CHAPTER IV

RESULTS

Comparison of Two Different Size Filters for Recovering . Cjejuni from Inoculated Distilled Water

result was shown in Table 7. 0.2-um The The membrane filter was better for concentration C. jejuni than another one. The smaller pore size does not let any bacterium passing through this membrane. The inoculum from 1.83 X 10⁵ to 1.83 X 10⁶ C. jejuni cells per ml could be detected by either 0.2 um-membrane or 0.45 um-membrane filter on both culture methods. At the inoculum of < 1.83 X 104c.f.u/ml on the 0.45 um membrane filter that laid face down onto B.B.A, no C. jejuni was isolated. When the inoculum size was 1.83 X 10⁻¹ c.f.u./ml (18. 3 c.f.u/100 ml) and the 0.45-um membrane filter was used by placing in Doyle's enrichment broth with the filter further, there was no isolated organisms. The inoculum size was 1.83X10-1 c.f.u/ml with the 0.2-um pore membrane filter recovered C. jejuni better than the other. The data also suggested that similar results were obtained whether the 0.2 um-membrane filter was placed directly on plates or placed in enrichment broth with the filter further. Since there are not only single type of onganisms but also several types of enteric bacteria habour in canals, therefore all the organisms will be concentrated on the surface of the 0.2 um-membrane. filter and overgrown on BBA. In this situation, enrichment the 0.2 um-membrane filter in Doyle's procedure was chosen for the isolation of <u>Campylobacter</u> spp. from the canals in this study.

Isolation rate of Campylobacter spp. from canals

A total of the 156 samples were examined for <u>Campylobacter spp</u>. in three duration of time; July(1988) to September (1988), November (1988) to January (1989), and February(1989) to April (1989). The 116 <u>Campylobacter species</u> strains were isolated from the 156 water samples. The <u>Campylobacter</u> isolates were characterized by Table 8 and 9. They were 74 <u>C</u>. <u>cryaerophila</u> strains and 42 <u>C</u>. <u>cryaerophila</u> - like organism strains.

During these times, <u>C</u>. <u>cryaerophila</u> was isolated from 23 (44.23%), 27 (51.19%) and 24 (46.15%) and also <u>C</u>. <u>cryaerophila</u>-like organism from 15 (28.85%), 10 (19.23%) and 17 (32.69%) of the 52 samples in each period of time respectively as shown in Table 8 and Fig. 10. The isolation rate of both <u>Campylobacter</u> species during those time were not significantly difference (P > 0.05).

The canal-sites of <u>Campylobacter</u> species positive isolation were shown in Fig. 7,8 and 9 while the canal-marks of <u>Campylobacter</u> negative isolation in all durations were,

061	Klong	Mahanak at Chakra Padipong Road Cross.
091	Klong	San Sap at Din Daeng-Asoka Road Cross.
093	Klong	San Sap at Bang Kapi Bridge.
094	Klong	San Sap at Bang Chan estate.
095	Klong	San Sap at Minburi.
123	Klong	Bang Sue at Paholyothin Road Cross.
321	Klong	Rat-Burana at Suksawad Road Cross.
401	Klong	Bang-Kruay at Bang-Kruay Bridge.

During July to September (1988), the negative isolation of <u>Campylobacter</u> <u>spp</u>. were

082	Klong	Sam Sen at Sam Sen Road Cross.
113	Klong	Prem Prachakorn at Bang Sue Market.
121	Klong	Bang Sue at Piboon Songkram Bridge.
201	Klong	Dao Kanong at Taksin Road Cross.
232	Klong	Bangkok Yai at Charoen Pars Bridge.
281	Klong	Bang Na at Sukumvit Road Cross.

During November (1988) to January (1989) Campylobacter spp. were not recovered from

- 031 Klong Wat Rajabopit at Tre Tong Road Cross.
- 043 Klong Bang Lum Poo at Bang Lum Poo Water Gate.
- 063 Klong Mahanak behind Department of Drainage and Sewage B.M.A.
- 141 Klong Chong Nonsi at Ratchadapisek Road Cross.
- 201 Klong Dao Kanong at Taksin Road Cross.

