CHAPTER I1I

LINEAR TRANSFORMATION SEMIGROUPS WHICH

HAVE PROPER DENSE SUBSEMIGROUPS

Certain transformation semigroups having proper dense - ,
subsemigroups were characterized in [1] and [2]. The purposé of
this chapter is to characterize some well-known linear transformation
semigroups having proper dense subsemigroups. We are interested in

the following linear transformation semigroups on a vector space V

(1) the multiplicative semigroup of all linear transformations
of V(LTV)J

(2) the multiplicative group of all 1 -1 onto linear
transformations of V(LGV),

(3) the multiplicative semigroup of all 1 - 1 linear
transformations of V(LMV) and

(4) the multiplicative semigroup of all onto linear
transformations of V(LEV)_
We introduce necessary and sufficient conditions on V and its field
for each of the linear transformation semigroups (1), (2), (3) and
(4) to have a proper dense subsemigroup. As consequences of these
results, the following standard matrix semigroups which have proper

dense subsemigroups are characterized

7
(1) the multiplicative semigroup of all nx n matrices over

a field F (wn(F)) where n is a positive integer,



/
(2) the multiplicative group of all n xn nonsingular

matrices over a field F (G (F)) where n is a posifive integer.

To characterize the multiplicative semigroup of all linear
transformations of a vector space V (LTV) having a proper dense

subsemigroup, the following five lemmas are required.

Lemma 2.1. Let G be an abelian group. 1If G has an element of

infinite order, then G has a proper dense subsemigroup.

Proof : Assume that G has an element g which is of infinite

order. Then gn # 1 for every ne N where 1 is the identity of G.

Thus (g_1)n # 1 for every ne N. Set

H = {xe(S} x has finite order }. -

Then g gH and g~1éli. It is clearly seen that H is a subgroup of G

Next, let
K =9 {hgn hEH) nENU{O}} >

’ L . 2
that is, K = Hgn = HUHgQUHg Y .... Then K is a subsemigroup

n=o
of G containing H. Claim that g—1él<. To prove the claim, suppose

g—1e K. Then there exists a positive integer m such that g_1e Hgm

since g—1¢}L.I% follows that g-1_ms:H, so (g_1)m+1eli. By the

-1 m+1 el " . . -1
property of H, (g ') has finite order which implies that g
has finite order. Therefore g_1s:H which is a contradiction.

Hence we have the claim, that is, g_1¢I<.

12
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* *
This cannot occur for all possibilities of k1 3 k2 because of the

following reasons

-

* % 2 * %
(1Y I£ k1—k2= 0, then g = gd1d2€D, which is a

contradiction.

*

2

*

- s * *
(2) TE k,-k,> 0, then 0 < ki - k2 < k; which is contrary

* *
**k_k *

(gd1d2)x . and gd

*
d.eD.

* —-—
to the property of k1 since g R 195

* *

* * *
(3) . TF k1—k2< 0, then 0 < k2 k1 < k2 which is

* *
o — — —(kz- k1)
contrary to the property of k2 since g = (gd1d2)x and

d* i
g 1dzeD.
1 1

Hence x € D. This proves that DL_)D-1 = G. Then < DUD ' > = G.

By Theorem 1.4, D is dense in G.

Lemma 2.2. For any field F, if char(F) = 0, then (1+ 1)" £ 1 for
every positive integer n where 1 is the identity of F, and hence F
has a nonzero element of infinite order under multiplication.

Proof : To prove that (1+1)" ¥ 1 for every positive

integer n, suppose that (1 + 1 )® o 1 for some positive integer m.

From the binomial expansion of (1 + 1)m, we have that 1 = (1% 1)™
=1 + (T )+ ..+ (mT1) + 1 where for positive integers n, r and

r<n, (? ) denotes the number of combinations of n different

things taken r at a times. It follows from the expansion that
P21 sonsl L2 <% times) is 0. This is a contradiction since

char(F) = 0. 4
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Lemma 2.3. Let F be a field such that every nonzero element of F
has ,ffihite order under multiplication. Then the subfield of F

generated by a finite subset of F is finite.

