APPLICATION TO THE CASE OF IDENTICALLY DISTRIBUTED RANDOM VARIABLES

In this chapter, we specialize Theorem 3.11 to the case of identically distributed integral-valued random variables. Theorem 4.1 give a general result along this line. We also provide worked out examples for the cases where the random variables have common distributions.

Theorem 4.1. Let $X_{j}, j=1,2, \ldots, n$, be independent identically distributed integral-valued random variables. Assume that each X_{j} has positive variance and has finite moment up to order $2 p_{0}+2$ where P_{0} is a positive integer. If
i) each $\theta_{x_{j}}(t)$ has $\left(2 p_{0}+2\right)$ - th derivative on $(-\tau, \tau)$ and there exists an a such that $\left|\theta_{X_{j}}^{\left(2 p_{0}+2\right)}(t)\right| \leq a$ on $(-\tau, \tau)$ and
ii) $\quad{ }_{S_{\underline{n}}}^{\left(2 p_{0}+1\right)}$ (t) is continuous on $[-5,5]$
where $\quad \rho=\frac{1}{2 \sqrt[4]{n} \sqrt{\sigma^{2}\left(X_{q}\right)+1}}$,
then there exist polynomial functions $K_{p}(T), p=1,2, \ldots, 6 p_{0}-5$ and positive constants A, B, C such that

$$
R(T)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{\frac{-t^{2}}{2}} d t+\frac{e^{-\frac{T^{2}}{2}} 6 p_{0}-5}{\sqrt{2 \pi}} K_{p=1} \frac{k_{p}(T)}{(\sqrt{n})^{p}}+\Delta
$$

where

$$
|\Delta|<\frac{A}{P_{0}}+B e^{-C \sqrt{n}}
$$

Proof : Note that Theorem 3.11 can be applied to our random variables $x_{1}, x_{2}, \ldots, x_{n}$. Hence
$R(T)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{\frac{-t^{2}}{2}} d t+\frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{1}{2} B n^{2}} \frac{\sin (T \sqrt{B} n t)}{t} A(t) d t$

$$
\begin{aligned}
& +\frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{1}{2} B_{n} t^{2}} \sin (T \sqrt{B} t)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{1}(t)+h_{1}(t) h_{3}(t)+h_{3}(t)\right) d t \\
& -\frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{1}{2} B_{n} t^{2}} \cos \left(T \sqrt{B_{n}} t\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(h_{4}(t)+h_{1}(t) h_{4}(t) d t+\Delta\right.
\end{aligned}
$$

and
$|\Delta|<\frac{e^{-T^{2} c}}{\pi^{2} c}+\frac{1}{2 \pi} \int_{0}^{\infty} e^{-c t^{2}} B(t) d t+\frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{1}{2} B n^{t^{2}}} h_{2}(t)\left|\frac{1}{t}+\frac{A(t)}{t}\right| d t$

$$
+\frac{1}{\pi}\left|\int_{0}^{\pi} e^{-\frac{1}{2} B_{n} t^{2}}\left(1+h_{1}(t)\right) h_{5}(t)\left(\frac{1}{t}+\frac{A(t)}{t}\right) d t\right|+
$$

$$
\frac{1}{\pi} \int_{\tau}^{\infty}\left|e^{-\frac{1}{2} B_{n} t^{2}}\left(1+h_{1}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\right| d t
$$

where $A(t), h_{1}(t), h_{2}(t), h_{3}(t), h_{4}(t), h_{5}(t)$ and $B(t)$ are as defined in Chapter III.

In Chapter III, we have
(4.1.2) $\ldots q_{p}\left(x_{j}\right)=\sum_{m=0}^{2 p}\left({ }_{m}^{2 p}\right)(-1)^{2 p-m_{E}} E\left(x_{j}^{m}\right) E\left(x_{j}^{2 p-m}\right)$, for $p=1,2, \ldots, p_{0}+1$,

