

CHAPTER III

LINEAR TRANSFORMATION SEMIGROUPS WHICH ARE CLOSED IN SOME STANDARD EXTENSIONS

Transformation semigroups which are closed in every extension were studied in [1], [4], [5], [6], [7], [8], [9] and [10]. The purpose of this chapter is to show that the linear transformation semigroups LT_V , LG_V , LM_V and LE_V are closed in their standard extensions T_V , P_V and B_V where V is any vector space and T_V , P_V and B_V are the full transformation semigroup on V, the partial transformation semigroup on V and the semigroup of binary relations on V, respectively. We note that LG_V is closed in every extension since it is a group (see Theorem 1.2).

The following lemma is used to prove that LT_V is closed in T_V , P_V and B_V where V is any vector space.

Lemma 3.1. Let S be a basis of a vector space V. If $\rho \in B_V$ and α , β , $\gamma \in LT_V$ are such that $\alpha\beta \cap (S \times V) \subseteq \sigma\beta \cap (S \times V)$ and $\sigma\beta = \rho\gamma$ for some $\sigma \in B_V$, then there exists $\lambda \in LT_V$ such that

(i) $\alpha\beta = \lambda \lambda$ and

(ii) $\lambda \mu \cap (S \times V) \subseteq \rho \mu \cap (S \times V)$ for all $\mu \in LT_{V}$.

<u>Proof</u>: Let $v \in S$. Since $\alpha \beta \cap (S \times V) \subseteq \sigma \beta \cap (S \times V), (v, v(\alpha \beta)) \in \sigma \beta$. Since $\sigma \beta = \rho \gamma$, $(v, v(\alpha \beta)) \in \rho \gamma$. Choose $v' \in V$ such that $(v, v') \in \rho$ and $(v', v(\alpha\beta)) \in \delta$. Then $v'\delta = v(\alpha\beta)$. Therefore for each $w \in S$, we can choose $w' \in V$ such that $(w, w') \in \rho$ and $(w', w(\alpha\beta)) \in \delta$. Thus $w'\delta = w(\alpha\beta)$ for all $w \in S$. Let λ be the element of $L\bar{T}_V$ determined by $w\lambda = w'$ for all $w \in S$. Then for $w \in S$, $w(\lambda\delta) = (w\lambda)\delta = w'\delta = w(\alpha\beta)$. This shows that $\alpha\beta = \lambda\delta$. For $\mu \in L\bar{T}_V$ and for $w \in S$, $(w, w\lambda) = (w, w') \in \rho$ and $(w', w\mu) \in \mu$, so $(w, w(\lambda\mu)) \in \rho\mu$. This proves that $\lambda\mu \cap (S \times V) \subseteq \rho\mu \cap (S \times V)$ for all $\mu \in L\bar{T}_V$.

Corollary 3.2. Let S be a basis of a vector space V. If $\rho \in B_V$ and $\alpha, \beta \in LT_V$ are such that $\alpha = \rho \beta$, then there exists $\lambda \in LT_V$ such that

- (i) $\alpha = \lambda \lambda$ and
- (ii) $\lambda \mu \cap (S \times V) \subseteq \rho \mu \cap (S \times V)$ for all $\mu \in LT_{V}$.

 $\frac{\text{Proof}}{\sigma}$: It follows directly from Lemma 3.1 by using β = 1_V and σ = $\alpha.$ $_{\pm}$

Theorem 3.3. For any vector space V, LT_V is closed in T_V , P_V and B_V .

<u>Proof</u>: Since $LT_V \subseteq T_V \subseteq P_V \subseteq B_V$, it follows that if LT_V is closed in B_V , then LT_V is also closed in T_V and P_V (see Chapter I, page 7). Therefore to prove the theorem, it suffices to prove that LT_V is closed in B_V . Let $\delta \in Dom(LT_V, B_V)$. Then there exist $\alpha_0, \alpha_1, \dots, \alpha_{2m} \in LT_V, \rho_1, \rho_2, \dots, \rho_m, \sigma_1, \sigma_2, \dots, \sigma_m \in B_V$ such that

$$\delta = \alpha \sigma_1, \ \alpha = \rho_1 \alpha_1$$

$$\rho_{i}\alpha_{2i} = \rho_{i+1}\alpha_{2i+1}, \ \alpha_{2i-1}\sigma_{i} = \alpha_{2i}\sigma_{i+1}, \ i = 1, 2, \dots, m-1,$$
$$\alpha_{2m-1}\sigma_{m} = \alpha_{2m}.$$