Proof : Since every nonzero element of F has finite order
under multiplication, we have by Lemma 2.2 that char(F) = p for some
primep. Let A be a finite subset of F. If A =@ or A = {0} ,
then the subfield of F generated by A is the prime subfield of E, so it
is isomorphic to Zp, the field of integers modulo p and hence the

subfield of F generated by A is finite. Assume that A # @ and

A # {0} . Let S be the multiplicative subsemigroup of F generated
a7
by A. Then |s| % 4 xéA\{O} ord(x)) + 1 < « where for xe A~ {0} ,

ord(x) denotes the order of x under multiplication. Let K be the
additive subsemigroup of F generated by S. Then IKI < p'sl < @iy
Due to the fact that every finite subsemigroup of a group is a group,
we have that K is a field. 1It is clearly seen that K is the smallest .
subfield of F generated by A. Therefore the lemma is proved.

#
Lemma 2.4. For any field F and any positive integer h, 3.f Mn(F) has a

proper dense subsemigroup,then Gn(F) has a proper dense subsemigroup.

Proof : Let U be a proper dense subsemigroup of'Mn(F).
Claim that Gn(F) & U. Suppose that Gn(F) CU. Since Gn(F) is a subgroup
of M (F), Dom (G _(F), M (F)) = G (F) # M (F). Therefore G (F)gIJ.
n n n n n n
Let AE:Mn(F) be such that rank A = n-1. Since U is dense in Mn(F),

Ae Dom (U, Mn(F)). By Theorem 1.1, there exist

0177021
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B.s B1, s ’B2n1€U' C1, C2, s ’Cnf D

" D2, ,DmeMn(F) such that

k3
A =BD -
1™ CoRatd e Tt = Beluan L Jadeesanty
Bom-1Pm = Bop-

From the remark on page 8', we get that

= B
& oD1
B = CiBaiqPi = CiBiPint = €541 (i41)1Piuy 2 1 = 12s e, e
and
A =
CmBZm 3

Then we have from the above equalities that rank A < rank Bi for
i=0,1, ... 52m. Thus jFank Bi_>_n—1 for)i = 0,1, ... , 2m. - By

Theorem 1.7, rank Bi = n N , ,.. ,2m Ssince Gn(F)gU. Since

C1B1 = Bo, C1 = BQB1 y -So—rank C1 = n. From CiBZi = Ci+1BZi+1

for i =:1,25 .5 ym~1, we-have ;that C =_C =

4l SakiBo B 4 for

T =152, «sn »M=la Since . rank C1 = n, it follows inductively that

rank Ci = h for 1 = 1,25 ..:% zm. Then rank Cm = n. Since

rank B =rank C =n and A = C B_.. , we have that rank A = n.
2m m m 2m _

This is a contradiction. Thus Gn(F)QU, so Gn(F)ﬁU £ Gn(F)' e

is known that Mn(F)\ Gn(F) is an ideal of Mn(F). Then

Dom (..MngF)\ G, (F) , M (F)) = M (F)NG (F). 1If Gn(F),ﬂU =@,

then UeM (F)~ G, (F) which implies that M (F) =

Dom (U, Mn(F))c_:Dom M (F)NG (F), M (F)) = M (F)NG (F), a

contradiction. Therefore Gn(F)ﬁU # . Hence Gn(F)nU is a proper

subsemigroup of Gn(F) .
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Next ,we shall show that G;(F)F\U is dense in Gn(F). Let
AE:G(F)‘\(Gn(F)r]U). Then AeG _(F)~U. Since U is dense in M (F),

there exist Bo’ B1, el ,BZmEIJ, C1, C2, PP ’Cnﬂ D

1> Dys -.. ,D € Mn(F)
such that
A=BpD , B, =CB,
€iB2i = Ci11B2i412 B2i 4P3 = ByiDipq» 1= 1:2,0.,m-1,
B2m—1Dm = B2m -

From the remark on page 8, we have that

&= Gl Dy =

“3P21 AP R +1)-1T141 2 1 = 12200000

and

A/ = #
mB2m

Since rank A = n, we have that rank Bi =2 for i = 0,1,...,2m,
rank Ci = rank Di = ngior~—=_1,2 , «—miill Thus Bie:Gn(F)F\U for
i=0;1,...,2m and Ci’ DiE:Gn(F) FeEVieF1a 82, .. ;m. - By Theorem 1.1,

AeDom (G (F)NU, G (F)). Hence Dom (G (F)N\U, G (F)) = G (F).
n n 2 n n n

Therefore Gn(F)f\U is a proper dense subsemigroup of Gn(F);
= &

Lemma 2.5. For any field F and any positive integer n, if Mﬁ(F)'has
a proper dense subsemigroup, ﬁhen F has a nonzero element of infinite

order under multiplication.