$$
\begin{aligned}
& (4.1 .3) \ldots \ldots \tilde{H}_{x_{j}, p}(t)=\left[\sum_{m=1}^{P_{0}^{+1}} \frac{(-1)^{m-1}}{2(2 m)!} \tilde{g}_{m}\left(x_{j}\right) t^{2 m}\right]^{P} \text {, } \\
& \text { (4.1.4) } \ldots . H_{X_{j}, P}(t)=\left[\sum_{m=1}^{p_{0}+1} \frac{1}{2(2 m) 1} g_{m}\left(x_{j}\right) t^{2 m}\right]^{P} ; \\
& \text { (4.1.5) } \ldots . \cdot{ }_{c}\left(x_{j}\right)=-\frac{1}{2} \sum_{m=1}^{P_{0}} \frac{2^{m}}{m(2 p)!} \tilde{H}_{x_{j}, m}^{(2 p)}(0), \text { for } p=1,2, \ldots, p_{o} \text {, } \\
& \text { (4.1.6) } \ldots c_{p_{0}+1}\left(x_{j}\right)=\frac{1}{2} \sum_{p=1}^{p_{0}} \sum_{q=p_{0}+1}^{p\left(p_{0}+1\right)} \frac{2^{p}}{p(2 q) 1} \tilde{H}_{x_{j, p}}^{(2 q)}(0)+\sigma^{2 p_{0}+2}\left(x_{j}\right) \text {, } \\
& \text { (4.1.7) } \ldots \ldots \quad x_{p}=\sum_{j=1}^{n} c_{p}\left(x_{j}\right), \\
& (4.1 .8) \ldots \ldots \quad k=\sum_{p=1}^{p_{0}+1}\left|K_{p}\right| \text {, } \\
& (4.1 .9) \ldots \ldots \tilde{G}^{2}(t)=\sum_{p=2}^{P_{C}+1} K_{p} t^{2 p}, \\
& \text { (4.1.10) } \ldots \quad G(t)=\sum_{p=2}^{p_{o}+1}\left|k_{p}\right| t^{2 p}, \\
& \text { (4.1.11) } \quad h_{1}(t)= \begin{cases}0 & \text { if } p_{0}=1, \\
p_{0} & m+p_{0}-1 \\
\sum_{m=1}^{m!} \frac{1}{q=2} & \frac{1}{(2 q)!} \tilde{G}_{[m]}^{(2 q)}(0) t^{2 q} \quad \text { if } p_{0}>1,\end{cases} \\
& \text { (4.1.12) } \quad h_{2}(t)=\left\{\begin{array}{l}
K_{2} e^{\frac{k}{16 n}} t^{4} \\
p_{0} \\
\sum_{m=1} \frac{1}{m!}\left[\sum_{q=m+p_{0}}^{m\left(2 p_{0}+2\right)} \frac{1}{(2 q)!} G_{[m]}^{(2 q)}(0)\right] t^{2\left(m+p_{0}\right)}
\end{array}\right. \\
& +\frac{1}{\left(p_{0}+1\right)} e^{\frac{K}{16 n}}\left(G_{[1]}(1)\right)^{p_{0}+1} t p_{0}+2 \text { if } p_{0}>1 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& (4 \cdot 1.13) \ldots \tilde{F}(t)=\sum_{m=1}^{P_{0}} \sum_{j=1}^{n} \cdot \dot{x}_{x_{j}}^{(2 m+1)}(0) \frac{t^{2 m+1}}{(2 m+1)!}+n a \frac{t^{.2 p_{0}+2}}{\left(2 p_{0}+2\right)!}, \\
& (4.1 .1 .4) \ldots F(t)=\sum_{m=1}^{P_{0}} \sum_{j=1}^{n}\left|\theta_{x_{j}}^{(2 m+1)}(0)\right| \frac{t^{2 m+1}}{(2 m+1)!}+n a \frac{t^{2 p_{0}+2}}{\left(2 p_{0}+2\right)!} \text {, } \\
& (4.1 .15) \ldots h_{3}(t)=\sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} \sum_{q=2 i}^{2 i+p_{0}-1} \frac{1}{(2 q)!} \tilde{F}_{[2 i]}^{(2 q)}(0) t^{2 q}, \\
& (4.1 .16) \ldots h_{4}(t)=\sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}(2 i-1) 1}{\sum_{q=2 i}^{2 i+p_{0}-1} \frac{1}{(2 q-1) i^{2}(2 i-1)}{ }_{c}^{\sim}(2 q-1)}(0) t^{2 q-1} \text {, } \\
& \left.(4.1 .17) \ldots h_{5}(t)=\sum_{i=1}^{P_{0}} \frac{1}{(2 i)!} \sum_{q=4 i+2 p_{0}}^{2 i\left(2 p_{0}+2\right)} \frac{1}{q} F_{[}(q i)(0)\right]^{4 i+2 p_{0}} \\
& +\sum_{i=1}^{p_{0}} \frac{1}{(2 i-1)!}\left[\sum_{q=4 i+2 p_{0}-2}^{(2 i-1)\left(2 p_{0}+2\right)} \frac{1}{q!} F_{[2 i-1]}^{(q)}(0)\right] t^{4 i+2 p_{0}-2} \\
& +\frac{2}{\left(2 p_{0}+1\right)!}\left(F_{[1]}(1)\right)^{2 p_{0}+1} t{ }_{t}^{6 p_{0}+3}
\end{aligned}
$$

and for each $j=1,2, \ldots, n$

$$
\hat{c}_{j}=\frac{2}{\pi^{2}} \sum_{k=-\infty}^{\infty} p_{x_{j}}(k) p_{x_{j}}(k+1)
$$

and
(4.1.18) $\ldots \quad c=\sum_{j=1}^{n} \hat{c}_{j}$

Since $x_{1}, x_{2}, \ldots, x_{n}$ are identically distributed. Therefore for a positive integer p such that $1 \leq p \leq p_{0}+1$ and positive integers k, q, we have

$$
\begin{aligned}
& \varphi_{X_{1}}(t)=\varphi_{X_{2}}(t)=\cdots \cdots \cdots \cdot=\varphi_{X_{n}}(t), \\
& E\left(X_{1}^{k}\right)=E\left(X_{2}^{k}\right)=\cdots \cdots \cdots=E\left(X_{n}^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma^{2}\left(x_{1}\right)=\sigma^{2}\left(x_{2}\right)=\ldots \ldots \ldots=\sigma^{2}\left(x_{n}\right), \\
& \theta_{x_{1}}(t)=\theta_{x_{2}}(t)=\ldots \ldots \ldots=\theta_{x_{n}}(t), \\
& g_{p}\left(x_{1}\right)=g_{p}\left(x_{2}\right)=\ldots \ldots \ldots=g_{p}\left(x_{n}\right), \\
& c_{p}\left(x_{1}\right)=c_{p}\left(x_{2}\right)=\ldots \ldots \ldots=c_{p}\left(x_{n}\right), \\
& \tilde{H}_{x_{1}, q}(t)=\tilde{H}_{x_{2}, q}(t)=\ldots \ldots \ldots=\tilde{H}_{x_{n}, q}(t), \\
& H_{x_{1}, q}(t)=H_{x_{2}, q}(t)=\ldots \ldots \ldots=H_{x_{n}, q}(t), \\
& P_{x_{1}}(q)=p_{x_{2}}(q)=\ldots \ldots \ldots=p_{x_{n}}(q),
\end{aligned}
$$

and
We shall denote $\varphi_{X_{j}}(t), E\left(X_{j}^{k}\right), \sigma^{2}\left(x_{j}\right), \theta_{X_{j}}(t), \rho_{p}\left(X_{j}\right), c_{p}\left(x_{j}\right), \tilde{H}_{X_{j}, q}(t), H_{X_{j}, q}$ (t) and $P_{X_{j}}(q)$ by $\varphi(t), \mu_{k}, \sigma^{2}, \theta(t), g_{p}, c_{p}, \tilde{H}_{q}(t), H_{q}(t)$ and $P(q)$ respectively Hence for each $p=1,2, \ldots, p_{0}+1$ and a positive integer j, we have the following.