211 Klong Bang Kun Tien at Terd Thai Road Cross.

During February to April (1989), <u>Campylobacter</u> <u>spp</u>. were not seen from,

012 Klong Lord at Gate near Rachinee School.

015 Klong Lord at Pra Pin Klao Bridge.

043 Klong Bang Lum Poo at Bang Lum Poo Water Gate.

<u>Phenotypic Biochemical Characteristic of the Isolated</u> <u>C. cryaerophila and C. cryaerophila-like organisms</u>

result of differential tests were shown in The Table 9. All strains grew aerobically at 37°C and microaerophilically (85% N₂, 10% CO₂ and 5% O₂) at 25°C and 37°C but not at 42°C. The growth in the presence of 1% glycine and 3.5% NaCl was variable. All strains were positive for catalase and nitrate reduction tests. They were unable to produce H2S and also non hippuratehydrolysis. The sensitivity to nalidixic acid (30 ug) disc was varied and most of the strains were resistant to cephalothin (30 ug) disc with the exception of only one sensitive strain. The C. cryaerophila-like organisms were differentiated from <u>C</u>. cryaerophila by positive urease test.

Table 1 Comparison of the taxonomic classification synonyms of the

genus <u>Campylobacter*</u>

	Taxonomic classi	fication synonyms acco	ording to:	
Approved List of Bacterial Name, ICSB 1980	Bergey's Manual (Smibert 1974)	Veron and Chatelain (1973)	King (1957)	Florent(1959) or Jones(1931)
I. <u>Campylobacter</u> <u>fetus</u> ss. <u>venerealis</u>	I. <u>C</u> . <u>fetus</u> ss. <u>fetus</u>	<u>C</u> . <u>fetus</u> ss. <u>venerealis</u> <u>C</u> . <u>fetus</u> ss.biotype	<u>Yibrio</u> <u>fetus</u>	<u>V</u> . <u>fetus</u> ss. <u>venrealis</u> (Florent)
<u>Campylobacter</u> <u>fetus</u> ss. <u>fetus</u>	<u>C</u> . <u>fetus</u> ss. <u>intestinalis</u>	<u>intermedius</u> <u>C</u> . <u>fetus</u> ss. <u>fetus</u>	<u>Vibrio</u> <u>fetus</u>	<u>V. fetus</u> ss. <u>intestinalis</u> (Florent)
II. <u>Campylobacter jejuni</u> III. <u>Campylobacter coli</u>	<u>C. fetus</u> ss. <u>jejuni</u> 11. <u>C. fecalis</u>	<u>C. jejuni</u> , <u>C. coli</u> (?) -	"Related vibrios" -	<u>V. jejuni</u> (jones) -
IV. <u>Campylobacter</u> sputorum ss. <u>sputorum</u>	III. <u>C</u> . <u>sputorum</u> ss. <u>sputorum</u>	<u>C</u> . <u>sputorum</u>	<u>Y</u> . <u>sputorum</u>	
<u>Campylobacter</u> <u>sputorum</u> ss. bubulu <u>s</u>	<u>C</u> . <u>sputorum</u> ss. <u>bubulus</u>	<u>C. bubulus</u>	<u>v</u> . <u>bubulus</u>	-