Proof : To prove that F has a nonzero element of infinite
. ‘

order under multiplication, suppose on the contrary that every
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nonzero element of F has finite order under multiplication. Then
by Lemma 2.2, char(F) = p for some prime p. Since Mn(F) has a
proper dense subsemigroup, we have by Lemma 2.4 that Gn(F) has a
proper dense subsemigroup, say D. Let I be the nxn identity matrix
over F. If pu{1} = Gn(F), then D = Gn(F)\-{I} which is impossible
since Gn(F)\{I} is not a subsemigroup of Gn(F). Then DyU{1} g.Gn(F)‘
Then DU {I} is a proper dense subsemigroup of Gn(F) 5 "Let

Aan(F)\(D u{1}). By Theorem 1.4, Gn(F) = < DUD_1 >. Then

Ae<DUD | >. Therefore A = AA, ... A for some

A LA .y eGn(F)\ {1} such that A,eD or A? e D for all

2= k

i=1,2,...,k. Since AZD and D is a subsemigroup of Gn(F), it

follows that Ajng for some je {1,2,...,k} . Then A_j'1 eD. Let F, be

the  subfield of F generated by all elements (entries) of Aj.
Since every nonzero element of F has finite order under multiplication,
by Lemma 2.3, we have that F1 is a finite field. Then Gn(F1) is a

finite group and A;1 € Gn(E‘1 ). Thus there exists a positive integer
W20 SHIE T (A?)m“1

m > .1 such that (A;1 :

. Since A; eD

and m-1 > 1 , we have that (A?)m_1

€ D which implies that Aj eD.
This is a contradiction. Hence F has a nonzero element of infinite
order under multiplication.

#

Theorem 2.6. For any vector space V over a field F, LTV has a

proper dense subsemigroup if and only if one of the following

statements holds :

(1) dimV = o
(2) F has a nonzero element of infinite order under

multiplication.
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Proof : Assume that LTv has a'proper dense subsemigroup.
To prove that dim V = ® or F has a nonzero element of infinite order
under multiplication, suppose that dim V < @ _, Then LTvésmn(F)
where n = dim V. Thus Mn(F) has a proper dense subsemigroup.
It follows from Lemma 2.5 that F has a nonzero element of
infinite order under multiplication. This proves that dim V = @ or

F has a nonzero element of infinite order under multiplication.

For the converse, assume that dim V = « or F has a nonzero
element of infinite order under multiplication. Suppose that
dim V < « and F has a nonzero element of infinite order under
multiplication. Then LTV = Mn(F) where n = dim V. By Lemma 2.1,
F~ {0} has a multiplicative proper dense subsemigroup. It follows
that F has a multiplicative proper dense subsemigroup. Thus by

Theorem 1.6, Mn(F) has a proper dense subsemigroup. Hence LTV has

a proper dense subsemigroup.

It remains to show that if dim V = @ ,then LTV has a proper

dense subsemigroup. To prove this, assume that dim V = ® _ Set

D = {a eLT | dim (V/Va) = I

where 1V is the identity map on V. Since for uE:LGV, Va = V, we

have that ¢« D for all ae LGV\ {1V} . Then D # LTV. . Claim that

D\\{]v} is a left ideal of LTV' To prove this, let «, Be[ﬂb and

dim (V/Va) = @ . Since VBal Va , we obtain dim (V/VBa) > dim (V/Va),

so dim (V/VBa)

