	47
28.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by noradrenaline	
	of I-2 on isolated aortic strip	48
29.	Cumulative log concentration-response curves of the	
	inhibition of contraction induced by noradrenaline	
	of O-1 on the isolated aortic strip	49
30.	Cumulation log concentration-response curves of the	
	inhibition of contraction induced by noradrenaline	
	of O-2 on isolated aortic strip	50