Classification of the genus Campylobacter

*Rettig 1979, Ohashi 1982, Karmali and Skirrow 1985

70

Table 2 Phenotypic characteristics of Campylobacter species*

	L	Growth tests						Biochemical reaction					- 01	Susceptibili					
Organiens				ine	aCI	NaCI	ey			reduct	TSI	B P	lysis	5	T C	hydrolysi	to		
Organisms	25 °c	3 6 C	42.C	1 %glycine	1.5% N	3.5 % N	MaC Conkey	Oxidase	Catalase	Nitrate re	H2S IN T	Rapid H2SFB	DNA hydrolysi	Hippurate hvdroivsis	0.04% T T	Urea hydi	Nalidixic	acid	Cephalothin
<u>C.jejuni</u>	-	÷	+	•	-	-	+	•	+	•	-	d	d	+	•	-		s	R
<u>c.coli</u>	-	+	+.	+	-	-	+	+	+	+	d	-	d	-	•	-		s	R
C.laridis	-	•	•	+	+	-	•	•	+	+	-	•	d	-	-	-	3	R	R
.fetus SS.fetus	+	+	d	•	-	-	+	+	+	+	-	-	-	-	-	-		R	s
<u>.fetus</u> <u>SS.venerealis</u>		•	-	-	-	-	+	+	+	+	-	-	-	-		-		R	s
.sputorum SS.faecalis	+	•	+	•	•	•	+	+	+	+	+	+	-	-		-		R	s
. <u>hyointestinalis</u>	d	•	a	+	-	-	•	+	+	+.	٠	-	-	-	-	-	1	R	s
' <u>C</u> . <u>cinaedi</u> "	-	+	d	•	-	-	-	+	+	+	-	-	-	-	+	-		s	s
' <u>C</u> . <u>fenelliae</u> "	-	+	d	+	-	-	-	+	+	-	-	-	-	-	+	-	- 1	s	s
2.pylori	-	•	-	+	-	-	-	+	+	-	-	-	-	-		+	1	R	s
cryaerophila	+	•	-	-	•	₫	₫	+	+	+	-	-	d	-	-	-		a	d
. <u>sputorum</u> <u>SS</u> . <u>sputorum</u>	-	+	+	•	+	-	+	+	-	+	+	•	-	-		-		R	s
. <u>sputorum</u> <u>SS.bubulis</u>	d	+	d	ŀ	•	+	-	+	-	+	•	a	-	-		-		a	s
.mucosalis	-	•	ŀ	-	-	-	+	+	-	+	+	+	-	-		-		s	s
<u>C.concisus</u>	-	+	-	-	-	-	٠	+	-	+	+	+	-	-		-	1	R	R
" <u>C</u> . <u>upsaliensis</u> "	-	+	+	+	-	-	-	+	-/w	+	-	-		-	-	-		s	s

= Morris and Patton 1985, Taylor and Blaser 1987, Barrett et al. 1988. *

d = variation depend on strains.

- "..." = Proposed names not officially approved by the International Committee on Systemic

<u>Table 3</u> Biotyping scheme for <u>C</u>. <u>jejuni</u>, <u>C</u>. <u>coli</u> and <u>C</u>. <u>laridis</u> according to Lior (Lior 1984)

		<u>c</u> .	<u>jejun</u>	i	<u>c</u> .	<u>coli</u>	<u>C</u> . <u>laridis</u>	
Tests		Bio	types		Biotypes		Biotypes	
	I	11	III	IV	I	II	I	II
Hippurate hydrolysis	+	+	+	+	-		-	-
Rapid H2S test		-	+	+	-	-	+	+
DNA hydrolysis	-	+	-	+	-	+	-	+

Table 4Comparison of four methods to isolate Campylobacterspecies in 331 specimens obtained from 100 children(Taylor et al. 1987)

Isolation method	NO. (%) of isolate
Before enrichment	
Filter onto non selective media	101 (74)
Direct onto selective media	52 (38)
After enrichment	
Filter onto non selective media	92 (67)
Direct onto selective media	39 (29)

	Name of canals	Code	of samples and sites of Collection
1.	Klong Lord	012	Gate near Rachinee School
		015	Pra Pin Klao Bridge
2.	Klong Wat Tep Tida	021	Behind the Bangkok City Hall 1
3.	Klong Wat Rajabopit	031	Tre Tong Road Cross
4.	Klong Bang Lum Poo	042	Infront of Nana Market
2		043	Bang Lum Poo Water Gate
5.	Klong Ong Ang	051	Ong Ang Water Gate
6.	Klong Mahanak	061	Chakra Padipong Road Cross
		063	Behind Department of Drainage and
			Sewerage, BMA
7.	Klong Pradung Krung	072	Krung Kasem Pump Station
	Kasem	075	Teves Market
в.	Klong Sam Sen	081	Maepra Temple
		082	Sam Sen Road Cross
		085	Behind Din Daeng Flat
	Klong San Sap	091	Din Daeng-Asoka Road Cross
		093	Bang Kapi Bridge
		094	Bang Chan estate
		095	Minburi
		096	San Sap Gate