© _ This proves that D‘x{TV} is a subsemigroup

of LT, . Hence D is a proper subsemigroﬁp of LT

\Y Nz

Let B be a basis of V. Then IBI = @. Therefore there
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exists an countably infinite subset B of B such that lBl = |B\\B l.
This implies that there exists a map B : B = B~B which is 1-1
and onto. Let A : B = B be defined by
Wl if veB~B
vA = { ,
v if veB
Then BA = jB_ Let B and A be the linear transformations of V
extended linearly from B and A, respectively. Then BX = 1 .
Since VB = B~B , we get VB = <B~B >. We have consequently that
{v+ VB |veB } is a basis of V/VB. Hence dim (V/VB) = B | = =.
Therefore BeD and B # Le-
To prove that Dom (D, LTV) = LTy, let ae LT, ~D.
Since D~\{1v} is a left ideal of LT, we get aBeD. Now we have
the following equalities
a = (aBIX , oB & D
= (Y.Bi b -B—E D
= al, ) BX =1,¢&D
which is a zigzag in D over LTV with value a. By Theorem 1.1,
a € Dom (D, LTV). This proves that D is dense in LTV, as required.
i #

-

&
The following corollary is obtained directly from Theorem 2.6

and the fact that for any field F and any positive integer n,

Mn(F) ~ LT and dim (Fn) = n where F" is a vector space Fx... x F
n
F

(n times) over F.
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Corollary 2.7. For any field F and any positive integer n, Mn(F)

has a proper dense subsemigroup if and only if F has a nonzero

element of infinite order under multiplication.

Corollary 2.8. (1) If V is a vector space over a field of

characteristic 0, then LTV has a proper dense subsemigroup.
(2) If F is a field of characteristic 0, then for

any positive integer n, Mn(F) has a proper dense subsemigroup.

Proof : (1) follows from Lemma 2.2 and Theorem 2.6 and (2)

follows from Lemma 2.2 and Corollary 2.7.

#

The following three lemmas will ‘be used to characterize ‘those vector

¢ spaces ¥ for which the ‘semigroups LGV have proper dense subsemigroups.

Lemma 2.9. Let U be a subsemigroup of a semigroup S such that S~U
is an ideal of S. If U has a proper dense subsemigroup, then S has

a proper dense subsemigroup.

Proof : Let D be a proper dense subsemigroup of U. Let
D = DU(S~U). Since S~U is an ideal of S and DC U, we have that D

is a proper subsemigroup of S. To show that D is dense in S, that

4,

is, Dom (D,S) = S, let xeS. If xeD, then xeDom (D,S). Assume
that x ¢ D. Then xe U~D. Since D is dense in U (that is,

Dom(D,U) = U) and xe€ U~D, by Theorem 1.1, there exist

R » U, € Dy XyoXss oen » X Yq3Yos - - » Y €U such that
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1921 = Xip1U2i41? Y2515 = Yp3Yi4q0 1= 1,2,...,m1,
Yom-1Ym = Y2m-*

Because of DCD and UCS , we obtain by Theorem1 .1 that xe Dom(D, S).
This proves that Dom(D,S) = S. Hence D is a proper dense subsemigroup
of- 8. "

Lemma 2.10. For any field F and any positive integer n, Mn(F) has

a proper dense subsemigroup if and only if Gn(E‘) has a proper dense

subsemigroup.

Proof : Assume that Mn(F) has a proper dense subsemigroup.

By Lemma 2.4, Gn(F) has a proper dense subsemigroup.

Conversely, assume that Gn(F) has a proper dense subsemigroup.
Since Mn(F)\Gn(F) is an ideal of Mn(F) and Gn(F) has a proper dense
subsemigroup, it follows from Lemma 2.9 that Mn(F) has a proper

dense subsemigroup.

#

Lemma 2.11. If W and Z are subspaces of a vector space V, then there
exists a basis B of V such that BiW is a basis of W and BAN\Z is a

basis of Z.

Proof : Let B_ be a basis of the subspace WNZ of V. and let B

1

be a basis of W containing Bo‘ Set

«=12aCz B,EA and BUA is linearly independent}

Then Bos A . Partially order by inclusion.