Let S be a basis of V. Since $\alpha_0 = \rho_1 \alpha_1$, by Corollary 3.2, there exists $\lambda_1 \in LT_V$ such that $\alpha_0 = \lambda_1 \alpha_1$ and $\lambda_1 \alpha_2 \cap (S \times V) \subseteq \rho_1 \alpha_2 \cap (S \times V)$. Since $\lambda_1 \alpha_2 \cap (S \times V) \subseteq \rho_1 \alpha_2 \cap (S \times V)$ and $\rho_1 \alpha_2 = \rho_2 \alpha_3$, it follows by Lemma 3.1 that there exists $\lambda_2 \in LT_V$ such that $\lambda_1 \alpha_2 = \lambda_2 \alpha_3$ and $\lambda_2 \alpha_4 \cap (S \times V) \subseteq \rho_2 \alpha_4 \cap (S \times V)$. Suppose that k is an integer such that $1 \leq k \leq m-2$, $\lambda_k \alpha_{2k} = \lambda_{k+1} \alpha_{2k+1}$ and $\lambda_{k+1} \alpha_{2k+2} \cap (S \times V) \subseteq \rho_{k+1} \alpha_{2k+2} \cap (S \times V)$. It follows from $\lambda_{k+1} \alpha_{2k+2} \cap (S \times V) \subseteq \rho_{k+1} \alpha_{2k+2} \cap (S \times V)$,

 $\begin{array}{l} \rho_{k+1}\alpha_{2k+2} = \rho_{k+2}\alpha_{2k+3} \ \mbox{and Lemma 3.1 that there exists } \lambda_{k+2} \in LT_V \ \mbox{such} \\ \mbox{that } \lambda_{k+1}\alpha_{2k+2} = \lambda_{k+2}\alpha_{2k+3} \ \mbox{and } \lambda_{k+2}\alpha_{2k+4} \cap (S \times V) \subseteq \rho_{k+2}\alpha_{2k+4} \cap (S \times V) \ . \\ \mbox{This proves that } \lambda_i\alpha_{2i} = \lambda_{i+1}\alpha_{2i+1} \ \mbox{and } \lambda_{i+1}\alpha_{2i+2}, \ \ (S \times V) \subseteq \rho_{i+1}\alpha_{2i+2} \cap (S \times V) \ . \\ \mbox{for all } i = 1,2,\ldots,m-1 \ . \ \mbox{Thus } \lambda_{m-1}\alpha_{2m-2} = \lambda_m\alpha_{2m-1} \ \mbox{and} \\ \lambda_m\alpha_{2m} \cap (S \times V) \subseteq \rho_m\alpha_{2m} \cap (S \times V) \ . \ \ \mbox{Now we have the equalities :} \end{array}$

$$\delta = \alpha_0 \sigma_1, \alpha_0 = \lambda_1 \alpha_0$$

 $\lambda_{i}\alpha_{2i} = \lambda_{i+1}\alpha_{2i+1}, \ \alpha_{2i-1}\sigma_{i} = \alpha_{2i}\sigma_{i+1}, \ i = 1, 2, \dots, m-1,$ $\alpha_{2m-1}\sigma_{m} = \alpha_{2m}$

and α_0 , α_1 ,..., α_{2m} , λ_1 , λ_2 ,..., $\lambda_m \in LT_V$, σ_1 , σ_2 ,..., $\sigma_m = B_V$. Then by the remark on page 8, $\delta = \lambda_m \alpha_{2m}$ which implies that $\delta \in LT_V$ since λ_m , $\alpha_{2m} \in LT_V$. Hence Dom(LT_V, B_V) = LT_V, so LT_V is closed in B_V , as required. # To prove that LM_V is closed in T_V , P_V and B_V where V is a vector space, the following lemma is required.

Lemma 3.4. Let V be a vector space. If $\alpha \epsilon B_V$ is such that $\alpha \beta \epsilon LM_V$ for some $\beta \epsilon LM_V$, then $\alpha \epsilon LM_V$.

Theorem 3.5. For any vector space V, LM_V is closed in T_V , P_V and B_V .