From (4.1.2), $(4.1 .3)$ and $(4.1 .4)$

$$
\begin{aligned}
& \left.\tilde{H}_{p}(t)=\left[\begin{array}{cc}
p_{0}^{+1} & \frac{(-1)^{m-1}}{2(2 m)!}\left[\sum_{q=0}^{2 m}\left({ }^{2 m}\right)(-1)^{2 m-q}{ }_{q}{ }_{q}{ }^{\mu} 2 m-q\right.
\end{array}\right] t^{2 m}\right]^{p}, \\
& H_{p}(t)=\left[\begin{array}{cc}
p_{0}+1 \\
\sum_{m=1}^{p} & \left.\frac{1}{2(2 m)!}\left[\sum_{q=0}^{2 m}(\underset{q}{2 m})(-1)^{2 m-q_{\mu}}{ }_{q} \mu_{2 m-q}\right] t^{2 m}\right]^{p},
\end{array},\right.
\end{aligned}
$$

From (4.1.7), $K_{p}=n c_{p}$
so, from (4.1.8) $k=n \sum_{p=1}^{p_{0}+1}\left|c_{p}\right|$:
Since $K_{p}=n c_{p} \quad$, from (4.1.9) , (4.1.10), (4.1.11) and (4.1.12),

$$
\tilde{G}(t)=\tilde{\tilde{g}}(t) \quad \text { where } \tilde{g}(t)=\left(\sum_{p=2}^{p_{0}+1} c_{p} t^{2 p}\right)
$$

Hence there exist $k_{1}, k_{2}, \ldots, k_{p_{0}+1}$ such that

$$
(4.1 .20) \ldots \ldots \quad h_{2}(t)=\sum_{m=1}^{p_{0}+1} k_{m} n^{m} t^{2\left(m+p_{0}\right)} .
$$

From (4,1,13)-(4,1,17) we have

$$
\begin{aligned}
& \tilde{F}(t)=n \tilde{f}(t) \quad \text { where } \tilde{f}(t)=\sum_{m=1}^{p_{0}} \theta_{X}^{(2 m+1)}(0) \frac{t^{2 m+1}}{(2 m+1)!}+\frac{a t^{2 p_{0}+2}}{\left(2 p_{0}+2\right)!}, \\
& F(t)=n f(t) \quad \text { where } f(t)=\sum_{m=1}^{p_{0}}\left|\theta_{X}^{(2 m+1)}(0)\right| \frac{t^{2 m+1}}{(2 m+1)!}+\frac{a t^{2 p_{0}+2}}{\left(2 p_{0}+2\right)!},
\end{aligned}
$$

$$
\begin{aligned}
& G(t)=n g(t) \text { where } g(t)=\left(\sum_{p=2}^{p_{0}+1}\left|c_{p}\right| t^{2 p}\right) \text {, } \\
& \text { (4.1.19) } \ldots \text {... } \quad \text { if } p_{0}=1, \\
& h_{2}(t)=\left\{\begin{array}{c}
n^{\frac{\left|c_{1}\right|+\left|c_{2}\right|}{16}} t^{4} \\
\cdot c_{2} e^{p_{0}} \sum_{m=1}^{m!} \sum_{q=m+p_{Q}}^{m\left(2 p_{0}+2\right)} \frac{1}{(2 q)} g_{[m]}^{(2 q)}(0) t^{2\left(m+p_{0}\right)}+
\end{array}\right. \\
& \frac{n^{\left(p_{0}+1\right)!}}{e^{p_{0}+1} \frac{p_{0}^{p_{0}+1}}{15} \sum_{p=1}\left|c_{p}\right|}\left(g_{[1]}(1)\right)^{p_{0}+1} t_{t}^{4 p_{0}+2} \quad \text { if } p>1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4.1.21) } \ldots h_{3}(t)=\sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i)!} n^{2 i} \sum_{q=2 i}^{2 i+p_{0}-1} \frac{1}{(2 q)!} \underset{f}{f(2 q)}(0) t^{2 q} \text {, } \\
& (4.1 .22) \ldots h_{4}(t)=\sum_{i=1}^{p_{0}} \frac{(-1)^{i-1}}{(2 i-1)!} n^{2 i-1} \sum_{q=2 i}^{2 i+p_{O}-1} \frac{1}{(2 q-1)!} \tilde{f}[2 q-1)(0) t^{2 q-1} \text {, } \\
& \text { (4.1.23) } \ldots h_{5}(t)=\sum_{i=1}^{p_{0}} \frac{n^{2 i}}{(2 i)!}\left[\sum_{q=4 i+2 p_{0}}^{2 i\left(2 p_{0}+2\right)} \frac{1}{q!} f^{(q)}(2 i](0)\right] t^{4 i+2 p_{0}} \\
& +\sum_{i=1}^{p_{0}} \frac{n^{2 i-1}}{(2 i-1)!}\left[\sum_{q=4 i+2 p_{0}-2}^{(2 i-1)\left(2 p_{o}+2\right)} \frac{1}{q!} f_{[2 i-1]}^{(q)}(0)\right] t^{4 i+2 p_{o}-2} \\
& \left.+\frac{2 n^{2 p_{0}+1}}{\left(2 p_{0}+1\right)}\right)_{\left[2 p_{0}+1\right](1) t^{6 p_{0}+3} .} . \\
& \text { and from (4.1.18) } \\
& \mathrm{c}=\mathrm{nd}
\end{aligned}
$$

where

$$
d=\frac{2}{\pi} \sum_{k=-\infty}^{\infty} p_{X}(k) p_{X}(k+1)
$$

Chulalongkorn University

Since $\quad B_{n}=\sum_{j=1}^{n} \sigma^{2}\left(x_{j}\right)$, we have $B_{n}=\ldots \sigma^{2}$.

By Lemma 3.10, we have
(4.1.24) $\cdots \cdots \cdot \frac{1}{t}+\frac{A(t)}{t}=\sum_{k=0}^{p_{0}-1} a_{2 k} t^{2 k-1}$
and
$(4.1 .25) \ldots \ldots \cdot \quad B(t)=d_{0} t^{2 p_{0}-1}$
where

$$
\begin{aligned}
& a_{0}=1 \text {, } \\
& a_{2 m}=\frac{1}{(2 m)!} \sum_{k=1}^{p_{O^{-1}}}(-1)^{k}{\underset{\mathrm{D}}{[k]}}_{\sim}^{(2 m)}(0) \text { for } m=1,2, \ldots, p_{o}-1 \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{D}(t)=\sum_{p=1}^{p_{0}} \frac{(-1)^{p}}{(2 p+1)!} t^{2 p}, \\
& D(t)=\sum_{p=1}^{p_{0}} \frac{1}{(2 p+1)!} t^{2 p} \\
& \text { and } \quad D(t)=\sum_{p=1}^{0} \frac{1}{(2 p+1)!} t^{2 p} \text {. }
\end{aligned}
$$

Hence; if $X_{1}, X_{2}, \ldots, X_{n}$ are identically distributed, from (4.1.1), (4.1.19)-(4.1.24), we can write $R(T)$ as follow.