It is clear that if {a } is a chain of&{, then {y A is an
a’ ael : aer @

upper bound of {Aa}a eI in 6@ Then by Zorn s Lemma,Jq has a maximal

element, say B2. Therefore B1U82 is linearly independent and 32

is a linearly independent subset of Z containing Bo' Let veZ~ B2'

By the maximality of 82 in&Q, B1U Bzu{v} is linearly dependent.
But since B1U82 is linearly independent, it follows that v is a

linear combination of elements in B1u B Then v € <B1U 132>_

2"

>+ <Bi>r= W EL/SRB

1 2 2>, SO VvV = w+ z for some wew

But <B)UB,> =<B
and z:—:<B2>. Since veZ and <B2 >C Z, we have that

V-2=weWNZ. It then follows that v - zs:<B2 > since BO—:BZ
and <Bo > = WMNZ. But zt-:<B2 >, so we have ve<82 >. This proves

that 2 = <B2 >. Hence 82 is a basis of Z.

Let B be a basis of Vv containing B1UBZ' Then BMW = B1 and

BMZ = B2 which are bases of W and Z, respectively.

Therefore the lemma is proved.

Theorem 2.12. E:or any vector space V over a field F, LGV has a

proper dense subsemigroup if and only if one of the following

statements holds :

(1) aim V& = o
(2) F has a nonzero element of infinite order under

multiplication.

Proof : Assume that LGV has a proper dense subsemigroup.
To prove that dim V = ® or F has a nonzero element of infinite order

under multiplication, suppose that dim V < ® | Then I_.Gv o Gn(F)

23



where n = dim V. Thus Gn(F) has a proper dense subsemigroup. It
follows from Lemma 2.10 that M_(F) has a proper dense subsemigroup.
By Corollary 2.7, F has a nonzero element of infinite order under
multiplication. This proves that dim V = @ or F has a nonzero

element of infinite order under multiplication.

For the converse, assume that dim V = «» or F has a nonzero
element of infinite orcier under multiplication. First, assume’ that
dim V < «® and F has a nonzero element of infinite order under
multiplication. Then LGV o Gn(F) where n = dim V. By Corollary’ 2.7;
Mn(F’) has a proper dense subsemigroup which implies by Lemma 2.10

that Gn(F) has a proper dense subsemigroup.

It remains to show that if dim V = «, then I_.GV has a proper

dense subsemigroup. To prove this, assume that dim V = @ Let B

-

‘be a basis of V. Then B is infinite, so there exists a subset B, of

1

B such that |B1| = |B' and 13\B1 is countably infinite. Set
U = {u.e:LGV <B, >(_;<B1 >a

Then 1VEU- If o, Be U, then <B, > C<B

1

1> and <B1 >§<B.I >B

which imply that <B_ > g<.B1>B C(<B,>®)B = <B,>0B and hence

1 1 1

oBeU. Let veB~B,. Then !B1u{v}l - |B1I and
: |B\(B1U{v})| = IB\B1| . Then there exists a 1-1 map ¢ of B onto
itself such that (B1U {vhoe = B, and (B\(B1U {vhe = B~B,. Let
¥ be the linear transformation of V such that UI,B = ¢ . Then

Ye LG, and <B,U {v} >3 <B>¥ . Hence <B,>= <BUlv}>¥D< B>Y
which implies that Z{yf U. This proves that U is a proper subsemigroup

Sk 1
of LGV containing V"

24
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To prove that U is dense in LG, let aeLGV. By Lemma 2.11,

there exists a basis C of V such that Cﬂ<B1> is a basis of <B1>

and Cﬁ(<81>0.)is a basis of <B1>0c . Let C1 = C0<B1> and

C, = CN(<B,>a). Then lc| = |B| = |B1! = |c1'| and fe~c| = dim(V/<C.>)
= dim(V/<B,>) = |B\131| . Then C~C, is tountably infinite. Let
D=C,~C,. ThenD = czr‘\(c ~C;) and c.N C, = C;~D. since C>~cC,

is countably infinite, we have that D is countable.