 $\frac{\text{Proof}}{\alpha_0}: \text{Let } \delta \epsilon \text{Dom}(\text{LM}_V, \text{B}_V). \text{ Then there exist}$ $\alpha_0, \alpha_1, \dots, \alpha_{2m} \epsilon \text{LM}_V, \rho_1, \rho_2, \dots, \rho_m, \sigma_1, \sigma_2, \dots, \sigma_m \epsilon \text{B}_V \text{ such that}$ $\delta = \alpha_0 \sigma_1, \alpha_0 = \rho_1 \alpha_1$

 $\rho_{i}\alpha_{2i} = \rho_{i+1}\alpha_{2i+1}, \ \alpha_{2i-1}\sigma_{i} = \alpha_{2i}\sigma_{i+1}, \ i = 1, 2, \dots, m-1,$ $\alpha_{2m-1}\sigma_{m} = \alpha_{2m}.$

Since $\alpha_1 \in LM_V$ and $\rho_1 \alpha_1 = \alpha_0 \in LM_V$, by Lemma 3.4, $\rho_1 \in LM_V$. Since $\rho_2 \alpha_3 = \rho_1 \alpha_2 \in LM_V$ and $\alpha_3 \in LM_V$, by Lemma 3.4, $\rho_2 \in LM_V$. From $\rho_i \alpha_{2i} = \rho_{i+1} \alpha_{2i+1}$ for i = 1, 2, ..., m-1 and $\rho_1 \in LM_V$, it follows by Lemma 3.4 inductively that $\rho_i \in LM_V$ for i = 1, 2, ..., m. Thus $\rho_m \in LM_V$. But from the remark on page 8, $\delta = \rho_m \alpha_{2m}$. Hence $\delta \in LM_V$. This proves that $Dom(LM_V, B_V) = LM_V$. Therefore LM_V is closed in B_V . Since $LM_V \subseteq T_V \subseteq P_V \subseteq B_V$, it follows_that LM_V is also closed in T_V , P_V and B_V .

We prove in the last theorem that for any vector space V, the linear transformation semigroup LE_V is closed in T_V , P_V , and B_V .

Theorem 3.6. For any vector space V, LE_V is closed in T_V , P_V and B_V .

 $\underline{\text{Proof}} : \text{Let } \delta \epsilon \text{Dom}(\text{LE}_V, \text{B}_V). \text{ Since } \text{LE}_V \subseteq \text{LT}_V,$

$$\begin{split} & \text{Dom}(\text{LE}_V, \text{ B}_V) \subseteq \text{Dom}(\text{LT}_V, \text{ B}_V) (\text{see Chapter I page 7 }), \text{ by Theorem 3.3,} \\ & \text{Dom}(\text{LT}_V, \text{ B}_V) = \text{LT}_V. \text{ Thus } \delta \epsilon \text{LT}_V. \text{ Since } \delta \epsilon \text{ Dom}(\text{LE}_V, \text{ B}_V), \text{ there exist} \\ & \alpha_o, \alpha_1, \dots, \alpha_{2m} \epsilon \text{LE}_V, \rho_1, \rho_2, \dots, \rho_m, \sigma_1, \sigma_2, \dots, \sigma_m \epsilon \text{ B}_V \text{ such that} \\ & \delta = \alpha_o \sigma_1, \alpha_o = \rho_1 \alpha_1 \end{split}$$

 $\rho_{i}\alpha_{2i} = \rho_{i+1}\alpha_{2i+1}, \ \alpha_{2i-1}\sigma_{i} = \alpha_{2i}\sigma_{i+1}, \ i = 1, 2, \dots, m-1,$ $\alpha_{2m-1}\sigma_{m} = \alpha_{2m}.$

Since $\alpha_{2m-1}\sigma_m = \alpha_{2m}$ and $\nabla \alpha_{2m} = V$, it follows that $\nabla \sigma_m = V$. Therefore $\nabla(\alpha_{2m-2}\sigma_m) = V$. From $\alpha_{2m-3}\sigma_{m-1} = \alpha_{2m-2}\sigma_m$ and $\nabla(\alpha_{2m-2}\sigma_m) = V$, we get $\nabla \sigma_{m-1} = V$. From $\alpha_{2i-1}\sigma_i = \alpha_{2i}\sigma_{i+1}$ for i = 1, 2, ..., m-1 and $\nabla \sigma_m = V$, it follows inductively that $\nabla \sigma_i = V$ for i = 1, 2, ..., m. Thus $\nabla \sigma_1 = V$. Since $\delta = \alpha_0 \sigma_1$, we get $\nabla \delta = \nabla(\alpha_0 \sigma_1) = V$. Now we have $\delta \in LT_V$ and $\nabla \delta = V$, it follows that $\delta \in LE_V$. This proves that $Dom(LE_V, B_V) = LE_V$. Hence LE_V is closed in B_V . From $LE_V \subseteq T_V \subseteq P_V \subseteq B_V$, we have that LE_V is also closed in T_V and P_V .