Case $p_{0}=1$, we have
(4.1.26) $R(T)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} d t-\frac{n \theta^{(3)}}{6 \pi}(0) \int_{0}^{\infty} e^{-\frac{1}{2} B n t^{2}} \cos (T \sqrt{B} n t) t^{2} d t+\Delta$,

$$
=\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} d t-\frac{\theta^{(3)}(0)}{6 \sqrt{2 \pi n} \sigma^{3}} e^{-\frac{T^{2}}{2}}\left[T^{2}+1\right]+\Delta
$$

which can be rewritten in the form

$$
R(T)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} d t+\frac{K_{1}(T)}{\sqrt{n}} e^{-\frac{T^{2}}{2}}+\Delta
$$

where $K_{1}(T)$ is a polynomial in T.

Case $p_{0}>1$, we have

$$
\begin{aligned}
& (4.1 .27) \ldots R(T)= \\
& \frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} \cdot d t+\frac{1}{\pi} \sum_{m=1}^{P_{0}^{-1}} a_{2 m}^{\infty} \int_{0}^{\infty} \frac{-1}{2} e^{2} t^{2} \\
& \sin (T \sqrt{n} \sigma t) t^{2 m-1} d t
\end{aligned}
$$

$$
+\frac{1}{\pi} \sum_{m=1}^{p_{0}} \sum_{k=0}^{p_{0}^{-1}} a_{2 k} \int_{0}^{\infty} \cdot e^{\frac{-1}{2} n \delta^{2} t^{2}} \sin (m \sqrt{n} \sigma t)\left[\frac{n^{m}}{m!} \sum_{q=2}^{m+p_{0}-1} \frac{1}{(2 q)} g^{2(2 q)}(0) t^{2 k+2 q-1}\right.
$$

$$
+\sum_{-i=1}^{p_{0}} \frac{(-1)^{i} n^{m+2 i}}{(2 i)!m!} \sum_{j=2}^{m+p_{0}-1} \sum_{q=2 i+p_{0}-1}^{\sum} \frac{1}{(2 j)!(2 q)!^{g}}{ }_{[m]}^{\sim(2 j)}(0){\underset{f}{[2 i]}}_{\sim(2 q)}^{[2) t^{2 j+2 k+2 q-1}}
$$

$$
\left.+\frac{(-1)^{m}}{(2 m)!} n^{2 m} \sum_{q=2 m}^{2 m+p_{0}-1} \frac{1}{(2 q)!} \underset{f}{f(2 q)}(0) t^{2 k+2 q-1}\right] d t-\frac{1}{\pi} \sum_{m=1}^{p_{0} p_{0}-1} \sum_{k=0} a_{2 k} \int_{0}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}}
$$

$$
\cos (T \sqrt{n} \dot{\delta} t)\left[\frac{(-1)^{m}}{(2 m-1)!} n^{2 m-1} \sum_{q=2 m}^{2 m+p_{o}-1} \frac{1}{(2 q-1)!} \tilde{f}_{[2 m-1]}^{(2 q-1)}(0) t^{2 k+2 q-2}\right.
$$

$$
+\sum_{i=1}^{p_{0}} \frac{(-1)^{i}}{(2 i-1)!m!} n^{m+2 i-1} \sum_{q=2}^{m+p_{0}-1} \sum_{j=2 i}^{2 i+p_{0}-1} \frac{1}{(2 q)!(2 j-1)!} \tilde{g}_{[m]}^{(2 q)}(0) \underset{f}{\sim} \underset{[2 i-1]}{(2 j-1)}(0)
$$

$$
\left.t^{2 q+2 k+2 j-2}\right] d t+\Delta
$$

By applying integration by parts to each of the integrals on the iright hand side of (4.1.27) and rearrange terms we have

$$
\begin{equation*}
R(T)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} d t+\frac{e^{-\frac{t^{2}}{2}}}{\sqrt{2 \pi}}\left[\frac{K_{1}(T)}{1 / 2}+\frac{K_{2}(T)}{n}+\ldots+\frac{K_{6 p_{o}-5^{(T)}}^{3 p_{0}-5 / 2}}{n}\right]+\Delta \tag{4.1.28}
\end{equation*}
$$

where $K_{1}(T), \ldots, K_{6 p_{O^{\prime}}-5}(T)$ are polynomials in T.

Next, we consider Δ, such that
(4.1.29) $\ldots|\Delta|<\frac{e^{-n d \tau^{2}}}{n d \tau^{2}}+\frac{1}{\pi} \int_{0}^{\infty} e^{-n d t^{2}} B(t) d t+\frac{1}{\pi} \int_{0}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}} \dot{h}_{2}(t)\left|\frac{1}{t}+\frac{A(t)}{t}\right| d t$

$$
\begin{aligned}
& +\left.\frac{1}{\pi} \int_{0}^{5} e\right|^{\left.-\frac{1}{2}\left(1+h_{1}^{2}(t)\right) h_{5}(t)\left(\frac{1}{t}+\frac{A(t)}{t}\right) \right\rvert\, d t+} \\
& \left.+\left.\frac{1}{\pi} \int_{\sigma}^{\infty} e\right|^{-\frac{1}{2} n^{2} t^{2}}\left(9+h_{1}^{2}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)\left(\frac{1}{t}+\frac{A(t)}{t}\right) \right\rvert\, d t
\end{aligned}
$$

The first integral on the right hand side of (4.1.29) can be obtained by using (4.1.25). We have
(4.1.30) $\ldots \int_{0}^{\infty} e^{-n d t^{2}} B(t) d t=d \int_{0}^{\infty} e^{-n d t^{2}} t^{2 p_{0}^{-1}} d t$,

$$
=\frac{d_{2}}{p_{0}}
$$

for some constant d_{2}.
The second integral on the right hand side of $(4.1 .29)$ can be treated by using $(4,1,20)$. We have