Table 5 List of canals and sites of water sample collection

Na	ame of canals	Code	of samples and sites of Collectio
10.	Klong Tan	101	Klong Tan Pump Station
11.	Klong Prem	113	Bang Sue Market
	Prachakorn	114	Bang Ken Jail
12.	Klong Bang Sue	121	Piboon Songkram Bridge
		122	Paholyotin Center
	а. — С	123	Paholyotin Road
13.	Klong Sathon	131	YMCA
14.	Klong Chong Nonsi	141	Ratchadapisek Road Cross
15.	Klong Lad Prao	181	Soi Sena Nikom 1
		182	Pibool Upatam School
16.	Klong Bang Nam Cho	on 191	Taksin Road Cross
17.	Klong Dao Kanong	201	Taksin Road Cross
18.	Klong Bang Kun Tie	en 211	Terd Thai Road Cross
19.	Klong Pasi Jaroen	221	Wat Rang Bua School
20.	Klong Bangkok Yai	232	Charoen Pars Bridge
21.	Klong Rama VI	241	Rama VI Engineering School
22.	Klong Mon	251	Charan Sanit Wong Road
23.	Klong Bangkok Noi	262	Suwan Naram School
24.	Klong Pra-Kanong	271	Pattanakarn Bridge
		273	Pra-kanong Water Gate
25.	Klong Bang Na	281	Sukumvit Road Cross
26.	Klong Pai-Singto	301	Mahat-Thai Temple
27.	Klong Chaeng-Ron	311	Suksawad Road Cross
28.		321	Suksawad Road Cross

N	ame of	canals	Code	of samples and sites of Collection
29.	Klong	Bang-Prakok	331	Suksawad Road Cross
30.	Klong	Bang-Pa-Kaew	341	Suksawad Road Cross
31.	Klong	Samrong	371	Sukumvit Road
32.	Klong	Bang-Kruay	401	Bang Kruay Bridge
33.	Klong	Mahasawat	411	Wat Chaiya-Pruk Bridge
34.	Klong	Tavee-Wattana	421	Pinklao-Nakorn Chaisri
35.	Klong	Sanam-Chai	431	Lao Temple
36.	Klong	Pravate	462	Infront of Lan Boon Temple

Months of	Sequence of	Water	samples	(accor	ding to	code
collection	collection week		28			
February	1st	012	015	021	031	043
July	2nd	075	082	241	182	123
November	3rd	091	281	101	081	085
	4t h	131	301	141	063	
March	lst	211	221	232	251	262
August -	2n d	042	051	072	061	401
December /	3rd	113	121	181	114	
	4th	273	271	462		
April	lst	311	321	331	341	•
September -	2nd	191	201	371	096	122
January	3rd	093	094	095		
	4th	411	421	431		

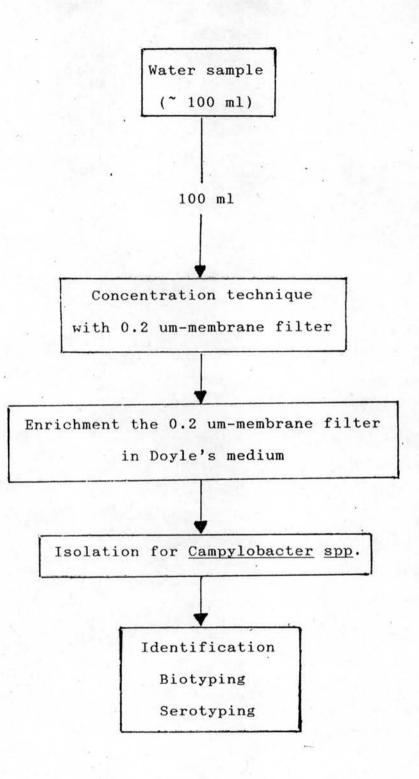
Table 6 Schedule of canals monitoring

Table 7 Comparison of two different size filters for recovering

C. jejuni from inoculated distilled water

	Inoculum of	Recovery with filter :								
Dilution	<u>C.jejuni</u>	0.45-um-pore filter 0.2-um-pore filt								
	(c f u/ml)	Face down ^a	After enrichment ^b	Face down a	After enrichment ^b					
10 - 1	1.83 X 106	+	+	+	+					
10-2	1.83 X 105	+	+	+	+					
10-3	1.83 X 104	-	+	+	+					
10-4	1.83 X 10 ³	=	+	+	+					
10-5	1.83 X 10 ²		+	+	+					
10-6	1.83 X 10	-	+	+	+					
10-7	1.83	-	+	+	+					
10-9	1.83 X 10-1	-		+	+					

- a. The filter was placed directly on Brucella agar plate so that the surface with bacteria was in direct contact with the surface of the agar
- b. After 18-24 h incubation in Doyle's medium, the subculture was dropped through the 0.45 um membrane filter.