Case 1 : B is uncountable. Then C and C1 are uncountable. Since

B:d and C2 are bases of <B1>0t. and BTu is uncountable, we have that
C, is uncountable. If C,fVC, = @, then C,& C~C, which is impossible

since C2 is uncountable but C\C1 is countably infinite. Thus

C1FIC2 # @. Since C2 and B1u are both bases of <B1>a, we have
that ICZI = IB1al . But sinece 'B” = IB10L| » 80 we have |C1| = IC2| P
By the fact that DQCZ, C2 is uncountable and D is countable, we have
that |c2| = |cc2\ D)UD| = ICZ\DI - 5 | |C2\,D| . Since Ca is

a basis of V and C1¢! is‘'a basis of <C1>a, we have dim(V/<C1>oL) =

|C°‘-\C10LI. Since C is a basis of V and C, is a basis of <B_>a ,

2 1

we obtain that dim(V/<B1>a) = |C\C2! . But C, is a basis of <B.>,

1 1

so we have dim(V/<C >a) = dim(V/<B_ >a). Then lCa\C1a| = !C\CZI .

Hence IC\C1| = IC\Czl 3 S0 C\C2 is countably infinite which -

IC\ (C2\,D)I since®D is countable

implies that IC\C2| % I(C\Cz)UDI

and Dgczgc. Hence we get ]Cz\ DI IC1! and IC\(CZ\D)' =

IC\C1| . Then there exists A€ LGV such that (Cz'\ D)A = C1 and

(C\(CZ\ D)jl: c~ C1 . Thus
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C1>~ = e~ cz)u(c1r‘\c2))>«

(C1\ CZ)XU (c,Mca

(c1\ cz)xu (c2\ D)X

(c1\ c2)L)c1

which implies that C.CC.A , and hence <B1>= <C,>C<C> = <B>A.
Therefore A€ U. . It follows from Theorem 1.3 that A~ 1e Dom (U, LGV),

Also we have that

CA = (€5~ DIUDIA
= (Cz\ D)X UDA
= C1LJDl
wh}ich implies that C1_C_C2>\ . Therefore <B1> = <C1>§< C2>7\ = <B1>al 5

Henon. wk e D, From & | = Dom(U, LGV) and o) € UC Dom(U, LGV), we have

o = (uk))\_1 e Dom(U, LGV) =

Case 2 : B is countably.infinite. Then C and C1 are countably

infinite.. Since B1a is countably infinite and B10f. and C2 are bases

of <B1> o, we have that C2 is contably infinite..

Subcase 2.1 : C\(CIU C2) is infinite. It follows from

- Theorem 1.5 (ii), there exists HSLGV such that Cll](_:_c1 and

1> = <€, >C<c >n—1 =

o =
czngc1. Then c1gc1n and Cz(_"__'C1n o éB ¢

<B1‘>r|_1 and <B,>a= <C,>C<cC

1 >n-1 = <B > n_1. Hence

i

<B > Q<B1>(om)_1. Thus n_1, (an)‘1sU. By Theorem 1.3,

an € Dom(U, LGV) which implies that a = (cm)r]“1 € Dom(U, LGV).
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Subcase 2.2 : (C\(C1UC2)5 is finite. First assume that

C1F\C2 is infinite. It follows frem Theorem 1.5 (i) that there

exists ¥ € LG, such that C1QC1‘6 and C,‘C_:Cz\ﬂ and hence <B,>=

<C >_C_:<C1>‘6 = <B1>‘6 and <B >a¥ . Then

’ >=<c,> g<c2>X = <B

1 1

¥, a¥e U which implies by Theorem 1.3 that a = (GX)X-1 € Dom (U, LGV) .

Next assume that C1f"lC2 is finite. It follows by Theorem 1.5

(iii), there exists Ace LGV such that CA=C, C1Jt§C1 and Czkﬂc1

1

is infinite. From C1Agc1, we get <B,> = <C,> g<c1>f1 = <B1> AT,

1

so k_1 € U. By Theorem 1.5 (i), we have that there exists e LGV such

that C,€cyp and ¢, C(C,A) . Then <B >= <C,>C<cC

1 >u-<B1>]J

1

and <B1>= <C1> g<c2x>u = <B1>alu, so we have u, alpe U. Therefore
by Theorem 1.3, aA = (axu)u_1 € Dom(U, LGV). Hence

Oy = (c‘x)\)l\_f1 e Dom (U, LGV) since )\-1eU.

Therefore U is dense in LGV ,@s required.