$$
\begin{aligned}
& \int_{0}^{\infty} e^{\frac{-1}{2} n \sigma^{2} t^{2}} h_{2}(t)\left|\frac{1}{t}+\frac{A(t)}{t}\right| d t \\
& =\sum_{m=1}^{p_{0}+1} \frac{n^{m}}{m!} c_{m} \int_{0}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}} t^{2\left(m+p_{0}\right)} \sum_{k=0}^{p_{o}^{-1}}\left|a_{2 k}\right| t^{2 k-1} d t \\
& \leq \sum_{m=1}^{p_{o}+1} \sum_{k=0}^{p_{0}-1} \frac{n^{m}}{m!}\left|a_{2 k}\right| c_{m} \int_{0}^{\infty} e^{\frac{-1}{2} n \sigma^{2} t^{2}} t^{2\left(m+p_{o}+k\right)-1} d t, \\
& =\sum_{m=1}^{p_{0}+1} \sum_{k=0}^{p_{0}} n^{m} c_{m}\left|a_{2 k}\right| \frac{\left(m+p_{0}+k-1\right)!/ 2}{\left(m+p_{0}+k-1\right)} \\
& =\sum_{m=1}^{p_{0}+1} \sum_{k=0}^{p_{o}^{-1}} \frac{c_{m}\left|a_{2 k}\right|\left(m+p_{0}+k-1\right)!2}{\sigma^{2\left(m+p_{o}+k\right)} p_{0} p_{0}+k} \\
& \leq \sum_{m=1}^{p_{0}+1} \sum_{k=0}^{p_{0}^{-1}} \frac{c_{m}\left|a_{2 k}\right|\left(m+p_{0}+k-1\right)!2}{\sigma^{2\left(m+p_{0}+k\right)}} \cdot \frac{1}{p_{0}} .
\end{aligned}
$$

So we have

$$
\begin{aligned}
& \int_{0}^{\infty} e^{\frac{-1}{2} n \sigma^{2} t^{2}} h_{2}(t)\left|\frac{1}{t}+\frac{A(t)}{t}\right| d t \leq \frac{d_{3}}{p_{o}} \\
& \text { where } d_{3}=\sum_{m=1}^{p_{0}+1} \sum_{k=0}^{p_{o}^{-1}} \frac{c_{m}\left|a_{2 k}\right|\left(m+p_{o}+k-1\right)!2}{\sigma^{2\left(m+p_{o}+k\right)}}
\end{aligned}
$$

So the second integral is bounded by $\frac{d_{3}}{p_{0}}$, ie. we have
$(4.1 .31) \ldots \int_{0}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}} h_{2}(t)\left|\frac{1}{t}+\frac{A(t)}{t}\right| d t \leq \frac{d_{3}}{p_{0}}$.

A bound on the third integral on the right hand side of (4.1.29) can be obtained similarly. In this case we have
(4.1.32) $\int_{0}^{\tau} e^{-\frac{1}{2} \text { no }^{2} t^{2}}\left|\left(1+h_{1}(t)\right) h_{5}(t)\left(\frac{1}{t}+\frac{A(t)}{t}\right)\right| d t \leq \frac{d_{4}}{p_{0}}$
for some constant d_{4}.
Finally we shall obtain a bound on the last integral on the right hand side of (4.1.29). Observe that

$$
\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(1+h_{1}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)
$$

can be written in the form

$$
\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(1+h_{1}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)=\frac{1}{t}+b_{0}+b_{1} t+\ldots+b_{q} t^{q}
$$

where q is a positive integer and $\mathrm{b}_{\mathrm{o}}, \mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{q}}$ are constants.
so

$$
\begin{aligned}
& \int_{5}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}}\left|\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(1+h_{1}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)\right| d t \\
= & \int_{\tau}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}}\left|\frac{1}{t}+b_{0}+b_{1} t+\ldots+b_{q} t^{q}\right| d t \\
\leq & \int_{\sigma}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}} d t+\sum_{k=1}^{q}\left|b_{k}\right| \int_{\tau}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}} t^{k} d t \\
= & \int_{\sqrt{n} \sigma \sigma^{u}}^{\sqrt{2}} \frac{e^{-u^{2}}}{u} d u+\sum_{k=1}^{q}\left(\frac{\sqrt{2}}{\sqrt{n} \sigma}\right)^{k+1}\left|b_{k}\right| \int_{\frac{\sqrt{n} \sigma \sigma}{\sqrt{2}}}^{\infty} u^{k} e^{-u^{2}} d u . \\
\leq & \frac{e^{-\frac{n \sigma^{2} \tau^{2}}{2}}}{n \sigma^{2} \sigma^{2}}+\sum_{k=1}^{q}\left(\frac{\sqrt{2}}{\sqrt{n} \sigma}\right)^{k+1}\left|b_{k}\right| \int_{\frac{\sqrt{n} \sigma \sigma}{\sqrt{2}}}^{\infty} u^{k} e^{-u^{2}} d u .
\end{aligned}
$$

where the last inequality follow from the fact that $\int_{x}^{\infty} \frac{e^{-t^{2}}}{t} d t \leq \frac{e^{-x^{2}}}{2 x^{2}}$, for $x \geq 1$.

For large n, we have

$$
\int_{\frac{\sqrt{n} \sigma \sigma}{\sqrt{2}}}^{\infty} u^{k} e^{-u^{2}} d u \leq \int_{\frac{\sqrt{n} \sigma \tau}{\sqrt{2}}}^{\infty} u^{2 m+1} e^{-u^{2}} d u
$$

where $2 m+1$ be the smallest integer such that $k \leq 2 m+1$. Since

$$
\int_{x}^{\infty} e^{-t^{2}} t^{2 m+1} d t=\frac{e^{-x^{2}}}{2}\left(x^{2 m}+m x^{2 m-2}+m(m-1) x^{2 m-4}+\ldots+m!\right)
$$

we have

$$
\int_{\frac{\sqrt{n} \sigma \xi}{\sqrt{2}}}^{\infty} u^{k} e^{-u^{2}} d u \leq \frac{e^{-\frac{n \sigma^{2} \sigma^{2}}{2}}\left[\left(\frac{\sqrt{n} \sigma T}{\sqrt{2}}\right)^{2 m}+m\left(\frac{\sqrt{n} \sigma \tau}{\sqrt{2}}\right)^{2 m-2}+\ldots+m!\right]}{}+\ldots+m
$$

Since $\mathcal{T}=\frac{1}{2^{4} \sqrt{n}\left(\sigma^{2}+1\right)}$, there is constant η_{k} such that

$$
\int_{\frac{\sqrt{n} \sigma \tau}{\sqrt{2}}}^{\infty} u^{k} e^{-u^{2}} d u \leq \eta_{k} n^{\frac{m}{2}} e^{-\frac{\sigma^{2} \sqrt{n}}{8\left(\sigma^{2}+1\right)}}
$$

Hence

$$
\left(\frac{\sqrt{2}}{\sqrt{n} \sigma}\right)^{k+1}\left|b_{k}\right| \int_{\frac{\sqrt{n} \sigma \tau}{\sqrt{2}}}^{\infty} u^{k} e^{-u^{2}} d u \leq \eta_{k} e^{-\frac{\sigma^{2} \sqrt{n}}{8\left(\sigma^{2}+1\right)}}
$$

for some constant η_{k}^{\prime}.