Table 8 The incidence of <u>Campylobacter</u> species from the water samples (canals)

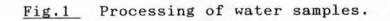

	July-September	November-January	February-April
Organisms	No.of isolates/	No.of isolates/	No.of isolates/
	N.of samples	No.of samples	No.of samples
	(% isolation)	(% isolation)	(% isolation)
<u>C.cryaerophila</u>	23/52	27/52	24/52
	(44.23)	(51.19)	(46.15)
<u>C.cryaerophila</u>	15/52	10/52	17/52
like organism	(28.85)	(19.23)	(32.69)

Table 9 Phenotypic biochemical characteristics of isolated Campylobacters

	<u>C.cryaerophila</u> Total No.of tested isolates=74 strains		C. <u>cryaerophila</u> -like organism Total No.of tested isolates=42 strains	
Tests				
	No. of (+)test (%)	Nc.of (-)test (%)	No.of (+)test (%)	No.of (-)test (%)
Growth at/or in				
-25°C	74 (100)		42 (100)	-
-36 °C	74 (100)	-	42 (100)	-
-42°C		74 (100)	-	42 (100)
-1% Glycine	7 (9.46)	67 (90.54)	8 (19.05)	34 (80.95)
-1.5% NaCl	74 (100)	19 - 19	42 (100)	- 1
-3.5% NaCl	67 (90.54)	7 (9.46)	32 (76.19)	10 (23.81)
-Mac Conkey				
agar	68 (91.89)	6 (8.11)	38 (90.48)	4 (9.52)
-Aerobe (37°C)	74 (100)		42 (100)	-
Biochemical				
tests:				
Oxidase test	74 (100)	-	42 (100)	-
Catalase test	74 (100)	-	42 (100)	-

	<u>C.cryaerophila</u> Total No.of tested isolates=74 strains		<u>C.oryaerophila</u> -like organism Total No.of tested isolates=42 strain	
Tests				
	No. of (+)test (%)	Nc.of (-)test (%	No.of (+)test (%)	No.of (-)test (%
Nitrate reduc-	74(100)	-	42(100)	-
H ₂ in TSI		74(100)		42(100)
Rapid H₂S in FBP	-	74(100)		42(100)
DNA hydrolysis	22(29.73)	52(70.27)	14(33.33)	28(66.67)
Hippurate hydro- lysis tolerance to	-	74(100)	-	42(100)
0.04% TTC		74(100)	-	42(100)
urease test	-	74(100)	42(100)	-
Susceptibility	sensitive	resistant	sensitive	resistan
<u>to</u> :				
Nalidixic acid (30 ug)	27(36.49)	47(63.51)	14(33.33)	28(66.67)
Cephalothin (30 ug)	1(1.35)	73(98.65)	-	42(100)