#
The following corollary is obtained directly from Theorem 2_ 12
and the fact that for any field F and any positive integer n ,

Gn(F) =48 e o where n = dim(F").
F

Corollary 2.13. For any field F and any positive integer n , G (F)
n
has a proper dense subsemigroup if and only if F has a nonzero

element of infinite order under multiplication.

Corollary 2.14. (1) If V is a vector space over a field of

characteristic 0, then LGV has a proper dense subsemigroup ,



28

(2) If F is a field of characteristic 0 and n

is a positive integer, then Gn(F) lHas a proper dense subsemigroup.

Proof : (1) follows from Lemma 2.2 and Theorem 2.12 and

(2) follows from Lemma 2.2 and Corollary 2.13.
i

Next, to prove that the conditions (1) and (2) of Theorem 2.16
and Theorem 2.19 are also necessary and sufficient conditions for
each of the linear transformation semigroups LMV and LEV to have a

proper dense subsemigroup, we need one lemma for each case.

Lemma 2.15. If V is a vector space of infinite dimension, then

LM i i &
- LGV is an ideal of LMV

Proof : Since dim V = &, LMv £ LG

v’ S° LMQ\ LGv £ @. To

h h M i i "IN
show that L V‘\LGV is an ideal of LMV, let o € LMV and Be:LMV LGV.

Then aB, Bace LMV. If aB € LGV, then VB2 VaB = V which implies that
BE:LGV, a contradiction. Then 6B € LMQ\ LGV. Suppose that Bae:LGV-

Then VaD) VBa = V, so a € LGV- This implies that B = (Bd)d—1EZLGV,

a contradiction. Therefore Ba € LMQ\ LGV' This proves that LMV\LGV

is an ideal of LMV_

Thecrem 2.16. For any vector space V over a field F, LMV has a

proper dense subsemigroup if and only if one of the following
statements holds

(1) dim V = &,
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(2) F has a nonzero element of infinite order under

-

multiplication.

Proof : Assume that LMV has a proper dense subsemigroup.
To prove dim V = « or F has a nonzero element of infinite order

under multiplication, suppose that dim V < . Then LMV = LGV 4 Gn(F)

where n = dim V. Then Gn(F) has a proper dense subsemigroup. It
follows from Corollary 2.13 that F has a nonzero element of infinite
order under multiplication. This proves that dim V = ® or F has a

nonzero element of infinite order under multiplication.

For the converse, assume that dim V = ® or F has a nonzero

element of infinite order under multiplication. If dim V < « , then

LMV = Gn(F) and by Corollary 2.13, Gn(F) has a proper dense

subsemigroup which implies that LMV has a proper dense subsemigroup.
Next, assume that dim V = «® . Then by Lemma 2.15, LMV\~LGV

is an ideal of LMV. By Theorem 2.12, LGV has a proper dense

subsemigroup. It then follows from Lemma 2.9 that LMV has a proper

dense subsemigroup.

#

Corollary 2.17. If V is a vector space over a field of characteristic

0, then LMV has a proper dense subsemigroup.

Proof : It follows directly from Lemma 2.2 and Theorem 2.16.

#

Lemma 2.18. If V is a vector space of infinite dimension, then

E . . )
L v LGV is an ideal of LEV
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Proof : Since dim V = @ , LEV\ LGV #4 @. To show that

; P - -
LEV\LGV is an ideal of LEV’ let at—:LEV and Bt-:LEV LGV‘ Then

0B, BOLE:LEV. If Bace LG

v’ then B is 1-1, so B eLGV, a contradiction

Thus BaeLEV\LGV. Suppose that aBeLGV. Then o is 1-1, so o€ LGV’
This implies that B = a—1 (aB) t-:LGV which is a contradiction. Hence

oB € LEV\ LG

V- This proves that LEV\LGV is an ideal of LE_,, as

\Y

desired.

#

Theorem 2.19. For any vector space V over a field F, LEV has a
proper dense subsemigroﬁp if and only if one of the following

statements holds :

(1) dim V =/=/
(2) F has a nonzero element of infinite order under

multiplication.

Proof : Assume that LEV has a proper dense subsemigroup.