So,
(4.1.33)...

$$
\int^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}}\left|\left(\frac{1}{t}+\frac{A(t)}{t}\right)\left(1+h_{1}(t)\right)\left(1+h_{3}(t)+h_{4}(t)\right)\right| d t \leq d_{5} e^{-\frac{\sigma^{2} \sqrt{n}}{8\left(\sigma^{2}+1\right)}}
$$

for some constant d_{5}.

From (4.1.29)-(4.1.33) we have

$$
\begin{aligned}
& |\Delta|<\frac{4\left(\sigma^{2}+1\right)}{\sqrt{n} d_{1}} e^{-\frac{d_{1} \sqrt{n}}{4\left(\sigma^{2}+1\right)}+\underbrace{\frac{d_{2}}{p_{0}}}_{n}+\frac{d_{2}}{p_{0}}+\frac{d_{4}}{p_{0}}+d_{5} e^{-\frac{\sigma^{2} \sqrt{n}}{8\left(\sigma^{2}+1\right)}}} \\
& <\frac{\left(d_{2}+d_{3}+d_{4}\right)}{{ }_{n} p_{o}}+\left(\frac{4\left(\sigma^{2}+1\right)}{\sqrt{n} d_{1}}+d_{5}\right) e-\min \left(\frac{d_{1}}{4\left(\sigma^{2}+1\right)}, \frac{\sigma^{2}}{8\left(\sigma^{2}+1\right)}\right) \sqrt{n}
\end{aligned}
$$

So there exist positive constants A, B and C such that

$$
|\Delta|<\frac{A}{p_{0}}+B e^{-C \sqrt{n}}
$$

The following examples illustrate how Theorem 4.1 can be applied.

Example 1. Let $x_{j}, j=1,2, \ldots, n$, be independent identically distributed random variables such that for each $k=q+1, q+2, \ldots, q+m$,
(E1-1)...

$$
P\left(X_{j}=k\right)=\frac{1}{m},
$$

$j=1,2, \ldots, n$. We shall apply Theorem 4.1 with $p_{o}=1$ to these random variables. From (4.1.26), we have
$(E 1-2) \ldots R(T)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} d t-\frac{\theta^{(3)}(0) e^{-\frac{T^{2}}{2}}}{6 \sqrt{2 \pi n} 6^{3}}\left(T^{2}+1\right)+\Delta$,
where Δ is the error term, which, according to Theorem 4.1, satisfies
$|\Delta| \leq \frac{A}{n}+B e^{-c \sqrt{n}}$,
for some positive constants A, B and C.
From (E1-1) we have

$$
\begin{aligned}
\varphi(t) & =\sum_{j=k}^{m} \frac{1}{m} e^{i(q+k) t} \\
& =\frac{1}{m} e^{i(q+1) t}\left(\frac{1-e^{i m t}}{\left.1-e^{i t}\right)},\right. \\
& =\frac{1}{m} e^{i(q+1) t \frac{e^{\frac{i m t}{2}}}{\frac{i t}{2}}\left[\frac{e^{-\frac{i m t}{2}}-\frac{i t}{e^{\frac{i m}{2}}}-e^{\frac{i t}{2}}}{e^{\frac{i m}{2}}}\right]} \\
& =\frac{1}{m} \frac{\sin \left(\frac{m t}{2}\right)}{\sin \frac{t}{2}} e^{i\left(q+\frac{m}{2}+\frac{1}{2}\right) t}
\end{aligned}
$$

where

$$
|\Delta|=\frac{A}{n}+B e^{-C \sqrt{n}}
$$

for some constants A, B and C

Example 2. Let $X_{j}, j=1,2, \ldots, n$, be independent identically distributed random variables such that
(E2-1).....

$$
\left\{\begin{array}{l}
P\left(x_{j}=0\right)=q \\
P\left(x_{j}=1\right)=p
\end{array}\right.
$$

$j=1,2, \ldots, n$, where $0<p, q<1$ and $p+q=1$. We shall apply Theorem 4.1 with $p_{0}=2$ to these random variables. From (4.1.27) we have

$$
\begin{aligned}
& \begin{aligned}
(E 2-2) \ldots R(T)= & \frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} d t+\frac{1}{6 \pi} \int_{0}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}} \sin (T \sqrt{n} \sigma t) t d t
\end{aligned} \\
& {\left[\frac{n^{m}}{m!} \sum_{q=2}^{m+1} \frac{1}{(2 q)!}{\underset{\sim}{g}}_{[m]}^{(2 q)}(0) t^{2 k+2 q-1}\right.} \\
& +\sum_{i=1}^{2} \frac{(-1)^{i}}{(2 i)!} \frac{n^{m+2 i}}{m!} \sum_{j=2}^{m+1} \sum_{q=2 i}^{2 i+1} \frac{1}{(2 j)!(2 q)!}{\underset{\sim}{f}}_{[m]}^{(2 j)}(0) \underset{[2 i]}{\underset{\sim}{f}(2 q)}(0) t^{2 j+2 k+2 q-1} \\
& \left.+\frac{(-1)^{m}}{(2 m)!} n^{2 m} \sum_{q=2 m}^{2 m+1} \frac{1}{(2 q)!} \underset{[2 m]}{\sim}(2 q) \quad t^{2 k+2 q-1}\right] d t
\end{aligned}
$$

1.