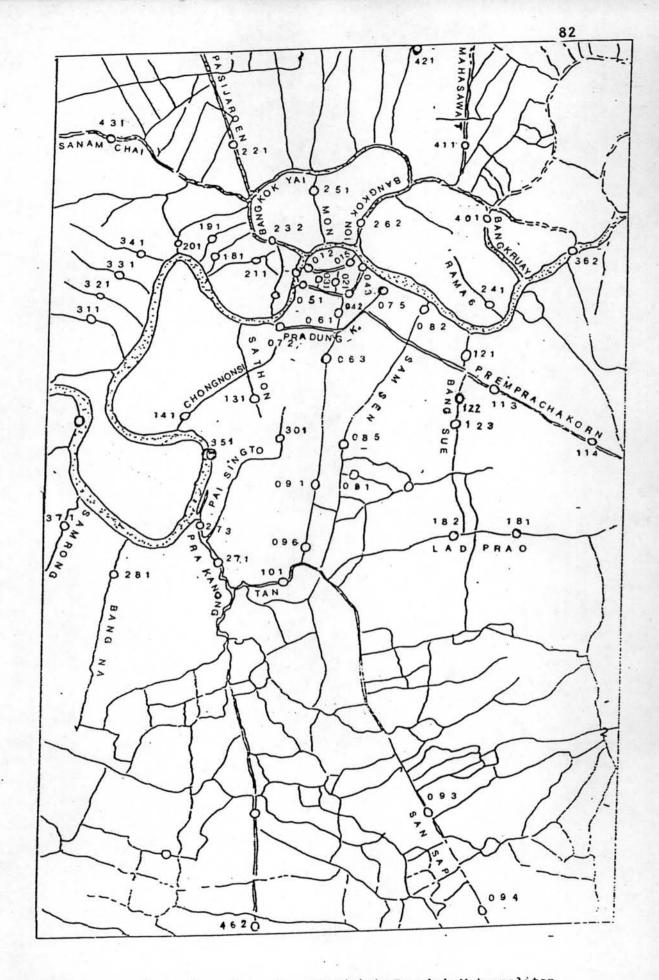


Fig. 2. Map of canals and sample sites(O) in Bangkok Metropolitan

Area

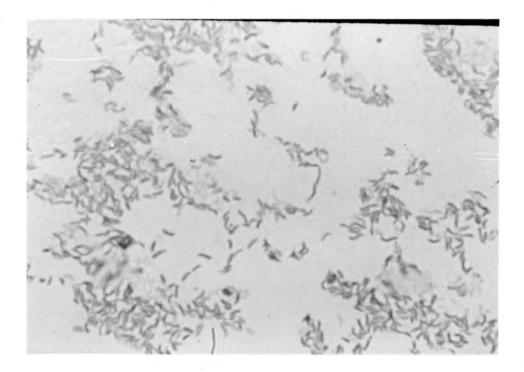


Fig 3 Microscopic Morphology of Campylobacter (1,000X)

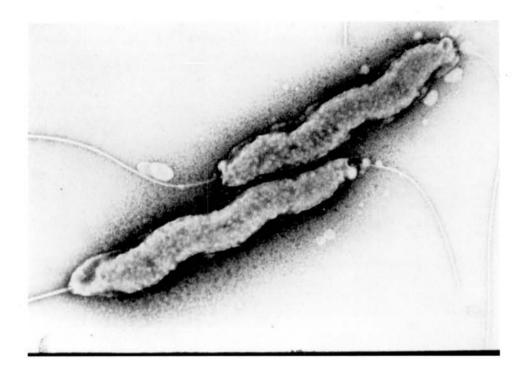
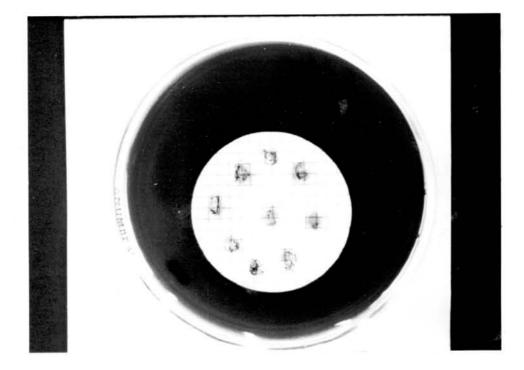



Fig 4 Electron Micrograph of <u>Campylobacter</u> (11,000X) showing a single poloar flagellum at both ends

<u>Fig 5</u> Drops of Doyle's medium on surface of the filter on Brucella blood agar.