To prove that dim V = @ or F has a nonzero element of infinite

order under multiplication, suppose that dim V < ® . Then
LEV = LGV = Gn(F) where n = dimV. Then Gn(F) has a proper dense

subsemigroup. It follows from Corollary 2.13 that F has a nonzero

element of infinite order under multiplication.

Conversely, assume that dim V = @ or F has a nonzero element
of infinite order under multiplication. If dim V < «, then
LE, = LG, 4 Gn(F) where n = dim V and by Corollary 2.13, Gn(F) has

a proper dense subsemigroup which implies that LEV has a proper dense

subsemigroup .
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Neit, assume that dimV =« . Then by Lemma 2.18, LEV\LGV
is an ideal of LEV and by Theorem 2.12, LGV has a proper dense
subsemigroup which implies by Lemma 2.9 that LEV has a proper dense

subsemigroup.

#

Corollary 2.20. If V is a vector space over a field of

characteristic 0, then LEV has a proper dense subsemigroup.

Proof : It follows directly from Lemma 2.2 and Theorem 2.19.
#

Remark . Let V be a vector space over a field F. Consider the

following two statements

(1) dimV = o .
(2) F has a nonzero element of infinite order under

multiplication.

By Lemma 2.2, if char(F) = 0, then (2) holds. We can see that if
(2) holds, then F must be infinite. The following two examples

of fields show that there exists a field which satisfies (2) and
whose characteristic is not 0 and there exists an infinite field
which does not satisfy (2). It is easy to see that for any field
K, there exis£ a vector space over K of finite dimension and a
vector space over K of infinite dimension. Hence the statement (2)
of Theorem 2.6, Theorem 2.12, Theorem 2.16 and Theorem 2.19 cannot

be replaced by any one of the statements : ; char(F) = 0 and

F is an infinite field .
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Example 1. Let p be a prime. Then the field Zp(x) (the quotient
field of the ring Zp[x]) has characteristic p # 0 and x is a nonzero

element of infinite order under multiplication in the field Zp(x)_

Example 2. Let p be a prime. Set F_ = zp. Then there exists an
irreducible polynomial f1(x1) in the polynomial ring Fo[x1] of

degree 2 (see [11], page304). Let F, = Fo[x1] £ <F

1 ()= .

1

Then F1 is a field and

F = {a + bxoyp <f. &>/ a, beF }
7 1 1 1 o

Since |Fo| = p and char(Fo) = p, it follows that F, is a finite field of

1

2 & A :
order p° with characteristic p. Then every nonzero element of F1 has

finite order under multiplication. Also, FO can be considered as

a subfield of F1 by the map a = a + <f1(x1) >. Assume that

ke NU{o} and FO,F1, ..., F. are constructed such that

k
1

! 4
FOQ;Fﬁ; o g;Fk, IFil =p and char(Fi) = prfor d =-0,152; 9 sk
Let fk+1(xk+1) be an irreducible polynomial of degree 2 in the

polynomial ring Fk[x ] Set Fk+1 = Fk[xk+1]/ <fk+1(xk+1)>'

k+1°°

Then F is a field and

k+1

Fk+1 =41 a4+ bxk_‘h1 + <fk+1<xk+1) > |a,b t—:Fk}.

2k
Since |Fk| = p~ and char(Fk) = p, we have that F, ., is a finite
k+1 ¢

field of order p with characteristic p. Then every nonzero
element of Fk+1 has finite order under multiplication. Also, Fk
can be considered as a subfield of Fk+1 by the map
a-—-a+ <fk+1(xk+1) >. By this induction process, we have a -

@
sequence of fields (Fn)n_ 2

such that FOC;F1€;F2§;... 3 |Fn‘ =p



@
and char(Fn) =p forn = 0,1,2; ««uvsy Set F = U Fn. Define
N=

the addition @ and the multiplication ® on F as follows

For a,be ngf a,be Fn, let a ® b and a ® b be the additi'on of
a, b in Fn and the multiplication of a, b in Fn’ respectively.
Then the operations @® and © are well-defined and under these
operations, F is a field containing Fn as a subfield for every
ne NU{0} . Hence F is an infinite field with characteristic P

and every nonzero element has finite .order under multiplication.
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