$$
\begin{aligned}
& -\frac{1}{\pi} \sum_{m=1}^{2} \sum_{k=0}^{1} a_{2 k} \int_{0}^{\infty} e^{-\frac{1}{2} n \sigma^{2} t^{2}} \cos (T \sqrt{n} \sigma t)\left[\frac{(-1)^{m}}{(2 m-1)!} n^{2 m-1} \sum_{q=2 m}^{2 m+1} \frac{1}{(2 q-1)!}\right. \\
& \tilde{f}^{(2 q-1)}(0) t^{2 k+2 q-2}+\sum_{i=1}^{2} \frac{(-1)^{i}}{(2 i-1)!m!} n^{m+2 i-1} \underset{q=2}{m+1} \sum_{j=2 i}^{2 i+1} \frac{1}{(2 q)!(2 j-1)!} \\
& \tilde{g}^{(2 q-1]}(0) \tilde{f}^{(2 j-1)}(0) t^{2 q+2 k+2 j-2]} d t+\Delta \\
& {[m] \quad[2 i-1]}
\end{aligned}
$$

where Δ is the eror term, which according to Theorem 4.1, satisfies

$$
|\Delta| \leq \frac{A}{n^{2}}+B e^{-c \sqrt{n}},
$$

for some positive constants A, B, C.
From (E2-1) we have

Since $\varphi(t)=q+p e^{i t}$, we have

$$
\theta(t)=\arctan \left(\frac{p \sin t}{q+p \cos t}\right)
$$

It can be shown that

$$
\begin{aligned}
& \theta^{(3)}(0)=p q(p-q) \\
& \theta^{5}(0)=p q(p-q)(p q-1)
\end{aligned}
$$

and

$$
\left|\theta^{6}(t)\right| \leq \frac{458}{\left(p^{2}+q^{2}+2 p q \cos \frac{1}{\sqrt{\sigma^{2}+1}}\right)^{16}}
$$

for all t in $(-\tau, \tau)$. So, we can take a in (i) of Theorem 4.1 to be

$$
\frac{458}{\left(p^{2}+q^{2}+2 p q \cos \frac{1}{\sqrt{\sigma^{2}+1}}\right)^{16}}
$$

Hence \tilde{f} in our proof of Theorem 4.1 is given by
$(E 2-3) \ldots \tilde{f}(t)=p q(p-q) \frac{t^{3}}{3!}+p q(p-q)(12 p q-1) \frac{t^{5}}{5!}+\frac{458}{\left(p^{2}+q^{2}+2 p q \cos \frac{1}{\sqrt{\frac{2}{\sigma}+1}}\right)^{16}} \frac{t^{6}}{6!}$

From (4.1.24), we have
(E2-4)...
and
(E2-5)...

$$
a_{1}=\frac{1}{6} .
$$

Since $\mu_{k}=p$ for all positive integer p, it follows that

$$
g_{1}=g_{2}=g_{3}=2 p q,
$$

and

$$
{\underset{H}{r}}_{r}(t)=\left[\sum_{m=1}^{3} \frac{(-1)^{m-1}}{(2 m)!}(p q) t^{2 m}\right]^{r}
$$

for $r=1,2$.

Hence

$$
c_{2}=\frac{-p q}{2}(6 p q-1)
$$

and

$$
c_{3}=\left(p q-\frac{22061}{720} p^{2} q^{2}\right)+p^{3} q^{3}
$$

So, \tilde{g} in our proof of Theorem 4.1 is given by $(E 2-6) \ldots \tilde{g}(t)=\frac{-p q}{2}(6 p q-1) t^{4}+\frac{1}{6!}\left(\left(p q-\frac{22061}{720} p^{2} q^{2}\right)+p^{3} q^{3}\right) t^{6}$ By substituting results from (E2-3)-(E2-6) into (E2-2) and work out the integrals involved, we have

$$
\begin{aligned}
& R(T)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} d t+\frac{e^{-T^{2}}}{\sqrt{2 \pi}}\left[\frac{(p-q)\left(1-T^{2}\right)}{\frac{1}{\frac{1}{2}}} \cdot \frac{1}{\frac{1}{\frac{1}{2}}}\right. \\
& +\left[\frac{T}{6 p q}-\frac{(6 p q-1)}{2 p q}\left(3-T^{2}\right) T^{2}+\frac{\left(15-9 T^{3}+T^{5}\right)}{72 p^{2} q^{2}} T\right] \frac{1}{n} \\
& +\int_{12(p q)^{\frac{3}{2}}}^{\left[\frac{(1-6 p q)}{\left(15-44 T^{2}+14 T^{4}-T^{6}\right)-\frac{\left(3-5 T^{2}+T^{4}\right)}{3}}\right.} \\
& +\frac{(p-q)^{2}}{126(p q)^{\frac{3}{2}}}\left(105-413 T^{2}+196 T^{4}-27 T^{6}+T^{8}\right] \frac{1}{\frac{3}{2}} \\
& +\left[\frac{(6 p q-1)}{36 p^{2} q^{2}}-\frac{(p-q)}{1296 p^{3} q^{3}}\left(105 T-98 T^{3}+20 T^{5}-T^{7}\right)+\right. \\
& \left.\frac{(6 p q-1)(p-q)\left(945 T-1197 T^{3}+356 T^{5}-35 T^{7}+T^{9}\right.}{432 p^{3} \cdot q^{3}}\right] \frac{1}{n^{2}} \\
& \begin{array}{c}
+(p-q)\left[\frac{(6 p q-1)}{42(p q)^{\frac{5}{2}}}\left(105-413 T^{2}+196 T^{4}-27 T^{6}+T^{8}\right)\right.
\end{array}
\end{aligned}
$$

$$
+\frac{(\mathrm{p}-\mathrm{q})^{2}}{7776(\mathrm{pq})^{\frac{5}{2}}}\left(945-4662 \mathrm{~T}^{2}+2961 \mathrm{~T}^{4}+44 \mathrm{~T}^{8}-\mathrm{T}^{10}\right)
$$

$$
\left.+\frac{(6 p q-1)}{p^{2} q^{2}}\left(10395-61677 T^{2}+46035 T^{4}-13110 T^{6}+1433 T^{8}-65 T^{10}+T^{12}\right)\right] \frac{1}{\frac{5}{2}}
$$

$$
+\left[\frac{(6 p q-1)(p-q)\left(105-413 T^{2}+196 T^{4}-27 T^{6}+T^{8}\right)}{72(p q)^{\frac{5}{2}}}\right] \frac{1}{n^{3}}
$$

$$
+\frac{(6 \mathrm{pq}-1)}{2.6^{5}(\mathrm{pq})^{\frac{7}{2}}}(\mathrm{p}-\mathrm{q})^{3}\left(135135-942696 \mathrm{~T}^{2}+859716 \mathrm{~T}^{4}-288957 \mathrm{~T}^{6}+30017 \mathrm{~T}^{8}-2926 \mathrm{~T}^{10}\right.
$$

$$
\left.+90 T^{12}-T^{14}, \frac{1}{n^{\frac{7}{2}}}\right]+\Delta
$$

where

$$
|\Delta| \leq \frac{A}{n^{2}}+B e^{-C \sqrt{n}},
$$

for some positive constants A, B, C

Example 3. Let $x_{j}, j=1,2, \ldots, n$, be independent identically distributed random variables such that

$$
(E 3-1) \ldots \quad P_{X_{j}}(n)=\frac{\lambda^{n} e^{-\lambda}}{n!} \quad(n=0,1,2, \ldots)
$$

for some positive constant λ. We shall apply Theorem 4.1 with $p_{0}=2$ to these random variables. Since $p_{0}=2$, the formula for $R(T)$ is the same as that given in (E2-2). From (E3-1) we have

$$
\begin{aligned}
\varphi(t) & =e^{\lambda\left(e^{i t}-1\right)} \\
\theta(t) & =\lambda \sin t \\
\mu_{k} & =\lambda^{k} \\
\text { and } \quad \sigma^{2} & =\lambda
\end{aligned}
$$