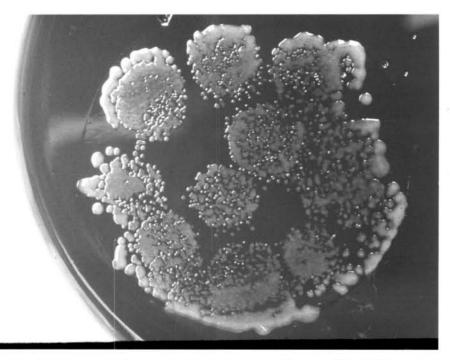
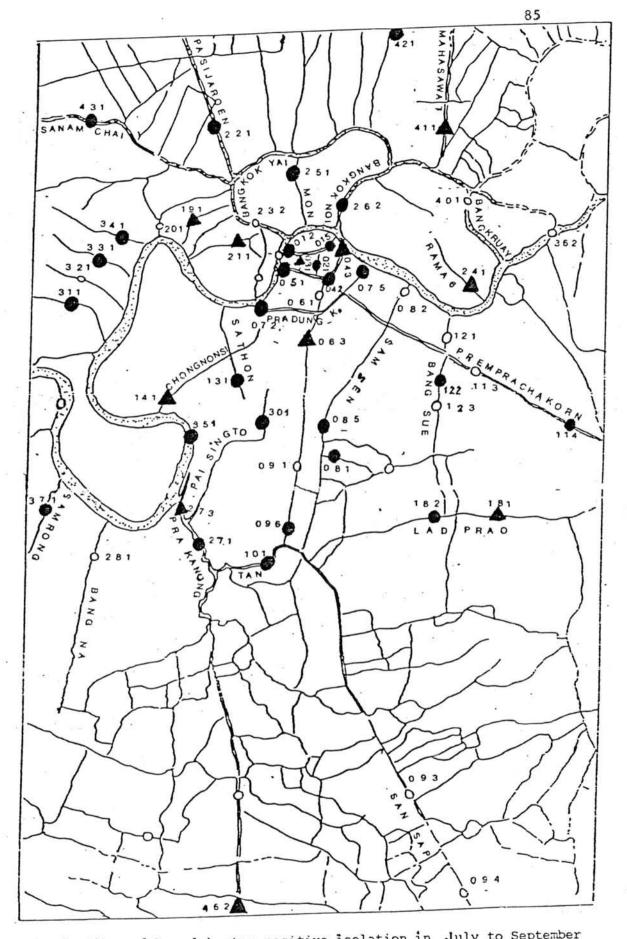
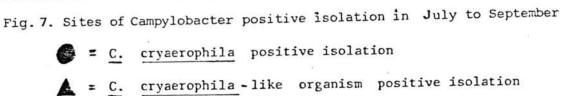
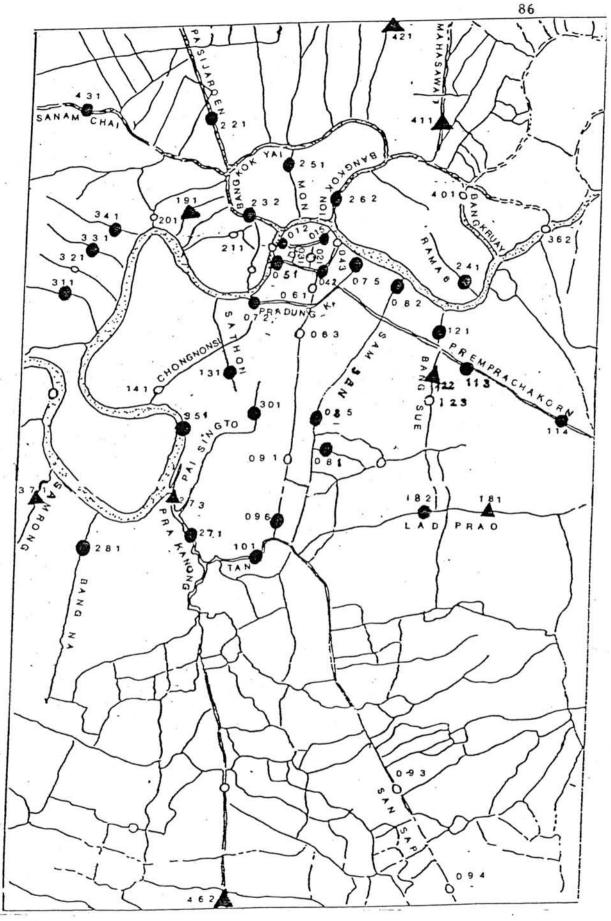
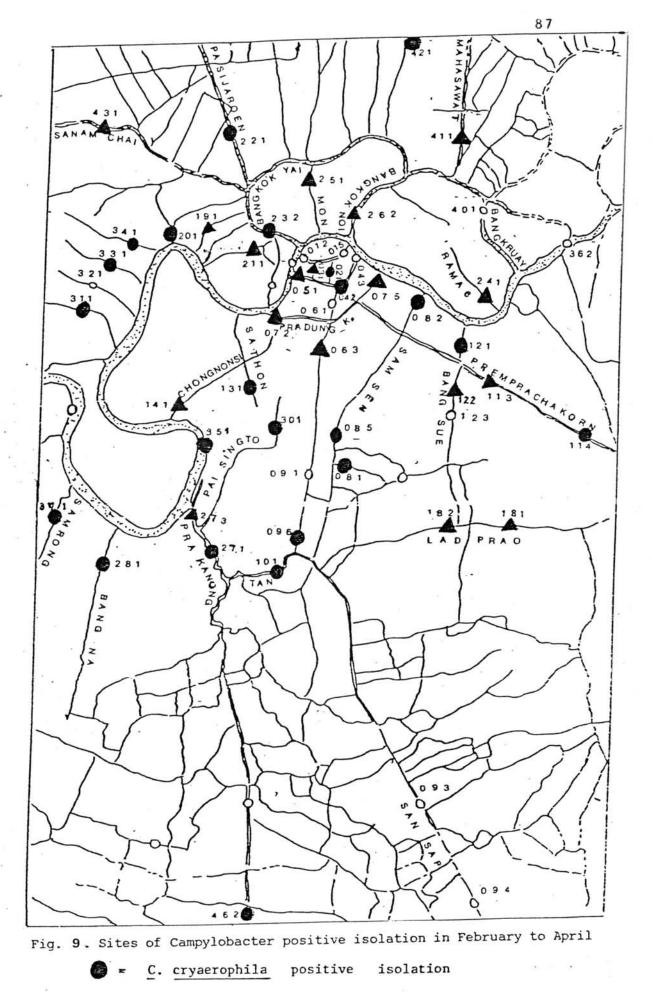
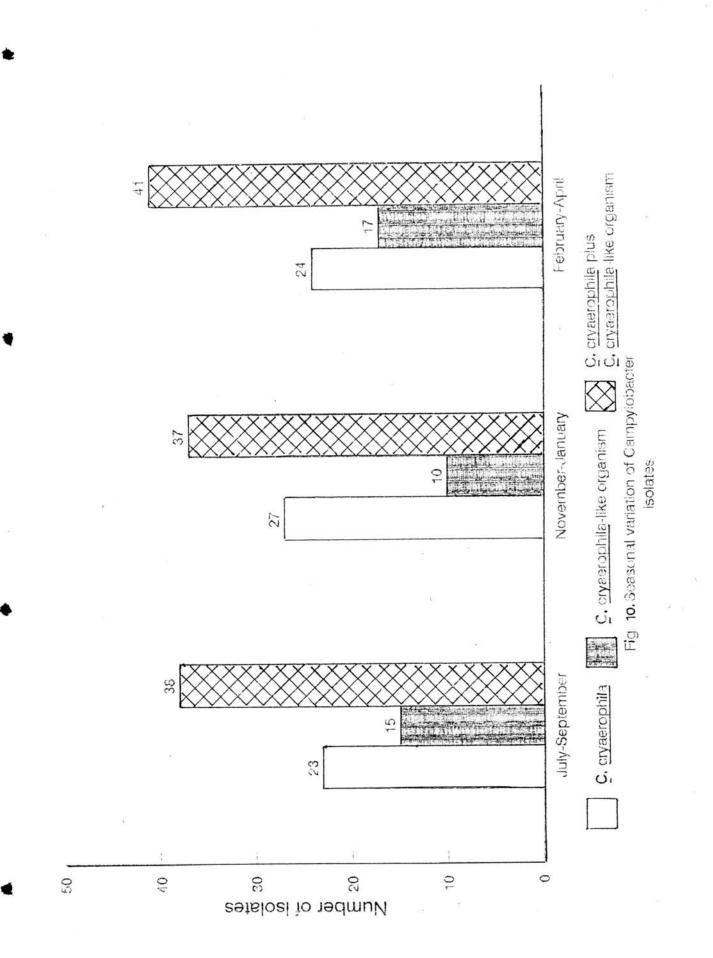
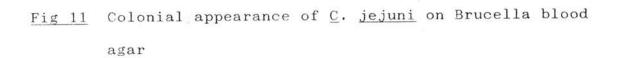




Fig 6 Campylobacter jejuni colonies on Brucella blood agar.


Fig.8. Sites of Campylobacter positive isolation in November to January = <u>C. cryaerophila</u> positive isolation

= C. cryaerophila - like organism positive isolation



=

C. cryaerophila-like organism positive isolation

C. cryaerophila

<u>Fig 12</u> Colonial appearance of of <u>C</u>. <u>cryaerophila</u> on Brucella blood agar

<u>Fig 13</u> Colonial appearance of <u>C</u>. <u>cryaerophila</u>-like organism on Brucella blood agar