Since $\theta(t)=\lambda \sin t$, we have

$$
\begin{aligned}
& \theta^{3}(0)=-\lambda, \\
& \theta^{5}(0)=\lambda, \\
& \left|\theta^{6}(t)\right|=\lambda,
\end{aligned}
$$

for all t in $(-\tau, \tau)$. So, we can take a in (i) of Theorem 4.1 to be λ.
Hence \tilde{f} in our proof of Theorem 4.1 is given by
(E3-2) $\quad \tilde{f}(t)=-\frac{\lambda t^{3}}{3!}+\frac{\lambda t^{5}}{5!}+\frac{\lambda t^{6}}{6!}$.

From (4.1.24), we have
(E3-3)...

$$
\text { SHUL }_{a_{0}}=1
$$

and
(E3-4)...

$$
a_{1}=\frac{1}{6}
$$

Since $\mu_{k}=\lambda^{k}$, for all positive integer k, it follows that

$$
g_{p}=0
$$

for all positive p.

Hence $\tilde{H}_{p}=0$ for all positive p.
So we have

$$
c_{2}=0
$$

and

$$
c_{3}=\lambda^{3}
$$

hence \tilde{g} in our proof of Theorem 7.1 is given by

$$
(E 3-5) \ldots \quad \tilde{g}(t)=\lambda^{3} t^{6}
$$

By substituting results from (E3-2)-(E3-5) into $R(T)$ which is given by (E2-2), and work out the integrals involued, we have

$$
\begin{aligned}
R(T) & =\frac{1}{\sqrt{2 \pi}} \int_{0}^{T} e^{-\frac{t^{2}}{2}} d t+\frac{e^{-\frac{T^{2}}{2}}}{\sqrt{2 \pi}}\left[\frac{\left(1-T^{2}\right)}{\frac{1}{2} n^{\frac{1}{2}}}\right. \\
& +\left[\frac{T}{6}+\frac{\left(15-9 T^{3}+T^{5}\right)}{72} T\right] \frac{1}{\lambda n} \\
& -\left[213-593 T^{2}+232 T^{4}-27 T^{6}+T^{8}\right] \frac{1}{n^{\frac{3}{2}} \frac{3}{2}} \\
& -\left[105 T-98 T^{3}+20 T^{5}-T^{7}\right] \frac{1}{432 \lambda^{2} n^{2}} \\
& \left.+\left[945-4662 T^{2}+2961 T^{4}-599 T^{6}+44 T^{8}-T^{10}\right] \frac{1}{n^{2}}\right]
\end{aligned}
$$

where

$$
|\Delta| \leq \frac{A}{n^{2}}+B e^{-C \sqrt{n}}
$$

APPENDIX

Let f be a real-valued function defined on $[-a, a]$. Assume that
(1) f has derivative of order $n+1$ everywhere on ($-a, a$) and
(2) $f^{(n)}(t)$ is continuous on $[-a, a]$.

So that f has a Taylor's formula of the form

$$
f(t)=a_{0}+a_{1} t+a_{2} t^{2}+\ldots+a_{n} t^{n}+R_{n+1}(t) t^{n+1}
$$

In this appendix, we show that if f is odd on $(-a, a)$ and $R_{n+1}(t)$ is bounded on a neighbourhood of 0 , then

$$
a_{2 k}=0
$$

for all nonnegative integer k such that $2 k \leq n$.
A proof is as follows :
Suppose that $a_{2 k} \neq 0$ for some k such that $0 \leq 2 k \leq n$. Let k_{0} be the samllest such k. Let g be defined on $(-a, a)$ by

$$
g(t)= \begin{cases}a_{2 k} & \text { if } t=0, \\ f(t)-\frac{\sum}{2 m-1<2 k_{0}} a_{2 m-1} t^{2 m-1} \\ \frac{2 k_{0}}{} & \text { if } t \neq 0\end{cases}
$$

By definition of k_{o}, we see that

$$
g(0)=a_{2 k}
$$

and

$$
g(t)=a_{2 k_{0}}+a_{2 k_{0}+1} t+\ldots+a_{n} t^{n-2 k_{0}}+R_{n+1}(t) t^{n+1-2 k_{0}}
$$

for $t \neq 0$.
Since $R_{n+1}(t)$ is bounded on a neighbourhood of 0 and $n+1-2 k_{0}>0$, hence

$$
\lim _{t \rightarrow 0} R_{n+1}(t) t^{n+1-2 k_{0}}=0
$$

It follows that g is continuous at 0 . Observe that for $t \neq 0$

$$
\begin{aligned}
g(-t) & =\frac{f(-t)+\frac{\Sigma}{2 m-1<2 k_{0}{ }^{a} 2 m-1} t^{2 m-1}}{t^{2 k_{0}}} . \\
& =\frac{-f(t)+\frac{\Sigma}{2 m-1<2 k_{0}}{ }^{2 k_{0}}}{t^{2 m-1} t^{2 m-1}} \\
& =-g(t) .
\end{aligned}
$$

Hence g is odd on ($-a, a$).
Suppose that $\left|a_{2 k}\right|>0$. Since g is continuous at 0 , there is a $\delta>0$ such that $|g(x)-g(0)|<\frac{\left|a_{2 k}\right|}{2}$ whenever $x \in(-a, a)$ and $|x-0|<0$. It follows that $g(x)$ has the same sign as $a_{2 k_{0}}$ for all such x.

This is contary to the fact that g is odd. Hence $a_{2 k}=0$ for all k such that $0<2 k \leq n$.

